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Abstract

We review self-duality of nonlinear electrodynamics and its extension to several

Abelian gauge fields coupled to scalars. We then describe self-duality in supersym-

metric models, both N = 1 and N = 2. The self-duality equations, which have

to be satisfied by the action of any self-dual system, are found and solutions are

discussed. One important example is the Born-Infeld action. We explain why the

N = 2 supersymmetric actions proposed so far are not the correct world-volume

actions for D3 branes in d = 6.
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1 Introduction

The simplest and best known example of a self-dual system is electrodynamics in vacuum.

The set of Maxwell’s equations is invariant under the simultaneous replacements ~E →
~B, ~B → −~E. While being a symmetry of the Hamiltonian H = ~E2 + ~B2, the Lagrangian

does transform: L = ~E2 − ~B2 → −L. The generalization to a (p− 1)-form potential C in

d = 2p dimensions with action S =
∫

dC ∧ ∗dC is immediate.

These theories are free systems with linear equations of motion. The interesting ques-

tion is whether one can construct interacting self-dual systems. The main goal of these

notes is to discuss the conditions (self-duality equations) which have to be satisfied by

the action of a dynamical system in order to be self-dual, in the sense to be specified

below. Apparently Schrödinger was the first to discuss nonlinear self-duality. In [1] he

reformulated the Born-Infeld (BI) theory [2] in such a way that it was manifestly invariant

under U(1) duality rotations. We will mainly be interested in four-dimensional nonlinear

systems of gauge fields coupled to matter. For non-supersymmetric systems the results

have been obtained, as a generalization of patterns of duality in extended supergravity

[3, 4] (see also [5]), in [6, 7, 8, 9, 10, 11] and reviewed and extended in [12, 13]. Our special

emphasis is on manifestly N = 1, 2 supersymmetric generalizations.

As will be discussed below, self-dual theories possess quite remarkable properties.

Our main concern, however, in pursuing the study of such systems lies in the fact that

self-duality turns out to be intimately connected with spontaneous breaking of supersym-

metry (for still not completely understood reasons). Recently several models for partial

breaking of N = 2 supersymmetry to N = 1 in four dimensions [14, 15, 16, 17] have

been constructed. Two most prominent models – described by the Goldstone-Maxwell

multiplet [14, 16] and by the tensor Goldstone multiplet [15, 16] – are self-dual N = 1

supersymmetric theories; the other Goldstone multiplets are dual superfield version of the

tensor one (as we will describe, self-duality may be consistent with the existence of dual

formulations). In our opinion, this cannot be accidental.

It may look curious but the fact that the nonlinear superfield constraint, which un-

derlies the Goldstone-Maxwell construction of [14, 16], has turned out to be fruitful for

nontrivial generalizations. This constraint was used in [18, 19] to derive nonlinear U(n)

duality invariant models, both in non-supersymmetric and supersymmetric cases. In the

present paper, we apply the nonlinear constraint, which is at the heart of the tensor

Goldstone construction of [15, 16], to derive new self-dual systems.

These notes are organized as follows. In sect. 2 we review nonlinear electrodynamics:
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we define the notion of self-duality and state the self-duality equation which has to be

satisfied by the action. The derivation can be found in Appendix A. We also discuss

various properties of self-dual nonlinear electrodynamics, e.g. when coupled to a complex

scalar field. We then proceed with a description of the general structure of self-dual

Lagrangians, of which the Born-Infeld action is but a particular example, with very special

properties, though. In sect. 3 we present, following Refs. [6, 7, 12, 13], the generalization

to a collection of U(1) vector-fields, coupled to an arbitrary number of scalar fields. Sect. 4,

which is based on Ref. [20], is the N = 1 supersymmetric version of sect. 2. In sect. 5 we

discuss properties of the supersymmetric Born-Infeld action and make contact with the

work of Bagger and Galperin [14], where this action was obtained as a model of partial

N = 2 → N = 1 supersymmetry breaking. In the next section we supersymmetrize

the analysis of sect. 4. In sect. 7 we discuss self-dual models with tensor multiplets. In

sect. 8, we temporarily leave supersymmetry and derive the self-duality equations and

determine the maximal duality group of a d-dimensional system with n Abelian (p− 1)-

form potentials and m Abelian (d− p− 1)-form potentials, with and without coupling to

scalar fields. In sect. 9 we turn to N = 2 supersymmetric models. We find the duality

equation and demonstrate that the N = 2 Born-Infeld action proposed in Ref. [21] is

indeed self-dual. This action correctly reduces to the N = 1 Born-Infeld action when the

(0, 1/2) part of the N = 2 vector multiplet is switched off. However, there are in fact

infinitely many manifestly N = 2 generalization of the N = 1 Born-Infeld action with this

property [20]. Within the context of the D3-brane world-volume action, one has to impose

additional properties (beyond self-duality), in particular the action should be invariant

under translations in the transverse directions in the embedding space, or, in other words,

it should contain only derivatives of the scalar fields. We show that even when allowing

for nonlinear field redefinitions, the action of Ref. [21, 20] does not satisfy this property.

It is therefore not the correct model for partial N = 4 → N = 2 supersymmetry breaking,

based on the N = 2 Goldstone-Maxwell multiplet. We should mention that we know of no

à priori reason why such a theory should be automatically self-dual. However this is the

case for partial breaking of N = 2 supersymmetry to N = 1. In any case, the manifestly

N = 2 supersymmetric world-volume action of a D3 brane in d = 6 is still unknown (as

well as the manifestly (1, 0) supersymmetric BI action in d = 6, from which it might be

derived via dimensional reduction).

As already mentioned, Appendix A contains the derivation of the self-duality equation

in the simplest context, namely of pure nonlinear electrodynamics.

At the end of the introduction we want to mention that all our considerations are
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classical. The systems we study should be considered as effective theories. That they are

relevant is demonstrated by the appearance of the Born-Infeld action as the world-volume

action of D-branes [22, 23]. However the study of nonlinear self-dual systems might also

be interesting in its own right.

Any nonlinear theory must possess a dimensionful parameter. Within the context of

(open) string theory this is the string scale α′. We will always set this parameter to unity.

2 Self-duality in nonlinear electrodynamics

We begin with a review [6, 7, 8, 9, 10, 11] of self-dual models of a single U(1) gauge field

with field strength Fab = ∂aAb − ∂bAa. The dynamics of such a model is determined by a

nonlinear Lagrangian L(Fab) = −1
4
F abFab +O(F 4). With the definition1

G̃ab(F ) ≡ 1

2
εabcdG

cd(F ) = 2
∂L(F )

∂F ab
, G(F ) = F̃ +O(F 3) , (2.1)

the Bianchi identity and the equation of motion read

∂bF̃ab = 0 , ∂bG̃ab = 0 . (2.2)

Since these differential equations, satisfied by F , have the same form, one may consider

duality transformations2
(

G′(F ′)

F ′

)

=

(

a b

c d

) (

G(F )

F

)

,

(

a b

c d

)

∈ GL(2,R) , (2.3)

such that the transformed quantities F ′ and G′ also satisfy the equations (2.2). For G′

one should require

G̃′
ab(F

′) = 2
∂L′(F ′)

∂F ′ab
, (2.4)

and the transformed Lagrangian, L′(F ), exists (in general, L′(F ) 6= −1
4
F · F + O(F 4))

and can be determined for any GL(2,R)-matrix entering the transformation (2.3). In

particular, for an infinitesimal duality transformation3

δ

(

G

F

)

=

(

A B

C D

) (

G

F

)

,

(

A B

C D

)

∈ gl(2,R) (2.5)

1We are working in d = 4 Minkowski space, where ˜̃F = −F , and often use the notation F ·G = F abGab

implying F · G̃ = F̃ ·G and F̃ · G̃ = −F ·G.
2In the case of Maxwell’s electrodynamics, the field strength transforms into its Hodge dual F̃ , hence

the name ‘duality transformations’.
3Throughout this paper, small Latin letters from the beginning of the alphabet denote finite duality

transformation parameters, capital letters are used for infinitesimal transformations.
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one finds

∆L = L′(F )− L(F ) = (A+D)L(F )− 1

2
D G̃ · F +

1

4
B F · F̃ − 1

4
C G · G̃ ; (2.6)

c.f. also sect. 3, eq. (3.27).

The above considerations become nontrivial if one requires the model to be self-dual,

i.e.

L′(F ) = L(F ) . (2.7)

The requirement of self-duality implies:

(i) only U(1) duality rotations can be consistently defined in the nonlinear case, although

Maxwell’s case is somewhat special (see sect. 3 for details)

(

G′(F ′)

F ′

)

=

(

cosλ − sinλ

sinλ cosλ

) (

G(F )

F

)

; (2.8)

(ii) the Lagrangian solves the self-duality equation [8, 10, 11]

Gab G̃ab + F ab F̃ab = 0. (2.9)

A derivation of the self-duality equation is presented in Appendix A.

Due to the definition of G(F ), the self-duality equation severely constrains the possible

functional form of L(F ). Any solution of the self-duality equation defines a self-dual

model.

Self-dual theories possess several remarkable properties:

I. Duality-invariance of the energy-momentum tensor

Given an invariant parameter g in the self-dual theory, the observable ∂L(F, g)/∂g is

duality invariant [6]. Indeed, using eq. (A.6) and the duality invariance of g, one gets

δ
∂

∂g
L =

∂

∂g
δ L =

1

2
λ
∂

∂g

(

G̃ ·G
)

=
1

2
λ
∂

∂g

(

G̃ ·G+ F̃ · F
)

= 0 , (2.10)

since F is g-independent. Any self-dual theory can be minimally coupled to the gravita-

tional field gmn such that the duality invariance remains intact, and gmn does not change

under the curved-space duality transformations. Therefore, the energy-momentum tensor

is duality invariant.

II. SL(2,R) duality invariance in the presence of dilaton and axion

Given a self-dual model L(F ), its compact U(1) duality group can be enlarged [9, 10, 11]
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to the non-compact SL(2,R), by suitably coupling the electromagnetic field to the dilaton

ϕ and axion a,

S = S1 + iS2 = a+ i e−ϕ . (2.11)

Non-compact duality transformations read
(

G′

F ′

)

=

(

a b

c d

) (

G

F

)

, S ′ =
aS + b

cS + d
,

(

a b

c d

)

∈ SL(2,R) , (2.12)

and the duality invariant Lagrangian is

L(F,S, ∂S) = L(S, ∂S) + L(
√

S2 F ) +
1

4
S1F · F̃ . (2.13)

with L(S, ∂S) the SL(2,R) invariant Lagrangian for the scalar fields,

L(S, ∂S) =
∂S̄ ∂S

(S − S̄)2 . (2.14)

A derivation of the self-dual model (2.13) will be described in sect. 3.

III. Self-duality under Legendre transformation

What is usually meant by ‘duality transformations’ in field theory, more precisely for

models of gauge differential forms of which electrodynamics is one example, are Legendre

transformations. We now show that any system which solves the self-duality equation is

automatically invariant under Legendre transformation.

Let us recall the definition of Legendre transformation in the case of a generic model

of nonlinear electrodynamics specified by L(F ). One associates with L(F ) an auxiliary

model L(F, FD) defined by

L(F, FD) = L(F )− 1

2
F · F̃D , FD

ab = ∂aAD
b − ∂bAD

a . (2.15)

F is now an unconstrained antisymmetric tensor field, AD a Lagrange multiplier field and

FD the dual electromagnetic field. This model is equivalent to the original one. Indeed,

the equation of motion for AD implies ∂bF̃
ab = 0 and therefore the second term in L(F, FD)

is a total derivative, that is L(F, FD) reduces to L(F ). On the other hand, one can first

consider the equation of motion for F :

G(F ) = FD . (2.16)

It is solved by expressing F as a function of the dual field strength, F = F (FD). Inserting

this solution into L(F, FD), one gets the dual model

LD(FD) ≡
(

L(F )− 1

2
F · F̃D

)
∣

∣

∣

F=F (FD)
. (2.17)
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It remains to show that for any solution L of the self-duality equation, its Legendre

transform LD satisfies:

LD(F ) = L(F ) . (2.18)

It follows from the results of Appendix A that the combination L − 1
4
F · G̃ is invariant

under arbitrary duality rotations, i.e.

L(F )− 1

4
F · G̃(F ) = L(F ′)− 1

4
F ′ · G̃′(F ′) . (2.19)

For a finite U(1) duality rotation (2.8) by λ = π/2 this relation reads

L(F )− 1

2
F · F̃D = L(FD) , FD ≡ G(F ) . (2.20)

Comparing with (2.17) this proves (2.18).

Let us turn to a more detailed discussion of the self-duality equation (2.9). Since in

four dimensions the electromagnetic field has only two independent invariants

α =
1

4
F abFab , β =

1

4
F abF̃ab , (2.21)

its Lagrangian L(Fab) can be considered as a real function of one complex variable

L(Fab) = L(ω, ω̄) , ω = α + i β . (2.22)

The theory is parity invariant iff L(ω, ω̄) = L(ω̄, ω).

One calculates G̃ (2.1) to be

G̃ab =
(

Fab + i F̃ab

) ∂L

∂ω
+
(

Fab − i F̃ab

) ∂L

∂ω̄
, (2.23)

and the self-duality equation (2.9) takes the form

Im

{

ω − 4ω

(

∂L

∂ω

)2
}

= 0 . (2.24)

In the literature one finds alternative forms of the self-duality equation [8, 11] but it is

eq. (2.24) which turns out to be most convenient for supersymmetric generalizations. If

one splits L into the sum of Maxwell’s part and an interaction,

L = −1

2

(

ω + ω̄
)

+ Lint , Lint = O(ω2) , (2.25)

(2.24) becomes a condition on Lint:

Im

{

ω
∂Lint

∂ω
− ω

(

∂Lint

∂ω

)2
}

= 0 . (2.26)
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We restrict Lint to a real analytic function of ω and ω̄. Then, every solution of eq. (2.26)

is of the form4

Lint(ω, ω̄) = ω ω̄ Λ(ω, ω̄) , Λ = const + O(ω) , (2.27)

where Λ satisfies

Im

{

∂(ω Λ)

∂ω
− ω̄

(

∂(ω Λ)

∂ω

)2
}

= 0 . (2.28)

Note that for any solution Lint(ω, ω̄) of (2.26), or any solution Λ(ω, ω̄) of (2.28), the

functions

L̂int(ω, ω̄) =
1

g2
Lint(g

2 ω, g2 ω̄) , Λ̂(ω, ω̄) = g2Λ(g2 ω, g2 ω̄) (2.29)

are also solutions for arbitrary real parameter g2.

In perturbation theory one looks for a parity invariant solution of the self-duality

equation by considering the Ansatz

Λ(ω, ω̄) =
∞
∑

n=0

∑

p+q=n

Cp,q ω
pω̄q , Cp,q = Cq,p ∈ R , (2.30)

where n = p + q is the level of the coefficient Cp,q. It turns out that for odd level the

self-duality equation uniquely expresses all coefficients recursively. If, however, the level

is even, the self-duality equation uniquely fixes the level-n coefficients Cp,q with p 6= q

through those at lower levels, while Cr,r remain undetermined. This means that a general

solution of the self-duality equation involves an arbitrary real analytic function of one real

argument, f(ωω̄).

There are a few exact solutions of the self-duality equation known, the most prominent

one being the BI Lagrangian [2]

LBI =
1

g2

{

1−
√

− det(ηab + gFab)
}

=
1

g2

{

1−
√

1 + g2(ω + ω̄) +
1

4
g4(ω − ω̄)2

}

,

ΛBI =
g2

1 + 1
2
g2(ω + ω̄) +

√

1 + g2(ω + ω̄) + 1
4
g4(ω − ω̄)2

, (2.31)

4In the Euclidean formulation of self-dual theories, it is the form (2.27) of Lint which allows for

(anti)self-dual solutions F̃ = ±F [24].
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with g the coupling constant. In the limit g → 0, LBI reduces to the Maxwell Lagrangian.

Some other exact solutions of the self-duality equation were constructed in Ref. [25].

It is worth noting that the BI Lagrangian can be given in the form [14, 16]

LBI = −1

2
(χ+ χ̄) , (2.32)

where the complex field χ is a functions of ω and ω̄ which satisfies the nonlinear constraint

χ+
1

2
g2χχ̄− ω = 0 . (2.33)

As will be discussed below, this form of the BI Lagrangian admits nontrivial generaliza-

tions [18, 19].

We close this section with a comment. While we have limited our discussion to La-

grangians which depend on F but not on its derivatives, the latter case can also be treated

easily if one considers the action rather than the Lagrangian and if one defines

G̃[F ] = 2
δS[F ]

δF
,

etc.. This procedure is mandatory when we treat supersymmetric models.

3 Theory of duality invariance I: non-supersymmetric

models

This section has mainly review character. We discuss the theory of duality invariance of

non-supersymmetric models with Abelian gauge fields [6, 7, 12, 13], coupled to scalar and

antisymmetric tensor fields. Supersymmetric models will be treated in sects. 4-6.

3.1 Fundamentals

We consider a theory of n Abelian gauge fields coupled to matter fields φµ. The gauge

fields enter the Lagrangian only via their field strengths F i
ab, where i = 1, 2, . . . , n,

L = L(F i
ab, φ

µ, ∂aφ
µ) ≡ L(ϕ) . (3.1)

As in sect. 2, we introduce the dual fields

G̃i
ab(ϕ) ≡ 2

∂L(ϕ)

∂F i ab
(3.2)
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which arise in the equations of motion ∂bG̃i
ab = 0 for the gauge fields.

Our aim is to analyze the general conditions for the equations of motion (including the

Bianchi identities) of the theory to be invariant under infinitesimal duality transformations

δ

(

G

F

)

=

(

A B

C D

)(

G

F

)

, δφµ = ξµ(φ) . (3.3)

Here A, B, C and D are real constant n × n matrices, and ξµ are some unspecified

functions of the matter fields. The variation δG is understood as follows

δG = G′(ϕ′)−G(ϕ) , G̃′(ϕ′) = 2
∂L(ϕ′)

∂F ′
= 2

∂L(ϕ)

∂F ′
+ 2

∂

∂F
δL , (3.4)

where

δL = L(ϕ′)− L(ϕ) . (3.5)

Using the definitions F ′ = F +C G+DF and φ′ = φ+ ξ(φ) of the transformed fields,

one can express the derivative ∂/∂F ′ in (3.4) in terms of those w.r.t. the original fields.

This gives

δG̃i
ab = 2

∂

∂F i ab
δL− Cjk G̃j · ∂Gk

∂F i ab
−Dji G̃j

ab , (3.6)

where we have used the definition (3.2). The latter variation should coincide with δG̃

that follows from (3.3) and their consistency is equivalent to the relation

∂

∂F i ab

[

2δL− 1

2
Bjk F j · F̃ k − 1

2
CjkGj · G̃k

]

= 2
(

Aij +Dji
) ∂L

∂F j ab
+

1

2

(

Bij −Bji
)

F̃ j
ab +

1

2

(

Ckj − Ckj
)

G̃j · ∂Gk

∂F i ab
. (3.7)

Here the left-hand side is a partial derivative of some function with respect to F . The

right-hand side satisfies the same property iff

D + AT = κ 1 , BT = B , CT = C , (3.8)

for some real κ. As a result, we find

∂

∂F i

[

δL− 1

4
Bjk F j · F̃ k − 1

4
CjkGj · G̃k − κL

]

= 0 . (3.9)

This relation expresses the fact that the Bianchi identities and equations of motion of the

gauge fields are invariant under the duality transformation (3.3), (3.8).
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Now let us turn to the transformation of the matter equation of motion:

Eµ =
δ

δφµ
S[F, φ] =

( ∂

∂φµ
− ∂a

∂

∂(∂aφµ)

)

L . (3.10)

By definition, its variation reads (it is simpler to work with the action)

δE =
δ

δφ′
S[F ′, φ′]− δ

δφ
S[F, φ]

=
δ

δφ′
S[F, φ] +

δ

δφ
δS . (3.11)

Using F ′ = F +C G+DF and φ′ = φ+ ξ(φ) one can express the derivative δ/δφ′ in the

second line in terms of those w.r.t. the original fields. This leads to

δEµ =
δ

δφµ

[

δS − 1

4

∫

d4xC ijG̃i ·Gj

]

− ∂ξν

∂φµ
Eν . (3.12)

From here it is clear that Eµ will transform covariantly under duality transformations,

δEµ = − ∂ξν

∂φµ
Eν , (3.13)

if we require
δ

δφµ

[

δS − 1

4

∫

d4xCjkGj · G̃k

]

= 0 . (3.14)

The relations (3.9) and (3.14) are compatible with each other provided κ = 0 and

hence

δL =
1

4
Bij F i · F̃ j +

1

4
C ij Gi · G̃j . (3.15)

It is easy to check that the combination (the ‘interaction Hamiltonian’) L − 1
4
F i · G̃i is

duality invariant,

δ
(

L− 1

4
F i · G̃i

)

= 0 . (3.16)

Eq. (3.15) can be rewritten in an equivalent, but more useful, form if one directly varies

L as a function of its arguments. This leads to the self-duality equation

δφL =
1

4
Bij F i · F̃ j − 1

4
C ij Gi · G̃j +

1

2
Aij F i · G̃j , (3.17)

where

δφL =

(

ξµ
∂

∂φµ
+ (∂aφ

ν)
∂ξµ

∂φν

∂

∂(∂aφµ)

)

L . (3.18)

Since κ = 0, the condition (3.8) on the matrix parameters in (3.3) can be rewritten in

matrix notation as

XT Ω + ΩX = 0 , (3.19)
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where

X =

(

A B

C D

)

, Ω =

(

0 − 1

1 0

)

. (3.20)

We conclude that Sp(2n,R) is the maximal group of duality transformations, although

in specific models the duality group G may actually be smaller. It should be pointed

out that Sp(2n,R) or its non-compact subgroup G may appear as the group of duality

symmetries if the set of matter fields φµ include scalar fields parameterizing the coset

space G/H , with H the maximal compact subgroup of G (see [6, 13] for a more detailed

discussion). Any self-dual theory without matter, L(F ), can be understood as a self-dual

model with matter, L(F, φ, ∂φ), with the matter fields frozen, φ(x) = φ0 ∈ G/H . The

duality transformations preserving this background must thus be a subgroup of U(n), the

maximal compact subgroup of Sp(2n,R). If one treats the matter fields φµ as coupling

constants, then non-compact duality transformations relate models with different coupling

constants. It is worth recalling that for the maximal compact subgroup of Sp(2n,R) the

relations (3.19) and (3.20) should be supplemented by XT = −X and hence

D = A , C = −B , AT = −A , BT = B =⇒ (B + iA)† = (B + iA) . (3.21)

3.2 U(n) duality invariant models

Let us analyze the conditions of self-duality for pure gauge theories with maximal duality

group U(n). Because of (3.21) and since δφL = 0 in the absence of matter, the self-duality

equation (3.17) reduces to [13, 19]

Bij (F i · F̃ j +Gi · G̃j) + 2Aij F i · G̃j = 0.

Since the matrices A and B satisfy eq. (3.21) and otherwise arbitrary, the latter relation

leads to the self-duality equations

Gi · G̃j + F i · F̃ j = 0 , (3.22)

(F i · ∂

∂F j
− F j · ∂

∂F i
)L = 0 . (3.23)

The first equation is a natural generalization of the self-duality equation (2.9). The second

equation requires manifest SO(n) invariance of the Lagrangian when F i transforms in the

fundamental representation of SO(n).

The U(n) duality invariant models possess quite remarkable properties. In particular,

they are self-dual under a Legendre transformation which acts on a single Abelian gauge
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field while keeping the other n − 1 fields invariant. The proof is similar to that given

in sect. 2. Another property is that any U(n) duality invariant model can be lifted to a

model with the maximal non-compact duality symmetry Sp(2n,R) by coupling the gauge

fields to scalar fields φµ parameterizing the quotient space Sp(2n,R) /U(n) [10, 11, 13].

The case n = 1 will be discussed in the next subsection.

Nonlinear U(n) duality invariant models with n > 1 were first constructed in [18, 19]

as a generalization of the special algebraic representation for the BI action reviewed in

sect. 2. The Lagrangian reads

L = −1

2
tr (χ+ χ̄) , (3.24)

where the complex n×nmatrix χ is a function of F i which satisfies the nonlinear constraint

χij +
1

2
χikχ̄jk = ωij , ωij =

1

4
(F i · F j + iF i · F̃ j) . (3.25)

We refer the reader to [18, 19] for the proof of self-duality. The explicit solution of above

constraint on χ was provided in Ref. [26].

One might feel uneasy with above derivation of the self-duality equations (3.22) and

(3.23) in pure gauge theory L(F ) as it was essentially based on the relation (3.15) which

is valid in the presence of matter. Without using the matter consistency condition (3.14)

we could not have set κ = 0 and, therefore, the variation of L should be

δL =
1

4
Bij F i · F̃ j +

1

4
C ij Gi · G̃j + κL . (3.26)

However, practically all conclusions turn out to remain unchanged if we make use of

additional physical requirements (the use of matter fields in the previous consideration

simply allows to streamline the derivation). Let us consider for simplicility the case of

a single gauge field, n = 1. Then eq. (3.26) implies (κ = A + D) (c.f. eq. (2.6) with

∆L = 0)
1

4
B F · F̃ − 1

4
C G · G̃ = D

∂L

∂F
· F − (A +D)L . (3.27)

Assuming that L is parity even, the expressions on both sides have different parities and

should vanish separately

B F · F̃ − C G · G̃ = 0 , (3.28)

D
∂L

∂F
· F = (A+D)L . (3.29)

Let us also assume that L reduces to Maxwell’s Lagrangian in the weak field limit, L =

−1
4
F · F + O(F 4), hence G = F̃ + O(F 3), G̃ = −F + O(F 3), and therefore eq. (3.28)

means

(B + C)F · F̃ +O(F 4) = 0 . (3.30)

12



To the lowest order, this is satisfied iff B = −C. Eq. (3.29) means that L(F ) is a

homogeneous function provided D 6= 0. This equation requires D = A if L = −1
4
F ·F and

D = A = 0 otherwise. We see that only U(1) duality rotations are possible in nonlinear

electrodynamics, while in Maxwell’s theory one can also allow scale transformations. The

latter are however forbidden if one requires invariance of the energy-momentum tensor

under duality transformations.

3.3 Coupling to dilaton and axion

We are going to prove that any U(1) duality invariant model L(F ) can be uniquely

coupled to the dilaton and axion such that the resulting model L(F,S) is invariant under
SL(2,R) ∼= Sp(2,R) duality transformations [9, 10, 11]. This property was stated in sect.

2.

Following the notation of subsect. 3.1, the case under consideration corresponds to

n = 1 and φµ = (S, S̄). In accordance with eq. (2.12), the infinitesimal transformation

of S reads

δS = B + 2AS − C S2 . (3.31)

To describe the interaction of the dilaton and axion with the gauge field, we assume

that the total Lagrangian is of the form L(S, ∂S) + L(F,S) where the duality invariant

kinetic term was given in (2.14). The self-duality equation (3.17) is now equivalent to the

following three equations on L(F,S):

2S ∂L

∂S + 2S̄ ∂L

∂S̄ = F · ∂L
∂F

,

∂L

∂S +
∂L

∂S̄ =
1

4
F · F̃ ,

S2 ∂L

∂S + S̄2 ∂L

∂S̄ =
1

4
G · G̃ . (3.32)

Inspection of these equations shows that L(F,S) is

L(F,S) = L(

√

S2 F ) +
1

4
S1F · F̃ , (3.33)

where L(F ) solves the self-duality equation (2.9). Since L(F,S) is self-dual, the combi-

nation L − 1
4
F · G̃ is duality invariant. Its invariance under a finite duality rotation by

π/2 is equivalent to the fact that the Legendre transform of the Lagrangian is

L(F,S)− 1

2
F · F̃D = L(FD,−

1

S ) , FD ≡ G(F ) , (3.34)

c.f. eq. (2.20).
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3.4 Coupling to NS B-field and RR fields

Within the context of type IIB string theory, one is interested in duality-invariant cou-

plings of the model (3.33) to the NS and RR two-forms, Bab and Cab, and the RR four-

form, Cabcd (which are possible bosonic background fields). E.g. the self-duality of the

world-volume theory of a D3-brane is inherited from the SL(2,R) symmetry of type IIB

supergravity [27] (see also [28]). These fields transform under SL(2,R) as

(

C ′

B′

)

=

(

a b

c d

) (

C

B

)

,

C̃4
′
= C̃4 +

1

4
bdB · B̃ +

1

2
bcB · C̃ +

1

4
acC · C̃ . (3.35)

The transformation of C̃4 provides a nonlinear representation of SL(2,R).5 In the presence

of B2, C2 and C4, the Lagrangian (3.33) is extended to

L(F,S, B, C, C̃4) = L(
√

S2F) +
1

4
S1F · F̃ + C̃4 −

1

2
C · F̃ , (3.36)

where

Fab = Fab +Bab . (3.37)

The theory is invariant under standard gauge transformations of the gauge forms B2,

C2 and C4. Moreover, the theory is indeed SL(2,R) duality invariant. Given the set

of matters fields φµ = (S, S̄, Bab, Cab, C̃4) it is an instructive exercise to check that the

self-duality equation (3.17) is satisfied.

4 Self-duality in N = 1 supersymmetric nonlinear

electrodynamics

Gaillard and Zumino conclude their paper [11] by posing the following problem: “When

the Lagrangian is self-dual, it is natural to ask whether its supersymmetric extension

possesses a self-duality property that can be formulated in a supersymmetric way.” The

problem was solved in [29] for the case when the Lagrangian is quadratic in the U(1)

field strengths coupled to supersymmetric matter. The solution in the nonlinear case was

obtained in [20] for a single vector multiplet and will be extended in the sect. 6 to any

5Note that the combination C̃4 − 1
4C · B̃ is SL(2,R) invariant.
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number of vector multiplets coupled to scalar multiplets. In the present section we are

going to review the N = 1 supersymmetric results of [20].

Let S[W, W̄ ] be the action generating the dynamics of a single N = 1 vector multiplet.

The (anti) chiral superfield strengths W̄α̇ and Wα,
6

Wα = −1

4
D̄2Dα V , W̄α̇ = −1

4
D2D̄α̇ V , (4.1)

are defined in terms of a real unconstrained prepotential V . As a consequence, the

strengths are constrained superfields, that is they satisfy the Bianchi identity

DαWα = D̄α̇ W̄
α̇ . (4.2)

Suppose that S[W, W̄ ] ≡ S[v] can be unambiguously defined7 as a functional of uncon-

strained (anti) chiral superfields W̄α̇ andWα. Then, one can define (anti) chiral superfields

M̄α̇ and Mα as

iMα [v] ≡ 2
δ

δW α
S[v] , −i M̄ α̇ [v] ≡ 2

δ

δW̄α̇

S[v] , (4.3)

with the functional derivatives defined in the standard way

δS =

∫

d6z δW α δS

δW α
+

∫

d6z̄ δW̄α̇

δS

δW̄α̇

,

δ

δW α(z)
W β(z′) = δα

β
(

− 1

4
D̄2
)

δ4(x− x′) δ2(θ − θ′) δ2(θ̄ − θ̄′) . (4.4)

The vector multiplet equation of motion following from the action S[W, W̄ ] reads

DαMα = D̄α̇ M̄
α̇ . (4.5)

Since the Bianchi identity (4.2) and the equation of motion (4.5) have the same func-

tional form, one may consider, similar to the non-supersymmetric case, U(1) duality

rotations
(

M ′
α [v

′]

W ′
α

)

=

(

cosλ − sinλ

sin λ cosλ

) (

Mα [v]

Wα

)

, (4.6)

6Our N = 1 conventions are those of [30, 31]. In particular, z = (xa, θα, θ̄α̇) are the coordinates of

N = 1 superspace, d8z = d4xd2θ d2θ̄ is the full superspace measure, and d6z = d4xd2θ is the measure

in the chiral subspace.
7This is always possible if S[W, W̄ ] does not involve the combination Dα Wα as an independent

variable.
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where M ′ should be

iM ′
α [v

′] = 2
δ

δW ′α
S[v′] . (4.7)

In order for such duality transformations to be consistently defined, the action S[W, W̄ ]

must satisfy a generalization of the self-duality equation (2.9). Its derivation follows

essentially the same steps as described in Appendix A, but with a proper replacement of

partial derivatives by functional derivatives. To preserve the definition (4.3) of Mα and

its conjugate, the action should transform under an infinitesimal duality rotation as

δS = S[v′]− S[v] =
i

4
λ

∫

d6z {MαMα −W αWα} + c.c. (4.8)

On the other hand, S is a functional of Wα and W̄α̇ only, and therefore its variation is

δS =
i

2
λ

∫

d6zMαMα + c.c. (4.9)

Since these two variations must coincide, we arrive at the following reality condition

Im

∫

d6z
(

W αWα + MαMα

)

= 0 . (4.10)

In eq. (4.10), the superfieldMα was defined in (4.3), andWα should be considered as an

unconstrained chiral superfields. Eq. (4.10) is the condition for theN = 1 supersymmetric

theory to be self-dual. We call it the N = 1 self-duality equation.

With proper modifications, the properties of self-dual theories, which we described in

sect. 2, also hold for N = 1 self-dual models. In particular, the derivative of the self-dual

action with respect to an invariant parameter is always duality invariant. This implies

duality invariance of the N = 1 supercurrent, i.e. the multiplet of the energy-momentum

tensor (see [31] for a review). Duality invariant couplings to the dilaton-axion multiplet

will be discussed in sect. 6. Here we would like to concentrate on self-duality under N = 1

Legendre transformation, defined as follows. Given a vector multiplet model S[W, W̄ ], we

introduce the auxiliary action

S[W, W̄ ,WD, W̄D] = S[W, W̄ ]− i

2

∫

d6z W αWDα +
i

2

∫

d6z̄ W̄α̇W̄D
α̇ , (4.11)

where Wα is now an unconstrained chiral spinor superfield, and WDα the dual field

strength

WDα = −1

4
D̄2Dα VD , W̄D α̇ = −1

4
D2D̄α̇ VD . (4.12)

This model is equivalent to the original model, since the equation of motion forWD implies

that W satisfies the Bianchi identity (4.2), and the action (4.11) reduces to S[W, W̄ ]. On
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the other hand, the equation of motion for W is M [W, W̄ ] = WD, with M defined in

(4.3). Solving this equation, W = W [WD, W̄D], and inserting the solution back into the

action (4.11), one gets the dual model SD[WD, W̄D] or, what is the same, the Legendre

transform of S[W, W̄ ]. For all N = 1 self-dual theories, SD = S. This follows from the

fact that the combination

S − i

4

∫

d6z W αMα +
i

4

∫

d6z̄ W̄α̇M̄
α̇ (4.13)

is invariant under arbitrary U(1) duality rotations.

We now present a family of N = 1 supersymmetric self-dual models with actions of

the general form

S =
1

4

∫

d6z W 2 +
1

4

∫

d6z̄ W̄ 2 +
1

4

∫

d8z W 2 W̄ 2 Λ
(1

8
D2W 2 ,

1

8
D̄2 W̄ 2

)

, (4.14)

where Λ(u, ū) is a real analytic function of the complex variable

u ≡ 1

8
D2W 2 . (4.15)

Functionals of this type naturally appear as low-energy effective actions in quantum super-

symmetric gauge theories; by ‘low-energy action’ we mean here the part of the full effective

action independent of the derivatives of the U(1) field strength F . In fact, the low-energy

effective actions usually have the more general form (see, for instance, [32, 33, 34]):

Seff =
1

4

∫

d6z W 2 +
1

4

∫

d6z̄ W̄ 2 +

∫

d8z W 2 W̄ 2Ω
(

D2W 2, D̄2 W̄ 2, DαWα

)

. (4.16)

However, the combination DαWα is nothing but the free equation of motion of the N = 1

vector multiplet. Contributions to effective action, which contain factors of the classical

equations of motion, are ambiguous. They are often ignored. It is worth pointing out

that there is no unique way to define the action (4.16) as a functional of unconstrained

chiral superfield Wα and its conjugate (what is required in the framework of our approach

to supersymmetric self-dual theories) when Ω depends on DαWα = D̄α̇ W̄
α̇.

Let us analyze the conditions for the model (4.14) to be self-dual. One finds

iMα = Wα

{

1− 1

4
D̄2

[

W̄ 2

(

Λ +
1

8
D2
(

W 2 ∂Λ

∂u

)

)] }

. (4.17)

Then, eq. (4.10) leads to

Im

∫

d8z W 2 W̄ 2
(

Γ − ūΓ2
)

= 0 , (4.18)
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where

Γ ≡ Λ +
1

8
(D2W 2)

∂Λ

∂u
=

∂(uΛ)

∂u
. (4.19)

In deriving eq. (4.18) we have used the following property of the N = 1 vector multiplet:

WαWβ Wγ = 0 . (4.20)

Since the functional relation (4.18) must be satisfied for arbitrary (anti) chiral superfields

W̄α̇ and Wα, we arrive at the following differential equation for Λ(u, ū):

Im

{

∂(uΛ)

∂u
− ū

(

∂(uΛ)

∂u

)2
}

= 0 . (4.21)

This equation is identical to the self-duality equation (2.28).

To obtain the component form of (4.14), one applies the reduction rules
∫

d8z U =
1

16

∫

d4xD2D̄2 U |θ=0 ,

∫

d6z Uc = −1

4

∫

d4xD2 Uc |θ=0 . (4.22)

We also introduce the component fields of the N = 1 vector multiplet, {λα, λ̄α̇, Fab, D},
in the standard way [30, 31]:

λα(x) = Wα|θ=0 ,

Fαβ(x) = − i

4
(DαWβ +DβWα)|θ=0 ,

D(x) = −1

2
DαWα|θ=0 , (4.23)

with

Fαα̇ ββ̇ ≡ (σa)αα̇(σ
a)ββ̇Fab = 2εαβ F̄α̇β̇ + 2εα̇β̇ Fαβ . (4.24)

Here we are interested only in the bosonic sector of the model and therefore set λα = 0 in

what follows. Under this assumption one can readily compute the component Lagrangian

L(Fab, D) = − 1

2
(u+ ū) + uūΛ(u, ū) , u ≡ 1

8
D2W 2|θ=0 = ω − 1

2
D2 , (4.25)

with ω defined in eq. (2.22). Since only even powers of the auxiliary field D appear in

L, its equation of motion has the solution D = 0. If we take this solution, the duality

equation (4.21) implies that the non-supersymmetric model L(F ) = L(F, D = 0) is self-

dual.

We arrive at the conclusion: every non-supersymmetric self-dual model of the type

considered in sect. 2 admits an N = 1 supersymmetric extension which is self-dual under

manifestly supersymmetric duality rotations. The procedure of constructing such a super-

symmetric extension is constructive: given a self-dual Lagrangian L(F ), one should first

derive Λ(ω, ω̄) defined by eqs. (2.25) and (2.27), and then use this function to generate

the action (4.14).
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5 Properties of the N = 1 supersymmetric BI action

We use the results of sect. 3 to obtain the unique N = 1 supersymmetric self-dual exten-

sion of the BI theory (2.31). With the use of ΛBI one immediately gets

SBI =
1

4

∫

d6z W 2 +
1

4

∫

d6z̄ W̄ 2 +
g2

4

∫

d8z
W 2 W̄ 2

1 + 1
2
A +

√

1 + A+ 1
4
B2

,

A =
g2

8

(

D2W 2 + D̄2 W̄ 2
)

, B =
g2

8

(

D2W 2 − D̄2 W̄ 2
)

. (5.1)

In what follows, for convenience we fix the coupling constant to g2 = 4.

The above action was first introduced in [35, 36] as a super extension of the BI theory.

However, only much later it was realized that the theory encodes a remarkably reach

structure. Bagger and Galperin [14], and later Roček and Tseytlin [16] discovered that

(5.1) is the action for a Goldstone multiplet associated with N = 2 → N = 1 partial

supersymmetry breaking. Using a reformulation of (5.1) with auxiliary superfields, Brace,

Morariu and Zumino [18] demonstrated that the theory is invariant under U(1) duality

rotations. The latter property has turned out to be a simple consequence of the approach

developed in [20] and reviewed in the previous section. Below we give a concise review of

the results of [14] on partial N = 2 → N = 1 supersymmetry breaking.

Bagger and Galperin noticed that the Cecotti-Ferrara action (5.1) can be represented

in the form

S =
1

4

∫

d6z X +
1

4

∫

d6z̄ X̄ , (5.2)

where the chiral superfieldX is a functional ofW and W̄ such that it satisfies the nonlinear

constraint

X +
1

4
X D̄2 X̄ = W 2 . (5.3)

Indeed, using the action rule
∫

d8z U = −1

4

∫

d6z D̄2 U (5.4)

and the constraint (5.3), one can rewrite (5.2) in the form

S =
1

4

∫

d6z W 2 +
1

4

∫

d6z̄ W̄ 2 +
1

2

∫

d8z X X̄ . (5.5)

Using the constraint (5.3) once more, we can represent X X̄ as

X X̄ =
W 2 W̄ 2

(1 + 1
4
D̄2X̄)(1 + 1

4
D2X)

. (5.6)
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Since W 3 = 0, on the right-hand side we can safely take D2X in an effective form D2Xeff

determined by the equation

D2Xeff =
D2W 2

1 + 1
4
D̄2X̄eff

. (5.7)

Using this in (5.5) one reproduces (5.1).

The dynamical system defined by eqs. (5.2) and (5.3) is manifestly N = 1 supersym-

metric. Remarkably, it turns out to be invariant under a second, nonlinearly realized,

supersymmetry transformation

δX = 2ǫαWα , (5.8)

δWα = ǫα +
1

4
D̄2X̄ ǫα + i ∂αα̇X ǭα̇ , (5.9)

with ǫα a constant parameter. Such transformations commute with the first, linearly

realized, supersymmetry, and altogether they generate the N = 2 algebra without central

charge. There is a simple way to derive the supersymmetry transformations (5.8) and

(5.9). One first observes that the variation (5.8) leaves the action (5.2) invariant, as a

consequence of the explicit form of the field strength Wα, see eq. (4.1). Due to (5.3), the

variation δX must be induced by a variation of Wα of the form

δWα = ǫα +
1

4
D̄2X̄ ǫα + δ̂Wα , (5.10)

where δ̂W should satisfy

W α δ̂Wα =
1

4
X D̄2W̄α̇ ǭ

α̇ = −iX ∂αα̇W
α ǭα̇ . (5.11)

Since

W αX = 0 , (5.12)

the latter relation can be rewritten as follows

W α δ̂Wα = iW α ∂αα̇X ǭα̇ , (5.13)

and we thus arrive at the variation (5.9). But this is not yet the end of the story, since

one still has to check that the variation (5.9) is consistent with the Bianchi identity (4.2).

Indeed it is. However, in sect. 9 we will see that the above procedure cannot be directly

generalized to the case of N = 2 supersymmetry.

In [14] Bagger and Galperin proved that the action (5.1) is self-dual under the N =

1 Legendre transformation. Their proof is ingenious but rather involved. The results

of sect. 4 make this property obvious. The N = 1 super BI theory (5.1) is invariant

under U(1) duality rotations, and therefore it is automatically self-dual under the N = 1

Legendre transformation.
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6 Theory of self-duality II: N = 1 supersymmetric

models

In this section we develop a general formalism of duality invariance for N = 1 supersym-

metric theories of n Abelian vector multiplets, described by chiral spinor strengths W i
α

and their conjugates W̄ i
α̇, in the presence of supersymmetric matter – chiral superfields Φµ

and their conjugates Φ̄µ. We will use the condensed notation S[v] = S[W α i, W̄ i
α̇,Φ

µ, Φ̄µ]

for the action functional and, as in sect. 4, introduce (anti) chiral superfields M̄ α̇ i and

M i
α dual to W̄ i

α̇ and W α i:

iM i
α [v] ≡ 2

δ

δW α i
S[v] , −i M̄ α̇ i [v] ≡ 2

δ

δW̄ i
α̇

S[v] . (6.1)

To simplify notation, we introduce

M i ·M j =

∫

d6zMα iM j
α , M̄ i · M̄ j =

∫

d6z̄ M̄ i
α̇ M̄

α̇ j (6.2)

and similarly for superspace contractions of (anti) chiral scalar superfields.

6.1 General analysis

We are interested in determining the conditions for the theory to be self-dual under chiral

superfield duality transformations

δ

(

M

W

)

=

(

A B

C D

)(

M

W

)

, δΦµ = ξµ(Φν) , (6.3)

with ξµ a holomorphic functions of the chiral matter fields. Here A,B,C and D are

constant real n × n matrices; these matrices have to be real, since the Bianchi identi-

ties DαW i
α = D̄α̇W̄

α̇ i and the equations of motion DαM i
α = D̄α̇M̄

α̇ i are special reality

conditions.

By self-duality we understand the following:

I. We require

iM ′[v′] = 2
δ

δW ′
S[v′] = 2

δ

δW ′
S[v] + 2

δ

δW
δS , (6.4)

where δS = S[v′]− S[v].

II. The Φ-equation of motion

Eµ[v] =
δ

δΦµ
S[v] (6.5)
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transforms covariantly under duality transformations

δEµ = −∂ξ
ν(Φ)

∂Φµ
Eν , (6.6)

where

δE = E ′[v′]− E[v] , E ′[v′] =
δ

δΦ′
S[v′] =

δ

δΦ′
S[v] +

δ

δΦ
δS . (6.7)

Analysis of the self-duality conditions is similar to the non-supersymmetric case de-

scribed in sect. 3. The transformation law (6.3) and condition I are consistent provided

δ

δW α i

[

δS − i

4
Bjk
(

W j ·W k − W̄ j · W̄ k
)

− i

4
Cjk
(

M j ·Mk − M̄ j · M̄k
)

]

= +
i

4
(Cjk − Ckj)

(

(
δ

δW α i
Mk) ·M j − (

δ

δW α i
M̄k) · M̄ j

)

+
i

4
(Bij −Bji)W j

α + (Dji + Aij)
δ

δW αj
S[v] . (6.8)

Since the left-hand side is a total variational derivative, the matrices A,B,C and D should

be constrained as in eq. (3.8). Then, the above relation turns into

δ

δW α i

[

δS − i

4
Bjk
(

W j ·W k − W̄ j · W̄ k
)

− i

4
Cjk
(

M j ·Mk − M̄ j · M̄k
)

− κS[v]
]

= 0 . (6.9)

Furthermore, the Φ-equation of motion can be shown to change under duality transfor-

mations as

δEµ = − ∂ξν

∂Φµ
Eν (6.10)

+
δ

δΦµ

[

δS − i

4
Bjk
(

W j ·W k − W̄ j · W̄ k
)

− i

4
Cjk
(

M j ·Mk − M̄ j · M̄k
)]

.

Consequently, condition II is satisfied if we impose the condition

δ

δΦµ

[

δS − i

4
Bjk
(

W j ·W k − W̄ j · W̄ k
)

− i

4
Cjk
(

M j ·Mk − M̄ j · M̄k
)]

= 0 . (6.11)

The latter is consistent with (6.9) provided κ = 0. Therefore, Sp(2n,R) is the maximal

duality group (see sect. 3), and the action transforms as

δS =
i

4
δ
(

W i ·M i − M̄ i · W̄ i
)

=
i

4
Bij
(

W i ·W j − W̄ i · W̄ j
)

+
i

4
C ij
(

M i ·M j − M̄ i · M̄ j
)

. (6.12)
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Equation (6.12) contains nontrivial information. The point is that the action can be

varied directly,

δS = S[v′]− S[v]

=
i

2

(

δW i ·M i − δW̄ i · W̄ i
)

+ δΦµ · δS
δΦµ

+ δΦ̄µ · δS
δΦ̄µ

, (6.13)

and the two results should coincide. This gives

δΦµ · δS
δΦµ

+ δΦ̄µ · δS
δΦ̄µ

=
i

4
Bij
(

W i ·W j − W̄ i · W̄ j
)

− i

4
C ij
(

M i ·M j − M̄ i · M̄ j
)

+
i

2
Aij
(

W i ·M j − W̄ i · M̄ j
)

. (6.14)

This is the self-duality equation in the presence of matter.

In the absence of matter, the maximal duality group is U(n) and the transformation

parameters in (6.14) are constrained by B = −C = BT, AT = −A. If the duality group

is U(n), then eq. (6.14) leads to the following self-duality equations

Im
(

W i ·W j +M i ·M j
)

= 0 , (6.15)

Im
(

W i ·M j −W j ·M i
)

= 0 . (6.16)

Eq. (6.16) requires the theory to be invariant under SO(n) which acts linearly on W i.

For n = 1, eq. (6.15) reduces to (4.10).

Similar to the non-supersymmetric case [9, 10, 11, 13], a U(n) duality invariant theory

of n Abelian vector multiplets can be lifted to an Sp(2n,R) duality invariant model by

coupling the vector multiplets to scalar multiplets Φµ parameterizing the quotient space

Sp(2n,R) /U(n). Below we give a proof for n = 1.

6.2 Coupling to the dilaton-axion multiplet

Our aim here is to couple the system (4.14), (4.21) to the dilaton-axion multiplet Φ such

that the resulting model be SL(2,R) duality invariant. The SL(2,R)-transformation of Φ

coincides with the S-transformation (2.12). Its infinitesimal form is

δΦ = B + 2AΦ− C Φ2 . (6.17)
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The self-duality equation (6.14) is now equivalent to the following requirements on the

action functional S = S[W,Φ]:

2Φ · δS
δΦ

+ 2Φ̄ · δS
δΦ̄

= W · δS
δW

+ W̄ · δS
δW̄

, (6.18)

δS

δΦ
· 1 + δS

δΦ̄
· 1 =

i

4

(

W ·W − W̄ · W̄
)

, (6.19)

Φ2 · δS
δΦ

+ Φ̄2 · δS
δΦ̄

=
i

4

(

M ·M − M̄ · M̄
)

. (6.20)

We are interested in a solution of these equations which for Φ = −i reduces to the self-dual

system given by eqs. (4.14) and (4.21). A direct analysis of the self-duality equations

gives the solution

S[W,Φ] =
i

4

∫

d6z ΦW 2 − i

4

∫

d6z̄ Φ̄ W̄ 2 (6.21)

− 1

16

∫

d8z (Φ− Φ̄)2W 2 W̄ 2 Λ
( i

16
(Φ− Φ̄)D2W 2 ,

i

16
(Φ− Φ̄) D̄2 W̄ 2

)

.

To this action one can add the dilaton-axion kinetic term
∫

d8z K(Φ, Φ̄), with K(Φ, Φ̄)

the Kähler potential of the Kähler manifold SL(2,R) /U(1). It is worth pointing out that

the dilaton and axion (2.11) are related to Φ by the rule S̄ = Φ|θ=0. For the N = 1 super

BI action (5.1), the coupling to the dilaton-axion multiplet was described in [18, 19].

6.3 Coupling to NS and RR supermultiplets

The model (6.21) can be generalized by coupling it to supermultiplets containing the NS

and RR two-forms, B2 and C2, and the RR four-form, C4. The extended action is

S[W,Φ, β, γ,Ω] = S[W,Φ] +

{
∫

d6z
(

Ω+
1

2
γαWα

)

+ c.c.

}

, (6.22)

where

Wα = Wα + i βα . (6.23)

is the supersymmetrization of F +B. Here βα, γα and Ω are unconstrained chiral super-

fields which include, among their components, the fields B2, C2 and C4, respectively. The

action is invariant under the following gauge transformations

δβα = i δWα = i D̄2DαK1 , (6.24)

δγα = i D̄2DαK2, δΩ = − i
2
WαD̄2DαK2 , (6.25)

δΩ = i D̄2K3 , (6.26)
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with Ki real unconstrained superfields. Note that Wα is invariant under (6.24). The

transformations of β and γ imply that these superfields describe two tensor multiplets;

c.f. also sect. 7. Eq. (6.26) implies that all components of Ω but ReD2Ω|θ=0 can be

algebraically gauged away; the remaining component transforms as a four-form and is

identified with C̃4.

The theory (6.22) is SL(2,R) duality invariant provided the superfields βα, γα and Ω

transform as
(

γ′

β ′

)

=

(

a b

c d

) (

γ

β

)

, Ω′ = Ω− i

4
bd β2 − i

2
bc βγ − i

4
ac γ2 . (6.27)

One can check that the self-duality equation (6.14) is satisfied, with Φµ = (Φ, βα, γα,Ω)

the set of matter chiral superfields.

6.4 Example of U(n) self-dual supersymmetric theory

To conclude, we give an example of U(n) duality invariant model [18, 19] describing the

dynamics of n interacting Abelian vector multiplets W i
α. The action is

S =
1

4

∫

d6z trX +
1

4

∫

d6z̄ tr X̄ , (6.28)

where the chiral matrix superfield X is a functional of W i
α and W̄ i

α̇ such that it satisfies

the nonlinear constraint

X ij +
1

4
X ik D̄2 X̄jk = W iW j . (6.29)

The proof of self-duality of this theory can be found in [18, 19]. Obviously, this system

is a natural generalization of the Bagger–Galperin construction for the N = 1 super BI

action, which we discussed in sect. 4.

Since for several vector multiplets W 3 6= 0, after solving constraint (6.29) the action

will have a more complicated form than (5.1).

7 Self-dual models with N = 1 tensor multiplet

In [15, 16] it was shown that partial breaking of N = 2 supersymmetry to N = 1 can be

described with the N = 1 tensor multiplet as the Goldstone multiplet. The construction
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of Bagger and Galperin [15] was based on an analogy between the N = 1 vector and

tensor multiplets. Here we will pursue the same analogy to generalize the formalism of

sect. 4 to construct nonlinear self-dual models of the N = 1 tensor multiplet.

We start with a brief description of the N = 1 tensor multiplet [37] (see [31] for more

details). The multiplet is described by a real linear superfield L

D2L = D̄2L = 0 , L = L̄ . (7.1)

The general solution of this constraint is

L =
1

2
(Dαηα + D̄α̇η̄

α̇) , D̄α̇ηα = 0 . (7.2)

The chiral spinor superfield ηα is a gauge field defined modulo transformations

δηα = i D̄2DαK , (7.3)

with K a real unconstrained superfield, and L is the gauge invariant field strength. The

independent components of L are a scalar ϕ = L|θ=0, a Weyl spinor ψα = DαL|θ=0 and its

conjugate, and a vector Ṽαα̇ = 1
2
[Dα, D̄α̇]L|θ=0 constrained by ∂aṼ

a = 0. The constraint

means that Ṽ is the dual field strength of an antisymmetric tensor field, Ṽ a = 1
2
εabcd ∂bBcd.

For generic models of the tensor multiplet, the gauge invariant action is a functional

of L, S[L]. Here our consideration will be restricted to those models with actions of the

form S[Ψ, Ψ̄], where

Ψα = DαL , DβΨα = 0 . (7.4)

For example, for the free tensor multiplet we have

Sfree = −
∫

d8z L2 =
1

4

∫

d6z̄Ψ2 +
1

4

∫

d6z Ψ̄2 . (7.5)

The antichiral spinor Ψα is a constrained superfield

−1

4
D̄2Ψα + i ∂αα̇Ψ̄

α̇ = 0 . (7.6)

This constraint can be treated as the Bianchi identity. Its general solution is (7.4). The

bosonic components of Ψα are field strengths of the zero-form and two-form, Ua = ∂aϕ

and Ṽa, respectively.

For the theory with action S[Ψ, Ψ̄], we introduce antichiral Υα and chiral Ῡα̇ super-

fields as follows

i Υα ≡ 2
δ

δΨα
S , −i Ῡα̇ ≡ 2

δ

δῩα̇

S . (7.7)
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Then one can check that the equation of motion reads

−1

4
D̄2Υα + i ∂αα̇Ῡ

α̇ = 0 (7.8)

which has the same form as the Bianchi identity (7.6). Therefore, in analogy with sect. 4,

one may consider U(1) duality rotations

(

Υ′

Ψ′

)

=

(

cosλ − sinλ

sin λ cosλ

) (

Υ

Ψ

)

. (7.9)

The theory proves to be duality invariant iff the self-duality equation

Im

∫

d6z̄
(

ΨαΨα + ΥαΥα

)

= 0 (7.10)

is satisfied.

Under duality rotations, the following functional

S − i

4

∫

d6z̄ΨαΥα +
i

4

∫

d6z Ψ̄α̇Ῡ
α̇ (7.11)

remains invariant. As in sect. 4, this property implies self-duality under a superfield

Legendre transformation which is defined by replacing the action S[Ψ, Ψ̄] with

S[Ψ, Ψ̄,ΨD, Ψ̄D] = S[Ψ, Ψ̄]− i

2

∫

d6z̄ΨαΨDα +
i

2

∫

d6z Ψ̄α̇Ψ̄D
α̇ , (7.12)

where Ψα is now an unconstrained antichiral spinor superfield, and ΨDα the dual field

strength

ΨDα = DαLD , D2LD = 0 , L̄D = LD . (7.13)

Since above considerations are very similar to those in sect. 4, one can make use of

the previous results to derive nonlinear self-dual models of the tensor multiplet. This is

achieved by substituting W 2 → Ψ̄2 in the action (4.14). The results of sec. 6 can also be

generalized to the case of self-dual systems with several tensor multiplets.

8 Self-duality and gauge field democracy

The general theory of duality invariance in four space-time dimensions, which was re-

viewed in sect. 3, admits a natural higher-dimensional generalization [12, 13, 19]. In
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even dimensions d = 2p, one considers theories of n gauge (p − 1)-forms Bi
a1...ap−1

cou-

pled to matter fields φµ such that the Lagrangian is a function of the field strengths

F i
a1...ap

= p ∂[a1B
i
a2...ap]

, 8 matter fields and their derivatives, L = L(F, φ, ∂φ). The ac-

tion is invariant under the Abelian gauge symmetries Bi → Bi + dΛi where Λi is any

(p − 2)-form. In complete analogy with the four-dimensional case, one can introduce

duality transformations and analyze the conditions for self-duality. The maximal duality

group turns out to depend on the dimension of the space-time. For d = 4k the maximal

duality group is Sp(2n,R), while for d = 4k + 2 it is O(n, n). In the absence of matter,

the maximal duality group is compact: U(n) in d = 4k dimensions, and O(n) × O(n)

for d = 4k + 2. The fact that the maximal duality group depends on the dimension of

space-time was also discussed in [38, 39, 5, 40].

A natural question is what happens to a self-dual system upon dimensional reduction?

The answer is that one finds a self-dual system with (p− 1)-forms and (d− p− 1)-forms

in d space-time dimensions, where d is not necessarily even. We now discuss the general

properties of such models. In d = 4 such models also appear as the bosonic sector of

the self-dual systems of the N = 1 tensor multiplet we discussed in sect. 7. In fact, the

analysis of this section was inspired by self-duality of the tensor Goldstone multiplet [15].

In d space-time dimensions, we consider a theory of n gauge (p − 1)-forms Bi
a1...ap−1

and m gauge (d− p− 1)-forms CI
a1...ad−p−1

coupled to matter fields φµ. We introduce the

gauge invariant field strengths

U i
a1...ap

= p ∂[a1B
i
a2...ap]

, V I
a1...ad−p

= (d− p) ∂[a1C
I
a2...ad−p]

. (8.1)

Without loss of generality, we assume p < [d/2] 9 and then introduce the Hodge-dual of

V ,

Ṽ I
a1...ap

=
1

(d− p)!
εa1...apb1...bd−p

V I b1...bd−p , (8.2)

which is of lower rank than V . The Bianchi identities read

∂[b U
i
a1...ap]

= 0 , ∂b Ṽ I
ba1...ap−1

= 0 . (8.3)

The Lagrangian is required to be a function of the field strengths, matter fields and

their derivatives

L = L(U, Ṽ , φ, ∂φ) ≡ L(ϕ) . (8.4)

8Our normalization is ∂[a1
Ba2...ap] =

1
p! (∂a1

Ba2...ap
± . . .)

9[.] denotes the integer part. The case p = [d/2] for even d is special and was mentioned at the

beginning of this section.
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In terms of the dual variables

G̃i
a1...ap

(ϕ) = p!
∂L(ϕ)

∂U i a1...ap
, HI

a1...ap
(ϕ) = p!

∂L(ϕ)

∂Ṽ I a1...ap
, (8.5)

the equations of motion for the gauge fields read

∂b G̃i
ba1...ap−1

= 0 , ∂[bH
I
a1...ap] = 0 . (8.6)

The explicit structure of the Bianchi identities and equations of motion implies that

one may consider duality transformations of the form

δ

(

H

U

)

=

(

A B

C D

)(

H

U

)

, δ

(

Ṽ

G̃

)

=

(

M N

R S

)(

Ṽ

G̃

)

,

δφµ = ξµ(φ) . (8.7)

Here A, B, C, D andM, N, R, S are real constant matrices, and ξµ are some unspecified

functions of the matter fields. We have suppressed the indices i, I. Compatibility of the

duality transformations with self-duality now imposes the conditions

N = CT , R = BT , M + AT = κ1 , S +DT = κ1 , (8.8)

with κ some real constant, as well as the following functional relations

∂

∂Ṽ Ia

[

δL− 1

p!
BJj Ṽ J · U j − 1

p!
CjJ G̃j ·HJ − κL

]

= 0 ,

∂

∂U ia

[

δL− 1

p!
BJj Ṽ J · U j − 1

p!
CjJ G̃j ·HJ − κL

]

= 0 , (8.9)

where we have introduced the notation

G̃i ·HJ = G̃i a1...apHJ
a1...ap

≡ G̃i aHJ
a . (8.10)

Furthermore, the matter equation of motion transforms covariantly if one requires

δ

δφµ

[

δS − 1

p!

∫

d4xC iIG̃i ·HI

]

= 0 . (8.11)

Eqs. (8.9) and (8.11) are then seen to be compatible if κ = 0 and if the Lagrangian

transforms as

δL =
1

p!
BIi Ṽ I · U i +

1

p!
C iI G̃i ·HI

= δ

(

1

p!
U i · G̃i

)

= δ

(

1

p!
Ṽ I ·HI

)

. (8.12)
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Since κ = 0, eq. (8.8) means that (8.7) becomes

δ

(

H

U

)

=

(

A B

C D

)(

H

U

)

, δ

(

Ṽ

G̃

)

=

(

−AT CT

BT −DT

)(

Ṽ

G̃

)

. (8.13)

One easily shows that both variations satisfy the same algebra, namely gl(n+m,R). The

maximal connected duality group is therefore GL0(n+m,R). The finite form for duality

transformations is
(

H ′

U ′

)

= g

(

H

U

)

,

(

Ṽ ′

G̃′

)

=

(

1 0

0 −1

)

(gT)−1

(

1 0

0 −1

) (

Ṽ

G̃

)

, (8.14)

with g ∈ GL0(n+m,R).

Equation (8.12) can be rewritten in a different, more useful, form if one directly

computes δL. This gives the self-duality equation

p! δφL = BIi Ṽ I · U i − C iI G̃i ·HI

+ AIJ Ṽ I ·HJ −Dij G̃i · U j , (8.15)

with δφL as in eq. (3.18).

In the absence of matter, the maximal connected duality group becomes SO(n +m),

the maximal compact subgroup of GL0(n +m,R); i.e. AT = −A, DT = −D, BT = −C.
Then, the self-duality equation (8.15) is equivalent to

U i · Ṽ I + G̃i ·HI = 0 , (8.16)
(

U i · ∂

∂U j
− U j · ∂

∂U i

)

L = 0 ,

(

Ṽ I · ∂

∂Ṽ J
− Ṽ J · ∂

∂Ṽ I

)

L = 0 . (8.17)

Eq. (8.17) says that the theory is manifestly SO(n)× SO(m) invariant.

By analogy with the results of [10, 11, 13], any SO(n + m) duality invariant model

L(U i, Ṽ I) can be lifted to a model with the non-compact duality symmetry GL0(n+m,R)

by coupling the gauge fields to scalar fields φµ parameterizing the quotient space GL0(n+

m,R) / SO(n+m).

Any SO(n + m) duality invariant model L(U i, Ṽ I), where U i
p = dBi

p−1 and V I
d−p =

dCI
d−p−1, with n 6= 0 and m 6= 0 , enjoys self-duality under Legendre transformation which

dualizes two given forms Bi
p−1 and CI

d−p−1 into a (d − p − 1)-form and a (p − 1)-form,

respectively. This is a simple consequence of the duality invariance, see sect. 2 for more

details. On the other hand, one can apply a Legendre transformation which, say, leaves
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the gauge (p−1)-forms invariant but dualizes all gauge (d−p−1)-forms into (p−1)-forms.

One then obtains a model of (n +m) gauge (p− 1)-forms. Remarkably, the SO(n +m)

duality symmetry of the original model turns into a manifest (linear) SO(n+m) symmetry

of the dualized model. This is a consequence of the self-duality equations (8.16) and (8.17)

and the standard properties of Legendre transformation. Therefore, in the models that we

have considered here, all fields are on the same footing, hence the title of this subsection.

The SO(n+m) duality symmetry is linearly realized if all form are of the same degree.

The self-duality equations (3.22) and (3.23) are difficult to solve. However, for (8.16)

and (8.17), there exists a simple scheme to derive their general solution. One starts with

an SO(n+m) invariant model of (n+m) gauge (p− 1)-forms in d dimensions, and then

simply dualize m of the fields into gauge (d−p−1)-forms by applying the proper Legendre

transformation. The dualized model is invariant under the duality transformations.

If n = m, there are systems (we will give examples below) which are invariant under

Sp(2n,R) rather than the maximal duality group GL(2n,R). This is the case if the matrix

parameterizing the infinitesimal transformation of Ṽ and G̃, written in the form

δ

(

G̃

Ṽ

)

=

(

−DT BT

CT −AT

)(

G̃

Ṽ

)

, (8.18)

is required to coincide with the transformation of H and U (c.f. (8.13)). In the absence

of matter, the duality group of these systems reduces to U(n) (see sect. 3) and the self-

duality equations take the form (from now on, we do not distinguish between indices i

and I)

U (i · Ṽ j) + G̃(i ·Hj) = 0 , (8.19)
(

U i · ∂

∂U j
+ Ṽ i · ∂

∂Ṽ j

)

L − (i↔ j) = 0 . (8.20)

Eq. (8.20) means that the Lagrangian is manifestly SO(n) invariant. Any U(n) duality

invariant model can be made Sp(2n,R) duality invariant by coupling the gauge fields to

scalars valued in Sp(2n,R) /U(n). For n = 1 the result reads

L(U, Ṽ ,S) =
1

p!
S1 U · Ṽ + L(

√

S2 U,
√

S2 Ṽ ) , (8.21)

with S the dilaton-axion field (2.11) transforming by the rule (2.12) under the duality

group SL(2,R).

In contrast to U(1) duality invariant models of a single gauge (2p − 1)-form in even

dimensions d = 4p, U(1) duality invariant models of a gauge (p − 1)-form and a gauge
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(d − p − 1)-form in arbitrary dimensions d can be considered as reducible, since they

involve two independent fields. However, the latter models possess ‘self-dual’ solutions

Ua1...ap = γ Ha1...ap(U, Ṽ ) , Ṽa1...ap = −1

γ
G̃a1...ap(U, Ṽ ) , (8.22)

with γ a constant parameter. The explicit dependence of γ is dictated by the self-duality

equation (8.19). Such solutions of the equations of motion describe the dynamics of a

single field.

To conclude, we give an example of a U(1) duality invariant model. The Lagrangian

reads

L =
1

p!
− 1

p!

√

1 + U · U − Ṽ · Ṽ − (U · Ṽ )2 . (8.23)

It is easy to check that L solves the self-duality equation (8.19), and therefore the theory

is U(1) duality invariant. The theory can be equivalently represented in the form

L = − 1

2 p!
(χ + χ̄) , (8.24)

where the complex field χ is a functions of U and Ṽ which satisfies the nonlinear constraint

χ+
1

2
χχ̄− ψ = 0 , ψ =

1

2
(U + i Ṽ )2. (8.25)

This representation is analogous to that for the BI theory described in sect. 2.

The above duality invariant system has a supersymmetric origin. Let us choose d = 4

and then p = 1 is the only interesting choice. The dynamical fields are a scalar ϕ and

an antisymmetric gauge field Bab which should enter the Lagrangian only via their field

strengths Ua = ∂a ϕ and Ṽ a = 1
2
εabcd ∂bBcd. Then, the Lagrangian (8.23) describes the

bosonic sector of a model for partial N = 2 → N = 1 supersymmetry breaking with

the tensor multiplet as the Goldstone multiplet [15, 16]. The antisymmetric gauge field

can be dualized into a scalar, by applying the appropriate Legendre transformation. The

resulting model is manifestly U(1) invariant and it describes a 3-brane in six dimensions.

Other examples of U(1) duality invariant models of the scalar and antisymmetric

tensor in four dimensions can be obtained by considering the bosonic sector of the self-

dual tensor multiplet systems we discussed in sect. 7. It is worth noting that not all U(1)

duality invariant models of the scalar and antisymmetric tensor admit a supersymmetric

extension: the two fields have to appear in the action in the combination ψ as defined in

(8.25). This is in contrast with what we found in self-dual nonlinear electrodynamics.
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Using the results of [18, 19], the construction just described can be generalized to derive

U(n) duality invariant models of n gauge (p− 1)-forms and n gauge (d− p− 1)-forms in

four dimensions. The Lagrangian is

L = − 1

2 p!
tr (χ+ χ̄) , (8.26)

where the complex n×n matrix χ is a function of U i and Ṽ i which satisfies the nonlinear

constraint

χij +
1

2
χikχ̄jk =

1

2
(U i + i Ṽ i) · (U j + i Ṽ j) . (8.27)

9 N = 2 duality rotations

The construction of sect. 4 admits a natural generalization to N = 2 supersymmetry [20],

although here much less explicit results have been obtained so far. We will discuss the

case of one single Abelian gauge multiplet only, the generalization to an arbitrary number

being straightforward.

We will work in N = 2 global superspace R
4|8 parametrized by ZA = (xa, θαi , θ̄

i
α̇),

where i = 1, 2. The flat covariant derivatives DA = (∂a,Di
α, D̄α̇

i ) satisfy the algebra

{Di
α,Dj

β } = { D̄α̇i, D̄β̇j } = 0 , {Di
α, D̄α̇j } = −2 i δij (σ

a)αα̇ ∂a . (9.1)

Throughout this section, we will use the notation:

Dij ≡ Dα(iDj)
α = DαiDj

α , D̄ij ≡ D̄(i
α̇ D̄j) α̇ = D̄i

α̇D̄j α̇

D4 ≡ 1

16
(D1)2 (D2)2 , D̄4 ≡ 1

16
(D̄1)

2 (D̄2)
2 . (9.2)

An integral over the full superspace (with the measure d12Z = d4x d4θ d4θ̄) can be reduce

to one over the chiral subspace (with the measure d8Z = d4x d4θ) or over the antichiral

subspace (d8Z̄ = d4x d4θ̄):
∫

d12Z L(Z) =

∫

d8Z D4L(Z) =

∫

d8Z̄ D̄4L(Z) . (9.3)

The discussion in this section is completely analogous to the one presented in the first

part of sect. 4. We will thus be brief. Let S[W, W̄ ] be the action describing the dynamics

of a single N = 2 vector multiplet. The (anti) chiral superfield strengths W̄ andW satisfy

the Bianchi identity [41]

Dij W = D̄ij W̄ . (9.4)
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The general solution of the Bianchi identity [42],

W = D̄4Dij Vij , W̄ = D4D̄ij Vij (9.5)

is in terms of a real unconstrained prepotential V(ij).

Suppose that S[W, W̄ ] can be unambiguously defined as a functional of unconstrained

(anti) chiral superfields W̄ and W. Then, one can define (anti) chiral superfields M̄ and

M as

iM ≡ 4
δ

δW S[W, W̄ ] , −iM̄ ≡ 4
δ

δW̄ S[W, W̄ ] (9.6)

in terms of which the equations of motion are

Dij M = D̄ij M̄ . (9.7)

Again, since the Bianchi identity (9.4) and the equation of motion (9.7) have the same

functional form, one can consider infinitesimal U(1) duality transformations

δW = λM , δM = − λW . (9.8)

The analysis of Appendix A leads to

δS = − i

8
λ

∫

d8Z
(

W2 −M2
)

+
i

8
λ

∫

d8Z̄
(

W̄2 − M̄2
)

(9.9)

=
i

4
λ

∫

d8ZM2 − i

4
λ

∫

d8Z̄ M̄2

The theory is thus duality invariant provided the following reality condition is satisfied:
∫

d8Z
(

W2 +M2
)

=

∫

d8Z̄
(

W̄2 + M̄2
)

. (9.10)

Here M and M̄ are defined as in (9.6), and W and W̄ should be considered as uncon-

strained chiral and antichiral superfields, respectively. Eq. (9.10) serves as our master

functional equation (N = 2 self-duality equation) to determine duality invariant models

of the N = 2 vector multiplet.

We remark that, as in the N = 0, 1 cases, the action itself is not duality invariant, but

δ

(

S − i

8

∫

d8ZMW +
i

8

∫

d8Z̄ M̄W̄
)

= 0 . (9.11)

The invariance of the latter functional under a finite U(1) duality rotation by π/2, is

equivalent to the self-duality of S under Legendre transformation,

S[W, W̄ ]− i

4

∫

d8ZWWD +
i

4

∫

d8Z̄ W̄W̄D = S[WD, W̄D] , (9.12)
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where WD is the dual chiral field strength,

WD = D̄4Dij VD
ij , (9.13)

with VD
ij a real unconstrained prepotential.

Apart from the N = 2 Maxwell action

Sfree =
1

8

∫

d8ZW2 +
1

8

∫

d8Z̄ W̄2 , (9.14)

only one other solution of (9.10) is known [21]:

S =
1

4

∫

d8Z X +
1

4

∫

d8Z̄ X̄ , (9.15)

where the chiral superfield X is a functional of W and W̄ defined via the constraint

X = X D̄4X̄ +
1

2
W2 . (9.16)

Following [20], let us prove that this system provides a solution of the self-duality equation

(9.10). Under an infinitesimal variation of W only, we have

δWX = δWX D̄4X̄ + X D̄4δWX̄ +W δW ,

δWX̄ = δWX̄ D4X + X̄ D4δWX . (9.17)

From these relations one gets

δWX =
1

1−Q

[ W δW
1− D̄4X̄

]

, δWX̄ =
X̄

1−D4X D4δWX , (9.18)

where

Q = P P̄ , Q̄ = P̄ P ,

P =
X

1− D̄4X̄ D̄4 , P̄ =
X̄

1−D4X D4 . (9.19)

With these results, it is easy to compute M:

iM =
W

1− D̄4X̄

{

1 + D̄4 P̄ 1

1−Q
X

1− D̄4X̄ + D̄4 1

1− Q̄
X̄

1−D4X

}

. (9.20)

Now, a short calculation gives

Im

∫

d8Z
{

M2 + 2
1

1−Q
X

1− D̄4X̄

}

= 0 . (9.21)
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On the other hand, the constraint (9.16) implies

∫

d8Z X −
∫

d8Z̄ X̄ =
1

2

∫

d8ZW2 − 1

2

∫

d8Z̄ W̄2 , (9.22)

and hence
δ

δW

{
∫

d8Z X −
∫

d8Z̄ X̄
}

= W . (9.23)

The latter relation can be shown to be equivalent to

1

1−Q
X

1− D̄4X̄ = P 1

1− Q̄
X̄

1−D4X + X . (9.24)

Using this result in eq. (9.21), we arrive at the relation

∫

d8ZM2 −
∫

d8Z̄ M̄2 = −2

∫

d8Z X + 2

∫

d8Z̄ X̄ (9.25)

which is equivalent, due to (9.22), to (9.10).

The dynamical system (9.15), (9.16) was introduced in [21] as the N = 2 supersym-

metric BI action (c.f. with the similar construction for the N = 1 super BI action we

described in sect. 3). Such an interpretation is supported in part by the fact that the

theory correctly reduces to the N = 1 BI in a special N = 1 limit; we now briefly discuss

this issue.

Let us introduce the N = 1 components of the N = 2 vector multiplet. Given an

N = 2 superfield U , its N = 1 projection is defined to be U | = U(Z)|θ2=θ̄2=0. The N = 2

vector multiplet contains two independent chiral N = 1 components

W| =
√
2Φ , D2

αW| = 2iWα , (D2)2W| =
√
2 D̄2Φ̄ . (9.26)

Using in addition that

∫

d8Z = −1

4

∫

d6z (D2)2 ,

∫

d12Z =
1

16

∫

d8z (D2)2 (D̄2)
2 , (9.27)

the above definitions imply that the free N = 2 vector multiplet action (9.14) straight-

forwardly reduces to N = 1 superfields

Sfree =

∫

d8z Φ̄Φ +
1

4

∫

d6z W 2 +
1

4

∫

d6z̄ W̄ 2 . (9.28)

If one switches off Φ,

Φ = 0 =⇒ (D2)2W| = 0 , (9.29)
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one readily observes that the theory (9.15), (9.16) reduces to the N = 1 BI theory (5.2),

(5.3). However, it was shown in [20] that there exist infinitely many manifestly N = 2

supersymmetric models possessing this very property. Of course, the specific feature of the

system (9.15), (9.16) is its invariance under U(1) duality rotations, and the requirement of

self-duality severely restricts the class of possible models. But it turns out that even the

latter requirement is not sufficient to uniquely fix the N = 2 supersymmetric BI action.

The N = 2 supersymmetric BI action is expected to describe a single D3-brane in six

dimensions

LD3−brane = 1 −
√

− det (ηab + Fab + ∂aϕ̄∂bϕ) . (9.30)

Here the complex transverse coordinates ϕ of the brane should, in general, be related to

the scalars φ = W|θ=0 and the other components of the N = 2 vector multiplet by a

nonlinear field redefinition (see, e.g. [43]). Since LD3−brane is manifestly invariant under

constant shifts of the transverse coordinates

ϕ(x) −→ ϕ(x) + σ , (9.31)

the full supersymmetric theory must also be invariant under such transformations acting

on W in a nonlinear way

W(Z) −→ W(Z) + σ +O(W, W̄) . (9.32)

Moreover, the N = 2 supersymmetric BI action is expected to provide a model for partial

N = 4 → N = 2 supersymmetry breaking [44]. It means that the action should be

invariant under nonlinear transformations

W(Z) −→ W(Z) + ǫ(θ) +O(W, W̄) , ǫ(θ) = σ + ǫαi θ
i
α , (9.33)

with ǫαi a constant spinor parameter. We now demonstrate that the system (9.15), (9.16)

is not compatible even with the simpler transformations (9.32).

To start with, it is worth pointing out the following. When looking for nonlinear

symmetry transformations (9.32) or (9.33), one might first try to duplicate the trick10

which successfully worked in the case of the N = 1 supersymmetric BI action (see sect. 5).

Namely, one can introduce the transformation of X

δX = ǫ(θ)W , D̄i
α̇ ǫ(θ) = Dij ǫ(θ) = 0 , (9.34)

which obviously leaves the action (9.15) invariant. But this variation of X must be induced

by a variation of W consistent with the constraint (9.16). A direct analysis shows that

10This course was taken up in [45].
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the variation δW, that is derived in this way, does not satisfy the Bianchi identity (9.4).

The difference from the N = 1 case is simple but crucial: the N = 2 vector multiplet does

not possess any analogue of the property W 3 = 0, typical for the N = 1 vector multiplet.

We will use the following general Ansatz

δW = σ + σ D̄4Ȳ + σ̄✷Y , D̄i
α̇Y = 0 (9.35)

for symmetry transformations (9.32). The variation is consistent with the Bianchi identity

(9.4). The chiral superfield Y is some unknown functional of W and W̄. The precise form

of Y as well as of the N = 2 supersymmetric BI action, SBI, should be determined, order

by order in perturbation theory, from three requirements: (i) the action is to be invariant

under transformations (9.35); (ii) the action should solve the self-duality equation (9.10);

(iii) to order W4, the action should have the form:

SBI = Sfree + Sint , Sint =
1

8

∫

d12ZW2 W̄2 + O(W6) . (9.36)

This reproduces the known F 4 terms in the BI action.11 Direct calculation gives for Y

Y = −1

2
W2
{

1 +
1

2
D̄4 W̄2 +

1

8
D̄4 (W̄2 D4W2) +

1

8
(D̄4 W̄2)2

}

− 1

36
D̄4 (W3

✷W̄3) + O(W8) , (9.37)

while Sint reads

Sint =
1

8

∫

d12ZW2 W̄2

{

1 +
1

2

(

D4W2 + D̄4W̄2
)

(9.38)

+
1

4

(

(D4W2)2 + (D̄4W̄2)2
)

+
3

4
(D4W2)(D̄4W̄2)

}

+
1

24

∫

d12Z
{

1

3
W3

✷W̄3 +
1

2
(W3

✷W̄3)D̄4W̄2 +
1

2
(W̄3

✷W3)D4W2 +
1

48
W4

✷
2W̄4

}

+ O(W10) .

The expression in the first two lines of (9.38) comes from the expansion of (9.15) in powers

of W and its conjugate to the order indicated. As concerns the expression in the third

line of (9.38), it is not present in the power series expansion of (9.15), but it is required

for invariance under transformations (9.35). It is also worth noting that the expression in

the first line of (9.37) coincides with the decomposition of (−X ) (9.16) to the given order.

11This is the only known superinvariant with this property.
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Our conclusion is that the system (9.15), (9.16) cannot be identified with the correct

N = 2 supersymmetric D3-brane world-volume action, and the problem of constructing

such an action is still open.

A natural possibility to look for N = 2 supersymmetric BI action, advocated in [21],

is first to derive a manifestly (1, 0) supersymmetric BI action in six dimensions and,

then to dimensionally reduce to four dimensions. By construction, the resulting four-

dimensional model should be manifestly N = 2 supersymmetric and invariant under

constant shift transformations W → W + σ, without any nonlinear terms. However, the

problem of constructing the manifestly (1, 0) supersymmetric BI action in six dimensions

is not simple. In d = 6 there exists an off-shell formulation for the (1, 0) vector multiplet

[46]. But super-extensions of F 2, F 4 and F 6 terms, which appear in the decomposition

of the d = 6 BI action, cannot be represented by integrals over (1, 0) superspace or its

subspace. The super-extension of F 2 term was already derived in [46]. As to the super-

extensions of F 4 and F 6 terms, candidates were proposed in [21]. Unfortunately, the proof

of their invariance under (1, 0) supersymmetry transformations was based on the use of

the identity (here we follow the d = 6 notation of [46]) Dα (i

{

W
[β
j W

γ]
k)

}

= 0, which holds

on-shell [46], and not off-shell as claimed in [21]. Therefore, the super-extensions of F 4 and

F 6 terms proposed in [21] are not invariant under (1, 0) supersymmetry transformations.

Thus the problem of constructing a manifestly (1, 0) supersymmetric BI action is six

dimensions remains unsolved. If such an action exists, its dimensional reduction to d = 4

will be manifestly supersymmetric, but not all terms in the action can be represented as

integrals over N = 2 superspace or its supersymmetric subspaces.

Acknowledgements

We are grateful to Evgeny Ivanov, Dima Sorokin and Arkady Tseytlin for their interest in

this project. We thank Paolo Aschieri for helpful discussions on duality rotations. Support

from DFG-SFB-375, from GIF, the German-Israeli foundation for Scientific Research and

from the EEC under TMR contract ERBFMRX-CT96-0045 is gratefully acknowledged.

This work was also supported in part by the NATO collaborative research grant PST.CLG

974965, by the RFBR grant No. 99-02-16617, by the INTAS grant No. 96-0308 and by

the DFG-RFBR grant No. 99-02-04022.

39



Appendix A Derivation of the self-duality equation

Eq. (2.9) is derived as follows. For an infinitesimal U(1) duality rotation, we have

G̃′
ab(F

′) = G̃ab(F )− λF̃ab = G̃ab(F ) + 2
∂

∂F ab

(

−1

4
λF · F̃

)

, (A.1)

where we have used the infinitesimal version of eq.(2.8). At the same time, from the

definition of G̃′(F ′) it follows

G̃′(F ′) = 2
∂L(F ′)

∂F ′
= 2

(

∂

∂F ′
L(F ) +

∂

∂F
δL

)

, (A.2)

where

δL = L(F ′)− L(F ) . (A.3)

Using F ′ = F +λG, one can express ∂/∂F ′ on the right-hand side of (A.2) via ∂/∂F with

the result

G̃′
ab(F

′) = G̃ab(F ) + 2
∂

∂F ab

(

δL− 1

4
λG · G̃

)

. (A.4)

Comparing eqs. (A.1) and (A.4) gives

δL =
1

4
λ (G · G̃− F · F̃ ) . (A.5)

On the other hand, the Lagrangian can be varied directly to give

δL =
∂L

∂F ab
δF ab =

1

2
λ G̃ ·G. (A.6)

This is consistent with eq. (A.5) iff the self-duality equation (2.9) holds.
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