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Summary

Correlated binary data are encountered in many areas of medical research,

system reliability, and quality control.  For monitoring failures rates in such

situations, simultaneous bivariate Cumulative Sum (CUSUM) charts with

the addition of secondary control limits are proposed.  Using an approach

based on a Markov chain model, the run length properties of such a

monitoring scheme can be determined for sudden, or gradual, changes in

the failure rates.  The proposed control charts are easy to implement, and are

shown to be very effective at detecting small changes in the rate of

undesirable outcomes, especially when the changes are gradual.  This

procedure is illustrated using bivariate outcome data arising from a series of

pediatric surgeries.  The methodology is sufficiently general that it may be

adapted for multivariate normal, binomial, or Poisson responses.
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1. Introduction

In many areas of medical research it is necessary to utilize more than one outcome variable

to adequately characterize a response to a medical intervention.  In such settings, it is often of

interest to monitor the outcomes with a view to quickly detecting emerging changes in the response

pattern.  In the context of randomized clinical trials, Cook and Farewell1, and Cook2,3 proposed

monitoring schemes based on multivariate group sequential designs which are attractive in that they

maintain the individuality of the component test statistics.  In this article we focus on situations in

which a process is being monitored and two correlated outcomes variables are used to characterize

the response.  The process in the motivating example is a surgical procedure, but could be other

medical or industrial processes.  The detection of substantial adverse changes in the process should

result in some investigation of the cause, and possibly process changes in order to mitigate the

negative effect.  

De Leval et al.4 discussed the motivating problem for the developments that follow. The

goal is to monitor failure rates of a surgical procedure for a bivariate outcome.  Over a period of six

years an arterial switch operation was performed on 104 newborn babies.  Since the death rate

from this surgery was relatively low (around 2-5%), de Leval et al.4 introduced the idea of a

surgical near miss, a term borrowed from the airline industry.  In this context, near miss was

defined as the need to reinstitute cardiopulmonary bypass after a trial period of weaning.  By

recording both near misses and deaths from the surgery we obtain more information regarding the

success or “quality” of the surgery.  Thus, after surgery one response indicates whether there was

a near miss and the other indicates survival status.  The original data is reproduced in chronological

sequence in Appendix A.  Over the monitoring period a cluster of unexplained deaths occurred

between the 53rd and 68th patients.  The surgeon desired to determine whether the cluster could be

attributed to chance, or if there was some underlying cause for the flurry of adverse surgical

outcomes.  In addition, the surgeon wished to adopt a monitoring procedure that could quickly

detect increases in the death rate so that, if necessary, some remedial measure, such as retraining,

or adopting a procedural change, could be rapidly introduced.  Note that in this example we

assume that the results of the surgical procedure are quickly determined.
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In analyzing this problem the possibility of covariates such as patient characteristics,

procedural characteristics, and surgical team fatigue, were explored.  However, none of the

proposed covariates was found to have a significant effect on the failure rates.  In the absence of

covariate information de Leval et al.4 propose two sequential probability ratio test (SPRT) charts to

monitor the bivariate surgical outcomes.  The purpose of one SPRT was to monitored the death

rate alone, while the other SPRT was designed to monitor the occurrence of either a death or a near

miss.  If either of these two SPRTs signal, this was taken as evidence that either the death rate or

the combined death and near miss rate had increased, and some remedial measure was necessary.  

This methodology, which is subsequently referred to as the de Leval approach, works

fairly well in this application, but has a number of shortcomings in general.  First, the procedure is

not easily generalized to cases where both the monitored outcomes are of equal importance.  Using

the de Leval approach, the near miss rate is not monitored separately, and thus increases in the near

miss rate may not be easily detected.  In addition, the proposed SPRTs may signal both an increase

or a decrease in the failure rates, however, in this application, no action is suggested if failure rates

appear to have decreased.  Allowing the monitoring procedure to accumulate evidence that the rates

have decreased makes it potentially less sensitive to rate increases.  This happens if, by chance, the

SPRT is below the nominal value when the failure rate shifts upwards.  Finally, the charts are

designed using error rates that specify the largest probability that the wrong decision will be made.

However, in this context, we are more concerned with run lengths for monitoring schemes of an

ongoing process, or in other words, how long it will take before we detect a specific change in the

failure rates.  

This remainder of this article is organized as follows.  In Section 2 we briefly review

established monitoring methodology and discuss alternative approaches to the problem.  Details

regarding the design of the proposed simultaneous CUSUMs with secondary limits (SCUSUMs)

are provided in Section 3.  In Section 4 we provide more information on the surgical failures

example, and show how SCUSUMs may be applied.  Finally, Section 5 summarizes the results

and discusses some interesting extensions.  In the Appendix the run length properties of

SCUSUMs are derived.
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2. Background

2.1 Univariate Cumulative Sum (CUSUM) Procedure

Since the subsequent material requires an understanding of univariate CUSUM charts a

brief review is presented.  The original formulation of a CUSUM is due to Page5.  Two sided

implementations suggested by Barnard6 involved the use of a graphical device, called a V-mask, to

determine if the monitored process had changed.  In situations where concern is focused on only

detecting increases (or decreases) in the failure rate, the tabular form of the CUSUM is more

appropriate.  Due to the ease of implementation, this article focuses on the tabular CUSUM.  A

standard univariate tabular CUSUM involves monitoring:

Xt  = max 0, Xt −1 + Wt( ),        t = 1, 2, 3,K, (1)

where X0  = 0, and Wt  is the sample weight7.  The CUSUM repeatedly tests the hypotheses H0 :

θ = θ0  versus H1 : θ = θ1 , where θ  is the parameter of interest.  The process is assumed to be in

state H0  as long as Xt  < h, and is deemed to have shifted to state H1  if Xt  ≥ h  at any time t.  For

example, a CUSUM may be used to monitor the surgical death rate.  In that case θ0  represents an

acceptable probability of death, say θ0  = .02, while θ1 represents the undesirable death rate, say

θ1 = .05.  

The design of the CUSUM is given by the choices for Wt  and h.   Let yt  represent the

current sample outcome, for example the outcome for patient t, and denote the probability

distribution of the possible sample outcomes as f yt ;θ( ) .  Moustakides8 showed that the optimal

choice for the tabular CUSUM weights Wt  for all t is the log-likelihood ratio

ln f yt ;θ1( ) f yt ;θ0( )( ).  This choice is optimal in the sense that, among all schemes with the same

operating characteristics in-control it provides the best possible sensitivity.  In the death rate

monitoring example, f z;θ( )  = θ z 1 − θ( )1− z , where z  equals unity if a death occurs and zero

otherwise.  Then, the log-likelihood ratio is z ln θ1 θ0( ) + 1 − z( ) ln 1 − θ1( ) 1 − θ0( )( ) or

0.916z − 0.031 1 − z( ) , substituting the above values for θ0  and θ1.  Thus, the weights are
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Wt  = 
−.031 if patient t lives

.916 if patient t dies




.  

Good choices for h are based on the expected or average run length (ARL) of the CUSUM

under H0  and H1 .  The run length of the CUSUM is defined as the time (or number of

observations) required before the CUSUM first exceeds the control limit.  In quality control

terminology, a CUSUM that exceeds the control limit is said to have “signaled.”  Note that

CUSUMs are designed to monitor the responses sequentially until sufficient evidence of process

deterioration is detected.  Ideally, while the process is in state H0  the run lengths should be long,

since signals represent false alarms under H0 .  On the other hand, if the process has shifted to H1 ,

or any other undesirable process settings, we would like short run lengths.  Issues surrounding the

design of univariate CUSUM procedures are discussed for normally distributed outcomes9,10 and

in the binomial data case11.  

Tabular CUSUM charts may be thought of as a geometric series of Wald Sequential

Probability Ration Tests (SPRTs), where the SPRTs start on the lower boundary, and we observe

a number of SPRTs that end in acceptance of H0 , followed by one SPRT that ends in rejection of

H0
5.  Through this equivalence, the run length properties of the CUSUM are related to the

probability the underlying SPRT rejects H0 .  Since we have a geometric series of SPRTs ending

with rejection of H0 , the ARL of the CUSUM can be expressed as 1 p, where p  is the probability

the underlying SPRT ends in rejection.  

2.2 Multivariate Monitoring Schemes

In the field of quality control, there is a fairly rich literature concerning procedures for

monitoring bivariate or multivariate processes, but these methods have received comparatively little

attention in the medical area.  Most of the established monitoring methods incorporate a control

chart as a graphical representation to ease implementation and understanding.  Here we review

these and demonstrate that none are entirely satisfactory in situations such as the surgical failures

example.  For a general review see Montgomery7.  
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The first and simplest approach uses multiple univariate charts, where each outcome

variable is monitored using a separate control chart.  Examples of univariate control charts include

X  charts, p charts, and CUSUM charts.  Multiple univariate charts are used in many situations

since they are easy to understand and implement.  However, by monitoring based on separate

control charts in the usual way, we ignore the joint distribution of the outcomes.  As a result, the

ability of multiple univariate charts to detect process changes without producing frequent false

alarms may be impaired, particularly if the correlation is substantial.      

Another option is to utilize a global test statistic derived from all outcomes and to monitor

based on this summary statistic.  Examples of so called multivariate charts include multivariate p

charts12 and multivariate CUSUM charts13.  In some contexts, multivariate charts may be desirable

since they are based on only one chart and the correlation between the variables can be taken into

account in the chart design.  However, somehow the different outcomes must be combined into

one global test statistic, which may not be easy to justify, especially if the outcomes are not of

comparable importance.  Also, multivariate charts are often considered unattractive since the

underlying cause of an out-of-control signal may be more difficult to determine.    

A final general strategy is to assume an underlying parametric model that explains the

relative probabilities of observing the different outcomes.  In this way, a bivariate (or multivariate)

problem where the outcomes are mutually exclusive and can be ranked in terms of importance may

be recast into a univariate grouped data problem.  Steiner, Geyer and Wesolowsky14,15 have

discussed monitoring methods that handle grouped data.  Grouped data methods are attractive since

they are simple to implement and interpret.  However, to be applicable we must assume an

underlying continuous distribution exists that explains the relative probabilities of the various

outcomes, and this may not be reasonable.

3. Simultaneous CUSUM Charts with Secondary Control Limits

3.1 Formulation of the Simultaneous Secondary Limit CUSUM (SCUSUM)

For monitoring the success of a medical intervention in terms of two outcome variables we

define the simultaneous CUSUM statistics based on two univariate tabular CUSUMs, i.e.
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SYt  = max 0, SY ,t −1 + WYt
( ),       t = 1, 2, 3,K  

SZt  = max 0, SZ ,t −1 + WZt
( ) ,       t = 1, 2, 3,K , (2)

where SY 0  = SZ 0 = 0, and WYt
 and WZt

 are respectively, the sample weights for the Y and Z

charts.  Using SCUSUM charts, the two CUSUMs defined by (2) are monitored simultaneously,

and the procedure signals if either the individual CUSUM values SYt  or SZt  are greater than

predetermined primary control limits hy  and hz.  We also introduce so called secondary control

limits hyy  (hyy  ≤ hy ) and hzz  (hzz  ≤ hz) for SYt  and SZt  respectively.  The SCUSUM also signals

when both CUSUM values are simultaneously greater than their respective secondary control

limits.  The secondary limits serve to aid in the rapid detection of small increases in the event rates

of both outcomes, and their position will be influenced by the degree of correlation between the

variables. To summarize, the SCUSUM chart signals at time t if any of the following three

conditions are satisfied:

(i) SYt  ≥ hy  (and SZt  < hzz ), or

(ii) SZt  ≥ hz (and SYt  < hyy ), or (3)

(iii) SYt  ≥ hyy  and SZt  ≥ hzz  simultaneously.

Individually each of the two CUSUM charts will be designed to test: H0 : θ = θ0  versus

H1 : θ = θ1, where θ  represents a vector of parameters of interest, θ0  is a vector of in-control

parameter values, and θ1 is a vector of undesirable parameter values.  In the context of bivariate

binary data, θ  may represent the vector (π y , π z ), for example, where π y  and π z  equal the

probabilities of failure for outcomes Y and Z respectively.  

To determine explicit expressions for the weights based on the log-likelihood ratio

(Moustakides, 1986) we must model the distribution of the outcome variables.  Although

SCUSUMs are generally applicable to any type of paired data, we focus in this article on paired

binary data which arise in our motivating problem.  Let Y and Z represent two correlated outcome

variables as given by (4).   
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Y = 
1 if a failure of type Y occurs

0 otherwise




, Z = 
1 if a failure of type Z occurs

0 otherwise




(4)

The possible sample (patient) outcomes are represented by the ordered pair y, z( ).

There are four possible outcomes for this ordered pair, namely (0,0), (0,1), (1,0) and

(1,1).  Let qyz  = Pr Y = y, Z = z( ).  Then the joint distribution of Y and Z is determined by q00 ,

q01 and q10 with q11 = 1 − q00 − q01 − q10 .  Also define π y  = Pr Y = 1( ) = q10 + q11 and π z  =

Pr Z = 1( ) = q01 + q11. Using this notation the conditional distributions are given by

Pr Z = z Y = y( ) = qyz qy0 + qy1( ), Pr Y = y Z = z( ) = qyz q0z + q1z( ).  

In practice one has a choice in selecting which aspect of the bivariate process to monitor.

Here we consider the rate of near misses, and the component of the death rate not explained by

changes in the correlation and the near miss rate.  This approach of constructing the joint

distribution by the product of a marginal distribution for one outcome and a conditional distribution

of the other (conditional on the realization of the first event) was examined by Klotz16 and is

developed further in the context of longitudinal data by Darlington and Farewell17.

To formalize in this setting we let

π y  = Pr Y = 1( ) =
eα y

1 + eay

π
z y

= Pr Z = 1 Y = y( ) =
eα z +βy

1 + eα z +βy (6)

Here β  represents the log odds ratio of z = 1 for y = 1 versus y = 0 and serves as a natural

measure of the dependence between y and z.  Conditioning in the reverse order is also possible but

not appropriate for our monitoring example due to the natural ordering of the outcomes.  Indeed, In

principle it is possible to run the same sort of procedure without the conditioning.  To do this one

would replace the probabilities in (6) with the two marginal probabilities and derive the appropriate

CUSUM weights as before.

We assume β  is fixed and we devise a monitoring scheme for detecting changes in the

Pr Y = 1( ) and Pr Z = 1 Y( ).  Since the outcomes are paired Bernoulli random variables, the

likelihood of θ  = α y , α z , β( ) is written:
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π y
y (1 − π y )1− y π z y

z (1 − π z y )1− z   =  
eα y y

1 + eα y







eα z z+βyz

1 + eα z +βy







,  (7)

Assuming that under H0  the parameters are given by α y0 , α z0, β  and under H1  the model

parameters are given by  α y1, α z1, β  the log-likelihood ratio weights for outcome y, z( ) are given

in Table 1.

Table 1:  CUSUM Log-Likelihood Ratio Weights

y, z( ) Weight

(0, 0) log 1 + eα y0( ) − log 1 + eα y1( ) + log 1 + eα z0( ) − log 1 + eα z1( )
(0, 1) log 1 + eα y0( ) − log 1 + eα y1( ) + α z1 − α z0( ) + log 1 + eα z0( ) − log 1 + eα z1( )
(1, 0) α y1 − α y0( ) + log 1 + eα y0( ) − log 1 + eα y1( ) + log 1 + eβ +α z0( ) − log 1 + eβ +α z1( )
(1, 1) α y1 − α y0( ) + log 1 + eα y0( ) − log 1 + eα y1( ) + α z1 − α z0( ) + log 1 + eβ +α z0( ) − log 1 + eβ +α z1( )

Note that with this setup a signal due to (3i) represents evidence that π y  has increased, a

signal due to (3ii) represents evidence that π z  has increased, and any signal due to (3iii) suggests

that both π y  and π z  have increased.  Thus, for given values of α y0 , α z0, β , α y1 and α z1 the

appropriate weights to use in (2) for each of the CUSUM can be determined from Table 1.  Note

that the alternative values of the parameters, i.e. α y1 and α z1, will be different for the two charts.

3.2 Determination of the Control Limits

To complete the specification of the SCUSUM we need to determine the four control limits

hy , hz, hyy  and hzz .  As discussed in Section 2, a CUSUM is a sequential monitoring procedure

that has close links to sequential probability ratio tests.  However, since CUSUMs are designed to

continue until a signal occurs, their design does not involve the specification of a type I error rate

and power for detecting the effect of interest.  Instead interest lies in the expected run lengths under

specific parameter configurations.  Specifically CUSUM control limits are chosen to yield desirable

run length properties9, where the run length is defined as the number of observations before a

signal.  That is to say, for example, one asks the question, how frequently should the out-of-
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control signal be triggered when the process is actual operating under acceptable conditions?  We

want the CUSUM procedure to have a long average run length under acceptable conditions and a

short average run length when the process has shifted.  Appendix B shows how the run length

properties of SCUSUMs may be derived when the observations are correlated binary random

variables.   For the proposed SCUSUMs the probability of signaling due to (3i), (3ii) or (3iii),

denoted p1, p2 and p3  respectively, can also be used to aid the design.  In particular, under the

null hypothesis, it is natural to set the control limits such that all three possible ways of signaling

are approximately equal.  In this way, the chart will be sensitive to increases in the failure rates of

both outcomes.  Appendix B also shows how p1, p2 and p3  can be determined.

In many medical applications, such as the surgical failures example, the monitored

processes are extremely critical.  In such situations, decisions regarding the acceptability of the

failure rates are best made after each patient in order to most quickly detect adverse effects.  Using

such an approach, CUSUM charts can be designed to have certain desired run length properties

under the null hypothesis, but out-of-control run length properties follow directly.  We propose the

following three step iterative approach to determining appropriate values for hy , hz, hyy  and hzz :

1) Set the initial values for hy  and hz, based on the desired in-control average run length

(ARL) of the two univariate charts.  

2) Set the initial values for hyy  and hzz  at some fixed proportion of the primary limits, say

60%.  The proportion should be based on the correlation between the two outcomes.  For

large positive correlations the secondary limits will be quite close to the primary limits.  

3) Given the current choices for hy , hz, hyy  and hzz  determine the ARL and probabilities of

signaling under the H0  using Appendix B.  Iteratively adjust the control limits to obtain

close to the desired ARL and p1, p2 and p3  approximately equal.

4. Surgical Failures Example

4.1 Application

Define indicator variables as in (4) where Y = 1 corresponds to a near miss and Z = 1

corresponds to a death.  In Table 2 we summarize the surgical failures data from Appendix A using
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the four possible surgical outcomes for each patient.  A patient can be classified as both a death and

a near miss since any death within 24 hours of the surgery is considered a surgical death.  

Table 2:  Summary of Surgical Failure Data

Death
no

z = 0( )
yes

z = 1( )

Near
Miss

no
y = 0( ) 85 4

yes
y = 1( ) 10 5

The odds ratio for this 2x2 table is 10.6, with an approximate 95% confidence interval

given by (2.44, 46.1).  This suggests the outcomes are correlated, and that the odds of a death is

approximately 10 times higher for a patient who is classified as a “near miss.”   

The SCUSUM is designed to directly monitor both the death and near miss rates.  To

specify the chart we need to determine appropriate sample weights as given in (2), and choose

values for the primary and secondary control limits for each chart.  

We start by modelling the failure rates.  In this situation, since the outcome death is

typically established after the determination of near miss, it is reasonable to model the probability

of death conditionally on the near miss status.  Defining π y  as the probability of a near miss, and

π
z y

 as the conditional probability of death, we adopted model (6).  Using this model the

likelihood of θ  = α y , α z , β( ) is given by (7).

 Based on previous surgical experience4, a death rate and a “death or near miss” rate of

around 2 and 10 percent, respectively, are the failures rates we would expect when in-control.

Based on these event rates and the available data we adopted the parameter values α y0  = –2.3, α z0

= –4.5 and β  = 2.5.  Since these parameter values yield acceptable surgical performance they

define H0 .  We will later comment on sensitivity analysis regarding the initial choice for β .

Appropriate alternative hypotheses for the CUSUM charts are determined by considering

increases in either the death or near miss rates that are unacceptable and should be detected quickly.
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For the CUSUM chart designed to detect increases in near miss rate and the death rate alternate

hypotheses H1y  and H1z  respectively are proposed, where

H1y : α y1 = –1.7 [Pr(near miss) = π y  = .15], α z0 = –4.5, β  = 2.5,  and

H1z : α y0  = –2.3, α z1 = –2.9 [Pr(death | not near miss) = π
z y=0  = .05], β  = 2.5.  

Note that H1y  and H1z  reflect increases in only the marginal near miss or death rates respectively,

and that we assume the log odds ratio (correlation) parameter β  is constant.  The parameter values

chosen for the alternative hypothesis correspond to increases in the failure rate that are deemed

undesirable, and are of a sufficient magnitude that quick detection of such a change is desired.      

The log-likelihood ratio is defined as log LR( ) = log L H1( ) L H0( )[ ].  For the near miss

and death charts respectively this yields:

log LR H1y( ) = α y1 − α y0( )y + log 1 + eα y0( ) − log 1 + eα y1( )
log LR H1z( ) = α z1 − α z0( )z + log 1 + eβy+α z0( ) − log 1 + eβy+α z1( ) (8)

Expressions (8) are functions of only the outcomes y and z.  Substituting into (8) all

possible combinations (y, z) leads to the optimal log-likelihood ratio weights.  The weights are

given in Table 3.  For ease of implementation the actual weights used in the procedure, WYt
 and

WZt
, are integers that closely match the relative sizes of the true log-likelihood ratio weights.  Note

that in Table 3 there are only two distinct weights for the near miss chart, since the probability of a

near miss is not effected by the occurrence of a death.  

Table 3:  Log-Likelihood Ratio Weights

Outcome  (y, z) (0, 0) (0, 1) (1, 0) (1, 1)

log LR H1y( ) –.07 –.07 .53 .53

WYt –1 –1 7 7
log LR H1z( ) –.04 1.6 –.39 1.2

WZt –1 37 –9 29

To complete the design of the simultaneous CUSUMs we need to specify values for the

control limits.  This may be accomplished using the general iterative design procedure outlined in
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the previous section.  To begin we must specify an appropriate level for the average in-control run

length of the procedure.  Based on the current rate of surgeries an in-control average run length of

around 280 was suggested, this represents approximately one false alarm every 16 years.  There is

a tradeoff associated with the choice of the desired in-control average run length.  Choosing larger

values makes false alarms less frequent, but also results in a procedure that takes longer to signal

increases in the failure rates.  As a result, it is useful to check that the out-of-control average run

length of the procedure for given control limits is fairly small when the out-of-control situation

corresponds to increases in the failure rates that would be important to detect quickly.  Determining

the appropriate corresponding control limits using the numerical routines from the Appendix gives

hy  = 32, hz = 70, hyy  = 17 and hzz  = 38.  These control limits choices yield an in-control average

run length of 284 patients where false alarms due to each of the three possible modes of signaling

are approximately equally likely.

Using these control limits, the data from the original 104 patients, and the weights from Table 3 the

resulting SCUSUM is given in Figure 1.  At patient number 55 the SCUSUM signals (denoted by

the two circles in the figure), due to the secondary limits, that the near miss rate and the death rate

have both increased.  Assuming this signal was ignored, and the monitoring procedure was

continued, the chart subsequently signal an increase in the death rate and near miss rate at patient

numbers 59 and 68 respectively.  These primary control limit signals are identified by the crosses

in Figure 1.  Clearly, there is evidence that the surgical failure rates are substantially larger than the

acceptable values given by H0 .

The SCUSUM chart in Figure 1 is relatively insensitive to the initial estimate for the log

odds ratio parameter β .  As part of a small sensitivity study we considered all values of β  between

0.9 and 3.8.  This range of β  corresponds to the 95% confidence interval for the odds ratio of the

surgical failures data given in Table 2.  For each choice of β  we determined the corresponding α y0

and α z0 values that correspond to death and “death or near miss” rates of 2 and 10 percent, and

also determine the appropriate values for α y1 and α z1, weights, and appropriate control limits to

give the same expected in-control properties, the control chart for the actual surgical failures data

signals at exactly the same patient numbers as in Figure 1.
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Figure 1:  SCUSUM with Surgical Failures Data

4.2 Characteristics of the SCUSUM Procedure

It is of interest to explore the run length properties and effectiveness of the different control

limits for this proposed procedure.  Denote the probability the SCUSUM signals due to signaling

rules (3i), (3ii) (3iii) as p1 = Pr(signal – near miss), p2 = Pr(signal – death) and p3  = Pr(signal –

joint) respectively, where p1 + p2 + p3 = 1.  Figures 2 to 5 are derived using the Markov chain

methodology discussed in Appendix B.  

Figure 2 shows ARL contours of the proposed SCUSUMs at various combinations of near

miss and death rates.  As one would expect, the ARL is very large for small failure rates, and

decreases rapidly as the failure rates increase.  In addition, Figure 2 shows contours of p1, p2 and

p3 .  As expected, the probability of signaling an increase in the death rate when the death rate, but

not the near miss rate, has increased is very large.  Similarly, the probability of signaling an

increase in the near miss rate is tied to the actual near miss rate.  Also, the secondary limits are

most effective when both the error rates have increased.  For example, when π y   = .20 and π
z y=0

= .05 the probability the signal was due to the secondary limits (p3) is around .43.
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Figure 2: SCUSUM Properties (hy  = 32, hz = 70, hyy  = 17, and hzz  = 38)

Figure 3 shows the equivalent plots when the log odds ratio β  equals zero.  This

corresponds to the case where the outcomes are uncorrelated.  Note that the sample weights used in

the procedure were derived using a log odds ratio of β  = 2.5, thus the results from Figure 3

provide some sensitivity analysis.  From the contour plots it is evident that the benefits of the

secondary limits are reduced.  When β  = 0, out-of-control situations yield longer run lengths, and

there is less chance that the SCUSUM signals due to the secondary limits.

Figure 4 shows contours of ARL, p1, p2 and p3  when the secondary limits are not used.

Comparing the contour plots in Figures 2 and 4 shows the loss in efficiency that occurs when the

secondary limits are abandoned.  Specifically, the plots suggest that the secondary limits decrease

the out-of-control ARL, and that the secondary limits are especially effective when both the failure

rates increase by a small amount.
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Figure 3: SCUSUM Properties with β  = 0 (no correlation)
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Figure 4:  SCUSUM Properties without Secondary Limits, i.e. hy  = hyy= 32, hz = hzz  = 70

Figures 2-4 show the ARL and signal probabilities when the values of π y  and π
z y

 are

fixed.  This is the classical run length analysis and is useful when quality problems manifest

themselves as sudden changes.  However, another model for the onset of quality problems is

based on the failure rates slowly deteriorating.  Such a drift in quality would be of interest, for
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example, if the surgeon’s skills are expected to deteriorate with time (perhaps due to aging), or

when a piece of equipment slowly wears out.  Using results from Appendix B, ARL, p1, p2 and

p3  values can also be found for arbitrary changes in the failure rates over time.
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Figure 5:  Solution Properties under Gradual Drift

Figure 5 plots ARL, p1, p2 and p3  results when both the failure rates gradually drift from

H0  to triple the original rate.  In Figure 5, the horizontal axis of all the plots gives the speed of the

drift in terms of the number of patients operated on before the drift is completed.  Note that in the

two right-most frames of Figure 5 the signal probabilities must sum to one, since the CUSUM

eventually signals.  As expected, when the deterioration in the quality is slow, it is more difficult to

detect, and thus requires longer ARLs.  Figure 5 simultaneously shows results for the SCUSUM,

and the multiple univariate approach where the secondary limits are not used.  The figure suggests

that SCUSUMs are also effective when the failure rate increases over time.  The ARLs are lower

when using the SCUSUM thus showing the benefits of the secondary limits.     

4.3 Comparison with Procedure Proposed by de Level et al.

In Section 4.1 we observed that the proposed scheme would signal a problem after patient

number 55.  This is an improvement over the performance of the de Leval procedure where
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problems were detected (at the 95% confidence level) first at patient number 59.  A more

comprehensive comparison of SCUSUM and the de Leval procedure is provided by the ARL

contour plots of Figure 6.  The contour plot on the left reproduces the ARL contour plot given as

part of Figure 2 for the SCUSUM with control limits hy  = 32, hz = 70, hyy  = 17, and hzz  = 38.

Simulated ARL results for the de Leval procedure, where each contour point represents the average

of 500 trials, is shown on the right.  To make the procedures more easily comparable, the middle

contour plot represents the ARL of an SCUSUM procedure with weights given by Table 3, and

control limits given by hy  = 25, hz = 70, hyy  = 15, and hzz  = 38.  Note that these control limits are

slightly smaller for the near miss chart than those proposed in Section 4.1.  With this slightly

adjusted SCUSUM, the ARL under H0  very closely matches the ARL under H0  of the de Leval

scheme.  In addition, the ARLs of the adjusted SCUSUM are very close to those of the de Leval

procedure when increases occur only in the near miss rate.  With the adjusted SCUSUM chart, as

the death rate increases, the ARL drops much more rapidly than with the de Leval scheme.  Since

quickly detecting increases in the death rate is the primary propose of the monitoring the shorter

ARL values for large death rates are a substantial advantage.
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Figure 6:  Comparison of ARL Contours

5. Summary and Discussion

Simultaneous CUSUM charts with secondary limits are developed and shown to be useful

for monitoring processes with bivariate outcomes.  The proposed CUSUM charts are preferable to

multiple univariate charts since the correlation between the outcomes is taken into account in the
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design of the chart.  In addition, simultaneous secondary limit CUSUMs are also preferable to

creating global statistic multivariate control charts, since it is often not clear how best to weight the

different outcomes.  

The run length properties of SCUSUM are found using Markov chain analysis.

SCUSUMs are shown to be especially good at detecting simultaneous moderate increases (or

decreases) in both quality process characteristics.  The methodology is applicable in all situations

where we have sequential paired (correlated) data, and are also especially useful for detecting

gradual deterioration in both failure rates.  The resulting control chart is very easy to implement and

understand.

There are many interesting extensions possible for this work.  In some situations it may be

reasonable to assume that some underlying factor influences the occurrence of both types of

failure.  In that case a random effects model like (5) may be appropriate.  Using a random effects

model, the CUSUM weights could be set equal to the marginal log-likelihood ratio.  Also, of great

practical interest would be the addition of covariates.  In the surgical outcome example, there were

many covariates available, such as the occurrence of a related heart defect Ventricular Septal Defect

(VSD), or the type of anesthetic used, that potentially could have a significant effect on the failure

rates.  Naturally, if important covariates are identified they should also be accounted for in the

monitoring procedure.  For covariates that have well known effects on the failure rates, perhaps as

established through logistic regression, the CUSUM weights could be adjusted based on the value

of the regression coefficients and the covariate itself.  For example, the addition of the binary

covariate VSD to model (6) results in a doubling of the number of CUSUM weights in Table 3.   

In applications where the process outcome is not as critical as in the surgical failures

example, it may be feasible take samples of size larger than one.  In that case, for each of the two

outcomes we would observe a binomial rather than Bernoulli random variable.  Allowing samples

of size n introduces another design parameter.  By changing the sample size we would gain more

flexibility in finding CUSUM designs that yield desirable ARL properties under both the null and

alternative hypotheses.  



20

In our motivating example the data were available immediately (within 24 hours) after

surgery and therefore a bivariate binary response model was adopted.  In other monitoring

scenarios, such as when death is defined as a death within a month of the surgery, only censored

observations may initially be available.  In such a situation the monitoring procedure must be

adapted since many failures are noted immediately, while successes are delayed.  It may be

possible to derive sliding scale weights that could be assigned to surgical survivor who can not yet

be declared successes.

The principle behind the use of secondary limits is also appropriate if both the observed

variables are count or continuous data, or some combination of data types.  The secondary limits

allow the rapid detection of quality decreases in both outcome variables.  Unfortunately, however,

for data other than paired binary, the procedure given in Appendix B for determining the

SCUSUM’s run length properties may no longer be computationally feasible.  Finally, SCUSUM

charts may also be applicable for three or more outcome variables of interest.  With three or more

secondary limit CUSUM charts, the combine chart may be defined to signal if any of the charts

plotted above their primary limit, or if any two of the CUSUM statistics were above their

corresponding secondary limit.  Determination of the appropriate control limits in the case with

three or more variables is somewhat more difficult and is worthy of further study.
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Appendix A

The table below reproduces the surgical failure data from de Leval et al.4.

Table A1:  Surgical Failures Data

Pat # Death
Near
Miss Pat # Death

Near
Miss Pat # Death

Near
Miss Pat # Death

Near
Miss

1 0 0 27 0 0 53 1 1 79 0 0
2 0 0 28 0 0 54 0 0 80 0 0
3 0 0 29 0 0 55 1 0 81 0 0
4 0 0 30 0 0 56 0 0 82 0 0
5 0 0 31 0 0 57 0 0 83 0 0
6 0 0 32 0 0 58 0 0 84 0 1
7 0 0 33 0 1 59 1 1 85 0 0
8 0 0 34 1 1 60 0 0 86 0 0
9 0 0 35 0 0 61 0 0 87 0 0

10 0 0 36 0 0 62 0 0 88 0 0
11 0 0 37 0 0 63 1 0 89 0 0
12 0 0 38 0 0 64 1 0 90 0 1
13 0 1 39 0 0 65 0 0 91 0 0
14 0 0 40 0 0 66 0 0 92 0 0
15 0 0 41 0 0 67 1 1 93 0 0
16 0 0 42 0 0 68 1 1 94 0 0
17 0 0 43 0 1 69 0 0 95 0 0
18 0 0 44 0 0 70 0 1 96 0 0
19 0 0 45 0 0 71 0 0 97 0 0
20 0 0 46 0 1 72 0 0 98 0 1
21 0 0 47 0 0 73 0 0 99 0 1
22 0 0 48 0 0 74 0 0 100 1 0
23 0 0 49 0 1 75 0 0 101 0 0
24 0 0 50 0 0 76 0 0 102 0 0
25 0 0 51 0 0 77 0 0 103 0 0
26 0 0 52 0 0 78 0 0 104 0 0

Appendix B

In this Appendix, Markov chain methodology is used to derive the run length properties of

two simultaneous CUSUM charts with secondary control limits.  Define the state space of the

model as Y, Z( ), where Y and Z  represent the current values for the first and second CUSUM

respectively.  Define the SCUSUM as given by (2) and (3).  We assume that hy  > hyy  and hz >

hzz , and that the control limits and all possible sample weights are integer.  Discretizing the state

space so that all values are integer we define the states as order pairs where

s1 = (0,0), s2  = (1,0), ...., shy
 = (hy –1,0),  

shy +1 = (0,1), ..., s2hy
 = (hy –1,1), ...,

shzz hy +1  = (0,hzz ), ..., shzz hy +hyy
 = (hyy–1,hzz ),

shzz hy +hyy +1 = (0,hzz+1), ..., s
hzz hy + hz −hzz( )hyy

 = (hyy–1,hz–1).  
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The total number of states g equals hyhzz + (hz − hzz )hyy + 3, where the last three state

correspond to the three possible out-of-control conditions given by (3).  Depending on the values

of hy , hz, hyy  and hzz , g can be very large.

The transition probability matrix is given by

P =

  

p11, p12 ,K , p1g

p21, K , p2g

M M

pg1, K , pgg





















=
  

R , I − R( ) 1

0,K, 0 , 1









 ,

where I is the g by g identity matrix, 1 is a g by 1 column vector of ones, and pij  equals the

transition probability from state si  to state sj .  The last three rows and columns of the matrix P

correspond to the three possible absorbing states that represents an out-of-control signal.  The R

matrix equals the transition probability matrix with the rows and columns that correspond to the

absorbing (out-of-control) states removed.  The R matrix is g by g and generally very large.  In

fact, given hy  = 32, hz =70, hyy  = 17 and hzz  = 38 it is 1760x1760 elements.  However, assuming

paired binary outcomes there are only four possible outcomes, and thus there are at most four non-

zero elements in each row of the matrix.  As a result, the matrix R is very sparse.

Letting γ  denote the run length of the CUSUM, and assuming the matrix R is constant,

we have

Pr γ ≤ t( ) = I − Rt( ) 1, and thus

Pr γ = t( ) = Rt −1 − Rt( ) 1    for t ≥ 1.

Therefore, the expected, or average, run length is

E γ( ) = t Pr γ = t( )
t =1

∞

∑ = Rt 1( )
t =1

∞

∑  = I − R( )−11 . (A1)

Higher moments of the run length can be found in a similar manner.

In general, solving (A1) is done without explicitly finding the inverse of I − R( ).  A much

more efficient approach is to solve the system of linear equations implied by (A1) via LU
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decomposition and partial column pivoting to take advantage of the matrix sparseness.  Routines

given in MATLAB® can accomplish this task.

CUSUM charts are designed to eventually signal that the process has shifted to some

undesirable process level.  Let f ik  = probability of ending in absorbing state k ,

k = g − 2,g − 1,or g , when starting in state i.  Let f (0,0)→near miss signal , f (0,0)→death signal , and

f (0,0)→ joint signal  denote the probability of signaling due to each of the three possible reasons for a

signal.  Then,

f ik  = pik f kk + pij f jk
j =1

g−3

∑        for   i = 1, 2,K, g − 2,g − 3,K,k .  (A2)

where f g−2,g−2  = f g−1,g−1 = f gg  = 1.

This system of linear equations may be solved for f (0,0)→near miss signal , f (0,0)→death signal , and

f (0,0)→ joint signal  using procedures similar to those used for (A1).  Using MATLAB® on a Power

Macintosh 7600 E γ( ) and f ik  values for any given probabilities of failure were determined in less

than 10 seconds.

This numerical procedure can be used in the following manner to obtain appropriate control

limits for an SCUSUM chart.  The numerical routine require as inputs:  the weights WYt
, WZt

, the

parameters α y0 , α z0, and β , and trial control limits hy , hz, hyy  and hzz .  Note that the weights and

the parameter values remain fixed while we iteratively try different control limits.  The numerical

routine outputs the average run length, and f (0,0)→near miss signal , f (0,0)→death signal , and f (0,0)→ joint signal

(denoted p1, p2 and p3  in Section 4.2) that correspond to the given trial control limits.  We are

attempting to find the levels of the control limits that give some desired in-control ARL, ARL0  and

where  p1 = p2 = p3 .  We adjust the trial control limits based on the output from the routine as

according to the suggestion in Table B1.
 Table B1:  Iterative Adjustments for Control Limit Determination

Outcome Adjustment Needed
ARL smaller (larger) than ARL0

increase (decrease) the control limits
p1 too small (too large) increase (decrease) hy  and increase

(decrease) hyy  proportionally
p2 too small (too large) increase (decrease) hz and increase

(decrease) hzz  proportionally
p3  too small (too large) increase (decrease) hyy  and hzz
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In a more general case, the matrix R is a function of time, say Rt , and we have a non-

homogenous Markov chain problem.  This occurs under tool wear, or if we wish to model the

deteriorating skills of an aging surgeon.  We assume that t final represents the time at which the

probabilities of failure stop changing, and let Rfinal  denote the transition probability matrix at time

t final and later.  Then, using the same algebraic manipulations as used to derive (A1) we get

E RL( ) = Rs 1
s=1

t

∏



t =1

t final -1

∑ + Rs
s=1

t

∏





I − Rfinal( )−1
1 . (A3)

Define atk  as the probability of being absorbed in absorbing state k, k = 1,2,3, at time t

when starting in the first state s1 = (0,0).  The element of ai1,ai2 ,ai3( )  are found as the last three

elements of the first row of the matrix   R1R2 KRt  for t < tfinal .  Then, assuming a changing

transition probability matrix Pr absorb in state k( ) = a1k  + a2k 1 − Pr γ ≤ 2( )( ) + a3k 1 − Pr γ ≤ 3( )( )
+ ... + atfinal k

1 − Pr γ ≤ tfinal( )( ) + f ik final( ) Pr γ > tfinal( ) , where the last term is the probability of being

absorbed into state k  after the transition matrix stops changing.  f ik final( )  can be found by solving

the system of equations defined by (A2) with the transition probabilities pij  given in Rfinal .  The

MATLAB® routines necessary to perform the calculations are available from the authors.
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