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Summary

Correlated binarglata are encountered in many areasneflicalresearch,
system reliability, and quality control. For monitoring failures ratesuirh
situations, simultaneousivariate CumulativeSsum (CUSUM)charts with

the addition ofsecondary contrdimits areproposed. Using aapproach
based on a Markoehain model, the run length properties ofsuch a
monitoring scheme can be determirfed sudden, or graduathanges in

the failure rates. The proposed control charts are easy to implement, and are
shown to bevery effective at detecting small changes in ttade of
undesirable outcomegspeciallywhen the changes argradual. This
procedure is illustrated using bivariate outcome data arising from a series of
pediatricsurgeries. The methodology is sufficiently generthlat it may be

adapted for multivariate normal, binomial, or Poisson responses.



1. Introduction

In many areas of medical research it is necessaujlitte more tharone outcome variable
to adequately characterizer@sponse to anedicalintervention. In such settings, it adten of
interest to monitor the outcomes with a view to quickly detecting emerging changesespbase
pattern. Inthe context of randomized clinicadals, Cook and~arewelt, and Cook*® proposed
monitoring schemes based on multivariate group sequential designs which are attractive in that they
maintain the individuality of the component tesdtistics. In thisrticle wefocus on situations in
which a process is being monitored and two correlated outcomes variablsgdrecharacterize
the response.The process irthe motivating example is a surgigabcedure, butould be other
medical or industrial processes. The detection of substantial adverse changes in the process should
result in some investigation tfie cause,and possibly process changes in ordemitigate the
negative effect.

De Leval et af. discussedhe motivating problenfor the developments thdbllow. The
goal is to monitor failure rates of a surgical procedure for a bivariate outcome. Over a period of six
years ararterialswitch operatiorwas performed on 104 newborpabies. Since the deatlnate
from this surgery waselatively low (around 2-5%), deé.eval et al’ introduced the idea of a
surgicalnearmiss, a termborrowed fromthe airlineindustry. In this contextear miss was
defined as the need to reinstitute cardiopulmorgyassafter a trialperiod of weaning. By
recording botmear misseand deaths from the surgery wistain more information regarding the
success or “quality” of the surgery. Thus, after surgery one respulsates whether there was
anear missand the other indicates survival status. The original data is reproduced in chronological
sequence in Appendix A. Over the monitorppgriod a cluster of unexplained deaths occurred
between the 53rd and 68th patients. The surgeon desired to determine whether the cluster could be
attributed tochance, or iftherewas some underlyingausefor the flurry of adverse surgical
outcomes. In additiorthe surgeon wished tadopt a monitoring proceduthat could quickly
detect increases in the death ratelsat, if necessary, somemedialmeasure, such as retraining,
or adopting a procedurahange,could be rapidly introduced. Nothat in this example we

assume that the results of the surgical procedure are quickly determined.



In analyzing this problenthe possibility of covariatesuch aspatient characteristics,
procedural characteristics, and surgitzdm fatigue, were explored.However, none of the
proposed covariates was foundh@ave a significant effect on the failurates. Inthe absence of
covariate information de Leval et‘gbropose two sequential probability ratio t€8PRT)charts to
monitor the bivariate surgicalutcomes. The purpose of on&PRT was tamonitored the death
rate alone, while the other SPRT was designed to monitor the occurrence of either a dee#in or a
miss |If either of these two SPRTSs signal, this walen as evidence that either the death rate or
the combined death amear misgate had increased, and some remedial measure was necessary.

This methodology, which is subsequently referred tdhasde Levalapproach,works
fairly well in this application, but has a number of shortcomings in general. thRegbrocedure is
not easily generalized to cases where both the monitored outcomes are of equal impodange.
the de Leval approach, thear misgate is not monitored separately, and thus increases neéne
missrate may not be easily detected. In addition, the proposed SPRTs may signal both an increase
or a decrease in the failure rates, however, in this application, no action is suggested if failure rates
appear to have decreased. Allowing the monitoring procedure to accumulate evidence that the rates
have decreased makes it potentially less sensitive to rate increases. This happens if, by chance, the
SPRT is belowthe nominal valuevhen the failure rateshifts upwards. Finallythe charts are
designed using error rates that specify the largest probability that the wrong decisionmaltide
However, in this context, ware more concernedgith run lengths fomonitoring schemes of an
ongoing process, or in other words, how long it will take before we detect a specific change in the
failure rates.

This remainder of thigrticle is organized adollows. In Section 2 we briefly review
established monitoring methodology asidcussalternativeapproaches to thproblem. Details
regarding the design of th@oposed simultaneo3USUMSs with secondaryimits (SCUSUMS)
are provided in Section 3. In Section 4 we provide more informatiorthensurgical failures
example, andghow how SCUSUMsnay beapplied. Finally,Section 5 summarizes thresults
and discusses somdnteresting extensions. Inthe Appendix therun length properties of

SCUSUMSs are derived.



2. Background

2.1 Univariate Cumulative Sum (CUSUM) Procedure

Since thesubsequentnaterialrequires an understanding of univari@&SUM charts a
brief review ispresented.The original formulation of &£USUM is due toPagé. Two sided
implementations suggested by Barfiangtolved the use of a graphical device, called a V-mask, to
determine if the monitoredrocess had changed. In situations wiuenecern is focused on only
detecting increase®r decreases) ithe failurerate, the tabularform of the CUSUM is more
appropriate. Due to theease of implementation, thasticle focuses orthe tabulartCUSUM. A

standard univariate tabular CUSUM involves monitoring:

X = max(0, X, +W,), t=123,..., (1)

where X, = 0, andW, is the sampleveight. The CUSUM repeatediyteststhe hypothesesH,:
8 =6, versusH,: 8= 6,, where 6 is the parameter of interest.he process is assumed to be in
stateH, as long asX, <h, and is deemed to have shifted to stdfaf X, = h at anytimet. For
example, a CUSUM may be used to monitor the surgical death rathat Icaseg, represents an
acceptable probability afeath, sayg, = .02, while 6, representshe undesirable deatate, say
6, = .05.

The design ofthe CUSUM is given by the choicefor W, andh. Let y, represent the
current sampleoutcome, forexample the outcoméor patientt, and denote the probability
distribution of thepossiblesample outcomes at(yt;e). Moustakidelsshowedthat the optimal

choice for the tabular CUSUM weights W, for all t is the log-likelihood ratio
|n(f(yt;91)/f(yt;eo)). This choice is optimal in the sense tlathongall schemes witlthe same

operating characteristics in-control ptovides the best possible sensitivity. Ithe deathrate
monitoring example,f(z6) = 6*(1-6)"*, where z equals unity if a deatloccurs andzero

otherwise.  Then,the log-likelihood ratio is zln(61/60)+(1—z)ln((1—61)/(1—60)) or

0.916z-0.031(1- z), substituting the above values fy and 8,. Thus, the weights are



_ [-.031if patient t lives
t~ Hote if patient t dies

Good choices fdn are based on the expected or average run length (ARbg GlUSUM
under H, and H,. Therun length of theCUSUM is defined as thetime (or number of
observations) required befotke CUSUM first exceeds the control limit. In quality control
terminology, a CUSUMhat exceeds the contréimit is said to have “signaled.” Notthat

CUSUMs aredesigned to monitathe responsesequentially until sufficient evidence pfocess

deterioration is detected. Ideally, while the process is in statthe run lengths should beng,

since signals represent false alarms urtdier On the other hand, if the process has shifteH to

or any other undesirable process settings, we would like short run lengths. Issues surrounding the
design ofunivariateCUSUM procedurearediscussed fonormally distributecoutcome® and
in the binomial data caSe

Tabular CUSUM charts may be thought of as a geomesdcies ofWald Sequential

Probability Ration Tests (SPRTSs), where the SPRTs start on the lower bowardhwye observe
a number of SPRTs that end in acceptancd pffollowed by oneSPRTthatends inrejection of

H,°. Through this equivalencéhe run length properties of th€USUM are related to the
probability the underlying SPRT rejects,. Since we have a geometseries of SPRTending
with rejection ofH,, the ARL of the CUSUM can be expressed/gs where p is the probability

the underlying SPRT ends in rejection.

2.2 Multivariate Monitoring Schemes

In the field of qualitycontrol, there is a fairly rich literature concernipgocedures for
monitoring bivariate or multivariate processes, but these methods have received compéitiively
attention in the medicarea. Most of the established monitoring methods incorporate a control
chart as a graphical representation to ease implemengatrunderstanding. Here weview
these and demonstrateat noneare entirely satisfactory in situatiosach aghe surgical failures

example. For a general review see Montgorery



The first and simplest approachses multiple univariatecharts, whereeach outcome
variable is monitored using a separate control chart. Examples of univariate control charts include
X charts,p charts,and CUSUM charts. Multiple univariatecharts areused inmany situations
since they areasy to understand and implementiowever, bymonitoring based on separate
control charts in the usual way, we igndine joint distribution of th@utcomes. As a result, the
ability of multiple univariatecharts todetectprocess changes without producing frequiaide
alarms may be impaired, particularly if the correlation is substantial.

Another option is taitilize a global test statistiderived fromall outcomes and to monitor
based on this summary statistic. Examples ofadled multivariatecharts includemultivariate p
charts? and multivariate CUSUM chatfs In some contexts, multivariate chamsy be desirable
since they are based on only one charttaedcorrelation between the variables can be taken into
account in the chadesign. However, somehaive different outcomemust be combinedhto
one global test statistic, whichay not beeasy to justify,especially if the outcomes are not of
comparable importance.Also, multivariate charts are often considered unattractive since the
underlying cause of an out-of-control signal may be more difficult to determine.

A final general strategy is tassume an underlyingarametric model thagxplains the
relative probabilities of observing the different outcomes. Invtlaig, abivariate(or multivariate)
problem where the outcomes are mutually exclusive and can be ranked in terms of importance may
be recast into a univariaigroupeddata problem. Steiner, Geyer aniesolowsky** have
discussed monitoring methods that handle grouped data. Grouped data methods are attractive since
they are simple to implemerind interpret. However, to beapplicable wemust assume an
underlying continuous distribution existisat explains therelative probabilities of thesarious

outcomes, and this may not be reasonable.

3. Simultaneous CUSUM Charts with Secondary Control Limits

3.1 Formulation of the Simultaneous Secondary Limit CUSUM (SCUSUM)
For monitoring the success of a medical intervention in terms obtisemme variables we

define the simultaneous CUSUM statistics based on two univariate tabular CUSUMS, i.e.



S = max(0,S,, +W, ), t=123...
S, =max(0,S,,+W, ), t=123..., 2

where S, = S, = 0, andW, and W, arerespectivelythe samplewveights forthe Y andZ

charts. Using SCUSUM charts, the two CUSUMsiIned by(2) are monitoredsimultaneously,
and the procedursignals if either the individualCUSUM values S, or S, are greater than
predetermined primary control limit, and h,. We also introduce soalled secondary control

limits h,, (h, < h) andh, (h, < h) for §, and S, respectively. The SCUSUM also signals

when both CUSUMvalues are simultaneously greater than their respesteendary control

limits. The secondary limits serve to aid in the rapid detection of small increases in the event rates
of both outcomes, anitheir position will be influenced bthe degree of correlation between the
variables. To summarizéhe SCUSUM chart signals attime t if any of thefollowing three

conditions are satisfied:

)  Sy2h (andS, <h,), or
(i  S,=h(andS, <hy), or (3)
(iii) S: 2 h, and S, = h, simultaneously.

Individually each of thewo CUSUM charts will be designed to tesH,: 8 =0, versus
H,: 6=6,, where® represents a vector of parametersintérest, 8, is a vector of in-control
parameteralues,and 6, is a vector of undesirable parametatues. Inthe context of bivariate
binary data,® may represent the vectorif, 1), for example, whererz, and 7, equal the
probabilities of failure for outcomésandZ respectively.

To determine explicitexpressions forthe weights based orhe log-likelihood ratio
(Moustakides, 1986) we mushodel the distribution of the outcomeariables. Although
SCUSUMsare generally applicable to any type of paidada, we focus in thiarticle on paired
binary data which arise in our motivating problem. Y@ndZ represent twaorrelated outcome

variables as given by (4).



[1if afailure of typeY occurs 5 (1 if afailure of type Z occurs

- Ep otherwise ’ - %) otherwise @)

The possible sample (patient) outcomes are represented by the orde(gdz@air

There arefour possible outcomes for this ordergdir, namely(0,0), (0,1), (1,0) and
(1,1). Let q, = Pr(Y=y,Z=2). Then the joint distribution of and Z is determined by,
Oy and oy with @ = 1- 0y — Gy — 0. Also definerr, = Pr(Y=1) = q,+0q, and m, =
Pr(z=1) = q,+q,. Using this notation the conditionaldistributions are given by
Pr(z=2z|Y=y) = q,/(de+a,) P(Y=y|Z=2) = q,/(d, + ).

In practiceone has &hoice in selectingvhich aspect othe bivariateprocess to monitor.
Here we considethe rate of neamisses,and the component of the deatite not explained by
changes in the correlation and the neass rate. This approach of constructitige joint
distribution by the product of a marginal distribution for one outcome and a conditional distribution
of the other (conditional on the realization of fivst event)was examined byKlotz* and is
developed further in the context of longitudinal data by Darlington and Farewell

To formalize in this setting we let

a

ey
m = Pr(Y=1) = e
m, = P(z=lY=y) = oy (6)

Here B representshe logoddsratio of z = 1 fory = 1 versusy = 0 and serves as ratural
measure of the dependence betweandz. Conditioning in the reverse order is also possible but
not appropriate for our monitoring example due to the natural ordering of the outcomes. Indeed, In
principle it is possible to run the same sort of procedure withoutahditioning. To do this one
would replace the probabilities in (6) with the two marginal probabilities and derive the appropriate
CUSUM weights as before.

We assumes is fixed and we devise a monitoring schefoe detecting changes in the
Pr(Y=1) and Pr(Z=1Y). Since the outcomes are paired Bermoulli randariables, the

likelihood of 6 = (ay, aZ,B) IS written:



eyy [Deaz+,8yz 0

7-[3,/(1— r[y)l_y z\y z\y)l f = %-_'_e %‘_'_ea +ﬁyE (7)

Assumingthat under H, the parameters are given lay,, a,, B and underH, the model

parameters are given by ,, a,, [ the log-likelihood ratio weightfor outcome(y, z) are given

in Table 1.
Table 1: CUSUM Log-Likelihood Ratio Weights
(v, 2) Weight
0, 0) Iog(1+ e"“’) Iog(1+e y1)+Iog(1+e 20) Iog(1+e )
©, 1) Iog(1+e"y°)—Iog(1+e"ﬂ)+(aZl a,, +Iog(1+e ZO) (1+e“ﬂ)
(1, 0) (ay1 - ayo) + Iog(1+ e“y") - Iog(1+e )+ Iog(1+ e’“"w) (1+ e‘“"ﬂ)

@ 1) (9= ay0)+logf1+e™) -loglL+e™ )+ (a1, - a1) + log[i+ ") - logf1 + &2

Note thatwith this setup a signal due to (3i) represextislence thatt, has increased, a

signal due to (3ii) represents evidence timthas increased, and any signal du€3ii)) suggests

thatboth 7z, and 77, haveincreased. Thus, faiven values ofa,, a,, B, a, and a, the

appropriate weights to use in (2) feach of theCUSUM can be determinefilom Table 1. Note

that the alternative values of the parametersgi,gand a,,, will be different for the two charts.

3.2 Determination of the Control Limits

To complete the specification of the SCUSUM we need to determirfeuiheontrol limits
h, h, h,andh,. As discussed iSection 2, &USUM is asequential monitoring procedure
that has close links to sequential probability ratio tests. However, Glngé&JMs are designed to
continue until a signal occurs, their design doesimailve the specification of a typeekror rate
and power for detecting the effect of interest. Instead interest lies in the expected run lengths under
specific parameter configurations. Specifically CUSUM control limits are chosen to yield desirable
run length propertie§ wherethe run length is defined as the number afservations before a

signal. That is tosay, forexample, oneasksthe question, howfrequently should the out-of-
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control signal be triggeredhenthe process isactualoperating undeacceptableonditions? We
want the CUSUM procedure to have a long averagdength undelacceptableonditions and a
shortaveragerun lengthwhenthe process has shiftedAppendix B shows howthe run length
properties ofSCUSUMs may be derivedvhen the observationsare correlated binary random
variables. Fothe proposed SCUSUM#he probability of signaling due t8i), (3ii) or (3iii),
denotedp,, p, and p, respectivelycanalso be used taid thedesign. In particular, under the
null hypothesis, it is natural to siie control limitssuchthat allthreepossible ways o$ignaling
are approximately equal. In this way, the chart will be sensitive to increasesfailure rates of
both outcomes. Appendix B also shows hpw p, and p, can be determined.

In many medicalapplications, such athe surgical failuresexample,the monitored
processesre extremely critical. Irsuch situations, decisions regarditng acceptability of the
failure rates are best made after each patient in order to most quetkbtadverse effectsUsing
such an approach, CUSUBharts can beesigned to haveertaindesired runlength properties

under the null hypothesis, but out-of-control run length properties follow directly. We propose the

following three step iterative approach to determining appropriate valugg foy, h andh,:

1) Set theinitial values forh, and h,, based orthe desired in-control averagen length
(ARL) of the two univariate charts.

2) Set thennitial values forh, and h, at some fixed proportion dhe primarylimits, say
60%. The proportion should be basedtloa correlation between thieo outcomes. For

large positive correlations the secondary limits will be quite close to the primary limits.
3) Giventhe current choicefor h,, h,, h, andh, determine the ARland probabilities of

signaling undethe H, usingAppendix B. Iteratively adjust the control limits to obtain

close to the desired ARL ang, p, and p, approximately equal.

4.  Surgical Failures Example

4.1 Application
Define indicatorvariables as irf4) whereY = 1 corresponds to mear missandZ = 1

corresponds to a death. In Table 2 we summarize the surgical failures data from Appendix A using
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the four possible surgical outcomes for each patient. A patient can be classified as both a death and

anear misssince any death within 24 hours of the surgery is considered a surgical death.

Table 2: Summary of Surgical Failure Data

Death
no yes
(z=0) (z=2
no
Near = 85 4
Miss (y O)
yes
(y = 1) 10 5

The oddsratio for this 2x2table is10.6, with an approximat®5% confidence interval
given by (2.44, 46.1). This suggesite outcomes areorrelated, andhat theodds of adeath is
approximately 10 times higher for a patient who is classified as a “near miss.”

The SCUSUM is designed tdirectly monitor boththe death andhear missrates. To
specify the chart we need to determine appropriate samgights as given irf2), and choose
values for the primary and secondary control limits for each chart.

We start by modelling the failureates. In this situationsince the outcome death is

typically established after the determinationneér miss it is reasonable to model the probability

of death conditionally on theear missstatus. Definingrz, as the probability of aearmiss,and
m,, as the conditional probability adeath, weadopted mode(6). Using this model the

likelihood of 6 = (a,, a,, B) is given by (7).

Based on previous surgical experiéneedeath ratand a “death or neaniss” rate of

around 2 and 10 percent, respectivelse the failures rates weould expectwhen in-control.

Based on these event rates and the available data we adopted the paramety,values3, a,,

=-45and B = 2.5. Since these parameter values yialtteptablesurgical performance they
define H,. We will later comment on sensitivity analysis regarding the initial choigg.for
Appropriate alternativlypotheses fothe CUSUM charts are determined by considering

increases in either the deathhear misgates that are unacceptable and should be detgatekly.
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For the CUSUM chart designed tdetectincreases imear missrate and the deathate alternate

hypothesedH,, and H,, respectively are proposed, where

H,: a, =-1.7 [Pr(near miss) 7, = .15], a,, = —4.5,8 = 2.5, and
H,: a, =-2.3,a, =-2.9 [Pr(death | not near miss)'tzz‘y:O =.05],8 = 2.5.

Note thatH,, and H,, reflect increases in onth)e marginahearmissor death rates respectively,
and that we assume the log odds ratio (correlation) para@eseconstant. The parameter values

chosen forthe alternativéhypothesis correspond to increaseghe failure rate that are deemed

undesirable, and are of a sufficient magnitude that quick detection of such a change is desired.
The log-likelihood ratio is defined deg(LR) = Iog[(L| Hl)/(L| HO)]. For the near miss

and death charts respectively this yields:

(ayl - ayo)y + Iog(1+ e"y") - Iog(1+ e"”)
(0, —a,)z+ Iog(1+ epy“’m) - Iog(1+ epy“’ﬂ) (8)

log(LR| H,)
log(LR| H,,)

Expressions (8are functions of onlythe outcomey andz. Substituting into(8) all

possible combinations/( 2 leads to the optimal log-likelihood ratiweights. The weights are

given inTable 3. For ease of implementation the actwaights used irthe procedure,W, and

W, , are integers that closely match the relative sizes of the true log-likelihood/ezagiots. Note

that in Table 3 there are only two distinct weights fomtar misschart, since the probability of a

near misgs not effected by the occurrence of a death.

Table 3: Log-Likelihood Ratio Weights
Outcome ¥, (0,00 (0,1) (1,0) (1,1)

log[LR| H,)  -07 -07 53 .53
W, -1 -1 7 7

log(LR|H,) —04 16 -39 1.2
W, -1 37 -9 29

To complete thelesign ofthe simultaneou€ USUMs weneed to specify value®r the

control limits. Thismay be accomplishedsingthe general iterativdesign procedure outlined in
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the previous section. To begin we must specify an approeiakfor the average in-control run
length of the procedure. Based on the current rate of surgeries an in-avategjerun length of

around 280 was suggested, this represents approximately one false alarm every 1bhgzars

a tradeoff associated with the choice of the desired in-control avenagength. Choosintarger

values makes false alarms less frequent, but also results in a prabata&edonger to signal
increases in the failunates. As a result, it is useful ¢beck that theut-of-control average run
length of the procedur®r given control limits is fairly smallvhen the out-of-control situation
corresponds to increases in the failure rates that would be important to detect gDetdsmining

the appropriate corresponding control limits using the numenodéihes fromthe Appendixgives

h, =32,h,=70,h, =17 andh, = 38. These control limits choices yield an in-control average

run length of 284 patients where false alarms dusath of the threpossible modes of signaling

are approximately equally likely.

Using these control limits, the data from the original 104 patients, and the weights from Table 3 the
resulting SCUSUM is given in Figure 1. At patient numbette55SCUSUM signalgdenoted by

the two circles in the figure), due to the secondary lirttiia, thenear missrateand the deathate

have bothincreased. Assuming this signatas ignored,and the monitoring procedure was
continued, the chart subsequently signal an increae ideath ratand near missrate at patient
numbers 59 and 68 respectively. These primary colirtribl signalsare identified by therosses

in Figure 1. Clearly, there is evidence that the surgical failure rates are substantially larger than the
acceptable values given by, .

The SCUSUM chart inFigure 1 isrelatively insensitive to thanitial estimatefor the log
odds ratio parametg®. As part of a small sensitivity study we considered all valugslmétween
0.9 and 3.8. This range @f corresponds to the 95% confidence intervaltfieroddsratio of the
surgical failures data given in Table 2. For each choig® wk determined the correspondiag,
and a,, valuesthat correspond taleath and “death or neariss” rates of 2 and 10 percent, and
alsodetermine the appropriate valuies o, and a,,, weights,and appropriate control limits to
give the same expected in-contpsbpertiesthe control charfor the actuakurgical failuresdata

signals at exactly the same patient numbers as in Figure 1.
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Figure 1: SCUSUM with Surgical Failures Data

4.2 Characteristics of the SCUSUM Procedure

It is of interest to explore the run length properties and effectiveness of the different control
limits for this proposed procedurdenote theprobability theSCUSUM signalsiue to signaling
rules (3i), (3ii) (3iii) asp, = Pr(signal — near missp, = Pr(signal -death) andp, = Pr(signal —
joint) respectively, wherep, + p, + p; = 1. Figures 2 to %re derivedusing the Markov chain
methodology discussed in Appendix B.

Figure 2 shows ARL contours of the proposed SCUSUMs at various combinatioeear of
missand deathrates. Asone would expectthe ARL isvery largefor small failurerates, and
decreases rapidly as the failure rates increase. In addition, Figure 2 shows confgurg,cénd
p,. As expected, the probability of signaling an increase in the deetivhenthe deatlrate, but
not thenear miss rate, hasncreased is veryarge. Similarly,the probability of signaling an

increase in th@ear missrate is tied to the actuakar missrate. Also,the secondarflimits are

most effective when both the error rates have increased. For examplerpwiven20and

= .05 the probability the signal was due to the secondary lipjjsig around .43.
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ARL Pr(signal - joint)
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Pr(near miss)
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Pr(near miss)
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Pr(death | not near miss) Pr(death | not near miss)

Figure 2: SCUSUM Propertie$\( = 32, h, = 70, h, = 17, andh,, = 38)

Figure 3 showsthe equivalentplots whenthe log odds ratio 8 equalszero. This
corresponds to the case where the outcomes are uncorrelated. Note that the sample weights used in
the proceduravere derivedusing a logoddsratio of § = 2.5, thus the results from Figure 3
provide some sensitivitgnalysis. Fronthe contourplots it is evidenthat thebenefits of the
secondary limits are reduced. Wh@re 0, out-of-control situations yield longer riengths, and
there is less chance that the SCUSUM signals due to the secondary limits.

Figure 4 shows contours of ARIp,, p, and p, whenthe secondarylimits are notused.
Comparing the contour plots in Figures 2 anshdwsthe loss inefficiency thatoccurs when the
secondary limits are abandoned. Specificdlig,plots suggesthat thesecondanyimits decrease
the out-of-control ARL, and that the secondary limits are especially effechiea boththe failure

rates increase by a small amount.
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Figure 3: SCUSUM Properties witl8 = 0 (no correlation)

ARL
0.25 25
9
= 0.2 50
3
2o.1s
x

5
01 39@\? 100
¥

0.02 0.04 0.06
Pr(death | not near miss)

Pr(signal - death)
-1

Pr(near miss)

0.02 0.04 0.06
Pr(death | not near miss)

Pr(signal - joint)

0.25

o
N

o
i
ol

Pr(near miss)

0.02 0.04 0.06
Pr(death | not near miss)

Pr(signal - near miss)

Pr(near miss)

0.02 0.04 0.06
Pr(death | not near miss)

Figure 4: SCUSUM Properties without Secondary Limits,fiye= h = 32, h, = h, =70

Figures 2-4 showthe ARL and signal probabilitiesvhen the values ofrz, and m,, are

fixed. This isthe classicalun length analysis and is usefulhen quality problems manifest

themselves asudden changes. Howevemother modefor the onset ofquality problems is

based orthe failure rateslowly deteriorating. Such @rift in quality would be of interest, for

16
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example, ifthe surgeon’s skillsare expected to deterioratgth time (perhaps due taging), or
when a piece of equipment slowly wears out. Using results Appendix B, ARL, p,, p, and

p, values can also be found for arbitrary changes in the failure rates over time.
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Figure 5. Solution Properties under Gradual Drift

Figure 5 plots ARL,p,, p, and p, results when botthe failure rates gradually drift from
H, to triple the original rate. In Figure 5, the horizontal axis of all the plots tieespeed of the
drift in terms of the number of patients operated on before the drift is comphéteethat in the
two right-most frames of FiguretBe signal probabilitiesnust sum toone, since theCUSUM
eventually signals. As expected, when the deterioration in the quality is slow, it is more difficult to
detect, and thus requires longer ARLs. Figure 5 simultaneshelys results fothe SCUSUM,
and the multiple univariate approach where the secondary limits auseubt The figuresuggests
that SCUSUMs are alseffectivewhenthe failure ratencreases over timeThe ARLs ardower

when using the SCUSUM thus showing the benefits of the secondary limits.

4.3 Comparison with Procedure Proposed by de Level et al.
In Section 4.1 we observed that the propasgtemenould signal gproblem aftempatient

number55. This is an improvement ovahe performance of the de Levpatocedure where
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problems weredetected (at th®5% confidence level¥irst at patient number 59. A more
comprehensive comparison 8CUSUM and the dd_eval procedure is provided bthe ARL

contour plots of Figure 6. The contaulpt on the lefreproduceshe ARL contour plot given as

part of Figure 2 fothe SCUSUM withcontrol limits h, = 32, h, = 70, h, = 17,and h,, = 38.
Simulated ARL results for the de Leval procedure, where each contour point represents the average
of 500 trials, is shown on the right. Taake theprocedures more easily comparalttes middle

contour plot representee ARL of anSCUSUM procedure with weights given byable 3, and

control limits given byh, = 25, h, = 70, h, = 15, andh,, = 38. Note thathese control limits are

slightly smallerfor the near miss chart thanthose proposed i®ection4.1. With this slightly
adjusted SCUSUM, thARL under H, very closely matchethe ARL under H, of the de Leval
scheme. In addition, th&RLs of the adjusteCUSUM arevery close to those dhe de Leval
procedure when increases occur only inrtéar missrate. With the adjustedSCUSUM chart, as
the death rate increases, the ARL drops much more rapidly thatheitte Levakcheme. Since
quickly detecting increases in the derdte is the primarpropose otthe monitoring theshorter

ARL values for large death rates are a substantial advantage.
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Figure 6: Comparison of ARL Contours

5. Summary and Discussion
Simultaneous CUSUM charts with secondary limits are developedhawdh to be useful
for monitoring processes with bivariate outcomes. The proposed CUSUM ateapeeferable to

multiple univariatecharts since the correlation between the outcomes is taken into account in the



19

design ofthechart. In addition, simultaneous secondlmit CUSUMs are also preferable to
creating global statistic multivariate control charts, since it is often notlubearbest tonveight the
different outcomes.

The run length properties ofSCUSUM are found using Markov chain analysis.
SCUSUMs are shown to beespeciallygood atdetecting simultaneous moderate increases (or
decreases) in both qualiprocess characteristicd’he methodology is applicable all situations
where we have sequential paired (correlatéatp, andare also especiallyuseful for detecting
gradual deterioration in both failure rates. The resulting control chart is very easy to implement and
understand.

There are many interesting extensions possible for this work. In some situati@ysbe
reasonable to assuntieat some underlying factor influencabe occurrence oboth types of
failure. In that case a random effects mditel (5) may beappropriate. Using emndom effects
model, the CUSUM weights could be set equal to the marginal log-likelihood ratio. Algaeabf
practical interest would be the addition of covariates. In the surgical ouw@nw®le, there were
many covariates available, such as the occurrence of a related heart defect VentriculBeteeptal
(VSD), or the type of anesthetic used, thatentially could have a significant effect on the failure
rates. Naturally, ifmportant covariates are identified theljould also beccountedor in the
monitoring procedure. For covariates that have well known effects on the failese perhaps as
established through logistic regression, the CUSUM weights could be adjusted baised/alne
of the regressioncoefficients and the covariateself. For examplethe addition of the binary
covariate VSD to model (6) results in a doubling of the number of CUSUM weights in Table 3.

In applications wher¢he processoutcome is not asritical as in thesurgical failures
example, it may be feasible take samples of size largeotian Inthat case, foreach of the two
outcomes we would observe a binomial rather than Bernoulli random variable. Allowing samples
of sizen introduces another design parameter. By chantp@gample size weould gain more
flexibility in finding CUSUM designs that yield desirabdRL properties under botthe null and

alternative hypotheses.



In our motivating example the dataere available immediatelywithin 24 hours)after
surgery andtherefore a bivariate binamesponsemodel was adopted. Irother monitoring
scenarios, such as when death is defineddesath within a month of theurgery,only censored
observationgnay initially beavailable. Insuch asituation the monitoring procedumaust be
adapted since many failures are noted immediately, veuteessesre delayed. Itmay be
possible to derive sliding scale weights that could be assigned to surgical survivcanuhat yet
be declared successes.

The principle behind thase of secondarymits is also appropriate if botkthe observed
variables are count or continuous data, or soambination of datéypes. The secondanjimits
allow the rapid detection of quality decreases in both outcome variables. Unfortumatedyer,
for data other than paireldinary, the procedure given in Appendix Br determining the
SCUSUM’s run length properties may no longercbenputationallyfeasible. Finally SCUSUM

charts may also be applicable for three or more outcome variaklgerest. With three or more
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secondanlimit CUSUM chartsthe combine chart may be defined to signal if any of the charts

plotted above their primary limit, or if anjwo of the CUSUM statistics were abovéheir
corresponding secondary limiDetermination of the appropriate control limits in the casté

three or more variables is somewhat more difficult and is worthy of further study.



Appendix A
The table below reproduces the surgical failure data from de Levdl et al.

Table Al: Surgical Failures Data

Near Near

Near Near
Pat # Death Miss Pat# Death Miss Pat# Death Miss Pat# Death Miss

1 0 0 27 0 0 53 1 1 79 0 0
2 0 0 28 0 0 54 0 0 80 0 0
3 0 0 29 0 0 55 1 0 81 0 0
4 0 0 30 0 0 56 0 0 82 0 0
5 0 0 31 0 0 57 0 0 83 0 0
6 0 0 32 0 0 58 0 0 84 0 1
7 0 0 33 0 1 59 1 1 85 0 0
8 0 0 34 1 1 60 0 0 86 0 0
9 0 0 35 0 0 61 0 0 87 0 0
10 0 0 36 0 0 62 0 0 88 0 0
11 0 0 37 0 0 63 1 0 89 0 0
12 0 0 38 0 0 64 1 0 90 0 1
13 0 1 39 0 0 65 0 0 91 0 0
14 0 0 40 0 0 66 0 0 92 0 0
15 0 0 41 0 0 67 1 1 93 0 0
16 0 0 42 0 0 68 1 1 94 0 0
17 0 0 43 0 1 69 0 0 95 0 0
18 0 0 44 0 0 70 0 1 96 0 0
19 0 0 45 0 0 71 0 0 97 0 0
20 0 0 46 0 1 72 0 0 98 0 1
21 0 0 a7 0 0 73 0 0 99 0 1
22 0 0 48 0 0 74 0 0 100 1 0
23 0 0 49 0 1 75 0 0 101 0 0
24 0 0 50 0 0 76 0 0 102 0 0
25 0 0 51 0 0 77 0 0 103 0 0
26 0 0 52 0 0 78 0 0 104 0 0

Appendix B

In this Appendix, Markov chain methodology is used to detiiegrun length properties of
two simultaneousCUSUM charts with secondary control limitsDefine the statespace of the
model as(Y,Z), whereY andZ represent the current valuies the first and secondCUSUM
respectively. Define theSCUSUM asgiven by(2) and(3). We assuméhat h, > h and h, >
h,, andthat the control limitsandall possiblesample weightsireinteger. Discretizing the state

space so that all values are integer we define the states as order pairs where
5 =(0,0).s = (L0), ....s, =(h~1,0),
S, = (01), .8 =(h-1,1), ...,
S 1 = (O0,), o S, = (hy—1.h,),
Sy ny e = (O +1), s g = (R, ~1,0-1).



The totalnumber of stateg equals hh, +(h,—h,)h + 3, wherethe last three state

correspond to the three possible out-of-control conditions givei3)oyDepending on the values
of h, h, h, andh,, g can be very large.

The transition probability matrix is given by

(P P2y - ’plgg
p = b - P . O R ,(l—R)lD
B 0o - B
E ; O 0,..,0, 1 H

FPor -+ Pyl

wherel is theg by g identity matrix, 1 is ag by 1 column vector obnes,and p;, equals the
transition probability from statg to states;. The last threeows and columns of the matrik
correspond tdhe threepossible absorbing statédsatrepresents an out-of-control signalhe R

matrix equals the transition probability matwith the rows and columnghat correspond to the

absorbing (out-of-control) states removethe R matrix isg by g and generally verlarge. In
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fact, givenh, = 32, h, =70, h, = 17 andh,, = 38 it is 1760x1760 elements. However, assuming

paired binary outcomes there are only four possible outcomes, and thus there are at most four non-

zero elements in each row of the matrix. As a result, the niaisixery sparse.

Letting y denotethe run length of theCUSUM, and assuminghe matrixR is constant,

we have

Y
—
<<

IN

—
~

1

(| - R‘)l, and thus

Y
—
<

I

~—
N—

I

(R“l - Rt) 1 fort>1.

Therefore, the expected, or average, run length is

00

E(y) = ltPr(y:t) =

t=

(R1) = (1-R™. (AD

t=1
Higher moments of the run length can be found in a similar manner.

In general, solving (A1) is done without explicitly finditlie inverse of(1 - R). A much

more efficient approach is tsolve the system oflinear equationamplied by (Al) via LU
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decomposition angartial column pivoting tdake advantage of the matgparseness.Routines
given in MATLAB® can accomplish this task.

CUSUM charts aredesigned to eventually signdédat the process has shifted to some
undesirable process level. Let f, = probability of ending in absorbingstate k,

k=g-2,g-Lorg, when starting instate i. Let f f0.0)- deethsigna» AN

(0,0) - near misssignal !

f0.0)-jonsga dENOte the probability of signaling dueeach of the thregossible reasons for a

signal. Then,

g-3

f, = p,kfkk+zp,jfjk fori=1,2,...,9-2,g-3,...,k. (A2)
=1

f, =1

where fg_z'g_2 = fg—l,g—l = fy

This system ofinear equations may beolved for f ;e misssgar  f(0.0)- deathsgna» N
f0.0)- joinsga USING proceduresimilar tothose used for (Al). UsinyIATLAB® on a Power
Macintosh 760(]5(y) and f,, values for any given probabilities of failure were determinddss
than 10 seconds.

This numerical procedure can be used in the following manner to obtain appropriate control

limits for an SCUSUM chart. The numerical routine require as inputs: the wéghtsW, , the
parametersy ,, a,,, andf3, and trial control limitsh,, h,, h andh,. Note that the weights and
the parameter values remain fixed while tegatively try different control limits. The numerical
routine outputsthe averageun length, andf ;o e misssgar  T(0.0)- deansgna s @A f 0.0y joint sgra
(denotedp,, p, and p, in Section4.2) thatcorrespond tdhe giventrial controllimits. We are
attempting to find the levels of the control limits that give some desired in-céigl ARL, and

where p, = p, = p,. We adjust thérial control limitsbased orthe outputfrom the routine as

according to the suggestion in Table B1.
Table B1: Iterative Adjustments for Control Limit Determination

Outcome Adjustment Needed
ARL smaller (larger) tharARL,  increase (decrease) the control limits
p, too small (too large) increase (decredgeand increase
(decrease, proportionally
p, too small (too large) increase (decredsegnd increase

(decreaseh,, proportionally
p, too small (too large) increase (decredgelndh,
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In a more generatase,the matrixR is a function of time, sayR, and we have aon-

homogenoudMarkov chainproblem. This occurs undésol wear, or if we wish tanodel the

deteriorating skills of an agingurgeon. We assuntbat t,,, representshe time atwhich the
probabilities of failure stop changing, aled R;., denote the transition probability matrixtahe

t;. and later. Then, using the same algebraic manipulations as used to derive (A1) we get

E(RL) = tzlaj R 1§+ %Ll &%I ~Ria) 1. (A3)

Define a, as the probability of beingbsorbed in absorbingtatek, k=1,2,3, at timet
when starting in the firsdtates = (0,0). The element o(ql,az,qs) arefound asthe last three

elements of thdirst row of the matrix RR,...R for t < t,,. Then, assuming ahanging
transition probability matrixPr(absorb in state k) = a,, + a,(1-Pr(y <2)) + a,(1-Pr(y<3))

+ ot a (1-Pr(y <tig)) + i Pr(Y > tia), where the last term is the probability of being
absorbed into state afterthe transition matristops changing. f;, ., can befound by solving

the system of equations defined by (A2) witfe transition probabilitiep, given in R;,. The

MATLAB® routines necessary to perform the calculations are available from the authors.
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