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Abstract 

In this study, a number of group V complexes have been synthesised and characterised. 

The catalytic behaviour of these pro-catalysts towards ethylene polymerisation and the 

ring opening polymerisation of -caprolactone is discussed.  

Reaction of [V(X)(OR)3] (X = O, Np-tolyl, R = nPr, tBu) with 5,11,17,23-tBu-25,27-

dihydroxycalix[4]arene (L1H2) led to the formation of [VX(OR)L]2 X = O, R = nPr (1); 

X = Np-tolyl, R = nPr (3); X = Np-tolyl, R = tBu3 (4) as the major products. In the case 

of X = O, the minor hydrolysis product {[VO(OnPr)]2(-O)L}2 (2) has also been 

characterised. 

Oxovanadium(V) complexes (5 and 6) bearing calixarenes bridged by sulfinyl (-SO-, 

L2H4) or sulfonyl (-SO2-, L
3H4) linkers were obtained by reacting [VO2Cl2][PPh4] with 

L2H4 or L3H4, respectively. 

A series of related bridged phenoxy-imine ligands (L4H2-L
11H2) were treated with 

[VCl3.3THF] to afford numerous mononuclear vanadium(III) complexes (7-10 and 13, 

14) and dinuclear vanadium(III) systems (11 and 12). 

Niobium and tantalum pro-catalysts bearing either phenoxy-imines (L12H), phenoxy-

imine/imidazole (L13H2) or oxazole ligands (L14H) were prepared. The niobium(V) 

phenoxy-imine (15), phenoxy-imine/imidazole (16) and oxazole (18) complexes were 

prepared by treatment of L12H-L14H with [NbCl5]. The corresponding tantalum system 

was produced by the same method by treatment of L13H2 with [TaCl5]. The niobium(V) 

oxychloride complexes (17 and 20) were obtained via complexation of L13H2 and L14H 

with [NbOCl3]. 

All the compounds studied proved to be highly active for the polymerisation of 

ethylene. The niobium complexes (15-17 and 19, 20) proved to be significantly active, 

greatly surpassing previously published niobium systems. 

The vanadium(V) complexes (1-4) and vanadium(III) systems (7-14) showed varying 

degrees of efficiency for the ring opening polymerisation of -caprolactone, indicating 

the need for steric considerations when designing catalysts to produced poly(-

caprolactone). 
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Abbreviations 

 

General 

Å  angstrom 

acac  acetylacetate 

Ar  aryl 
tBu  tertiary butyl 

Cp  η5 cyclopentadienyl 

DEAC  diethylaluminium chloride 

DMAC dimethylaluminium chloride 

DSC  differential scanning calorimetry 

Et  ethyl 

ETA  ethyltrichloroacetate 

GPC  gel permeation chromatography 

HDPE  high density polyethylene 

h  hour 

LDPE  low density polyethylene 

LD50  lethal dose, 50 % 

LLDPE linear low density polyethylene 

MeCN  acetonitrile 

M  metal 

Me  methyl 

min  minute 

Mn  number average molecular weight 

Mw  weight average molecular weight 

m.p.  melting point 

PDI  polydispersity index 
nPr  linear propyl 

PP  polypropylene 

R  alkyl 

THF  tetrahydrofuran 

TEA  triethylaluminium chloride 
oC  degree Celsius 
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NMR  nuclear magnetic resonance 

br  broad 

δ  chemical shift 

d  doublet 

J  coupling constant 

ppm  parts per million 

s  singlet 

t  triplet 

 

MS  mass spectrometry 

CI  chemical ionisation 

EI  electron impact 

ESI  electrospray ionisation 

MALDI matrix-assisted laser desorption ionisation 

TOF  turnover frequency 

 

IR  infra-red 

m  medium 

s  strong 

w  weak 
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1. Introduction 

1.1 Plastics 

From early periods of history, the most well known being the Stone Age, the Iron Age 

and Bronze Age, man has utilised polymeric materials such as wool, wood, natural 

rubber and cotton, to make implements and basic necessities to meet his needs.  Since 

the mid 20th century, synthetic polymers have been introduced, which challenge and 

extend the application of their older polymeric counterparts. Without the introduction of 

rubbers and plastics, everyday features of modern life, such as televisions, cars and 

computers, would not be possible. 

Although natural polymers have been well established for thousands of years, it was not 

until the 1930s that saw the major growth of the synthetic polymer industry. It was 

during this period when the properties and potential applications of polyethylene were 

first noticed and approval was given to start production on an industrial scale.1  

One main driving force during this time was the outbreak of the Second World War.  

This increased the demand for durable, cheap materials that could be produced on a 

commercially feasible scale. One example of this is the rigid, transparent thermoplastic, 

known as Perspex (poly methyl methacrylate).  During the Second World War, this 

material became invaluable for various uses, e.g. the glazing of military aircraft.1  

Throughout the 20th century the polymer industry has continued to grow, in the 1960s 

the worldwide use and production of plastics increased significantly compared to twenty 

years prior. Today, global plastic production is estimated to be around 240 million tons 

per year, with approximately 60 million tons of this plastic production being just for 

Western Europe.2 We use and produce 20 times as much plastic as we did 50 years ago. 

The use of plastics is growing at an approximate rate of over 5 % per year within the 

western world, with the expected plastic consumption in 2016 being over 400 million 

tons (Figure 1).3 The largest area of use is within the packaging sector, which takes up 

to approximately 40% of the plastic consumption in the United Kingdom.4  

In the 1950s the only polyethylene that was produced was low melting and was highly 

branched with a wide range of molecular weights. The polymerisation conditions 

required to produce the polymer, consisted of high temperatures (150-230 oC) and 

pressures (1000-3000 atm).5  Taking this into account and the demand from industry, 

there is pressure for process efficiency and material effectiveness. These requirements 

necessitate the need for new catalysts with activity improvement, cost-efficiency and 

synthesis of innovative polymers. 
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Figure 1. Global annual plastic consumption by market sector in 2006 and estimated 

consumption growth by 2016.3  

 

1.2 Early discoveries 

In the 1950s, Karl Ziegler reported that by reacting TiCl4 with triethylaluminium 

(TEA), he was able to polymerise ethylene under mild conditions.6 From Ziegler’s 

success of developing linear polyethylene, Giulio Natta was able to prepare and isolate 

isotactic polypropylene.7 Both these discoveries were recognised for their significant 

importance, earning Ziegler and Natta a shared Nobel Prize in 1963.  

Ziegler-Natta catalysis involves rapid polymerisation of ethylene and α-olefins with the 

aid of catalysts based on transition element compounds, typically formed by a transition 

element halide or alkoxide reacting with a main group alkyl halide.6, 8 Such metals 

include titanium, vanadium, chromium and in some cases molybdenum, cobalt, rhodium 

and nickel. Catalysts of this type are able to operate at low pressures (up to 30 atm) and 

at temperatures up to 120 oC.9 These reaction conditions are vast improvements, in 

terms of energy input, on the high temperature and pressure conditions previously 

required. The Ziegler catalysis conditions are beneficially economically and safety 

cognisant.  
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Today, Ziegler-Natta catalysts are used worldwide to produce a wide range of different 

polymers from α-olefins. Some of these polymers include high density polyethylene 

(HDPE) and linear low-density polyethylene (LLDPE).10 

In the same decade, Hogan and Banks, for the Philips Petroleum Company (Philips 

Catalysts), discovered silica-supported nickel/cobalt oxide heterogeneous catalysis 

systems.11 They were capable of co-polymerising -olefins  to produce high molecular 

weight polymers. Field and Feller, working for the Standard Oil Company, found group 

VI oxide catalysts, similar to Hogan and Banks systems, had extremely high activities.12 

However, they possess no control over the produced polymer; the catalyst has various 

reaction sites allowing the polymer to grow at different rates and at various sites. This 

gave rise to catalyst design to enable control over the properties of the produced 

polymer. This research led to the discovery of metallocene-based -olefin 

polymerisation catalysis. 

 

1.3 Metallocene catalysts 

Metallocene catalysts originated from as early as 1957, when Natta reported the 

polymerisation of ethylene with the titanocene catalyst Cp2TiCl2 and the co-catalyst 

triethylaluminium (TEA),13 originally used in the Ziegler-Natta olefin polymerisation 

systems. Similar work was also reported at the same time by Breslow.14 Both found that 

though the titanocene catalyst was an active complex for ethylene polymerisation, it was 

less active than the previous catalyst prepared from TiCl4 and TEA, because of this it 

was perceived as having little commercial promise.  

In the mid-1970s, Sinn and Kaminsky, while studying a homogeneous titanocene 

dichloride polymerisation system, accidentally introduced water into a reaction system 

resulting in a highly active ethylene polymerisation system. After subsequent studies, it 

was concluded that the high activity was due to the hydrolysis of the 

trimethylaluminium (TMA), resulting in the formation of the co-catalyst 

methylaluminoxane (MAO).15 Kaminsky supported this theory via direct synthesis of 

MAO and the activation of systems, such as bis(cyclopentadienyl)zirconium(IV), which 

showed no previous polymerisation activity, but which became highly active 

polymerisation catalysts with the addition of trialkylaluminium, which had previously 

been treated with water.15a 

One advantage metallocenes have over Ziegler-Natta systems is that they only possess 

one defined active site in which the oligomer can bind with, rather than being multi-
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sited, which is the case with the heterogeneous Ziegler-Natta systems (Scheme 1). The 

single site homogeneous system results in polymers with specific microstructures and 

narrow molecular weight distributions.16 

 

M

Cl

Cl

M

R

Activation

MAO
MAO

 

Scheme 1. Activation of a metallocene with MAO. Typically; M = Zr, Ti. R = alkyl 

group.  = vacant coordination site.  

 

The ancillary ligands can affect the reactivity of the metal; the bulk of the ligand can 

dictate the formation of a mono-, bi- or multi-nuclear system. By altering the functional 

groups around the metal centre, the electronic properties and steric constraints at the 

metal can be tuned. For instance, when the aromatic cyclopentadienyl (Cp) is used, the 

delocalised electrons in the π-system are capable of electronically stabilising the metal 

centre.17 It has also been noted that varying the size and functional groups on the 

cyclopentadienyl ligand can affect the polymer produced. For instance, Ewen and co-

workers were able to show that by altering the size of the ligands on the metallocenes 

used within their studies, they were able to control the tacticity of the propylene 

polymer that was produced.18 

 

1.4 Post-metallocenes 

Due to the high interest in the metallocene class of catalysts (to date there are 

approximately 7,500 patents filed within this field), academic research and industry 

stepped away from the traditional metallocenes in order to find cheap, unlicensed ligand 

systems/technology. Replacing either one or both of the cyclopentadienyl ligands with 

other systems has been the subject of investigation both academically and industrially in 

recent years.16, 19  

The replacement of one of the Cp ligands leads to the formation of complexes referred 

to as ‘half sandwich’ compounds. By altering the substituents on the non-Cp ligand, the 

steric and electronic characteristics of the catalyst can be tuned to dictate the 
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characteristics of the produced polymer.20 Early systems suffered from poor activities, 

lack of thermal stability and difficult synthesis. However, it was found that the addition 

of a heteroatom tethered to the Cp ligand led to improved activities.  

 

Figure 2. Examples of ‘half sandwich’ complex and constrained geometry pro-

catalysts.  Typically, M = Ti, Zr. R = alkyl, aryl. X = Cl, Me. 

 

ansa-Cyclopentadienyl-amido (CpA) group IV catalysts developed by Dow and Exxon, 

are an example of mono-Cp complexes that have been receiving recent commercial 

attention (Figure 2).16 This work was based on the organoscandium olefin 

polymerisation catalysts first introduced by Bercaw.21 These types of catalyst are also 

examples of what can be referred to as “constrained geometry catalysts”. 

One of the main features of “constrained geometry catalysts” is the open nature of the 

catalysts active site; this enables other olefins to be incorporated into polyethylene, such 

as 1-hexene and 1-octene. One other main advantage to this type of catalyst in 

comparison to the more traditional types of metallocene catalysts is their relative 

stability towards MAO and reaction temperatures of around 160 oC. They also tend to 

produce higher molecular weight polymers.22 

 

1.5 Co-catalyst/Activators 

As mentioned previously, it became apparent in the 1970s following the work of 

Kaminsky et al. that hydrolysing TMA resulted in previously inactive species becoming 

highly active for ethylene polymerisation due to the formation of the co-catalyst 

MAO.15 Since this discovery, MAO and other aluminium co-catalysts, have been used 

as common co-catalysts for the last 20 years.  

Methylaluminoxane consists of [-Al(Me)-O-]n subunits (n = 5-20), and affords highly 

active catalysts for the polymerisation of ethylene, propylene and higher α-olefins when 

combined with group IV metallocenes.23 Although extensive research, both 
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academically and industrially, has been focused on identifying MAO, the exact structure 

of MAO is still unknown. A cage structure is now being considered as the most 

plausible structure for MAO.24 

The active species for metallocenes consists of a 14-electron alkyl cation and a weakly 

coordinating anion in the form of [Cp2MR]+ [A]- with M being a group IV metal and 

[A] MAO (Scheme 1). Alkyl aluminium reagents work by firstly alkylating the metal 

centre and then abstracting a methyl group providing a vacant site for ethylene to bind 

and for ongoing insertion reactions to occur, as shown in Scheme 2. It is thought that 

the aluminium metal centres of the MAO extract a methyl anion from 

(dimethyl)metallocenes to give a cationic active species, which is stabilised by the 

presence of an [Me-MAO]– counter ion. In halogen-free systems, the alkylaluminium 

compound extracts a ligand off the pro-catalyst metal centre, to form a vacant site.17  

 

 

Scheme 2. Simplified schematic representation for ethylene oligomerisation and 

polymerisation by a Cossee-Arlman-type mechanism. M = , R = growing 

polymer/oligomer chain,  = vacant coordination site, = spectator ligand. 

 

Catalysts can be classified using a table to quantify the activity of the pro-catalyst for 

polymerising -olefins (Table 1).25 The category of “exceptional” has been added since 

publication of the initial categories due to advances in the field to represent catalysts 

demonstrating activities of >100,000 g/mmol.h.bar. This table will be used as a 

reference point throughout the discussions on catalyst activities.  
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Table 1. Rating of a catalysts effectiveness based on its activity. 

Rating Activity (g/mmol.h.bar) 

Very Low < 1 

Low 1–10 

Moderate 10-100 

High 100-1000 

Very High 1000-100000 

Exceptional >100000 

 

 

1.6 Vanadium Catalysts 

In the 1960s, Natta et al. reported the species [VCl4] and [V(acac)3] at  -78 oC with 

aluminium dialkylmonohalides as the co-catalyst, as being the first active 

polymerisation catalysts for propylene to give syndiotactic polymer.26 Vanadium 

complexes such as [V(acac)3] are still commonly used commercially for the production 

of ethylene-propylene-diene (EPDM) elastomers.27 However, to achieve these high 

activities it is necessary to use a large excess of organoaluminium reagent (Al/M = 

1,000–50,000). The large amount of excess aluminium residue then needs to be 

removed from the resulting polymer after polymerisation. Organoaluminium co-

catalysts are an expensive commodity within the catalysts industry; 2/3 of the 

consumable budget within industry is used on preparation, removal and usage of 

organoaluminium co-catalysts.17 

Vanadium catalysts are renowned for displaying lower activities compared to their 

group IV counterparts. This lower activity is due to the inactive low-valent vanadium 

complexes being formed during the alkylation process.28 However, reports by various 

groups such as Gibson et al. (I)29, Fujita et al. (II),30 Redshaw et al. (III)31 and Nomura 

et al. (IV)32 have shown that extremely high activities are achievable with vanadium 

catalysts.  
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O

O O

O

O

O

tBu
tBu tBu

V

O

N

Ar

O

RR

VX

2N

N
N

V N

N

O

O

V

(I)

Gibson
41,500 g/mmol.h.bar

(II)

Fujita
65,000 g/mmol.h.bar

(III) (IV)

Redshaw
92,000 g/mmol.h.bar

Nomura
1,700 g/mmol.h.bar

Cl

N

Cl

ORRO

 

Figure 3. Literature examples of vanadium pro-catalysts.29, 30, 31b, 32 

 

Gibson et al. have synthesised bis(benzimidazole)amine vanadium catalysts (Figure 3, 

I) with activities of around 40,000 g/mmol.h.bar.29 In 2004, Fujita and co-workers 

reported the use of MgCl2-slurry-supported vanadyl phenoxy-imine systems (FI 

catalysts) (Figure 3, II) with alkyl aluminium co-catalyst, can reach activities in the 

region of 65,000 g/mmol.h.bar.30, 33 Other research groups, such as Redshaw et al. have 

reported the use of oxacalix[3]arene vanadyl complexes with activities of 92,000 

g/mmol.h.bar. The group have also reported exceptional activities of 166,000 g/mmol. 

h.bar using vanadyl complexes bearing bi- and tri-phenolate chelate ligands.31c Nomura 

and his group have also produced highly performing vanadium catalysts.32  
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1.6.1 Vanadium catalysts and re-activators 

The main disadvantage with vanadium polymerisation catalysts is their deactivation 

with the reduction from an active species to inactive vanadium(II) species. One way to 

overcome this problem is to use a ‘promoter’ or ‘re-activator’ to re-activate inactive 

V(II) back to the active V(III) species. Several examples of compounds that achieve this 

are known in the literature, however the most common method in practice is to use a 

halogenated hydrocarbon.34  

Halogenated hydrocarbons have been used to boost the activity of vanadium-based 

catalysts from the 1960s. Gumboldt et al. discovered that the vanadium(II) species 

obtained by reduction from aluminium alkyl compounds were inactive for ethylene 

polymerisation, but became active after treatment with the halogenated hydrocarbon 

hexachlorocyclopentadiene (HCP).35 

In 1972, Christman investigated the effects in the homogeneous polymerisation of 

ethylene.36 He noted that for a homogeneous system to be maintained the temperature 

had to be kept above 105 oC. At this temperature, deactivation of the vanadium species 

occurs rapidly, however the continuous addition of the aluminium alkyl co-catalyst and 

poly-halogenated hydrocarbon re-activator ensured that polymerisation occurred.36 All 

re-activators cause an increase in polymerisation activity, but the efficiency between the 

different re-activators varies. Esters of trichloroacetic acid are generally the most 

favoured type of re-activator. Methyl trichloroacetate (MTCA) was studied to check its 

efficacy on the oxidation state of vanadium. The pro-catalyst VO(O-tBu)3 was first 

reduced by diethylaluminium chloride (DEAC) to form a mixture of either V4+ and V3+ 

or V3+ and V2+, dependent on the Al:V ratio. The MTCA resulted in the overall 

oxidation state to increase, demonstrating that V3+ and V2+ can both be oxidised.34  

Redshaw et al. have achieved extremely high activities when utilising the re-activator 

ethyl trichloroacetate (ETA).31 It is worth noting that Gamborotta’s group have reported 

detrimental effects when using the re-oxidising agent ETA in some systems.28a, 37  

As mentioned in section 1.6, Fujita of Mitsui Chemicals, supported his vanadium 

systems on a MgCl2 slurry to prevent reduction. Studies by Czaja found that the 

concentration of the inactive V(II) was significantly decreased upon supporting the 

catalyst on the surface of the MgCl2 slurry. The majority of the vanadium metal centres 

adopted the active oxidiation state of V(III) in the presence of DEAC.38 
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1.6.2 Active species 

It is generally thought that group V catalysts follow the Cossee-Arlman method for 

ethylene polymerisation (Scheme 2, Section 1.5). However, unlike the known 

metallocene active species, the active species for group V catalysts still remains to be 

elucidated. As mentioned above, experiments involving magnesium chloride supports 

prevent reduction to the inactive species V(II) with the remaining of the metal centres 

adopting a V(III) oxidation state. Fujita and Czaja’s work has been supported further by 

Zambelli et al. who postulated a structural model for the active vanadium site for the 

polymerisation of propylene (Figure 4).39 In the model, the vanadium(III) atom is penta-

coordinated bearing three chlorides and the growing polymer chain. It is possible for 

two of the chlorines to coordinate a co-catalyst aluminium atom. The fifth site is 

occupied by a propylene monomer; this coordination can take place in four ways.  

1 2

3 4

Cl

Cl

Cl

V

 

Figure 4. Zambelli’s structural model of the vanadium(III) active site and the four 

possible positions of the methyl group upon coordination of propene.34  

 

In 2003, Gambarotta reported that vanadium(II) is the inactive species by studying acac-

type systems.40 He stated that the deactivation was due to ligand extraction, proving this 

by being able to isolate [Al(acac)2]
+ species. Further work led to the isolation of a 

vanadium-aluminium-phenoxide cluster (Figure 5). It is postulated by Gambarotta, that 

the vanadium active species for olefin polymerisation is similar to the V2Al4 cluster, 

requiring sharing of the phenoxide/chloride/alkyl groups between the catalysts 

vanadium centres and the co-catalysts aluminium metal centres.40 
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Figure 5. Gambarotta’s postulated V2Al4 cluster.40 

 

1.7 Niobium and tantalum catalysts 

Until recently, niobium systems for the polymerisation of ethylene were quite rare and 

generally showed low activities. Ziegler-Natta systems have been proven to give either 

no activities or negligible, even when supported on a MAO-modified silica support.41 

Half-sandwich complexes reported improved activities (≤ 40 g/mmol.h.bar, e.g. 

complex V, Figure 6), however the screened pro-catalysts showed a lack of thermal 

stability with activities dramatically dropping off above 20 oC.42 The general lack of 

activity for niobium half-sandwiched complexes redirected research towards non-

metallocene compounds. Chen et al. also observed low activities (≤ 1.8 g/mmol.h.bar) 

when employing various niobium benzamidinato precursors.43 Amido ligands have also 

been utilised as potential ligands, offering alternatives to the classical Cp stabilising 

ligands of cationic early transition metal complexes.44 However, further research by 

Decams and co-workers reported niobium(V) amido precursors, upon activation with 

MAO, were inactive towards the polymerisation of ethylene.45 The highest activities 

were reported by Etienne, when in the presence of methyl abstracting agent such as 

B(C6F5)3 (125 g/mmol.h.bar, complex VI, Figure 6).46  

Shiono and co-workers have recently reported the use of bis(imino)pyridine niobium 

systems in the presence of iBu-modified MAO (MMAO), which gave activities of ≤ 70 

g/mmol.h.bar.47 

After previous successes with vanadyl phenolate systems, Redshaw et al. expanded 

their work to synthesis various niobium systems and tested them for their ability to 

polymerise ethylene.31c, 48 One of the triphenolate systems exhibited moderate activities 
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in presence of DEAC and ETA (90 g/mmol.h.bar).48 A niobium complex bearing a C-

capped trisphenolate analogue with a pendant imine arm was shown to be inactive in the 

presence of various aluminium co-catalysts.49 As stated in section 1.6, the vanadyl 

oxacalix[3]arene system showed extremely high activities, because of these exceptional 

results, Redshaw also extended this work by utilising the oxacalix[3]arene ligand with 

niobium.50 It was noted that no activity was observed in the absence of an aluminium 

co-catalyst. The highest activities (84 g/mmol.h.bar) were observed in the presence of 

DMAC and ETA.  
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Figure 6. Literature examples of niobium-based pro-catalysts.42, 46, 51 

 

However, recent reports by Marchetti and co-workers have reported activities analogues 

with Etienne’s system (VI, Figure 6).51 Niobium(V) mixed chloro-alkoxide complexes 

were found to be approximately 100 times (≤ 151 g/mmol.h.bar) more active than some 

previously mentioned niobium systems (e.g. Chen et al. 1.8 g/mmol.h.bar) in the 
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presence of various aluminium alkyl co-catalysts (e.g. complex VII, Figure 6).51a 

Marchetti’s group have also reported niobium(V) dialkylcarbamates with similar 

activites (≤ 110 g/mmol.h.bar, complex VIII, Figure 6).51b Although both niobium 

systems produced good activities for niobium catalysts for the polymerisation of 

ethylene, it is worth noting that the produced polymers had broad polydispersity indexes 

(5.8-24.2). 

Tantalum is considerably more active than its group V counterpart. To date, the highest 

activity for a tantalum pro-catalyst for the polymerisation of ethylene was reported by 

Michiue et al. (25,700 g/mmol.h.bar, complex XII, Figure 7).52 Other published 

systems have activities varying between 480–4,780 g/mmol.h.bar (Figure 7).53 It 

appears that few catalysts have utilised tantalum since their catalytic activities are short-

lived. This is likely to be due to the instability of the alkyl cationic active species 

involved in the polymerisation process.53a 
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Figure 7. Literature examples of tantalum-based pro-catalysts.52, 53 

 

2. The problem with plastics 

Polymer production is dominated by five high volume families of polyolefins; 

polyethylene (LDPE, LLDPE and HDPE), polypropylene (PP), poly vinylchloride 

(PVC), polystyrene (solid PS and expandable EPS) and polyethylene terephthalate 

(PET), consuming over 47 % of the western world’s annual plastic consumption.2 

Although the world of plastics continues to grow at a rapid rate with new technologies 

and applications, economical considerations are becoming ever more important. For 

instance, such dependence on polyolefin(s) raises certain issues; (1) they are produced 
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from non-renewable fossil fuels, which are prone to significant price-rising (fossil fuels 

represent up to 80 %  of polyolefin production), (2) their characteristic inertness means 

they suffer from a lack of biodegradability, which raises environmental issues. For 

instance, a polyethylene plastic bag can take up to 400 years to degrade in landfills.54 

This environmental issue has been dealt with from a recycling perspective, such as 

utilising waste plastic materials as ‘reclaimers’; millions of polyethylene bottles are 

recycled which can then be shredded and used as insulation in ski jackets or carpets.55 

Another method is to use degrading agents, such as photo-sensitizers.56 Degrading 

agents enable the long polymeric chains to undergo degradation into shorter polymeric 

chains, which can then also undergo degradation by micro-organisms.54 However, 

petroleum resources used to make the polyolefins are becoming increasing expensive 

and the risk of these resources becoming scarce is viewed as inevitable. One-way to 

enable us to continue with the increasing polymer demand, and prevent releasing CO2 

from fossil fuels, is to use polymers obtained from renewable resources. Due to these 

reasons, there has become increasing academic and industrial interest in polymers such 

as polylactide and poly(-caprolactone). It is also noteworthy that Braskem and co-

workers have recently patented the production of polyethylene from bioethanol obtained 

from sugar cane.57  

 

2.1 Poly(-caprolactone) 

Polylactide, poly(-caprolactone) and related co-polymers are the most studied 

polymers. Their biocompatibility makes them ideal for various biomedical and 

pharmaceutical applications, such as scaffolds in tissue engineering,58 drug delivery,59 

microelectronics,60 adhesives61 and in packaging.62 The majority of the data regarding 

the biodegradability of poly(-caprolactone) is related to the development of the 

implantable contraceptive delivery system, CapronorTM. No toxic effects were observed 

when testing the implant and the oral LD50 of poly(-caprolcatone) for rats is expected 

to be over 2,000 mg kg-1.59  

As well as their inherent biodegradability, another attractive aspect of poly(lactide) and 

poly(-caprolactone) is their availability from renewable resources. Lactide is already 

available from corn starch, with polylactide being produced by companies such as 

Nature Works (a joint venture between Cargill and Teijin Limited).63 -Caprolactone is 

mainly produced via the Bayer Williger oxidation of cyclohexanone with per-acids or 

hydrogen peroxide by companies such as Perstorp, BASF and Daicel.64 However, 
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recent literature reports by Minami et al. discuss the possibility of producing -

caprolactone from starch (Scheme 3), increasing the industrial potential of poly(-

caprolactone). 65 
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Scheme 3. Production of -caprolactone via either; a) the Bayer Williger oxidation 

process and b) from starch. 

 

Its wide applicability and interesting properties (controlled degradability both in vivo 

and in vitro, miscibility with other polymers, biocompatibility and potential to be made 

from monomers derived from renewable sources) makes poly(-caprolactone) an 

incredibly useful polymer if its properties can be controlled and it can be produced in an 

inexpensive manner.66 

The challenge now is to be able to produce biodegradable polymers and/or co-polymers 

based on polylactide or poly(-caprolactone) at low cost and with specific physical 

properties desired by industrial applications, to turn them into industrial competitors to 

their well established non-biodegradable commodity counterparts, such as 

polyethylene.67   

 

2.2 Polymerisation of cyclic esters 

More than half a century of research has been invested into studying the industrial 

synthesis of polyesters, such as polylactide and poly(-caprolactone).67 Polyesters can 

be formed in a variety of ways: polycondensation,68 enzymatic polymerisation,69 
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anionic polymerisation,59f, 70 cationic polymerisation71 or coordination/insertion 

polymerisation.72 

Two problems become apparent when reviewing the literature with regard to polylactide 

or poly(-caprolactone) synthesis; (1) the lack of a standardised measurement of 

initiator/catalyst activity similar to Table 1, section 1.5 for polyethylene and (2) the 

deviation between the actual average molecular weight and the one obtained by gel 

permeation chromatography (GPC) with reference to polystyrene standards. However, 

Arbaoui et al. have recently published a review with an activity classification table, 

similar to that previously published by Gibson for polyethylene. Where possible, these 

problems have been overcome by either (1) quoting the conditions under which the 

initiators/catalysts have been screened and (2) the corrected values for Mn or by 

clarifying the measurement method (i.e. GPC or NMR).67 

Herein, all catalyst/initiator activities regarding poly(-caprolactone) synthesis will 

reference back to this table.  

 

Table 2. Activity table for -caprolactone polymerisation catalysts/initiators 

Monomer/metal 

ratio 

Polymerisation 

timea 
TOF/h-1b 

Mn(calculated)/g 

mol-1 
Activity 

< 100 days < 4 < 11,400 low 

 hours 0.04 to 100  poor 

 minutes > 1  moderate 

100-500 days < 21 11,400-57,000 poor 

 hours 4 to 500  moderate 

 minutes > 100  good 

500-1,000 days < 42 57,000-114,100 moderate 

 hours 21 to 1,000  good 

 minutes > 500  high 

1,000-5,000 days < 208 114,100-570,700 good 

 hours 42 to 5,000  high 

 minutes > 1,000  very high 

> 5,000 days > 30 > 570,700 high 

 hours > 205  very high 

 minutes > 5,000  exceptional 
a Polymersiation time at quantitative monomer conversion. b Indicative values only. 
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2.2.1 Polycondensation 

A polycondensation reaction can be completed by reacting a diol with a diacid (i.e. AA 

+ BB) or by condensing a hydroxyl acid (i.e. AB). In both of these cases, the reaction 

involves the loss of a stoichiometric amount of water from the reaction medium. 
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Scheme 4. Polycondensation via either a) AA + BB reaction or b) AB condensation. 

 

Large amounts of patents describe the preparation of aliphatic polyesters from 

hydroxycarboxylic acids.73 Braud et al. synthesised poly(-caprolactone) oligomers by 

polycondensation of 6-hydroxyhexanoic acid under vacuum, by removing the water 

produced in the reaction and displacing the equilibrium towards the formation of the 

polymer.74 The synthesis was completed in the absence of a catalyst and was complete 

in 6 hours at 80 oC, which was gradually increased to 150 oC. 

However, the polymers produced via polycondensation have a tendency to have broad 

polydipersity indexes, and need to go to high conversions to produce polymers with 

sufficient molecular weights. Method a) also requires precise reagent stoichiometry. The 

polycondensation method requires high reaction temperatures.75  

 

2.2.2 Enzymatic Polymerisation 

Enzymatic polymerisation was been developed as an alternative method to 

polycondensation. This process involves the use of biocatalysts such as lipase enzymes, 

which allows for the catalytic condensation of diols and diacids or the addition of cyclic 

esters by ring opening.69a, 72b  

The use of lipase enzymes enable highly functionalised monomers to be involved in the 

polymerisation process without the need for protection and deprotection steps, that 

would be necessary in the polycondensation method. This is due to the lipases 
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selectively reacting with primary hydroxyl groups rather than secondary in the 

esterification process.75a  

Another positive to using lipase enzymes in enzymatic polymersiation is that they are 

natural, non-toxic biocatalysts therefore making the method even more environmentally 

friendly. The polymerisation conditions required when using lipase enzymes for the 

polymerisation of lactones are rather mild. 

This process does suffer from the same negative characteristics as the polycondensation 

method; the produced polymers tend to have broad polydispersity75a and low molecular 

weights.72b   

6-Hydroxycaproic acid was polymerised using lipase from Candida antarctica under 

vacuum. This gave rise to polymers with an average molecular weight of 9,000 g/mol 

and a polydispersity under 1.5 in two days.76 Lipase from Pseudomonas sp. at 45 oC 

were capable of polymerising ethyl 6-hydroxyhexanoate resulting in polymers with an 

average molecular weight of 5,400 g/mol and polydispersity indices  under 2.26 after 20 

days with 82 % conversion.77 

Gross et al. found porcine pancreatic lipase were able to polymerise -caprolactone, 

producing polymers of low molecular weights (< 3,000 g/mol by GPC) after several 

days.69b The enzyme Candida Antarctica lipase B has also been screened for its ability 

to polymerise -caprolactone. Iversen and co-workers found that it was able to either 

form cyclic oligomers when the polymerisation was carried out in an organic solvent, or 

linear polymers when carried out in bulk.69c However, the molecular weight of the 

polymer was still low (< 5,000 g/mol). 

Kobayashi et al. were able to produce poly(-caprolactone) with molecular weights of 

up to 12,000 g/mol when utilising various lipase and esterase enzymes.69d The results 

were achieved after 20 days using Pseudomonas fluorescens lipase. 

 

2.3 Ring opening polymerisation 

Ring opening polymerisation is an attractive method for synthesising polyesters because 

it enables living polymerisation to occur, which in turn provides control over the 

produced polymers’ physical properties and polydispersity indices. The driving force 

behind the reaction is to relieve ring strain.75a 

In 1934, Carothers and co-workers first reported the synthesis of poly(-caprolactone) 

via ring opening polymerisation.78 However, it was not until the late 1970s that Duda et 

al. were able to produce methods to control the process.79 It is generally accepted that 
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ring opening polymerisation occurs by either an anionic, cationic or coordination/ 

insertion mechanism depending on the nature of the catalyst or initiator. 

 

2.3.1 Anionic polymerisation 

Anionic ring opening polymerisation of cyclic esters involves the formation of an 

anionic species (initiator) which attacks the carbonyl carbon of the monomer, forming 

linear polyester. 

Anionic polymerisation of-lactones occur through either the acyl oxygen or alkyl 

oxygen cleavage, forming either an alkoxide or a carboxylate growing (propagating) 

species, respectively (Scheme 5). 
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Scheme 5. Anionic polymerisation of cylic ester through either; the alkyl oxygen (blue) 

and acyl oxygen cleavage (red).80 

  

For large lactones, e.g. -caprolactone, the nucleophilic attack occurs at the acyl oxygen 

producing the alkoxide as the propagating species.75b, 81 The most common systems 

capable of initiating anionic ring opening polymerisation of-caprolactone are 

amines59f, 70a and alkali metal alkoxides, such as potassium tert-butoxide and lithium 

tert-butoxide.70b-d  
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Scheme 6. Anionic polymerisation of -caprolactone, including back-biting step. 

 

The anionic polymerisation method tends to be used for the production of low 

molecular weight oligomers and polymers. When alkali metal alkoxides such as 

potassium tert-butoxide are used, large quantities of cyclic oligomers are formed due to 

intramolecular transesterification, or “back-biting” occurring.72b, 75b  

It is worth noting that high molecular weight polymers of lactones have only been 

synthesised via anionic or coordination/insertion polymerisation.72b, 82  

 

2.3.2 Cationic polymerisation 

Cationic ring opening polymerisation of cyclic esters can occur via two mechanisms; 

the active chain end and the activated monomer mechanisms.71a By choosing the 

appropriate polymerisation conditions, the mechanism which the cationic 

polymerisation occurs by can be tuned, e.g. the use of alcohol or continuous feed of 

monomer.  

 

Scheme 7. Cationic polymerisation through either a) active chain end or b) activated 

monomer mechanism. 
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When cationic polymerisation occurs through the active chain end mechanism, the 

propagating species is a carbonium ion obtained through the cleavage of the -

caprolactones acyl-oxygen (mechanism a), Scheme 7).81 In the activated monomer 

method, the cyclic ester is activated through protonation which enables another 

monomer or a neutral growing chain to attack (mechanism b), Scheme 7).71, 83   

For the cationic ring opening polymerisation of -caprolactone, numerous initiators 

have found to be effective, such as; protic acids,83, 84 acylating agents (e.g. 

CH3CO+SbF6¯), alkylating agents (e.g. CF3SO3CH3) and Lewis acids (e.g. FeCl3, 

BF3.(C2H5)2O).85 

Strong Lewis acids are rarely used for the cationic ring opening polymerisation of 

poly(-caprolactone) because they tend to yield low molecular weight polymers. This is 

due to significant “back-biting” occurring during the polymerisation process (Scheme 

6).85b 

Endo and co-workers reported that when utilising hydrochloric acid diethyl etherate 

(HCl.Et2O) in the presence of a protic source, such as an alcohol or water, the mixture 

was active for cationic polymerisation of -caprolactone, yielding polymers with narrow 

polydispersities.71b The molecular weight of the produced polymers were low (< 15,000 

g/mol by GPC).  

 

2.3.3 Coordination/insertion polymerisation 

Coordination/insertion is the most common form of ring opening polymerisation. It is a 

pseudo-anionic ring opening polymerisation. The propagation step proceeds through the 

coordination of the monomer to the Lewis acidic catalyst metal centre via the exocyclic 

oxygen. Therefore, the carbonyl of the lactone is susceptible to nucleophilic attack by 

the alkoxide (Scheme 8). The growing polymer chain is attached to the metal centre via 

an alkoxide bond. At increased polymerisation times and temperatures, intermolecular 

and intramolecular back-biting can occur as side reactions. These can result in a 

broadening of the polydispersity and loss of control of the polymerisation (Scheme 9).66 
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Scheme 8. The coordination/insertion mechanism by a metal alkoxide species (M-

OR).67 

 

Complexes containing metals with empty p, d or f orbitals react as coordination 

catalysts, rather than anionic initiators. As mentioned in section 2.3.1, high molecular 

weight polymers can be produced via coordination/insertion polymerisation. This tends 

to occur as a living process, i.e. as a form of addition polymerisation where the ability 

of the growing chain to terminate has been removed. This enables greater control over 

the polymers molecular weight and narrow polydispersity indices.72  
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Scheme 9. Intermolecular (red) and intramolecular (blue) transesterification reactions in 

coordination/insertion polymerisation.80 
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Another benefit to this process is the ability to form stereoregular polymers, for instance 

polylactide or polymers of functionalised -caprolactone. Coordination/insertion 

polymerisation limits the possibility of side reactions such as epimerisation, which 

occur regularly during the anionic polymerisation.86  

There are plenty of reports in the literature regarding the use of various metals for the 

ring opening polymerisation of cyclic esters via the coordination/insertion mechanism, 

the ones most commonly used for lactones are based on tin and aluminium.72a Typical 

metals used for the ring opening polymerisation of -caprolactone include; 

magnesium,66, 67, 87 calcium,66, 67, 87d, 88 aluminium,66, 67, 72a, 89 titanium,66, 67, 90 iron,67, 91 

zinc,66, 67, 72a, 87c-d, 92 tin,66, 67, 93 lanthanides and rare earth metals.66, 67, 94 

 

2.4 Vanadium complexes 

As mentioned in sections 1.6 and 1.7, group V complexes have received substantial 

interest in their applicability for -olefin polymerisation, however this is not the case 

with regard to ring opening polymerisation of cyclic esters. 

In 2005, Atlamsani and co-workers reported the use of vanadium complexes, e.g. 

vanadium/molybdenum heteropolyacids, VOSO4 and VO(acac)2, for the 

oligomerisation of -caprolactone under an atmosphere of oxygen.95 Under the same 

conditions, the vanadium heteropolyacid and VOSO4 displayed higher activities than 

their VO(acac)2 counterpart, producing oligo(-caprolactone) with molecular weights of 

approximately 5,000 g/mol.  

It was noted that when the polymerisation was conducted under an atmosphere of 

nitrogen, the Mo(VI)/V(V)heteropolyacid system saw a dramatic decrease in activity, 

the vanadium(IV) species, VOSO4 and VO(acac)2, showed no activity. Atlamsani et al. 

proposed that this is due to an intense green colour that was observed, when the 

heteropolyacids were used for the polymerisation under a dry nitrogen atmosphere. The 

intense green was associated with the conversion of the heteropolyacid to the reduced 

Mo(V)/V(IV) species.  It is proposed that when the polymerisation was conducted under 

the dioxygen atmosphere, the dioxygen re-oxidised the inactive V(IV) species to an 

active dioxovanadium(V) cationic species (Scheme 10). 
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Scheme 10. Simplified redox activation mechanism of the vanadium complex 

postulated by Atlamsani et al. (Some ligands have been omitted for clarity).67 

 

Efforts within our group have shown promise with the utilisation of chloride and 

alkoxide vanadium compounds for ring opening polymerisation of -caprolactone. A 

family of organoimido vanadium(V) complexes were synthesised and screened for their 

ability to produce poly(-caprolactone).96 
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Figure 8. Organoimido vanadium(V) complexes. Typically R = Et, iPr, nPr, tBu, Ar = 4-
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At 40 oC, monomer:metal ratio of 500:1, the dimeric species (XIV, Figure 8) were 

found to be more active than their mononuclear counterparts (XIII, Figure 8), (≥ 60 % 

and ≤ 25 %, respectively). The highest conversions were produced by the dimeric pro-

catalysts bearing propoxide bridges. Arbaoui et al. postulated that the propagating 

species was likely to be monomeric as a polymer chain is bulkier than a propoxide 

group. Therefore, the catalytic advantage must occur in the first stage of the 

polymerisation process, i.e. the coordination of the first molecule of -caprolactone, and 

then its subsequent insertions into the V-OR bond.67 

Arbaoui and co-workers also noted that the fluoride alkoxide group, OC(CH3)(CF3)2, 

led to an inactive pro-catalyst. It was assumed that the improvement in Lewis acidity of 

the metal centre was counterbalanced by the loss of nucleophilicity of the alkoxide 

group.67 
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Nomura and co-workers reported a similar system to Arbaoui’s mononuclear pro-

catalyst. They also observed poor activities; 57 % conversion after 48 hours and at 100 
oC (monomer:metal ratio of 250:1).97  

 

3. Aim of the study 

The aim of this study is to investigate a series of new complexes incorporating group V 

metals in combination with various chelating ligands (Figure 9), and to assess their 

ability as catalysts for the polymerisation of ethylene and ring opening polymerisation 

of -caprolactone.  

We have decided to focus our efforts on group V metals; vanadium species have proven 

their efficiency as catalysts for ethylene polymerisation.30, 31 However, we believe there 

is room for improvement and by altering the polymerisation conditions and/or chelating 

ligands improvements upon literature results can be achieved. With regard to their 

ability as ring opening polymerisation for -caprolactone, we wish to build upon this 

scarce literature field. 

As mentioned in section 1.7, compared to vanadium little research has been done on its 

group V counterparts, niobium and tantalum. After successes with vanadium and those 

achieved recently with niobium by Marchetti et al., we wish to investigate the potential 

for improving upon previously poor activities observed for both these metals, by 

altering polymerisation conditions and chelating ligands.  
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Figure 9. Chelating ligands used in this study a) calixarenes, b) phenoxy-imines, c) 

phenoxy-imine/imidazole and oxazole ligands.  

 

All complexes have been fully characterised spectroscopically and wherever possible 

their molecular structure has been confirmed by single crystal X-ray diffraction studies. 

These complexes have all been screened for their ability to polymerise ethylene, and 

when appropriate for their ability for ring opening polymerisation of -caprolactone. 

When deemed necessary, known complexes from the literature have also been 

synthesised to enable comparative studies under specific conditions to be achieved.  

 



Chapter 1: General Introduction 
 

29 
 

4. Thesis overview 

This study focuses on ethylene polymerisation and the ring opening polymerisation of -

caprolactaone. Various mono- or multi-nuclear pro-catalyst systems have been 

synthesised and spectroscopically characterised, and then tested for their ability as 

polymerisation catalysts.  

In the first results and discussion chapter, Chapter 2, the synthesis of multinuclear 

vanadium(V) alkoxide and imido/alkoxide complexes supported by 1,3-depleted 

calix[4]arene ligands have been screened for their ability to polymerise ethylene and for 

ring opening polymerisation of -caprolactone. 

In the second part of the study (Chapter 3), the focus is on oxovanadium(V) complexes 

supported by either thia, sulfinyl or sulfonyl calix[4]arene ligands. These systems will 

also be screened for their ability to produce polyethylene and poly(-caprolactone).  

Chapter 4 will shift the focus from vanadium(V) species to vanadium(III) pro-catalysts 

supported by various bridged phenoxy-imine systems. As in Chapters 2 and 3, 

complexes will also be screened for their efficiency as catalysts for polyethylene and 

poly(-caprolactone) production.  

The fourth part of the study (Chapter 5) will involve the synthesis of a series of 

niobium(V) and tantalum(V) complexes, which are supported by phenoxy-

imine/imidazole and oxazole ligands. All synthesised pro-catalysts will be assessed for 

polymerisation of ethylene. 

All synthetic procedures, characterisation data and polymerisation methods are 

presented in the experimental section (Chapter 6).  
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1. Introduction 

As mentioned in Chapter 1, throughout the last decade the search for new ligand sets 

capable of forming efficient catalytic systems for either -olefin polymerisation or the 

ring opening of lactones has met with considerable success.1 One recent example of 

highly efficient systems for the polymerisation of ethylene was published by Redshaw et 

al., in which vanadyl pro-catalysts supported by a oxacalix[3]arene ligand, displayed 

activities over 90,000 g/mmol.h.bar.2 Activities within the same range (75,200 

g/mmol.h.bar) were also produced by utilising vanadium-based imido-alkoxide pro-

catalysts bearing bisphenolate ligands.3 However, these two findings are surpassed by 

results produced when investigating the use of vanadyl di- and tri-aryloxide -(CH2)- 

bridged systems, which acheived extremely high activities (166,000 g/mmol.h.bar).4  

Calixarenes can be viewed as cyclic analogues of such bi-phenols. The cyclic structures 

are produced by the condensation reaction between para-substituted phenols with 

formaldehyde. By varying the reaction temperature or equivalent of base, the size of the 

produced calixarene can be manipulated. The most commonly reported metallocalixarene 

systems tend to be complexes utilising the calix[4, 6 or 8]arenes.5 The standard formula 

for p-tert-butylcalix[n]arene, where n is the number of phenolic units within the 

macrocycle, and X is the linking group between the phenolic units (this will be discussed 

further in Chapter 3). A typical calixarene compound (Figure 10) is shown in the ‘cone’ 

conformation, other conformations do arise, however the cone conformation is the only 

one described herein.  

 

Figure 10. Calixarene phenolic sub-unit. p-tert-butylcalix[4]arene in the cone 

conformation, indicating the lower and upper rims of the calixarene molecule. (Typically, 

R = H, alkyl, aryl, NH2, CO2H; R’ = H, alkyl). 
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Calixarenes form highly organised multimetallic architectures for various applications 

such as; catalysis,5  magnetism,6 medicine,7 sensors,8 metal organic frameworks9 and other 

nano-technologies.6, 10 

Calixarene analogues can be synthesised with ease, on large scales and at cheap cost. The 

functionalities on either the lower or upper rim of the calixarenes can also be easily 

altered, enabling numerous different functionalities to be added to the calixarene 

backbone. Transition metal calix[4]arenes have been used in a range of polymerisations 

from ring opening metathesis to polyethylene with varying degrees of success.11 

The main focus of this chapter will be altering the functionality on the lower rim of the 

calixarene, to investigate any potential benefit on the efficiency of the pro-catalysts for the 

polymerisation of ethylene and -caprolactone. 

1.1 Depleted calix[4]arenes 

Although there has been extensive research into calixarenes as ancillary ligands, the 

related depleted calixarenes have not undergone such scrutiny, partly due to their recent 

discovery.  

In the early 1990s, synthetic routes to 1,2- and 1,3-depleted calix[4]arenes were first 

reported by Biali and co-workers.12 These involve the parent calix[4]arene molecule 

undergoing a Birch reduction to produce the final product, i.e. depleted calixarene 

(Scheme 11).  

The coordination chemistry of such depleted calixarenes is only just emerging,13  and 

their use in olefin polymerisation catalysis is restricted to a patent on group IV systems,14 

and more recently a number of titanacalix[4]arenes.15 Espinas et al. reported the synthesis 

of a family of titanium complexes, supported by a variety of calix[4]arene moieties, 

activities for the polymerisation of ethylene, upon activation with MAO, were in the 

range of 14-770 g/mmol.h.15 To date, there are no reports of vanadium depleted systems 

and their activity towards ethylene or ring opening polymerisations.  
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tBu

OH
4

NEt3, ClPO(OEt)2

toluene

tBu

OH
2

tBu

OPO(OEt)2

K/NH3

-78 oC

tBu

OH
2

tBu

L1H2  

Scheme 11. The synthetic route for producing 1,3-depleted calix[4]arene, L1H2. 

 

2. Results and Discussion 

2.1 Vanadium(V) alkoxide 1,3-depleted calix[4]arenes  

 

Scheme 12. Synthesis of vanadium(V) 1,3-depleted calix[4]arene complex 1 

 

The dinuclear vanadium 1,3-depleted calix[4]arene was produced via the reaction of the 

1,3-depleted calix[4]arene ligand, L1H2, with vanadium oxytripropoxide, [(VO(OnPr)3] 

(Scheme 12). The dark red solution was heated at reflux overnight and then cooled, the 
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volatile components were removed under vacuo. The residue was extracted into ‘hot’ 

acetonitrile, after prolonged standing at ambient temperature red plates of 1 formed. 

These were suitable for X-ray diffraction studies; a molecular structure of 1 is shown in 

Figure 11.   

 

Figure 11. View of a molecule of [VO(OnPr)L1]2(2MeCN) (1(2MeCN)) indicating the 

atom numbering scheme. Hydrogen atoms have been omitted for clarity. Thermal 

ellipsoids are drawn at the 30 % probability level. Selected bond lengths (Å) and angles 

(o): V(1)-O(3) 1.780(2), V(1)-O(2) 1.778(2), V(1)-O(1) 1.743(2), V(1)-O(4) 1.581(2), 

O(3)-V(1)-O(2) 111.93(10), O(3)-V(1)-O(1) 109.67(12), O(3)-V(1)-O(4) 106.97(12), 

O(1)-V(1)-O(2) 110.37(11), O(4)-V(1)-O(2) 110.17(12), O(4)-V(1)-O(1) 107.58(12). 

 

In the dimeric structure of 1, one phenolic O atom from each calixarene ligand is linked 

through a VO(OnPr) bridge; the second O atom from each calixarene ligand is bridged 

through a second VO(OnPr) group. The two calixarene ligands (and the two bridging 

groups) are related by a pseudo-twofold symmetry axis. Both vanadium centres are 

four-coordinate, with approximately tetrahedral geometries. There is an acetonitrile 

molecule in the cavities of both calixarene ligands.  

In addition to 1, deep-red plates of the hydrolysis product (2) were also isolated. The 

formation of 2 could be accounted for by two equivalents of water getting into the 

reaction solution.  
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Figure 12. View of a molecule of {[VO(OnPr)]2(O)L1}2(MeCN) (2(MeCN)) 

indicating the atom numbering scheme. Hydrogen atoms have been omitted for clarity. 

Thermal ellipsoids are drawn at the 30 % probability level.  

 

The complex dimeric molecule 2 lies about a centre of symmetry. The two calixarene 

ligands are linked through a V4O4 network. The metal centre in complex 2 can be 

described as an inorganic core, consisting of four vanadium metal centres (Figure 13). 

There is a molecule of solvent, acetonitrile, in the cone cavity of each calixarene ligand. 
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Figure 13. View of the inorganic core of 2 showing the atom numbering scheme and 

revealing the geometry around the vanadium centre. Thermal ellipsoids are represented 

at the 30 % probability level. Selected bond lengths (Å) and angles (o): V(1)-O(3) 

1.766(4), V(1)-O(5) 2.042(4), V(1)-O(7) 1.573(4), V(1)-O(9) 1.857(4), V(1)-O(91) 

1.877(4), O(3)-V(1)-O(5) 89.79(18), O(3)-V(1)-O(7) 109.0(2), O(3)-V(1)-O(9) 

99.55(19), O(3)-V(1)-O(91) 137.16(17), V(1)-O(9)-V(2) 144.1(2), V(1)-O(9)-V(11) 

100.4(2), O(8)-V(2)-O(9) 163.5(2). 

 

Each vanadium atom is 5-coordinate: V(1) has a square pyramidal pattern with the 

vanadyl oxygen, O(7), in the apical site, whereas the pattern of V(2) is closer to trigonal 

bipyramidal with the vanadyl O(8) and a µ3-O atom, O(9), in the axial positions. Both 

metals are bonded to a vanadyl O, a phenolic O and a bridging OnPr ligand; the shell of 

V(1) is completed by two µ3-O ligands, whereas V(2) has one µ3-O and a terminal OnPr 

ligand. 
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2.2 Vanadium(V) imido-alkoxide 1,3-depleted calix[4]arenes 

 

tBu

OH
2

tBu

L1H2

V(Np-tolyl)(OR)3

toluene
3 or 4

 

Scheme 13. Synthesis of vanadium(V) imido-alkoxide 1,3-depleted calix[4]arene 

complexes, [V(Np-tolyl)(OR)L1]2 R = nPr 3, R = tBu 4. 

 

The vanadium(V) imido-alkoxide 1,3-depleted calix[4]arene, 3, was prepared in the same 

manner as complex 1 (Scheme 13) using [V(Np-tolyl)(OnPr)3] as the vanadium source. 

After extraction into hot acetonitrile, and following prolonged standing at room 

temperature, yellow block crystals of 3 were formed, which were characterised by X-ray 

diffraction (Figure 14). 
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Figure 14. View of a molecule of [V(Np-tolyl)(OnPr)L1]2(2MeCN), (3(2MeCN)), 

indicating the atom numbering scheme. Hydrogen atoms have been omitted for clarity. 

Thermal ellipsoids are drawn at the 30 % probability level. Selected bond lengths (Å) 

and angles (o): V(1)-O(2) 1.820(5), V(1)-O(3) 1.792(6), V(1)-N(1) 1.641(8), V(1)-O(1) 

1.790(6), N(1)-V(1)-O(2) 107.7(3), O(1)-V(1)-O(2) 111.8(3), O(3)-V(1)-O(2) 112.5(2), 

N(1)-V(1)-O(1) 103.6(3), N(1)-V(1)-O(3) 108.0(3), O(3)-V(1)-O(1) 112.7(3). 

 

Complex 4 was prepared in the same manner as complex 1 from a solution of L1H2 and 

[V(Np-tolyl)(OtBu)3]. The solution was cooled and volatile components removed under 

vacuum. The orange/brown residue was extracted into hot acetonitrile and left to stand 

at room temperature. Yellow lath crystals were formed which were characterised by X-

ray diffraction (Figure 15). 
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Figure 15. View of one of the three independent (but very similar) molecules of [V(Np-

tolyl)(OtBu)L1]2(2MeCN) (4(2MeCN)), indicating the atom numbering scheme. 

Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn at the 30 % 

probability level. Selected bond lengths (Å) and angles (o): V(1)-O(2) 1.829(12), V(1)-

O(3) 1.799(12), V(1)-N(1) 1.649(14), V(1)-O(1) 1.753(12), O(3)-V(1)-O(2) 112.7(4), 

N(1)-V(1)-O(2) 106.3(6), O(1)-V(1)-O(2) 114.0(5), N(1)-V(1)-O(3) 109.3(5), O(1)-

V(1)-O(3) 109.2(4), N(1)-V(1)-O(1) 104.9(6). 

 
The calixarene complex molecule of 3 and the three independent calixarene molecules 

in 4 are also dimeric molecules, and resemble 1 in many respects. Each comprises two 

vanadium atoms (four-coordinate, with tetrahedral coordination pattern) linked through 

the phenolate O atoms of the two calixarene ions. There are also OnPr (or OtBu) and 

Np-tolyl ligands on each vanadium atom, and an acetonitrile molecule lies in the cone 

of each calixarene unit. The whole molecule is arranged with approximately 2mm 

symmetry. The pseudo-twofold axis passes through the midpoint of the V…V vector 

and relates the pairs of OnPr (or OtBu), Np-tolyl and calixarene ligands.  

The imido-alkoxide complexes 3 and 4, can be compared to some imido-alkoxide 

vanadium(V) complexes bearing bisphenolate ligands that have been previously 

synthesised in the group (Complex XIV Chapter 1, section 2.4, crystal structure shown 

in Figure 16).3 As mentioned previously, calix[4]arene and its 1,3-depleted counterpart 
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can be viewed as cyclic analogues of biphenol ligands. As this is the case, comparisons 

can be made between the 1,3-depleted vanadium(V) imido-alkoxide complexes, 3 and 4, 

and the bisphenol vanadium(V) imido-alkoxide complexes synthesised by Arbaoui et 

al.3  

 

Figure 16. Dimeric arylimido-alkoxide vanadium(V) complex XIV as described by 

Arbaoui et al.3, 16  

 

Complexes 1–4 contain vanadium/oxygen cage networks sandwiched between two 

ligand units, which are similar to those observed in XIV.  Crystallographic data 

comparing complexes 1–4 and XIV, are collated in Table 3. 

 

Table 3. Selected bond lengths (Å) and angles (o) for 1–4, compared to complex XIV. 

 XIV 1 2 3 4 

V(1)-N(1) 1.661(3) - - 1.641(8) 1.649(14) 

V(1)-O(1) 1.885(3) 1.743(2) - 1.790(6) 1.753(12) 

V(1)-O(3) 1.836(2) 1.780(2) 1.766(4) 1.792(6) 1.799(12) 

V(1)-O(1’)  2.172(2) - 1.857(4) - - 

      

N(1)-V(1)-O(1) 99.34(13) - - 103.6(3) 104.9(6) 

N(1)-V(1)-O(2) 99.11(13) - - 107.7(3) 109.3(5) 

O(1) or O(5)-V(1)-

O(3) 
117.55(11) 109.67(12) 89.79(18) 112.7(3) 109.2(4) 

V(1)-O(1) or O(9)-

V(1’) 
107.73(11) - 100.4(2) - - 



Chapter 2: Vanadium(V) pro-catalysts supported by 1,3-depleted calix[4]arenes 
 

48 
 

By comparing the bond angles and lengths, it is apparent that there is little difference 

between the bond lengths in complex XIV and complexes 1-4. When comparing the 

bond angles around the vanadium metals centres, it is noted, that the angles formed 

between the phenolic oxygen, metal centre and alkoxide oxygen (O(1)-V(1)-O(2)), are 

all similar to complex XIV. However, the other bonds angles are larger for the 

metallocalixarene complexes in comparison to the bisphenolate ligand system. This is 

most likely due to the rigid metallocalixarene backbone, whereas the phenol rings in the 

bisphenolate complex have more flexibility. For instance, the chelating rings in XIV 

adopt a flattened chair conformation, with O(2)-V(1)-O(3) angles in the range of 

109.68(7) to 112.19(6)o.16 These are similar to related oxo vanadium(V) bisphenolate 

compounds that stated angles of approximately 106o.17 The two phenolic oxygens in the 

depleted calix[4]arene systems are on opposing rings, in the 1,3 position. Due to steric 

constrictions, they are unable to bind to the same metal centre as observed in XIV. 

 

2.3 Ethylene polymerisation  

Complexes 1–4 were screened for their ability to polymerise ethylene in the presence of 

either dimethylaluminium chloride (DMAC) or methylaluminium chloride (MADC)  with 

the re-activating substance ethyl trichloroacetate (ETA). Temperature and number of 

equivalents of co-catalyst were also investigated over 15 minute periods to study the 

effects upon the vanadium(V) complexes. 

2.3.1 Temperature screening   

Complexes 1–4 were screened over a range of temperatures (20-80 oC, Table 4) in the 

presence of either DMAC or MADC with the re-activator ETA. All parameters, such as 

time, were kept the same for each run allowing for comparisons between pro-catalyst 

activities. 
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Table 4. Polyethylene screening results for pro-catalysts 1-4.a 

Run 
Pro-catalyst 

(µmol) 

 
Co-catalyst 

 
Temp (°C) 

Yield  

PE(g)b 

Activityc 

(× 103) 

1 1 (0.25) DMAC 20 1.34 10.8 

2 1 (0.25) DMAC 40 2.07 16.5 

3 1 (0.25) DMAC 80 3.95 31.6 

4 1 (0.25) MADC 20 1.96 15.7 

5 1 (0.25) MADC 40 2.78 22.2 

6 1 (0.25) MADC 60 2.18 17.4 

7 1 (0.25) MADC 80 2.63 21.0 

8 2 (0.25) DMAC 20 2.47 4.9 

9 2 (0.25) DMAC 40 2.49 10.0 

10 2 (0.25) DMAC 60 3.27 13.1 

11 2 (0.25) DMAC 80 4.10 16.4 

12 2 (0.25) MADC 20 1.26 5.0 

13 2 (0.25) MADC 40 1.99 8.0 

14 2 (0.25) MADC 80 2.99 12.0 

15 3 (0.25) DMAC 20 1.08 8.6 

16 3 (0.25) DMAC 40 1.56 12.5 

17 3 (0.25) DMAC 60 1.86 14.9 

18 3 (0.25) DMAC 80 2.65 21.2 

19 3 (0.25) MADC 20 1.12 9.0 

20 3 (0.25) MADC 40 1.59 12.7 

21 3 (0.25) MADC 60 1.60 12.8 

22 3 (0.25) MADC 80 2.51 20.1 

23 4 (0.25) DMAC 20 1.65 13.2 

24 4 (0.25) DMAC 40 2.55 20.4 

25 4 (0.25) DMAC 60 1.33 10.6 

26 4 (0.25) DMAC 80 1.11 8.9 

27 4 (0.25) MADC 20 1.44 11.5 

28 4 (0.25) MADC 40 1.48 11.8 

29 4 (0.25) MADC 60 2.08 16.6 

30 4 (0.25) MADC 80 0.95 7.6 
a1 bar ethylene Schlenk tests carried out in toluene (200 mL) in the presence of ETA (0.05 mL) over 15 

min; reaction was quenched with dilute HCl, washed with methanol (50 mL) and dried for 12 h. at 80 °C, 
b g per pro-catalyst, cg/mmol.h.bar per V centre.  
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Pro-catalysts 1 and 3 behaved in a similar manner when using either DMAC or MADC 

as co-catalyst over a range of temperatures (20-80 oC) (Figure 17). In particular, both 

exhibited enhanced catalytic activity (runs 1-3 and 15-20 - DMAC; runs 4-7 and 19-22 - 

MADC) at elevated temperatures (80 °C). Pro-catalyst 2, enhanced thermal stability was 

observed at 80 °C in the presence of both DMAC (run 11) and MADC (run 14). For the 

tert-butoxide system, 4, the thermal stability is reduced, the highest activities were 

observed at 40 °C (run 24) when using DMAC, and 60 °C (run 29) when using MADC 

At 80 °C, in the presence of 2000 equivalents of co-catalyst, the activity orders 

1>3>2>4 for DMAC and 1≈3>2>4 for MADC were observed. In general, there was a 

change in the polymer morphology (from a thick jelly-like solid to a fine white powder) 

at higher temperatures, which started at 60 °C.  

 

 

Figure 17. Polyethylene screening results varying temperature for pro-catalysts 1–4 

(utilising DMAC). 

2.3.2 Equivalent of co-catalyst 

The effect of varying the concentration of co-catalyst was also investigated to note if 

there would be an overall impact on observed catalytic activity. It was also observed as 

to what extent the different co-catalysts and varying concentrations would have on pro-

catalysts 1, 3 and 4.  Temperature, time and pro-catalyst concentration were all kept 

constant to enable comparisons between the performances of the three pro-catalysts. 
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Table 5. Varying co-catalyst and concentration, using pro-catalysts 1, 3 and 4.a  

Run 
Pro-

catalyst 
(µmol) 

 
Co-

catalyst 
 

[Al]/[V] 
Time 
(min) 

Temp 
(°C) 

Yield 
PE(g)c 

Activityd 
(× 103) 

1 1 (0.25) DMAC 2000 15 20 1.52 12.2 

2 1 (0.25) DMAC 4000 15 20 2.04 16.3 

3b 1 (0.15) DMAC 6000 10 20 1.55 31.0 

4b 1 (0.15) DMAC 8000 10 20 2.19 42.4 

5 1 (0.25) MADC 1000 15 20 1.48 11.8 

6 1 (0.25) MADC 2000 15 20 1.49 11.9 

7 1 (0.25) MADC 4000 15 20 1.90 15.2 

8b 1 (0.15) MADC 6000 10 20 1.79 35.8 

9b 1 (0.15) MADC 8000 10 20 1.95 39.0 

10 3 (0.25) DMAC 1000 15 20 1.25 10.0 

11 3 (0.25) DMAC 3000 15 20 1.37 11.0 

12b 3 (0.15) DMAC 6000 10 20 1.41 28.1 

13b 3 (0.15) DMAC 8000 10 20 1.99 39.9 

14 3 (0.25) MADC 1000 15 20 0.60 4.8 

15 3 (0.25) MADC 2000 15 20 1.38 11.1 

16 3 (0.25) MADC 3000 15 20 1.99 15.9 

17 3 (0.25) MADC 4000 15 20 2.51 20.1 

18b 3 (0.15) MADC 6000 10 20 2.07 41.3 

19b 3 (0.15) MADC 8000 10 20 1.85 36.9 

20 4 (0.25) DMAC 1000 15 20 1.95 15.6 

21 4 (0.25) DMAC 3000 15 20 2.06 16.5 

22b 4 (0.15) DMAC 6000 10 20 1.03 20.5 

23b 4 (0.15) DMAC 8000 10 20 1.42 28.5 

24 4 (0.25) MADC 1000 15 20 1.23 9.8 

25 4 (0.25) MADC 2000 15 20 1.40 11.1 

26 4 (0.25) MADC 3000 15 20 1.76 14.1 

27 4 (0.25) MADC 4000 15 20 2.72 21.8 

28b 4 (0.15) MADC 6000 10 20 1.16 23.3 

29b 4 (0.15) MADC 8000 10 20 2.00 40.1 
a1 bar ethylene Schlenk tests carried out in toluene (200 mL) in the presence of ETA (0.05 mL) over 15 

min; reaction was quenched with dilute HCl, washed with methanol (50 mL) and dried for 12 h. at 80 °C, 
b 0.025 mL ETA, c g per pro-catalyst, dg/mmol.h.bar per V centre. 
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There is a general increase in observed activity on increasing the co-catalyst 

concentration, though in the case of 3, the activity peaks at 6000 equivalents for MADC 

(run 18) (Figure 18). Overall, there appears to be little benefit in using MADC over 

DMAC. For pro-catalyst 1, the activities for increasing concentration of either DMAC 

or MADC follow the same trend, with the highest activities ~ 40,000 g/mmol.h.bar 

being observed with 8000 equivalent of co-catalyst (runs 4 and 9).  

 

 

Figure 18. Polyethylene screening results varying co-catalyst concentration for pro-

catalysts 1, 3 and 4 (utilising MADC). 

 

Activities in approximately the same range were noted for 3, however these were 

achieved at 8000 equivalents of DMAC (run 13) and with 6000 equivalents of MADC 

(run 18). Whereas for 1 and 3, there was little difference in the range of activities when 

comparing co-catalysts DMAC and MADC, with pro-catalyst 4, there is a notable 

difference when comparing results achieved with 8000 equivalents of co-catalyst (runs 

23 and 29). This is most likely due to sterics around the metal centre; complex 4 has the 

bulkier tert-butoxide group attached to the vanadium.  

2.3.3 Industrial ethylene screening 

Pro-catalysts 1 and 3 were also submitted for industrial screening to observe whether 

either pro-catalyst showed any degree of activity for ethylene polymerisation under 

more robust, heterogenous industrial conditions. 



Chapter 2: Vanadium(V) pro-catalysts supported by 1,3-depleted calix[4]arenes 
 

53 
 

Firstly the pro-catalysts were screened using either triethylaluminum (TEA) or 

diethylaluminum chloride (DEAC) as co-catalyst. The polymerisation conditions were 

at 220 °C, 29 bar ethylene fed in on demand, and in the presence of hydrogen and a 10 

minute polymerisation time. However under these conditions, no polymer was formed.18 

Pro-catalysts 1 and 3 were also screened under silica-supported slurry conditions. 

During this process, the pro-catalysts were screened using a technique referred to as 

‘pore-filling’ or ‘incipent wetness’. This requires the pro-catalyst to be supported on 

silica to produce a free flowing powder. This method was conducted under less harsh 

polymerisation conditions than the previous technique (15.2 bar, 70 oC). MAO and 

DEAC were used as co-catalysts.  

 

Table 6. Results for ethylene polymerisation runs (supported silica-catalyst) using pro-

catalysts 1 and 3.a 

Run 
Pro-

catalyst 
(µmol) 

Co-
catalyst 

[Al]/[V] 
Time 
(min) 

Temp 
(°C) 

Yield 
PE(g) 

Activityb

1 1 (5.0) MAO 1700 60 70 4.02 30 

2 3 (5.1) MAO 1650 60 70 1.80 10 

3 3 (3.0) DEAC 1600 60 70 0.60 10 

 a15.2 bar ethylene partial pressure slurry polymerization tests carried out in isobutane in the presence of 

TiBAL as scavanger, bg/mmol.h.bar per V centre.  

 
For the silica-supported systems screened for ethylene activity under slurry conditions, 

polymers were formed, however activities were rather disappointing at ≤ 30 

g/mmol.h.bar. It needs to be taken into account that such industrial conditions tend to 

utilise low equivalents of co-catalyst and high temperatures. The above screening results 

(shown in Table 4-6) show that pro-catalysts 1-4 show the highest activities at 

approximately 8000 equivalents of co-catalyst. It is also worth noting that at 60 oC the 

morphology of the produced polymer changed, indicating potential degradation of the 

pro-catalyst.  

2.4Caprolactone polymerisation 

Complexes 1, 3 and 4 were also screened for their ability to polymerise -caprolactone. 

Pro-catalyst 4 was subjected to temperature, time, monomer and co-initiator studies. No 
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polymer was observed at 20-40 oC. The polymerisation results for these studies are 

shown in Table 7.  

 

Table 7. -Caprolactone polymerisation data for complex 4.a 

Run 
Monomer 

/ metal 

Equiv. 

BnOH 

Time

(h) 

Temp 

(oC) 
Conversionb

Mn 

calculatedc 

(g/mol) 

Mn 

measuredd 

(g/mmol) 

PDIe

1 400 5 72 60 8 3.7 0.5 2.1 

2 400 5 72 80 21 9.6 2.6 1.2 

3 600 5 72 80 12 5.5 2.9 1.2 

4 800 5 72 80 - - - - 

5 400 0 72 80 - - - - 

6 400 1 72 80 18 8.2 3.5 1.4 

7 400 10 72 80 12 5.5 0.8 2.0 

8 400 5 12 80 - - - - 

9 400 5 24 80 15 6.8 2.1 1.1 

10 400 5 48 80 20 9.1 5.3 1.2 
a Conditions: 20 mL of toluene; 2 mL of ε-caprolactone; benzyl alcohol taken from a 0.97 M solution in 

toluene; b calculated by 1H NMR; c × 103 d Mn measured = 0.58 × Mn (GPC ×103).19 e Polydispersity 

index. 

 

Complex 4 was active for the ring opening polymerisation of -caprolactone.  However, 

it was inactive at room temperature and 40 oC. From Table 7, it is evident that as the 

temperature was increased, the conversion from monomer to polymer also increased 

(Table 7, runs 1-2). The polydispersity index decreased as the temperature increased, 

indicating that increasing the temperature also prevents side reactions from occurring. 

The percentage conversion appeared to reach optimum conversion at around 48 hours, 

as both 48 hours and 72 hours observed approximately the same rate of conversion. The 

conditions that produced the most polymer were noted to be at 72 h, with 5 equivalents 

of co-initiator (run 2).  

The conditions which produced the most poly(-caprolactone) were then used to screen 

complexes 1 and 3 (Table 8).  
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Table 8. -Caprolactone polymerisation data for complex 1, 3 and 4.a 

Run Pro-catalyst Conversionb (%) 
Mn calculatedc 

(g/mol) 

Mn measuredd 

(g/mol) 
PDIe 

1 1 94 42.9 6.6 1.5 

2 3 46 21.0 6.1 1.2 

3 4 21 9.6 2.6 1.2 
a Conditions: monomer/metal = 400; 72 h; 80 °C; 20 mL of toluene; 2 mL of ε-caprolactone; 5 equivalent 

of benzyl alcohol (from a 0.97 M solution in toluene); b calculated by 1H NMR; c × 103 d Mn measured = 

0.58 × Mn (GPC × 103).19 e Polydispersity index. 

 

The results showed that the less sterically hindered complex 1 had the highest rates of 

conversion (> 90 %, run 1) in comparison to its imido-alkoxide counterparts, complexes 

3 and 4 (≤ 46 %, runs 2 and 3, respectively). Due to complexes 3 and 4 essentially being 

isostructural, we can infer that the presence of the bulkier alkoxide in 4 (tBu) is the 

reason for the poorer conversion compared with 3 (nPr). Also given the propagating 

polymeric chain is bulkier than a tert-butyl group, the smaller the groups around the 

metal centre, the more beneficial the effect regarding the initiation step of the 

polymerisation.  

As mentioned in the introductory chapter, there are limited reports in the literature for 

the use of vanadium in the ring opening polymerisation of -caprolactone.3, 20 Arbaoui et 

al. observed conversions of ~ 60 % at 40 oC after 24 h, with molecular weights of ca. 

11,000 and a polydispersity index of 1.1 when using complex XIV. The polydispersity 

index values for polymers produced from complexes 1, 3 and 4 are similar to those 

observed with complex XIV (PDI ~ 1.1). This is indicative with the polymerisation 

occurring without side reactions. The molecular weights for the less sterically hindered 

complexes (1 and 3) were similar to those produced for complex XIV (Mw’s between 

12,000–13,000). However, the molecular weights of the polymers produced by 4 (Mw ≤ 

5000) are analogues with Atlamsani and co-workers reports on heteropolyacids based 

on vanadium and molybdenum, VOSO4 and VO(acac)2. The heteropolyacid complexes 

and VOSO4 oligo(-caprolactone) with molecular weights of 4,900 g/mol with 

polydispersity index of approximately 1.7.  
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3. Conclusion 
A new family of 1,3-depleted calix[4]arene complexes incorporating either an alkoxide 

or imido-alkoxide vanadium(V) centres have been synthesised and structurally 

analysed. All complexes were investigated for their effectiveness as ethylene 

polymerisation catalysts. The choice of co-catalyst, either DMAC or MADC, has little 

or no overall effect on the activity of the pro-catalyst. The concentration of the chosen 

co-catalyst has a dramatic result on polymerisation activity, with a general observed 

trend of increasing co-catalyst correlating with increasing pro-catalyst activity. All pro-

catalysts were shown to be highly active for the polymerisation of ethylene under the 

utilised conditions.21 Unfortunately, such activities were not matched under more robust 

industrial conditions (≤ 30 g/mmol.h.bar).  

The imido-alkoxide vanadium(V) complexes and dinuclear alkoxide complexes were 

also screened for their ability for -caprolactone polymerisation. The conversion value 

was dictated by the steric hinderance on the vanadium(V) metal centre. The highest 

conversion (> 90 %) observed for the alkoxide ligand with n-propoxide, and the lowest 

conversion (~ 20 %) for the imido-alkoxide ligand with tert-butoxide. The less sterically 

hindered n-propoxide complexes were able to produce polymers with higher molecular 

weights, in comparison to the more sterically t-butoxide complex. All pro-catalysts 

produced low molecular weight polymers with low polydispersity values comparable to 

literature reports.3, 20 However, the overall conversion rates can be viewed as low when 

compared to literature reviews.1c 
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1. Introduction 
As mentioned previously (Chapter 2, section 1), calixarenes are emerging as a versatile 

class of ligands.1 This is mainly due to their flexibility and ease with which the ligand 

backbone can be altered. Varying the functionality on the lower rim of calix[4]arene in 

the ‘cone’ confirmation was described in Chapter 2. The possibility of altering the 

linking groups between the phenol rings has been proven to be beneficial when 

compared against unmodified calix[4]arene systems (Figure 19). For example, the 

Redshaw group have experienced great success in the past by altering the methylene 

linkers to form oxacalixarenes (complex III, Chapter 1). 2  These systems showed 

dramatic improvements as vanadium-based ethylene polymerisation catalysts. In this 

chapter, the main focus will be on thia, sulfinyl or sulfonyl calix[4]arene  ligands (X = S, 

SO or SO2, respectively). 

 

Figure 19. Calix[n]arene (Typically, R = H, alkyl, aryl, NH2, CO2H; R’ = H, alkyl; X = 

CH2, CH2OCH2, S, NR). 

In recent years, a number of reviews have been published regarding the chemistry of 

thiacalixarenes, varying from their synthesis to their application. 3  Sano et al. first 

reported a multi-step synthesis to produce thiacalixarenes.4 In the same year, Miyano 

and co-workers reported a simpler one-step method for producing thiacalix[4]arene in 

higher yields by reacting calix[4]arene with sulfur. 5  From this, the sulfur-oxidised 

relatives of p-tert-butyl-sulfinylcalix[4]arene and p-tert-butyl-sulfonylcalix[4]arene may 

be prepared. 6  Like the oxacalixarenes, thiacalixarenes show distinctly different 

behaviour from their methylene-linked calixarene relatives. This is due to the linking 

sulfur moities having different electronic and structural characteristics compared to the 

methylene bridges. Therefore, it is assumed that thiacalixarenes would infer new 

properties in metal-based systems compared to the more conventional calixarene class 

as host molecules.3e 
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As discussed in Chapter 2, section 1, calixarenes can have various functionalities 

attached to the lower and upper rim of the calixarene, this is also true for 

thiacalixarenes. However in this section only p-tert-butylthiacalix[4]arene will be 

discussed.  

Like their calixarene counterparts, thiacalixarenes also possess great flexibility within 

the calixarene framework, this enables various conformations to be formed. 

Thiacalix[4]arene forms the same conformations as calix[4]arene. Figure 20 shows four 

possible conformations for the calix[4]arene moiety.  

 

Figure 20. Four conformations of calix[4]arene. 

In the majority of cases the methylene-bridged calix[4]arene behaves as a tetradentate 

ligand, bonding to a metal ion through the phenolic oxygen atoms. 7  However for 

thiacalixarenes, the C-S bonds are longer than the bridging methylene linkers in 

calix[4]arene, and the additional donating sulfur atoms in the linkers, means there is 

potential for four chelating sites within the lower cavity of the thiacalix[4]arene ring 

(Figure 21).3e   



Chapter 3: Oxovanadium(V) complexes bearing sulfur-bridged calix[4]arenes 
 

62 
 

 

Figure 21. A) Mono-nuclear tetra-anionic calix[4]arene system. B) Tetra-nuclear tetra-

anionic thiacalix[4]arene complex. 

Thiacalixarenes have been utilised for various applications; modified thiacalixarenes 

have been used for environmental applications such as removing small chlorinated 

organic molecules from water.8 Miyano and co-workers noted that the thiacalixarene 

moieties showed superior selectivity in comparison to the corresponding methylene-

bridged analogues used within the study. Thiacalixarenes have shown high affinity for 

complexing metals; because of this they have been used for the separation and removal 

of heavy-metal ions (Co2+, Ni2+, Cu2+, Zn2+) in water and as pre-column chelating 

reagents for HPLC. Interestingly, they do not retain the alkaline-earth-metal ions Mg2+ 

and Ca2+.9  Kaiwara and co-workers investigated the use of thia and sulfonylcalixarenes 

for the removal and separation of metal ions, such as copper and lanthanides.10 Due to 

the ease at which thiacalixarene metal complexes can be synthesised, potassium salts 

have been produced which show the capacity to absorb several guest molecules, such as 

methanol. 11  Lanthanide complexes were capable of energy-transfer luminescence, 

which can be applied to dye lasers and luminescent probes because of their long 

lifetimes and narrow emission bands.12  A dinuclear titanium complex of the -S- bridged 

ligand set has been employed as a Lewis acid catalyst in the Mukaiyama-aldol reaction 

of aryl aldehydes with silyl enol ethers,13 and as a catalyst in the cyclotrimerization of 

alkynes. 14  Regarding polymerisation catalysis, there is only one publication which 

studies di-nuclear titanium p-tert-butylthiacalixarenes. The synthesised pro-catalysts 

showed poor activity (≤ 25 g/mmol.h.bar) in the presence of methylaluminoxane 

(MAO) over a temperature range of 0-50 oC; however the produced polymer had broad 

molecular weight distributions (PDI 2.6-41.3).15 
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1.1 Vanadium thiacalixarenes 
To date, there are no reports of vanadium complexes with either the thia, sulfinyl or 

sulfonylcalix[4]arene ligand being used for either ethylene or -caprolactone 

polymerisation. However, research has been conducted on various vanadyl complexes 

utilising sulfur bridged phenolate ligands for the polymerisation of ethylene.16, 17 In 

2000 Miyatake reported the use of vanadium and titanium catalysts, bearing thio- and 

sulfonyl-bridged bisphenolates, for the synthesis of ultra-high-molecular-weight poly(-

olefin)s.16 However the titanium complexes displayed greater activities than the 

vanadium species for the polymerisation of ethylene (≤ 3,090 g/mmol.h.). When 

comparing activities between the titanium complexes bearing the sulfonyl linker and 

thia linker, the sulfonyl group appeared to have a detrimental effect on the activity of 

the catalyst, when in the presence of various co-catalysts (e.g. MAO). 

Homden and co-workers observed high activities for complex XV (≤ 33,040 

g/mmol.h.bar) when in the presence of DMAC and the re-activator ETA (Figure 22).17 

When screened under the same conditions, pro-catalysts XV and XVII produced 

approximately the same levels of activity (~ 20,000 g/mmol.h.bar), showing no obvious 

beneficial effect by having the donating oxygen being present in the bridge. The highest 

activities were observed when employing 20000 equivalents of DMAC at 60 oC. These 

activities were surpassed when the pro-catalyst contained both a chelating ligand and a 

vanadyl group. It was noted that there was a significant drop in activities when the 

polymerisations were carried out in the presence of either MAO or TMA.  

 

Figure 22. Vanadium(IV and V) complexes bearing sulfur-bridged phenolate ligands. 
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 Limberg et al. have investigated the use of oxovanadium calixarene complexes, 

including thiacalixarenes, for the oxidative dehydrogenation (ODH) of light alkanes and 

methanol.1c, 18  One of the complexes involved in their study was a mono-nuclear 

vanadium thiacalix[4]arene complex XVIII (Figure 23).  

 

Figure 23. Oxovanadium(V) tetrathiacalix[4]arene complexes, XVIII and XIX. 

 

Limberg and co-workers observed that complex XIX showed higher activities than 

XVIII, however both catalysts showed improved activities in comparison to 

oxovanadium(V) complexes containing ‘classical’ calixarene ligands.  

Building on Limberg’s synthetic methodology, vanadium complexes supported by 

sulfonyl and sulfinylcalix[4]arene frameworks were prepared herein. These structures, 

as well as the “Limberg” complex XVIII, were screened for their efficiency as ethylene 

and -caprolactone polymerisation catalysts. It was hoped that like the oxacalix[3]arene 

systems, improved activities would be observed.  

2. Results and Discussion 

2.1 Oxovanadium(V) tetrasulfinylcalix[4]arene complex 

 

Scheme 14. Synthesis of oxovanadium(V) tetrasulfinylcalix[4]arene (5). 
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The mono-nuclear complex, 5, was synthesised following the same method as described 

by Limberg et al. to produce complex XVIII.18 One equivalent of [VO2Cl2][PPh4] and 

the p-tert-butylsulfinylcalix[4]arene ligand, L2H4, were reacted in tetrahydrofuran at 

room temperature (Scheme 14). Volatile components were removed under vacuum and 

the dark blue precipitate was extracted into dichloromethane. The solution was layered 

with hexane and after prolonged standing grey/blue plates were formed. The crystals 

were suitable for X-ray diffraction studies (Figure 24). 

 

Figure 24. The anion [VOCl2(L
2H2)]

– (5), indicating the atom numbering scheme. 

Thermal ellipsoids are drawn at the 30 % probability level. Selected bond lengths (Å) 

and angles (o): V(1)-O(1) 1.933(4), V(1)-O(2) 1.919(4), V(1)-O(9) 1.575(4), V(1)-O(5) 

2.192(4), V(1)-Cl(1) 2.293(2), V(1)-Cl(2) 2.2860(18), O(1)-V(1)-O(9) 95.47(18), O(1)-

V(1)-Cl(1) 87.45(13), O(1)-V(1)-O(5) 84.85(15), Cl(1)-V(1)-Cl(2) 92.56(7). 

The vanadium centre adopts a distorted octahedral geometry with the oxygen of one of 

the sulfinyl bridges incorporated in the coordination sphere. This oxygen [O(5)] is trans 

to the oxo group [O(9)] and the bond to vanadium is somewhat elongated [V(1)-O(5) 

2.192(4) Å] compared with the other V-O bonds (Figure 24), but is similar to other 

reported V-O(S) bonds.19 The calixarene ligand retains the cone conformation, and the 

vanadium centre sits 1.24 Å above the O(1), O(2), O(5) plane. Oxygen atoms O(6), 

O(7), and O(8) all exhibit conformational disorder with the O atoms predominantly in 

the ‘out’ position. The minor component lies ‘up’, as does O(5) which does not exhibit 
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disorder. The structure contains two dichloromethane molecules of crystallisation; one 

is well defined within the calixarene cone, the other, substantially disordered, lies exo to 

the cone. The two phenol groups make intramolecular H-bonds. 

 

2.2 Oxovanadium(V) tetrasulfonylcalix[4]arene complex 

 
Scheme 15. Synthesis of oxovanadium(V) tetrasulfonylcalix[4]arene, 6. 

Oxovanadium(V) tetrasulfonylcalix[4]arene, 6, was synthesised following an adapted 

version of Limberg’s method used for complex 5 (Scheme 15). p-tert-

Butylsulfonylcalix[4]arene, L3H4, and one equivalent of [VO2Cl2][PPh4] were stirred in 

tetrahydrofuran. After 48 hours, the volatile components were removed under vacuo and 

the purple/blue residue was extracted into dichloromethane, which was layered with 

hexane. After prolonged standing at ambient temperature, purple prisms were formed 

which were suitable for X-ray diffraction (Figure 25).  
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Figure 25. View of the anion [VOCl2(L
3H2)]

– (6), indicating the atom numbering 

scheme. Minor disorder components have been omitted for clarity. Thermal ellipsoids 

are drawn at the 30 % probability level. Selected bond lengths (Å) and angles (°): V(1)-

O(1) 1.895(3), V(1)-O(2) 1.937(3), V(1)-O(5) 2.357(3), V(1)-O(9) 1.577(3), V(1)-Cl(1) 

2.2771(14), V(1)-Cl(2) 2.2904(12); O(1)-V(1)-O(2) 86.62(12), O(5)-V(1)-O(9) 

177.53(13).  

 

In 6, the coordination of the V=OCl2 unit to the calixarene is very similar to that 

adopted in 5. However, the calixarene in 6 adopts an ‘up-up-up-down’ conformation 

rather than the cone observed in 5. As in 5 there are two intramolecular H-bonds, but in 

this case the calixarene conformation facilitates an additional centrosymmetric pair of 

intermolecular H-bonds between phenol group O(4)-H(4) and one oxygen of an SO2 

group on a neighbouring molecule (Figure. 26). 
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Figure 26. View of 6 showing intra- and inter-molecular H-bonding. O(3)–H(3)···O(7), 

H(3)···O(7) = 1.89Å; O(4)–H(4)···O(10), H(4)···O(10) = 2.24Å; and O(4)–

H(4)···O(11A), H(4)···O(11A) = 2.30Å, symmetry operator A = –x+2, –y, –z. 

 

As in 5, Limberg’s complex XVIII (Figure 23, molecular structure Figure 27) contains 

a calixarene ligand in the cone conformation, and the vanadium metal centre is 

positioned above the calixarene. However, the vanadium is shifted out of the plane 

defined by O2, O3, Cl1 and Cl2 in the direction of the terminal O1. The observed bond 

length between the vanadium and terminal oxygen atom, (V-O1 0.3539(9) Å) in XVIII 

is typical for oxo ligands in oxovanadium(V) calixarene complexes.2, 20 The vanadium 

is also coordinated to one of the thioethers (S3) with a bond length of 2.7553(16) Å, this 

is shorter then the van der Waals radii of vanadium and sulfur, indicating a coordinative 

interaction.18 It is longer than vanadium-thioether bonds in similar compounds produced 

by Mattes et al. however, Limberg states that this could be due to the trans influence 

from the terminal oxygen (O1).18 As with complexes 5 and 6, the vanadium atom in 

XVIII is coordinated within a distorted octahedral environment.   
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Figure 27. View of the anion [VOCl2(p-tert-butylcalix[4,S]areneH2)]
– (XVIII), 

indicating the atom numbering scheme. 

Considering the previously discussed similarities between the three structures, it is 

worth comparing the structures to observe whether the differing bridges have any effect 

on the vanadium centres environment. In Table 9, bond lengths and angles between the 

three compounds are compared. 

Table 9. Selected bond lengths (Å) and angles (°) for 5 and 6 compared to complex 

XVIII. 

 XVIII 5 6 

V-O1 1.592(4) 1.575(4) 1.577(3) 

V-O2 1.904(4) 1.933(4) 1.895(3) 

V-O3 1.877(5) 1.919(4) 1.937(3) 

V-O4 - 2.192(4) 2.357(3) 

V-Cl1 2.305(2) 2.293(2) 2.2771(14) 

V-Cl2 2.308(2) 2.2860(18) 2.2904(12) 

V-S3 2.7553(16) - - 

    

O1-V-O2 97.18(18) 95.36(17) - 

O1-V-O3 98.81(18) 95.73(73) 86.62(12) 

O1-V-Cl1 101.28(15) 97.09(15) - 

O1-V-Cl2 102.06(15) 96.88(14) - 

O1-V-S3 172.50(15) - - 

O1-V-O4 - 178.98(19) 177.53(13) 
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The vanadium centre in 5 and 6 is in a similar environment to that observed in complex 

XVIII. The bond lengths and angles in the three structures are analogous to those of 

XVIII, with O4 in 5 and 6 adopting the same position as S3 in XVIII, with similar bond 

lengths and angles.  

Due to these structural similarities, Limberg’s complex XVIII was synthesised, to 

enable comparison studies between the three complexes for their ability to polymerise 

ethylene and -caprolactone.  

2.3  Ethylene polymerisation  
Complexes XVIII, 5 and 6 were screened for their ability to polymerise ethylene in the 

prescence of either dimethylaluminium chloride (DMAC) or methylaluminium 

dichloride (MADC) with the re-activating substance ethyl trichloroacetate (ETA). 

Temperature and equivalent of co-catalyst were also investigated over a 15 minute 

period to study the effects upon the oxovanadium(V) complexes.  

2.3.1 Temperature screening   
Complexes XVIII, 5 and 6 were screened over a range of temperatures (20-80 oC, Table 

10). Complex XVIII was screened in the presence of DMAC and MADC with the re-

activator ETA. Pro-catalysts 5 and 6 were screened in the presence of MADC with the 

re-activator ETA. All parameters, such as time, were kept the same for each run 

allowing for comparisons between pro-catalyst activities. The known highly active pro-

catalyst [V(O)p-tert-butylhexahomotrioxacalix[3]arene] III, was used as a comparison 

(benchmark).2 III has shown high activities (92,500 g/mmol.h.bar, Chapter 1, section 

1.6) surpassing those produced by methylene-bridged calixarenes under the same 

conditions (1,400 g/mmol.h.bar).  
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Table 10. Results for ethylene polymerisation runs using pro-catalysts XVIII, 5 and 6.a 

Run 
Pro-

catalyst 
(µmol) 

Co-
catalyst 

Temp (°C) 
Yield 
PE(g) 

Activityb 
(×103) 

1 XVIII DMAC 20 0.75 12.0 

2 XVIII DMAC 40 0.80 12.8 

3 XVIII DMAC 60 0.86 13.8 

4 XVIII DMAC 80 0.74 11.8 

5 XVIII MADC 20 1.05 16.8 

6 XVIII MADC 40 1.33 21.3 

7 XVIII MADC 60 1.63 26.1 

8 XVIII MADC 80 1.20 19.2 

9 5 MADC 20 1.72 27.5 

10 5 MADC 40 1.27 20.3 

11 5 MADC 60 2.22 35.4 

12 5 MADC 80 2.32 37.4 

13 6 MADC 20 1.61 25.7 

14 6 MADC 40 2.00 31.9 

15 6 MADC 60 2.77 44.4 

16 6 MADC 80 2.33 37.4 
a0.25 µmol pro-catalyst, 6000 [Al]:[V], 1 bar ethylene Schlenk tests carried out in toluene (200 mL) in the 

presence of ETA (0.05 mL) over 15 min, reaction was quenched with dilute HCl, washed with methanol 

(50 mL) and dried for 12 h. at 80 °C. bg/mmol.h.bar.  

 

Due to the moderate activities observed with XVIII when using DMAC as co-catalyst 

(≤ 11800 g/mmol.h.bar, runs 1-4), it was decided to screen 5 and 6 only with 

MADC/ETA. All pro-catalysts showed very high activities in the presence of MADC 

(26,100-44,400 g/mmol.h.bar, runs 7, 12 and 15). 21  5/MADC exhibited activities 

comparable with those of XVIII/MADC, with enhanced thermal stability (run 12). Due 

to XVIII and 6 observing optimised temperatures at 60 oC, a run was conducted at 60 
oC using the known pro-catalyst [V(O)p-tert-butylhexahomotrioxacalix[3]arene] III,2 

as a benchmark for activity. All four pro-catalysts were screened under the same 

conditions, 6000 equivalents MADC, 15 minutes, to compare the effect the calixarene 

linker has on the activity of the oxovanadium(V) pro-catalyst (Figure 28).  
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Figure 28. The activities of the four pro-catalysts, screened under the same 

polymerisation conditions. (Conditions; 0.25 µmol pro-catalyst, 6000 [MADC]:[V], 1 bar ethylene 

Schlenk tests carried out in toluene (200 mL) in the presence of ETA (0.05 mL), at 60 oC, over 15 min). 

The comparative screening study of pro-catalysts XVIII, 5, 6 and III under the same 

conditions (60 °C and 6000 equivalents of MADC, Figure 28) led to the observed 

activity order 6>III>5 >XVIII. The sulfonyl-bridged ligand set, 6, promoted the highest 

observed activities. It is thought that this sulfonyl ligand set is able to stabilise the active 

species through O → V interactions. Such stabilisation is also possible in the systems 

using 2 and 4, but not in that employing pro-catalyst 1. 

Selected polymer data from temperature runs in Table 10 are shown in Table 11. All 

pro-catalysts afforded high molecular weight, linear polyethylene; typical melting 

points by DSC were in the range of 138-140 °C for runs from Figure 28. From Table 11, 

it is evident that there is a direct correlation between temperature and the produced 

polymers molecular weight; at higher temperatures the molecular weight decreases. The 

highest molecular weights (1,140,000 and 994,000, for runs 9 and 14, respectively) 

being associated with 40 oC. The range of PDIs measured was in the range 2.7-6.5, the 

lowest being observed at higher temperatures (80 oC). 
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Table 11. Selected results for ethylene polymerisation runs using pro-catalysts XVIII, 5 
and 6.a 

Run 
Pro-

catalyst  
Co-catalyst Temp (°C) Mw

b Mn
c PDId 

6 XVIII MADC 60 4.01 1.03 3.9 

9 5 MADC 40 11.4 17.3 6.5 

14 6  MADC 40 9.94 2.31 4.3 

16 6  MADC 80 1.30 0.49 2.7 
a1 bar ethylene Schlenk tests carried out in toluene (200 mL) in the presence of ETA (0.05 mL) over 15 

min, reaction was quenched with dilute HCl, washed with methanol (50 mL) and dried for 12 h. at 80 °C. 
b Weight average molecular weight (×105). c Number average molecular weight (×105). d Polydispersity 

index. 

 

2.3.2 Equivalent of co-catalyst 
The effect of varying the type of co-catalyst and concentration of co-catalyst was 

investigated to note if there would be an overall impact on the activity of the pro-

catalysts. Temperature, time and pro-catalyst concentration were all kept constant to 

enable comparisons between the performances of the three pro-catalysts made.  
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Table 12. Results for ethylene polymerisation runs using pro-catalysts XVIII, 5 and 6.a 

Run Pro-catalyst Co-catalyst [Al]:[V] Yield PE(g) 
Activityc

(×103) 

1b XVIII DMAC 2000 0.39 3.1 

2b XVIII DMAC 4000 0.96 7.7 

3b XVIII DMAC 6000 2.00 16.0 

4b XVIII DMAC 8000 1.84 14.7 

5 XVIII MADC 2000 0.07 1.1 

6 XVIII MADC 4000 0.53 8.5 

7 XVIII MADC 6000 1.2 19.2 

8 XVIII MADC 8000 1.09 17.4 

9 5 DMAC 6000 0.01 0.2 

10 5 DMAC 8000 0.06 1.0 

11 5 MADC 4000 0.12 1.8 

12 5 MADC 8000 1.58 25.3 

13 6 DMAC 2000 0.40 6.4 

14 6 DMAC 4000 1.27 20.3 

15 6 DMAC 6000 1.26 20.1 

16 6 DMAC 8000 1.57 25.1 

17 6 MADC 2000 0.03 0.4 

18 6 MADC 4000 1.31 20.2 

19 6 MADC 6000 1.74 27.9 

20 6 MADC 8000 1.61 25.7 
a1 bar ethylene Schlenk tests carried out at room temperature,  in toluene (200 mL) in the presence of 

ETA (0.05 mL) over 15 min, reaction was quenched with dilute HCl, washed with methanol (50 mL) and 

dried for 12 h. at 80 °C. b in toluene (150 mL) in the presence of ETA (0.1 mL). cg/mmol.h.bar. 

  

In the case of pro-catalyst XVIII /DMAC, varying the [Al]:[V] ratio at 20 °C led to an 

increase from about 3,000 g/mmol.h.bar (run 1) at 2000:1 to 16,000 g/mmol.h.bar (run 

3) at 6000:1. Further increases in the [Al]:[V] ratio were detrimental to the observed 

activity. In the case of MADC, similar trends were observed, with somewhat higher 

optimised observed activities (runs 7 and 8). In the case of pro-catalyst 5, activities 

using DMAC were unimpressive (< 1,000 g/mmol.h.bar), and so this system was not 

studied further. By contrast, 5/MADC exhibited activities comparable with those of 
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XVIII/MADC. Pro-catalyst 6/DMAC exhibited impressive activities which improved 

on increasing the [Al]:[V] ratio (runs 13 – 16). In the case of pro-catalyst 6/MADC, the 

activities peaked at a [Al]:[V] ratio of 6000:1 (run 19); use of ≤ 2000 equivalents of 

MADC led to a dramatic reduction in the observed activity (run 17).   

As mentioned in Chapter 2, calixarenes can be viewed as cyclic analogues of 

phenolates. Homden and co-workers observed that there was no beneficial effect when 

comparing the thia (XV) and sulfonyl (XVII) phenolate complexes (20,500 vs. 21,600 

g/mmol.h.bar, respectively, chapter 3, section 1.1).16 Whereas the above results have 

shown that when utilising the calixarene moieties, the presence of donating oxygens in 

the calixarene linkers increase the pro-catalysts observed activities.     

Complexes XVIII, 5 and 6 were also screened for their ability to polymerise -

caprolactone under various conditions, such as altering temperature (20–80 oC), time 

(12–72 hours) and varying the equivalent of benzyl alcohol (0 to 5 eq.). However, these 

systems, under the conditions employed (monomer:metal (400:1); 25–80 °C; 20 mL 

toluene) were inactive.  

Ring opening polymerisation by the coordination/insertion method (Chapter 1, section 

2.3.3) occurs via the -caprolactone monomer undergoing nucleophilic attack from the 

metal alkoxide species. However, the oxovanadium(V) systems discussed (XVIII, 5 and 

6) do not possess an alkoxide species. To try and overcome this, a co-initiator (e.g. 

benzyl alcohol) was added to the polymerisation solutions. The lack of polymer 

suggests that due to the anionic nature of the oxovanadium complexes, the alcohol is 

unable to produce the active alkoxide species through nucleophilic attack of the 

vanadium metal centre, which in turn prevents the initiation step of the polymerisation 

from occurring.  

3. Conclusion 
Following on from the work of Limberg on a oxovanadium thiacalix[4]arne complex, 

two new vanadyl complexes have been synthesised utilising sulfinyl and sulfonyl 

calix[4]arenes, producing a family of sulfur-bridged oxovanadium complexes. All 

complexes have been synthesised and fully characterised. They have then been 

investigated for their effectiveness as polymerisation catalysts for ethylene. The type of 

co-catalyst, molar equivalents of co-catalyst and temperature for polymerisation 

screening were investigated. MADC was proven to give the highest activities for all 
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three pro-catalysts. Elevated temperatures (60 oC) gave the highest activities and the 

lowest PDI values for the produced polymers. However, high temperatures also proved 

detrimental to polymer molecular weight, with the highest molecular weights being 

observed at 40 oC. The sulfonyl system gave the highest activities in comparison to the 

thia- and sulfinyl- calix[4]arene systems. This is thought to be due to the beneficial 

effect of the donating oxygen atoms present on the linkers between the phenolic units of 

the calixarene, stabilising the vanadium centre through O → V interactions. Under the 

conditions used, the sulfonyl pro-catalyst out-performed the [V(O)p-tert-

butylhexahomotrioxacalix[3]arene] (III), 44,400 vs. 37,300 g/mmol.h.bar, respectively. 

Unfortunately, under the conditions screened all three systems showed to be inactive 

for-caprolactone polymerisation.  
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1. Introduction 

As well as oxacalix[3]arenes proving themselves as beneficial chelating ligands for 

vanadium-based ethylene polymerisation catalysis, phenoxy-imine based systems have 

also shown very high activities (Chapter 1, section 1.6).1 Fujita and co-workers have 

proven that the ancillary phenoxy-imine (FI) ligand can produce highly active systems 

for various early transition metals and when exposed to different -olefins, which is 

discussed in numerous reviews.2  

Initial results showed group IV transition metal complexes bearing phenoxy-imine 

ligands displayed very high activities in the presence of MAO (550,000 g/mmol.h.bar), 

for ethylene polymerisation at room temperature and atmospheric ethylene pressure.3 

The FI zirconium(IV) complexes (Figure 29) exhibited activities 20 times greater than 

previously observed when employing the metallocene catalytic system, Cp2ZrCl2/MAO, 

under similar conditions.  

 

 

Figure 29. Generic formula for phenoxy-imine (FI) complexes. Typically M = Zr, Ti, Hf, 

V; R1, R2 and R3 = H, alkyl, aryl; X = Cl. 

 

These results have since been extended by Fujita and other groups, such as Coates et al., 

by altering substituents on the ligand framework,2, 4 supporting on MgCl2
1a, 2, 4b, 5 and 

utilising various other transition metals, such as titanium,1a-b, 2, 4b, 6  hafnium,2a,c-d, 4a, 7 

nickel8 and vanadium.1, 2a,d, 9  

Other -olefins have been investigated to see if early phenoxy-imine successes could be 

repeated beyond ethylene polymerisation, e.g. propylene4b, 6d, 7b, 10 and co-polymerising 

other -olefins with ethylene.4a,c, 6e, 11 The produced polypropylene had ultra-high 

molecular weight, with low polydispersities. It was also observed that the regio- and 
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stereo-chemistry of the polymer could be controlled by the substituents on the pro-

catalyst.7b 

 

1.1 Bridged phenoxy-imine ligands  

Due to the successes of the salicylaldiminato systems when utilised for olefin 

polymerisation catalysis, numerous groups have now built upon Fujita’s original work 

by producing bridged phenoxy-imine systems for numerous applications, including the 

possibility of observing useful cooperative effects.  
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Figure 30. Bridged phenoxy-imine ligands used within this study. 

 

The ligands L4H2 and L5H2 (Figure 30) have been previously utilised for their 

therapeutic applications treating disorders such as Parkinson’s and Alzheimer’s 

disease.12 However, Gibson et al. has utilised these ligands as well as the Schiff base 

systems L8H2-L
10H2, for the ring opening polymerisation of lactide by complexation 

with aluminium to prepare numerous initiators.13 Gibson and co-workers also utilised 

L8H2 and L9H2 in studies preparing group IV catalysts for the polymerisation of 

ethylene. The titanium complexes exhibited higher activities, upon activation with 

MAO, than their zirconium counterparts. However, overall the activities can be 

classified as high (2,600 g/mmol.h.bar).14 The oxygen-bridged chelating ligands, L6H2 

and L7H2, have also been scrutinised for their potential as Schiff base catalytic systems, 
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when complexed with group IV metals, for the polymerisation of -olefins.15 Oleinik et 

al. noted that even at elevated temperatures (≤ 70 oC) the dititanium(IV) pro-catalysts 

were capable of producing ultra-high molecular weight polyethylene. 

Recently, Bialek et al. reported various transition metal complexes of tetradentate and 

bidentate Schiff bases, based on the salicylaldehyde versions of L10H2 and L11H2 

(complexes XX and XXI, section 2.3, Figure 34), for the polymerisation of ethylene.16 

They noted that irrespective of the co-catalysts used, the vanadium and zirconium pro-

catalysts produced linear high molecular weight polyethylene. The support and 

immobilisation of 1,2-cyclohexylenebis(5-chlorosalicylideneiminato)vanadium(IV) pro-

catalyst on magnesium increased activities for ethylene homopolymerisation and its co-

polymerisation with 1-octene.17 

Redshaw and co-workers have also reported the use of bridged phenoxy-imine systems 

for the polymerisation ethylene.18 Vanadium(V) pro-catalysts bearing a C-capped 

tris(phenolate) ligand with an imine pendant arm were highly active (2,450-6,800 

g/mmol.h.bar), in the presence of DMAC and ETA, for the polymerisation of ethylene. 

These activities are analogues with those produced by various vanadium sulfur bridge 

phenoxy-imine complexes for the homopolymerisation of ethylene (1,050-11,130 

g/mmol.h.bar) and co-polymerisation of ethylene/1-hexene.19 A general feature of this 

chemistry is the adoption of mononuclear pro-catalysts. However, in a number of other 

polymerisation systems, beneficial cooperative effects are witnessed, leading to either 

improved catalytic performance or differing polymer properties.20 

The bridged phenoxy-imine ligand systems mentioned above (L1H2-L11H2) were 

prepared and then complexed with vanadium to produce various vanadium(III) pro-

catalysts. All complexes were screened for their ability to polymerise ethylene and -

caprolactone, to observe if the differing linkers or multinuclear vs. mononuclear systems 

would have an impact on either the pro-catalysts activity or the morphology of the 

produced polymers.   

2. Results and Discussion 

2.1 Ligand synthesis 

The phenoxy-imine ligands, L1H2-L
11H2 (Figure 30), were prepared in good yields by 

reacting either 3,5-di-tert-butyl-hydroxybenzaldehyde or salicylaldehyde with the 

corresponding amine following the literature procedure.14 It proved possible to obtain 
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X-ray quality crystals of the ligand L8H2, by crystallisation from chloroform/methanol. 

The molecular structure is shown in Figure 31, with selected bond lengths and angles 

given in the caption. 

 

Figure 31. View of molecule L8H2 indicating the atom numbering scheme. Thermal 

ellipsoids are drawn at the 50 % probability level. Selected bond lengths (Å) and angles 

(o): O(1)-C(1) 1.357(2), O(1)-H(10) 1.00(3), C(1)-C(2) 1.412(3), N(20)-C(21) 1.423(2), 

C(1)-O(1)-H(10) 105.8(16), O(1)-C(1)-C(6) 119.80(18), C(6)-C(1)-C(2) 119.41(17), 

N(20)-C(20)-C(2) 12.17(19). 

 

The molecule lies about a centre of symmetry at the mid-point of the C(27)-C(27’) 

bond, and thus has an ‘S-shape’ rather than curved in a ‘C-shape’ as it would when 

enfolding a metal centre. The phenolic hydrogen atom (in each half of the molecule) 

was refined freely and is directed towards the imino nitrogen with which it forms a 

hydrogen bond, O(1)-H(10)···N(20) 1.63 Å.  
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2.2 Vanadium(III) phenoxy-imine complexes 

 

 

Scheme 16. Synthesis of vanadium(III) phenoxy-imine pro-catalysts 7 and 8. 

 

The mononuclear complexes 7 and 8 were synthesised following the Wu et al. literature 

method used to produce phenoxy-imine vanadium(III) systems XXII and XXIII (Figure 

42).9c One equivalent of [VCl3.3THF], slight excess of the base triethylamine and the 

corresponding ligand, L4H2 or L5H2, were reacted in tetrahydrofuran at room 

temperature (Scheme 16). Volatile components were concentrated under vacuum, and 

the reaction solution filtered. The solution was layered with hexane and after prolonged 

standing the vanadium(III) complexes, 7 and 8 were formed. Dark red/black crystals of 

8 were suitable for X-ray diffraction studies (Figure 32). 
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Figure 32. View of molecule of [VCl(THF)L5] (8) indicating the atom numbering 

scheme. Hydrogen atoms and the minor disorder component have been omitted for 

clarity. Thermal ellipsoids are drawn at the 50 % probability level. Selected bond 

lengths (Å) and angles (o): V(1)-O(1) 1.926(4), V(1)-N(2) 2.107(5), V(1)-N(3) 2.092(5), 

V(1)-O(4) 1.917(5), V(1)-O(5) 2.127(4), V(1)-Cl(1) 2.353(2); O(1)-V(1)-N(2) 83.8(2), 

O(1)-V(1)-O(4) 96.41(19), O(1)-V(1)-Cl(1) 169.19(15), N(2)-V(1)-N(3) 89.7(2), O(5)-

V(1)-Cl(1) 88.77(13).  

 

Compound 2 crystallises with two independent V-complex molecules in the cell.  These 

are very similar in conformation, each with a six-coordinate vanadium atom with an 

octahedral coordination pattern.  Three of the N2O2 donor atoms of each L22- ligand are 

arranged in a meridional mode with the remaining O atom bonding normal to the 

meridional plane.  The two remaining sites are filled by a chloride ion (trans to the 

fourth donor atom) and a THF ligand (trans to an imido N atom).  In the folding of the 

L22- ligand around the metal centre, there is twisting of 71.7° about the N(2)-C(21) 

bond (and equivalent N(7)-C(71) bond in the second molecule) and 54.5° about the 
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N(3)-C(31) and its equivalent bond; the rotation between the two phenyl groups, as 

about C(22)-C(32), is 55°. 

There is also slight disorder in one of the THF ligands. Both THF ligands have a 

‘twisted’ conformation, with C(51,52) and C(102,103) out of the planes of the other 

atoms in each ring.  There are also one and a half solvent (THF) molecules in the 

asymmetric unit; the half-molecule is disordered about a centre of symmetry.  In the 

molecule of O(11), C(111) is the out-of-plane atom in an envelope conformation of this 

ring,  The disordered molecule of O(12) has a ‘twisted’ shape, with O(12) and C(124) 

on either side of the plane through C(121,122,123). Intermolecular contacts are at 

normal van der Waals’ distances. 

 

 

Scheme 17. Synthesis of vanadium(III) phenoxy-imine pro-catalysts 9 and 10. 

 

Complexes 9 and 10 were synthesised following the same procedure used to synthesise 

pro-catalysts 7 and 8. [VCl3.3THF], triethylamine and ligands L6H2 or L7H2, were 

reacted in tetrahydrofuran at room temperature (Scheme 17). Volatile components were 

concentrated under vacuum, and the reaction solution filtered. The solution was layered 

with hexane to form 9 and 10, respectively. Dark red precipitates were formed for 9 and 

10, which were characterised by various techniques, including; elemental analysis, mass 

spectrometry and Evans’ magnetic moment.21 
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Scheme 18. Synthesis of vanadium(III) phenoxy-imine pro-catalysts 11 and 12. 

 

Treatment of either L8H2 or L9H2 with excess of [VCl3.3THF] in tetrahydrofuran 

afforded, following work-up, dark red complexes 11 and 12 (Scheme 18). Crystals of 11 

suitable for X-ray crystallography were grown by slow diffusion of hexane into a THF 

solution of 11 at ambient temperature. The molecular structure is depicted in Figure 33, 

with selected bond lengths and angles given in the caption. 

Regardless of whether the ligands L8H2 or L9H2 were treated with one or two 

equivalents of [VCl3.3THF], the di-nuclear species was always obtained. The use of two 

equivalents of vanadium, rather than one, increased the obtained yields of the respective 

compounds.   
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Figure 33. View of molecule [{VCl2(THF)2}2L
8] (11) indicating the atom numbering 

scheme. Hydrogen atoms and the minor disorder component have been omitted for 

clarity. Thermal ellipsoids are drawn at the 50 % probability level. Selected bond 

lengths (Å) and angles (o): V-O(1) 1.870(2), V-N(2) 2.087(2), V-Cl(3) 2.3546(9), V-

O(5) 2.107, V-O(6) 2.117(2), V-Cl(4) 2.358(9), O(1)-V-N(2) 89.56(9), O(1)-V-O(5) 

92.12(9), O(1)-V-O(6) 177.31(9), N(2)-V-O(5) 177.87(9), N(2)-V-O(6) 92.60(9).  

 

Interestingly here, the ligand rather than acting in tetra-dentate fashion as observed 

previously,14 prefers to act as a bis-bi-dentate ligand, binding to a vanadium centre at 

either end of the ligand. The centro-symmetry is retained about the C(27)-C(27’) bond 

midpoint and there is rotation about the C(21)–N(2) bond to allow the coordination of 

the V centres. Six-fold coordination, in an octahedral pattern, is achieved by the ligation 

of two chloride ligands (mutually trans, Cl(3)-V-Cl(4) 176.20(4)o and two cis-THF 

molecules (opposite the iminophenolate N and O atoms, O(5)-V-O(6) 85.68(9)o at each  

V centre.  
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Scheme 19. Synthesis of vanadium(III) phenoxy-imine pro-catalyst 13 

 

The tert-butylated vanadium(III) species 13 (Scheme 19) was prepared following 

literature methods used to synthesise the known salicylaldehyde vanadium(III) 

counterpart (XX, Figure 34).22 Recently XX was used in studies by Bialek and co-

workers to investigate its efficiency towards ethylene polymerisation and co-

polymerisation (Chapter 4, section 1.1).16, 17 Complex 13 was formed in good yields (64 

%) as a dark red/orange powder.  

 

 

Scheme 20. Synthesis of vanadium(III) phenoxy-imine pro-catalyst 14 

 

Pro-catalyst 14 was prepared following the same procedure for 13. Like 13, the 

salicylaldehyde counterpart of 14 (XXI, Figure 34) has been used previously for 

polymerisation of ethylene.16, 17 Unfortunately single crystals of 14 suitable for X-ray 

diffraction were not obtainable, however 14 was isolated as a dark red/orange 

precipitate solid characterised by various techniques, viz mass spectrometry, IR and 

Evans’ magnetic moment.21 

 

2.3 Known vanadium(III) phenoxy-imine complexes 

As mentioned above, the salicyaldehyde counterparts of 13 and 14, XX and XXI, are 

known in the literature, and have been employed as catalysts for the polymerisation of 

ethylene. Both of these complexes were prepared and used within the study to enable 
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comparisons to be made between the tert-butyl species 13 and 14, to observe if steric 

issues regarding the large tert-butyl groups could affect the activity of the pro-catalysts. 

Vanadium(III) complexes bearing a phenoxy-imine ligand (XXII and XXIII, Figure 

34), previously prepared and screened for their ability to polymerise ethylene by Wu et 

al.,9c were also prepared to enable comparisons between bridged phenoxy-imine 

systems and phenoxy-imine complexes without a bridge.  

 

 

Figure 34. Literature examples of phenoxy-imines used within the study. 

 

2.4 Ethylene polymerisation  

2.4.1 Comparative studies 

Complexes 7-14 and XX-XXIII were screened for their ability to polymerise ethylene 

in the prescence of DMAC with the re-activating substance ETA. To enable 

comparisons to be made between the affect of the chelating ligands all pro-catalysts 

were screened under the same polymerisation conditions; 100 mL toluene, 30 min., 20 
oC and 4000 equivalents of co-catalyst [Al]:[M].  

Do to the formation of the dinuclear species (11 and 12) it was also possible to compare 

mono and dinuclear complexes to note if pro-catalysts 11 and 12 displayed a beneficial 

cooperative effect. As mentioned previously (Chapter 4, section 1.1) this ‘effect’ 

between two metal centres can result in improved activities in comparison to mono- 

nuclear counterparts (i.e. 1-10, 12-14 and XX-XXIII). 
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Table 13. Results for ethylene polymerisation runs using pro-catalysts 7-14 and XX-

XXIII.a 

Run 
Pro-

catalyst 

Yield PE 

(g) 

Activityb 

(× 103) 
Mw

c Mn
d PDIe 

1 7 2.10 8.4 217,000 49,300 4.4 

2 8 0.64 2.6 - - - 

3 9 0.34 1.4 536,000 136,000 3.9 

4 10 0.42 1.7 404,000 28,800 1.4 

5 11 2.38 9.5 445,000 181,000 2.5 

6 12 1.20 4.8 170,000 30,500 5.6 

7 13 2.41 9.6 - - - 

8 XX 1.14 4.6 - - - 

9 14 0.47 1.9 - - - 

10 XXI 0.25 1.0 - - - 

11 XXII 0.98 3.9 273,000 47,600 5.7 

12 XXIII 1.31 5.2 168,000 39,200 4.3 
aConditions: 0.5 μmol pro-cat., 1 bar ethylene; toluene (100 mL); ETA (0.1 mL); reaction quenched with 

dilute HCl, washed with methanol (20 mL) and dried for 12 h in a vacuum oven at 80 oC. b g/mmol.h.bar 

per V. c Weight average molecular weight. d Number average molecular weight. e Polydispersity index. 

All runs carried out at 25 oC, 30 min. and Al/V (Molar ratio) 4000.  

 

In the presence of DMAC and ETA, all the complexes, 7-14 and XX-XXIII, can be 

considered to be highly active for the polymerisation of ethylene.23 However, the 

activities (< 10,000 g/mmol.h.bar) are disappointing in comparison to other V pro-

catalyst/DMAC/ETA systems recently reported from the group.1, 24 The general trend 

observed in Table 13 is that the 3,5-tert-butyl pro-catalysts (even numbers), show 

higher activities than their salicylaldehyde precursors (odd numbers), indicating the 

steric hindrance of the tert-butyl group does not seem to effect the approach of the 

monomer. 

When comparing the chelating ligand backbone, it is evident that there is no significant 

difference in polymer molecular weight, polydispersity or activity values among these 

12 pro-catalysts (e.g. run 8 vs. run 12). Also, when comparing the di-nuclear pro-

catalysts (11 and 12, runs 5 and 6) to the mono-nuclear systems (7-10, 13, 14, XX-

XXIII, runs 1-4 and 7-12), it is concluded that no beneficial cooperative effect occurs 
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between the vanadium metal centre’s in the dinuclear species during the polymerisation 

of ethylene. 

 

2.4.2 Lifetime studies 

Lifetime studies were also conducted on the dinuclear pro-catalysts 11 and 12, and 

mono-nuclear species XXII and XXIII. Activities of the four pro-catalysts were 

observed over a 30 minute time period to observe the stability of each of the catalysts. It 

was hoped that comparisons could be made between the complexes to observe if the 

presence of a bridge on the phenoxy-imine ligand offered any stability during 

polymerisation. All the polymerisation runs were conducted in the presence of DMAC 

and the re-activator ETA, under the same conditions used for the pro-catalyst 

comparison runs.  

 

 

Figure 35. Lifetime studies comparing pro-catalysts 11, 12, XXII and XIII. 

 

The general observed trend for all the pro-catalysts was as the polymerisation time 

increased, the activities began to decrease. This appeared to be less dramatic for the di-

nuclear systems 11 and 12. The mono-nuclear complexes XXII and XXIII, showed 
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higher initial activities (20,000-30,000 g/mmol.h.bar) however, over the observed 30 

minute polymerisation time the activities decreased significantly.  

It was noted that there appeared to be little difference in observed activities for pro-

catalysts 7-14, indicating that varying the bridged chelating ligand present in the 

systems has no beneficial impact on activity. However, when comparing the bridged 

systems to their Schiff base counterparts there appears to be an increased  stability of 

the pro-catalysts during polymerisation (e.g. 11 vs. XVII, Figure 35).  

2.5 -Caprolactone polymerisation 

Complexes 7-14 and XX-XXII were also screened for their ability to 

polymerisecaprolactone. Pro-catalyst 12 was subjected to temperature, time, 

monomer and co-initiator studies. No polymer was observed at 20-40 oC. The 

polymerisation results for these studies are shown in Table 14.  

 

Table 14. -Caprolactone polymerisation data for complex 12.a 

 

Run 
Monomer / 

metal 

Equiv 

BnOH 
Time (h) Temp (oC) Conversionb(%) 

1 400 1 72 60 10 

2 400 1 72 80 70 

3 200 1 72 80 47 

4 600 1 72 80 - 

5 400 0 72 80 51 

6 400 5 72 80 - 

7 400 1 12 80 9 

8 400 1 24 80 11 

9 400 1 48 80 20 
aConditions: 20 mL of toluene; 2 mL of ε-caprolactone; benzyl alcohol taken from a 0.97 M solution in 

toluene; b calculated by 1H NMR. 

 

Complex 12 showed no observable activity at temperatures below 60 oC. At elevated 

temperatures (80 oC), there was a dramatic increase in conversion (run 2). This trend 

was mirrored in polymerisation time (runs 2 and 7-9). The longer the polymerisation 

time the higher the percentage conversion of -caprolactone. Interestingly, polymer was 
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observed in runs where no initiator was used (run 5), however when initiator was added 

to the polymerisation solution the conversion rate almost doubled (run 2).  

The conditions which produced the most poly(-caprolactone), i.e. 72 hours, 1 

equivalent of benzyl alcohol, 80 oC and 400 equivalents of monomer (run 2), where 

then used for comparative studies for the 12 pro-catalysts. [VCl3.3THF] was also 

screened under the same conditions to enable comparisons to be made between the 

affect of the chelating ligand on conversion and polymer morphology.  

 

Table 15. -Caprolactone screening results for pro-catalysts 7-14 and XX-XXII.a 

Run Pro-catalyst Conversionb(%) 
Mn calculatedc 

(g/mol) 

Mn measuredd 

(g/mmol) 
PDI 

1 VCl3.3THF 100 45.7 3.1 1.1 

2 7 57 26.0 10.8 1.4 

3 8 47 21.5 8.6 1.4 

4 9 24 10.9 7.9 1.2 

5 10 33 15.1 9.3 1.2 

6 11 48 21.9 10.1 1.4 

7 12 70 31.9 11.0 2.3 

8 13 24 11.0 5.9 1.2 

9 XX 94 42.9 4.8 1.1 

10 14 15 6.9 2.4 1.1 

11 XXI 3 1.4 4.6 1.4 

12 XXII 72 32.9 5.0 1.2 

13 XXIII 100 45.7 4.0 1.1 
aConditions: 20 mL of toluene; 2 mL of ε-caprolactone; benzyl alcohol taken from a 0.97 M solution in 

toluene; b calculated by 1H NMR; c × 103 dMn measured = 0.58 × Mn (GPC ×103).25 

 

All complexes formed only oligomers with low polydispersity (≤ 2.3), which suggests 

that these ‘polymerisations’ occurred without side reactions. Interestingly, only low 

molecular weight oligomers were obtained using these phenoxy-imine vanadium/ 

benzyl alcohol systems.  

The above results could possibly be described as disappointing, however they should be 

put into context by comparing them against recent work carried out by Mahha et al.26 It 

was noted that the heteropolyacids had sufficiently lower activities under inert nitrogen 

atmosphere, this was attributed to the reduction of the metal centres to V(IV) and/or 



Chapter 4: Vanadium(III) pro-catalysts bearing phenoxy-imine ligands  
 

95 
 

Mo(V). However, when dioxygen was added, the reduced species were re-oxidised to 

the active vanadium(V) and Mo(VI). Unlike the heteropolyacid systems, the above 

phenoxy-imine systems show similar conversion rates without the need to re-oxidise the 

deactivated species.  

Generally, the salicylaldiminato complexes 8, 10, 12, XX and XXIII appear to out-

perform their 3,5-t-butylated counterparts.  However, it is pro-catalysts XX and XXIII 

that appear to excel in conversion rates in comparison to the other complexes, which is 

understandable in terms of the steric demands from the-caprolactone monomer (the 

growing polymeric chain is bulkier than a tert-butyl group).  

3. Conclusion 

A new family of vanadium(III) diphenoxy-imine complexes have been synthesised and 

structurally characterised. All complexes were investigated for their effectiveness as 

ethylene polymerisation catalysts, in the presence of DMAC and ETA. All pro-catalysts 

were shown to be highly active for the polymerisation of ethylene under the utilised 

conditions.23 When these results are put into context with recent findings for vanadium-

based systems, they can be viewed as somewhat disappointing. There was no significant 

evidence that the presence of the bridged phenoxy-imine chelating ligand led to an 

increase in observed activities (XX 4,560 g/mmol.h.bar vs. XXIII 5,240 g/mmol.h.bar, 

Table 13). However, lifetime studies concluded that the bridged ligand systems did 

offer stability to the metal centre when compared to mono phenoxy-imine systems 

(Figure 35). 

The vanadium(III) phenoxy-imine complexes were also screened for their ability to 

polymerise -caprolactone. The conversion value was dictated by the steric hinderance 

on the vanadium(III) metal centre. The highest conversion (100 %) was observed for the 

vanadium(III) complex with the salicylaldehyde mono phenoxy-imine ligand. In 

general, the less sterically hindered salicylaldehyde complexes were able to produce 

higher conversion rates in comparison to the more sterically demanding tert-butyl 

complexes. All pro-catalysts produced oligomeric polymers with low polydispersity. 

However, the conditions required to achieve the obtained oligo(-caprolactone), i.e. 80 
oC and 72 hours, can be viewed as robust when compared to literature examples.27 
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1. Introduction 

As mentioned previously in Chapter 4, section 1, non-metallocene-based pro-catalysts for 

the oligomerisation/polymerisation of -olefins continue to attract considerable academic 

and industrial interest.1 Recent findings by Redshaw et al.2 and Fujita et al.,3 have shown 

that group V systems utilising various non-metallocene ligands can produce activities that 

can compete with the highly successful group IV metallocene complexes.  

Phenoxy-imine systems have been proven to be highly efficient chelating ligands systems 

for the polymerisation of ethylene and other -olefins. These findings have been 

expanded upon by numerous successes with a variety of transition metals, and variations 

of substitiuents on the phenoxy-imine ligand backbone.4 

1.1 Phenoxy-imine/imidazole and oxazole ligands 

 

 

Figure 36. Phenoxy-imine/imidazole ligand. Typically, R = H, alkyl; R’ = aryl. 

 

Phenoxy-imine/imidazole and oxazole type ligands can be viewed as phenoxy-imine 

derivatives, as they contain the fundamental phenol ring bound directly to an imine. 

Imidazole phenol type of compounds have drawn considerable attention for their 

desirable properties when utilised in numerous fields, such as coordination chemistry,5 

photoluminescence/pH sensing studies,6 biochemistry of metalloenzymes7 and medicinal 

chemistry.8  

Sun and co-workers have reported the use of 2-(1H-imidazol-2-yl)phenol ligands and 

their neutral zinc(II) complexes for their fluorescent and luminescent properties.9, 10 

Whereas Benisvy et al. have used the ligand system complexed with copper(II) to form a 

phenoxyl radical copper(II) complex.11 Sun et al. also used pyridine imidazole and 
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oxazole derivatives with nickel(II) to polymerise norbornene through predominately vinyl 

addition and minor ring-opening metathesis.12 These ligands have been complexed with 

nickel(II) and palladium(II) to study their hemi-lability efficiency as transition metal 

complexes.13 However, the use of such systems for the polymerisaton of -olefins is 

limited to imine bridged imidazole systems complexed with group IV metals, zirconium 

and titanium, to co-polymerise 1-hexene and ethylene.14 These pro-catalysts showed 

favourable results, with both high activities and high incoporation of the co-monomer. 

Due to the similarities in ligand structure when comparing phenoxy-imine/imidazole 

ligands to the ‘classical’ phenoxy-imine, and the great success of FI catalysts, it is 

surprising that there are few reports on phenoxy-imine/imidazole ligands used for 

polymerisation catalysis.  

As mentioned previously phenoxy-imine ligands have been utilised with various 

transition metals, including the group V metal vanadium. However, there are no other 

reports in the literature regarding any of the other group V metals. Prior to Redshaw2 and 

Fujita’s3 findings, vanadium systems were deemed to behave as catalysts with low 

activities when applied to the polymerisation of -olefins. We wish to duplicate this 

success by expanding upon Fujita and co-workers’ research, by synthesising niobium and 

tantalum complexes bearing phenoxy-imine/imidazole and oxazole chelating ligands and 

screen them for their efficiency as ethylene polymerisation catalysts.  

2. Results and Discussion 

2.1 Niobium(V) complexes supported by phenoxy-imine ligands 

tButBu

OH

N

PhO

NbCl5

toluene
15

L12H  

Scheme 21. Synthesis of niobium(V) complex 15.  



Chapter 5: Group V complexes bearing phenoxy-imine/imidazole and oxazole ligands 
 

102 
 

The phenoxy-imine ligand, L12H, and 1.1 equivalents of [NbCl5] were stirred in refluxing 

toluene overnight. The orange/red solution was cooled and once the volatile components 

were removed in vacuo, the residue was extracted in warm acetonitrile. After prolonged 

standing at ambient temperature, long yellow/brown needles were produced. The structure 

of complex 15 was determined by X-ray diffraction studies. A molecular structure of 15 is 

presented in Figure 37.    

 

Figure 37. View of a molecule of [L12NbCl4] (15) indicating the atom numbering 

scheme. Thermal ellipsoids are drawn at the 50 % probability level. Selected bond 

lengths (Å) and angles (o):  Nb(1)-O(1) 1.8746(13), Nb(1)-N(21) 2.2715(16), Nb(1)-

Cl(3) 2.3640(6), Nb(1)-Cl(4) 2.3224(5), Nb(1)-Cl(5) 2.3143(6), Nb(1)-Cl(6) 2.3401(6); 

O(1)-Nb(1)-N(21) 78.90(6), O(1)-Nb(1)-Cl(4) 165.11(4), N(21)-Nb(1)-Cl(5) 173.60(4). 

 

In 15 there are two independent molecules within the asymmetric unit, each niobium 

centre displaying a distorted octahedral environment, the main difference between the 

two molecules being in the rotation of the nitrogen-bonded phenyl ring of the 

diphenylether substituent −71.1° about N(21)-O(21) versus −80.8° about N(81)-C(81). 

The twist observed within the ether group is also significantly different between the two 

molecules; C(26)-O(260)-C(261)-C(262) 68.0(3)° and C(86)-O(860)-C(861)-C(862) 

45.8(5). Neither molecule forms any close intermolecular interactions. 
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2.2 Group V complexes supported by phenoxy-imine/imidazole ligands 

 

Scheme 22. Synthesis of complexes 16 and 17.  

 

Treatment of imidazole ligand, L13H2, with one equivalent of [NbCl5] afforded, after 

work up, dark red plates of [L13HNbCl4] (16). The same method was used to produce 

[L13HNbOCl2(MeCN)] (17) but using [NbOCl3] instead of [NbCl5]. Complex 17 was 

obtained as orange prisms. Crystals of 16 and 17 suitable for single crystal X-ray 

diffraction studies were grown from saturated acetonitrile solutions after prolonged 

standing at ambient temperature. Molecular structures of 16 and 17 are presented in 

Figures 38 and 39, respectively.   
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Figure 38. Molecular structure of [L13HNbCl4(MeCN)] (16(MeCN)) and hydrogen-

bonded acetonitrile molecule, indicating the atom numbering scheme. Thermal 

ellipsoids are drawn at the 50 % probability level. Hydrogen atoms have been omitted 

for clarity. Selected bond lengths (Å) and angles (o): Nb-O(1) 1.863(2), Nb-N(22) 

2.267(3), Nb-Cl(1) 2.3576(9), Nb-Cl(2) 2.3092(8), Nb-Cl(3) 2.3843(9), Nb-Cl(4) 

2.3083(9); O(1)-Nb-N(22) 79.09(9), Cl(1)-Nb-Cl(3) 172.09(4), Cl(4)-Nb-N(22) 

171.36(7), O(1)-Nb-Cl(2) 169.31(7). 
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Figure 39. Molecular structure of [L13HNbOCl2(MeCN)] (17(MeCN)) and hydrogen-

bonded acetonitrile molecule, indicating the atom numbering scheme. Thermal 

ellipsoids are drawn at the 50 % probability level. Hydrogen atoms have been omitted 

for clarity. Selected bond lengths (Å) and angles (o): Nb-O(1) 1.951(6), N-O(2) 

1.705(4), Nb-Cl(1) 2.3889(15), Nb-Cl(2) 2.3772(16), Nb-N(21) 2.234(4), Nb-N(61) 

2.493(5); O(1)-Nb-Cl(1) 154.24(19), Cl(2)-Nb-N(21) 163.66(12),  O(1)-Nb-O(2) 

100.8(2), O(2)-Nb-N(21) 96.37(17), O(2)-Nb-N(61) 177.38(18). 

 

In structures 16 and 17, the niobium centre is present in a distorted octahedral 

environment. The phenyl rings are rotated 83.2° about C(23)-C(31) and 2.9° about 

C(24)-C(51) from the imidazole ring in complex 16. The amino NH group is hydrogen 

bonded to an acetonitrile solvent molecule in both crystals. The rotation of rings in 17 

are quite different, viz -19.2° about C(12)-C(22), 45.1° about C(24)-C(56) and 66.9° 

about C25-C31).  The NH group here forms a hydrogen bond with O(2) of a 

neighbouring molecule, and an acetonitrile molecule in this crystal is coordinated to the 

niobium in one of two distinct orientations. 
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tButBu

OH

N NH 18
TaCl5

toluene

L13H2  

Scheme 23. Synthesis of tantalum(V) complex 18 

Following the complexation of the phenoxy-imine/imidazole ligand L13H2 with niobium, 

tantalum pentachloride was reacted with L13H2 using the same method described for the 

synthesis of pro-catalysts 16 and 17. The reaction yielded dark red crystals, suitable for 

X-ray analysis. Like in its [NbCl4] counterpart, complex 16, there is no acetonitrile 

molecule coordinated to the metal centre in pro-catalyst 18. However, there is an 

acetonitrile molecule linked to the NH of the imidazole ring through a hydrogen bond, 

which is also the case with complexes 16 and 17. 
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Figure 40. Molecular structure of [L13HTaCl5(MeCN)] (18(MeCN)) and hydrogen-

bonded acetonitrile molecule, indicating the atom numbering scheme. Thermal ellipsoids 

are drawn at the 50 % probability level. Hydrogen atoms have been omitted for clarity. 

Selected bond lengths (Å) and angles (o): Ta-O(1) 1.8706(13), Ta-Cl(3) 2.3136(5), Ta-

Cl(1) 2.3532(6), Ta-Cl(2) 2.3116(5), Ta-Cl(4) 2.3789(6), Ta-N(21) 2.2507(16); O(1)-Ta-

Cl(1) 93.17(4), Cl(2)-Ta-N(21) 93.43(4),  O(1)-Ta-N(21) 79.58(6), Cl(3)-Ta-Cl(4) 

94.64(2), O(1)-Ta-Cl(2) 170.83(5), N(21)-Ta-Cl(3) 171.23(4), Cl(1)-Ta-Cl(4) 172.89(2). 

 

Compounds 16 and 18 are isostructural, with similar coordination dimensions; the 

major difference in the imidazole ligand appears to be in the rotation about the C(2)-

C(21) bond in 16, -13.9° versus 1.4° about C(12)-C(22) in 18.  The phenyl rings are 

rotated 83.2° about C(23)-C(31) and 2.9° about C(24)-C(51) from the imidazole ring in 

16; the corresponding angles in 18 are 83.4 and 3.4°.   
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2.3 Niobium(V) complexes supported by phenoxy-imine/oxazole ligands 

 

 

Scheme 24. Synthesis of niobium(V) complexes 19 and 20.  

 

A similar procedure to that used to produce complexes 16 and 17 was utilised to 

synthesise pro-catalysts 19 and 20. The oxazole ligand L14H was reacted with one 

equivalent of [NbCl5] or [NbOCl3] in toluene to produce 19 and 20, respectively, in 

good yields. Extraction into warm acetonitrile and prolonged standing of the saturated 

solution at ambient temperature afforded red/orange crystals of 20 suitable for single 

crystal X-ray diffraction studies. The molecular structure of 20 is shown in Figure 41. 
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Figure 41. Molecular structure of [L14NbOCl2(MeCN)] (20(MeCN)) and hydrogen-

bonded acetonitrile molecule, indicating the atom numbering scheme. Thermal 

ellipsoids are drawn at the 50 % probability level. Hydrogen atoms have been omitted 

for clarity. Selected bond lengths (Å) and angles (o): Nb – O(1) 1.9319(16), Nb – O(2) 

1.6899(16), Nb-N(22) 2.2727(18), Nb-Cl(1) 2.3741(6), Nb-Cl(2) 2.3696(7); O(1)-Nb-

N(22) 78.78(7), O(1)-Nb-Cl(2) 152.50(5), N(22)-Nb-Cl(1) 166.02(5), O(2)-Nb-N(9) 

177.79(8). 

 

In complex 20 the structure is best described as square-based pyramidal with the 

acetonitrile molecule occupying a ‘second sphere’ position rather than the sixth 

coordination site trans to the oxo group [Nb – N(9) 2.558(2) Å]; the niobium centre lies 

0.3540(6) Å out of the O(1), N(22), Cl(1), Cl(2) mean-plane. The fixed conformation of 

the phenanthrene group in compound 20 restrains rotation about the C(23)-C(31) and 

C(24)-C(40) bonds to 6.3 and 2.5°, respectively; the phenolate ring is rotated -7.0° from 

the oxazole ring, giving a much more planar ligand than in the other crystals.  There is 

no hydrogen bonding in this crystal. 
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2.4 Ethylene polymerisation  

The phenoxy-imine/imidazole and oxazole niobium and tantalum complexes 15–20 

were screened for their ability to polymerise ethylene using DMAC in the presence of 

ETA as well as other co-catalysts such as, methylaluminium sesquichloride (MASC) 

and methylaluminium dichloride (MADC). Polymerisation runs were completed in the 

presence of the re-activating agent ETA. The effect of altering the quantity of ETA on 

pro-catalysts was also assessed. Runs were also conducted over a range of differing 

temperatures to assess the thermal stability of the six pro-catalysts. 

2.4.1 Varying co-catalyst and concentration 

The variation of the concentration of DMAC and MADC was investigated to try to 

obtain the optimum conditions for each pro-catalyst. To enable a fair comparison, all 

other conditions were kept constant, e.g. temperature, amount of solvent, time.   

 

Table 16. Varying aluminium:metal ratio and co-catalyst using pro-catalyst 17.a  

Run Co-catalyst [Al]:[Nb] Yield PE(g) 
Activityb  

(×103) 

1 DMAC 2000 0.070 0.56 

2 DMAC 4000 0.089 0.71 

3 DMAC 6000 0.090 0.72 

4 DMAC 8000 0.130 1.04 

5 MADC 2000 0.200 1.60 

6 MADC 4000 0.379 3.03 

7 MADC 6000 0.525 4.20 

8 MADC 8000 0.695 5.60 
a1 bar ethylene, 0.5 mol pro-catalyst, Schlenk tests carried out in toluene (150 mL), at room 

temperature,  in the presence of ETA (0.1 mL) for 15 min. Reaction was quenched with dilute HCl. The 

resulting polymer was washed with methanol (50 mL) and dried for 12 h. at 80 oC. bg/mmol.h.bar. 

 

Pro-catalysts, 15, 16 and 18-20, also showed very high activity in the presence of 

DMAC or MADC and ETA. The highest activities were observed when using MADC 

as co-catalyst, showing similar trends to that observed with pro-catalyst 17. It is evident 

there exists a dependence of catalytic activity on the [Nb or Ta]:[Al] concentration, 

which is far more dramatic for MADC than for DMAC. 8000 equivalents of co-catalyst 

were used for screening the remaining pro-catalysts to maximise polymer yields.   
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From Figure 42, it is clear that 8000 equivalents of co-catalyst to pro-catalyst is the 

preferred molar ratio for all the tested pro-catalysts. It was also noted that even though 

DMAC produced exceptionally high results for these metals, these activities were over 

shadowed by the surprisingly, even higher activities observed when using MADC as co-

catalyst. To fully investigate the effect of the choice of co-catalyst used, 

methylaluminium sesquichloride (MASC) was also used with pro-catalyst 20 under the 

same conditions as DMAC and MADC for comparison. 

 

Table 17. Testing of equivalent of co-catalyst using pro-catalyst 15, 16 and 18-20.a 

Run 
Pro-

catalyst 
Co-catalyst 

[Al]:[Nb or 

Ta] 

Yield 

PE(g) 

Activityb  

(× 103) 

1 15 DMAC 8000 0.085 1.40 

2 15 MADC 8000 0.195 3.10 

3 16 DMAC 8000 0.100 1.60 

4 16 MADC 8000 0.307 4.90 

5 18 DMAC 8000 0.072 1.20 

6 18 MADC 8000 0.200 3.20 

7 19 DMAC 8000 0.084 1.30 

8 19 MADC 8000 0.521 8.30 

9 20 DMAC 8000 0.089 1.40 

10 20 MADC 8000 0.382 6.10 
a1 bar ethylene, 0.25μmol pro-catalyst, Schlenk tests carried out in toluene (150 mL), at room 

temperature, in the presence of ETA (0.1 mL) for 15 min. Reaction was quenched with dilute HCl, 

washed with methanol (50 mL) and dried for 12 h at 20 oC. b g/mmol.h.bar. 
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Figure 42. Activities of pro-catalyst 20 with varying type of co-catalyst (Conditions; 50 

oC, 15 min., 0.25 mol pro-catalyst, 8000 eq. co-catalyst). 

 

The obtained results were as expected. MASC can be viewed as essentially a mixture of 

DMAC and MADC, so the activities produced when using MASC should produce 

activities between that observed when DMAC and MADC are utilised. After this 

investigation on the nature and concentration of the co-catalyst, the impact of the re-

activator, ETA, on polymerisation activity needed to be investigated. It has been noted 

by Gambarotta and co-workers that the use of re-activators does not always have a 

beneficial effect on catalytic activity.15  

When no ETA was used, the yield of polymer produced was halved compared with 

when ETA was used. Altering the amount of ETA used, i.e. 700 equivalents of ETA to 

pro-catalyst rather than 1400 equivalents had little effect on the overall activity of the 

catalyst.  

2.4.2 Temperature screening 

After screening pro-catalysts 15–20 for their behaviour towards co-catalyst variation, 

attention was then placed on investigating the influence of temperature on the activity of 

the six pro-catalysts. 
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Table 18. Testing of temperature using pro-catalyst 17.a 

Run Co-catalyst Temp (oC) Yield PE(g) 
Activityc  

(× 103) 

1a DMAC 30 0.036 0.58 

2a DMAC 40 0.067 1.07 

3a DMAC 50 0.090 1.14 

4b MADC 30 0.189 3.02 

5b MADC 40 0.332 5.31 

6b MADC 50 0.557 8.91 
a 0.5 mol pro-catalyst, 0.1 mL ETA), b0.25 mmol pro-catalyst, 1 bar ethylene Schlenk tests carried out in 

toluene (150 mL), 8000 eq. co-catalyst,  in the presence of ETA (0.05 mL) for 15 min. Reaction was 

quenched with dilute HCl. The polymer obtained was washed with methanol (50 mL) and dried for 12 h. 

at 80 oC.c g/mmol.h.bar. 

 

As can be deduced from Table 18, there is a direct relationship between reaction 

temperature and polymerisation activity. As the temperature increases, the activity of 

pro-catalyst 17 also increases. This pattern was also noted for pro-catalysts 15, 16 and 

18-20. (Table 19). The above table only shows initial results done in 10 oC increments, 

additional runs were completed in 20 oC increments up to 80 oC (Table 19, run 7). 

Interestingly, the systems employing MADC maintained their activity at elevated 

temperatures (80 oC). The trend for temperature is similar to that observed for co-

catalyst concentration; when MADC is used, i.e. higher activities are achieved in 

comparison to when DMAC is used.  
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Table 19. Temperature runs using pro-catalysts 15, 16 and 18-20.a  

Run Pro-catalyst Temp (oC) Yield PE(g) 
Activityb 

 (× 103)  

1 15 40 0.074 1.18 

2 15 50 0.213 3.41 

3 16 40 0.119 1.90 

4 16 50 0.350 5.60 

5 17 80 0.557 8.91 

6 18 40 0.206 3.30 

7 18 50 0.309 4.94 

8 19 40 0.215 3.18 

9 19 50 0.284 4.54 

10 20 40 0.436 6.98 

11 20 50 0.741 11.86 
a0.25 mol pro-catalyst, 1 bar ethylene Schlenk tests carried out in toluene (150 mL), 8000 eq. MADC,  

in the presence of ETA (0.05 mL) for 15 min. Reaction was quenched with dilute HCl, washed with 

methanol (50 mL) and dried for 12 h. b g/mmol.h.bar. 

 

At elevated temperatures, the oxydichloride based systems (e.g. 20, run 11) appear to 

out-perform their tetrachloride counterparts (e.g. 19, run 9). From these activities pro-

catalysts 15-20 can be classed as very highly active systems in the rating of catalyst 

efficiency (Chapter 1, section 1.5).16  

2.4.3 Lifetime studies 

Lifetime studies were carried out on pro-catalyst 17, using both DMAC and MADC, 

over extended periods of time (maximum 30 minutes). The aim was to establish the 

lifetime of the pro-catalysts using 17 as a reference point for the related complexes.  
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Table 20. Lifetime studies using pro-catalyst 17.a 

Run 
Co-

catalyst 

Temp. 

(oC) 

Time 

(min) 

Yield 

PE(g) 

Activityb   

(× 103) 
Mw

c Mn
d PDIe 

1 DMAC 40 5 0.067 1.61 1030000 371000 2.8 

2 DMAC 40 20 0.172 1.03 775000 228000 3.4 

3 DMAC 40 30 0.386 1.54 764000 164000 4.6 

4 MADC 60 5 0.228 5.47 555000 146000 3.8 

5 MADC 60 10 0.202 2.42 490000 200000 2.5 

6 MADC 60 30 0.615 2.46 496000 109000 4.6 

a0.5 mol pro-catalyst, 1 bar ethylene Schlenk tests carried out in toluene (150 mL), 8000 eq. co-catalyst,  in 

the presence of ETA (0.1 mL). Reaction was quenched with dilute HCl. The resulting polymer was washed 

with methanol (50 mL) and dried for 12 h. b g/mmol.h.bar. c Weight average molecular weight. d Number 

average molecular weight. ePolydispersity index.  

 

In the case of DMAC, there was no appreciable drop in activity over 15 min., whereas 

for MADC, the activity dropped by 50 % within 10 mins. In both cases, the 

polyethylene produced exhibited high molecular weights in the range of 490,000–

1,000,000 g/mol. Generally, the DMAC runs produced higher molecular weights than 

the MADC runs. However, the molecular weight distributions were quite broad (2.5–

4.6), indicating a lack of control over the polymerisation process. All the catalysts 

produced essentially linear high molecular weight polyethylene (melting points by 

DSC: 142 oC). Polymer samples from runs utilising DMAC contained some insoluble 

gel, whilst a number of the samples resulting from the use of MADC also proved too 

insoluble for GPC analysis. 1H NMR and IR spectroscopic end group analysis of the 

polymer showed no vinylic groups, rather data that were consistent with the polymer 

containing only saturated end groups.17 

3. Conclusion 
A series of group V systems bearing phenoxy-imine/imidazole and oxazole chelating 

ligands have been synthesised and structurally analysed. All pro-catalysts were 

investigated for their efficiency as ethylene polymerisation catalysts. The choice of co-

catalyst, either DMAC or MADC, was shown to have a dramatic effect on the activity 

of the screened pro-catalysts, as did the concentration of the chosen co-catalyst. In 

general, the highest activities were observed when the concentration of the co-catalyst 

MADC were increased. Although DMAC produced lower activities compared to when 
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MADC was employed, the molecular weights of the produced polymers were 

significantly greater.   

The complexes bearing either the phenoxy-imine/imidazole or oxazole ligands showed 

greater thermal stability in comparison to the more ‘classical’ phenoxy-imine 

niobium(V) pro-catalyst. All pro-catalysts were shown to be very highly active for the 

polymerisation of ethylene under the utilised conditions16 with activities exceeding 

those previously reported for known niobium -olefin polymerisation catalysts.18  

 

 

Figure 43. Comparing niobium pro-catalysts 17 and 20 with known literature examples 

of niobium-based pro-catalysts (VI, VII and VIII, Chapter 1, section 1.7) 
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Overview 
 

It is evident from previously reported works that group V based systems for -olefin 

polymerisation can potentially compete with the more well established metallocene-

based systems.1, 2 However, there are areas of group V metal catalysis which remain to 

be investigated, for instance the potential of group V metals for the application of ring 

opening polymerisation of lactones. More fundamentally to the progression of group V 

based polymerisation chemistry, is the exact identification of the active species in such 

systems. The identification of active species will lead to more specific catalyst design 

for both -olefin and lactone polymerisation, which in-turn could potentially lead to 

even greater catalytic activities.  

The study herein has also shown the importance in using the appropriate ancillary 

ligand and the impact the use of a chelating ligand can have on the overall activity of 

the metal-based catalytic system. Studies similar to this have been able to provide 

researchers with the knowledge to design structural features to obtain higher catalytic 

activities and desirable polymer properties. For example, Redshaw et al. noted that the 

use of oxacalix[3]arene ligands produced highly active vanadium(V) pro-catalysts for 

the polymerisation of ethylene.1 This lead to depleted calix[4]arenes (Chapter 2) and 

various sulfur bridged calix[4]arene ligands (Chapter 3) to be investigated for their 

potential as polymerisation catalysts. All these new vanadium-based systems showed 

high catalytic activities when used for ethylene polymerisation. Although these results 

did not surpass those previously reported by Redshaw’s oxacalix[3]arene vanadium 

system, they did highlight the importance of the linker group between the phenolic units 

of the calixarene. For example, the sulfonyl systems showed higher activities than their 

thia- and sulfinyl- calix[4]arenes counterparts (6>III>5>XVIII), which as for the 

oxacalixarene ligand set, was thought to be due donation from the oxygens of the -SO2- 

linkage. 

Due to the impressive results achieved by phenoxy-imine based pro-catalysts2 it was 

assumed that the vanadium systems (7-14) discussed in Chapter 4 would also exhibit 

high activities for ethylene polymerisation. However, although they can still be 

classified as ‘highly’ active systems, 3  they were disappointing when compared to 

previously reported pro-catalysts.1-4 When phenoxy-imine type ligands were applied to 
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other group V based systems, such as niobium (Chapter 5), the resulting pro-catalysts 

proved to be highly active catalysts for the polymerisation of ethylene. Indeed, the 

results for niobium greatly surpassed those previously reported by other groups. 5 

Although the observed activities (< 11,860 g/mmol.h.bar) do not alter the overall 

activity trend for group V metal-based catalysts (V>>Ta>Nb), it does show that with the 

use of an appropriate ancillary ligand set and under the right polymerisation conditions, 

group V-based systems based on either niobium or tantalum can also compete with 

those of vanadium. 

 

 

 

 

 

 

 

 

 

 

Figure 44. Observed catalytic activities for pro-catalysts investigated within this study.  
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1. General considerations 
All manipulations, unless otherwise stated, were carried out under an atmosphere of dry 

nitrogen using conventional Schlenk and cannula techniques or in a conventional 

nitrogen-filled glove box. Hexane, diethyl ether and tetrahydrofuran were heated at 

reflux over sodium and benzophenone. Toluene was heated at reflux over sodium. 

Dichloromethane and acetonitrile were heated at reflux over calcium hydride. All 

solvents were distilled and degassed prior to use. ε-Caprolactone was dried over 

calcium hydride, vacuum distilled and degassed prior to use. Deuterated solvents were 

dried over molecular sieves (4Å) (C6D6, CD3CN, (CD3)2CO) or phosphorous pentoxide 

(CDCl3) and were stored in young tap ampoules under an atmosphere of nitrogen and 

over activated molecular sieves (4Å) and degassed via several freeze-thaw cycles. IR 

spectra (Nujol mulls, KBr windows) were recorded on a Nicolet Avatar 360 FT IR 

spectrometer. Mass spectrometry data were recorded by the EPSRC National Mass 

Spectrometry Service Centre at Swansea University. Elemental analyses were 

performed by the elemental analysis service at London Metropolitan University. NMR 

spectra were performed at room temperature on a Varian VXR 400 S spectrometer at 

400 MHz (1H) and 105.1 MHz (51V) NMR, a Gemini 300 NMR spectrometer at 300 

MHz (1H) or a Bruker Avance DPX-300 spectrometer at 300 MHz. The 1H NMR 

spectra were calibrated against the residual protio impurity of the deuterated solvent. 

The 51V NMR spectra were calibrated against an external VOCl3/CDCl3 reference. 

Solution state magnetic susceptibility was measured by Evans’ method on a Varian 

VXR 400 S spectrometer instrument using a 5% d12-cyclohexane/95% d2-

dichloromethane solution.1 

Ethylene was passed over phosphorous pentoxide, 4Å molecular sieves and through a 

triethyl aluminium silicone oil suspension.  

X-Ray crystallography was conducted by D. L. Hughes or A. –M. Fuller (complex 15) 

on an Oxford Diffraction Xcalibur-3 CCD diffractometer equipped with a Mo-Kα 

radiation and graphite monochromator. Intensity data were measured by thin-slice ω- 

and φ-scans. Data were processed using the CrysAlis-CCD and –RED programs.2

Structures were determined by the direct methods, on F2, in SHELXL.3 Alternatively X-

ray crystallography was conducted by M. R. J. Elsegood on a Bruker SMART 1000 

CCD diffractometer using narrow slice 0.38 ω-scans (data collection), SAINT 

(integration and cell refinement), and SHELXTL (solution, refinement and graphics) at 
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the Chemistry Department at Loughborough University, or on the synchotron source at 

Daresbury Laboratory SRS Station 9.8 or 16.2 SMX using silicon 111 monchromated 

X-radiation.  

Gel permeation chromatography (GPC) measurements were performed at RAPRA 

Technology Ltd. Polymer melting points were determined using a TA Instruments DSC 

Q1000 using TA Universal Analysis software. Number and weight average molecular 

weights (Mn and Mw) for poly(ε-caprolactone) samples were measured on a Polymer 

Laboratories PL GPC 220 instrument equipped with PLgel 5 Å mixed C column eluted 

with tetrahydrofuran at 1.0 mL/min at 40 oC and calibrated using nine monodisperse 

polystyrene standards in the range 580–1 233 000 Da.  

2. Synthesis of known compounds 
p-tert-Butylcalix[4]arene, 1,3 depleted p-tert-butylcalix[4]arene (L1H2) and p-tert-

butylhexahomotrioxacalix[3]arene were synthesised according to reported literature 

procedures.4, 5, 6  

p-tert-Butylthiacalix[4]arene, p-tert-butylsulfinylcalix[4]arene (L2H4) and p-tert-

butylsulfonylcalix[4]arene (L3H4)  were gifts from Dr Hitoshi Kumagaya of the Cosmo 

oil company. 

Schiff base ligands L4H2 – L9H2 were prepared using the same method as Gibson and 

co-workers.7 Ligands L10H2 and L11H2 were made using the method stated by Oleinik et 

al.8 Phenoxy-imine (L12H) and phenoxy-imine/imidazole-type and oxazole ligands 

(L13H2 and L14H) were all prepared following literature procedures.9, 10  

The known complex [V(O)p-tert-butylhexahomotrioxacalix[3]arene] (III) was prepared 

using the same procedure as Redshaw et al.11 The anion [VOCl2(p-tert-

butylcalix[4,S]areneH2)]
– (XVIII) was synthesised using the same method as Limberg 

et al.12 The vanadium(III) schiff base complexes [V(N,N’- 

ethylenebis(salicylaldiminato))Cl(THF)] (XX) and [V(N,N’-o-

phenylenebis(salicylaldiminato))Cl(THF)] (XXI) were prepared using Gambarotta and 

co-workers method.13  

[V(Np-tolyl)(OR)3] (R = tBu or nPr) complexes were synthesised using slight variations 

of reported literature procedures.14 NbOCl3 was prepared according to a literature 

procedure by Gibson and co-workers.15 

All other chemicals were obtained commercially and used as received. 



Chapter 6: Experimental section 
 

125 
 

3. Vanadium(V) complexes bearing 1,3-depleted calix[4]arenes 
3.1 Synthesis of [VO(OnPr)L1]2 (1) 

 

tBu

tBu

tBu

tBu

tBu

tBu

tBu

tBu

V

O
OnPr

O

O O

O

V

O OnPr  

 

A solution of 1,3-depleted calix[4]arene, L1H2 (0.5g, 0.81 mmol) and [VO(OnPr)3] (1.1 

eq., 0.22 g, 0.90 mmol) was added to a solution of ligand L1H2 in 30 mL toluene. The 

reaction mixture was stirred at reflux for 12 hours. The reaction solution was cooled to 

room temperature and volatile components removed under vacuo. The solid residue was 

extracted into hot acetonitrile and after prolonged standing 1 obtained as dark red plates. 

Yield: 0.47 g, 39 %. Elemental analysis calcd (%) for V2C94H122O8: C 76.18, H 8.30; 

found C 76.03, H 8.21. MS (E.S.): m/z: 1379 [M–O-2nPr]+, 1297 [M+-VO]+, 1280 [M+-

O2H]+. IR (Nujol mull, KBr): 1596(m), 1364(m), 1261(s), 1203(m), 1096(s), 1016(s), 

977(w), 936(w), 891(w), 869(w), 799(s), 707(w), 626(m). 1H NMR (CDCl3): δ = 7.11 

(s, 1H, ArH), 7.06 (s, 3H,  ArH), 6.95 (s, 9H, ArH), 6.93 (s, 4H, ArH), 5.01–4.9 (m, 4H, 

OCH2CH2CH3), 4.60 (dd, 8H, 1J = 5.5, 2J = 13.7, ArCH2Ar), 3.60 (d, 4H, J = 14.1, 

ArCH2Ar), 3.30 (d, 4H, J = 13.7, ArCH2Ar), 1.90 (s, 3H, CH3CN), 1.70 (m, 4H, 

OCH2CH2CH3), 1.32 (s, 36H, C(CH3)3), 1.22 (s, 18H, C(CH3)3), 1.10 (s, 18H, 

C(CH3)3), 0.80 (t, 6H, J = 7.4, OCH2CH2CH3). 
51V NMR (CDCl3): = -533.32 (1/2 

140 Hz). 
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3.2 Synthesis of {[VO(OnPr)]2(-O)L1}2 (2) 

 

O

tBu

tBu

tBu

tBu

O

O

tBu

tBu

tBu

tBu

O V

V

V

V

O

O

O
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O

O

O
OnPr

nPrO
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The minor hydrolysed product of 1 was obtained as dark red clusters. Yield: 0.39g, 27 

%. Elemental analysis calcd (%) for V4C100H136O14: C 68.01, H 7.76; found C 68.12, H 

7.60. MS (E.S.): m/z: 1765 [M]+, 1722 [M+-nPr]+. IR (Nujol mull, KBr): 2248(w), 

1592(s), 1363(m), 1261(s), 1201(s), 1101(s), 1056(s), 1033(s), 1001(s), 973(s), 937(w), 

893(m), 869(m), 841(m), 799(s), 774(m), 709(w), 625(s). 1H NMR (CDCl3): δ = 7.25 – 

7.22 (m, 1H, ArH), 7.17-7.10 (m, 8H,  ArH), 7.0-6.90 (m, 8H, Ar-H), 6.19 (s, 2H, ArH), 

6.05(s, 1H, ArH), 5.47–5.14 (overlapping m, 8H, OCH2CH2CH3), 4.78 (dd, 4H, 1J = 

15.9, 
2J = 22.3, ArCH2Ar), 4.10 (dd, 4H, 1J = 15.6, 2J = 25.5, ArCH2Ar), 3.75 (t, 4H, J = 

14.6, ArCH2Ar), ), 3.60 (d, 4H, J = 14.8, ArCH2Ar), 1.95 (s, 3H, CH3CN), 1.80 (m, 8H, 

OCH2CH2CH3), 1.32 (s, 25H, C(CH3)3), 1.22 (s, 46H, C(CH3)3), 1.00 (t, 12H, J = 7.4, 

OCH2CH2CH3).  
51V NMR (CDCl3): = -625.71 (1/2 160 Hz). 
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3.3 Synthesis of [V(Np-tolyl)(OnPr)L1]2 (3) 

 

 

 

As described for 1 but using [V(Np-tolyl)(OnPr)3] (1.1 eq., 0.3 g, 0.90 mmol) and L1H2 

(0.50 g, 0.81 mmol) afforded yellow blocks. Yield: 0.57 g, 43 %. Elemental analysis 

calcd (%) for V2C108H136N2O6: C 78.14, H 8.26, N 1.69; found C 77.93, H 8.13, N 1.78. 

MS (E.S.): m/z: 1660 [M]+, 1600 [M+-OnPr]. IR (Nujol mull, KBr): 1595(s), 1363(w), 

1261(s), 1199(m), 1097(s), 1071(s), 1021(s), 959(w), 888(w), 868(w), 800(s), 772(s), 

649(w), 623(w). 1H NMR (CDCl3): δ = 7.79 (s, 2H, ArH), 7.71 (s, 1H, ArH), 7.10-7.05 

(overlapping m, 10H,  ArH),  6.90 (d, 4H, ArH), 6.74 (s, 4H, ArH), 6.70 (d, 3H, J = 8.2, 

ArH), 6.10 (d, 4H, J = 8.2, ArH), 5.00 (m, 4H, OCH2CH2CH3), 4.76 (dd, 8H, 1J = 13.1, 
2J = 22.5, ArCH2Ar), 3.50 (d, 4H, J = 12.2, ArCH2Ar), 3.10 (d, 4H, J = 12.9, 

ArCH2Ar), 2.22 (s, 6H, Np-tolylCH3), 1.96 (s, 3H, CH3CN), 1.85 (m, 4H, 

OCH2CH2CH3), 1.27 (s, 18H, C(CH3)3), 1.19 (s, 36H, C(CH3)3), 1.16 (s, 18H, 

C(CH3)3), 0.80 (t, 6H, J = 7.4, OCH2CH2CH3).  
51V NMR (CDCl3): = -486.89 (1/2 

335 Hz). 
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3.4 Synthesis of [V(Np-tolyl)(OtBu)L1]2 (4) 

 

tBu

tBu

tBu

tBu

tBu

tBu

tBu

tBu

V
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O O
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As described for 1 but using [V(Np-tolyl)(OtBu)3] (1.1 eq., 0.34 g, 0.90 mmol) and L1H2 

(0.50 g, 0.81 mmol) afforded yellow laths. Yield: 0.53 g, 40 %. Elemental analysis 

calcd (%) for V2C110H140N2O6: C 78.26, H 8.36, N 1.66 ; found C 78.17, H 8.26, N 

1.76. MS (E.S.): m/z: 1688 [M]+, 1632 [M–tBu]+,1558 [M-OtBu]+. IR (Nujol mull, 

KBr): 1596(m), 1361(m), 1316(w), 1260(s), 1170(s), 1093(s), 1014(s), 966(s), 868(w), 

838(w), 814(m), 796(s), 774(w). 1H NMR (CDCl3): δ = 7.65 (s, 1H, ArH), 7.56 (s, 1H, 

ArH), 7.15 (s, 2H, ArH),  7.05-6.82 (overlapping m, 10H,  ArH),  6.68 (s, 4H, ArH), 

6.52 (d, 4H, J = 8.1, ArH), 6.40 (d, 6H, J = 8.3, ArH), 4.70 (d, 4H, J = 15.3, ArCH2Ar), 

4.55 (d, 4H, J = 14.1, ArCH2Ar), 3.70 (overlapping m, 8H, ArCH2Ar), 2.38 (s, 6H, Np-

tolylCH3), 2.00 (s, 3H, CH3CN), 1.58–1.44 (overlapping m, 81H, C(CH3)3), 1.33 (s, 9H, 

C(CH3)3). 
51V NMR (CDCl3): = -602.19 (1/2 400 Hz), -608.08 (1/2 400 Hz). 
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4. Oxovanadium(V) complexes bearing sulfur-bridged calix[4]arenes 
4.1 Synthesis of anion [VOCl2(L

2H2)]
– (5) 

 

OH OOH

tBu

O
S

tButButBu

O
OS

SOO
S

V

O Cl
Cl

PPh4

 

 

Complex 5 was synthesized using the method of Limberg et al.12 employed for the 

anion [VOCl2(p-tert-butylcalix[4,S]areneH2)]
– (XVIII) using p-tert-

butylcalix[4,SO]areneH2, L2H4 (1.0 g, 1.27 mmol) with [PPh4][VO2Cl2] (0.70 g, 1.4 

mmol), affording blue crystals. Yield: 0.62 g, 77 %. Elemental analysis calcd (%) for 

C64.5H67Cl8O13PS4V (sample dried in vacuo for 12 h, - 2CH2Cl2): C 60.99, H 5.28; 

found C 60.78, H 5.19. MS (E.S.): m/z: 1259 [M]+,  1242 [M+-O]+, 1211 [M+-2OH]+. IR 

(Nujol mull, KBr): 1586 (w), 1261 (s), 1095(s), 1019(s), 966(m), 864(m), 800(s), 

725(w). 1H NMR (CDCl3, 300 MHz, 254 K)  = 8.81 (bs, 2H, OH), 8.16 (m, 4H, PPh4), 

8.13 (m, 4H, PPh4), 7.96–7.30 (b overlapping m, 12H, PPh4 + 8H, arylH), 1.26–1.19 (3 

× overlapping s, 36H, C(CH3)3). On cooling to 254 K, the tert-butyl region changed to 

two singlets : 1.28 (s, 18H, C(CH3)3), 1.22 (s, 18H, C(CH3)3). 
51V NMR (CDCl3): δ = -

364.36 ppm (w1/2 60 Hz).  
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4.2 Synthesis of anion [VOCl2(L
3H2)]

– (6) 

 

OH OOH

tBu

O2
S

tButButBu

O
O2S

SO2
O2
S

V

O Cl
Cl

PPh4

 

 

p-tert-Butylsulfonylcalix[4]arene, L3H4 (0.85 g, 1.0 mmol) with [PPh4][VO2Cl2] (0.54 

g, 1.1 mmol) were dissolved in 40 mL tetrahydrofuran and the reaction mixture was 

stirred for 48 h under nitrogen. The solvent was removed under reduced pressure, and 

the residue extracted into dichloromethane. Slow addition of a hexane layer and 

diffusion over 7 days produced prismatic purple crystals. Yield: 1.02 g, 65 %. Elemental 

analysis calcd (%) for C64H66Cl2O13PS4V (sample dried in vacuo for 24 h): C 58.05, H 

5.02; found C 57.85, H 4.96. Mass Spec (CI negative mode): 1253 (M+-2Cl); (EI) : 

1186 (M+-2Cl-VO). IR (Nujol mull, KBr): 2360(w), 1738(w), 1261(s), 1091(bs), 

1020(bs), 800(s), 723(w). 1H NMR (CDCl3, 300 MHz, 254 K)  = 8.81 (bs, 2H, OH), 

8.16 (m, 4H, PPh4), 8.13 (m, 4H, PPh4), 7.96–7.30 (b overlapping m, 12H, PPh4 + 8H, 

arylH), 1.26–1.19 (3 × overlapping s, 36H, C(CH3)3). On cooling to 254 K, the tert-

butyl region changed to two singlets : 1.28 (s, 18H, C(CH3)3), 1.22 (s, 18H, C(CH3)3). 
51V (CDCl3):  = -193.3 ppm (w1/2 835 Hz). 
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5. Vanadium(III) complexes bearing phenoxy-imine ligands 
5.1 Synthesis of  L4VCl(THF) (7) 

 

N N

O O

V

Cl

tBu

tBu tBu

tBu
THF

 

To a solution of L4H2 (0.5 g, 0.8 mmol) in THF (20 mL), [VCl3.3THF] (0.67 g, 1.8 

mmol) was added and this solution stirred for 10 minutes before adding Et3N (0.25 mL, 

1.8 mmol). The solution was stirred at room temperature for 4 hours and then 

concentrated to approximately 15 mL. The mixture was filtered and recrystallised by 

diffusion of hexane (10 mL) to yield complex 7 as a brown powder. Yield: 0.42 g, 47 

%. Elemental analysis calcd (%) for VC46H58ClN2O3: C 71.44, H 7.56, N 3.62; found C 

71.42, H 7.39, N 3.53. MS (EI, m/z): 700 [M-THF]+, 666 [M-Cl]+. IR (Nujol mull, 

KBr): 1946(w), 1808(w), 1741(w), 1610(s), 1589(s), 1553(m), 1535(s), 1303(m), 

1254(s), 1199(s), 1173(s), 917(w), 874(m), 843(s), 750(m), 661(w), 641(w). Magnetic 

moment μ = 2.70μB.  

 

5.2 Synthesis of  L5VCl(THF) (8) 

N N

O O

V

Cl

THF  

 

Procedure as described for complex 7 using L5H2 (0.5 g, 1.2 mmol), [VCl3.3THF] (0.97 

g, 2.6 mmol) and Et3N (0.36 mL, 2.6 mmol). Complex 8 was obtained maroon crystals. 

Yield: 0.56 g, 51 %. Elemental analysis calcd (%) for VC26H18ClN2O2 (baked dried 

under vacuo for 24 h – THF): C 65.49, H 3.80, N 5.87; found C 65.40, H 3.87, N 5.78. 

MS (EI, m/z): 476 [M-THF]+, 441 [M-Cl]+. IR (Nujol mull, KBr): 1605(s), 1537(s), 

1297(m), 1188(m), 1148(m), 924(w), 853(m), 757(m), 737(w), 722(w). Magnetic 

moment μ = 2.23μB. 
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5.3 Synthesis of  L6VCl(THF) (9) 

 

O

N N

V

Cl

THF

O OtBu

tBu tBu

tBu

 

 

Procedure as described for complex 7 using L6H2 (0.5 g, 0.8 mmol), [VCl3.3THF] (0.34 

g, 0.9 mmol) and Et3N (0.13 mL, 0.9 mmol). Complex 9 was obtained as a dark brown 

powder. Yield: 0.34 g, 54 %. Elemental analysis calcd (%) for VC46H58ClN2O4: C 

69.99, H 7.41, N 3.55; found C 69.81, H 7.55, N 3.35. MS (EI, m/z): 716 [M-THF]+, 

682 [M-Cl]+. IR (Nujol mull, KBr): 1769(w), 1609(s), 1574(s), 1552(m), 1534(s), 

1487(s), 1304(s), 1201(s), 1168(s), 940(m), 872(s), 754(s), 703(w), 647(w). Magnetic 

moment μ = 1.91μB.   

 

 

5.4 Synthesis of  L7VCl(THF) (10) 

 

 

Procedure as described for complex 7 using L7H2
 (0.5 g, 1.2 mmol), [VCl3.3THF] (0.97 

g, 2.6 mmol) and Et3N (0.36 mL, 2.6 mmol). Complex 10 was obtained as a dark brown 

powder. Yield: 0.43 g, 63 %. Elemental analysis calcd (%) for VC30H26ClN2O4: C 

63.78, H 4.64, N 4.96; found C 63.37, H 4.85, N 4.83. MS (EI, m/z): 492 [M-THF]+, 

457 [M-Cl]+. IR (Nujol mull, KBr): 1946(w), 1631(m), 1606(s), 1537(s), 861(s), 

726(w), 704(m), 659(m), 621(m). Magnetic moment μ = 1.78μB.  
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5.5 Synthesis of  L8[VCl2(THF)2]2 (11) 

 

 

Procedure as described for complex 7 using L8H2 (0.25 g, 0.6 mmol), [VCl3.3THF] 

(0.33 g, 0.9 mmol) and Et3N (0.12 mL, 0.9 mmol). Complex 11 was obtained dark red 

plates. Yield: 0.57 g, 65 %. Mp: 110 0C. Elemental analysis calcd (%) for 

V2C60H86Cl4N2O6: C 61.33, H 7.38, N 2.38; found C 61.24, H 7.28, N 2.45. MS (EI, 

m/z): 693 [M-V-4Cl-4THF]+. IR (Nujol mull, KBr): 1609(m), 1598(w), 1539(m), 

1410(w), 705(m), 687(w), 665(w). Magnetic moment μ = 1.90μB. 

 

 

5.6 Synthesis of  L9[VCl2(THF)2]2 (12) 

N

N

O

O

VCl2(THF)2

(THF)2Cl2V

 

 

Procedure as described for complex 7 using L9H2 (0.25 g, 0.6 mmol), [VCl3.3THF] 

(0.49 g, 1.3 mmol) and Et3N (0.18 ml, 1.3 mmol). Complex 12 was obtained as a red 

powder. Yield: 0.34 g, 61 %. Elemental analysis calcd (%) for V2C44H54Cl4N2O6: C 

55.59, H 5.73, N 2.95; found C 55.65, H 5.6, N 3.07. MS (EI, m/z): 468 [M-V-4Cl-

4THF]+. IR (Nujol mull, KBr): 1608(s), 1542(m), 1300(m), 926(w), 862(m), 756(m), 

739(m), 705(w), 664(w), 637(m). Magnetic moment μ = 2.18μB.  
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5.7 Synthesis of  L10VCl(THF) (13) 

 

 

 

Using the literature procedure as described for Complex XX13 using L10H2 (0.5 g, 1.0 

mmol), [VCl3.3THF] (0.41 g, 1.1 mmol) and Et3N (0.15 mL, 1.1 mmol). Complex 13 

was obtained as a dark brown/red powder. Yield: 0.37 g, 64 %. MS (EI, m/z): 576 [M-

THF]+. IR (Nujol mull, KBr): 2730(w), 1943(w), 1804(w), 1744(w), 1610(s), 1538(s), 

1412(m), 1363(m), 1336(m), 1303(m), 1200(m), 1173(s), 916(m), 750(s), 685(w), 

661(w). Magnetic moment μ = 1.83μB. 

 

5.8 Synthesis of  L11VCl(THF) (14) 

 

 

 

Using the literature procedure as described for Complex XXI13 using L11H2 (0.5 g, 0.9 

mmol), [VCl3.3THF] (0.37 g, 1.0 mmol) and Et3N (0.14 mL, 1.0 mmol). Complex 14 

was obtained as a dark brown/red powder. Yield: 0.24 g, 43 %. MS (EI, m/z): 624 [M-

THF]+, 590 [M-Cl]+. IR (Nujol mull, KBr): 1943(w), 1801(w), 1649(s), 1599(s), 

1580(s), 1532(s), 1427(m), 1383(s), 1362(s), 1311(m), 1198(m), 1171(s), 919(m), 

833(w), 754(s), 711(w), 642(w), 581(s). Magnetic moment μ = 1.91μB.  
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6. Niobium(V) complex bearing a phenoxy-imine ligand 
6.1 Synthesis of  L12NbCl4 (15) 

 
tButBu

O

N

O

Nb
Cl

ClCl

Cl

 

 

A solution of L12H (0.50 g, 1.25 mmol) and [NbCl5] (1.1 eq., 0.37 g, 1.38 mmol) in 30 

mL toluene were refluxed for 12 hours. The reaction mixture was cooled to room 

temperature and volatiles removed in vacuo. The solid residue was extracted into hot 

acetonitrile, after prolonged standing at ambient temperature dark yellow/brown plates 

of 15 were formed. Yield: 0.42 g, 53 %. Elemental analysis calcd (%) for 

NbC27H30Cl4NO2: C 51.05, H 4.76, N 2.20; found C 50.92, H 4.74, N 2.18. MS (E.S.): 

m/z: 600 [M-Cl]+, 528 [M+-2Cl]+, IR (Nujol mull, KBr): 1585(m), 1552(m), 1483(s), 

1365(s), 1329(w), 1202(w), 1175(w), 1157(w), 1104(s), 982(w), 923(w), 891(w), 

874(m), 846(w), 762(w), 752(m), 736(w), 688(m), 619(w). 1H NMR (CDCl3): δ = 8.44 

(s, 1H, CH=N), 7.80 (d, 1H, J = 2.2,  ArH), 7.50 (dd, 1H, 1J = 2.2, 2J = 7.9, ArH), 7.36–

7.30 (overlapping m, 3H, ArH), 7.25-7.18 (overlapping m, 1H, ArH), 7.13–7.06  

(overlapping m, 4H, ArH), 6.90 (dd, 1H, 1J = 1.3, 2J = 8.3, ArH), 1.52 (s, 9 H, C(CH3)3), 

1.34 (s, 9 H, C(CH3)3).  
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7. Group V complexes bearing phenoxyimine/imidazole-type ligands 
7.1 Synthesis of  L13HNbCl4 (16) 

 

O

NHN

tButBu

Nb
Cl

Cl

Cl

Cl

 

 

As described for 15 but using 2,4-di-tert-butyl-6-(4,5-diphenyl-imidazol-2-yl)phenol, 

L13H2 (1.0 g, 2.36 mmol) and [NbCl5] (1.1 eq., 0.69 g, 2.60 mmol). After prolonged 

standing at room temperature, deep red plates of 16 formed. Yield: 0.82 g, 56 %. 

Elemental analysis calcd (%) for NbC29H31Cl4N2O: C 52.91, H 4.75, N 4.26; found C 

53.00, H 4.62, N 4.34. MS (E.S.): m/z: 658 [M]+, 587 [M+-2Cl]+, 851 [M+-3Cl]+. IR 

(Nujol mull, KBr): 3279(m), 2289(w), 2257(w), 1587(m), 1568(w), 1508(m), 1444(s), 

1419(m), 1402(s), 1365(m), 1325(w), 1146(s), 924(m), 906(w), 877(s), 845(m), 766(m), 

732(w), 712(m), 698(s), 670(m) cm-1. 1H NMR (C6D6): δ = 9.87 (s, 1H, NH), 7.60 (dd, 

2H, 1J = 2.0, 2J = 15.7, ArH), 7.47 (m, 1H, ArH), 7.45 (d, 1H, J = 1.7, ArH), 7.39-7.35 

(overlapping m, 3H, ArH), 7.30 (m, 3H, ArH), 7.17 (m, 2H, ArH), 2.00 (s, 3H, 

CH3CN), 1.56 (s, 9 H, C(CH3)3), 1.43 (s, 9 H, C(CH3)3). 
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7.2 Synthesis of  L13HNbOCl2 (17) 

O

NHN

tButBu

Nb
O

Cl

Cl

 

 

As described for 15 but using [NbOCl3] (1.1 eq., 0.28 g, 1.30 mmol) and L13H2 (0.50 g, 

1.18 mmol) afforded orange prisms of 17. Yield: 0.41 g, 54 %. Elemental analysis calcd 

(%) for NbC31H34Cl2N3O2: C 57.78, H 5.32, N 6.52; found C 57.67, H 5.30, N 6.50. MS 

(E.S.): m/z: 602 [M-CH3CN+H]+, 551 [M+-Cl-O+H]+. IR (Nujol mull, KBr): 3572(w), 

3405(w), 3195(m), 2307(m), 2278(m), 1950(w), 1883(w), 1810(w), 1617(s), 1604(s), 

1589(s), 1575(m), 1523(m), 1500(m), 1404(s), 1364(s), 1326(m), 1201(m), 1184(m), 

1150(m), 1126(s), 1072(s), 975(m), 910(s), 890(m), 846(s), 769(m), 697(s), 668(m) cm-

1. 1H NMR ((CD3)2CO): δ = 7.88 (d, 1H, J = 2.4, ArH), 7.57 (d, 4H, J = 7.0, ArH), 7.40 

(overlapping m, 7H, ArH), 2.68 (s, 3H, CH3CN), 1.49 (s, 9H, C(CH3)3), 1.33 (s, 9 H, 

C(CH3)3). 

 

7.3 Synthesis of  L13HTaCl4 (18) 

 

O

NHN

tButBu

Ta
Cl

Cl

Cl

Cl

 

 

As described for 15 but using [TaCl5] (1.1 eq., 0.47 g, 1.30 mmol) and L13H2 (0.50 g, 

1.18 mmol) afforded dark red plates of 18. Yield: 0.50 g, 57 %. Elemental analysis 
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calcd (%) for TaC29H31Cl4N2O: C 46.67, H 4.19, N 3.75; found C 46.78, H 4.07, N 

3.81. MS (E.S.): m/z: 746.1 [M]+, 675.1 [M+-2Cl]. IR (Nujol mull, KBr): 3283(s), 

2291(w), 2259(w), 1597(m), 1509(s), 1403(s). 1326(m), 1286(s), 1177(s), 1147(s), 

1128(s), 971(m), 928(s), 906(m), 881(s), 846(s), 771(s), 734(m), 698(s) cm-1. 1H NMR 

(C6D6): δ = 8.517 (s, 1H, NH), 7.67-7.65 (overlapping m, 2H, ArH), 7.23-7.15 

(overlapping m, 7H, ArH), 7.04 (s, 1H, ArH), 6.80 (m, 1H, ArH), 6.67 (m, 1H, ArH), 

1.67 (s, 9 H, C(CH3)3), 1.23 (s, 9 H, C(CH3)3), 0.56 (s, 3H, CH3CN). 

 

8. Niobium(V) complexes bearing oxazole ligands 
8.1 Synthesis of  L14NbCl4 (19) 

 

O

NO

tButBu

Nb
Cl

Cl

Cl

Cl

 

 

As described for 15 but using [NbCl5] (1.11 eq., 0.35 g, 1.30 mmol) and 2,4-di-tert-

butyl-6-(phenanthro[9,10]oxazole-2-yl)phenol, L14H (0.50 g, 1.18 mmol) afforded 

red/orange crystals of 19. Yield: 0.56g, 72 %. Elemental analysis calcd (%) for 

NbC29H28Cl4NO2: C 53.03, H 4.31, N 2.33; found C 53.12, H 4.22, N 2.24. MS (E.S.): 

m/z: 657 [M]+, 622 [M+-Cl]+ , 550 [M+-3Cl]+. IR (Nujol mull, KBr): 2297(w), 2271(w), 

1601(w), 1572(w), 1515(m), 1364(m), 1316(w), 1291(w), 1035(s), 996(m), 958(s), 

922(m), 885(m), 851(m), 774(m), 752(s), 731(m), 686(m). 1H NMR ((CD3)2CO): δ = 

8.90 (t, 2H, J = 8.4, ArH), 8.6–8.54 (overlapping m, 1H, ArH), 8.47-8.46 (overlapping 

m, 1H, ArH), 8.20 (d, 1H, J  = 2.5, ArH), 8.10 (d, 1H, J = 2.5, ArH),  7.84-7.68 

(overlapping m, 3H, ArH), 7.50 (d, 1H, J = 2.5, ArH), 3.68 (s, 3H, CH3CN), 1.46 (s, 

9H, C(CH3)3), 1.35 (s, 9 H, C(CH3)3). 
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8.2 Synthesis of L14NbOCl2 (20) 

O

NO

tButBu

Nb
O

Cl

Cl

 

 

As described for 15 but using [NbOCl3] (1.1 eq., 0.20 g, 0.91 mmol) and L14H (0.35 g, 

0.83 mmol) afforded orange/yellow wedge crystals. Yield: 0.34g, 64 %. Elemental 

analysis calcd (%) for NbC31H31Cl2N2O3 (sample dried in vacuo for 12 h, 20 - MeCN): 

C 57.83, H 4.69 N 2.33; found C 57.91, H 4.58, N 2.51. MS (E.S.): m/z: 603 [M-

CH3CN+H]+, 566 [M+-CH3CN-Cl]+. IR (Nujol mull, KBr): 22969(w), 2270(w), 

1601(w), 1571(w), 1515(m), 1315(w), 1291(w), 1201(m), 1157(m), 958(s), 922(m), 

885(m), 851(m), 751(s), 731(s). 1H NMR ((CD3)2CO): δ = 9.0 (t, 2H, J = 8.1, ArH), 8.6 

(d, 1H, J = 7.8, ArH), 8.54-8.49 (overlapping m, 1H, ArH), 8.20 (dd, 1H, 1J = 0.5, 2J = 

2.5, ArH), 7.95-7.73 (overlapping m, 4H, ArH), 7.62 (d, 1H, J = 2.4, ArH), 2.68 (s, 6H, 

2CH3CN), 1.54 (s, 9H, C(CH3)3), 1.44 (s, 9 H, C(CH3)3).  
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9. Polymerisation Procedure 
9.1 Ethylene polymerisation 

9.1.1 Schlenk line procedure - Ethylene polymerisations were carried out in flame dried 

glass 500 mL flasks with mechanical stirrer and temperature controller. The flask was 

evacuated and filled with ethylene gas at 1 bar pressure, which was maintained 

throughout the polymerisation. Then pre-dried and degassed toluene, required amount 

of co-catalyst and re-activating agent (ETA) were added via glass syringe. The solution 

was allowed to stir for approximately 10 min to allow ethylene saturation and the 

correct temperature to be acquired using a water bath. The pro-catalyst was injected as a 

toluene solution (prepared immediately prior to use). The polymerisation was quenched 

by acidified methanol. The polymer was collected by filtration and dried overnight at 80 
oC. 

 

9.1.2 Silica supported procedure – using method referred to as pore-filling or incipient 

wetness to produce free flowing powders that are easy to test.16 The powders consist of 

a known quantity of pro-catalyst mixed with silica to produce the silica-catalyst. 1g of 

the supported catalyst was used in the test. The slurry polymerisation tests using the 

silica-catalyst were carried out at 70 oC for 1 h, at 15.2 bar ethylene pressure and used 

TiBAL as a scavenger.   

 

-Caprolactone procedure  

-Caprolactone polymerisations were carried out in Schlenk tubes, equipped with 

magnetic stirrer bars, previously dried in an oven at 170 oC for 12 h. and flamed dried 

under vacuum immediately before use. In a typical polymerisation run, 20 mL of dry 

toluene was transferred into the Schlenk tube with the required amount of pro-catalyst. 

The solution was stirred and maintained at the desired temperature by the aid of an oil 

bath. Benzyl alcohol was then added from a 0.97 M solution in toluene. After 

approximately five minutes the polymerisation was started by the addition of the 

required equivalent of -caprolactone.  

The polymerisation was quenched by precipitating the polymer in methanol. The 

polymer was then collected via filtration and dried under vacuo.  
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Table 21. Crystallographic data for complexes 1-4 

Compound 1 2 3 4 

Formula C94H118O8V2, 4(C2H3N) C100H136O14V4, 2(C2H3N) C108H136N2O6V2, 6(C2H3N) 3(C110H140N2O6V2),11(C2H3N) 

Formula weight (g/mol) 1642.0 1848.0 1906.39 5515.95 

Crystal system Triclinic Monoclinic Triclinic Triclinic 

Space group P-1 P21/n P-1 P-1 

Unit cell dimensions     

a (Å) 12.5484(4) 12.3632(7) 12.0454(3) 12.1955(8) 

b (Å) 19.6001(6) 21.7638(10) 13.2444(2) 27.1953(19) 

c (Å) 20.2006(9) 19.9295(12) 19.3366(4) 50.486(4) 

α (º) 86.074(3) 90 101.5039(12) 78.5872(14) 

β (º) 77.914(3) 106.105(6) 103.0898(9) 83.260(2) 

γ (º) 80.074(3) 90 102.2226(11) 81.467(2) 

V (Å3) 4782.8(3) 5152.0(5) 2835.69(10) 16164.4(19) 

Z 2 2 1 2 

Calculated density (Mg.m3) 1.140 1.191 1.116 1.133 

Absorption coefficient (mm-1) 0.251 0.411 0.220 0.228 

Transmission factors (max., min.) 1.034 and 0.976 1.024 and 0.966 1.00 and 0.882 1.00 and 0.811 

Crystal size (mm) 0.23 × 0.20 × 0.05 0.20 × 0.17 × 0.05 0.19 x 0.15 x 0.1 0.18 x 0.09 x 0.03 

2θmax (°) 22.5 22.5 25.0 20.00 

Reflections measured 50213 58567 9970 74299 

Unique reflections, Rint 12464, 0.100 6711, 0.180 9970, - 25893, 0.131 

Reflections with F2 > 2σ(F2) 5860 3440 9355 12761 

Number of parameters 1064 560 1284 1789 

R1, wR2 [F2 > 2σ(F2)] 0.047, 0.079 0.066, 0.139 0.068, 0.147 0.168, 0.389 

R1, wR2 (all data) 0.122, 0.087 0.141, 0.156 0.078, 0.154 0.300, 0.342 

GOOF 0.755 0.921 1.136 1.023 

Largest difference peak and hole (e Å-3) 0.51 and -0.28 0.55 and -0.38 0.40 and -0.40 0.77 and -0.50 
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Table 22. Crystallographic data for complexes 5, 6, L8H2 and 8 
Compound 5 6 L8H2 8 

Formula C64H66Cl2O9PS4V·2CH2Cl2 C64H66Cl2O13PS4V·3CH2Cl2 C44H56N2O2 2(C30H26ClN2O3V),1.5(C4H8O) 

Formula weight (g/mol) 1429.0 1578.0 644.9 1205.99 

Crystal system Triclinic Triclinic Monoclinic Monoclinic 

Space group P1 P1 P21/a P21/a 

Unit cell dimensions     

a (Å) 11.7107(2) 13.7043(16) 9.6297(3) 17.8598(14) 

b (Å) 14.4377(4) 16.4065(19) 12.1792(4) 10.7750(8) 

c (Å) 22.2159(5) 17.809(2) 16.2276(6) 31.054(2) 

α (º) 89.098(2) 85.5859(16) 90 90 

β (º) 77.160(2) 76.1046(16) 100.851(4) 101.730(4) 

γ (º) 75.928(2) 74.8501(16) 90 90 

V (Å3) 3549.43(14) 3751.5(7) 1869.18(11) 5881.2(7) 

Z 2 2 2 4 

Calculated density (Mg.m3)   1.146 1.369 

Absorption coefficient (mm-1) 0.558 0.608 0.069 0.47 

Transmission factors (max., min.)   1.118 and 0.904 0.7456 and 0.6039 

Crystal size (mm)   0.41 x 0.30 x 0.09 0.2 x 0.16 x 0.08 

2θmax (°) 22.5 26.42 25.0 20.00 

Reflections measured 39262 31727 19826 27495 

Unique reflections, Rint 9273, 0.086 15209, 0.029 3295, 0.106 5438, 0.111 

Reflections with F2 > 2σ(F2) 5434 1093 19826  

Number of parameters   221 737 

R1, wR2 [F2 > 2σ(F2)] 0.065 0.068 0.5 0.065 

R1, wR2 (all data) 0.174 0.219 0.096 0.127 

GOOF   0.926 1.037 

Largest difference peak and hole (e Å-3)   0.16 and -0.15 0.39 and -0.30 
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Table 23. Crystallographic data for complexes 11 and 15-17 
Compound 11 15 16 17 

Formula C60H86Cl4N2O6V2 NbCl4N(C6H4OC6H5)(CHC6H2O(C4H9)2) C29H31Cl4N2NbO.C2H3N C31H34Cl2N3NbO2.3(C2H3N) 

Formula weight (g/mol) 1175.0 635.23 699.3 767.6 

Crystal system Orthorhombic Triclinic Orthorhombic Orthorhombic 

Space group Pbca P-1 Pbca Pbca 

Unit cell dimensions     

a (Å) 15.4851(3) 12.1954(2) 12.1825(3) 26.4887(6) 

b (Å) 12.3449(2) 12.6842(2) 19.4186(5) 14.1088(2) 

c (Å) 33.0323(6) 18.5633(4) 26.5342(5) 20.7568(5) 

α (º) 90 89.5122(14) 90 90 

β (º) 90 86.343(2) 90 90 

γ (º) 90 86.3393(14) 90 90 

V (Å3) 6314.5(2) 2859.81(9) 6277.1(3) 7757.3(3) 

Z 4 4 8 8 

Calculated density (Mg.m3) 1.236 1.475 1.480 1.314 

Absorption coefficient (mm-1) 0.512 0.819 0.753 0.487 

Transmission factors (max., min.) 1.020 and 0.982 1.000 and 0.853 1.081 and 0.912  

Crystal size (mm) 0.43 x 0.41 x 0.09 0.31 x 0.22 x 0.15 0.24 x 0.15 x 0.015 0.33 x 0.18 x 0.18 

2θmax (°) 25 30° 25.0 25.0 

Reflections measured 104961 56330 79369 104864 

Unique reflections, Rint 5557, 0.072 16648 (0.0472) 5518, 0.143 6819, 0.076 

Reflections with F2 > 2σ(F2) 4572 13655 3062 5021 

Number of parameters 339 631 362 441 

R1, wR2 [F2 > 2σ(F2)] 0.061  0.034, 0.041 0.064, 0.135 

R1, wR2 (all data) 0.113  0.099, 0.047 0.089, 0.141 

GOOF   0.743 1.193 

Largest difference peak and hole (e Å3) 0.39 and -0.31  0.90 and -0.58 0.83 and -1.26 
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Table 24. Crystallographic data for complexes 18 and 20 
Compound 18 20 

Formula C29H31Cl4N2TaO3.C2H3N C31H31Cl2N2NbO3 

Formula weight (g/mol) 787.4 643.4 

Crystal system Orthorhombic Triclinic 

Space group Pbca P-1 

Unit cell dimensions   

a (Å) 12.20751(12) 9.2530(3) 

b (Å) 19.4381(2) 9.6926(3) 

c (Å) 26.55212(3) 16.9423(4) 

α (º) 90 91.042(2) 

β (º) 90 102.538(2) 

γ (º) 90 100.719(2) 

V (Å3) 6300.55(11) 1454.64(7) 

Z 8 2 

Calculated density (Mg.m3) 1.660 1.469 

Absorption coefficient (mm-1) 3.858 0.632 

Transmission factors (max., min.) 1.204 and 0.650 1.087 and 0.896 

Crystal size (mm) 0.42 x 0.22 x 0.06 0.30 x 0.18 x 0.12 

2θmax (°) 30.0 27.5 

Reflections measured 119629 24291 

Unique reflections, Rint 9179, 0.058 6659, 0.053 

Reflections with F2 > 2σ(F2) 6566 5231 

Number of parameters 362 353 

R1, wR2 [F2 > 2σ(F2)] 0.021, 0.037 0.032, 0.080 

R1, wR2 (all data) 0.040, 0.039 0.046, 0.082 

GOOF 0.893 0.983 

Largest difference peak and hole (e Å-3) 0.70 and -0.56 0.73 and -0.55 
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