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Quantum invariants of periodic three-manifolds
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Abstract Let p be an odd prime and r be relatively prime to p. Let
G be a finite p–group. Suppose an oriented 3–manifold M̃ has a free
G–action with orbit space M . We consider certain Witten–Reshetikhin–

Turaev SU(2) invariants wr(M) in Z[ 1
2r
, e

2πi
8r ]. We will show that wr(M̃)

≡ κ3 def (M̃→M)(wr(M))|G| (mod p). Here κ = e
2πi(r−2)

8r , def denotes
the signature defect, and |G| is the number of elements in G . We also
give a version of this result if M and M̃ contain framed links or colored
fat graphs. We give similar formulas for non-free actions which hold for
a specified finite set of values for r .
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1 Introduction

Assume p is an odd prime, and that r is relatively prime to p, and r ≥ 3. Let
G be a finite p–group, with |G| elements. We let ξa denote e

2πi
a .

Let M be an oriented closed 3–manifold with an embedded r–admissibly col-
ored fat trivalent graph J . We include the case that J is empty. We consider the
Witten–Reshetikhin–Turaev SU(2) invariants wr(M,J) ∈ Rr = Z[ 1

2r
, ξt] [18,

13] where t is 4r if r is even and 8r if r is odd. Here wr(M,J) is the version of
the WRT–invariant which is denoted I−ξ4r(M,J) by Lickorish [9], assuming µ
(also known as η in this paper ) is chosen to be

(

ξ2r − ξ−1
2r

)

/(i
√
2r). In terms of

the Kirby–Melvin [7] normalization τr , one has wr(M) = τr(M) /τr(S
1 × S2).

Let M̃ be an oriented closed 3–manifold with a G action. The singular set of
the action is the collection of points whose isotropy subgroup is non-trivial. Let
J̃ be an equivariant r–admissibly colored fat graph J̃ in M̃ which is disjoint
from the singular set. The action is assumed to preserve the coloring and
thickening of J̃ . Burnside’s theorem asserts that the center of a finite p–group
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is non-trivial. It follows that the quotient map M̃ → M̃/G can be factored as
a sequence of Zp (possibly branched) covering maps. It follows that the orbit
space is also a closed 3–manifold with an r–admissibly colored fat graph, the
image of J̃ . In this case, we will denote the orbit space of M̃ by M , and the
orbit space of J̃ by J . We find a relationship between wr(M,J), and wr(M̃ , J̃).

When the action is free, a signature defect of M̃ →M may be defined as follows.
One can arrange that some number, say n, of disjoint copies of M̃ →M form
the boundary of a regular G covering space of a 4–manifold W , denoted by
W̃ . Then define

def (M̃ →M) =
1

n

(

|G| Sign(W )− Sign(W̃ )
)

.

The defect can be seen to be well-defined using Novikov additivity together
with that fact the signature of an m–fold unbranched covering space of a closed
manifold is m times the signature of the base manifold. This generalizes the
definition of the signature defect for a finite cyclic group [5, ]. As Ω3(BG) =
H3(BG), and H3(BG) is annihilated by multiplication by |G|, n can be taken
to be |G| in the above definition. For this definition, it is not necessary that G
be a p–group. We remark that 3 def (M̃ → M) is an integer. We will give a
proof in section 3.

We will be working with congruences modulo the odd prime p in the ring of
all algebraic integers (over Z) after we have inverted 2r , where r is relatively
prime to p. Let κ denote ξ8ξ

−1
4r .

Theorem 1 If G acts freely, then

wr(M̃, J̃) ≡ κ3def (M̃→M)(wr(M,J))|G| (mod p).

Our equations in Theorems 1, 2 and 3 take place in Rr/pRr . We may think of
Rr as polynomials in ξt with coefficients in 1

2rZ of degree less than φ(t). When
multiplying such polynomial, one should use the t-th cyclotomic polynomial to
rewrite the product as a polynomial in degree less than φ(t). Such a polynomial
lies in pRr if and only if each of its coefficients maps to zero under the map
1
2r
Z → Zp given by reduction modulo p. For example we consider Theorem 1

with r = 5 applied to the free Z3 action on S3 with quotient L(3, 1). This
action has defect 2/3. In this case t = 40, and the cyclotomic polynomial tells
us to reduce to polynomials of degree less than 16 via ξt

16 = ξt
12−ξt8+ξt4−1.

We have:

w5(L(3, 1)) =
3 ξt + 2 ξ3t − ξ5t − 4 ξ7t + 4 ξ9t + ξ11t − 2 ξ13t − 3 ξ15t

10
,
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w5(S
3) = η =

ξt + ξ3t − 2 ξ5t + 3 ξ7t + 3 ξ9t − 2 ξ11t − 4 ξ13t + ξ15t
10

w5(S
3)− κ2(w5(L(3, 1)))

3 = 3
− ξ5t + 2 ξ7t + 2 ξ9t − 2 ξ11t − 2 ξ13t + ξ15t

20

We note that Rr/pRr = Z[ξt]/pZ[ξt]. Let f be the smallest positive integer
such that pf ≡ 1 (mod t). Z[ξt]/pZ[ξt] is the direct sum of φ(t)/f fields each
with pf elements [17; page 14]. It is important that the pth power map is the
Frobenius automorphism of Rr/pRr . So given wr(M̃ , J̃) and def (M̃ → M),
we can always solve uniquely for wr(M,J). Theorem 1 by itself will provide
no obstruction to the existence of a free G–action on a given manifold M̃ .

If wr(M̃ , J̃) 6= 0 for an infinite collection of r prime to p then the values of
wr(M̃ , J̃), and wr(M,J) for this collection of r determine def (M̃ →M). This
is not apriori clear.

When the action is not free we have to restrict r to a few values, and we don’t
know an independent definition of the exponent of κ. Theorems 2 and 3 by
themselves will provide no obstruction to the existence of a G–action on a given
manifold M̃ .

Theorem 2 If r divides p±1
2

, then for some integer δ , one has

wr(M̃, J̃) ≡ κδ(wr(M,J))|G| (mod p).

If G is cyclic and acts semifreely and r divides |G|±1
2

, the same conclusion
holds.

We tie down the factor κδ in a special case.

Theorem 3 Suppose r divides ps±1
2

, and M̃ is a ps–fold branched cyclic
cover of a knot K in a homology sphere M . Let J be a colored fat graph in
M which misses K , and J̃ be the inverse image of J in M̃ .

wr(M̃ , J̃) ≡ ∓
(−2r

p

)s

κ−3σps (K)(wr(M,J))p
s

(mod p),

Here σps(K) denotes the total ps–signature of K [8].
(−2r

p

)

is a Legendre
symbol.

As a corollary, we obtain the following generalization of a result of Murasugi’s
[11; Proposition 8]. Murasugi’s hypothesis is that L̃ is p–periodic, ζ is a
primitive p±1

2 th root of unity and p ≥ 5. Here VL(ζ) denotes the Jones
polynomial evaluated at t = ζ .
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160 Patrick M Gilmer

Corollary 1 Let L̃ be a ps–periodic link in S3 with quotient link L. If

ζ
ps±1

2 = 1 and ζ 6= −1 , then

VL̃(ζ) ≡ VL(ζ
∓1) (mod p).

L has an even number of components if and only if L̃ does also. In this case,
we must choose the same

√
ζ when evaluating both sides of the above equation.

The above equation is false, in general, for ζ = −1: the trefoil is has period
three with orbit knot the unknot. Making use of H. Murakami’s formula [12]
relating the Jones polynomial evaluated at i to the Arf invariant of a proper
link we have the following corollary. First we observe: if L̃ is a n–periodic link
in S3 with quotient link L, and n is odd, then L̃ is proper if and only if L is
proper.

Corollary 2 Let L̃ be a n–periodic proper link in S3 with quotient link L.
Let n =

∏

psii be the prime factorization of n. Suppose for each i, psii ≡ ±1
(mod 8) ( for each i one may choose ± differently), then

Arf(L) ≡ Arf(L̃) (mod 2).

The period three action on the trefoil also shows the necessity of the condition
that psii ≡ ±1 (mod 8).

In section 2 we establish versions of Theorems 1 and 2 for the related Turaev–
Viro invariants by adapting an argument which Murasugi used to study the
bracket polynomial of periodic links [11]. See also Traczyk’s paper [15]. In fact
these theorems ( Theorems 4 and 5) are immediate corollaries of Theorems 1
and 2 but we prefer to give them direct proofs. The reason is that these proofs
are simpler than the proofs of Theorems 1 and 2. These proofs can be used to
obtain analogous results for other invariants defined by Turaev–Viro type state
sums. Also Lemma 3, that we establish to prove Theorem 5, is used later in
the proofs of Theorems 2 and 3.

In section 3, we relate wr(M,J) to the TQFT defined in [2]. We discuss
p1–structures. We also rephrase Theorem 1 in terms of manifolds with p1–
structure, and reduce the proof of Theorem 1 to the case G = Zp . We say
that a regular Zps –cover which is a quotient of a regular Z cover is a simple
Zps –cover. In section 4, we derive Theorem 1 for simple Zps –covers of closed
manifolds. This part of the argument applies generally to quantum invariants
associated to any TQFT. We also obtain a version of Theorem 1 for simple Zps –
covers of manifolds whose boundary is a torus. In section 5, we derive Theorem
1 in the case M is a lens space and G = Zp . In section 6, we complete the
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proof of Theorem 1. One step is to show that if M̃ is a regular Zp–cover which
is not a simple Zp–cover of M , then we may delete a simple closed curve γ
in M so that the inverse image of M − γ is a simple Zp–cover of M − γ . In
section 7, we prove Theorem 2, Theorem 3, Corollary 1, and Corollary 2.

2 Turaev–Viro invariants

We also want to consider the associated Turaev–Viro invariants, which one may
define by tvr(M) = wr(M)wr(M). Here conjugation is defined by the usual
conjugation defined on the complex numbers. tvr(M) was first defined as a
state sum by Turaev and Viro [16], and later shown to be given by the above
formula separately by Walker and Turaev. A very nice proof of this fact was
given by Roberts [14]. We will use a state sum definition in the form used by
Roberts. We pick a triangulation of M , and sum certain contributions over r–
admissible colorings C of the triangulation. A coloring of a triangulation assigns
to each 1–simplex a nonnegative integral color less than r − 1. The coloring is
admissible if: for each 2–simplex the colors assigned to the three edges a, b,
and c satisfy a+ b+ c is even, a+ b+ c ≤ 2r − 4, and |a− b| ≤ c ≤ a+ b.

tvr(M) =
∑

c∈C

∏

v∈V

η2
∏

e∈E

∆(c, e)
∏

f∈F

θ(c, f)−1
∏

t∈T

Tet(c, t)

Here V is the set of vertices, E is the set of edges (or 1–simplexes), F is the
set of faces (or 2–simplexes), and T is the set of tetrahedrons (or 3–simplexes)
in the triangulation. The contributions are products of certain evaluations in
the sense of Kaufman–Lins [6] of colored planar graphs. ∆(c, e) = ∆c(e) , where
∆i is the evaluation of a loop colored the color i. θ(c, f) is the evaluation of
an unknotted theta curve whose edges are colored with the colors assigned by
c to the edges of f . Tet(c, t) is the evaluation of a tetrahedron whose edges are
colored with the colors assigned by c to the tetrahedron t. However we take

all these evaluations in C, taking A2 to be λ = ξ2r . Also η2 = − (λ−λ−1)2

2r .
So tvr(M) lies in Z[ 1

2r , λ]. This follows from the following lemmas and the
formulas in [6] for these evaluations.

Lemma 1 For j not a multiple of 2r , (1− λj)−1 ∈ Z[ 1
2r , λ].

Proof
∏2r−1

s=1 (x− λs) =
∑2r−1

i=0 xi . Letting x = 1,
∏2r−1

s=1 (1− λs) = 2r .

Lemma 2 For n ≤ r−1, the “quantum integers” [n] = λn−λ−n

λ−λ−1 = λ1−n λ2n−1
λ2−1

are units in Z[ 1
2r
, λ].
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Since it is fixed by complex conjugation, tvr(M) ∈ Z[ 1
2r
, λ+ λ−1].

Theorem 4 If the action is free, then

tvr(M̃ ) ≡ (tvr(M))|G| (mod p).

Proof A chosen triangulation T of M lifts to a triangulation T̃ of M̃ . Each
admissible coloring of T lifts to an admissible coloring of T̃ . As each simplex of
M is covered by |G| simplexes of M̃ , the contribution of a lifted coloring to the
sum for tvr(M̃) is the |G|th power of the contribution of the original coloring to
tvr(M). |G| acts freely on the set of colorings of T̃ which are not lifts of some
coloring of T . Moreover the contribution of each such triangulation in a given
orbit of this G action is constant. Thus the contribution of the non-equivariant
colorings is a multiple of p. Making use of the equation xp

s

+ yp
s ≡ (x+ y)p

s

(mod p), the result follows.

Lemma 3 If r divides ps±1
2 , ∆i ≡ (∆i)

ps

(mod p), for all i, and η2 ≡ (η2)p
s

(mod p).

Proof Since r divides ps±1
2 , 2r divides ps ± 1. Thus λp

s±1 = 1, and λp
s

=
λ∓1 . Thus

∆ps

1 =
(

−λ− λ−1
)ps

≡ −λps − λ−ps

= −λ− λ−1 = ∆1 (mod p).

Also ∆0 = 1. Thus ∆i ≡ (∆i)
ps

(mod p), if i is zero or one. Using the
recursion formula ∆i+1 = ∆1∆i − ∆i−1 , ∆i ≡ (∆i)

ps

(mod p) follows by
induction. Here is the inductive step:

(∆i+1)
ps

= (∆1∆i −∆i−1)
ps

≡ ∆ps

1 ∆ps

i −∆ps

i−1 ≡ ∆1∆i −∆i−1 = ∆i+1 (mod p).

It follows that
∑r−2

i=0 ∆2
i ≡

(

∑r−2
i=0 ∆2

i

)ps

(mod p). As η2
∑r−2

i=0 ∆2
i = 1, and

Z[λ, 1
2r
]/p(Z[λ, 1

2r
]) is a direct sum of fields, we have (η2)p

s ≡ η2 (mod p).

Theorem 5 If r divides p±1
2

, then

tvr(M̃ ) ≡ (tvr(M))|G| (mod p).

If G is cyclic and acts semifreely and r divides |G|±1
2

, the same congruence
holds.

Proof We pick our triangulation of the base so that the image of the fixed point
set is a one dimensional subcomplex. By Lemma 3, whether a colored simplex in
the base lies in the image of a simplex with a smaller orbit or not it contributes
the same amount modulo p to a product associated to an equivariant coloring.
Thus the proof of Theorem 4 still goes through.
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3 Quantum invariants, p1–structures, and signature

defects

Let M be a closed 3–manifold with a p1–structure [2]. A fat colored graph in M
is a trivalent graph embedded in M , with a specified 2–dimensional thickening
(ie, banded in the sense of [2]) whose edges have been colored with nonnegative
integers less than r − 1. At each vertex the colors on the edges a, b, and c
must satisfy the admissibility conditions: a+ b+ c is even, a+ b+ c ≤ 2r − 4,
and |a − b| ≤ c ≤ a + b. Let J be such a graph (possibly empty) in M .
Recall the quantum invariant 〈(M,J)〉2r ∈ k2r defined in [2]. Consider the
homomorphism [10; note page 134] ψ: k2r → C which sends A to −ξ4r , and
sends κ to ξ8ξ

−1
4r . Let Rr denote the image of ψ . By abuse of notation let κ

denote ψ(κ), and η denote ψ(η). Let t = 4r if r is even and t = 8r if r is
odd. Then Rr = Z[ 1

2r
, ξt]. Further abusing notation, we let 〈(M,J)〉 denote

ψ 〈(M,J)〉2r ∈ Rr . If M is a 3–manifold without an assigned p1–structure,
we let wr(M,J) denote 〈(M ′, J)〉 where M ′ denotes M equipped with a p1–
structure with σ–invariant zero. If M already is assigned a p1–structure, we let
wr(M,J) denote 〈(M ′, J)〉 where M ′ denotes M equipped with a reassigned
p1–structure with σ–invariant zero. One has that wr(M,J) = κ−σ(M) 〈(M,J)〉 .
This agrees with wr(M,J) as defined in the introduction.

Assume now that M has been assigned a p1–structure. Let M̃ be a regular G
covering space. Give M̃ the induced p1–structure, obtained by pulling back the
structure on M . The following lemma generalizes [4; 3.5]. It does not require
that G be a p–group.

Lemma 4 3 def (M̃ →M) = |G| σ(M)−σ(M̃ ). In particular 3 def (M̃ →M)
is an integer.

Proof Pick a 4–manifold W with boundary |G| copies of M such that the
cover extends. We may connect sum on further copies of CP (2) or CP (2) so
that the p1–structure on M also extends. Let W̃ be the associated cover of W
with boundary |G| copies of M̃ . We have

|G| σ(M) = 3 Sign(W ), |G| σ(M̃ ) = 3 Sign(W̃ ),

|G| def (M̃ →M) = |G| Sign(W )− Sign(W̃ ).

Using this lemma, we rewrite Theorem 1 in an equivalent form. The conclusion
is simpler. On the other hand, the hypothesis involves the notion of a p1–
structure. Since p1–structures are sometimes a stumbling block to novices, we
stated our results in the introduction without reference to p1–structures.
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Theorem 1 ′ Let M have a p1–structure, and M̃ be a regular G cover of M
with the induced p1–structure. Then

〈(

M̃, J̃
)〉

≡ 〈(M,J)〉|G|
(mod p).

Note that we may define 〈(M,J )〉 for J a linear combination over Rr of fat col-
ored graphs in M , by extending the function 〈(M,J)〉 linearly. If J =

∑

i aiJi ,

we define J̃ to be
∑

i a
|G|
i J̃i . Since the pth power map is an automorphism of

Rr/pRr , we have that if Theorem 1 ′ is true for a given type manifold M , then
it is true for such manifolds when we replace J and J̃ by linear combinations
over Rr of colored fat graphs: J and J̃ .

Finally we note that if Theorem 1 ′ is true for G = Zp , then it will follow for
G a general finite p–group. In the next three sections we prove it for G = Zp .

4 Simple unbranched Zps–covers

A regular Zps –covering space X̃ of X is classified by an epimorphism φ: H1(X)

→ Zps . If φ factors through Z, we say X̃ is a simple Zps –cover. In this section,
we prove Theorem 1 ′ for simple Zps –covers. We also obtain a version for simple
Zps –covers of manifolds whose boundary is a torus.

If χ: H1(M) → Z is an epimorphism, let χps : H1(M) → Zps denote the com-

position with reduction modulo ps . Suppose M̃ is classified by χps . Consider a
Seifert surface for χ ie, a closed surface in M which is Poincare dual to χ. We
may and do assume that this surface is in general position with respect to the
colored fat graph J . Then the intersection of J with F defines some banded
colored points. This surface also acquires a p1–structure. Thus F is an object
in the cobordism category Cp1,c

2,r−1 , [2; 4.6]. Let E be the cobordism from F to
F obtained by slitting M along F . We view E as a morphism from F to F
in the cobordism category Cp1,c

2,r−1 . Then M is the mapping torus of E , and M̃

is the mapping torus for Eps

.

We may consider the TQFT which is a functor from Cp1,c
2,r−1 , to the category

of modules over Rr obtained taking p = 2r in [2] and applying the change of
coefficients ψ: k2r → Rr .

By [2; 1.2], we have

〈(M,J)〉 = Trace (Z(E)) and
〈(

M̃, J̃
)〉

= Trace
(

Z
(

Eps
))

.
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Let E be the matrix for Z(E) with respect to some basis for V (F ). E has entries
in Rr = Z[ 1

2r
, ξt]. Write the entries as polynomials in ξt whose coefficients are

quotients of integers by powers of 2r . Let v ∈ Z such that 2rv ≡ 1 (mod p).
Let E ′ denote the matrix over Z[ξt] obtained by replacing all powers of 2r in
the denominators of entries by powers of v in the numerators of these entries.
We have

Trace (Z(E)) = Trace (E) ≡ Trace (E ′) (mod p) and,

Trace
(

Z(E)p
s
)

= Trace
(

Eps
)

≡ Trace
(

E ′ps
)

(mod p).

However all the eigenvalues of E ′ are themselves algebraic integers. The trace
of E ′ is the sum of these eigenvalues counted with multiplicity. The trace of
E ′ps

is the sum of ps th powers of these eigenvalues counted with multiplicity.
Therefore

Trace
(

E ′ps
)

≡ (Trace (E ′))
ps

(mod p).

Putting these equations together proves Theorem 1 ′ for simple Zps covers.

We now wish to obtain a version of Theorem 1 ′ for manifolds whose boundary
is a torus. Let N be a compact oriented 3–manifold with p1–structure with
boundary S1 × S1 . S1 × S1 acquires a p1–structure as the boundary. Let
J be a colored fat graph in N which is disjoint from the boundary. Then
(N,J) defines an element of V (S1 × S1) under the above TQFT. We denote
this element by [N,J ].

If χ: H1(N) → Z, let χps : H1(N) → Z denote the composition with reduction
modulo ps: Z → Zps . Suppose χps restricted to the boundary is an epimor-

phism. Suppose Ñ is a regular Zps covering space given by χps . Ñ has
an induced p1–structure. Suppose that we have identified the boundary with
S1 × S1 so that χ restricted to the boundary is π1∗: H1(S

1 × S1) → H1(S
1),

followed by the standard isomorphism. Here π1 denotes projection on the first
factor. We can always identify the boundary in this way.

Let Ñ be the regular Zps covering space given by χps , and J̃ the colored fat

graph in Ñ given by the inverse image of J . The boundary of Ñ is naturally
identified with S̃1×S1 . Equip S1×D2 with a p1–structure extending the p1–
structure that S1 × S1 acquires as the boundary of N . Equip ˜(S1)×D2 with

a p1–structure extending the p1–structure ˜(S1)×S1 acquires as the boundary
of Ñ . This is the same p1–structure it gets as the cover of S1 × S1 . We have
[Ñ , J̃ ] ∈ V (S̃1 × S1). Also ∂(S1 × D2) = ∂N , and ∂(S̃1 × D2) = ∂Ñ . For
0 ≤ i ≤ r − 2, let ei = [Si] ∈ V (S1 × S1), where Si is S1 ×D2 with the core

with the standard thickening colored i. Similarly let ẽi = [S̃i] ∈ V (S̃1 × S1),
where S̃i is S̃1 ×D2 with the core with the standard thickening colored i.

Geometry & Topology Monographs, Volume 2 (1999)



166 Patrick M Gilmer

Proposition 1 If [N,J ] =
∑r−2

i=0 aiei, and [Ñ , J̃ ] =
∑r−2

i=0 ãiẽi, then ãj ≡ ap
s

j

(mod p), for all j, such that 0 ≤ j ≤ r − 2.

Proof Note (Ñ , J̃)∪
S̃1×S1 −S̃j is a simple cover of (N,J)∪S1×S1 −Sj . More-

over
〈

(Ñ , J̃) ∪
S̃1×S1 −S̃j

〉

= ãj and 〈(N,J) ∪S1×S1 −Sj〉 = aj . By Theorem

1 ′ , ãj ≡ ap
s

j (mod p).

Proposition 2 If J is a linear combination over Rr of colored fat graphs in
S1×D2 then [S1×D2,J ] ∈ V (S1×S1) determines [S̃1×D2, J̃ ] ∈ V (S̃1×S1)
modulo p.

Proof Just take N = S1 ×D2 , and sum over the terms in J .

See the paragraph following the statement of Theorem 1 ′ for the definition of
J̃ .

5 Zp–covers of lens spaces

L(m, q) can be described as −m/q surgery to an unknot in S3 . A meridian
of this unknot becomes a curve in L(m, q) which we refer to as a meridian
of L(m, q). Below, we verify directly that Theorem 1 (and thus Theorem 1 ′ )
holds when M is a lens space, J a meridian colored c, and G = Zp . By
general position any fat graph J in a lens space can be isotoped into a tubular
neighborhood of any meridian. Without changing the invariant of the lens
space with J or the cover of the lens space with J̃ one can replace J by a
linear combination of this meridian with various colorings and J̃ by the same
linear combination of the inverse image of this meridian with the same colorings
in the covering space. This follows from Proposition 2. Thus it will follow that
Theorem 1 (and thus Theorem 1 ′ ) will hold if M is a lens space, and J is any
fat colored graph in M , and G = Zp . This is a step in the proof of Theorem
1 ′ for G = Zp .

Consider the p–fold cyclic cover L(m, q) → L(mp, q). We assume m, q are
greater than zero. q must be relatively prime to m and p.

Lemma 5

def (L(m, q) → L(mp, q)) =
1

m

(

def
(

S3 → L(mp, q)
)

− def
(

S3 → L(m, q)
))

.
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Proof Suppose Z → X is a regular Zmp covering of 4–manifolds with bound-
ary, and on the boundary we have mp copies of the regular Zmp covering
S3 → L(mp, q). Let Y denote Z modulo the action of Zm ⊂ Zmp . Then
Z → Y is a regular Zm covering, and on the boundary we have mp copies
of the regular Zm covering S3 → L(m, q). Moreover Y → X is a regular Zp

covering and on the boundary we have mp copies of the regular Zp covering
L(m, q) → L(mp, q). We have:

mp (def (L(m, q) → L(mp, q)) = p Sign(X)− Sign(Y ),

mp
(

def (S3 → L(m, q)
)

= m Sign(Y )− Sign(Z) and

mp def (S3 → L(mp, q) = mp Sign(X)− Sign(Z).

The result follows.

Suppose H is a normal subgroup of a finite group G which acts freely on M .
By the above argument, one can show more generally that:

def (M →M/G) = def (M →M/H) + |H| def (M/H →M/G) .
According to Hirzebruch [5] (with different conventions)

3 def
(

S3 → L(m, q)
)

= 12m s(q,m) ∈ Z.

See also [8; 3.3], whose conventions we follow.

Thus

3 def (L(m, q) → L(mp, q)) =
1

m
(12mp s(q,mp)− 12m s(q,m)) ∈ Z.

We will need reciprocity for generalized Gauss sums in the form due to Siegel [1;
Formula 2.8]. Here is a slightly less general form which suffices for our purposes:

γ−1
∑

k=0

ξαk
2+βk

2γ = ξ8 ξ
−β2

8αγ

√

γ

α

α−1
∑

k=0

ξ
−(γk2+βk)
2α

where α, β, γ ∈ Z and α, γ > 0 and αγ + β is even.

We use this reciprocity to rewrite the sum

m
∑

n=1

ξ(qr)n
2+(ql±1)n

m =

m
∑

n=1

ξ
(2qr)n2+2(ql±1)n
2m

= ξ8 ξ
−4(ql±1)2

16mqr

√

m

2qr

2qr
∑

n=1

ξ
−mn2−2(ql±1)n
4qr .
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We substitute this into a formula from [3; section 2].

wr(L(m, q), µc) =
i(−1)c+1

√
2rm

∑

±
±ξmb−mqΦ(U)+q2l2+1±2ql

4rmq

m
∑

n=1

ξ(qr)n
2+(ql±1)n

m ,

where U = ( q b

m d
), and l = c+ 1. We remark that the derivation given in [3] is

valid for m ≥ 1. Also using

mb−mqΦ(U) + q2l2 + 1 = q2(l2 − 1) + 12mq s(q,m)

again from [3], we obtain:

wr(L(m, q), µc) =
ξ38(−1)c+1

2r
√
q

ξ
12m s(q,m)
4rm ξ−q2−1

4rmq

∑

±
±

2qr
∑

n=1

ξ
−mn2−2(ql±1)n
4qr .

Similarly

wr(L(mp, q), µc) =
ξ38(−1)c+1

2r
√
q

ξ
12mp s(q,mp)
4rmp ξ−q2−1

4rmpq

∑

±
±

2qr
∑

n=1

ξ
−mpn2−2(ql±1)n
4qr .

So we now work with congruences modulo p in the ring of algebraic integers
after we have inverted 2r and q . We need to show that

wr(L(m, q), µc) ≡ κ3 def (L(m,q)→L(mp,q)) (wr(L(mp, q), µc))
p

(mod p). (5.1)

We have that:

κ3 def (L(m,q)→L(mp,q)) =
(

ξ8ξ
−1
4r

)
1
m

(12mp s(q,mp)−12m s(q,m))

= ξ
1
m

(12mp s(q,mp)−12m s(q,m))
8 ξ

12m s(q,m)−12mp s(q,mp)
4rm ,

(

ξ−q2−1
4rmpq

)p

= ξ−q2−1
4rmq

(−1)p = −1 and,

(2r)p ≡ 2r (mod p).

Note that ξ
−mn2−2(ql±1)n
4qr only depends on n modulo 2qr .

Thus
(

2qr
∑

n=1

ξ
−mpn2−2(ql±1)n
4qr

)p

≡
2qr
∑

n=1

ξ
−m(pn)2−2(ql±1)pn
4qr

≡
2qr
∑

n=1

ξ
−mn2−2(ql±1)n
4qr (mod p).
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Here we have made use of the fact that as n ranges over all the congruence
classes modulo 2qr so does pn. Let

(

q
p

)

denote the Legendre–Jacobi symbol.

(
√
q)p = q

p−1
2 (

√
q) ≡

(

q

p

)√
q (mod p)

Equation (5.1) will follow when we show:
(

q

p

)

ξ38 = ξ
1
m

(12mp s(q,mp)−12m s(q,m))
8 ξ3p8 ,

or

ξ
3−3p+ 1

m
(12m s(q,m)−12mp s(q,mp))

8 =

(

q

p

)

. (5.2)

We will make use of a congruence of Dedekind’s [14; page 160 (73.8)]: for k
positive and odd:

12k s(q, k) ≡ k + 1− 2

(

q

k

)

(mod 8).

We first consider the case that m is odd. We have:

12m s(q,m)− 12mp s(q,mp) ≡ m(1− p) + 2

((

q

mp

)

−
(

q

m

))

= m(1− p) + 2

(

q

m

)((

q

p

)

− 1

)

(mod 8).

If m is odd, the equation (5.2) becomes:

(3− 3p)m+m(1− p) + 2

(

q

m

)((

q

p

)

− 1

)

≡
{

0, for
(

q
p

)

= 1

4, for
(

q
p

)

= −1
(mod 8),

which is easily checked. For the rest of this section, we consider the case that
m is even. In this case, q must be odd. First we use Dedekind reciprocity [14;
page 148 (69.6)] to rewrite 1

m
(12m s(q,m)− 12mp s(q,mp)) as:

1

mq
(−12mq s(m, q) +m2 + q2 + 1− 3mq + 12mqp s(mp, q)

−m2p2 − q2 − 1 + 3mpq)

or
1

q

(

−12q s(m, q) +m− 3q + 12qp s(mp, q)−mp2 + 3pq
)

.

As q is odd, q2 = 1 (mod 8). So modulo eight the above expression is

q
(

−12q s(m, q) +m− 3q + 12qp s(mp, q)−mp2 + 3pq
)

.
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As p is odd, p2 = 1 (mod 8), and m − mp2 = 0 (mod 8). The expression,
modulo eight, becomes

−12q2 s(m, q)− 3q2 + 12q2p s(mp, q) + 3pq2.

So the exponent of ξ8 in Equation (5.2) modulo eight is:

q (−12q s(m, q) + 12qp s(mp, q)) . (5.3)

Again using Dedekind’s congruence, we have:

12q s(m, q) ≡ q + 1− 2q

(

m

q

)

(mod 8).

Similarly

12q s(mp, q) ≡ q + 1− 2q

(

mp

q

)

(mod 8).

The expression (5.3) modulo eight, becomes

q(p− 1)(q + 1) + 2

(

m

q

)(

1− p

(

p

q

))

Thus we only need to see

ξ
q(p−1)(q+1)+2(mq )(1−p(pq))
8 =

(

q

p

)

.

Using quadratic reciprocity for Jacobi–Legendre symbols, this becomes

(−1)
p−1
2

q+1
2 +(mq )

(1−p(pq))
2 = (−1)

p−1
2

q−1
2

(

p

q

)

,

or

(−1)
p−1
2 +

(1−p(pq))
2 =

(

p

q

)

,

which is easily checked.

6 Unbranched Zp–covers

Lemma 6 If φ ∈ H1(M,Zp) is not the reduction of an integral class, then
there is a simple closed curve γ in M such that the restriction of φ to M − γ
is the reduction of an integral class.
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Proof We consider the Bockstein homomorphism β associated to the short
exact sequence of coefficients: 0 → Z → Z → Zp → 0. Let γ be a simple
closed curve which represents the element which is Poincare dual to β(φ) ∈
H2(M,Z). The restriction of β(φ) to H2(M − γ,Z) is zero. This is easily seen
using the geometric description of Poincare duality which makes use of dual cell
decompositions.

Naturality of the long exact Bockstein sequence completes the proof.

It follows that any non-simple unbranched cyclic covering of a closed 3–manifold
can be decomposed as the union of two simple coverings one of which is a
covering of a solid torus. Let N denote M with a tubular neighborhood of γ
deleted. We may replace N in M by a solid torus with a linear combination
of colored cores obtaining a new manifold (M ′, J ′), such that 〈(M ′, J ′)〉 =

〈(M,J)〉 . By Proposition 2,
〈(

M̃ ′, J̃ ′
)〉

=
〈(

M̃, J̃
)〉

. M ′ is a union of two

solid tori, and so is a lens space or S1 × S2 . Note that any cover of S1 × S2 is
simple. As Theorem 1 ′ when G = Zp has already been established for M ′ , we
have now established Theorem 1 ′ when G = Zp .

7 Branched Zps–covers

We need to refine the last statement of Lemma 3:

Lemma 7 If r divides ps±1
2 , ηp

s ≡ ∓
(−2r

p

)s
η (mod p).

Proof We have that η = − (λ−λ−1)√
2r

i, λp
s ≡ λ∓1 (mod p), ip

s

=
(−1

p

)s
i,

(
√
2r)p

s ≡
(

2r
p

)s√
2r (mod p).

We need the following which follows from Proposition 1, Lemma 3, and Lemma
7. In the notation developed at the end of section 4 , let ω = η

∑r−2
i=o ∆iSi .

Proposition 3 If r divides ps±1
2 , ω̃ ≡ ∓

(−2r
p

)s
η
∑r−2

i=o ∆iS̃i (mod p).
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7.1 Proof of Theorem 2 for G cyclic

Suppose M is a 3–manifold, L is a link in this 3–manifold and there exists a
homomorphism φ: H1(M −L) → Zps which sends each meridian of L to a unit

of Zps . Then we may form a branched cover M̃ of M branched along L. Every
semi-free Zps action on an oriented manifold arises in this way. Then we may
pick some parallel curve to each component of L whose homology class maps
to zero. Perform integral surgery to M along L with framing given by these
parallel curves, to form P . Then we may complete the regular unbranched
cover of M − L given by φ to a regular unbranched cover P̃ of P . If we
then do surgery to P along an original meridian (with the framing given by a
parallel meridian) of each component of L, we recover M . Similarly if we do
surgery to P̃ along the inverse images of these meridians of L then we recover
M̃ . Note that the inverse image of each meridian of L is a single component in
M̃ and P̃ . We give M a p1–structure with σ invariant zero. Then P receives
a p1–structure as the result of p1–surgery on M [2; page 925]. P̃ receives
p1–structure as the cover of P . M̃ receives a p1–structure as the result of
p1–surgery on P̃ .

Now let J denote colored fat graph in M disjoint from L. Now let J+ denote
the linear combination of colored fat graphs in P given by J together the
result of replacing the meridians of L by ω . As usual in this subject, the
union of linear combinations is taken to be the linear combination obtained by
expanding multilinearly. Then 〈(M,J)〉 = 〈(P,J +)〉, by [2]. By Theorem 1,
〈(

P̃ , J̃+
)〉

≡ 〈(P,J+)〉p
s

(mod p). Using Proposition 3 and by [2], we have
〈(

M̃, J̃
)〉

=
(

∓
(−2r

p

)s
)β0(L) 〈(

P̃ , J̃ +
)〉

. As some power of κ3 is minus one,

and changing the p1–structure on M̃ , has the effect of multiplying 〈(M,J)〉 by
a power of κ, this yields Theorem 2 for semifree actions of cyclic groups.

7.2 Proof of Theorem 2 for general p–groups.

Now we assume r divides p±1
2

. Thus we have the congruence for every Zp action

by 7.1. However we can write the projection from M̃ to M as a sequence of
quotients of Zp actions.

7.3 Proof of Theorem 3

In the argument of 7.1, if M is a homology sphere, and L is a knot K , then the
longitude of K maps to zero under φ, and P is obtained by zero framed surgery
along L. M̃ is a rational homology sphere, and P̃ is obtained by zero framed
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surgery along the lift of K . The trace of both surgeries have signature zero. If
we give M a p1–structure with σ invariant zero, then P also has a p1–structure
with σ invariant zero. Also M̃ and P̃ have p1–structures with the same σ in-
variant. P̃ has a p1–structure with σ invariant 3 def (P̃ → P ) by Lemma 4, but

this is −3σps(K). Thus (wr(M,J))
ps

= 〈(M,J)〉p
s

≡ ∓
(−2r

p

)s
〈(

M̃, J̃
)〉

=

∓(
(−2r

p

)

)sκ3σps (K)wr(M̃ , J̃), modulo p. This proves Theorem 3.

7.4 Proof of Corollary 1

We obtain Corollary 1 from Theorem 3 by taking M to be S3 , K to be the
unknot and J to be L colored one with the framing given by a Seifert surface
for J . Using [6; page 7], one has that

wr(M,J) = η 〈L〉A=−ξ4r
= η VL

(

ξ−1
r

) (

−ξ2r − ξ−1
2r

)

.

In evaluating the Jones polynomial at ξ−1
r , we choose

√

ξ−1
r to be ξ−1

2r (for the
time being.) Since the induced framing of L̃ is also given by the Seifert surface
which is the inverse image of the Seifert surface for L,

wr

(

M̃, J̃
)

= η
〈

L̃
〉

A=−ξ4r
= η VL̃

(

ξ−1
r

) (

−ξ2r − ξ−1
2r

)

.

By Theorem 3, Lemma 3 and Lemma 7, VL̃(ξ
−1
r ) ≡

(

VL(ξ
−1
r )
)ps

(mod p). This
means that the difference is p times an algebraic integer. VL(t) is a Laurent
polynomial in

√
t with integer coefficients. We have that

(

√

ξ−1
r

)ps

= ξ−ps

2r = ξ±1
2r =

√

ξ±1
r

Thus:
(

VL(ξ
−1
r )
)ps

≡ VL(ξ
±1
r ) (mod p).

and so
VL̃(ξ

−1
r ) ≡ VL(ξ

±1
r ) (mod p).

As all primitive 2rth roots of unity are conjugate over Z,

VL̃(ζ
−1) ≡ VL(ζ

±1) (mod p)

holds if ζ is any primitive rth root such that r divides ps±1
2

, and r > 2. We
must choose the same

√
ζ when evaluating both sides.

For any link L, let #(L) denote the number of components of L. One has
that VL(1) = (−2)#(L)−1 . One has that #(L̃) ≡ #(L) (mod p − 1). So

VL̃(1) ≡ VL(1) (mod p). Thus the stated congruence holds if ζ is any ps±1
2

-th
root of unity, and ζ 6= −1.
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7.5 Proof of Corollary 2

It suffices to prove the result for n = ps where ps ≡ ±1 (mod 8). We ap-

ply Corollary 1 with ζ = i and choose
√
i = e

10πi
8 . By H. Murakami [12],

for any proper link VL(i) = (−1)Arf(L)(
√
2)#(L)−1 , with the above choice

of
√
i. Since 2 is a square modulo p,

√
2
p−1

= 1. Thus (
√
2)#(L)−1 ≡

(
√
2)#(L̃)−1 (mod p). Thus we conclude (−1)Arf(L) = (−1)Arf(L̃) (mod p).

Therefore Arf(L) ≡ Arf(L̃) (mod 2).
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