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Abstract 

 

Caulonema and rhizoids are tip growing filamentous cells required for nutrient acquisition 

and attachment to substratum in Physcomitrella patens (P. patens). Caulonema 

differentiate from developing protonema while rhizoids differentiate from gametophores. 

Even though these two filamentous cells differentiate from different haploid stages of 

moss development, both caulonema and rhizoid differentiation are regulated by class 1 

RSL genes (PpRSL1 and PpRSL2) and auxin; mutant plants which lack both PpRSL1 and 

PpRSL2 functions suppress caulonema and rhizoid differentiation, whereas auxin 

treatment enhances caulonema and rhizoid differentiation in moss development. However, 

the regulatory relationship between class 1 RSL and auxin is previously unknown in 

caulonema and rhizoid differentiation. This study shows that auxin regulates caulonema 

and rhizoid differentiation by positively regulating PpRSL1 and PpRSL2 expression in 

protonema and gametophore development; auxin treatment increases the transcriptional 

expression levels of PpRSL1 and PpRSL2 and mutant plants that lack both PpRSL1 and 

PpRSL2 do not differentiate caulonema and rhizoids even in auxin-treated conditions. 

Furthermore, co-overexpression of PpRSL1 and PpRSL2 enhances caulonema and rhizoid 

differentiation in the absence of auxin. These findings suggest that the regulation of class 1 

RSL genes by auxin controls caulonema and rhizoid differentiation in moss development. 

In contrast to P. patens, class 1 RSL genes regulate root hair differentiation independently 

of auxin in Arabidopsis thaliana (A. thaliana). These observations suggest that the 

regulatory interaction between class 1 RSL genes and auxin has changed during land plant 

evolution.  
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1.1 The life cycle of Physcomitrella patens 

Physcomitrella patens, a member of the bryophyte grade of land plants, is used as a model 

system in plant sciences (Cove and Knight, 1993). P. patens has several advantages as a 

model plant. The gene targeting technique (by homologous recombination) makes it 

relatively easy to generate mutants and to analyze their function (Schaefer and Zrÿd, 1997; 

Hiwatashi et al., 2001; Hohe et al., 2004; Kamisugi et al., 2005); F2 progeny and test 

crosses are not required (Cove, 2005). The anatomically simple structure is another 

advantage. Mosses protonema comprises three major kinds of cells, chloronema, 

caulonema and rhizoids. The simplicity in morphology makes it easy to study cell 

differentiation and development.  

Recently, phylogenetic analysis indicates that mosses constitute the second diverging clade  

of land plants and is therefore representative of one of the earliest groups of land plants 

(Shaw and Renzaglia, 2004; Renzaglia et al., 2007). In these respects, P. patens is a good 

model plant for studying the evolutionary basis of plant cell differentiation and 

development.  

The life cycle of P. patens exhibits alternation of generations, in which there is a 

multicellular haploid gametophyte and a multicellular diploid sporophyte (figure 1.1). The 

gametophyte consists of two distinct developmental stages, protonema and gametophore. 

The protonema is a filamentous network of haploid cells and develops from germinating 

haploid spores and gametophore is a haploid leafy shoot system which develops from the 

bud. Buds are three-faced apical cells which form on protonema filaments and function as 

initials of gametophores. The diploid sporophyte develops from mature gametophores 

bearing the sexual organs, archegonia and antheridia. After fertilization, a zygote develops 

into diploid sporophyte for haploid spore production. 
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Figure 1. 1  The life cycle of P. patens.  
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1.1.1 Protonema development 

Protonema, a developmental stage of haploid filamentous cells, develops from germinating 

spores. The protonemal filaments comprise two different types of cells, chloronema and 

caulonema. The first cells to develop from the spore are chloronema (Cove and Knight, 

1993). Chloronema cells are short and contain numerous chloroplasts and perpendicular 

cell walls, compared to caulonema. The numerous well-developed chloroplasts are very 

similar to those of leaf cells in ultrastructure, suggesting that the main function of 

chloronema cells in protonema development is photosynthetic assimilation (Tewinckel and 

Volkmann, 1987; Duckett et al., 1998). Chloronemal filaments grow at their tips by new 

chloronema cells being added by apical chloronemal cell division and tip growth (Cove, 

2005; Menand, 2007a); chloronema cell division occurs about every 24 hours and the tip 

growth rate is approximately 7 µm/h (Duckett et al., 1998; Schween et al., 2003; Menand 

et al., 2007a). As chloronemal filaments elongates, apical chloronema cells develop into 

caulonema in the growing edges of colonies. Caulonema cells are relatively long and 

contain few chloroplasts and oblique cross cell walls. The morphological characteristics of 

caulonema cells are very similar to those of rhizoids which form from gametophores. 

Caulonema are hypothesized as specialized cells which are involved in nutrient uptake and 

transport and it is likely that rhizoids may play a similar function in nutrient uptake as well 

as playing a role in anchorage; caulonema acquire nutrients and transport them back to the 

proximal chloronema cells which perform a high rate of photosynthesis (Duckett et al., 

1998; Pressel, et al., 2008). Caulonema cells grow at their tips by apical cell division and 

tip growth, but cell division and growth rates of caulonema cells are much faster than those 

of chloronema; the growth rate of caulonema is around 30 µm/h and the cell division of 

apical caulonema occurs approximately every 7 hours (Cove and Knight, 1993; Duckett et 

al., 1998; Reski, 1998; Menand et al., 2007a).  
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Chloronema and caulonema cells are also different in some cellular organelle shape and 

location. Nuclei and chloroplasts of chloronema cells are spherical in shape and located 

peripherally while caulonema cells have relatively elongated nuclei in the centre of 

caulonema cells and few spindle-like chloroplasts along endoplasmic strands. Faster 

growth rate of caulonema cells than chloronema cells are probably related to the 

cytological difference between caulonema and chloronema (Pressel, et al., 2008). Another 

interesting cytological difference between chloronema and caulonema is vacuolar features. 

The chloronema cell contains a single large vacuole in the centre of cells. Young apical 

caulonema cells which are newly divided from sub-apical caulonema cells usually contain 

a single vacuole behind the central nucleus. As the caulonema cells age, the single large 

vacuole disappears in caulonema cells. Instead, many small vacuoles develop in mature 

sub-apical caulonema cells. It is hypothesized that the disappearance of single large 

vacuole is related to the roles of caulonema in nutrient transport. (Duckett et al., 1998; 

Pressel, et al., 2008).  

The developmental transition from chloronema into caulonema is regulated by 

environmental growth conditions; ammonium tartrate (as a source of nitrogen) activates 

chloronema development and suppresses caulonema differentiation (Jenkins and Cove, 

1983). In contrast, caulonema differentiation is induced in the absence of sufficient 

nitrogen and phosphate sources. Auxin also affects caulonema development; auxin 

treatment activates caulonema differentiation while an anti-auxin PCIB (p-

chlorophenoxyisobutyric acid) treatment suppresses caulonema differentiation in 

protonema development, suggesting that auxin positively regulates caulonema 

differentiation from chloronema (Johri and Desai, 1973; Sood and Hackenberg, 1979; 

Bopp, 1980).  
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Some genes are involved in the developmental transition from chloronema into caulonema. 

PpARPC encodes the subunit of the actin-related protein2/3 (Arp2/3) complex. The actin-

related protein2/3 (Arp2/3) complex regulates actin filament dynamics which play an 

important role in shaping the actin cytoskeleton (Mullins et al., 1998; Harries et al., 2005; 

Perroud and Quatrano, 2006). In P. patens the Pparpc1 mutant plants develop few of the 

rapidly elongating caulonema cells which are found at the growing edge of the wild type 

(Harries et al., 2005). The mutant phenotype can be mimicked by latrunculin B, an actin 

depolymerisation drug. In latrunculin B-treated conditions, all cells which develop in 

protonemal filaments are chloronemal. This result shows the important role of actin 

cytoskeleton in tip-growing caulonema development. The role of the cytoskeleton in 

caulonema development was also tested by cremart treatment, a microtubule destabilizing 

drug (Doonan et al., 1988). Cremart treatment completely destroys microtubule 

cytoskeleton and causes apical cells to swell without tip growth. These data indicate actin 

and microtubule cytoskeletons are required for caulonema differentiation in protonema 

development. Another gene, PpHXK1 (hexokinase of P. patens), regulates caulonema 

differentiation (Thelander et al., 2005). Mutant plants which lack the hexokinase gene 

show some defects in caulonema differentiation. Interestingly, the Pphxk1 mutants also 

show hypersensitivity to cytokinin and abscisic acid and induce bud formation on 

chloronemal filaments, which is not observed in wild type. However, both Pparpc1 and 

Pphxk1 mutants also affect the chloronema morphology. This suggests that both the 

PpARPC and PpHXK1genes are involved in general cell growth and are likely not to be 

specifically involved in caulonema differentiation from chloronema. 

 

1.1.2 Gametophore development 
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Gametophores constitute the haploid leafy shoot systems that develop during the moss life 

cycle. The protonemal buds are the initials of the erect moss developments. Buds develop 

from side branch initials which usually develop from caulonemal filaments (Schumakerl 

and Dietrich, 1997; Cove, 2005). After caulonema cell division in the distal region of 

protonemal filaments, a small swelling usually forms at the apical end of the second or 

third sub-apical cells and subsequently develops into a side branch initial. Before side 

branch cell division, bundles of microtubules appear between the nucleus and the 

prospective division site and the nucleus starts to move to the site in which side branch 

initials form. The microtubules become gradually thicker and shorter as the nucleus moves 

to the side branch initial site. The role of microtubule in nuclear movement in side branch 

initial development was tested by treatment with cremart, a microtubule destabilizing drug 

and taxol, a microtubule stabilizing drug. Cremart treatment inhibits nucleus movement 

and concomitant taxol treatment suppresses the inhibition by cremart (Doonan et al., 1986). 

The daughter nucleus moves into the emerging side branch initial cell and the other moves 

back to the middle of caulonema. The side branch initial cells develop into buds by 

asymmetrical, three-dimensional cell division. Apical bud cells having many chloroplasts 

divide further to form a gametophore stem while basal cells having few chloroplasts divide 

to develop rhizoids.  

 

The side branch initials can develop into either lateral side protonemal filaments or buds. 

Determination of side branch initial cell fate is regulated by cytokinin. Cytokinin 

positively regulates bud formation from the side branch initial cells (Ashton et al., 1979; 

Reski and Abel, 1985; Schumakerl and Dietrich, 1997). In absence of cytokinin, bud 

formation is inhibited and side branch initial cells develop into later lateral side filaments 

by apical cell division and tip growth whereas in cytokinin-treated condition, side branch 
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initials develop into buds by three-dimensional and asymmetric cell division, suggesting 

that cytokinin is an essential hormone to control developmental transition from protonema 

into gametophores. 

 

Gametophores of P. patens develop two types of leaves, juvenile leaves and adult leaves. 

Juvenile leaves develop on the young gametophore axis and adult leaves appear after the 

formation of several juvenile leaves. A morphological difference between juvenile and 

adult leaves is the absence and presence of a midrib (Sakakibara et al., 2003). The single 

cell layer of gametophore leaf is very simple compared to the multi cell layers of 

angiosperm leaf (Cove et al., 2006). Consequently there are no guard cells, specialized 

cells for gas exchange do not exist in moss leaves. It is hypothesized that gametophore 

leaves can perform gas exchange without the aid of guard cells because of simple single 

cell layer structure.  

 

Rhizoids are specialized rooting cells found in early diverging groups of land plants, such 

as mosses, liverworts and hornworts. Land plants are anchored to soil from which essential 

inorganic nutrients are taken up. These functions are carried out by rhizoids in early 

diverging groups of land plants and by root hairs in vascular plants such as A. thaliana 

(Gahoonia et al., 1997; Duckett et al., 1998). Despite the morphological difference 

between multi-cellular rhizoids in non vascular plants and single cellular root hairs in 

vascular plants, rhizoids and root hairs similarly respond to environmental growth factors 

such as nutrients and hormones; nutrient rich conditions suppress rhizoid and root hair 

developments (Goode et al., 1992; Ticconi et al., 2001) and exogenous auxin treatment 

enhances both rhizoid and root hair development (Johri and Desai, 1973; Ashton et al., 

1979; Pitts et al., 1998). However, the mechanism of rhizoid development is poorly 
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understood at both the molecular and genetic level, because of the lack of useful model 

systems. P. patens is a good model system suitable to study rhizoid development because 

techniques required for transformation and gene targeting mutagenesis have been 

established (Nishiyama et al., 2000; Schaefer, 2001; Trouiller et al., 2005). Furthermore, 

the whole genome of P. patens has been sequenced (Rensing et al., 2008).  

In P. patens, rhizoids are multicellular and develop on specialized epidermal cells on the 

leafy shoot system (gametophores). Rhizoids are very similar in character to caulonema. 

Rhizoids have poorly developed chloroplasts and brown pigments. They divide at their 

tips and new rhizoid cells are oriented obliquely across the cells (Reski, 1998). The 

cytological feature of rhizoid cells is similar to caulonema of protonemal colonies and root 

hairs (Duckett et al., 1998; Pressel, et al., 2008). There are two kinds of rhizoids in P. 

patens, which can be distinguished by the position on the gametophores; basal rhizoids 

develop at the epidermal cells below juvenile leaves which do not have a midrib, whereas 

mid-stem rhizoids develop in more apical regions below adult leaves which have a midrib 

(Sakakibara et al., 2003). Mid-stem epidermal cells which give rise to mid-stem rhizoids 

are distinguished from other mid-stem epidermal cells which do not differentiate mid-stem 

rhizoids by their location in the gametophores; when viewed in transverse section, mid-

stem rhizoid-forming cells are located to the outside of two small cells of the leaf trace 

cells, that extend from the stem into the midrib of the adjoining leaf, whereas other mid-

stem epidermal cells are located to the outside of the normal cortex cells.  

 

1.1.3 Sporophyte development 

The sporophyte is the multicellular diploid stage in the moss life cycle. Male and female 

gametes are produced in the antheridia and the archegonia of the gametophyte, 
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respectively. For fertilization, moist conditions are required for the motility of sperm cells 

(Cove, 2005). The fertilized zygote starts to expand and fill the archegonium cavity. After 

the expansion, the zygote begins cell division and develops into sporophyte consisting of a 

seta and a sporangium. The first zygotic cell division produces an apical and a basal cell 

with asymmetrical cell division (Sakakibara et al., 2008). The apical cell as a stem cell 

divides obliquely and stops dividing after around 12 cell divisions. New cells which are 

produced by apical zygotic cell division continue dividing and develop into a sporangium. 

The role of PpLFY1 and PpLFY2 genes in zygotic cell division has been characterised 

(Tanahashi et al., 2005). PpLFY1 and PpLFY2 are homologues of Arabidopsis LFY genes. 

The LFY gene in A. thaliana is a key regulator of developmental transition from the 

vegetative to the reproductive stage without controlling cell division or expansion directly 

(Blázquez and Weigel, 2000). However, the LFY genes of P. patens regulate sporophyte 

development by controlling zygotic cell expansion and division after fertilization; the first 

zygotic cells of the mutant plants which lack both PpLFY1and PpLFY2 arrest without the 

cell expansion and division. Furthermore, gametophore morphology of the double mutant 

are indistinguishable from wild type, suggesting these genes control sporophyte 

development by specifically regulating zygotic cell development in P. patens  (Tanahashi 

et al., 2005).  

 

A seta which develops from a seta meristem in the middle of a sporophyte is located 

between sporangium and the base of sporophyte. Class 1 KNOX (KNOTTED1-LIKE 

HOMEOBOX) genes of P. patens were identified and shown to be involved in seta 

meristem development. Class 1 KNOX transcription factors regulate shoot apical meristem 

development by controlling the action of phytohormones such as gibberellin and cytokinin 

in flowering plants (Sakamoto et al. 2001, 2006). Class 1 KNOX genes of P. patens are 
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predominantly expressed at the seta meristem of sporophyte but not expressed in 

gametophyte tissues. Furthermore, cell division in the seta meristem is suppressed in 

mutant plants that lack class 1 KNOX, indicting class 1 KNOX genes regulate the seta 

meristem development during sporophyte development (Sakakibara et al., 2008). 

  

1.2. Hormone involvement in moss development 

1.2.1Auxin  

Auxin regulates plant development and physiology. Genetic and molecular biological 

studies in Arabidopsis have expanded our understanding of the auxin signaling pathway. 

The auxin signaling pathway is controlled by the regulated degradation of AUX/IAA 

proteins (Dharmasiri and Estelle, 2004). There are at least 29 AUX/IAA genes in A. 

thaliana genome (Liscum and Reed, 2002; Dharmasiri and Estelle, 2004). The AUX/IAA 

transcription factors do not interact directly with DNA, but they regulate auxin-mediated 

gene expression through the interaction with another set of protein; auxin response factors 

(ARFs). The interaction between IAA and ARF proteins inactivates the ARF-regulated 

gene expression of target genes. ARFs contain N-terminal for DNA binding and C-

terminal domain that interacts with AUX/IAA factors (Guilfoyle and Hagen, 2001). The 

N-terminal DNA binding domain of ARF proteins binds to conserved cis-element called 

auxin response elements in genes these proteins regulate. There are 23 ARF genes in the A. 

thaliana genome and the C-terminal domain of most ARFs is conserved except for ARF3 

and ARF17 (Liscum and Reed, 2002). ARFs are able to regulate auxin response as 

activators or repressors. The ARFs which function as transcriptional activator have rich 

glutamine in the middle region, while ARFs which function as transcriptional repressor 

contain proline/serine /threonine - rich middle region (Quint and Gray, 2006). AUX/IAA 

regulates the activities of ARFs by interaction with the ARFs (Tiwari et al., 2003).  
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Most AUX/IAA proteins turnover rate rapidly (10~80 min) and the short half-lives of 

AUX/IAA proteins can extended by MG132 treatment, a proteasome inhibitor while 

decreased by auxin-treated conditions (Ramos et al., 2001). This indicates that proteasome 

pathway is involved in the auxin signaling. The SCFTIR1 complex positively controls the 

auxin response by activating ubiquitin-mediated AUX/IAA proteolysis (Gray et al., 2001). 

SCFTIR1 complex is composed of four subunits, ASK1, CUL1, RBX1 and TIR1 (Quint and 

Gray, 2006). The SCFTIR1 complex functions as an E3 ligase for ubiquitin-mediated 

AUX/IAA proteolysis. It was reported that the conserved 13 amino acids of AUX/IAA 

domain II is essential for AUX/IAA proteolysis by SCFTIR1 complex and the change of the 

13 amino acids affected the stability of AUX/IAA proteins (Gray et al., 2001). It is likely 

that the regulatory mechanism of the auxin signaling pathway has been conserved during 

land plant evolution; the moss Aux/IAA proteins interact with AtTIR1 protein and 

silencing of the PpAFB, a homologue of Arabidopsis TIR1induces auxin-resistant mutant 

phenotypes (Prigge et al., 2010). These results suggest that the molecular mechanism of 

auxin signaling pathway has been conserved since P. patens and A. thaliana last shared a 

common ancestor. 

 

Auxin is involved in moss development; exogenous auxin treatment triggers physiological 

responses such as the activation of caulonema differentiation and the increase of rhizoid 

formation (Johri and Desai, 1973; Ashton et al., 1979; Sakakibara et al., 2003), indicating 

auxin positively regulates caulonema and rhizoid development. Although auxin signal 

pathway in mosses has not been well studied compared to Arabidopsis, computational 

approaches using the recently completed genome sequences of P. patens suggest that 

genes required for auxin biosynthesis, auxin signal perception / transduction in seed plants 
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exists in P. patens (Rensing et al., 2008). This hypothesis was supported by some studies 

with PpSH1 (homologue of the Arabidopsis SHI/STY family proteins). Arabidopsis 

SHI/STY family proteins positively regulate auxin biosynthesis (Chandler, 2009; Eklund 

et al., 2010a). Experimental overexpression of PpSH1 enhanced auxin concentration and 

induced auxin response in auxin-untreated condition (Eklund et al., 2010b). This result 

suggests that the molecular mechanism of auxin biosynthesis has been conserved between 

P. patens and A. thaliana during land plant evolution.  

 

The involvement of auxin in caulonema differentiation was also proven by measurement 

of endogenous auxin levels (Sood and Hackenberg, 1979; Jayaswal and Johri, 1985; 

Atzorn et al., 1990a, b). Endogenous auxin levels increase as caulonema cells differentiate 

in the wild type protonema. Furthermore, auxin concentration in mutant plants which show 

defects in caulonema differentiation is relatively low, compared with the same 

developmental stage of the wild type. By contrast, auxin concentration in mutant plants 

(pg-1) which show extensive development of caulonema cells is relatively high compared 

with the same developmental stage of the wild type (Jayaswal and Johri, 1985). Regulation 

of caulonema cell differentiation by auxin is affected by cyclic AMP (cAMP); auxin-

inducing caulonema differentiation was inhibited by exogenous cAMP treatment. 

Furthermore, pg-1 mutants which contain high levels of endogenous auxin and extensive 

development of caulonema cells induce chloronema cells by cAMP treatment. Actually, 

the concentration of endogenous cAMP in chloronema cells is around five-fold higher than 

in caulonema cells (Handa and Johri, 1976, 1977). These results show that cAMP is 

involved in the auxin-mediating developmental transition from chloronema into caulonema 

cells. 
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Auxin also positively regulates rhizoid development in the gametophore. Exogenous auxin 

treatment increases both basal rhizoid and mid-stem rhizoid development; more rhizoids 

develop in auxin-treated plants than in untreated controls (Ashton et al., 1979; Sakakibara 

et al., 2003). The PpHB7gene is involved in the auxin-induced rhizoid development. 

PpHB7 encodes a homeodomain-leucine zipper I (HD-Zip I) subfamily protein and 

regulates rhizoid pigmentation late in rhizoid differentiation; PpHB7 is predominantly 

expressed in rhizoids and mutant rhizoids that lack PpHB7 function are pigmentless 

whereas wild-type rhizoids normally accumulate the pigment (Sakakibara et al., 2003). 

Furthermore, the transcriptional expression level of PpHB7 is regulated by auxin. This 

suggests that auxin positively regulates rhizoid differentiation by regulating genes required 

for rhizoid development.  

 

The morphology of caulonema that develop on protonema and rhizoids that develop on 

gametophores is very similar. A major trait that distinguishes rhizoids from caulonema is 

pigmentation; mature rhizoids accumulate a brown pigment whereas caulonema are 

pigmentless. Auxin positively regulates both caulonema and rhizoid differentiation, 

suggesting it is likely that auxin regulates caulonema and rhizoid differentiation by 

regulating the expression of genes required both for caulonema and rhizoid differentiation. 

Two transcription factors (PpRSL1 and PpRSL2) have been identified that control both 

differentiation of caulonema and rhizoids in P. patens (Menand et al., 2007b). These genes 

play key roles in caulonema and rhizoid development; mutant plants which lack PpRSL1 

and PpRSL2 show strong suppression of caulonema and rhizoid differentiation. 

Nevertheless the regulatory interaction between class 1 RSL genes and auxin in caulonema 

and rhizoid differentiation is still unknown. 
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1.2.2 Cytokinin 

Cytokinin regulates the developmental transition from protonema to gametophores by 

controlling the formation of side branch initials and buds. It is hypothesized that 

developmental regulation by cytokinin is concentration-dependent because picomolar 

concentrations of cytokinin are enough to activate formation of side branch initial cells and 

micromolar cytokinin is required for bud formation from the side branch initial cells 

(Ashton et al., 1979; Bopp and Jacob, 1986). Cytokinin treatment of moss protonema 

induces the initial cell swelling and chloroplast decrease in size within 2 or 3 hours of 

cytokinin treatment (Schumakerl and Dietrich, 1997). Recently, a putative cytokinin 

receptor (PpHK4) which carries a His-Kinase motif was cloned; activity of the PpHK4 

progressively increases with the gradual increase of cytokinin concentration treated, 

indicating this gene is involved in sensing cytokinin in mosses (Ishida et al., 2010). 

However, it is still unclear because genetic approaches using mutant and overexpressing 

plants were not tested.   

 

Cytokinin regulates the formation of side branch initial cells and buds in a calcium-

dependent manner. Calcium as an intracellular messenger plays a key role in formation of 

side branch initial and buds in moss development. Calcium positively regulates the 

developmental process; calcium-free conditions and inhibition of calcium influx by 

lanthanum suppress the development (Saunders and Helper, 1983). The interaction 

between cytokinin and calcium in the formation of side branch initials and buds was 

suggested by investigating membrane-associated calcium concentration using the 

lipophilic fluorescent calcium chelating probe, chlorotetracycline; the fluorescence was 

strongly detected at putative side branch forming sites of caulonema cells soon after 

cytokinin treatment (Saunders and Helpers, 1981). Another experiment using 
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dihydropyridine (DHP) agonist and antagonist also showed the cytokinin effect on bud 

formation via voltage-dependent calcium channel (Conrad and Helpers, 1988). DHP are 

compounds that alter calcium movement through voltage-sensitive channels. One of the 

DHP stereo-isomers, ((+)202-791), acts as a calcium agonist and another, ((-)202-791), 

acts as a calcium antagonist. The agonist treatment activates bud formation in the absence 

of cytokinin whereas the antagonist treatment suppresses cytokinin-inducing bud 

formation in protonemal filaments. These results indicate that calcium action is required 

for cytokinin-mediated side branch initial and bud formation.  

 

1.3 Root hair development in Arabidopsis thaliana 

Tip-growing caulonema, rhizoids and root hairs form at the interface of the plant and its 

substratum and function in nutrient acquisition (Peterson and Farquhar, 1996; Gahoonia et 

al., 1997; Duckett et al., 1998; Gahoonia and Nielsen, 1998). Not only the function in 

plant growth, but also hormonal and environmental responses are similar between these tip 

growing cells; auxin and nutrient-poor conditions activate development of these tip-

growing cells. This suggests that molecular and genetic mechanisms controlling these tip-

growing cells have been conserved during land plant evolution. This hypothesis was 

supported by finding that RSL (ROOT HAIR DEFECTIVE SIX-LIKE) gene function is 

required for the development of these tip growing cells both in P. patens and A. thaliana 

(Menand et al., 2007b). Furthermore, root-hairless phenotypes of arabidopsis rsl mutants 

(Atrhd6 Atrsl1) are rescued by introducing a moss RSL gene (Menand et al., 2007b), 

suggesting that RSL gene function is conserved between P. patens and A. thaliana, and 

general molecular and genetic mechanisms might be shared in these tip-growing cell 

development. Therefore, understanding root hair development which has been well studied 
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in A. thaliana would be important to understand the caulonema and rhizoid development 

of P. patens. 

 

Root hairs are tip growing tubular outgrowths of trichoblasts (Dolan et al., 1994). Root 

hair development in A. thaliana can be understood as having three distinct developmental 

steps, determination of cell identity, root hair initiation and elongation by tip growth. The 

determination of root epidermal cell fate is controlled by a transcriptional network 

including GLABRA3 (GL3), Enhancer of GLABRA3 (EGL3), TRANSPARENT TESTA 

GLABROUS (TTG), GLABRA2 (GL2) and CAPRICE (CPC) (Galway et al., 1994; Rerie et 

al., 1994; Cristina et al., 1996; Wada et al., 1997; Schellmann et al., 2002; Bernhardt et al., 

2003;  Bernhardt et al., 2005). gl3, gl2 and ttg mutant plants develop ectopic root hair 

formation in non hair-forming cell files (N cell files) whereas cpc mutant plants decrease 

the number of root hair formations even in hair-forming cell files (H cell files), indicating 

that these gene activities regulate the determination of root epidermal cell fate. The 

expression of these transcription factors is position-dependent in root epidermal cells. This 

position-dependent hair cell specification results in a striped pattern of hair cell and non-

hair cell files along the root axis (Cho et al., 2002).  

 

After the determination of epidermal cell specification trichoblasts start to differentiate 

root hair formation. Root hair initiation is controlled by another set of genes. Two basic 

helix loop helix transcript factors, AtRHD6 and AtRSL1, were cloned related to root hair 

initiation (Masucci and Schiefelbein, 1994; Menand et al., 2007b). The AtRHD6 and 

AtRSL1 genes positively control root hair initiation after the determination of epidermal 

cell identity. Atrhd6 single mutant plants exhibit some defects in root hair initiation from 

trichoblasts along the root axis, whereas Atrsl1 single mutant plants do not show defects in 
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root hair development compared to the wild type (Menand et al., 2007b). Expression levels 

of AtRHD6 and AtRSL1 mRNA in the wild type were almost identical to the expression 

levels of AtRHD6 and AtRSL1 mRNA in Atrsl1and Atrhd6 single mutants respectively. 

This indicates that AtRHD6 does not regulate AtRSL1 expression, and AtRSL1 does not 

regulate AtRHD6expression. The function of AtRHD6 and AtRSL1 gene in root hair 

initiation was clearly proved by analysing the Atrhd6 Atrsl1double mutant phenotype and 

its spatial expression patterns in roots. Mutant plants which lack both AtRHD6 and AtRSL1 

(Atrhd6 Atrsl1) do not develop root hairs in normal growth conditions; phenotypical 

analysis using a scanning electron microscope (SEM) showed the Atrhd6 Atrsl1 double 

mutant does not develop even small bulges along its root axis (Yi et al., 2010). The 

expression pattern of class 1 AtRHD6 and AtRSL1 is position-dependent. AtRHD6 and 

AtRSL1 gene are strongly expressed in H cells but not in N cells (Menand et al., 2007b). 

The position-dependent expression pattern of these genes is caused by position-dependent 

regulation by an upstream regulator related to cell fate determination, such as GL2, GL3 

and CPC. Mutant plants which lack GL2 or GL3 function induce AtRHD6 expression not 

only in H cells but also in N cells, whereas mutant plants which lack CPC decrease 

AtRHD6 expression. These results indicate that class 1 RSL regulates root hair initiation 

after the determination of root hair cell identity (Lee and Schiefelbein, 2002; Menand et al., 

2007b). AtRHD6 gene as a key regulator in root hair initiation controls other gene 

expressions which are also involved in root hair initiation such as AtEXP17 and AtEXP18 

encoding expansin (Cho and Cosgrove, 2002). The expression of these expansin genes is 

positively regulated by AtRHD6 genes; Atrhd6 mutants display the decreased expression 

level of these expansin genes. This data suggests that AtRHD6 gene plays key roles in the 

root hair initiation step in A. thaliana. Interestingly, AtRHD6 regulate root hair initiation 

independently of auxin which also regulates root hair initiation (Yi et al., 2010). The result 
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that AtEXP17 and AtEXP18 gene expressions are positively regulated by auxin and 

AtRHD6 suggests that separated auxin and AtRHD6 action regulates common gene 

functions required for root hair initiations.  

 

It is likely that AtRHD6 is also involved in the determination of the root hair forming site 

in root hair initiation. The mutant plants which lack Atrhd6 show abnormality in the site of 

root hair emergence. The root hairs of the wild-type A. thaliana develop from the distal 

end of the epidermal cells (Schiefelbein and Somerville, 1990). In contrast to wild type, 

Atrhd6 mutants form root hairs more basally on the hair forming epidermal cells than in 

the wild type, indicating AtRHD6 is also involved in the determination of the root hair 

forming site (Masucci and Schiefelbein, 1994). Arabidopsis Rop2 GTPase is also involved 

in the root hair initiation by determining the root hair-forming sites in trichoblasts; GFP 

fused Rop2 proteins are highly accumulated in the future site of hair formation before the 

formation of small bulges (Jones et al., 2002). However, the possible interaction between 

AtRHD6 and Rop2-GTPase in the determination of root hair forming sites is still unknown. 

 

Root hair initials elongate by tip growth. AtRSL2 and AtRSL4 genes are were cloned 

related to the root hair elongation. AtRSL2 and AtRSL4 encode basic helix loop helix 

transcription factors which function in controlling root hair elongation after root hair 

initiation; mutant plants that lack AtRSL2 and AtRSL4 suppress elongation of root hairs 

and develop only small bulges, which do not elongate and develop into mature root hairs 

(Yi et al., 2010). Furthermore, AtRSL4-overexpressing transgenic plants (35S:AtRSL4) 

develop very long root hairs compared to wild type root hairs, suggesting that AtRSL4 

regulates root hair elongation (Yi et al., 2010). AtRSL2 and AtRSL4 genes are expressed in 

trichoblasts after the trichoblasts develop root hairs. Transcriptional expressions of these 
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genes are positively regulated by AtRHD6 and AtRSL1 which control root hair initiation. 

These results suggest that regulation of AtRSL2 and AtRSL4 by AtRHD6 and 

AtRSL1controls root hair elongation.  

 

Root hair elongation also requires rearrangement of actin cytoskeleton. Involvement of 

actin dynamics in root hair elongation was supported by actin dynamics-mediating gene 

studies. ADF (actin depolymerising factor) controls actin dynamics by increasing the rate 

of actin dissociation (Carlier et al., 1997). Transgenic plants that overexpress AtADF1 

develop relatively short and thick root hairs compared to wild type. Another actin dynamic 

regulator, AtPFN1 (profilin 1) is an actin-binding protein (Ramachandran et al. 2000). 

Experimental overexpression of PFN 1 gene increases root hair length while 

overexpression of antisense PFN1decreases the length. These results suggested actin 

dynamics is involved in root hair elongation. Visualization of F-actin accumulation at tips 

of young root hairs and inhibition of root hair elongation by latrunculin B, an actin 

depolymerisation drug, clearly supported that actin dynamics is required for root hair 

elongation (Baluska et al., 2000). Transgenic plants expressing GFP-fused mouse talin 

protein which labels F- actin shows high intensity of GFP signal at tips of young root hairs, 

and latrunculin B treatment strongly suppresses root hair elongation by activating 

depolymerisation of actin filaments. Furthermore, profilin is expressed in the small bulges 

in which F-actin highly accumulates, proving that actin dynamics is important for root hair 

elongation. Plant cytoskeleton consists of actin microfilaments and microtubules. During 

root hair development, microtubules function in the nucleus movement and the 

maintenance of the growth direction but are not required for tip growth of root hairs unlike 

actin cytoskeleton. The hair-forming bulges are initially depleted in microtubules. Later, 

nuclear-associated microtubules emerge in the root hair and become involved in the 
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maintenance of growth direction (Baluska et al., 1997, 1998, 2000); oryzalin and taxol 

treatment of wild type root induces curvy root hairs whereas growth rate is identical to the 

control (Bibikova et al. 1999). 

 

Root hair elongation also requires some cations and reactive oxygen species (ROS). 

Potassium ion (K+) is an active cation in root hair development. Potassium ion influx, 

which is controlled by the plasma membrane proton pump and potassium channel protein, 

is observed in growing root hairs, which is sufficient to induce cellular expansion (Lew, 

1991). Calcium ions (Ca2+) also play key roles in root hair tip growth. Cytoplasmic free 

Ca2+ is accumulated at the actively growing root hair tips. Inhibition of Ca2+ transport 

across the plasma membrane suppresses tip growth of root hairs (Schiefelbein et al., 1992; 

Wymer et al., 1997). ROS are also involved in root hair elongation. AtRHD2 encoding 

NADPH oxidase regulates root hair elongation by controlling ROS biosynthesis in root 

hair development (Foreman et al., 2003). ROS production in root hair cells has an effect on 

Ca2+ accumulation in root hairs. Mutant plants that lack AtRHD2 form short root hairs 

without elongation and Ca2+ is not accumulated in the root hairs, indicating that regulatory 

interaction between Ca2+ and ROS is involved in root hair elongation (Wymer et al., 1997; 

Foreman et al., 2003).  

 

1.4 Auxin and root hair development 

Auxin is one of the most well characterized plant hormones related to root hair 

development. Auxin positively regulates root hair development; exogenous auxin 

treatment increases root hair length and auxin-response mutant plants such as axr1, axr2 

and axr3 are affected in root hair development (Lincoln et al., 1990; Wilson et al., 1990; 

Timpte et al., 1995; Leyser et al., 1996; Pitts et al., 1998). Auxin is specifically involved in 
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root hair initiation (Masucci and Schiefelbein, 1996; Knox et al., 2003; Grebe et al., 2002) 

and elongation (Pitts et al., 1998; Lee and Cho., 2006).  

 

Auxin regulates root hair development in a concentration-dependent manner. Endogenous 

auxin levels are regulated by the polar auxin transporting system using auxin influx and 

efflux carriers; NPA, auxin efflux inhibitor, treatment increases auxin concentration in root 

hair cells, which results in longer root hairs, compared to an untreated control (Cho et al., 

2007a and b). Similarly, the experimental overexpression of PINOID, PIN2 and PGP4 

which positively regulate auxin efflux induces suppression of root hair development (Friml, 

2003; Wiśniewska et al., 2006; Cho et al., 2007b). By contrast, experimental 

overexpression of AUX1 which regulates auxin influx increases root hair length and aux1 

mutant plants suppress root hair development (Cho et al., 2007b; Jones et al., 2009). 

Interestingly a recent study about DR5 promoter activity in the A. thaliana roots showed 

that the concentration of endogenous auxin in atrichoblasts is relatively high compared 

with trichoblasts; transgenic plants transformed with DR5promoter:GFP show stronger 

intensity of GFP in atrichoblasts than trichoblasts in wild type, and the difference in GFP 

intensity between atrichoblasts and trichoblasts doesn't exist in aux1 mutant (Jones et al., 

2009). This suggests that auxin accumulation in atrichoblasts is not sufficient to 

differentiate root hairs from atrichoblasts, and auxin does not have an effect upon the 

determination of hair-forming cell identity in A. thaliana.  

 

Auxin effect on root hair initiation was studied in mutant plants which lack AtRHD6 and 

AtRSL1. Mutant plants which lack both AtRHD6 and AtRSL1function (Atrhd6 Atrsl1) do 

not differentiate root hairs along the root axis in normal growth conditions, whereas auxin 

treatment induces root hair differentiation in Atrhd6 Atrsl1double mutants. Furthermore 
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auxin treatment does not affect on the transcriptional expression of AtRHD6 and AtRSL1. 

These results indicate that auxin regulates root hair initiation independently of AtRHD6 

and AtRSL1. Instead, auxin positively regulates a transcriptional expression level of 

AtRSL4 which controls root hair elongation by tip growth. In contrast to Atrhd6 

Atrsl1double mutants, mutant plants which lack both AtRSL2 and AtRSL4are resistant to 

auxin; auxin treatment does not induce root hair elongation in Atrsl2 Atrsl4 double mutants 

(Yi et al., 2010) indicating that auxin regulates root hair elongation dependently on AtRSL4. 

This is consistent with previous studies suggesting that auxin controls root hair initiation 

and elongation downstream of GL2 and TTG (Masucci and Schiefelbein, 1996 Pitts et al., 

1998). 

 

1.5 Class 1 RSL gene and caulonema and rhizoid development  

ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes encode basic helix loop helix 

transcription factors. There are six RSL genes in A. thaliana (figure 1.2). AtRHD6 and 

AtRSL1 belong to class 1 RSL gene clade, and AtRSL2, 3, 4 and 5 belong to class 2 RSL 

gene clade (Menand et al., 2007b). In A. thaliana, RSL gene regulation and function have 

been well understood related to root hair development; class 1 RSL regulates root hair 

initiation independently of auxin while class 2 RSL controls root hair elongation 

dependently of auxin. Similarly, P. patens has seven RSL genes. PpRSL1 and PpRSL2 

belong to class 1 RSL gene clade, and five PpRSL genes (PpRSL 3, 4, 5, 6 and 7) belong to 

class 2 RSL gene clade (Menand et al., 2007b); class 1 PpRSL genes are involved in 

caulonema and rhizoid development whereas class 2 gene function in moss development is 

still unknown. Despite the clear involvement of class 1 RSL in caulonema and rhizoid 

development, their regulation mechanisms including interaction with auxin is  unknown in 

moss development. 
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Previous characterization of the class 1 RSL genes indicates that their function has been 

conserved between P. patens and A. thaliana during land plant evolution since land plants 

last shared a common ancestor 416 million years ago. P. patens and A. thaliana mutants 

that lack class 1 RSL gene function fail to develop rhizoids and root hairs respectively. 

Despite the demonstration that the function of these genes is conserved between A. 

thaliana and P. patens, the mechanism of their regulation remained unknown. In particular, 

it is known that auxin regulates rhizoids and caulonema development in moss but the 

regulatory relationship between auxin and a class 1 RSL gene is unknown. Furthermore 

after plants established the first continental vegetation 470 million years ago, there was 

explosive increase of morphological diversity by gene modification and rearrangement of 

gene regulatory systems (Kenrick and Crane, 1997; Bateman et al., 1998; Davison and 

Erwin; 2006; Richardt et al., 2007; Peter and Davison; 2011). This suggests the possibility 

that the RSL regulation mechanism changed during land plant evolution despite the 

conserved function. The aim of the research reported in this thesis is to test the hypothesis. 

Specifically I set out to understand the regulatory relationship between auxin and class 1 

RSL gene in P. patens and compare it with the mechanism that exists in A. thaliana. 
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Figure 1.2  A phylogenic tree showing the relationships between A. thaliana and P. 

patens RSL proteins.  
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2.1 Plant materials and growth 

The Gransden wild type strain of P. patens (Hedw) Bruch and Schimp, was used in this 

study (Ashton et al., 1979).  Cultures were grown at 25°C and illuminated with a light 

regime of 16/8 h (light/dark) and a quantum irradiance of 40 μmol m-2s-1. For the growth 

of gametophores, spores were inoculated on a 9 cm Petri dish containing solid minimal 

media overlaid with a cellophane disk (AA packaging) for the indicated time. Solid 

minimal media includes 0.8 g/l CaNO34H2O, 0.25 g/l MgSO47H2O, 0.0125 g/l 

FeSO47H2O, 0.055 mg/l CuSO45H2O, 0.055 mg/l ZnSO47H2O, 0.614 mg/l H3BO3, 0.389 

mg/l MnCl24H2O, 0.055 mg/l CoCl26H2O, 0.028 mg/l KI, 0.025 mg/l Ne2MoO42H2O and 

25 mg/l KH2PO4 ,and were titrated to pH7 with 4M KOH. Protonemal samples for 

transformation were grown on minimal media supplemented with 5 mg/l NH4 and 50 mg/l 

glucose for 1 week. P. patens Pprsl1, Pprsl2 and Pprsl1 Pprsl2 double mutants, as well as 

A. thaliana Atrhd6 Atrsl1 lines were previously described (Menand et al., 2007b).  

 

 

2.2 Phenotypical analysis and measurement 

For the phenotypic analysis of caulonema development, spores for Pprsl1 single, Pprsl2 

single and Pprsl1 Pprsl2 double mutant and protoplasts for 35S:PpRSL1;35S:PpRSL2 

were placed on solid minimal media overlaid with cellophane disks. For the phenotypic 

analysis of rhizoid development, small protonemal inocula were placed on solid minimal 

media overlaid with cellophane disks and grown for 3 weeks. Protonema and gametophore 

images were captured with a Nikon Coolpix 995 camera mounted on a Leica Wild M10 

stereomicroscope and with a Pixera Pro ES600 camera mounted on a Nikon Eclipse 800 

and measured using Photoshop 7.0(Adobe). Cell cycle times were determined by 

calculating rates of cell production. Cell production rates were calculated by dividing the 
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time interval (in hours) during which colonies were growing by the number of cells 

produced in protonemal filaments during that time interval. Cell numbers were determined 

by counting the numbers of cross walls that formed in a filament. 

 

 

2.3 Auxin, TIBA and NPA treatment 

Auxin treatment of P. patens protonema was carried out by plating spores in solid minimal 

media supplemented with 1 µM α-naphthalene acetic acid and incubating for 2 weeks. For 

the study of rhizoids, auxin treatment was carried out by transferring 3-week-old plants to 

solid minimal media supplemented with NAA and incubating for 1 week. TIBA and NPA 

treatment of protonema was carried out by plating spores in solid minimal media 

supplemented with 100 µM TIBA and 20 µM NPA for 1 week. For the study of TIBA 

effect upon rhizoid development, TIBA treatment was carried out by transferring 3-week-

old plants to solid minimal media supplemented with 300 µM TIBA and incubating for 1 

week. 

 

 

2.4 Construction of a constitutively overexpressing vector  

For constitutive overexpression of both PpRSL1 and PpRSL2 at the same time, a 

35S:PpRSL1;35S:PpRSL2 vector was generated. To obtain 35S:PpRSL1:NOSTer DNA 

cassette including SpeI and ApaI enzymatic restriction sites, two different vectors were 

used; pCAMBIA-35S:PpRSL1 carrying 35S:PpRSL1:NOSTer cassette (Menand et al., 

2007b) and pBluescript II SK + (Stratagene) having SpeI and ApaI sites. First, pCAMBIA-

35S:PpRSL1 was excised with EcoRI and HindIII to obtain 35S:PpRSL1:NOSTer cassette 

and this cassette was inserted into the pBluescript vector which had been digested with 
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EcoRI and HindIII. pBluescript-35S:PpRSL1 carrying SpeI – 35S:PpRSL1:NOSTer – ApaI 

cassette was obtained by ligation. The SpeI – 35S:PpRSL1:NOSTer – ApaI cassette, which 

was obtained by digesting pBluescript-35S:PpRSL1 with SpeI and ApaI, was inserted into 

pPpRSL1-KO vector carrying partial genomic DNA fragments of PpRSL1 for homologous 

recombination (Menand et al., 2007b). The vector was named 35S:PpRSL1. To obtain 

35S:PpRSL2:NOSTer cassette carrying NotI and AapI sites two different vectors, 

pCAMBIA-35S:PpRSL2 carrying 35S:PpRSL2:NOSTer cassette and pGEM-T Easy 

(Promega) including NotI and ApaI sites were used. pCAMBIA-35S:PpRSL2 was 

obtained by amplifying the PpRSL2 coding sequence from protonema cDNA with 

35S:PpRSL2 primers and cloning it into the BamH1 and SalI sites of pCAMBIA 1300 

(Menand et al., 2007b). 35S:PpRSL2: NOSTer cassette was obtained by digesting 

pCAMBIA-35S:PpRSL2 with EcoRI and SphI. This cassette was inserted into pGEM-T 

Easy vector which had been self-ligated and digested with EcoRI and SphI. NotI-

35S:PpRSL2:NOSTer- ApaI cassette from pGEM-35S:PpRSL2 vector was inserted into 

NotI and ApaI sites of 35S:PpRSL1.  

 

 

2.5 Construction of PpRSL1promoter:GUS and PpRSL2promoter:GUS vectors 

GUS transcriptional reporter vectors were generated by inserting two genomic DNA 

fragments of PpRSL1 and PpRSL2 promoter regions into pBHSNR-GUS vector carrying 

GUS-35STer. pBHSNR-GUS vector was constructed by inserting GUS coding sequence 

and 35S terminator into ClaI/SpeI sites and BglII/ApaI sites of pBHSNR vector (Menand et 

al., 2007b), respectively. Two genomic DNA fragments of PpRSL1 gene were cloned by 

PCR. The genomic DNA fragment of PpRSL1 promoter (634 bp) was inserted into AscI 

and ClaI sites of pBHSNR-GUS and another fragment directly downstream of PpRSL1 
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promoter region was inserted into BamHI and HindIII sites of pBHSNR-GUS. For the 

PpRSL2promoter: GUS vector construction two genomic DNA fragments of PpRSL2 gene 

were amplified by PCR. The genomic DNA fragment of PpRSL2 promoter (905 bp) was 

inserted into AscI and ClaI sites of pBHSNR-GUS and another fragment directly 

downstream of PpRSL2 promoter region was inserted into SmaI and HindIII sites.  

 

 

2.6 Physcomitrella patens transformation 

To generate the transgenic moss plants including 35S:PpRSL1;35S:PpRSL2, 

PpRSL1promoter:GUS and PpRSL2promoter:GUS, gene targeting system based on homologous 

recombination were used. In homologous recombination, two homologous DNA strands 

exchange their genetic materials. The gene targeting system based on homologous 

recombination makes it possible to modify a specific area of genome the without changing 

or damaging the genome (figure 2.1). The DNA constructs for homologous recombination 

contain two extra DNA fragments used for recognition of the modification sites. The 

recombination efficiency improves with the increase of length of the homologous DNA 

fragments (Kamisugi et al., 2005). It is also thought that linearization of DNA construct 

also improve the transformation efficiency. Linearized DNA constructs are introduced into 

moss protoplasts by PEG-mediated transformation technique as described previously by 

Schasfer and Zrÿd (1997). Four plates of protonemal tissues grown on nutrient rich media 

for 1 week were collected. 25 ml driselase was treated and incubated for 30-40 minutes 

with gentle mixing. For collecting protoplasts, samples were filtered with microspore sieve 

and 8.5% mannitol. Collected protoplasts were suspended in 6 ml MMM solution (8.5% 

Mannitol, 15ml Magnesium chloride and pH 5.6 of 0.1% MES). 300 μl of protoplasts were 

added into a 50 ml tube which already had the DNA constructs, and mixed gently. 300 µl  
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Figure 2. 1. Schematics showing gene targeting based on homologous recombination 
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of PEG was added to the DNA and protoplasts and mixed. After conducting a heat shock 

at 45°C for 5 min, the protoplasts were left at room temperature for 10 min and 6.5 ml of 

liquid nutrient rich media was added including 8.5% mannitol. After overnight incubation 

under dark conditions, the protoplasts were placed onto solid nutrient rich proto media 

with the aid of top agar (1.4 % agar and 8.5% mannitol). The 35S:PpRSL1;35S:PpRSL2 

vector and 35S:PpRSL1 vector were linearised with AvrII and SwaI before protoplast 

transformation whereas 35S:PpRSL2 vector was linearised with SwaI. Transformants for 

35S:PpRSL1;35S:PpRSL2 and 35S:PpRSL1were selected on G418 (50 μl/ml) and 

transformants for 35S:PpRSL2 were selected on Hygromycin B (25 μl/ml). For the 

transformations of PpRSL1promoter: GUS and PpRSL2promoter:GUS, PpRSL1promoter: GUS 

vector was linearised with AscI and HindIII before protoplast transformation whereas the 

PpRSL2promoter: GUS vector was linearised with AscI and BamHI. Transformants were 

selected on Hygromycin B (25 μl/ml). 

 

2.7 RT-PCR analysis 

The total RNA from 2–week-old protonema and 4- week-old gametophores was extracted 

with the RNeasy Plant Mini Kit (Qiagen). 1 µg of total RNA was used for cDNA synthesis 

with the Superscript III reverse transcriptase (Invitrogen) and oligo(dT) primers. PCR was 

carried out with equivalent amounts of cDNA template for amplification of fragments of 

PpRSL1 and PpRSL2 and GAPDH (X72381).  

 

2.8 GUS staining analysis, embedding and sectioning  

Isolated gametophores were incubated in GUS staining solution (100 mM NaPO4 [pH7.0], 

1mM 5-bromo-4-chloro-3-indolyl-glucuronide, 1 mM potassium ferricyanide and 0.2% 

Triton X-100) at 37°C for 2 – 24 hours. The samples were then washed with 100 mM 
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NaPO4 [pH7.0] and incubated in 70% EtOH. Whole mounted samples were imaged with a 

Nikon Coolpix 995 camera mounted on a Leica Wild M10 stereomicroscope. For 

transverse sectioning, gametophores were aligned on a 1 mm layer of solid 1% agarose and 

covered with 1% molten agarose. After solidification, samples were cut into small blocks 

and washed twice in double distilled H2O for 15 minutes, then dehydrated in a graded 

series of ethanol (25, 50, 75 and 100%), each for 30 minutes. The dehydrated samples 

were sequentially incubated in a series of Technovit 7100 cold-polymerizing resin (33, 66 

and 100% (v/v) in EtOH), each for 1 hour. Samples were then incubated in 100% 

Technovit for 1 day and placed in plastic moulds. To solidify samples a mixture of 

Technovit and hardener solution II (v/v=15:1) was treated at room temperature for 1 day. 

10 µm sections were taken from gametophores with an Ultracut E (Reichert-Jung). Images 

were captured with a Pixera Pro ES600 camera mounted on Nikon Eclipse 800.  

 

 

2.9 Genomic DNA extraction from Physcomitrella patens for PCR 

Genomic DNA extraction was carried out as described previously by Roger and Bendich 

(1988), with slight modification. 1 gram of protonemal tissue was grinded in liquid 

nitrogen. 1 ml of CTAB solution (2% CTAB, 100mM Tris [pH8.0], 20mM EDTA [pH8.0], 

1.4M NaCl and 1% PVP) which was pre-heated at 65°C was added and incubated at 65°C 

for 15 min. 1 volume of CHCl3/isoamyl (24:1) alcohol without phenol was added to the 

samples. After centrifugation, supernatant was transferred into new tubes and 10 % CTAB 

(10 % CTAB and 0.7M NaCl) was added. After purification with 1 volume of 

CHCl3/isoamyl, collected supernatant was added with 1 volume of CTAB precipitation 

solution (1% CTAB, 50mM Tris [pH8.0], 10mM EDTA [pH8.0]) and incubated at room 

temperature for 1 hour. Pellets collected by centrifugation were resolved in HSTE solution 
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(10mM Tris [pH8.0], 1mM EDTA [pH8.0] and 1M NaCl) at 50°C. Final genomic DNA 

was collected by ethanol precipitation. 

 

 

2.10 Southern blot analysis 

The total genomic DNA from protonemal tissues was isolated using the Nucleon 

Phytopure DNA extraction kit (Amersham Biosciences). 8 µg of DNA was digested with 

HindIII and run on a 0.7% agarose gel and transferred to a nitrocellulose membrane in 

alkaline condition (0.4N NaOH and 1M NaCl) at room temperature for 14 hours. 35P-

labeled NPT was prepared by random primer extension with [α-32P] dATP. For the 

hybridization church buffer was used (0.5 M Na-Phosphate, 0.1 mM EDTA, 7% SDS and 

1% BSA ). Hybridization was carried out at 65°C for 24 hours and washed four times with 

washing solution. The X – films were exposed for 1 and 7 days.  
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Chapter Three:  

Class 1 RSL function  

in caulonema differentiation  

of Physcomitrella patens 
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3.1 Summary 

Protonema that develops from haploid spores is the filamentous stage of P. patens. 

Protonema comprises two different cell types - chloronema and caulonema.  Both class 1 

RSL genes and auxin regulate the caulonema differentiation, but the regulatory relationship 

between class 1 RSL and auxin is unknown in moss protonema development. This study 

shows that chloronema cells in proximal regions are becoming progressively more 

caulonemal distally with each round of apical cell division. The gradual transition from 

chloronema to caulonema causes gradient cell growth along filaments. Class 1 RSL genes 

regulate the gradient cell growth by regulating the developmental transition from 

chloronema to caulonema; mutant plants which lack class 1 RSL functions (Pprsl1Pprsl2) 

do not develop gradient cell identity along protonemal filaments. The transcriptional 

expressions of class 1 RSL genes are positively regulated by auxin. Furthermore, mutant 

plants which lack both PpRSL1 and PpRSL2 function do not differentiate caulonema even 

in auxin-treated conditions, whereas constitutive co-expression of PpRSL1 and PpRSL2 is 

sufficient to activate constitutive caulonema development. Together these data suggest that 

auxin regulates caulonema differentiation by positively regulating PpRSL1 and PpRSL2.  
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3.2 Introduction 

Two generations alternate during the life cycle of P. patens. The gametophyte generation 

is the haploid phase of the life cycle, and the sporophyte generation is a diploid phase. 

Protonema development is the first phase in the haploid stage of the life cycle after spore 

germination. The protonema is the multicellular filamentous stage of the gametophyte. 

Protonemal filaments comprise two different types of cells; chloronema and caulonema. 

Chloronema having numerous chloroplasts and perpendicular cell walls are produced by 

apical cell division at the tips of protonemal filaments with a cell cycle time of 

approximately 24 hours (Cove and Knight, 1993; Schween et al., 2003; Cove, 2005). At 

some point, chloronema cells develop into caulonema cells at the growing edge of 

protonema. Caulonema have few chloroplasts that are smaller than those of chloronema 

and their cross walls are oblique instead of transverse. New cells are produced by division 

of apical cells with a relatively short cell cycle time of approximately 7 hours (Cove and 

Knight, 1993; Schween et al., 2003; Cove, 2005). 

 

Differentiation is the process by which specialized cell types form during development of 

multi-cellular organisms. Diverse cell types develop in various positions in the body of an 

organism, because of the spatially-controlled expression and activity of regulators such as 

hormones and transcription factors. The differentiation of caulonema from chloronema is 

positively regulated by auxin and class 1 RSL genes; auxin treatment of wild type 

protonema activates caulonema differentiation from chloronema, and the differentiation of 

caulonema from chloronema is defective in mutants which lack the function of class 1 RSL 

(Johri and Desai, 1973; Ashton et al., 1979; Menand et al., 2007b). Despite crucial roles of 

auxin and class 1 RSL genes in caulonema differentiation, the regulatory interaction 

between auxin and class 1 RSL genes have been poorly understood in P. patens. In this 
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study, my aim is to understand the regulatory relationship between auxin and class 1 RSL 

in caulonema development.  

 

To understand the regulatory relationship between auxin and class 1 RSL genes is also very 

important. Although a previous study showed that class 1 RSL function in rooting cell 

development is conserved between P. patens and A. thaliana, it is still unknown if the 

mechanism of class 1 RSL regulation was conserved during the land plant evolution. It is 

known that the modification of gene regulatory networks gave rise to the morphological 

diversity and complexity during evolution (Davison and Erwin; 2006; Peter and Davison; 

2011). This suggests that the regulatory interaction between auxin, a regulator of 

caulonema development, and class 1 RSL genes may be different in P. patens and A. 

thaliana. Therefore, to elucidate the regulatory relationship between auxin and class 1 RSL 

genes in P. patens is a central aim of this research presented in this thesis. 

 

 

3.3 Results  

3.3.1 There is a gradual transition from chloronema to caulonema in 

moss protonema  

Germinating spores of P. patens develop filamentous networks, protonema. Protonemal 

filaments consist of two distinct cell types, chloronema and caulonema (figure 3.1). 

Chloronema are slow growing filamentous cells with numerous chloroplasts and 

perpendicular cell walls, while caulonema are rapid growing filamentous cells with few 

chloroplasts and oblique cell walls. Both filamentous cells grow at their tips by tip growth 

and cell division (Reski, 1998). In germination spores produced 2 (2.17 ± 0.39 (S.D.) n=  
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Figure 3.1   Gradient cell identities along protonemal filaments. 

A. Germinating spore with two emerging filaments. 

B. Protonema 7 days after germination. 

C. Chloronema cell with a transverse cell wall (arrow).  

D. Caulonema apical cell with an oblique cell wall (arrow). 

E. Change in cell length and width along a filament; cell 1 is the proximal-most cell that 

forms upon germination, and the sub-apical cell is the distal-most differentiated cell along 

a filament.  

F. Relationship between cell length and width along the proximal-distal protonemal 

filament axis. Asterisk indicates significant difference between length of 1st, 5th and sub-

apical cells based on 95 % confidence intervals. 

Scale bars = 50 µm in (a); 100 µm in (b), (c) and (d).  
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12) protonemal filaments (figure 3.1A). The first cells to differentiate in these filaments 

were chloronemal; they were short and have transverse cross walls (figure 3.1A, C). As 

protonemal filaments grow, caulonema started to differentiate from chloronema at the 

growing edges of colonies. After germination within 1 week, cell number in filaments 

increased to 9 or 10 (9.6 ± 0.52 (S.D.)). Cells in distal regions were longer and narrower 

than the chloronema cells in the proximal region. Furthermore, the distal cells in the 1 

week old filaments developed oblique cross walls, indicating that there is a transition from 

chloronema to caulonema within the first week of protonemal development. Interestingly 

fifth cells from the proximal region displayed a transitional morphology between 

chloronema in the proximal regions and caulonema in the distal region of the protonemal 

filaments; the fifth cell was longer and narrower than the first cells in the proximal region 

but shorter and thicker than sub-apical cells (figure 3.1E, F). This data supports the 

hypothesis that chloronema gradually develop into caulonema with each increase of each 

round of apical cell division.  

 

To determine how this transition occurs in protonemal filament development, the change 

in cell length was characterised along a 7 day-old protonemal filament, because the 

developmental transition from short chloronema into long caulonema should be 

accompanied by an increase in cell length along the filament. Cell length gradually 

increased along the filament (figure 3.3M). This supports that caulonema gradually 

differentiate from chloronema in protonemal filament development.  

 

The gradual transition from chloronema into caulonema was independently tested by 

characterizing the cell cycle times of cell in protonemal development. Chloronema and 

caulonema are present for different durations in the cell cycle; slow-growing chloronema 
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cells approximately divide every 24 hours whereas rapid-growing caulonema cells divide 

every 7 hours (Cove and Knight, 1993; Schween et al., 2003). If the developmental 

transition from chloronema to caulonema occurs gradually, it would be expected that the 

cell cycle times would gradually decrease with the increase of each round of apical cell 

division. The cell cycle of the first three cells which developed between germination and 

the 3 day of filamentation was approximately 24 hours. Cell cycle times gradually 

decreased in apical cells which formed later in protonemal development; from 18.9 hours 

at 4 days to 12.1 hours at 10 days (table 3.1). This data clearly indicates that chloronema 

cells gradually develop into caulonema in the protonemal development of P. patens.  

 

 

3.3.2 PpRSL1 and PpRSL2 are required for caulonema differentiation 

from chloronema in protonema development 

The developmental transition from chloronema to caulonema requires some gene 

expression. For example, the PpARPC1encoding subunit of the actin-related protein2/3 

(Arp2/3) complex and the PpHXK1encoding  hexokinase, are required for caulonema 

differentiation; each mutant plant which lack PpARPC1or PpHXK1suppress rapidly 

elongating caulonema differentiation at the growing edge of protonemal filaments (Harries 

et al., 2005; Thelander et al., 2005). However, both Pparpc1 and Pphxk1 mutant 

protonema are also affected in chloronema development. This suggests that these genes are 

not specific regulators controlling caulonema differentiation from chloronema.  

 

PpRSL1 and PpRSL2 regulate caulonema differentiation; mutant plants which lack both 

PpRSL1 and PpRSL2 strongly inhibit caulonema differentiation from chloronema in 

protonemal development (Menand et al., 2007b). However, it is unknown if chloronema  
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Table 3. 1 Cell cycle times become shorter during the chloronema-to-caulonema transition.  

 

 

 

 

 

 

 

 

 

 

 

 

  0-3day 3-4 day 3-6 day 3-8 day 3-10 day 

WT 24.4 ± 4.60 hr 18.9 ± 6.41hr 15.9 ± 1.95 hr 13.1 ± 1.56 hr 12.1 ± 0.6 hr 

Pprsl1Pprsl2 24.0 ± 3.79 hr 24.0 ± 0 hr 24.8 ± 5.01 hr 25.1 ± 3.63 hr 24.4 ± 3.25 hr
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development also requires class 1 RSL gene functions or not. If class 1 RSL is not involved 

in chloronema development but specifically regulates caulonema differentiation from 

chloronema, mutant plants which lack PpRSL1 and PpRSL2 would develop 

morphologically identical chloronema cells to those of the wild type. To determine that 

class 1 RSL genes specifically control caulonema differentiation, a phenotypical analysis 

was carried out with 7 day old wild type plants, Pprsl1, Pprsl2 single and Pprsl1 Pprsl2 

double mutants. Morphologies of Pprsl1 and Pprsl2 single mutants were almost identical 

to wild type (figure 3. 2A, B, C, E); Pprsl1 and Pprsl2 single mutants differentiated 

caulonema cells at the distal region of protonemal filaments. Cell lengths of the first 

chloronema cells and sub-apical caulonema cells between wild type and each Pprsl1 and 

Pprsl2 single mutants were almost same. However, Pprsl1 Pprsl2 double mutants strongly 

suppressed caulonema differentiation in the distal region and all cells which developed on 

protonemal filaments of Pprsl1 Pprsl2 double mutants were chloronemal (figure 3.2D, E); 

cell lengths between first proximal cells and sub-apical cells were almost identical in 

Pprsl1 Pprsl2 double mutants unlike Pprsl1, Pprsl2 single mutants and wild type.  

Furthermore, the first chloronema cell length of Pprsl1 Pprsl2 double mutants was almost 

the same to the first chloronema cell length of wild type, indicating that chloronema 

development does not require the class 1 RSL gene function. This data also suggests that 

class 1 RSL specifically regulates the developmental transition from chloronema to 

caulonema in protonema development.  

 

 

3.3.3 Class 1 RSL controls gradient cell growth along filaments by 

regulating caulonema differentiation 



51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2 All cells in the protonemal filaments of Pprsl1 Pprsl2 double mutants are 

chloronema.  

A. Protonema of 1 week old of wild type. 

B. Protonema of 1 week old Pprsl1 single mutants. 

C. Protonema of 1 week old Pprsl2 single mutants. 

D. Protonema of 1 week old Pprsl1 Pprls2 double mutants. 

E. First and sub-apical cell lengths in WT, Pprsl1, Pprsl2 single and Pprsl1 Pprsl2 double 

mutants. Asterisk indicates significant difference between length of 1st and sub-apical cells 

based on 95 % confidence intervals. 

Scale bars = 100 µm.  
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Because class 1 RSL function is required for the developmental transition from chloronema 

to caulonema in protonema development, it was expected that there would be no 

morphological differences between young protonema of the wild type and Pprsl1 Pprsl2 

double mutants, because the early developmental stage of protonemal filaments mainly 

develops chloronema cells (Cove and Knight, 1993). To test this hypothesis a phenotypical 

analysis was carried out using different developmental stages of the wild- type protonema 

and Pprsl1 Pprsl2 double mutants. As expected the 3 day old protonema of Pprsl1 Pprsl2 

double mutants were almost identical to the wild-type protonema in morphology. (figure 3. 

3A, G). All cells which developed between germination and 3 days in the wild-type 

filaments and Pprsl1 Pprsl2 mutant filaments were chloronema; all cells which develop 

both in wild type and Pprsl1 Pprsl2 mutant filaments were short and had perpendicular 

cell walls. By 4 days after germination wild type filaments started to differentiate 

caulonema-like cells in the distal regions, whereas Pprsl1 Pprsl2 double mutants 

developed only chloronema cells along the filaments. With the increase of each round of 

caulonema cell division, the difference in size between protonemal colonies of wild type 

and Pprsl1 Pprsl2 double mutants gradually increase, because Pprsl1 Pprsl2 double 

mutants suppress caulonema cells along the filaments and develop only chloronema cells 

which grow and divide with a relatively low growth rate and long cell cycle time. By 18 

days after germination, the protonema of the wild type was around two times bigger in size 

than the protonema of the Pprsl1 Pprsl2 mutants. (figure 3. 3F, L).  

 

If caulonema differentiation in the Pprsl1 Pprsl2 protonemal filaments is completely 

suppressed it would be expected that Pprsl1 Pprsl2 double mutants would not develop the 

gradient filamentous cell growth which develops in the wild type. To test this hypothesis, 

the change in cell length was characterised along a 7 day-old protonemal filament of the  
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Figure 3. 3 Pprsl1Pprsl2 double mutants do not develop gradient cell growth along 

filaments  

A-F. Wild-type protonemal morphology at different stages of development. 

G-L. Pprsl1 Pprsl2 double mutant protonema at different stages of development. 

M. Relationship between cell length and position along proximal-distal axis in wild type 

and Pprsl1Pprsl2 double mutant protonemal filaments. 

N. Increase in cell numbers of wild type and Pprsl1 Pprsl2 double mutant with age (0 – 10 

days). Asterisk indicates significant difference between wt and Pprsl1Pprsl2 based on 95 % 

confidence intervals.  

Scale bars = 100 µm.  
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Pprsl1 Pprsl2 double mutant. As expected, the Pprsl1 Pprsl2 double mutant did not 

develop gradient cell growth along protonemal filaments (figure 3.3M); all cells which 

develop between the first proximal cells and the sub-apical cells of Pprsl1 Pprsl2 double 

mutants were almost identical in cell length whereas the wild type exhibited gradual 

increase of cell length along the filaments. This suggests that the gradual transition from 

chloronema to caulonema is regulated by class 1RSL gene function. 

 

The hypothesis that class 1 RSL regulates gradual transition from chloronema to 

caulonema in protonema development was also tested by characterizing the duration of the 

cell cycle along protonemal filaments. If all cells in the Pprsl1 Pprsl2 double mutants are 

chloronema, it would be expected that there would be no gradual decrease in cell cycle 

times throughout the development of Pprsl1 Pprsl2 mutant protonemal filaments. As 

expected, cells in Pprsl1 Pprsl2 double mutants divided approximately every 24 hours 

(table 3.1) and the total cell number was increased by one per day; 3, 4, 6, 8 and 10 day old 

protonemal filaments of Pprsl1 Pprsl2 contained 3 ± 0.56 (S.D.), 3.91 ± 0.49 (S.D.), 5.57 

± 0.49 (S.D.), 7.87 ± 0.60 (S.D.), and 10 ± 0.86 (S.D.) cells. Together this data indicates 

that gradient cell growth along the filament is caused by a gradual transition from 

chloronema to caulonema which are regulated by the class 1 RSL gene function. 

 

 

3.3.4 Class 1 RSL genes are expressed in protonema 

To demonstrate that PpRSL1 and PpRSL2 control the transition from chloronema to 

caulonema in protonema development, transcriptional expression of class 1 RSL was tested 

in developing protonema by RT-PCR. PpRSL1 and PpRSL2 were expressed in protonemal 

stage. Furthermore, transcriptional expression levels of PpRSL1 gene in wild type was 
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almost identical to transcriptional expression levels of PpRSL1 in Pprsl2 single mutant, 

and transcriptional expression levels of PpRSL2 gene was also identical to transcriptional 

expression levels of PpRSL2 in Pprsl1 single mutants.(figure 3.4A). This indicates that 

PpRSL1 does not regulate PpRSL2 expression and PpRSL2 does not regulate PpRSL1 

expression.  

 

 

3.3.5 PpRSL1 is strongly expressed in proximal regions of protonema 

In A. thaliana class 1 RSL genes are expressed in trichoblasts but not in root hair cells, 

suggesting class 1 RSL regulates root hair differentiation from the hair forming epidermal 

cells (Menand et al., 2007b). If class 1 RSL gene functions between caulonema 

differentiation in P. patens and root hair differentiation in A. thaliana have been conserved 

during land plant evolution, it was expected that PpRSL1 and PpRSL2 would be expressed 

in chloronema cells which develop into caulonema. To determine class 1 RSL expression 

pattern in developing protonema spatial expression pattern of PpRSL1 and PpRSL2 was 

analysed using GUS expression system. For the GUS staining analysis, 

PpRSL1promoter:GUS and PpRSL2promoter:GUS fusions constructs were generated and 

introduced into the endogenous PpRSL1 and PpRSL2 loci by homologous recombination. 

The expression of PpRSL1promoter:GUS showed that PpRSL1 expressed in a gradient along 

protonemal filaments. PpRSL1 expression was detected in proximal chloronema of 

filaments at the centre of colonies by 8 hours after incubation. With increase of incubation 

time the PpRSL1 expression extended out to distal region of protonema. However, PpRSL1 

expression was not detected in the distal caulonema cells (figure 3.4B, C, D). PpRSL2 

expression was much less specific than PpRSL1. PpRSL2 expressed not only in the 

proximal region of filaments but also in cells of distal region (figure 3.4E, F, G). Together  
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Figure 3. 4 PpRSL1 and PpRSL2 genes are expressed in protonema 

A. RT-PCR demonstrates steady state levels of PpRSL1 and PpRSL2 mRNA in protonema. 

B-D. Time course of PpRSL1promoter:GUS expression in protonema. 

E-G. Time course of PpRSL2promoter:GUS expression in protonema. 

Scale bars = 100 µm. 
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these data indicate that PpRSL1 and PpRSL2 are expressed in protonema and PpRSL1 is 

expressed most highly in proximal chloronema.  

 

 

3.3.6 Auxin positively regulates PpRSL1 and PpRSL2 expression 

Because class 1 RSL genes regulate root hair differentiation independently of auxin in A. 

thaliana, it was expected that the class 1 RSL would regulate caulonema differentiation 

independently of auxin if regulatory interaction between auxin and class 1 RSL genes are 

conserved between these two species. The hypothesis was tested by carrying out RT-PCR 

using mRNA that was isolated both from auxin-treated and untreated wild -type protonema. 

Auxin treatment increased the transcriptional expression levels of PpRSL1 and PpRSL2; 

both 20 hour treatment with 10 μM NAA and 14-day treatment with 1μM NAA induced 

the increase of transcriptional expression levels of PpRSL1 and PpRSL2 mRNA compared 

with the untreated control (figure 3.5A). This indicates that auxin positively regulates the 

transcriptional expression of both class 1 RSL genes.  

 

To confirm individually that auxin positively regulates transcriptional expressions of 

PpRSL1 and PpRSL2, GUS staining assay using PpRSL1promoter:GUS and 

PpRSL2promoter:GUS was carried out. NAA-treatment increased GUS expression both in 

PpRSL1promoter:GUS and PpRSL2promoter:GUS plants compared with untreated controls. 

Auxin treatment induced the change of the PpRSL1 expression pattern; the expression of 

the PpRSL1promoter:GUS extended out to the apical tips of the protonemal filaments in 

NAA-treated condition, whereas the PpRSL1 expression was undetectable in these distal 

regions in the NAA-untreated controls (figure 3.5B, C). This indicates that auxin regulates 

the expression level and the spatial expression pattern of PpRSL1 in protonema filaments.  
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Figure 3. 5  Auxin positively regulates PpRSL1 and PpRSL2 expression 

A. RT-PCR showing that auxin increases steady state levels of PpRSL1 and PpRSL2 

mRNA. On the left, short term effect of 10 μM auxin treatment for 20 hours. On the right, 

long term effect of 1 μM auxin treatment for 14 days. 

B. Expression of PpRSL1promoter:GUS in control conditions (no NAA-treatment). 

C. Expression of PpRSL1promoter:GUS after auxin treatment (1µM NAA,  for 10 days). 

D. Expression of PpRSL2promoter:GUS in control conditions (no NAA-treatment). 

E. Expression of PpRSL2promoter:GUS after auxin treatment(1µM NAA,  for 10 days). 

Scale bars = 100 µm.  
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Auxin-treatment also induced increase of PpRSL2promoter :GUS expression (figure 3.5D,E). 

However, auxin treatment did not induce significant change in the spatial expression 

pattern of PpRSL2. 

 

 

3.3.7 Auxin-induced caulonema differentiation requires class 1 RSL gene 

activity 

Because auxin positively regulates the expression of class 1 RSL in protonema, this 

supports the hypothesis that auxin regulates caulonema differentiation by positively 

regulating PpRSL1 and PpRSL2 expression in developing protonema. If this is true, Pprsl1 

Pprsl2 double mutants would be resistant to auxin treatment. The hypothesis was 

supported by testing auxin effect on caulonema differentiation in wild type, Pprsl1 single, 

Pprsl2 single mutant and Pprsl1 Pprsl2 double mutant plants. Auxin treatment of wild 

type, Pprsl1 single and Pprsl2 single mutants developed extensive growth of caulonema 

and suppressed side branching formations, which resulted in the loose protonema in 

density compared with untreated controls (figure 3.6). However, Pprsl1 Pprsl2 double 

mutants were resistant to auxin (figure 3.7). Morphology of Pprsl1 Pprsl2 protonema 

between auxin-treated and untreated controls was almost identical; Pprsl1 Pprsl2 double 

mutant plants did not differentiate caulonema cells even in auxin-treated condition. These 

results indicate that auxin controls the caulonema differentiation by positively regulating 

PpRSL1 and PpRSL2 expression. In A. thaliana, auxin regulates root hair differentiation 

independently of class 1 RSL. Interestingly, this indicates that the regulation of class 1 RSL 

expression by auxin in P. patens does not exist in A. thaliana. 
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Figure 3. 6 Images showing Pprsl1 and Pprsl2 single mutants are not resistant to 

auxin.  

A. Wild type protonema grown on solid minimal media for 2 weeks 

B. Wild type protonema grown on solid minimal media including 1µMNAA for 2 weeks 

C. Pprsl1 single mutant protonema grown on solid minimal media for 2 weeks 

D. Pprsl1 single mutant protonema grown on solid minimal media including 1µMNAA for 

2 weeks 

E. Pprsl2 single mutant protonema grown on solid minimal media for 2 weeks 

F. Pprsl2 single mutant protonema grown on solid minimal media including 1µMNAA for 

2 weeks  

Scale bars = 500 µm  
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Figure 3. 7  Images showing Pprsl1Pprsl2 protonema is resistant to auxin. 

A. Wild type protonema grown on solid minimal media for 2 weeks 

B. Distal region of the filament of A 

C. Wild type protonema grown on solid minimal media including 1µM NAA for 2 weeks 

D. Distal region of the filament of C 

E. Pprsl1 Pprsl2 double mutant protonema grown on solid minimal media for 2 weeks  

F. Distal region of the filament of E 

G. Pprsl1 Pprsl2 double mutant protonema grown on solid minimal media including 1µM 

NAA for 2 weeks 

H. Distal region of the filament of G 

 Scale bars = 500 µm in A, C, E and G; 100 µm in B, D, F and H. 
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3.3.8 Proximal chloronema cells are sensitive to auxin 

Since auxin positively regulates PpRSL1 and PpRSL2 expression in developing protonema 

and these genes are expressed strongly in proximal chloronema, it was expected that 

proximal chloronema would accumulate a relatively high concentration of auxin compared 

with distal caulonema cells. Since it was almost impossible to analyze directly the auxin 

concentration accumulated in each filamentous cell, the GmGH3 promoter activity that is 

highly responsive to auxin was analysed. Protonemal filaments transformed with 

GmGH3promoter:GUS  do not express GUS gene expression in auxin-untreated condition 

(figure 3.8; Bierfreund et al., 2003). Instead, 1µM NAA treatment induced GUS gene 

expression in the cells of proximal regions by 2 hours after incubation (figure 3.8B). With 

the increase of incubation time the GUS expression extended out to the distal region of 

protonema (figure 3.8C). The GUS expression pattern in the GmGH3promoter:GUS was 

individually confirmed by 0.1 μM NAA treatment. GUS gene expression was detected in 

the first proximal cells in 0.1 μM NAA-treated conditions within 2 hours of incubation 

(figure 3.8E). With the increase of incubation time, GUS expression gradually extended 

out to the cells in the distal region (figure 3.8F). This suggests that a relatively high 

concentration of auxin is accumulated in proximal chloronema cells and the auxin 

concentration decreases in apical caulonema cells. Furthermore, the GUS expression 

patterns between GmGH3promoter:GUS and PpRSL1promoter:GUS plants were similar. These 

results support that auxin regulates caulonema differentiation by positively regulating class 

1 RSL in protonema development. 

 

 

3.3.9 Class 1 RSL gene expression is sufficient for caulonema 

differentiation from chloronema 
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Figure 3. 8  Images showing proximal chloronema cells are sensitive to auxin 

A-C. Expression pattern of GmGH3promoter:GUS grown on minimal media including 1 µM 

NAA for 1 week in different incubation time. 

D-F. Expression pattern of GmGH3promoter:GUS GUS grown on minimal media including 

0.1 µM NAA for 1 week in different incubation time. 

Scale bars = 100 µm  
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Because auxin promotes caulonema differentiation by positively regulating the expression 

of both PpRSL1 and PpRSL2, it was predicted that overexpression of class 1 RSL genes 

would display similar morphology to wild type plants grown in auxin-treated conditions. 

To test this hypothesis 35S:PpRSL1, 35S:PpRSL2 and 35S:PpRSL1;35S:PpRSL2 plants 

were generated. Plants transformed with either 35S:PpRSL1 or 35S:PpRSL2 constructs 

were indistinguishable from the wild type in protonema development (figure 3.9). This 

suggests that neither expression of PpRSL1 nor PpRSL2 individually is sufficient for 

caulonema differentiation. Instead, plants transformed with 35S:PpRSL1;35S:PpRSL2 

strongly activated caulonema differentiation and did not develop a gradient cell identity 

along filaments (figure 3.10). This data supports the hypothesis that auxin promotes 

caulonema development by positively regulating PpRSL1 and PpRSL2 expression. 

 

 

3.3.10 Involvement of polar auxin transporting system in regulating 

caulonema differentiation in protonema development 

TIBA inhibits polar auxin transport in moss filaments (Rose et al., 1983a). If polar auxin 

transport regulates caulonema differentiation in P. patens, it was predicted that TIBA or 

NPA treatment would have an effect upon caulonema differentiation in protonema 

development. To test the hypothesis TIBA and NPA effect on caulonema differentiation 

was tested. Both TIBA and NPA treatment of the wild type protonema strongly suppressed 

caulonema differentiation in protonema development (figure 3.11). The TIBA effect on 

caulonema differentiation was characterized by measuring filamentous cell lengths. TIBA 

treatment induced the decrease of sub-apical cell lengths while first cell lengths in 

proximal regions between TIBA treated and untreated wild type protonema were almost 

same. Furthermore, the first cells in proximal regions and sub-apical cells are almost  
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Figure 3. 9  Images showing plants transformed with either 35S:PpRSL1 or 

35S:PpRSL2 construct are identical to wild type 

A. Wild type protonema grown for 3 weeks 

B. Protonema transformed with 35S:PpRSL1 3 weeks after plating 

C. Protonema transformed with 35S:PpRSL2 3 weeks after plating 

Scale bars = 100 µm  
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Figure 3. 10  Caulonema differentiation is constitutively activated in protonema 

transformed with 35S:PpRSL1;35S:PpRSL2 

A. Wild type colonies 7days after plating 

B. Wild type colonies 21 days after plating 

C. Protonema transformed with 35S:PpRSL1;35S:PpRSL2 grown for 7 days 

D. Protonema transformed with 35S:PpRSL1;35S:PpRSL2 grown for 21 days 

E. Relationship between cell length and position along proximal-distal axis of 7- day old 

protonemal filaments. Asterisk indicates significant difference between wt and transgenic 

plants based on 95 % confidence intervals. Scale bars = 100 μm. 
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Figure 3. 11  TIBA treatment inhibits caulonema differentiation in protonema of wild 

type. 

A. 7day old wild type protonema grown on normal condition. 

B. 7day old wild type protonema grown on TIBA-treated condition. 

C. 7day old wild type protonema grown on NPA-treated condition. 

D. Change First and sub-apical cell lengths between TIBA treated and untreated control.  

Asterisk indicates significant difference based on 95 % confidence intervals. 

Scale bars = 100 μm. 
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identical in cell lengths, suggesting that polar auxin transport is involved in caulonema 

differentiation in protonema development. 

 

 

3.3.11 Pprsl1Pprsl2 and 35S:PpRSL1;35S:PpRSL2 plants are resistant to 

TIBA 

Because class 1 RSL genes regulate caulonema differentiation downstream of auxin, it 

would be expected that mutant plants which lack both PpRSL1 and PpRSL2 functions and 

35S:PpRSL1;35S:PpRSL2 transgenic plants would be resistant to TIBA. To test the 

hypothesis, the TIBA effect on protonema development of Pprsl1Pprsl2 double mutants 

and 35S:PpRSL1;35S:PpRSL2 transgenic plants was determined. As expected, 

Pprsl1Pprsl2 double mutants are resistant to TIBA (figure 3.12A, B). TIBA treatment did 

not cause a morphological change of the Pprsl1Pprsl2 protonema. Similarly, 

35S:PpRSL1;35S:PpRSL2 transgenic plants were also resistant to TIBA. Plants 

transformed with 35S:PpRSL1;35S:PpRSL2 differentiated caulonema in TIBA-treated 

conditions (figure 3.12E, F, I, J). This data also indicates that class 1 RSL regulates 

caulonema differentiation downstream auxin.  

 

 

3.4 Discussion 

3.4.1 Class 1 RSL regulate differentiation of the specialized tip growing 

cells required for nutrient uptake 

Plants differentiate specialized cell types for nutrient uptake. Rhizoids in non vascular 

plants and root hairs in vascular plants differentiate as specialized cells for nutrient uptake 
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Figure  3. 12  Images showing Pprsl1 Pprsl2 and 35S:PpRSL1;35S:PpRSL2 plants are 

resistant to TIBA. 

A. 7day old Pprsl1 Pprsl2 protonema grown on minima media 

B. 7day old Pprsl1 Pprsl2 protonema grown on minimal media including 100 µM TIBA 

C. 3 week old wild type protonema grown on minima media 

D. Distal region of the filament of C 

E. 3 week old 35S:PpRSL1;35S:PpRSL2 protonema grown minima media 

F. Distal region of the filament of E 

G. 3 week old wild type protonema grown on minimal media including 100 µM TIBA 

H. Distal region of the filament of G 

I. 3 week old 35S:PpRSL1;35S:PpRSL2 protonema grown on minimal media including 

100 µM TIBA 

J. Distal region of the filament of I. Scale bars = 100 μm. 

 



70 
 

 (Gahoonia et al., 1997; Duckett et al., 1998). Protonema is the first phase in the haploid 

stage of the moss life cycle. Protonema does not develop rhizoids which develop on 

gametophores. Instead, it has been hypothesised that caulonema are the specialized cells 

which function in nutrient uptake and transport during protonema development. This 

hypothesis was supported by observations that caulonema and rhizoid differentiation are 

regulated by nutrient conditions with the same regulation pattern (Goode et al., 1992). 

Furthermore, the morphological resemblance between caulonema and rhizoids also 

supports that caulonema differentiate as specialized cells for nutrient uptake (Duckett et al., 

1998).  

 

In this study it has been shown that class 1 RSL regulates caulonema differentiation from 

chloronema in growing protonema. Class 1 RSL genes control the differentiation of 

caulonema and rhizoids in P. patens, and root hairs in A. thaliana (Masucci and 

Schiefelbein, 1994; Menand et al., 2007b). Although these cells grow by tip-growth, not 

all tip growing cell differentiations are controlled by class 1 RSL gene functions. For 

example, chloronema cells which mainly function in photosynthetic assimilation in 

protonema development grow by tip growth, but development of chloronema is not 

regulated by class 1 RSL gene functions in developing protonema; chloronema cells which 

develop from wild type protonema and Pprsl1 Pprsl2 protonema are morphologically 

identical. Similarly, the development of tip-growing pollen tubes does not require RSL 

gene function in A. thaliana (Menand et al., 2007b). These results indicate that the RSL 

genes are not simply positive regulators to control differentiation and development of tip-

growing cells. Instead RSL genes control the differentiation of specialized tip-growing 

cells that form at the interface of the plant and its substratum and are likely to have roles in 

nutrient uptake and anchorage.  
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3.4.2 Gradient expression of PpRSL1 in protonema development 

regulates gradient cell growth along filaments 

In this study it has been shown that the gradual transition from chloronema to caulonema 

results in the gradient cell identity along wild type filaments; the first cells to differentiate 

from germinating spores are chloronemal and by 4 days after germination, new cells which 

are produced by apical cell division at the growing edge of colonies become progressively 

more caulonemal in character. Class 1 RSL genes regulate the developmental transition 

from chloronema to caulonema in protonema development. PpRSL1 is most highly 

expressed in the proximal chloronema cells. The expression level of PpRSL1 progressively 

decreases as cells become more caulonemal in character and apical caulonema in distal 

regions do not express PpRSL1, suggesting that the gradient cell growth along wild- type 

filaments is caused by the gradient expression of PpRSL1.   

 

In this study, I showed moss class 1 RSL regulates caulonema differentiation from 

chloronema; Pprsl1 Pprsl2 double mutant plants develop only chloronema along filaments 

and 35S:PpRSL1;35S:PpRSL2 overexpressing plants activate caulonema differentiation 

from chloronema. Despite the fact that PpRSL1 positively regulates caulonema 

development this gene is predominantly expressed in proximal chloronema cells. 

Therefore PpRSL1 appears to be expressed in the wrong place! I think that two possible 

mechanisms can explain this. The first hypothesis is that class 1 RSL proteins move along 

filaments. It is possible that PpRSL1 gene is transcribed in proximal cells of the protonema 

and translated. Then the PpRSL1 proteins could move from proximal cells to distal cells 

and accumulate highly in distal chloronema, where it is active in promoting caulonema 

development. To test the hypothesis we generated GFP-fused RSL expression system. 
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Unfortunately, GFP signals were not detected in the plants transformed with N and C-term 

GFP-fused RSL genes (data not shown). Therefore, some alternative approaches including 

a combination of immunolocalization of protein and in situ hybridization of mRNA are 

required for proving the hypothesis. However, it is likely that proteins movement is not 

require for the function of RLS genes in A. thaliana because the transcriptional and 

translational expression pattern of class 1 RSL is almost identical in A. thaliana (Menand et 

al., 2007; Yi et al., 2010). The second hypothesis is that gradual accumulations of some 

factors downstream of class 1 RSL directly regulate caulonema differentiation from 

chloronema. Since the downstream of class 1 PpRSL is poorly understood, it is hard to test 

this hypothesis, now. In this respect, I think that further studies about downstream 

components of class 1 RSL related to caulonema development are required for expanding 

our understanding of rooting cell development and evolution. 

 

 

3.4.3 Regulatory relationship between auxin and class 1 RSL in 

Physcomitrella patens is different from Arabidopsis thaliana 

In this study, it has been shown that auxin regulates caulonema differentiation by 

positively regulating class 1 RSL genes in P. patens; auxin treatment increases the 

transcriptional expression level of class 1 RSL, and Pprsl1Pprsl2 double mutants are 

resistant to auxin. Furthermore, the spatial pattern of GmGH3promoter:GUS is similar to the 

expression pattern of PpRSL1, suggesting that the PpRSL1 gene is strongly expressed in 

cells which accumulate a relatively high concentration of auxin. In contrast to P. patens, 

class 1 RSL of A. thaliana regulates root hair differentiation independently of auxin; auxin 

treatment does not increase the transcriptional expression level of class 1 RSL of A. 

thaliana, and Atrhd6 Atrsl1 double mutants are not resistant to auxin (Yi et al., 2010). 
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Furthermore, class 1 RSL genes are strongly expressed in trichoblasts which accumulate a 

relatively low concentration of auxin (Jones et al., 2009). These results suggest that even 

though caulonema and root hair differentiation requires both class 1 RSL function and 

auxin action, it is likely that the interaction between them has changed during land plant 

evolution. 

 

Although the spatial pattern of GmGH3promoter:GUS in protonema suggests that relatively 

high concentration of auxin is accumulated in proximal chloronema compared to distal 

caulonema cells,  it is still possible that different cell sensitivity to auxin between proximal 

chloronema and distal caulonema cells might results in the spatial expression pattern of 

GmGH3promoter:GUS. If it is assumed that endogenous auxin concentrations of proximal 

chloronema and distal caulonema cells are almost identical, and the proximal cells are 

more sensitive to auxin than distal caulonema cells, the proximal chloronema cells would 

show relatively strong auxin response compared to distal caulonema cells, as observed. 

Therefore, the spatial expression pattern of GmGH3promoter:GUS alone cannot distinguish 

between these two possibilities. 

 

An understanding of the pattern of polar auxin transport in developing caulonema could 

distinguish between these two alternatives. However, the pattern of polar auxin transport in 

moss protonema development has not been well studied. Previous studies using moss 

rhizoid system showed that proximal rhizoid cells accumulate relatively high 

concentrations of auxin compared to distal rhizoid cells; when whole rhizoid of mosses 

were incubated on an agar containing [14C]-IAA, the radiolabel IAA was strongly detected 

in proximal rhizoid cells compared to distal rhizoid cells (Rose and Bopp, 1983). This 

result indicates that auxin moves from distal rhizoid cells to proximal rhizoid cells. If 
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protonemal filaments and rhizoid filaments use the same polar auxin transport system for 

their developments, it is expected that polar auxin transport from distal caulonema cells to 

proximal chloronema leads to accumulation of auxin in proximal cells. Although this 

model could explain the spatial expression pattern of GmGH3promoter:GUS during 

protonema development, there is still a need for further studies to demonstrate that the 

basipetal transport of auxin occurs in protonema as well as rhizoids. Therefore, 

characterization of polar auxin transport along protonemal filaments using [14C]-IAA is 

important. If proximal cells accumulate higher levels of [14C]-IAA than distal cells, it is 

expected that auxin moves from distal region to proximal region in protonema 

development.  

 

The mechanism underpinning polar auxin transport in P. patens remains to be 

characterized. In Arabidopsis, PIN-mediated auxin transport system has been well studied 

and showed that the polar auxin transport generates auxin gradients and regulates plant cell 

development (Vanneste and Friml, 2009). Arabidopsis genome contains eight PIN genes, 

which can be classified into two major types, plasma membrane-localized PIN1 type and 

endoplasmic reticulum (ER)-localized PIN5 type; plasma membrane PIN proteins regulate 

cell-to-cell auxin movement while ER PIN proteins control intracellular auxin homeostasis 

(Mravec et al., 2009). Three PIN-like genes were identified in P. patens based on protein 

sequence similarities. Moss PIN proteins are located in the ER, suggesting ER-localized 

PIN proteins appeared early in land plant evolution (Mravec et al., 2009). Since ER-

located PIN proteins are unlikely to be involved in cell to cell movement of auxin, the 

identified PIN proteins from P. patens cannot account for the polar transport of auxin 

movement in rhizoid filaments (Rose and Bopp, 1983) and TIBA/NPA effect on 
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protonema development in this study. Therefore, more study on the precise mechanism of 

polar auxin transport in P. patens is required.  

 

 

3.4.4 Possible involvement of class 1 RSL genes in determination of side 

branch-forming site in protonema development 

The first cells which differentiate from germinating spores are chloronemal. As filaments 

grow, some chloronemal apical cells develop into caulonema cells. The sub-apical 

caulonema usually produce side branch cells (Cove, 2005). Initials of side branching 

usually form at the distal end of the filamentous cells in wild type protonema (figure 3.13). 

It is unknown which factors are involved in the determination of side branch forming sites 

in protonema development. Interestingly, protonemal filaments transformed with 

35S:PpRSL1;35S:PpRSL2, developed abnormal side branching formations in protonemal 

development, with relatively high frequency and strength compared with wild type; some 

protonemal filaments of 35S:PpRSL1;35S:PpRSL2 developed side branches in the middle 

of filamentous cells (figure 3.13). Although wild type filaments sometimes develop 

abnormal side branches, the frequency and strength are much lower than plants 

transformed with 35S:PpRSL1;35S:PpRSL2. Interestingly, the AtRHD6 gene is also 

involved in the determination of root hair forming sites in A. thaliana; root hairs of Atrhd6 

mutants form more basally on the hair forming epidermal cells while root hairs of wild 

type develop from the distal end of epidermal cells (Schiefelbein and Somerville, 1990; 

Masucci and Schiefelbein, 1994). Despite the structural difference between multi-cellular 

side braches and single cellular root hairs, this suggests that class 1 RSL might be involved 

in the determination of the side branch forming sites in P. patens. However, the 

abnormality in the side branch forming sites was not observed in protonemal filaments of  
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Figure 3. 13  Images showing plants transformed with 35S:PpRSL1;35S:PpRSL2 

developed abnormal side branching formations in protonemal development with 

relatively high frequency and strength compared with wild type (A and B: wild type 

protonemal filaments, C-F: Plants transformed with 35S:PpRSL1;35S:PpRSL2) 

Protonemal filaments usually developed side branch formaion at the distal end of 

filamentous cells (A). Sometimes, wild-type filaments formed side branches more basally 

on filamentous cells (B). Plants transformed with35S:PpRSL1;35S:PpRSL2 usually 

developed side branch formation at the distal end of filamentous cells like wild type (C). 

However, plants transformed with 35S:PpRSL1;35S:PpRSL2 developed abnormal side 

branching formations in location with relatively high frequency and strength compared 

with wild type (D,E,F). Arrows and arrowheads indicate side branch initials and cell walls, 

respectively. Scale bar = 100 μm 
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Pprsl1Pprsl2 double mutants. The possible involvement of class 1 RSL in the 

determination of side branch-forming sites needs more studies. 

 

 

3.4.5 Possible interaction between PpRSL1 and PpRSL2 protein in 

regulating caulonema differentiation of P. patens 

Basic Helix-Loop-Helix (bHLH) transcription factors are involved in cell specification and 

differentiation during animal and plant cell development (Molkentin et al., 1996). It has 

been reported that bHLH proteins bind to DNA as heterodimers although they, usually 

more weakly, bind to DNA as homodimers (Murre et al., 1989). Since both PpRSL1 and 

PpRSL2 are expressed in developing protonema it has been suggested that PpRSL1 and 

PpRSL2 form heterodimers and regulate caulonema differentiation. Furthermore, in vitro 

pull-down assay using His-tagged PpRSL1 and GST-tagged PpRSL2 showed PpRSL1 

interacts with PpRSL2 in E. coli system (figure 3.14). This possible interaction between 

PpRSL1 and PpRSL2 needs to be confirmed by in vivo binding assay such as co-

immunoprecipitation. Nevertheless it is consistent with the hypothesis that overexpression 

results in an increase in the amount of PpRSL1-PpRSL2 heterodimers. Given that co-

overexpression of PpRSL1 and PpRSL2 strongly activated caulonema differentiation while 

overexpression of PpRSL1 and PpRSL2 individually has no effects on morphology, these 

data suggest that PpRSL1 and PpRSL2 act together in heterodimers. Taken together these 

data support the hypothesis that the PpRSL1-PpRSL2 heterodimer is the most active form 

that activates caulonema differentiation during protonema development. 
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Figure. 3.14. PpRSL1 interacts with PpRSL2. In vitro pull down assay of His-tagged 

PpRSL1 and GST-fused PpRSL2 protein was carried out. Crude extracts of His-tagged 

and GST-fused PpRSL2 protein were incubated for 3 hr at 4ºC. Proteins purified with Ni-

NTA resins were immunoblotted with GST antibody 
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Chapter Four:  

Class 1 RSL function 

 in rhizoid differentiation  

of Physcomitrella patens 
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4.1 Summary 

Rhizoids are the filamentous rooting cells which develop on leafy shoot gametophyte 

(gametophores). Two kinds of rhizoids, basal and mid-stem rhizoids, can be distinguished 

by their developing positions in P. patens. Auxin and class 1 RSL genes encoding basic 

helix loop helix transcription factors regulate rhizoid differentiation in P. patens. However, 

the regulatory interaction between auxin and class 1 RSL is unknown. In this study, it has 

been shown that class 1 RSL genes regulate the differentiation of basal and mid-stem 

rhizoids from specialized cells which give rise to rhizoids. Auxin regulates rhizoid 

differentiation by positively regulating class 1 RSL genes; transcriptional expression levels 

of the class 1 RSL genes are increased by auxin treatment and mutant plants which lack 

class 1 RSL (Pprsl1 Pprsl2) are resistant to auxin. The spatial patterns between class 1 RSL 

expression and auxin distribution in developing gametophores are almost identical. 

Furthermore, co-expression of PpRSL1 and PpRSL2 is sufficient for activating rhizoid 

differentiation in the absence of auxin. These results suggest that the positive regulation of 

class 1 RSL by auxin controls rhizoid differentiation in P. patens. In contrast to P. patens, 

auxin regulates root hair differentiation independently of class 1 RSL in A. thaliana. This 

indicates that even though rhizoid and root hair differentiation requires the conserved 

function of class 1 RSL, the regulation of class 1 RSL by auxin is different in these two 

plants.  
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4.2 Introduction 

 

Rhizoids are filamentous rooting cells in non vascular plants; they function in anchoring 

plants in substratum and in acquiring nutrients (Duckett et al., 1998). These functions in 

non vascular plants are the same as the functions of root hairs in vascular plants (Peterson 

and Farquhar, 1996; Gahoonia et al., 1997). In P. patens, protonemal colonies develop buds 

on the protonemal filaments and the buds develop into gametophores, leafy gametophyte. 

Rhizoids form on gametophores. The morphology of rhizoids is very similar to caulonema; 

they have poorly developed chloroplasts and oblique cell walls. The brown pigmentation in 

rhizoids is the most distinguishable trait from caulonema (Sakakibara et al., 2003) at the 

morphological level.  

 

The gametophores of P. patens develop two types of rhizoids, basal rhizoids and mid-stem 

rhizoids. The two types of rhizoids in P. patens can be distinguished by the position in 

which the rhizoids develop on the gametophores; basal rhizoids form in the basal regions of 

the gametophore below juvenile leaves, while mid-stem rhizoids develop in more apical 

regions below adult leaves (Sakakibara et al., 2003). The basal rhizoids differentiate from 

any epidermal cells near the base of the young gametophores, whereas mid-stem rhizoids 

differentiate from the epidermal cells which are located to the outside of two small leaf 

trace cells just below the adult leaves.  

 

Auxin positively regulates rhizoid differentiation in developing gametophores. Auxin 

treatment of wild type plants strongly increases the number of both basal and mid-stem 

rhizoids (Ashton et al., 1979; Sakakibara et al., 2003). Mutant plants which lack the PpIAA 
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encoding moss Aux/IAAs develop none or few rhizoids in their gametophores (Prigge et al., 

2010), indicating that auxin is required for rhizoid differentiation in P. patens. Auxin 

controls rhizoid differentiation by regulating the expression of downstream regulators 

which are required for rhizoid differentiation. For example, the Auxin-responsive PpHb7 

gene encoding an homeodomain-leucine zipper I (HD-Zip I) subfamily protein is required 

for the brown pigmentation in rhizoid development. Mutants that lack PpHb7 function 

failed to accumulate brown pigments in rhizoids. However the mutant plants have no 

defects in rhizoid differentiation except for the brown pigmentation (Sakakibara et al., 

2003). Therefore, it is likely that auxin positively regulates the expression of key regulators 

required for rhizoid differentiation in developing gametophores. 

 

PpRSL1 and PpRSL2 which belong to class 1 RSL in P. patens are basic-helix-loop-helix 

transcription factors that are required for the rhizoid differentiation; mutants that lack the 

PpRSL1 and PpRSL2 functions develop few very short basal rhizoids, indicating that 

PpRSL1 and PpRSL2 regulate rhizoid development (Menand et al., 2007b). Nevertheless, 

the regulatory relationship between PpRSL1 and PpRSL2 and auxin is unknown.  

 

This study has shown that both basal and mid-stem rhizoid differentiation in P. patens 

requires PpRSL1 and PpRSL2 expression which is positively regulated by auxin. 

Furthermore, the Pprsl1 Pprsl2 double mutants are resistant to auxin and co-expression of 

PpRSL1 and PpRSL2 is sufficient to activate rhizoid differentiation in developing 

gametophores. Together this data suggests that auxin regulates rhizoid differentiation by 

positively regulating expression of class 1 RSL genes in P. patens.  
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4.3 Results 

4.3.1 PpRSL1 and PpRSL2 are required for the development of both basal 

and mid-stem rhizoids. 

Two types of rhizoids, basal and mid-stem rhizoids develop on the gametophores of P. 

patens. Basal rhizoids develop at the gametophore base from early gametophore 

development. On the other hand, mid-stem rhizoids which develop in more apical regions 

below adult leaves differentiate from specialized epidermal cells, which are located to the 

outside of two small leaf trace cells which extend from the stem into the midrib of the 

adjoining adult leaves . These two types of rhizoids are morphologically identical and can 

be distinguished by the position on the gametophore where they develop (Sakakibara et al., 

2003). To understand the function of class 1 RSL genes in rhizoid development, phenotypic 

analyses were carried out using Pprsl1, Pprsl2 single and Pprsl1Pprsl2 double mutants. 

Pprsl1 and Pprsl2 single mutants did not display morphological differences in rhizoid 

development compared to wild type. Both basal and mid-stem rhizoids develop in Pprsl1 

and Pprsl2 single mutants (figure 4.1). On the other hand, only few very short basal 

rhizoids and no mid-stem rhizoids developed in Pprsl1 Pprsl2 double mutants, indicating 

that both the PpRSL1 and PpRSL2 genes positively regulate both basal and mid-stem 

rhizoid differentiation in P. patens.  

  

 

4.3.2 PpRSL1 and PpRSL2 are expressed in rhizoid forming cells 

The class I RSL gene in A. thaliana controls root hair differentiation from trichoblasts. The 

function of class 1 RSL was supported by its expression pattern; AtRHD6 and AtRSL1 are 

expressed in the specialized epidermal cells that give rise to root hairs but not in the root 

hair cell itself (Menand et al., 2007b). Because rhizoid differentiation requires the  
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Figure 4. 1 Images showing PpRSL1 and PpRSL2 are required for the formation of 

basal and mid-stem rhizoids 

(A-D) Basal rhizoid development in wild type (A), Pprsl1 mutant (B), Pprsl2 (C) and 

Pprsl1 Pprsl2 double mutant (D).  

(E-H) Mid-stem rhizoid development in wild type (E), Pprsl1 mutant (F), Pprsl2 (G) and 

Pprsl1 Pprsl2 double mutant (H).  

Scale bars = 500 µm in A-D and 200 µm in E-H. 
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conserved function of class 1 RSL, it was expected that PpRSL1 and PpRSL2 would express 

in the specialized cells which give rise to rhizoids. To test the hypothesis, the plants 

transformed with PpRSL1promoter:GUS and PpRSL2promoter:GUS were used for the analysis 

of class 1 RSL expression patterns in gametophores. PpRSL1 is highly expressed in buds 

which develop into gametophores (figure 4.2A-D and I-M). When buds develop into 

gametophores, PpRSL1 was expressed at the base of the gametophore axis where basal 

rhizoids develop. The expression of PpRSL1 was restricted to the base of the gametophores. 

The PpRSL1 expression pattern was clearly visualized in mature gametophores. Mature 

gametophores also expressed PpRSL1 at their base. In the middle of the gametophore axis, 

only rhizoid forming cells below adult leaves showed strong expression of PpRSL1, 

suggesting PpRSL1 is expressed in the cells that give rise to rhizoids in P. patens. To 

confirm that PpRSL1 expresses in the specialized epidermal cells which give rise to 

rhizoids in gametophore development, the spatial expression pattern of PpRSL1 was 

visualized in transverse section (figure 4.2D, M). Epidermal rhizoid forming cells in the 

base of the gametophores displayed a stronger expression of PpRSL1 than other epidermal 

cells. In mid-stem regions, only rhizoid forming epidermal cells which are located outside 

of two small leaf trace cells expressed PpRSL1. These results indicate that PpRSL1 is 

specifically expressed in the rhizoid forming epidermal cells in gametophores. 

 

The PpRSL2 expression pattern was similar to the PpRSL1 in bud and young gametophore 

development. PpRSL2 was expressed in buds which develop into gametophores and 

expression continued during bud development (figure 4.2E-G). PpRSL2 was mainly 

expressed at the base of the gametophore axis in young gametophores. Later in 

gametophore development, PpRSL2 was highly expressed in the base of the gametophores. 

However, PpRSL2 was also expressed throughout the gametophore axis. To confirm that  
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Figure 4. 2 Images showing PpRSL1 and PpRSL2 genes are expressed in cells that give 

rise to rhizoids  

(A-D) PpRSL1promoter:GUS expression pattern in young gametophores.  

(E-H) PpRSL2promoter:GUS expression pattern in young gametophores.  

(I–M) PpRSL1promoter:GUS expression pattern in adult gametophores with mid-stem 

rhizoids. 

(N-R) PpRSL2promoter:GUS expression pattern in adult gametophores with mid-stem 

rhizoids. 

Transverse sections through the mid-stem region of gametophores demonstrate that 

PpRSL1 (L, M) is specifically expressed in the specialised cells that differentiate as 

rhizoids and PpRSL2 (Q, R) is expressed throughout the epidermis. Arrows highlight mid-

stem rhizoid forming cells with high levels of expression; arrow heads indicate the 

positions of the small leaf trace cells. 

Scale bars = 50 µm in M and R; 100 µm in A, B, C, D, E, F, G, H, J, K, L O, P and Q; 500 

µm in I and N.  
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PpRSL2 expresses in the rhizoid forming epidermal cells the spatial expression pattern of 

PpRSL2 was also visualized in transverse section. PpRSL2 was strongly expressed in the 

rhizoid forming epidermal cells in the base of the gametophore axis (figure 4.2H, R). 

Rhizoid forming epidermal cells in the mid-stem regions also displayed strong expression 

of PpRSL2. However, PpRSL2 expression was less specific than PpRSL1 expression in 

gametophores. This data suggests that specific expression of class 1 RSL in rhizoid-forming 

cells regulates rhizoid differentiation in developing gametophores of Physcomitrella patens.  

 

 

4.3.3 Auxin regulates expression of PpRSL1 and PpRSL2 in gametophores 

Auxin positively regulates rhizoid development (Ashton et al., 1979; Sakakibara et al., 

2003). Auxin treatment increases the number of rhizoid formations in gametophores. 

Because the expression of PpRSL1 and PpRSL2 is required for rhizoid differentiation the 

hypothesis that auxin is involved in the regulation of PpRSL1 and PpRSL2 expression in 

rhizoid differentiation was tested.  

 

The auxin effect on PpRSL1 and PpRSL2 expression in gametophores by RT-PCR analysis 

was determined. Auxin-treatment increased the transcriptional expression levels of the 

PpRSL1 and PpRSL2 genes, indicating auxin positively regulates PpRSL1 and PpRSL2 

gene expression (figure 4.3A). To confirm regulation of PpRSL1 and PpRSL2 by auxin, 

GUS expression in the plants transformed with PpRSL1promoter:GUS and 

PpRSL2promoter:GUS  constructs was tested in auxin-treated condition. As expected, auxin-

treatment increased the expression of each reporter gene (figure 4.3B). Furthermore, GUS 

expression in auxin-treated conditions was detected along whole rhizoid filaments whereas 

GUS expression was restricted in rhizoid-forming cells in auxin-untreated controls. This  
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Figure 4. 3 Images showing auxin positively regulates the transcriptional expression 

of PpRSL1 and PpRSL2 genes 

A. RT-PCR analysis indicates that a one week auxin treatment (1 µM NAA) increased 

steady state levels of PpRSL1 and PpRSL2 in four week old gametophores.  

B. 1 µM NAA treatment increases the expression levels of PpRSL1promoter:GUS and 

PpRSL2promoter:GUS compared to untreated controls. 
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indicates that auxin treatment not only increases the transcriptional expression levels of 

class 1 RSL genes but also changes their spatial expression patterns in gametophores.  

 

 

4.3.4 Pprsl1 Pprsl2 double mutants are resistant to auxin 

Because auxin treatment increases transcriptional expression levels of class 1 RSL genes, it 

was hypothesized that auxin regulates rhizoid development by positively controlling class 1 

RSL genes. To test the hypothesis,  the resistance of Pprsl1 single, Pprsl2 single and Pprsl1 

Pprsl2 double mutants towards auxin was determined. Auxin treatment of the wild type 

strongly activated rhizoid differentiation, which resulted in the development of large 

numbers of rhizoids on the gametophores compared with auxin- untreated controls (figure 

4.4). Pprsl1 and Pprsl2 single mutants were also sensitive to auxin; auxin treatment 

induced extensive growth of rhizoids like the wild type (figure 4.5). However, auxin 

treatment of Pprsl1 Pprsl2 double mutants did not have an effect upon rhizoid 

differentiation on gametophores. Consequently, the morphologies between auxin- treated 

and untreated gametophores of Pprsl1 Pprsl2 double mutants were almost identical (figure 

4.4). This data suggests that auxin requires PpRSL1 and PpRSL2 activities for rhizoid 

differentiation in developing gametophores.   

 

 

4.3.5 Rhizoid-forming cells are sensitive to auxin 

Since auxin positively regulates PpRSL1 and PpRSL2 expression, it was hypothesized that 

the relatively high concentration of auxin would be accumulated in the rhizoid-forming 

cells which specifically express class 1 RSL genes compared with other cell types of 

gametophores. To test the hypothesis, auxin distribution in gametophores using plants  
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Figure 4. 4 Images showing PpRSL1 and PpRSL2 gene activity is required for the 

induction of rhizoid development by auxin  

NAA treatment (0.2, 1 and 10 µM) for one week enhances rhizoid development in wild 

type compared to the untreated control (0 µM), but not in the Pprsl1 Pprsl2 double mutant. 

(A-D) wild type; (E-H) Pprsl1 Pprsl2 double mutant. (A, E) 0 µM NAA (control), (B, F) 

0.2 µM NAA, (C, G) 1 µM NAA, (D, H) 10 µM NAA. 

Scale bars = 500 µm.  

 

 



91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5 Images showing Pprsl1 and Pprsl2 single mutants are sensitive to auxin 

Pprsl1 mutants are in the top row and Pprsl2 mutants are in the bottom row. 

A. Pprsl1gametophore grown on NAA-untreated condition. 

B. Pprsl1gametophore grown on 1 µM NAA-treated condition for 1week. 

C. Pprsl2gametophore grown on NAA-untreated condition. 

D. Pprsl2gametophore grown on 1 µM NAA -treated condition for 1week. 

Scale bar = 500 µm.  
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transformed with GmGH3promoter:GUS was determined (Bierfreund et al., 2003; Ludwig-

Müller et al., 2009; Fujita et al., 2008; Eklund et al., 2010a; Eklund et al., 2010b). The 

GmGH3 promoter was highly sensitive to auxin (figure 4.6); auxin treatment induced 

strong expression of the GUS gene throughout the gametophore axis, whereas untreated 

controls showed strong expression of GUS genes only at the base of gametophore axis, 

which is almost identical to the expression patterns of PpRSL1promoter:GUS and 

PpRSL2promoter:GUS-transformed  plants (figure 4.6). This result suggests that a relatively 

high concentration of auxin is accumulated at the base of gametophore axis where rhizoids 

form. The spatial expression pattern of GmGH3promoter:GUS was also visualized in 

transverse section. GmGH3promoter:GUS was strongly expressed in all epidermal cells that 

gave rise to basal rhizoids in young gametophores, suggesting all epidermal cells in the 

basal region of the gametophores can develop rhizoids. Later in gametophore development, 

GmGH3promoter:GUS was strongly expressed in the epidermal rhizoid forming  cells that 

develop into mid-stem rhizoids (figure 4.6). These results suggest that class 1 RSL is 

specifically expressed in cells which accumulate relatively more auxin than other cells. 

 

 

4.3.6 Class 1 RSL expression is sufficient for rhizoid differentiation in 

developing gametophores 

Because auxin activates rhizoid differentiation by positively regulating PpRSL1 and 

PpRSL2, it was expected that constitutive expression of PpRSL1 and PpRSL2 would be 

sufficient to promote rhizoid differentiation in P. patens. To test this hypothesis 

35S:PpRSL1, 35S:PpRSL2 and 35S:PpRSL1;35S:PpRSL2 plants were generated. Plants 

transformed with either 35S:PpRSL1 or 35S:PpRSL2 constructs were indistinguishable 

from the wild type (figure 4.7). This suggests that neither expression of PpRSL1 nor  
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Figure 4. 6 Images showing the spatial pattern of GmGH3 promoter activity in 

gametophores. 

(A, B) NAA treatment increases GmGH3 promoter activity in gametophores.  

A. GmGH3 expression pattern in untreated controls. 

B. GmGH3 expression pattern in 1 µM NAA -treated condition for 1 week. 

(C , D) The spatial pattern of GmGH3 promoter activity in basal and mid-stem region of 

the gametophores.  

C. GmGH3 promoter is active in most cells in the epidermis of basal region.  

D. GmGH3 promoter activity is higher in the epidermal cells that give rise to rhizoids cells 

located near leaf trace cells (arrow) in the mid-stem region.  

Scale bars = 500 µm in A and B; 100 µm in C and D.  
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Figure 4. 7 Images showing Overexpression of PpRSL1 and PpRSL2 genes 

individually is not sufficient to activate rhizoid differentiation. 

A. Wild type gametophores grown on minimal solid media. 

B. Gametophores transformed with 35S:PpRSL1grown on minimal solid media. 

C. Gametophores transformed with 35S:PpRSL2grown on minimal solid media. 

Scale bars = 500 µm. 
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PpRSL2 individually is sufficient for rhizoid development. Instead, plants transformed with 

35S:PpRSL1;35S:PpRSL2 strongly activated rhizoid differentiation. Buds produced masses 

of mature rhizoids in plants overexpressing both PpRSL1 and PpRSL2, while in the wild 

type there were very few and immature rhizoids on the bud (figure 4.8). Only few 

gametophores developed in these cultures because most cells in the buds overexpressing 

both PpRSL1 and PpRSL2 differentiated into rhizoids (figure 4.8D, H); 42.07 ± 5.46 

(standard deviation, n=10) gametophores.cm-2 developed from wild type protonema 

whereas 0.68 ± 0.79 (standard deviation, n=12) gametophores.cm-2 developed from 

protonema overexpressing both PpRSL1 and PpRSL2 (table 4.1). The few gametophores  

that formed in plants overexpressing both PpRSL1 and PpRSL2 also developed massive 

rhizoids compared with almost the same age of wild type gametophores. 

 

If co-expression of PpRSL1 and PpRSL2 is sufficient to promoter rhizoid differentiation, 

the possibility that other types of cells such as cortex cells differentiate rhizoids in the 

plants transformed with 35S:PpRSL1;35S:PpRSL2, was tested. The internal cellular 

anatomy of 35S:PpRSL1;35S:PpRSL2 plants was visualized in transverse section. Despite 

the increase of rhizoid formation in both base and mid-stem epidermal cells, all rhizoids 

differentiate from epidermal cells (figure 4.8 I, J, K, L). The internal cellular anatomy of 

the Pprsl1 Pprsl2 mutant gametophores was also identical to the wild type in spite of the 

obvious defects in rhizoid development (figure 4.9). These data indicate that PpRSL1 and 

PpRSL2 are required for the differentiation of both basal and mid-stem rhizoids from 

specialized epidermal cells, which give rise to rhizoids but are not required for the 

development of other type of cells in the gametophores. These results suggest that the 

PpRSL1 and PpRSL2 genes specifically regulate rhizoid differentiation from epidermal 

cells.  
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Figure 4. 8 Images showing PpRSL1 and PpRSL2 genes expression is sufficient for 

rhizoid system development in P. patens 

(A) Wild type gametophore bud that has just started to develop rhizoids but not yet begun 

to form leaves. (B) Young wild type gametophore with the first juvenile leaves. 

(C) Older gametophore than that shown in (B). (D) Three week old wild type protonema 

with developing leafy gametophores on a filamentous network of cells. (E) Gametophore 

buds are converted to rhizoid masses in plants transformed with both 35S:PpRSL1 and 

35S:PpRSL2.  

(F) Young gametophore produces a mass of rhizoids in plants transformed with both 

35S:PpRSL1 and 35S:PpRSL2. (G) Older gametophore than that shown in (F).  

(H) Fewer gametophores developed in plants transformed with both 35S:PpRSL1 and 

35S:PpRSL2 than in wild type (D). (I and J) Transverse sections of wild-type 

gametophores showing the epidermal origin of basal and mid-stem rhizoids. 

(K and L) Transverse sections of gametophores showing the epidermal origin of basal and 

mid-stem rhizoids in plants transformed with both 35S:PpRSL1 and 35S:PpRSL2. 

Scale bars = 250 µm in A, B, C, E, F and G; 1 mm in D and H; 100 µm in I, J, K, L. 
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Table 4.1  The number of gametophores in wild type and PpRSL1- and PpRSL2- 

overexpressing plants. 

  
Number of gametophores cm-2 

(± standard deviation) 
Student's t-test 

p value 

Wild type 47.8 ±  9.16  

35S:PpRSl1 42.1 ±  5.74 0.34 

35S:PpRSL2 45.8 ±  6.97 0.67 

35S:PpRSl1;35S:PpRSL2 0.68 ± 0.79 0.0003 
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Figure 4. 9 Images showing Pprsl1 Pprsl2 anatomy is identical to wild type 

Transverse section through basal (A) and mid-stem (B) regions of a Pprsl1 Pprsl2 double 

mutant gametophore showing wild type cellular anatomy despite defectiveness of rhizoid 

development. 

Scale bar = 100 µm 
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4.3.7 Pprsl1Pprsl2 double mutants are resistant to TIBA 

If a polar auxin transport is involved in regulating rhizoid differentiation in P. patens, it 

would be expected that TIBA treatment would affect rhizoid differentiation in 

gametophores. This hypothesis was tested by investigating TIBA effect on rhizoid 

differentiation. TIBA treatment of wild type protonema suppressed rhizoid differentiation 

in gametophores (figure 4.10A, B). This suggests that polar auxin transport is involved in 

rhizoid differentiation in developing gametophores. Since class 1 RSL genes regulate 

rhizoid differentiation downstream of auxin, it was anticipated that mutant plants which 

lack both PpRSL1 and PpRSL2 functions would be resistant to TIBA. As expected, TIBA 

treatment did not have an effect on the morphology of the gametophores in Pprsl1Pprsl2 

double mutants (figure 4.10C, D). This also supports the proposal that class 1 RSL 

regulates rhizoid differentiation downstream of auxin. 

 

 

 

4.4 Discussion 

Rhizoids in non vascular plants, and root hairs in vascular plants share common roles in 

plant development; they help plants to anchor in substratum and to acquire nutrients 

(Peterson and Farquhar, 1996; Gahoonia et al., 1997; Duckett et al., 1998; Gahoonia and 

Nielsen, 1998). The developmental regulation of rhizoids and root hairs requires the 

function of class 1 RSL genes. Furthermore, the fact that the hairless phenotype of mutant 

plants which lack class 1 AtRSL is rescued by introducing class 1 RSL of P. patens 

suggests the function of class 1 RSL has been conserved. However, it is likely that the 

regulatory relationship between class 1 RSL and auxin has been changed during land plant 

evolution. 
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Figure 4. 10 Images showing TIBA treatment suppresses rhizoid development in 

developing gametophores. 

A. Wild type gametophores grown on minimal media. 

B. Wild type gametophores grown on 300µM TIBA-treated condition. 

C. Pprsl1 Pprsl2 gametophores grown on normal condition. 

D. Pprsl1 Pprsl2 gametophores grown on 300µM TIBA -treated condition. 

Scale bar = 500 µm. 
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4.4.1 Mechanism of auxin action differs between rhizoid and root hair 

differentiation 

Although auxin positively regulates root hair, and rhizoid development in A. thaliana and 

P. patens, this study suggests that the mechanism of auxin action differs between rhizoid 

and root hair differentiation. Root hair development in A. thaliana can be understood as 

having three distinct developmental steps, determination of cell identity, root hair initiation 

and elongation by tip growth, and each developmental step is controlled by specific 

transcription factors; GL3, EG3, TTG, CPC and GL2 regulate cell fate determination while 

class 1 class 2 RSL genes control root hair initiation and elongation, respectively. During 

the root hair development, auxin regulates root hair initiation elongation while auxin is not 

involved in rooting cell fate determination. Recent studies with transgenic plants 

transformed with the DR5promoter:GFP construct showed that the intensity of GFP is 

stronger in atrichoblasts than in trichoblasts of A. thaliana. The difference of GFP intensity 

between trichoblasts and atrichoblasts doesn't exist in the mutant plants which lack the 

AUX1 (Jones et al., 2009). Interestingly, AUX1 is predominantly expressed in atrichoblasts 

but not expressed in trichoblasts. These results suggest that the endogenous concentration 

of auxin accumulated in atrichoblasts is higher than in trichoblasts. Because atrichoblasts 

of the wild type do not differentiate root hairs, these results also support that auxin 

accumulation is not sufficient for root hair differentiation from atrichoblasts, and auxin is 

not involved in determination of cell identity. These results are supported by the 

observations that auxin treatment of wild type A. thaliana does not increase root hair 

formations because auxin treatment does not cause ectopic root hair formation in 

atrichoblasts (Masucci and Schiefelbein, 1996). 
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In contrast to A. thaliana, no genes related to the determination of the rhizoid-forming cell 

fate have been reported in P. patens. Thus it is still unclear how they determine the rhizoid 

forming cell fate in developing gametophores. Instead, it is likely that auxin functions in 

the process that determines rhizoid forming cell fate in gametophores, at least in part. This 

study showed that auxin action in the rhizoid differentiation of P. patens differs from the 

auxin action in root hair differentiation of A. thaliana; plants transformed with 

GmGH3promoter:GUS show a strong expression of the GUS gene in the specialized 

epidermal cells which give rise to rhizoids compared with other types of cells, suggesting 

that a relatively high concentration of auxin is accumulated in rhizoid forming cells 

compared with other types of cells. Furthermore auxin treatment of wild-type P. patens 

increases the number of rhizoids formation (figure 4. 4; Sakakibara et al., 2003).  In 

protonema development, a gradient of auxin promotes the formation of a gradient of cell 

identity along a protonema. This suggests that, auxin acts as a morphogen – a signalling 

molecule whose cellular concentration determines cell fate – during protonema and 

gametophores development of P. patens. 

 

 

4.4.2 Regulatory relationship between class 1 RSL and auxin differs 

between Physcomitrella   patens and Arabidopsis thaliana 

Auxin regulates rhizoid and caulonema differentiation by positively regulating class 1 RSL 

genes in P. patens; auxin treatment increases the transcriptional expression of class 1 RSL, 

and Pprsl1 Pprsl2 double mutants are resistant to auxin. In A. thaliana class 1 RSL 

regulates root hair differentiation independently of auxin; auxin treatment of Atrhd6 Atrsl1 

double mutants induces root hair differentiation, and transcriptional expression levels of 

class 1 RSL genes in auxin treated conditions are almost the same to the auxin-untreated 
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controls (Yi et al., 2010). Instead, auxin positively regulates AtRSL4 expression which 

belongs to class 2 RSL and controls root hair elongation downstream of class 1 RSL. 

Together these data indicate that while auxin regulates RSL networks in P. patens and A. 

thaliana, its interaction with these networks is different in each species. If the moss RSL 

network represents the ancestral state that existed in early diverging groups of land plants, 

our data suggest that the way in which auxin controls the network changed during land 

plant evolution.  

 

 

4.4.3 Class 1 RSL regulates rhizoids differentiate only from epidermal 

cells in P. patens. 

The internal cellular anatomy of the Pprsl1 Pprsl2 mutant gametophores is identical to the 

wild type in spite of the obvious defects in rhizoid development. This indicates that 

PpRSL1 and PpRSL2 are required for the rhizoid differentiation but are not involved in the 

development of other types of cells such as cortex cells. These data are consistent with the 

observation in which co-overexpression of PpRSL1 and PpRSL2 do not develop rhizoid 

from cortex cells despite the massive rhizoid formation from epidermal cells compared to 

wild-type plants. These data suggest that epidermal cells develop special environments in 

which class 1 RSL genes activate rhizoid development. However, it is poorly understood 

what is special about epidermal cells in developing rhizoids compared to other types of 

cells.  

 

In this study, I showed that auxin distribution or sensitivity are very different in epidermal 

cells and cortex cells; GmGH3promoter:GUS is highly expressed in epidermal cells compared 

to cortex cells. This suggests the possibility that auxin determines the different cell 
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environments inhabited by epidermal and cortex cells. However, it is unlikely to be true 

because previous studies of the auxin effect on rhizoid development showed that auxin 

treatment enhances rhizoid differentiation from the epidermis but not from cortex 

(Sakakibara et al., 2003). This indicates that auxin is not the totipotent factor to change cell 

identity of cortex cells into epidermal cells. Unfortunately, no mutant or overexpressing 

plants which develop rhizoids from non-rhizoid forming cells such as cortex and leaf cells 

was reported. This means that it is still difficult to answer to the question “what is special 

about epidermis”. More studies are required for expanding our understanding of the 

different cell identity and environment between epidermal and other types of cells in P. 

patent. 
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This thesis describes class 1 RSL regulation and function in the caulonema and rhizoid 

differentiation of moss development. P. patens differentiates caulonema and rhizoids as 

specialized tip growing filamentous cells for nutrient acquisition and attachment to 

substratum. Although caulonema and rhizoids differentiate in different developmental 

stages, both caulonema and rhizoid differentiation are required for class 1 RSL regulation 

and function; PpRSL1 and PpRSL2 genes are predominantly expressed in the cells which 

develop into caulonema and rhizoids, and mutant plants which lack both PpRSL1 and 

PpRSL2 functions (Pprsl1 Pprsl2) strongly suppress caulonema differentiation in 

protonema and rhizoid differentiation in gametophores. Furthermore co-overexpression of 

PpRSL1 and PpRSL2 is sufficient to activate caulonema and rhizoid differentiation even in 

auxin-untreated conditions. These results indicate that class 1 RSL is necessary and 

sufficient for caulonema and rhizoid differentiation in P. patens.  

 

Similarly, root hair differentiation in A. thaliana is positively regulated by class 1 RSL 

functions; AtRHD6 and AtRSL1 are expressed only in trichoblasts which differentiate root 

hairs, but not in root hair cells. Mutant plants which lack both AtRHD6 and AtRSL1 

activity suppress root hair initiation, suggesting the hypothesis that the class 1 RSL as key 

regulators in rooting cell development has been conserved during land plant evolution. 

This hypothesis is indirectly supported by some phylogenetic analyses, showing many 

crucial genes controlling plant development have been conserved during land plant 

evolution (Nishiyama et al., 2003; Richardt et al., 2007). Furthermore, the fact the class 1 

RSL genes exist in all land plants for which the genome sequence is available also supports 

the conserved role of the RSL gene in rooting cell development of land plants (Pires and 

Dolan, 2010). 
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Plants expanded their habitat from water to land and established the first continental 

vegetation 430 million years ago (Kenrick and Crane; 1997; Nishiyama et al., 2003). 

Subsequently, land plant evolution has resulted in the explosive increase of morphological 

diversity (Kenrick and Crane, 1997; Bateman et al., 1998; Richardt et al., 2007). It is 

hypothesized that modification of genes and rearrangement of gene regulatory networks 

give rise to the morphological diversity during evolution (Davison and Erwin; 2006; Peter 

and Davison; 2011) In this study, it was shown that despite the conserved function of RSL 

gene in rooting cell development, regulatory interaction between class 1 RSL and auxin is 

completely different between P. patens and A. thaliana; auxin regulates caulonema and 

rhizoid differentiation by positively regulating class 1 RSL genes in P. patens while auxin 

regulates root hair differentiation of A. thaliana independently of class 1 RSL. Furthermore, 

changed interaction between regulatory components in rooting cell development was also 

found in the study of class 2 RSL regulation in moss development. Class 1 RSL genes of P. 

patens do not regulate the transcriptional expression of class 2 RSL genes during moss 

development while class 1RSL genes of A. thaliana regulate class 2 RSL gene expressions 

in root hair development; transcriptional expression levels of class 2 RSL genes between 

wild type and Pprsl1 Pprsl2 double mutant plants were almost identical (Pires, 2011), 

suggesting that interaction between class 1 and class 2 RSL genes has changed during land 

plant evolution, and rearrangement of regulatory systems results in morphological 

diversity of land plants.  

 

In this study, I showed that PpRSL1 and PpRSL2 control caulonema and rhizoid 

development in P. patens. However, genes that regulate PpRSL1 and PpRSL2 expression 

have not been identified. Furthermore genes acting down stream of PpRSL1 and PpRSL2 

have yet to be identified. In this respect, further studies of identifying downstream and 
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upstream components of PpRSL1 and PpRSL2 will be important to expand our 

understanding of filamentous rooting cell development and evolution. To identify 

downstream components of PpRSL1 and PpRSL2, microarray and RNA-seq experiments 

will identify putative targets of PpRSL1 and PpRSL2 regulation. Characterization of the 

transcriptome of the Pprsl1Pprsl2 mutant and 35S:PpRSL1;35S:PpRSL2 transgenic plants 

will be instructive. From the gene expression profiling data, we can identify the candidate 

genes as downstream components of PpRSL1 and PpRSL2. If some components positively 

regulate filamentous rooting cell development downstream PpRSL1 and PpRSL2, it is 

expected their expressions are decreased in Pprls1Pprsl2 double mutant backgrounds, 

while increased in 35S:PpRSL1;35S:PpRSL2 transgenic plant backgrounds. Following 

characterization studies of the candidate genes using loss of function and gain of function 

approaches will help us understand downstream of class 1 RSL in caulonema and rhizoid 

development. 

 

Ethyl methanesulfonate (EMS) mutagenesis and map-based cloning can be used for 

identifying upstream components of class 1 RSL in P. patens. If some genes are upstream 

regulators of class 1 RSL, and EMS treatment induces mutagenesis on the genes, it is 

expected that class 1 RSL expression level and pattern would be changed in the mutant 

plants. To improve the efficiency of mutant screening, EMS mutagenesis of transgenic 

marker lines such as PpRSL1promoter:GUS or PpRSL2:promoter:GUS will be required. 

However, map-based cloning is almost impossible in P. patens, because of the lack of a 

genetic linkage map (Kamisugi et al., 2008). Furthermore, experimental crosses and 

identification of crossed sporophytes is also very difficult in P. patens. I think that the 

possible way for gene identification through EMS mutagenesis is whole genome 

sequencing using next generation sequencing technologies. The advanced sequencing 
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technology dramatically increases the amount of sequence output per run and improves the 

sequencing accuracy. The current next generation sequencing machines can read around 

250 billion bases in a week (Xiong et al., 2011). Therefore a combination of EMS 

mutagenesis and next generation sequencing technology will allow us to identify upstream 

components of class 1 RSL in P. patens.  
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Appendix 1. 

Southern blot analysis of 35S:PpRSL1;35S:PpRSL2 plants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Images of bud development in wild type (WT), and in two independent lines, 

transformed with both 35S:PpRSL1 and 35S:RSL2 (35S:PpRSL1;35S:RSL2–1 and 

35S:PpRSL1 35S:RSL2 - 2). Scale bar = 100 µm 

B. Southern blot analysis showing that each line transformed with 35S:PpRSL1 

35S:PpRSL2 has more than two insertions. 35P-labeled NPT gene was used as a probe. On 

the left is a one day exposure, and on the right is a seven day exposure.  
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Appendix 2.  

 

Genotyping of PpRSL1promoter:GUS and PpRSL2promoter:GUS plants 

 

 

 

 A. Each two individual lines of PpRSL1promoter:GUS and PpRSL2:promoter:GUS  

 B. Schematics showing GUS insertion into PpRSL1 and PpRSL2 loci   

 C. PCR showing GUS insertion into PpRSL1 and PpRSL2 loci. DNA bands on the gel 

were amplified with the each pair of PpRSL1 and PpRSL2 specific primer indicated in B 

(large arrows). Scale bar = 500 µm 
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Appendix 3. 

  

Primers used in this study. 

 

 

Name Sequence 

PpRSL1 GUS Fragment 1 For  Caaggcgcgccgcatgcgattttctatctggtttca 

PpRSL1 GUS Fragment 1 Rev Ccgatcgatttcacacaatttgaagcacgctctt 

PpRSL1 GUS Fragment 2 For Ccgggatccaaatggcaggtccagcaggagctt 

PpRSL1 GUS Fragment 2 Rev Cccaagcttgcgcttcggcagatgcatcaa 

PpRSL2 GUS Fragment 1 For Ccaggcgcgccgctctccttctaaaccaatcatgga 

PpRSL2 GUS Fragment 1 Rev Ccgaacgttcgatccaccttggtctttcttgtcgt 

PpRSL2 GUS Fragment 2 For Ccgcccgggcgatgaataagaagcctatgcaaa 

PpRSL2 GUS Fragment 2 Rev Cccggatcccgacagaagttgcacataagtaa 

35S PpRSL2 For  Ccaggatccatgaataagaagcctatgcaa 

35S PpRSL2 Rev Ccagtcgacctactctttgtcggcagaaggt 

PpRSL1 promoter UP Ctggcatgcgctgttatatg 

PpRSL2 promoter UP Gattcgaacagcagatgcag 

GUS-Start Rev Tttctacaggacggaccata 

PpRSL1 RT For Caatgatccgcagagcatt 

PpRSL1 RT Rev Gtcagcagaaggctgattg 

PpRSL2 RT For Gggacctcaaggatgcagca 

PpRSL2 RT Rev Cgaactcaataacgtcagga 

GAPDH For Gagataggagcatctgtaccgcttgt 

GAPDH Rev ggagttgaatggaaagctcac 
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Summary

• Protonemata are multicellular filamentous networks that develop following the

germination of a haploid moss spore and comprise two different cell types – chloro-

nema and caulonema. The ROOT HAIR DEFECTIVE SIX-LIKE1 (PpRSL1) and

PpRSL2 basic helix–loop–helix transcription factors and auxin promote the

development of caulonema in Physcomitrella patens but the mechanism by which

these regulators interact during development is unknown.

• We characterized the role of auxin in regulating the function of PpRSL1 and

PpRSL2 in the chloronema-to-caulonema transition during protonema develop-

ment.

• Here, we showed that a gradient of cell identity developed along protonemal fil-

aments; cells were chloronemal in proximal regions near the site of spore

germination becoming progressively more caulonemal distally as filaments elon-

gated. Auxin controlled this transition by positively regulating the expression of

PpRSL1 and PpRSL2 genes. Auxin did not induce caulonemal development in

Pprsl1 Pprsl2 double mutants that lack PpRSL1 and PpRSL2 gene activity while

constitutive co-expression of PpRSL1 and PpRSL2 in the absence of auxin was suf-

ficient to program constitutive caulonema development.

• Together, these data indicate that auxin positively regulates PpRSL1 and PpRSL2

whose expression is sufficient to promote caulonema differentiation in moss proto-

nema.

Introduction

The protonema is the first phase in the haploid stage of
the life cycle of mosses such as Physcomitrella patens.
Protonemata are multicellular filamentous systems that
develop when haploid spores germinate and comprise two
filament types: chloronema and caulonema. The cells of
chloronema contain large round chloroplasts and the cross-
walls that form are oriented perpendicular to the long axis
of the filament; the chloroplasts of caulonema cells are rela-
tively elongated and the crosswalls are oblique (Duckett
et al., 1998; Reski, 1998). The apical cells of both chloro-
nema and caulonema extend by tip growth despite the
different cytological organization of the growing regions in
these cell types; the vacuole and chloroplasts may extend to
the growing tip of chloronema while the growing tip of

apical caulonema cells is always densely cytoplasmic
(Duckett et al., 1998; Pressel et al., 2008). In addition to
these ultrastructural differences, caulonema and chloronema
grow at different rates (Cove & Knight, 1993; Duckett
et al., 1998; Cove, 2000; Schween et al., 2003; Menand
et al., 2007a). A new chloronema cell is produced every
24 h by the division of the distal-most cells at the tip of fila-
ments, which elongate at rates of c. 6 lm h)1; caulonema
cells are derived from cells at the tips of filaments which
elongate at c. 20 lm h)1 and divide every 7 h.

The induction of caulonema differentiation during pro-
tonema development is positively regulated by auxin.
Treatment of moss with auxin increases the number of fila-
ments that develop as caulonema and the protonemata of
mutants with defects in auxin signalling develop chloro-
nema alone with little or no caulonema (Johri & Desai,
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1973; Ashton et al., 1979; Prigge et al., 2010). Furthermore,
experimental overexpression of the positive regulator of
auxin biosynthesis PpSHI1 enhances caulonema differentia-
tion (Eklund et al., 2010). The differentiation of
caulonema cells also requires the activity of a pair of basic
helix–loop–helix transcription factors called Physcomitrella
patens ROOT HAIR DEFECTIVE SIX-LIKE (PpRSL1) and
PpRSL2. Double mutants that lack both PpRSL1 and
PpRSL2 functions develop protonema consisting of chloro-
nema (Menand et al., 2007b). It is unknown if PpRSL
genes and auxin interact in the control of protonema
development or if they independently control this process.

RSL genes control the development of root hairs in
Arabidopsis thaliana and because auxin positively regulates
the transcription of AtRSL4 during root hair development
(Yi et al., 2010), we set out to test the hypothesis that auxin
acts upstream of PpRSL1 and PpRSL2 during the develop-
ment of caulonema. We demonstrate that auxin positively
regulates the gradual transition from chloronema to caulo-
nema that occurs along protonemal filaments. Auxin
promotes this transition by positively regulating the activity
of PpRSL1 and PpRSL2; mutants that lack both PpRSL1 and
PpRSL2 activity do not develop caulonema even when trea-
ted with auxin. Furthermore, constitutive coexpression of
PpRSL1 and PpRSL2 in the absence of auxin is sufficient to
activate caulonema differentiation during protonemal
development. Together, these data indicate how auxin and
PpRSL1 and PpRSL2 interact to control the gradual transi-
tion of cell fates along a developmental gradient.

Materials and Methods

Plant materials, growth and supplements

The Gransden wild-type strain of P. patens (Hedw.) Bruch
and Schimp was used in this study (Ashton et al., 1979).
Plants were grown at 25�C in a light regime of 16 h
light : 8 h dark with a quantum irradiance of 40 lmol
m)2 s)1. For the growth of protonema, spores were
inoculated on a 9 cm Petri dish containing solid minimal
media overlaid with a cellophane disk (AA packaging,
Preston, UK) for 1 or 2 wk (Ashton et al., 1979).
Pprsl1 Pprsl2 double mutants, 35S:PpRSL1;35S:PpRSL2 and
PpRSL1promoter:GUS and PpRSL2promoter:GUS lines were
described previously (Menand et al., 2007b; Jang et al.,
2011). Auxin treatment of P. patens was carried out by plat-
ing spores in solid minimal media supplemented with 1 lM
a-naphthalene acetic acid (Sigma) and incubating for 2 wk.

Reverse-transcription polymerase chain reaction
(RT-PCR analysis)

Total RNA from 2-wk-old protonemal tissues were
extracted with the RNeasy Plant Mini Kit (Qiagen). One

microgram of total RNA was used for cDNA synthesis with
the Superscript III reverse transcriptase (Invitrogen) and
oligo dT primers. Polymerase chain reaction was carried
out with equivalent amounts of cDNA template for amplifi-
cation of fragments of PpRSL1 (EF156393), PpRSL2
(EF156394), and GAPDH (X72381).

GUS staining

One-week old and 2-wk-old protonema transformed with
either the PpRSL1promoter:GUS or the PpRSL2promoter:GUS
constructs were grown in standard growth conditions
(already described) and incubated in glucuronidase (GUS)
staining solution (100 mM NaPO4 (pH 7.0), 1 mM
5-bromo-4-chloro-3-indolyl-glucuronide and 0.2% Triton
X-100) at 37�C for 2–24 h. The samples were then washed
with 100 mM NaPO4 (pH 7.0) and incubated in 70%
ethanol at 4�C for 3 d.

Phenotypic analysis

Spores for Pprsl1 Pprsl2 and protoplasts of 35S:PpRSL1;
35S:PpRSL2 were germinated on solid minimal media over-
laid with cellophane disks and grown for the indicated
number of days. Images were captured with a Pixera Pro
ES600 camera mounted on Nikon Eclipse 800 and mea-
sured using Photoshop 7.0 (Adobe, Uxbridge, UK). Cell
cycle times were determined by calculating rates of cell pro-
duction. Cell production rates were calculated by dividing
the time interval (in hours) during which colonies were
growing by the number of cells produced in protonemal
filaments during that time interval. Cell numbers were
determined by counting the numbers of crosswalls that
formed in a filament.

Results

There is a gradual transition from chloronema to
caulonema in moss protonema

P. patens spores germinate and develop filamentous systems
of protonema that consist of two cell types, chloronema and
caulonema (Fig. 1). Chloronema divide transversely where
the newly formed wall is perpendicular to the sidewalls of
the cell; caulonema are longer and thinner than chloronema
and new cell walls are oriented obliquely across the cell
(Reski, 1998). Germinating spores produce two
(2.17 ± 0.39 (SD) n = 12 germinating spores) branching
protonemal filaments (Fig. 1a). The first cells to differenti-
ate in these filaments have transverse crosswalls and
characteristic morphology of chloronema (Fig. 1a,c; Cove
& Knight, 1993). By 7 d after germination cell number in
filaments increased to 9 or 10 cells (9.6 ± 0.52 (SD) n = 10
filaments) as a result of cell division in the apical cell
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(Fig. 1b; Reski, 1998). Distal cells in these 7-d-old
filaments are longer and narrower than the chloronema cells
in the proximal region (Fig. 1d–f); the first cells that differ-
entiated along the filament were 48.9 ± 5.25 lm (SD)
long, the fifth cells were 66.2 ± 7.49 lm (SD) long and the
sub-apical cells were 96.7 ± 12.03 lm (SD) long (n ‡ 13
filaments). Furthermore, the distal cells in the 7-d-old fila-
ment develop oblique crosswalls characteristic of caulonema
cells (Fig. 1d). This suggests that there is a transition from
chloronema to caulonema within the first 7 d of protone-
mal development; the first proximal cells in filaments
differentiate as chloronema cells while distal cells become
progressively more caulonemal in character as development
proceeds.

To confirm independently that there is a gradual transi-
tion from chloronema to caulonema along a protonemal
filament we characterized the cell cycle times of cells in the
early stages of protonemal development. The duration of
the cell cycle of chloronema and caulonema is c. 24 and
7 h, respectively (Cove & Knight, 1993; Schween et al.,
2003). The gradual transition from chloronema to caulo-
nema suggests the hypothesis that cell cycle times would
decrease along the length of a filament. To test this hypo-
thesis we determined the cell cycle times of cells along wild-

type protonemal filaments. The cell cycle of the first three
cells that developed between germination and day 3 in the
filament was c. 24 h and this is consistent with our conclu-
sion that these cells are chloronema (Table 1). Cell cycle
times progressively decreased in apical cells that formed
later in development after day 3; from 18.9 h at 4 d to
12.1 h at 10 d (Table 1). These data indicate that the cell
cycle times of the first three cells of the filament are charac-
teristic of chloronema. Cell cycle times then progressively
decrease as cells undergo the gradual transition to caulo-
nema. Together, these data indicate that there is a gradual
transition from chloronema to caulonema cell identity
along a protonemal filament.

PpRSL1 and PpRSL2 are required for the transition
from chloronema to caulonema

PpRSL1 and PpRSL2 encode basic helix–loop–helix tran-
scription factors that are required for caulonema
differentiation (Fig. 2m,n; Menand et al., 2007b). It is
hypothesized that Pprsl1 Pprsl2 double mutants only
develop chloronema because chloronema is the default dif-
ferentiation state in the absence of PpRSL1 and PpRSL2
activity. If cells of Pprsl1 Pprsl2 protonema are transformed

(a)

(e) (f)

(b) (c) (d)

Fig. 1 A gradient of cell identity develops along protonemal filaments of Physcomitrella patens. (a) Germinating spore with two emerging
filaments. (b) Protonema 7 d after germination. (c) Chloronema cell with a transverse cell wall (arrows). (d) Caulonema apical cell with an
oblique cell wall (arrow). (e) Change in cell length (closed bars) and width (open bars) along a filament; cell 1 is the most proximal cell that
forms upon germination and the sub-apical cell is the most distal differentiated cell along a filament. (Values are mean ± SD, n ‡ 13
filaments.) (f) Relationship between cell length and width along the proximal–distal protonemal filament axis. Asterisk indicates significant
difference based on 95% confidence intervals. Bars: (a) 50 lm, (b–d) 100 lm.
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into chloronema we would expect that the gradient in cell
length that develops in the wild type would not develop
along filaments in these double mutants. Conversely, if
chloronema cells were partially converted to caulonema in
the double mutant, we would expect a partial gradient to

form. To test this hypothesis we characterized the cell length
gradient in Pprsl1 Pprsl2 double mutants (Fig. 2). The gradi-
ent of cell lengths that is characteristic of wild-type
protonema development does not form in the Pprsl1 Pprsl2
double mutant (Fig. 2o). Instead, Pprsl1 Pprsl2 double

Table 1 Cell cycle times become shorter during the chloronema to caulonema transition in protonemal filaments of Physcomitrella patens wild
type (WT) but not in the double mutant, Pprsl1 Pprsl2

0–3 d 3–4 d 3–6 d 3–8 d 3–10 d

WT 24.4 ± 4.60 h 18.9 ± 6.41 h 15.9 ± 1.95 h 13.1 ± 1.56 h 12.1 ± 0.6 h
Pprsl1Pprsl2 24.0 ± 3.79 h 24.0 ± 0 h 24.8 ± 5.01 h 25.1 ± 3.63 h 24.4 ± 3.25 h

Values are mean ± SD.

(a) (b) (c) (d) (e) (f)

(g) (h)

(m) (n) (o) (p)

(i) (j) (k) (l)

Fig. 2 All cells in protonemal filaments of Physcomitrella patens Pprsl1 Pprsl2 double mutants are chloronema. (a–f) Wild-type protonema
morphology at different stages of development. (g–l) Pprsl1 Pprsl2 double mutant protonema at different stages of development. (m) Distal
region of 10-d-old protonemal filaments in wild type showing the typical morphology of the elongated caulonemal cell. (n) Distal region of 10-
d-old protonemal filaments in the Pprsl1 Pprsl2 double mutants with chloronemal morphology. (o) Relationship of cell length and position
along proximal–distal axis in wild type (open bars) and Pprsl1 Pprsl2 (closed bars) double mutant protonemal filaments. (Values are
mean ± SD, n = 82 filaments.) (p) Increase in cell numbers in wild type (open bars) and Pprsl1 Pprsl2 (closed bars) double mutant with age
(0–10 d). (Values are mean ± SD, n ‡ 13 filaments (WT); n ‡ 16 filaments (Pprsl1 Pprsl2 double mutant).) Asterisks indicates significant
difference based on 95% confidence intervals. Bars, 100 lm.
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mutant cell lengths remain at c. 50 lm (51.9 ± 4.67 lm (SD)
n = 82 filaments) along the entire protonemal filament while
cell lengths progress from c. 50 lm to > 70 lm in the wild
type by the time the sixth cell of the protonema filament
has differentiated (Fig. 2o). Cells in the Pprsl1 Pprsl2
double mutant are therefore chloronemal in identity, resem-
bling the first cells that differentiate along a wild-type
protonemal filament. These data indicate that PpRSL1 and
PpRSL2 activities are required for development of the gradient
cell identity thatoccurs alongwild-typeprotonemalfilaments.

If all cells in the Pprsl1 Pprsl2 double mutant are chloro-
nema we would expect the cell cycle to be c. 24 h in all cells
along the filament with no distal decrease characteristic of
the wild type. Indeed, cell cycle times remained unchanged,
at c. 24 h throughout the development of mutant proto-
nemal filament (Table 1); 3, 4, 6, 8 and 10-d-old
protonemal filaments of Pprsl1 Pprsl2 contained 3 ± 0.56
(SD), 3.91 ± 0.49 (SD), 5.57 ± 0.49 (SD), 7.87 ± 0.60
(SD) and 10 ± 0.86 (SD) (n ‡ 12 filaments) cells, respec-
tively (Fig. 2p). By contrast, cell cycle times of the apical
cells in wild-type protonemal filaments gradually decreased
(Table 1). Because of the shorter cell cycle time there were
more cells in the wild type (16.9 ± 0.69 (SD) n = 13 fila-
ments) filament than in the Pprsl1 Pprsl2 double mutant
(10.0 ± 0.86 (SD) n = 16 filaments) in 10-d-old plants
(Fig. 2p). Together, these data indicate that PpRSL1 and
PpRSL2 are required for the transition from chloronema to
caulonema along protonemal filaments.

PpRSL1 and PpRSL2 genes are expressed in proto-
nema

The demonstration that PpRSL1 and PpRSL2 control the
transition from chloronema to caulonema leads to the
hypothesis that these genes would be expressed in developing
protonema. The RT-PCR revealed that PpRSL1 and PpRSL2
transcripts accumulated in protonema. Furthermore, steady-
state levels of PpRSL1 and PpRSL2 mRNA were identical to
wild type in Pprsl2 and Pprsl1 single mutants respectively
(Fig. 3a). This indicates that PpRSL1 activity is not required
for transcriptional regulation of PpRSL2, and PpRSL2 is not
required for transcriptional regulation of PpRSL1. To image
the spatial pattern of PpRSL1 and PpRSL2 transcription we
generated plants transformed with PpRSL1promoter:GUS
and PpRSL2promoter:GUS fusions. The expression of
PpRSL1promoter:GUS shows that PpRSL1 is transcribed in a
gradient; PpRSL1 expresses strongly in proximal region of
filaments at the centre of colonies, but the gene is not
expressed in the distal ends of filaments at the edges of colo-
nies (Fig. 3b–d). PpRSL2 is most strongly expressed in the
proximal ends of filaments at centre of the colony but is also
expressed in cells at the colony edge (Fig. 3e–g). This sug-
gests that while there may be a gradient of PpRSL2
expression it is much less than PpRSL1. Together, these data
indicate that PpRSL1 and PpRSL2 are expressed in proto-
nema and PpRSL1 is expressed most highly in chloronema
cells which develop into caulonema.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3 PpRSL1 and PpRSL2 genes are expressed in protonema of Physcomitrella patens. (a) Reverse-transcription polymerase chain reaction
demonstrates steady-state levels of PpRSL1 and PpRSL2 mRNA in protonema. (b–d) Time-course of PpRSL1promoter:GUS expression in
protonema. (e–g) Time-course of PpRSL2promoter:GUS expression in protonema. Bars, 100 lm.
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Auxin positively regulates PpRSL1 and PpRSL2
expression

As both auxin and PpRSL genes positively regulate the tran-
sition from chloronema to caulonema, we tested the
hypothesis that auxin controls this transition by positively
regulating PpRSL1 and PpRSL2 activity. To determine if
steady-state levels of PpRSL1 and PpRSL2 were regulated by
auxin we carried out RT-PCR using mRNA that was iso-
lated from wild-type cultures that were treated with the
synthetic auxin, a-naphthalene acetic acid (NAA). A 20-h
treatment with 10 lM NAA and a 14-d treatment with
1 lM NAA increased steady-state levels of PpRSL1 and
PpRSL2 mRNA compared with untreated controls
(Fig. 4a). This indicates that auxin positively regulates the
transcription of both PpRSL1 and PpRSL2.

To determine if auxin regulates the spatial pattern of
PpRSL1 and PpRSL2 gene expression we determined the
effect of NAA treatment on the activity of PpRSL1promoter:

GUS and PpRSL2promoter:GUS reporter. The NAA treatment
increased the expression of GUS compared with untreated
controls. Importantly, the expression of PpRSL1promoter:
GUS extended out to the tips of the filaments in NAA-trea-
ted plants, while expression was undetectable in these distal
regions in the untreated controls. Therefore, while the level
of PpRSL1 expression was increased, NAA treatment also
changed the spatial pattern of PpRSL1promoter :GUS expres-
sion (Fig. 4b,c). Auxin treatment also increased
PpRSL2promoter :GUS expression (Fig. 4d,e). Nevertheless,
because PpRSL2 is expressed throughout the protonema,
auxin treatment did not change the spatial pattern of
expression.

Auxin-induced caulonema differentiation requires
PpRSL1 and PpRSL2 gene activity

If auxin positively regulates PpRSL1 and PpRSL2 activity
during protonema development we predicted that Pprsl1
Pprsl2 double mutants would be resistant to auxin treatment.
The NAA treatment of wild-type colonies resulted in the
development of extensive growth of caulonema compared
with untreated controls. By contrast, no caulonema devel-
oped in Pprsl1 Pprsl2 double mutants after auxin treatment.
That is, auxin-treated and untreated Pprsl1 Pprsl2 double
mutants were morphologically identical and therefore, the
Pprsl1 Pprsl2 double mutant is resistant to the effects of
auxin treatment (Fig. 5). This is consistent with the hypoth-
esis that auxin controls the development of caulonema by
positively regulating PpRSL1 and PpRSL2 activity.

PpRSL1 and PpRSL2 gene expression is sufficient for
caulonema differentiation from chloronema

As auxin promotes caulonema development by positively
regulating the expression of both PpRSL1 and PpRSL2, we
predicted that plants that co-overexpress PpRSL1 and
PpRSl2 would develop phenotypes resembling wild-type
plants grown in the presence of auxin. As predicted the
development of chloronema is repressed in plants expressing
both PpRSL1 and PpRSL2 under the control of the 35S
promoter. Instead, these 35S:PpRSL1;35S:PpRSL2-trans-
formed colonies were composed almost entirely of
caulonema and no gradient in cell length developed
(Fig. 6). These data support the hypothesis that auxin pro-
motes caulonema development by positively regulating
PpRSL1 and PpRSL2 activity and demonstrates that coex-
pression of PpRSL1 and PpRSL2 is sufficient for the
development of caulonema.

Discussion

The first cells to differentiate during protonemal develop-
ment are chloronemal and then after c. 4 d each new cell

(b) (c)

(d) (e)

(a)

Fig. 4 Auxin positively regulates PpRSL1 and PpRSL2 expression in
Physcomitrella patens. (a) Reverse-transcription polymerase chain
reaction showing that auxin increases steady-state levels of PpRSL1
and PpRSL2 mRNA. Left, short-term effect of 10 lM auxin
treatment for 20 h; right, long-term effect of 1 lM auxin treatment
for 14 d. (b) Expression of PpRSL1promoter:GUS in control conditions
(no naphthaleneacetic acid (NAA) treatment). (c) Expression of
PpRSL1promoter:GUS after auxin treatment. (d) Expression of
PpRSL2promoter:GUS in control conditions (no NAA treatment). (e)
Expression of PpRSL2promoter:GUS after auxin treatment. Bars,
100 lm.
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that is produced at the growing tip of the filament is pro-
gressively more caulonemal in character. We showed here
that PpRSL1 and PpRSL2 are required for the development
of this chloronema–caulonema gradient and expression of
PpRSL1 progressively decreases as cells become more
caulonemal in character. Consequently, PpRSL1 is strongly
expressed in cells that give rise to caulonema but not
expressed in the mature caulonema itself, while intermedi-
ate levels of PpRSL1 mRNA accumulate in cells undergoing
the chloronema-to-caulonema transition. This suggests that
the gradient in cell identity that forms during the chloro-
nema-to-caulonema transition is likely generated by a
gradient in PpRSL1 expression. The demonstration that
PpRSL1 is most strongly expressed in cells that give rise
to caulonema but not in caulonema itself is similar to
A. thaliana where AtRHD6 is expressed in the cells (tricho-
blasts) that give rise to root hair cells but not in the root
hair cell itself. The principal difference between these two
developing systems is that the gradient of PpRSL1 expres-
sion is accompanied by a gradual transition between
chloronema to caulonema in P. patens while the abrupt
transition from trichoblast to root hair cell is controlled by
a sudden downregulation of AtRHD6 expression in
A. thaliana. We predict that, together, PpRSL1 and PpRSL2
genes positively regulate the expression of genes that are
required specifically for the differentiation and growth of
caulonema cells in the same way that AtRHD6 and AtRSL1
genes control the expression of genes that control differenti-
ation and growth of root hair cells A. thaliana.

RSL genes control the development of caulonema and
rhizoids in P. patens and root hairs in A. thaliana (Masucci
& Schiefelbein, 1994; Menand et al., 2007b). While each
of these cell types elongate by tip growth, not all tip grow-
ing cells are regulated by RSL genes. For example the cells
of moss chloronema extend by tip growth but RSL genes do
not control their development (Menand et al., 2007a,b).
Similarly the growth and development of tip-growing
pollen tubes is independent of RSL gene function in
A. thaliana (Menand et al., 2007b). This indicates that the
RSL genes are not regulators of all tip-growing cells. In
other words, RSL genes are not simply positive regulators of
tip -growth. Instead, RSL genes control the development of
tip-growing cells that form at the interface of the plant and
its substratum and are likely to have roles in nutrient uptake
and anchorage. It has been hypothesized that caulonema are
involved in nutrient uptake and transport during protone-
mal growth and it is likely that rhizoids may play a similar
function in nutrient uptake as well as playing a role in
anchorage (Duckett et al., 1998). Similarly root hairs are
important for nutrient uptake and anchorage in angio-
sperms (Peterson & Farquhar, 1996; Gahoonia et al., 1997;
Gahoonia & Nielsen, 1998). Therefore, it is possible that
RSL genes control the development of a subset of tip-grow-
ing cells: tip-growing cells that are active in nutrient uptake,
anchorage and develop at the interface of the plant and its
substratum.

Auxin positively regulates the chloronema-to-caulonema
transition in P. patens by positively regulating PpRSL1 and

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Pprsl1Pprsl2 protonema are resistant to auxin. (a) Physcomitrella patens wild-type protonema in control conditions. (b) Distal region of
wild-type protonemal filaments in control conditions. (c) Wild-type protonema treated with auxin. (d) Distal region of wild-type protonemal
filaments treated with auxin. (e) Pprsl1 Pprsl2 double mutant protonema in control conditions. (f) Distal region of Pprsl1 Pprsl2 double mutant
protonemal filaments in control conditions. (g) Pprsl1 Pprsl2 double mutant protonema treated with auxin. (h) Distal region of Pprsl1 Pprsl2

double mutant protonemal filaments treated with auxin. Bars: (a,c,e,g) 500 lm, (b,d,f,h) 100 lm.
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PpRSL2 expression. Auxin also controls the development of
root hairs in A. thaliana but it does not regulate the tran-
scription of AtRHD6 and AtRSL1 – the A. thaliana genes
that are most similar to PpRSL1 and PpRSL2. This indicates
that the mechanism of auxin-regulated development is dif-
ferent in P. patens caulonema and A. thaliana root hairs. In
the latter case, auxin controls root hair development by reg-
ulating the expression of a different group of RSL genes:

auxin positively regulates the expression of AtRSL4 and neg-
atively regulates AtRSL2 (Yi et al., 2010). Therefore, despite
the differences in the precise nature of the interaction
between RSL genes and auxin, the regulation of RSL genes
by auxin is ancient and was present in the last common
ancestor of the angiosperms and the mosses. Nevertheless,
RSL genes have not yet been identified in the genomes of
extant members of the earliest diverging group of land

(a) (b)

(c)

(e)

(d)

Fig. 6 Caulonema differentiation is constitutively activated in protonema transformed with 35S:PpRSL1;35S:PpRSL2. (a) Physcomitrella

patens wild-type colonies 7 d after plating. (b) Wild-type colonies 21 d after plating. (c) Plants transformed with 35S:PpRSL1;35S:PpRSL2
grown for 7 d. (d) Plants transformed with 35S:PpRSL1;35S:PpRSL2 grown for 21 d. (e) Relationship between cell length and position along
proximal–distal axis of 7-d-old protonemal filaments. Open bars, wild type; closed bars, 35S:PpRSL1;35S:PpRSL2. (Values are mean ± SD,
n ‡ 7) Asterisks indicates significant difference based on 95% confidence intervals. Bars, 100 lm.
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plants, the liverworts or in their sister group, the strepto-
phyte algae. It is possible that RSL genes are present in these
taxa but have not yet been identified because there are no
complete genome sequences available for these organisms.
Nevertheless, no RSL genes were found in the complete
genome sequences of Chlamydomonas reinhardtii or
Ostreococcus tauri. This suggests that RSL genes evolved
sometime after the divergence of the chlorophytes from the
streptophytes but before the evolution of the mosses (Pires
& Dolan, 2010). In other words, the RSL pathway either
originated among the streptophyte algae or among the earli-
est land plants. Identification of RSL genes among
liverworts and the streptophyte algae and their functional
characterization will define when this regulatory module
first evolved.
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INTRODUCTION
The development of specialized tip-growing filamentous rhizoids
in early diverging groups of land plants was crucial for the
establishment of the first continental vegetation sometime before
465 million years ago (Kenrick and Crane, 1997; Bateman et al.,
1998; Wellman and Gray, 2000; Gensel and Edwards, 2001;
Wellman et al., 2003; Raven and Crane, 2007). The algal ancestors
of the land plants lived in water and absorbed nutrients across their
entire surface and some developed specialized rhizoids that
functioned to anchor these plants in sediments from which
nutrients were extracted (Box et al., 1984; Box, 1986; Box, 1987;
Karol et al., 2001; Raven and Edwards, 2001). Once plants moved
onto land, they developed photosynthetic organs that grew into the
air where inorganic mineral nutrients were not available (Niklas,
1997). Systems of filamentous rhizoids and roots with associated
filamentous root hairs anchored plants in place and supported

growth in height (Raven and Edwards, 2001). The entire
anchorage system of these early diverging groups of non-vascular
land plants comprised tip-growing filamentous rhizoid cells
(Kenrick and Crane, 1997; Bower, 1929). In mosses, rhizoids are
multicellular filamentous cells. Two populations of rhizoids in
Physcomitrella patens can be distinguished by the position on
gametophores: basal rhizoids form in basal regions of the
gametophore whereas mid-stem rhizoids develop in more apical
regions (Sakakibara et al., 2003). The basal rhizoids differentiate
from any epidermal cell near the base of the young gametophores
whereas mid-stem rhizoids differentiate from the epidermal cells,
which are located to the outside of two small leaf trace cells just
below adult leaves.

Auxin positively regulates the development of both basal and
mid-stem rhizoids in P. patens; treatment of wild-type plants with
auxin increases the number of rhizoids that develop (Ashton et al.,
1979; Sakakibara et al., 2003). Therefore, it is likely that auxin
positively regulates the expression of genes required for rhizoid
development. One such gene is PpHb7, which encodes an HD
Zip I subfamily protein required for late rhizoid differentiation;
mutants that lack PpHb7 function develop rhizoids that are
indistinguishable from wild type except that they fail to form the
red-brown pigment that normally accumulates late in the
differentiation of wild-type rhizoids (Sakakibara et al., 2003).
PpRSL1 and PpRSL2 are basic-helix-loop-helix (bHLH)
transcription factors that are required for the development of
rhizoids; mutants that lack PpRSL1 and PpRSL2 activity develop
few very short basal rhizoids, indicating that PpRSL1 and PpRSL2
act early in rhizoid development (Menand et al., 2007).
Nevertheless, the regulatory relationship between PpRSL1 and
PpRSL2 and auxin has not been elucidated.
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SUMMARY
Land plants are anchored to their substratum from which essential inorganic nutrients are taken up. These functions are carried
out by a system of rhizoids in early diverging groups of land plants, such as mosses, liverworts and hornworts. Physcomitrella
patens RHD SIX-LIKE1 (PpRSL1) and PpRSL2 transcription factors are necessary for rhizoid development in mosses. Similar proteins,
AtRHD6 and AtRSL1, control the development of root hairs in Arabidopsis thaliana. Auxin positively regulates root hair
development independently of AtRHD6 and AtRSL1 in A. thaliana but the regulatory interactions between auxin and PpRSL1 and
PpRSL2 are unknown. We show here that co-expression of PpRSL1 and PpRSL2 is sufficient for the development of the rhizoid
system in the moss P. patens; constitutive expression of PpRSL1 and PpRSL2 converts developing leafy shoot axes (gametophores)
into rhizoids. During wild-type development, PpRSL1 and PpRSL2 are expressed in the specialized cells that develop rhizoids,
indicating that cell-specific expression of PpRSL1 and PpRSL2 is sufficient to promote rhizoid differentiation during wild-type
P. patens development. In contrast to A. thaliana, auxin promotes rhizoid development by positively regulating PpRSL1 and
PpRSL2 activity in P. patens. This indicates that even though the same genes control the development of root hairs and rhizoids,
the regulation of this transcriptional network by auxin is different in these two species. This suggests that auxin might have
controlled the development of the first land plant soil anchoring systems that evolved 465 million years ago by regulating the
expression of RSL genes and that this regulatory network has changed since mosses and angiosperms last shared a common
ancestor.

KEY WORDS: Basic helix-loop-helix transcription factor, Rhizoid, Root hair, Root system evolution, Physcomitrella, Arabidopsis

RSL genes are sufficient for rhizoid system development in
early diverging land plants
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As PpRSL1 and PpRSL2 are necessary for rhizoid development in
P. patens, we set out to determine whether the expression of both
PpRSL genes was sufficient for rhizoid development. We show here
that co-expression of PpRSL1 and PpRSL2 is sufficient to transform
gametophore cells into rhizoid cells, indicating that PpRSL1 and
PpRSL2 expression is sufficient for rhizoid system development. We
also show that auxin positively regulates rhizoid development by
promoting cell-specific PpRSL1 and PpRSL2 transcription. Together
these data suggest that auxin-induced expression of RSL genes
controlled the development of early land plant rhizoids systems.

MATERIALS AND METHODS
Plant materials, growth and supplements
The Gransden wild-type strain of Physcomitrella patens (Hedw.) Bruch and
Schimp was used in this study (Ashton et al., 1979). Cultures were grown
at 25°C and illuminated with a light regime of 16/8 hours (light/dark) and
a quantum irradiance of 40 E m–2 s–1. For the growth of gametophores,
spores were inoculated on a 9 cm Petri dish containing solid minimal
media overlaid with a cellophane disk (AA packaging) for 3 weeks (Ashton
et al., 1979). Protonemal samples for transformation were grown on
minimal media supplemented with 5 mg/l NH4 and 50 mg/l glucose for
1 week. P. patens Pprsl1, Pprsl2 and Pprsl1 Pprsl2 double mutants,
as well as A. thaliana AtRSL1promoter:GFP:AtRSL1 and
AtRHD6promoter:GFP:AtRHD6 lines were previously described (Menand et
al., 2007). For the phenotypic analysis of plants, small protonemal inocula
were placed on solid minimal media overlaid with cellophane disks and

grown for 3 weeks. Auxin treatment of P. patens was carried out by
transferring 3-week-old plants to solid minimal media supplemented with
1 M -naphthalene acetic acid (Sigma) and incubating for 1 week.

Construction of constitutively overexpressing vector
For constitutive overexpression of both PpRSL1 and PpRSL2 at the same
time, the 35S:PpRSL1;35S:PpRSL2 vector was generated. To obtain
35S:PpRSL1:NOSTer DNA cassette including SpeI and ApaI enzymatic
restriction sites, two different vectors were used: pCAMBIA-35S:PpRSL1
carrying 35S:PpRSL1:NOSTer cassette (Menand et al., 2007) and
pBluescript II SK + (Stratagene) having SpeI and ApaI sites. First,
pCAMBIA-35S:PpRSL1 was excised with EcoRI and HindIII to obtain
35S:PpRSL1:NOSTer cassette and this cassette was inserted into the
pBluescript vector which had been digested with EcoRI and HindIII.
pBluescript-35S:PpRSL1 carrying SpeI-35S:PpRSL1:NOSTer-ApaI cassette
was obtained by ligation. The SpeI-35S:PpRSL1:NOSTer-ApaI cassette,
which was obtained by digesting pBluescript-35S:PpRSL1 with SpeI and
ApaI, was inserted into pPpRSL1-KO vector carrying partial genomic
DNA fragments of PpRSL1 for homologous recombination (Menand
et al., 2007). The vector was named 35S:PpRSL1. To obtain
35S:PpRSL2:NOSTer cassette carrying NotI and AapI sites two different
vectors, pCAMBIA-35S:PpRSL2 carrying 35S:PpRSL2:NOSTer cassette
and pGEM-T Easy (Promega) including NotI and ApaI sites were used.
pCAMBIA-35S:PpRSL2 was obtained by amplifying the PpRSL2 coding
sequence from protonema cDNA with 35S:PpRSL2 primers and cloning it
into the BamH1 and SalI sites of pCAMBIA 1300 (Menand et al., 2007).
35S:PpRSL2: NOSTer cassette was obtained by digesting pCAMBIA-
35S:PpRSL2 with EcoRI and SphI. This cassette was inserted into pGEM-
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Fig. 1. PpRSL1 and PpRSL2 gene expression is sufficient for rhizoid system development in P. patens. A-D, I and J show wild-type plants;
E-H, K and L show plants transformed with 35S:PpRSL1 35S:PpRSL2. (A)Wild-type gametophore bud that has just started to develop rhizoids but
not yet begun to form leaves. (B)Young wild-type gametophore with the first juvenile leaves. (C)Older gametophore than that shown in B.
(D)Three-week-old wild-type protonema with developing leafy gametophores on a filamentous network of cells (protonema). (E)Gametophore
buds are converted to rhizoid masses in plants transformed with both 35S:PpRSL1 and 35S:PpRSL2. (F)One of the rare gametophores that form on
protonema transformed with 35S:PpRSL1 and 35S:PpRSL2. This gametophore produces a mass of rhizoids and is the same age as the wild-type
gametophore shown in B. (G)Older gametophore than that shown in F. Large numbers of rhizoids develop on the gametophores transformed with
both 35S:PpRSL1 and 35S:PpRSL2 compared with wild-type gametophores of the same size and age. (H)Fewer gametophores developed in plants
transformed with both 35S:PpRSL1 and 35S:PpRSL2 than in wild type (D). (I)Transverse section of wild-type gametophores showing the epidermal
origin of basal rhizoids. (J)Transverse section of wild-type gametophores showing the epidermal origin of mid-stem rhizoids. (K)Transverse section
showing the epidermal origin of basal rhizoids in the gametophores of plants transformed with both 35S:PpRSL1 and 35S:PpRSL2. (L)Transverse
section showing the epidermal origin of mid-stem rhizoids in the gametophores of plants transformed with both 35S:PpRSL1 and 35S:PpRSL2.
Scale bars: 250m in A-C,E-G; 1 mm in D,H; 100m in I-L. D
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T Easy vector which had been self-ligated and digested with EcoRI and
SphI. NotI-35S:PpRSL2:NOSTer-ApaI cassette from pGEM-35S:PpRSL2
vector was inserted into NotI and ApaI sites of 35S:PpRSL1.

Construction of PpRSL1promoter:GUS and PpRSL2promoter:GUS vectors
GUS transcriptional reporter vectors were generated by inserting two
genomic DNA fragments of PpRSL1 and PpRSL2 promoter regions into
pBHSNR-GUS vector carrying GUS-35STer. pBHSNR-GUS vector was
constructed by inserting GUS coding sequence and 35S terminator into
ClaI/SpeI sites and BglII/ApaI sites of pBHSNR vector (Menand et al.,
2007), respectively. Two genomic DNA fragments of PpRSL1 gene were
cloned by PCR (see Table S1 in the supplementary material). The genomic
DNA fragment upstream of PpRSL1 promoter was inserted into AscI and
ClaI sites of pBHSNR-GUS and another fragment directly downstream of
PpRSL1 promoter region was inserted into BamHI and HindIII sites of
pBHSNR-GUS. For the PpRSL2promoter:GUS vector construction two
genomic DNA fragments of PpRSL2 gene were amplified by PCR. The
genomic DNA fragment upstream of PpRSL2 promoter was inserted into
AscI and ClaI sites of pBHSNR-GUS and another fragment directly
downstream of PpRSL2 promoter region was inserted into SmaI and
HindIII sites.

P. patens transformation
PEG transformation of P. patens protoplasts was carried out as described
previously (Schaefer and Zrÿd, 1997). The 35S:PpRSL1;35S:PpRSL2
vector and 35S:PpRSL1 vector were linearized with AvrII and SwaI before
protoplast transformation whereas 35S:PpRSL2 vector was linearized with
SwaI. Transformants for 35S:PpRSL1;35S:PpRSL2 and 35S:PpRSL1 were
selected on G418 (50 l/ml) and transformants for 35S:PpRSL2 were
selected on Hygromycin B (25 l/ml). For the transformations of
PpRSL1promoter:GUS and PpRSL2promoter:GUS, PpRSL1promoter:GUS vector
was linearized with AscI and HindIII before protoplast transformation
whereas the PpRSL2promoter:GUS vector was linearized with AscI and
BamHI. Transformants were selected on Hygromycin B (25 l/ml).

RT-PCR analysis
Total RNA from 4-week-old gametophores was extracted with the RNeasy
Plant Mini Kit (Qiagen). One microgram of total RNA was used for cDNA
synthesis with the Superscript III reverse transcriptase (Invitrogen) and

oligo(dT) primers. PCR was carried out with equivalent amounts of cDNA
template for amplification of fragments of PpRSL1 and PpRSL2 and
GAPDH (X72381)  (see Table S1 in the supplementary material).

GUS staining analysis, embedding and sectioning
Isolated gametophores were incubated in GUS staining solution [100 mM
NaPO4 (pH 7.0), 1 mM 5-bromo-4-chloro-3-indolyl-glucuronide, 1 mM
potassium ferricyanide and 0.2% Triton X-100] at 37°C for 2-14 hrs. The
samples were then washed with 100 mM NaPO4 (pH 7.0 and incubated in
70% EtOH. Whole-mounted samples were imaged with a Nikon Coolpix
995 camera mounted on a Leica Wild M10 stereomicroscope. For
transverse sectioning, gametophores were aligned on a 1 mm layer of solid
1% agarose and covered with 1% molten agarose. After solidification,
samples were cut into small blocks and washed twice in double distilled
water for 15 minutes, then dehydrated in a graded series of ethanol (25, 50,
75 and 100%), for 30 minutes each. The dehydrated samples were
sequentially incubated in a series of Technovit 7100 cold-polymerizing
resin [33, 66 and 100% (v/v) in EtOH], for one hour each. Samples were
then incubated in 100% Technovit for one day and placed in a plastic
moulds. To solidify samples, a 15:1 (v/v) mixture of Technovit and
hardener solution II was treated at room temperature for one day. Sections
(10 m) were taken from gametophores with an Ultracut E (Reichert-Jung).
Images were captured with a Pixera Pro ES600 camera mounted on Nikon
Eclipse 800.

Phylogenetic analysis
The bHLH domain of the RSL proteins were used for the phylogenetic
analyses: AtRHD6 (At1g66470), AtRSL1 (At5g37800), AtRSL2
(At4g33880), AtRSL3 (At2g14760), AtRSL4 (At1g27740) and AtRSL5
(At5g43175), PpRSL1 (EF156393), PpRSL2 (EF156394), PpRSL3
(EF156395), PpRSL4 (EF156396), PpRSL5 (EF156397) PpRSL6
(EF156398), PpRSL7 (EF156399). AtIND (At4g00120) was used as an
outgroup. The Bayesian analysis was performed with MrBayes version
3.1.2 (http://mrbayes.csit.fsu.edu/): two independent runs were computed
for 240,000 generations, at which point the standard deviation of split
frequencies was less than 0.01; one tree was saved every 100 generations,
and 1800 trees from each run were summarized to give rise to the final
cladogram. Trees were visualized using the program Figtree
(http://tree.bio.ed.ac.uk/software/figtree/).
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Table 1. The number of gametophores in wild type and PpRSL1- and PpRSL2-overexpressing plants
Number of gametophores cm–2 (± s.d.) P-value (Student’s t-test)

Wild type 47.8±9.16
35S:PpRSL1 42.1±5.74 0.34
35S:PpRSL2 45.8±6.97 0.67
35S:PpRSL1;35S:PpRSL2 0.68±0.79 0.0003

Fig. 2. PpRSL1 and PpRSL2 are
required for the formation of basal
and mid-stem rhizoids in P. patens.
(A-D)Basal rhizoid development in wild
type (A), Pprsl1 mutant (B), Pprsl2
mutant (C) and Pprsl1 Pprsl2 double
mutant (D). (E-H)Mid-stem rhizoid
development in wild type (E), Pprsl1
mutant (F), Pprsl2 mutant (G) and
Pprsl1 Pprsl2 double mutant (H).
Arrows indicate mid-stem rhizoids.
Scale bars: 500m in A-D; 200m in
E-H.

D
E
V
E
LO

P
M
E
N
T



2276

RESULTS
PpRSL1 and PpRSL2 expression is sufficient for
rhizoid system development in P. patens
Given the key function of RSL genes in rhizoid and root hair
development in diverse groups of land plants, we tested the
hypothesis that PpRSL1 and PpRSL2 are master regulators of
rhizoid development in P. patens (Menand et al., 2007). To
determine whether the activity of either PpRSL1 or PpRSL2 was
sufficient to promote rhizoid development in P. patens, we
expressed each gene individually at high levels using the
CaMV35S promoter (Benfey and Chua, 1990). Plants were
transformed with either 35S:PpRSL1 or 35S:PpRSL2 constructs.
RT-PCR analysis demonstrated that steady state levels of
PpRSL1 and PpRSL2 transcript was elevated in each transformed
line, respectively (see Fig. S1 in the supplementary material).

Plants that overexpressed either PpRSL1 or PpRSL2 were
indistinguishable from wild type (Table 1 and see Fig. S1 in the
supplementary material). This suggests that neither expression
of PpRSL1 nor PpRSL2 individually is sufficient for rhizoid
development. To determine whether the combined activities of
PpRSL1 and PpRSL2 were sufficient for moss rhizoid system
development, we generated transgenic plants in which both
PpRSL1 and PpRSL2 were ectopically expressed at high levels
in the same plant. These plants accumulated higher steady state
levels of both PpRSL1 and PpRSL2 transcript than wild type (see
Fig. S1C in the supplementary material). Gametophores are
multicellular shoot-like axes with an apical cell and lateral leaf-
like appendages that develop from buds that form on filamentous
protonema in three-week-old wild type (Fig. 1A) (Sakakibara et
al., 2003). By contrast, buds were converted into masses of

RESEARCH ARTICLE Development 138 (11)

Fig. 3. PpRSL1 and PpRSL2 genes are expressed in cells that give rise to rhizoids in P. patens. (A-H)PpRSL1promoter:GUS (A-D) and
PpRSL2promoter:GUS (E-H) expression pattern in young gametophores. PpRSL1 (A) and PpRSL2 (E) are expressed at the earliest stages of gametophore
development before rhizoids differentiate. PpRSL1 (B) and PpRSL2 (F) are expressed in young gametophores that have developed their first rhizoids
(arrow). PpRSL1 and PpRSL2 are expressed in rhizoid progenitor cells but not in rhizoids themselves. PpRSL1 (C) and PpRSL2 (G) are specifically
expressed in the basal regions of the gametophores where basal rhizoids originate. Transverse sections through the basal region of gametophores
demonstrate that PpRSL1 (D) and PpRSL2 (H) are strongly expressed throughout the epidermis where any cell can give rise to a rhizoid. Arrows
highlight cells with high levels of expression. (I-R)PpRSL1promoter:GUS (I-M) and PpRSL2promoter:GUS (N-R) expression pattern in adult gametophores
with mid-stem rhizoids. PpRSL1 (I) and PpRSL2 (N) are expressed in epidermal cells of the gametophore where adult leaves develop. PpRSL1 (J,K) is
expressed in the cells that differentiate as rhizoids whereas PpRSL2 (O,P) is expressed throughout the gametophore epidermis. Transverse sections
through the mid-stem region of gametophores demonstrate that PpRSL1 (L,M) is specifically expressed in the specialized cells that differentiate as
rhizoids and PpRSL2 (Q,R) is expressed throughout the epidermis. Arrows highlight mid-stem rhizoid forming cells with high levels of expression;
arrowheads indicate the positions of the small leaf trace cells. Scale bars: 50m in M,R; 100m in A-H,J-L,O-Q; 500m in I,N.
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rhizoids in plants that overexpress both PpRSL1 and PpRSL2
(Fig. 1E). Because most cells in the buds that overexpressed both
PpRSL1 and PpRSL2 differentiated into rhizoids, few or no
green gametophores developed in these cultures (Fig. 1D,H);
42.07±5.46 (s.d., n10) gametophores cm–2 developed from
wild-type protonema whereas 0.68±0.79 (s.d., n12)
gametophores cm–2 developed from protonema that
overexpressed both PpRSL1 and PpRSL2 (Table 1). The few
gametophores that formed in plants overexpressing both PpRSL1
and PpRSL2 developed many more rhizoids than wild type and
these rhizoids developed from cells in the epidermis (Fig.
1B,C,F,G,I-L). Together these data indicate that the combined
activity of PpRSL1 and PpRSL2 is sufficient for the formation of
the P. patens rhizoid system.

PpRSL1 and PpRSL2 are required for the
development of both basal and mid-stem rhizoids
In wild type, rhizoids differentiate on gametophores. Two
populations of morphologically identical rhizoids can be
distinguished by the position on the gametophore from which they
develop (Sakakibara et al., 2003). The first population of rhizoids
form early in gametophore development; they differentiate soon after
the gametophore progenitor cell divides to form a bud and continue
to develop from epidermal cells below juvenile leaves near the base
of the young gametophore (Fig. 2A). When viewed in transverse
section, these rhizoids can be seen to grow out from any epidermal
cell in the gametophore. Because these rhizoids form at the
gametophore base, they are known as basal rhizoids. By contrast,
mid-stem rhizoids differentiate from specialized epidermal cells
located just below adult leaves on the gametophore axis (leaves 1-5
are considered juvenile and adult leaves are those that form after leaf

5) (Fig. 2E). Only a subset of epidermal cells develop mid-stem
rhizoids. When the gametophore is viewed in transverse section, the
epidermal cells that give rise to mid-stem rhizoids are located to the
outside of two small cells of the leaf trace cells that extend from the
stem into the midrib of the adjoining leaf (arrowheads in Fig. 3M,R).
Both basal and mid-stem rhizoids developed in Pprsl1 and Pprsl2
single mutants (Fig. 2B,C,F,G), but only few very short basal
rhizoids and no mid-stem rhizoids developed in Pprsl1 Pprsl2
double mutants (Fig. 2D,H). The internal cellular anatomy of Pprsl1
Pprsl2 double mutant gametophores was identical to wild type when
viewed in transverse section despite the obvious defects in rhizoid
development (see Fig. S2 in the supplementary material). This
indicates that PpRSL1 and PpRSL2 are required for the development
of both basal and mid-stem rhizoids and are not required for the
development of other cell types in the gametophore.

PpRSL1 and PpRSL2 are expressed in cells that
form rhizoids
As PpRSL1 and PpRSL2 are necessary and sufficient for the
development of both classes of rhizoids we hypothesized that
PpRSL1 and PpRSL2 would be expressed in the cells that give rise
to rhizoids. To test this hypothesis, we made PpRSL1promoter:GUS
and PpRSL2promoter:GUS fusions and introduced these constructs
into the endogenous PpRSL1 and PpRSL2 loci by homologous
recombination (see Fig. S3 in the supplementary material). PpRSL1
and PpRSL2 were first expressed in bud cells soon after the
division of the initial cell that forms the bud, when the first basal
rhizoids develop (Fig. 3A,B,E,F). Expression continued during bud
development and when the gametophore developed PpRSL1 and
PpRSL2 were expressed throughout the epidermis in the basal
region, reflecting the fact that all epidermal cells in this region of
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Fig. 4. Auxin positively regulates the transcriptional expression of
PpRSL1 and PpRSL2 genes in P. patens. (A)RT-PCR analysis indicates
that a one-week auxin treatment (1M NAA) increases steady state levels
of PpRSL1 and PpRSL2 in four-week-old gametophores. (B)1M NAA
treatment increases the expression levels of PpRSL1promoter:GUS and
PpRSL2promoter:GUS compared with untreated controls.

Fig. 5. The spatial pattern of GmGH3 promoter activity in P. patens
gametophores. (A,B)NAA treatment increases GmGH3 promoter activity
in gametophores. GmGH3 expression pattern in untreated controls (A)
and after 1M NAA-treatment (B) is shown. (C,D)The spatial pattern of
GmGH3 promoter activity in basal and mid-stem region of the
gametophores. (C)GmGH3 promoter is active in most cells in the
epidermis of basal region. (D)GmGH3 promoter activity is higher in the
epidermal cells that give rise to rhizoids cells located near leaf trace cells
(arrow) in the mid-stem region. Scale bars: 500m in A,B; 100m in C,D.
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the gametophore can develop rhizoids (Fig. 3C,D,G,H). Later in
gametophore development, PpRSL1 expression was restricted to
the specialized epidermal cells that give rise to mid-stem rhizoids
(Fig. 3I-M). By contrast, PpRSL2 was expressed throughout the
gametophore epidermis in the regions where mid-stem rhizoids
develop (Fig. 3N-R). However, no PpRSL2 expression was
detected in other gametophore cell types. Taken together these data
indicate that rhizoids develop from cells in which both PpRSL1 and
PpRSL2 are expressed, where their joint expression is sufficient to
promote the rhizoid development programme.

Auxin positively regulates cell specific PpRSL1 and
PpRSL2 gene expression
Auxin positively regulates rhizoid development (Ashton et al.,
1979; Sakakibara et al., 2003). Because the expression of PpRSL1
and PpRSL2 is sufficient to promote rhizoid differentiation, we
hypothesized that auxin controlled rhizoid development by
regulating the expression of PpRSL1 and PpRSL2. To test this
hypothesis, we determined the effect of auxin-treatment on PpRSL1
and PpRSL2 expression. Auxin-treatment increased PpRSL1 and
PpRSL2 steady state mRNA levels (Fig. 4A). To verify
independently that auxin positively regulates PpRSL1 and PpRSL2
expression we determined the effect of auxin-treatment on
PpRSL1promoter:GUS and PpRSL2promoter:GUS expression. Auxin-
treatment increased the expression of each reporter gene (Fig. 4B).
Furthermore, whereas expression was restricted to those epidermal
cells that gave rise to rhizoids in untreated controls, auxin-treatment
induced GUS expression along the entire length of the rhizoid in
plants transformed with the PpRSL1promoter:GUS and
PpRSL2promoter:GUS transgenes. This indicates that not only does
auxin-treatment increase PpRSL1 and PpRSL2 transcription but it
also extends the expression of these genes into the rhizoids.
Together these data demonstrate that auxin positively regulates the
expression of PpRSL1 and PpRSL2.

Rhizoid-forming cells are sensitive to auxin
Because auxin positively regulates PpRSL1 and PpRSL2 expression,
we hypothesized that the cell-specific expression of these genes
could be, at least in part, determined by cell-specific sensitivity to
auxin. Although we cannot directly assay sensitivity of epidermal
cells in the gametophore, we can use a promoter that is
transcriptionally responsive to auxin to identify cells that are
relatively sensitive to auxin. The expression patterns of the PpRSL1
and PpRSL2 genes were, therefore, compared with the expression
pattern of the auxin sensitive GmGH3 promoter, which is restricted
to the sites of auxin sensitivity or auxin accumulation in P. patens
(Fig. 5A,B) (Rose and Bopp, 1983; Bierfreund et al., 2003; Ludwig-
Müller et al., 2009; Fujita et al., 2008; Eklund et al., 2010a; Eklund
et al., 2010b). The expression patterns of GmGH3promoter:GUS and
PpRSL1promoter:GUS and PpRSL2promoter:GUS were almost identical.
GmGH3promoter:GUS was expressed early in the development of
gametophores when the first rhizoids developed and in the cells that
gave rise to basal rhizoids in young gametophores. Later in
gametophore development, GmGH3promoter:GUS was active in the
epidermal rhizoid progenitor cells that form mid-stem rhizoids like
PpRSL1promoter:GUS (Fig. 5C,D). These results indicate that
PpRSL1 is most highly expressed in cells that are either relatively
sensitive to auxin or accumulate relatively more auxin than
surrounding cells. These data are consistent with a model in which
the cellular pattern of auxin sensitivity or accumulation regulates the
expression of PpRSL1 and PpRSL2, which in turn positively
regulates rhizoid development.

Auxin-induced rhizoid development requires
PpRSL1 and PpRSL2 activity
To verify that auxin controls the development of rhizoids by
regulating PpRSL1 and PpRSL2 function, we determined the
sensitivity of Pprsl1 single, Pprsl2 single and Pprsl1 Pprsl2 double
mutants to auxin-treatment. Auxin-treatment of wild type, Pprsl1
single and Pprsl2 single mutants induced the development of large
numbers of rhizoids on gametophores compared with untreated
controls (Fig. 6 and see Fig. S4 in the supplementary material). By
contrast, auxin treatment of Pprsl1 Pprsl2 double mutants did not
increase the number of rhizoids on gametophores compared with
untreated controls; the phenotypes of treated and untreated Pprsl1
Pprsl2 double mutant were identical (Fig. 6). The double mutant
is, therefore, resistant to the rhizoid-inducing effect of auxin-
treatment. This indicates that auxin controls rhizoid development
by positively regulating the activity of PpRSL1 and PpRSL2 genes.
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Fig. 6. PpRSL1 and PpRSL2 gene activity is required for the
induction of rhizoid development by auxin. (A-H)NAA treatment
(0.2, 1 and 10M) for one week enhances rhizoid development in
wild-type (WT) P. patens (B-D) compared with the untreated control (A),
but this is not observed in the Pprsl1 Pprsl2 double mutant (E-H). Scale
bars: 500m.
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Auxin does not regulate AtRHD6 and AtRSL1
during root hair development in A. thaliana
Because auxin controls rhizoid development in moss by
positively regulating PpRSL1 and PpRSL2 activity, we
determined whether auxin controlled root hair development in A.
thaliana by the same mechanism. AtRHD6 and AtRSL1 are the
A. thaliana genes that are most closely related to PpRSL1 and
PpRSL2 and they positively regulate root hair development; root
hairs do not develop in Atrhd6-3 Atrsl1-1 double mutants
(Menand et al., 2007) (Fig. 7A,D). We used RT-PCR to
determine whether auxin controlled the expression of AtRHD6
and AtRSL1. Steady state levels of AtRHD6 and AtRSL1 mRNA
were indistinguishable in NAA-treated and untreated controls
(Fig. 7B). To confirm independently that auxin does not
positively regulate AtRHD6 and AtRSL1 activity, we determined
whether NAA-treatment altered the abundance of AtRHD6 and
AtRSL1 proteins compared with untreated controls. Plants
transformed with AtRHD6promoter:GFP:AtRHD6 and
AtRSL1promoter:GFP:AtRSL1 protein fusion constructs were
treated with NAA. No distinct change in GFP intensity was
observed between NAA-treated and untreated controls (Fig. 7C).
These data suggest that auxin-regulated development of root
hairs is independent of AtRHD6 and AtRSL1.

If AtRHD6 and AtRSL1 act independently to control root hair
development, we predicted that NAA-treatment of Atrhd6-3
Atrsl1-1 would suppress the hairless phenotype characteristic of
this double mutant. As predicted, NAA-treatment induced root
hairs in the Atrhd6-3 Atrsl1-1 double mutant (Fig. 7D) (Yi et al.,
2010). Furthermore, auxin-treatment of the Atrhd6-3 Atrsl1-1
double mutant induced the expression of the root hair specific
AtEXP7promoter:GFP gene, which is not expressed in untreated
Atrhd6-3 Atrsl1-1 controls (Fig. 7E). This indicates that the

induction of AtEXP7 expression by auxin is independent of
AtRHD6 and AtRSL1 activity. Taken together these data indicate
that auxin does not act through AtRHD6 and AtRSL1 during root
hair development in A. thaliana, in contrast to P. patens where
auxin controls rhizoid development by positively regulating
PpRSL1 and PpRSL2 expression. This suggests that the
mechanism by which auxin regulates rhizoid and root hair
development is different in P. patens and A. thaliana and implies
that this mechanism has changed since these two species last
shared a common ancestor over 400 million years ago.

DISCUSSION
We showed here that PpRSL1 and PpRSL2 genes are necessary and
sufficient for the development of multicellular rhizoids in P. patens.
This suggests that PpRSL1 and PpRSL2 are key regulators of
rhizoid development in early diverging groups of land plants. As
RSL genes also control the development of single celled root hairs
in angiosperms, we propose that RSL genes were co-opted to
control the development of filamentous cells (root hairs) in roots
when these specialized axes evolved in later diverging groups of
land plants (lycophytes, monilophytes and seed plants). Therefore,
it is likely that RSL genes regulate the development of filamentous
cells at the plant-soil interface in all groups of land plants. This
hypothesis is supported by the observation that RSL genes have
been found in all land plants for which genome sequence is
available (Pires and Dolan, 2010).

Although auxin positively regulates root hair and rhizoid
development in A. thaliana and P. patens, respectively, our data
suggest that the mechanism of auxin action differs between these
species in at least two ways (Ashton et al., 1979; Pitts et al., 1998;
Sakakibara et al., 2003; Cho et al., 2007; Jones et al., 2009).
Comparison of amino acid sequences shows that PpRSL1 and
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Fig. 7. Auxin-control of root
hair development is
independent of AtRHD6 and
AtRSL1. (A)Tree showing the
relationships between A.
thaliana and P. patens RSL
proteins. AtRHD6 and AtRSL1
are the A. thaliana RSL proteins
that are most closely related to
PpRSL1 and PpRSL2. (B)RT-PCR
showing that steady state levels
of AtRHD6 and AtRSL1 mRNA
remain unaltered by auxin
treatment (150 nM NAA).
(C)Levels of GFP:AtRHD6 and
GFP:AtRSL1 fusion proteins are
not regulated by auxin.
AtRSL1promoter:GFP:AtRSL1 and
AtRHD6promoter:GFP:AtRHD6 are
shown with (right) or without
(left) treatment with 150 nM
NAA. (D)Auxin treatment
induces root hair development
on Atrhd6-3 Atrsl1-1 double
mutants whereas untreated
controls remain hairless.
(E)AtEXP7promoter:GFP
expression is induced by auxin.
There is no AtEXP7promoter:GFP
expression in untreated controls. D
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PpRSL2 are most closely related to AtRHD6 and AtRSL1 in A.
thaliana, which control the development of root hairs; Atrhd6
Atrsl1 double mutants do not develop root hairs (Menand et al.,
2007). Auxin promotes rhizoid development by positively
regulating PpRSL1 and PpRSL2 genes in P. patens. By contrast, we
can find no evidence for the regulation of AtRHD6 and AtRSL1 by
auxin. Instead, auxin promotes root hair development by positively
regulating the expression of a gene from a different clade called
AtRSL4, which acts downstream of AtRHD6 and AtRSL1 (Yi et al.,
2010). This indicates that although the mechanisms that control the
development of filamentous cells at the land plant-substrate
interface is ancient, changes in the regulatory interactions between
components of this network have occurred during the course of
land plant evolution.

A second difference in auxin-regulated development of root hairs
and rhizoids is highlighted by the demonstration that the auxin
sensitive reporter gene GmGH3promoter:GUS is expressed in cells
that go on to form rhizoids. This suggests that relatively high levels
of auxin might accumulate in these cells compared with the
surrounding epidermal cells or that the rhizoid-forming cells are
more sensitive to auxin than the surrounding cells that do not form
rhizoids. We propose that this relatively high level of auxin or high
level of auxin sensitivity then activates the expression of PpRSL1,
which then positively regulates rhizoid differentiation. This
contrasts with A. thaliana, in which the auxin sensitive reporter
DR5:GFP is relatively more active in the non-hair cells and less
active in the cells that form root hairs, which has been interpreted
to mean that the non-hair cells (N cells) of the A. thaliana root are
more sensitive to auxin than the hair cells (H cells) (Jones et al.,
2009).

Together these data indicate that although auxin regulates RSL
networks in P. patens and A. thaliana, its interaction with these
networks is different in each species. If the moss RSL network
represents the ancestral state that existed in early diverging groups
of land plants, our data suggest that the way in which auxin
controls the network changed during land plant evolution.
Nevertheless, our results indicate that RSL genes have played a
pivotal role in controlling the development of the filamentous cells
at the plant-soil interface in gametophytes and sporophytes since
plants appeared on land in the Ordovician Period over 460 million
years ago (Kenrick and Crane, 1997; Wellman and Gray, 2000;
Wellman et al., 2003).

Because auxin-regulated RSL networks control the development
of tip growing rhizoid and root hair cells in mosses and flowering
plants, which last shared a common ancestor over 420 million years
ago, it can be concluded that the RSL-mechanism is ancient. It is,
therefore, likely that auxin-regulated RSL genes control the
development of rhizoids and root hairs in lycophytes, monilophytes
and seed plants. Furthermore, because monilophytes (ferns and
horsetails) develop both root hairs and rhizoids in the sporophyte
and gametophyte generations, respectively, these data also predict
that auxin-regulated RSL genes control the development of these
cell types in the two stages of the life cycle of these plants (Bower,
1929). Consistent with these predictions is the demonstration that
auxin positively regulates the development of rhizoids and root
hairs in the gametophytes and sporophytes, respectively, in ferns
(Allsopp, 1952; Bloom and Nichols, 1972; Hickock and Kiruluk,
1984). Nevertheless, RSL genes have yet to be identified in
monilophytes. However, this is likely to be due to a lack of genome
and expressed sequence tags sequences among this group.

Auxin positively regulates rhizoid development in Marchantia
polymorpha, an extant representative of the earliest diverging
group of land plants, the liverworts (Kaul et al., 1962).
Furthermore, land plants and charophycean algae are derived from
a common ancestor that existed some time before 450 million
years ago. Given that some charophycean algae such as Nitella
species and Chara species develop rhizoids it is possible that the
mechanism controlling land plant and algal rhizoid development
might be derived from the same ancestral mechanism. Although
no genes controlling the development of charophycean rhizoids
have been identified, auxin positively regulates rhizoid
development in Chara species and other green algae (Klämbt et
al., 1992; Jacobs, 1951). It is, therefore, possible that RSL-like
genes are positively regulated by auxin during the development of
algal rhizoids. If this were the case it would suggest that the
mechanism controlling the development of filamentous anchoring
cells is conserved among land plants and related algae.
Alternatively, although auxin positively regulates the development
of filamentous cells in land plants and algae, it is possible that
auxin activates different downstream regulatory networks that
control the development of filamentous anchoring cells in algae
and land plants. Distinguishing between these alternatives requires
the characterization of the genetic network that controls the
development of algal rhizoids.
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