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Abstract 
Cystic fibrosis (CF) is one of the most common genetic diseases in the UK.  CF is a chronic, 

progressive, and life-shortening disease. As a multi-system disease, CF requires complex 

and constant care that can place a significant burden on constrained NHS resources.  This 

thesis focuses on the economic impact on the NHS of paediatric CF in the East of England 

as well as investigating the cost-effectiveness of newborn screening for CF.  

The literature indicates that there is a relatively large variation (US$4069 to $29849 per case 

per year) in the direct cost of care from a health system perspective. The only newborn 

screening study from a UK perspective is now relatively old (1998) and the emergence of 

new therapies and service delivery methods could alter the findings of that study.  

First, a retrospective (1998, 2004-2007) longitudinal cost of illness study was carried out on 

paediatric CF patients in the east of England.  Patients‟ outcome and resource use 

information was gathered from patient notes and computerised systems. The study takes 

into account direct costs to the NHS only, and uses NHS tariffs to attach a unit cost to 

resource use.  Regression analysis was used to analyse the data for indicators of cost 

drivers, controlling for age, and diagnosis category.  

Second, a cost-utility model was built to look at the long-term impact of newborn screening 

versus no screening (clinical diagnosis).  Newborn screening for CF in the UK uses a blood-

spot test which is tested using the immunoreactive trypsin test, a second confirmatory 

immunoreactive trypsin test and DNA analysis. The model was a probabilistic cohort 

simulation model that uses Markov processes to allow patient history over time. Once a 

patient had been diagnosed, they could enter one of four health states: Successful 

treatment, intermittent infection, chronic infection, and death. 

The results of the study show that the total cost of care for paediatric CF patients in the East 

of England has increased over time (1998-2007) from approximately £1,040,087 to 

£1,062,008 and that the median cost per patient has increased from £3852 to £4249. The 

regression analysis shows that disease severity has a significant negative impact on costs 

and being in the youngest and oldest age group indicates having a higher cost. The results 

of the cost-effectiveness analysis indicate that no screening is associated with a cost of 

£110,238 and a QALY gain of 11.23 and screening is associated with a cost of £110,417 and 

a QALY gain of 11.51.  Therefore, newborn screening has a cost per QALY of £641 when 

compared with clinical diagnosis. 

This analysis has shown that newborn screening for CF is cost-effective, and that the 

government has made the correct decision by rolling out a national programme.  Once 

identified by screening, treatment can begin immediately which may have a positive impact 

on future health for the patient. As shown by the regression analysis, keeping people 

healthier reduces the overall disease and cost burden on the NHS. The results of this thesis 

are most applicable to the UK context, however if treatment regimes and screening 

processes are similar in other countries, the results could be applicable in other contexts.  

The methods used in this thesis are applications of well known and utilised economic 

evaluation and statistical methods, and are appropriate for any diseases where prognosis 

and disease severity is variable.  
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Chapter 1: Introduction 

Introduction 

This thesis focuses on the economic impact of paediatric Cystic Fibrosis (CF) in part 

of the Eastern Region (Cambridgeshire, Norfolk, and Suffolk) of England utilising 

data from the Eastern Region CF Database (ERCFD).  CF is a chronic, progressive, 

and ultimately terminal disease.  Like patients with other chronic diseases, patients 

with CF require constant care. Therefore, providing CF care can be very expensive.  

This thesis utilises two different health economic methodological approaches to 

illustrate the impact of CF on the English National Health Service (NHS).   

Like every health service, the funds available to the NHS are not infinite, and 

therefore must be carefully managed.  As the NHS carries out most of the care for 

paediatric CF patients within the Eastern Region, it is imperative that the clinical and 

economic impact of CF on the NHS is detailed. Knowledge of these impacts will 

enable decision makers to allocate funds more efficiently and potentially improve 

services for CF patients and their families.   

Health economics offers various methods that can aid in answering these questions.  

One such method is a cost of illness analysis.  This type of analysis can provide 

information on the burden of disease on the health-care system.   This is particularly 

useful in gauging the scale of the problem. In this thesis, I will analyse the cost-of-

illness to the NHS of caring for CF patients. The second methodological approach I 

will be using is a cost-effectiveness analysis (CEA). This method allows alternative 

forms of care to be compared in terms of their clinical and cost effectiveness, using 

a common outcome measure.   This thesis will analyse the relationship between the 
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cost and clinical effectiveness of newborn screening for CF.  Newborn screening for 

CF has now been rolled out across the UK despite there being little economic 

evidence that it is cost effective.  This analysis will add to limited published evidence 

on newborn screening for CF in the UK context.  

Cystic Fibrosis 

Background and definitions 

CF is an inherited, life-threatening disease that progressively worsens over time. CF 

most commonly occurs in people of Caucasian extraction. Approximately 1 in 2,500 

babies born in the UK have CF. Newborn screening for CF was rolled out across the 

UK in 2007, although several areas (Scotland, the east and south west of England) 

have been screening for longer (3). CF causes severe respiratory problems and 

inadequate pancreatic function, due to the production of excess sticky mucus; 

patients can also have liver and kidney problems and most males with CF cannot 

conceive naturally. Disease severity varies between affected individuals: most 

patients die from respiratory failure, but approximately 15% die from other organ 

failure. Improvements in treatment have increased average life expectancy to over 

30 years. Indeed, at least half of individuals born with CF since 1990 are now 

expected to live beyond 40, but there remains no known cure for the disease (4).  

CF is an autosomal recessive genetic disorder1. Cloning of the gene for the CF 

transmembrane conductance regulator (CFTR) was finished in 1989. This means 

that both parents must carry one half of the faulty CF gene. One in 25 of the UK 

                                                           

 

1
 A glossary of medical terms relevant to Cystic Fibrosis can be found in Appendix A.  
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population carry one half of a faulty CF gene. Because the other half of the CF gene 

is correct, these people do not develop CF disease. In order to be affected, a child 

must inherit a faulty gene from both of its parents. The chances of two carrier 

parents conceiving an affected child are 1 in 4 for each pregnancy.  There are more 

than 3000 known mutations to the CF gene, most of which are very rare. In the UK 

the mutation known as „Delta F508‟ (∆F508), which is a small deletion in the gene, 

accounts for around 70-75 percent of cases in the UK. (4) (5)  

National CF databases 

In order to perform audits and research into CF and the natural history of the 

disease, a national CF database was developed.  Initially started in Scotland in 

1992, the UK CF Database was extended across the UK in 1999, with customised 

software running on computers in Specialist CF Centres and in district hospitals that 

cared for CF patients. The database collected information from the annual reviews2  

of patients and therefore allowed a “snapshot” of CF patients‟ health outcomes each 

year.  The project was initially funded by the Clinical Resource and Audit Group and 

the National Services Division of NHS (Scotland); the Database was then funded by 

the Cystic Fibrosis Trust3 until 2007, when the database was closed. (6)  

                                                           

 

2
 A more in depth discussion of what clinical interaction takes place during an annual review comes 

later in this chapter.  In general, all CF patients should have an annual review which includes seeing 

all members of a specialist team (consultant, specialist nurse, nutritionist, physiotherapist, 

psychologist) as well as various tests such as pulmonary function tests and BMI.   

3
 The Cystic Fibrosis trust is a UK-based charity that is dedicated to all aspects of CF. The organisation 

is a key stakeholder in CF care in the UK, and has conducted research into many aspects of CF care, 
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The CF Trust developed a new, web-based CF Registry in 2007, which also uses 

customised software (PORT CF) which allows users to enter annual review data 

directly into the database. The CF Trust produces annual data reports which 

analyses the demographic and clinical outcome data which allows more accurate 

prevalence and incidence information as well as allows researchers to look for new 

trends in the health of people with CF in order to aid in creating national standards 

of care, the design of clinical trials, and improving care. (7) 

Diagnosis of CF 

The clinical diagnosis of CF is anything but straightforward. Though diagnostic tools 

have greatly improved over the past few decades, identifying patients for diagnostic 

testing is problematic. The World Health Organisation (WHO) recommended that 

“the diagnostic classification should be made on clinical rather than laboratory 

grounds, while acknowledging the importance of identifying CFTR mutations in 

those persons with clinical conditions such as pancreatitis and atresia of the vas 

deferens where some, but not all cases are CFTR-related.”(2) A CF diagnosis is 

entertained due to a patient presenting with one or more of the symptoms listed in 

table 1.1, a sibling with CF, or has had a positive result from a newborn screening 

test. If any of these factors are found, a sweat test to ascertain the level of sodium 

chloride is undertaken (>60ng/ml is considered elevated). If a patient has been 

identified through newborn screening and two mutations for CFTR have been found, 

one sweat test is considered adequate.  However, as there are inconsistencies in 

                                                                                                                                                                     

 

as well as creating guidelines for care alongside other stakeholders in CF care such as the Royal 
College of  
Paediatricians and Child Health.  The Trust has published several consensus documents relating to 
the treatment of children and adults with CF.   
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the genotype-phenotype correlations associated with CF, sometimes a second 

confirmatory sweat chloride test is recommended.  

 

Newborn Screening in the UK 

In 2005, the UK National Screening Committee described the method of newborn 

screening for CF as testing the newborn blood spot for elevated immunoreactive 

trypsin (IRT).  If the IRT is elevated, a second test is carried out.  If the second test 

shows IRT to be greater than the 99.5th percentile, a follow-up (confirmatory) DNA 

test is undertaken.  If no mutations or only one mutation is found, a second blood 

spot is taken and retested for IRT. If the IRT is above cut off 2 (10ng/ml below cut off 

Table 1.1: Phenotypic features consistent with a diagnosis of CF* 

Chronic sinopulmonary disease manifested by 
a. Persistent colonisation/infection with typical CF pathogens including 
Staphylococcus aureus, nontypeable Haemophilus influenzae, mucoid and non-
mucoid Pseudomonas aeruginosa, and Burkholderia cepacia.  
b. Chronic cough and sputum production 
c. Persistent chest radiograph abnormalities (e.g. bronchiectasis, 
atelectasis, infiltrates, hyperinflation) 
d. Airway obstruction manifested by wheezing and air trapping 
e. Nasal polyps; radiographic or computed tomographic abnormalities of 
the paranasal sinuses 
f. Digital clubbing 
Gastrointestinal and nutritional abnormalities including 
a. Intestinal: meconium ileus, distal intestinal obstruction syndrome, 
rectal prolapse 
b. Pancreatic: pancreatic insufficiency, recurrent pancreatitis 
c. Hepatic: chronic hepatic disease manifested by clinical or histologic 
evidence of focal biliary cirrhosis or multilobular cirrhosis 
d. Nutritional: failure to thrive (protein-calorie malnutrition), 
hypoproteinemia and oedema, complications secondary to fat-soluble vitamin 
deficiency 
Salt loss syndromes: acute salt depletion, chronic metabolic alkalosis 
Male urogenital abnormalities: obstructive azoospermia 

*symptoms are not mutually exclusive.  
Table recreated from Rosenstein and Cutting (1998) (8) 
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1), CF is suspected. (3) Figure 1.1 shows the screening algorithm that has been 

adopted by all UK screening laboratories.  

Figure 1.1: UK National Screening Algorithm (3) 

 

 

Incidence and Prevalence of CF 

Incidence studies 

Incidence is defined as the frequency of new cases of an event in a population 

within a given time period in a population, usually one year. Cystic Fibrosis 

incidence in the Caucasian population is thought to be 1 in 2500 live births per year. 

In 2002, McCormick et al (9) looked at the ethnicity of the registered CF population 

(n=5274 including adults) in the UK and found that 96.3% were Caucasian. Of the 
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remaining 196 patients registered, 99 were of mixed origin, 88 were from the Indian 

Subcontinent, 6 black Caribbean, and 3 black African.  The authors calculate that 

one in every 27 UK CF patients has some non-Caucasian origin. 

Prevalence studies 

Prevalence is defined as the proportion of a population that is affected by a disease 

at a given time. There are generally 3 ways of calculating prevalence (point, period, 

and cumulative), but published prevalence estimates are usually point prevalence 

measures.  In 2007, Dodge et al (5) estimated that there were approximately 8284 

people living with CF in the UK, of which 4702 were children under 16 in 2003. The 

CF Registry Annual Data report in 2007 had 8080 patients registered on the registry, 

of which approximately 44% were under the age of 16. (10) 

Funding arrangements 

Policy context  

While it is not the goal of this section to explain the funding systems of the NHS, it is 

helpful to understand how Cystic Fibrosis services are allocated money from the 

health budget.  The NHS in England is funded by the Department of Health.  Most 

funding for NHS services is allocated by a complex process of commissioning by the 

Primary Care Trust (PCT). The process includes assessing population needs, 

prioritising health outcomes, procuring products and services as well as managing 

service providers (hospitals, GPs, community services, etc.) Cystic fibrosis, 

however, is one of 36 specialist services that are covered by the Specialised 

Services National Definitions Set (3rd Edition). (11) Generally, specialised services 

are those with small numbers of patients that require relatively expensive care.  The 
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definitions identify activities that are regarded as specialised and therefore need 

collaborative commissioning processes between groups of PCTs in order to make 

providing services and training specialist staff cost-effective.  

Each Strategic Health Authority (SHA) has a Specialist Commissioning Group 

(SCG) which provides specialist commissioning for a population of around five 

million people.  SCGs replaced the various ad hoc commissioning arrangements 

that were in place previous to 2007.  The National Specialist Commissioning Group 

(NSCG) provides coordination of the commissioning done by specialist 

commissioners at the SHA level.  The roles and responsibilities of the National 

Specialised Commissioning Group (NSCG) are: 

 To provide oversight and coordination of commissioning undertaken by 

SCGs where the specialized service has a catchment/planning population which is 

bigger than that of a single SCG  

 To support supra-SCG decision making. This is subject to endorsement by 

the 10 SHA Chief Executives and the implementation of the decision is returned to 

individual SCGs  

 To facilitate and encourage collaborative working across and between 

SCGs, and between SCGs and the National Commissioning Group (NCG) through 

the initiation of joint projects, development of protocols and sharing of best practice  

 To provide oversight of national commissioning of highly specialized services 

and agree the annual commissioning and management budget for the NCG (subject 

to endorsement by the 10 SHA Chief Executives)  
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 To work closely with the NCG to provide concerted advice to Ministers each 

year on which services should move into, or leave, the portfolio of services to be 

nationally commissioned, and on proposed designation of centres to provide these 

services  

 To advise PCTs on the commissioning of specialized services 

The NCG replaced the National Specialist Commissioning Advisory Group in April 

2007 and commissions services on a national basis for a specific group of extremely 

rare conditions or very unusual treatments, including CF. The NCG is a standing 

committee of the NSCG and is supported by the National Commissioning Team, 

which has transferred from Department of Health (DH) to NHS London to undertake 

the day-to-day commissioning work and national support. 

Most services commissioned by the NCG relate to a condition where the national 

caseload is less than 400 people. Examples include heart and lung transplantation 

and secure forensic mental health services for adolescents. The total annual budget 

for the NCG in 2007 was £346 million. This was previously a central DH budget but 

from 2007-8 funding has been returned to PCT baselines and transparently levied 

on a fair shares basis. 

Ministers continue to have the final decision on the designation (and de-designation) 

of nationally commissioned specialized services, based on recommendations from 

the NCG and NSCG. Regulations were altered in March 2007 to allow SHAs to 

commission those specialized services listed on a schedule. An inter-authority 

agreement between the SHAs sets out delegated responsibility for NHS London to 

commission and contract for specialized services on behalf of the NHS in England. 
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NHS London is the host employer for the National Commissioning Team.  However, 

while the funds are commissioned differently, Hospital Trusts and CF specialist 

centres are still using block contracts4 for paediatrics and respiratory diseases to 

fund the care of CF patients at the time of writing, which ties into the current 

“payment by results” scheme that the NHS began using in 2007. The Department of 

Health states that “[t]he aim of Payment by Results is to provide a transparent, 

rules-based system for paying trusts....Payment will be linked to activity and 

adjusted for case mix.”  

The CF Trust, however, has successfully argued to the Department of Health that a 

payment by result system is not fitting with CF, in particular for paediatrics, where a 

hefty amount of drugs are given to „healthy‟ patients in order to keep them well.  The 

CF Trust is instead recommending to the government that a more realistic approach 

would be for CF “Packages of Care” tariffs that would be associated with disease 

severity bands. (13) Currently, these recommended bands apply to all ages of CF 

care and are set out in Box 1.1. The banding system laid out in this box has been 

under review and in March 2009, the CF Trust submitted a document outlining a 

costing/banding approach to the Department of Health, which, if approved, would 

provide a mandatory national tariff based on an annual banded package of care 

                                                           

 

4
 A block contract is when a hospital receives a flat contract to care for a patient population 

regardless of the actual care given.  This is an alternative to a cost-per-case (payment by results) 

contract which where a hospital is paid based on the cost of the medical services provided. 12.

 Chalkley M MD. Choice of contracts in the British National Health Service: An empirical 

study. Journal of Health Economics. 2008;27(5):1155-67. 
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starting in 2011.  The costs associated with each band were derived from the adult 

study carried out by Robson et al (14) in 1992. (13) 

 

Box 1.1: CF Trust banding recommendations 

Diagnostic Year 

Some patients may be admitted to hospital after they have been diagnosed whilst 

most will be cared for as outpatients.  The outpatient input will be intense and they 

will spend a lot of time with doctors, CF nurses, physiotherapists and dieticians 

learning how to manage their CF. 

Band 1 

Patients who come only to outpatients, receive outpatient care in terms of input 

from physiotherapist, doctors, social workers, dieticians etc.  They may receive 

nebulised antibiotics and courses of oral antibiotics from time to time and they 

receive regular pancreatic enzyme supplements and vitamin supplements as do 

95% of CF patients 

Band 2 

Patients who receive the above and in addition receive outpatient intravenous 

antibiotics up to 3-4 times a year.  They may occasionally be admitted.  The input 

as outpatients may be more intense.  Some of them will only be kept in Band 2 

level by intensive and sometimes expensive drug treatment to keep Pseudomonas 

aeruginosa at bay.  

Band 3 

Similar to 1 and 2 but essentially intravenous antibiotics are received as an 

inpatient 3-4 times a year.  They may also have Diabetes, require feeding 

gastrostomies, and require a higher input overall. 

Band 4  

Patients with severe disease, who will come into hospital at least 3-4 times a year 

for intravenous antibiotics, and have increasingly disease severity.  They may have 

Diabetes and more resistant organisms.  They may be under consideration for 

transplantation.  

Band 5  

These patients have usually been in Band 4 for at least a year and need to stay in 

hospital for 4-6 months throughout the year whilst awaiting transplantation or 

receiving palliative care.  They are unable to go home because of oxygen 

dependence, nocturnal ventilation and feeding gastrostomies and need 

intravenous antibiotics every day, sometimes for 2-3 years, although on average, 

these patient’s life expectancy is usually no more than a year to 18 months.  

CF Trust Costing and Banding Document (2) 
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Treatment of CF 

Setting:  

Paediatric CF care in the UK is undertaken by multi-disciplinary teams in 24 CF 

Specialist Centres (SC) (usually based at a large teaching hospital) or at a CF clinic 

(usually located in a district general hospital) as recommended by the CF Trust. (4) 

The Specialist Centre provides a service to either children or adults (occasionally 

both), and usually serve between 50 and 100 patients for all their care. They also 

offer shared care facilities for those patients who receive most of their care at a CF 

clinic located in a general hospital local to the patient. However, a CF clinic should 

offer the same standard of care as the Specialist Centre. A CF team in a SC 

consists of at least a consultant paediatrician, clinical nurse specialist, 

physiotherapist, dietician, social worker, psychologist, pharmacist, clerk and 

secretary. The aim of this system is to provide the best care possible for the patient. 

The CF Trust recommends that each CF patient has one annual review and at least 

one outpatient clinic visit at least every 3 months.  For infants, the CF Trust advises 

that ill babies are seen every 2 weeks, and for those who are thriving, every month. 

In a clinic, it is recommended that height and weight are checked, a sputum culture 

or cough swab is taken, a consultation and physical exam with an expert doctor, 

spirometry (for patients over 5 years of age), a chest x-ray (if a noted fall in lung 

function), a review by the physiotherapist and dietician, as well as access to the 

specialist nurse, psychiatrist and social worker.   
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An annual review is carried out to ensure that optimal care is being provided for the 

patient.  The review is generally provided by the specialist care team and covers all 

aspects of care.  In addition to the care that is provided in clinics, the annual review 

carries out in-depth and detailed reviews and reports of progress of the patient by 

the entire CF team; this includes a full clinical work-up (spirometry, Swachman 

Score, chest x-ray, sputum culture or cough swab, blood count, electrolytes, liver 

function test, vitamin tests, Pseudomonas antibody levels, intestinal absorption 

tests, blood glucose test, urinalysis).   

Of course, annual reviews, clinic visits, in-patient and outpatient visits are for the 

express purpose of treating and preventing illness in CF.  As a multi-organ, multi-

symptom disease, care is often difficult to manage and there are many different 

aspects of care to consider. Below is a brief overview of the main components of CF 

care that patients of all bands receive, although the intensity of the treatment can 

change as disease severity changes.   

Nutrition: 

Growth failure and weight loss are two effects commonly seen in patients with CF. 

Poor nutrition is often associated with diminished immune function, therefore making 

it more difficult to fight off infections. Until the late 70s, this was seen as an 

inevitable effect of the disease.  However, trials in Toronto, Canada were able to 

show that a high calorie, high fat diet could stabilise or even improve growth 

patterns and increase survival.  (15, 16) Today, most CF centres in the UK follow 

this high calorie diet, supplemented by pancreatic enzymes in all disease severity 

bands  (17). 
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In patients where increased intake has not been successful for weight or growth 

gain, an alternative is to use pre-mixed supplements.  In some cases (usually in 

band 3 or above), invasive nutritional interventions are necessary, such as 

nasogastric feeding with bolus, or more long-term therapies like gastrostomy or 

jejunostomy.  These techniques have seen positive results for both growth velocity 

and overall nutritional status. (17) 

Antibiotic treatment: 

As nearly 90% of CF mortality is related to chronic pulmonary infection, treatment is 

usually directed at preventing or identifying and then eliminating bacterial infection 

from the lungs. The most common bacterial infections are from Staphylococcus 

aureus, Haemophilus influenzae, Pseudomonas aeruginosa and Burkholderia 

cepacia. Indeed, it has been shown that prevention of chronic P. aeruginosa 

infection will prevent or slow deterioration of the airways. (18) (19) 

There is still debate over the best method to prevent and treat bacterial infection in 

CF.  However, it is generally agreed that aggressive antibiotic therapy is the best 

method of fighting infections.  Generally, the CF population is treated more often, for 

longer and on higher doses of antibiotics than the general population. As such, CF 

patients need intense monitoring of their drug regimens to prevent toxic side effects.  

In the past two decades, there have been major advances in CF therapeutics. One 

of the most important advances in therapy was the discovery from clinical trials that 

chronic P. aeruginosa infection can be reduced, or at least delayed, by early 

treatment with nebulised colomycin and oral ciprofloxacin (20-22) or nebulised 

tobramycin. (23) (24) 
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Physiotherapy: 

A key element of treating Cystic Fibrosis is physiotherapy.  Various therapies have 

been developed by physiotherapists to help clear the airways of excess bronchial 

secretions that are common in CF patients. There are several airway clearance 

techniques (ACT) that are used by physiotherapists. Upon confirmed diagnosis, the 

recommendation is for twice daily postural drainage and percussion.  This has been 

shown to possibly slow disease progression as well as improve long-term 

adherence to physiotherapy. (25) There is little scientific evidence to support the 

prescription of ACT, but it is still included in the care of CF patients. (26) 

Mucolytics and emerging therapies 

Mucolytic drugs are used to help clear excess mucus in the lungs by restoring the 

periciliary layer.  Rogers (27) argues that mucolytic drugs should aim to change both 

viscosity and adhesiveness in order to effectively treat mucus hypersecretion.  

Currently in the UK, hypertonic saline is used to improve mucociliary clearance by 

restoring the periciliary layer.  Recombinant human deoxyribonuclease I (rhDNase 

or dornase alfa) is a commonly used enzyme that helps to reduce sputum viscosity 

in children over 6 (and adults).  

Cystic Fibrosis Related Diabetes Mellitus 

CF related diabetes (CFRD) rises as age of survival increases.  Reported 

prevalence of CFRD in children with CF under 10 years of age is low, however after 

10 years of age, there is an age related increase in the prevalence of 5 percent per 

year. The CF Trust recommends that the routine use of the Oral Glucose Tolerance 
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Test (OGTT) and serial glucose monitoring is the most reliable method of screening 

for CFRD and should be clinical practice for patients over the age of twelve.  Insulin 

treatment is indicated. (28) 

This discussion of the treatment for CF is not exhaustive, but has attempted to 

highlight the main treatment regimes involved in most CF patients‟ care.  It is clear 

that the treatment of CF is often difficult, and can vary between patients.  Therefore, 

a concerted effort must be made by every member of the CF team, whether at a CF 

clinic in a local hospital or at the Specialist Centre, to undertake a coordinated, 

aggressive approach to treating CF in order to give patients a better quality of life.  

Economic Analysis 

Introduction 

Economic analysis in health care has become widespread.  This is not necessarily 

surprising as all health systems face tough choices about where to place limited 

resources to improve the health of the population.  Often, there are various methods 

of achieving a certain health related outcome.  Depending on the type of economic 

and/or health question, different types of economic techniques can be used to help 

decision makers compare interventions and hopefully make an optimal choice.  

In the UK, CF is considered a specialist service, and is therefore competing with 

other specialist services for limited funds.  It is important to establish the economic 

viability of the investment in CF services to the health service and to ensure that the 

patients are getting the best care for the money available.  One aspect of care that 

is not covered by this thesis is the indirect costs of care (  
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In this thesis, I have attempted to describe the economic picture for CF in terms of 

the cost of care in the Eastern Region of the UK and to use the data gathered in this 

thesis and from the literature to assess whether or not newborn screening is cost 

effective. To do this, I used two particular health economic methodologies: cost of 

illness analysis, and cost-effectiveness analysis. These are described briefly below 

with a more detailed description in chapter 3.  

Cost-of-illness studies 

Introduction 

One of the main goals of this thesis is to describe the cost of paediatric CF care in 

the Eastern Region of the UK.  To date, only one study has examined the paediatric 

costs of care in the UK context (29) (see Chapter 2).  

Background 

Cost-of-Illness (COI) studies are not full economic evaluations as they do not 

compare interventions.  Rather, they are used to gather information and describe 

the total cost (economic burden) of caring for people with an illness.  COIs are 

mainly used to highlight health problems by describing measures of occurrence, 

morbidity/mortality, and overall economic cost to society.  A typical aim of COI 

studies is to influence the public health agenda and subsequent resource allocation. 

(30) COI studies also answer important questions such as:  

1) What is the cost of disease on average? 

2) In what populations is the disease particularly costly/less costly?   

3) How much will it cost in a local vs. broad population?  

4) How do costs behave with severity of illness, or over time?  
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COIs are also helpful for identifying a range of cost items for further cost-

effectiveness analyses (31). However, COI studies provide no indication of how to 

achieve efficiency gains or health benefits (1, 32, 33).   

Limitations of cost-of-illness studies  

Because COIs generally only take account of the resources used, and not the 

consequences of using those resources, they have been criticised by welfare 

economists for not adequately aiding the decision making process (34, 35). In the 

past, COIs have also been criticised for using inconsistent methodologies.  This 

makes comparisons between one disease and another very difficult and undermines 

their usefulness in “ranking” diseases.  Drummond (1) suggests that researchers 

carrying out COI studies can use the following to improve the usefulness of the COI: 

 reporting the direct and indirect costs separately and in aggregate; 

 listing the separate components of direct costs so those associated with 

the most economic burden can be easily identified; 

 predicting the economic burden of disease into the future to help health 

care planning; and 

 investigating the impact of different treatment practices. 

Cooper et al (31) also identifies problems in modelling the uncertainty around 

estimates of cost of illness, arguing that the costs be difficult to model using 

traditional methods due to strongly (right) skewed distributions and a significant 

number of cases with zero cost. However, the authors illustrated a Bayesian 
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approach to modelling costs, which they argue may alleviate these problems. A 

longer discussion of Bayesian methods is located in Chapter 3.  

Conclusions 

Well constructed, patient based COI studies can provide valuable data for decision 

makers5 to use in decision analyses, for example. Although making decisions on a 

COI alone is not ideal. Patient-based studies are particularly useful as they can, if 

done well, point to areas of health care that could be refined to make more efficient 

use of resources. (36) (31) 

Cost-effectiveness analysis 

Introduction 

Another goal of this thesis is to look at the cost-effectiveness of newborn screening 

for CF within the UK population. Cost-effectiveness is generally used to answer the 

question of what method of input is most efficient to achieve the desired output and 

what is the incremental cost of achieving an additional gain in health.  

Background 

Cost-effectiveness analysis (CEA) is a form of economic evaluation that examines 

both the costs and the consequences of a specific health technology. CEA is 

generally used to compare different interventions used to achieve the same specific 

(health) outcome. CEAs generally have a narrower viewpoint than cost-utility 

                                                           

 

5
 Segel 30. Segel J. Cost of Illness - A Primer: RTI International RTI-UNC Center of Excellence in 

Health Promotion Economics2006. gives examples from the USA of state smoking cost of illness 

estimates were used in state lawsuits against the tobacco industry to recoup Medicaid losses, and 

the CDC using cost of injury estimates to propose specialist injury centers.  Segel goes on to quote 

from a study by the Bureau of Labor Statistics that found COI studies useful in educating employers 

and health professionals about prevention of workplace injuries and fatalities.  
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analysis and cost-benefit analysis, therefore CEAs rarely include indirect costs or 

analyse the impact on the wider economy of an intervention. Therefore, CEAs 

measure technical efficiency, in other words, identifying the most efficient way of 

achieving the outcome of interest (1, 32).  

CEA relies on information collected prospectively (such as in a randomised clinical 

trial (RCT) or retrospectively.  Ideally, information on resource use and costs are 

collected prospectively and on an individual basis, therefore improving data quality 

and minimizing bias.  Data from a population perspective at individual patient level 

enables analysis of costs and the variability in costs, which greatly enhances the 

generalisability of the findings (1). This is a particularly important point in a disease 

area such as CF, as the prognosis is variable between patients.   

Within health economics literature CEAs are often seen with quality adjusted life 

years (QALYs)6  as an outcome measure. These studies are actually cost-utility 

analyses (CUA), and are a natural extension of CEA.  However, the terms are often 

used interchangeably within the literature. CUAs measure the incremental cost of a 

programme against the incremental health outcomes expressed as a QALY or 

possibly a disability adjusted life year (DALY). Unlike CEAs, CUAs take a more 

multidimensional approach and incorporate the notion of value to the health 

outcome.    

                                                           

 

6
 A QALY is derived from life expectancy, and a measure of the quality of the remaining life years. 

The measure is used to assess benefits gained from interventions in terms of health related quality 

of life and the survival of the patient. For a more detailed description of how a QALY is derived and a 

discussion of utility based preference measures, see chapter 3.  
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As with any economic analysis, uncertainty exists around estimates of effect sizes 

as in most cases, we are faced with imperfect information. At times, the uncertainty 

can be large enough to change the findings if one extreme is used over another 

depending on the decision criteria. Therefore, it is necessary to undertake sensitivity 

analysis on models of cost-effectiveness (37). Sensitivity analysis allows a 

researcher to analyse the effect of varying different parameters in the model to 

assess the individual (or group) impact of those parameters.  There are different 

methods of varying parameters which include probabilistic (when the parameters 

statistical distribution is known), extreme (when the statistical distribution is 

unknown), and threshold (when a decision cut-off point is known or needs to be 

defined) analysis.   

Limitations of cost-effectiveness analysis 

CEAs are designed to compare different interventions that have the same (health) 

outcome. Thus, if a health technology has more than one outcome that is of 

importance, CEA is of limited usefulness. Indeed, there are some that argue that 

CEA is not necessarily based in welfare economics as it does not consider the 

overall welfare being gained from different resources. (1, 32) 

Another area of controversy emerges when gathering information for the costing of 

CEAs. Depending on the viewpoint or perspective, omitting certain costs within a 

CEA can make it difficult to draw economic welfare conclusions about the findings of 

societal economic efficiency.   

Conclusion 

Cost-effectiveness analysis can be a very useful tool for decision makers if they are 

trying to decide between technologies that achieve the same outcome.  However, 
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CEA is of limited usefulness if decision makers are trying to decide on various 

interventions that have different impacts on different outcomes.  In CF, CEAs can be 

very useful because most interventions are aimed at improving one area of health 

(e.g. lung function) or another.  However, when planning an entire CF service, CEA 

is of limited usefulness as different interventions, such as pancreatic supplements 

and rhDNase do not aim to have an impact on the same aspect of the health of a CF 

patient.  In that case, it would be more useful to carry out a cost utility analysis 

(CUA), which uses a generic measure of quality of life, to find the impact of a service 

on CF patients.  

Ethics 

This thesis made use of data that was collected from patient notes and hospital 

information systems.  The ERCFD was granted ethics approval in 2004 to collect 

data from Cambridgeshire, Norfolk, and Suffolk and for secondary analysis of this 

data.  As this thesis attempted to gather information from Hertfordshire, 

Bedfordshire, and Essex, further ethical approval was sought.  Ethics approval for 

the data collection and secondary analysis was granted by the Cambridge 1 

Research Ethics Committee in November 2008.   

 Aims and Outline of Thesis 

In this thesis, I aim to illustrate the cost of providing care for paediatric patients at 

the tertiary hospital level in the east of England, as well as undertake a cost-

effectiveness analysis of newborn screening versus no screening.  The next chapter 

discusses a systematic review of the existing literature on the cost of paediatric CF 

as well as the cost-effectiveness of newborn screening.  Chapter 3 conducts a 

theoretical and methodological review in order to inform best practice in conducting 
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the cost of illness and cost effectiveness analysis.  The methods and results of 

these analyses are discussed in Chapters 4 and 5 respectively.  Chapter 6 is a 

discussion of the overall conclusions of the thesis as well as suggestions of areas of 

future research.   
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Chapter 2: Literature Review 
 

Introduction 

In order to ensure that patients receive the best possible care, decision makers 

should have the most up-to-date knowledge of the economics of CF, both from a 

local, national and/or international viewpoint. First, it is necessary to have an idea of 

what the entire package of paediatric CF care costs the NHS in order to 

appropriately plan for the future. It is also important to understand whether the 

investments for technology, such as newborn screening, are good value for money.  

Ideally, the evidence on the costs and efficacy of CF care can be generalisable 

across borders.  To help gather knowledge in this area, a systematic review has 

been carried out. A well constructed systematic review aims to: 

 Specify its purpose 

 Clarify whether the review is exploratory or testing a specific hypothesis 

 Set criteria for inclusion or exclusion of literature 

 Comprehensively search for appropriate material 

 Identify which studies/literature should be included/excluded 

 Discuss quality of methods used or evidence cited in papers included 

 Discuss generalisability 

 Identify important differences in study methodology   
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 Summarize/synthesise findings (if appropriate) 

 

This systematic review was designed to be exploratory and has three main aims: 

 

1. To critically analyse the literature for information on the cost (or cost-

effectiveness) of technologies used in paediatric CF care and technologies used in 

the process. 

2. To critically analyse the literature for information on the cost-

effectiveness of newborn screening for CF. 

3. To critically analyse the literature for economic information on the 

organisation of care. 

The main outcomes of this literature review will be to inform an investigation into the 

cost of illness and cost-effectiveness of CF programmes in the Eastern Region of 

England.  

 

Economics of CF 

Methods 

A search strategy (Appendix B) was designed to be as wide in scope as possible in 

order to catch all the relevant papers.  The search strategy used the following online 

databases: PubMed, Embase, National Health Service Economic Evaluation 

Database (NHS EED), and the Cochrane Library. These databases were chosen as 
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they cover both medical and economic journals and sources of evidence.  Search 

terms had to be in the title or abstract and the search was limited to studies after 

1990.  Searches were limited to the last two decades in order to capture information 

that would be relevant to modern CF care.  No limits were placed on language and 

MeSH terms were used.  

  

 

To be included for data extraction, the title or abstract must contain the following: 

Box 2.1: Search terms (all combined with Cystic Fibrosis) 

PubMed and Cochrane Library 
Cost$ 
Cost of illness 
Burden of illness 
Cost-effectiveness 
Cost-utility 
Cost-benefit 
Newborn screening 
Shared Care 
Paediatric 
Pediatric 

Embase 
Used NHSEED designed search strategy 
with limitation of paediatric/pediatric 
 
NHSEED 
Newborn Screening 
Shared Care 
Pediatric 
Paediatric 
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1. Confirmation that the study is on paediatric CF patients 

2. Some type (including reviews) of economic, cost and/or cost-effectiveness 

information on 

a. Technologies used in treating CF 

b. Newborn screening for CF 

c. Organisational arrangements of care 

Papers meeting the inclusion criteria were obtained and reviewed by JJ. The 

retrieved papers were classified using the criteria of the NHS EED and the BMJ 

working party on peer review of health economic literature (38, 39). The NHS EED 

database uses trained health economists to write abstracts assessing the quality, 

strengths and weaknesses of published health economic evaluation work.  For 

economic evaluation papers, the NHS EED pro forma was used to extract data (See 

Appendix C), but JJ conducted the assessments „blind‟ to the content of the found 

NHS EED abstracts.  As a validation exercise, JJ compared the extracted data to 

the completed NHS EED abstracts (where available and appropriate). 

Data from papers not classed as health economic evaluations (reviews, cost-

descriptions, service organisation, economic methodology discussions) were 

discussed descriptively and any cost data was extracted and compared if 

appropriate (40). Where studies were not methodologically comparable, a simple 

descriptive list approach was carried out. All results were summarised in 2010 US $ 

using the OECD PPP and GDP deflator methods (41).  If a price year was not 

stated, the year of publication was used to convert prices. 
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The references of papers meeting further criteria for review were hand-searched for 

grey literature sources that met the original inclusion criteria. The websites of UK 

and USA charitable organisations dealing with CF (i.e. The CF Trust in the UK and 

the CF Foundation in the USA) and the Department of Health were also searched 

for relevant literature.  This was done in order to minimise publication bias as grey 

literature can often report negative findings that are not published (40).  Citation 

searching for papers which cited the retrieved articles was not undertaken.  

Results 

The literature searches yielded a total of 486 unique references from PubMed, 

Embase and the Cochrane Library. Figure 2.1 illustrates the systematic process and 

indicates the numbers of papers at each stage. Fifty-one of those abstracts met both 

the inclusion criteria for further review.  After retrieving and reading through the 51 

papers, 12 of the studies were classified as reviews (42-53), 6 were cost-of-illness 

descriptions (29, 54-58), 4 cost-descriptions (55, 59-61), and 14 full or partial 

economic analyses (44, 62-74).  There were 9 studies describing service delivery 

issues (13, 75-82) and 7 papers describing a health economic methodology with a 

CF example (83-89). The discarded papers usually did have the keywords in the title 

or abstract, but upon detailed reading of the abstract, the authors did not appear to 

actually undertake any kind of economic analysis.  Checking the NHS EED for all 

CF related references and comparing bibliographies of included studies has 

minimised bias for economic evaluations, methodology, or costing studies as all but 

2 references had entries on the database and there were no additions to the original 

list, indicating the search was thorough. Other studies, such as service delivery 
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studies, are prone to reviewer bias. There were no additional documents found on 

the charity or Department of Health websites.   

 

Reviews 

The twelve review papers did not contain any additional primary studies not 

identified by our initial search strategy. Krauth et al (47) carried out a review of the 

literature of cost of illness studies pertaining to CF.  Seven reviews focused on the 

costs associated with screening for CF in newborns (43, 50) (42, 48, 49, 51, 53).  

Three reviews focused on the impacts of rhDNase (44-46). One review focused on 

issues surrounding quality of life estimates in CF children (52).  

Study results 

Table 2.1 summarises the papers dealing with cost of illness. Table 2.2 summarises 

the papers that were cost-descriptions of a technology. Table 2.3 summarises the 
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studies deemed cost-consequences.  Table 2.4 summarises the partial or full 

economic evaluations. All costs were from the health service perspective unless 

otherwise stated.  All JJ reviewed papers met the same conclusions as the NHS 

EED abstracts where available. 

Study Population 

Ten studies examined populations in North America (USA/Canada), 9 studies 

examined the UK population, and 6 studies looked at continental European 

populations (Netherlands, Germany, France, Italy). Demographic data was generally 

included in studies, or in some cases referred to a previously published article 

describing the population in detail.  

All but two studies defined their population by using clinic-based or health 

maintenance organisation databases, otherwise authors used hypothetical cohorts 

based on parameters derived from the literature and expert opinion. Data based on 

clinic-based populations may benefit from being more precise as they are based on 

individual level data, but can suffer in terms of generalisability across settings, as 

the sample may not be representative of a population for whom services are 

commissioned (in the UK, this is currently mainly based on residential areas of 

service users). It was unclear in all papers but Sims et al (29) that this was the case, 

therefore caution is needed when interpreting the results. Another issue when 

looking at economic analysis in health care is that non-generalisability arises not 

necessarily from patient characteristics, but from clinical practice. However, when 

entire populations are under consideration (such as in universal newborn screening) 

and interventions are the same across settings, results could potentially be 
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generalisable. See chapter 6 for a discussion of the generalisability of results from 

this thesis.  

Data collection - Resource use data 

All of the papers used secondary data collection, which in this instance can be 

defined by using national or community databases, insurance claims or literature 

reviews to gather information on resource use.  The studies on newborn screening 

for CF used data from the general population to make comparisons, while all others 

used CF specific secondary data. 

Data collection – Unit cost data 

Unit costs enable total economic costs to be estimated from health utilisation data.  

The literature reviewed here mostly used unit costs from health provider charges 

(i.e. health maintenance organisation tariffs or hospital costs), pharmacy prices and 

laboratory prices to find direct medical costs. Often charges could exceed costs, 

allowing for equipment replacement, future technologies, inflation, and pricing 

policies (1). Other sources of unit cost data were from national tariffs (such as the 

NHS Reference costs in the UK).  No studies attempted to derive productivity costs 

such as time off work, or wages lost.  

Data collection – Outcomes data 

In those studies that collected and reported outcome data, information was collected 

by using patient databases and/or individual patient data. Newborn screening 

studies typically collected data on cases detected.  However, one study also 

calculated life years gained (LYG) by assuming a gain of 40 years per CF death 
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averted by newborn screening (74).  Another newborn screening study assigned 

utility values derived from the Quality of Well-Being Scale7 to each health state in a 

model and multiplied survival time by the utility to produce quality adjusted life year 

(QALY) estimates. Those studies looking at therapies such as rhDNase and 

tobramycin collected data on hospitalisations and lung function (usually FEV1).  

Cost of Illness: 

All the included studies used individual patient level data to derive estimates of 

resource use and relevant national or local tariffs to estimate costs. Sims et al is the 

only study to have taken place in the UK, and is also the most recent (2007) 

estimate of the cost of caring for a paediatric CF case. A study in the United States 

by Ireys et al (56) found that the mean direct cost of caring for paediatric CF patients 

was $18802 per year. Johnson et al (92) found that in Canada, the mean direct cost 

of caring for children with CF was $4969 per patient.  

 In 1991, Wildhagen et al (58) in the Netherlands found that on average, direct 

hospital-based costs (hospital days, consultation, diagnostic tests) of caring for 

                                                           

 

7
 The Quality of Well-Being Scale is a preference-based, quality of life instrument which utilises a 

questionnaire to assign values according to an individuals’ functioning and symptoms 90.

 Kaplan RM, Anderson JP, Wu AW, Mathews WMC, Kozin F, Orenstein D. The Quality of Well-

Being Scale: Applications in AIDS, Cystic Fibrosis, and Arthritis. Med Care. 1989 

March;27(3):Supplement..  Subsequent to the Cystic Fibrosis Quality of Life scale 91. Quittner AL, 

Schechter MS, Rasouliyan L, Haselkorn T, Pasta DJ, Wagener JS. Impact of socioeconomic status, 

race, and ethnicity on quality of life in patients with cystic fibrosis in the United States. Chest. 

2010;137(3):642-50., the Quality of Well-Being Scale provided the only health-related quality of life 

measure for Cystic Fibrosis patients. A further discussion of preference-based measurement 

techniques is conducted in Chapter 3.  
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paediatric CF were $14985, but that total costs (including general practitioner visits, 

help from relatives, travel expenses, and special aids) were $17874 per patient per 

annum. It was unclear, however, how the non-hospital resource use and costs were 

collected. Nevertheless, this indicates that non-hospital based costs are significant 

in the overall cost of caring for a CF patient. Wildhagen et al (57) also carried out a 

questionnaire-based study on the same patients that found the mean non-hospital 

care costs for paediatric patients with CF annually was $11429. 

Information on the cost of paediatric cystic fibrosis care in the UK is very limited.  In 

this review, only 1 paper discussed the costs of paediatric care in the UK.  Sims, et 

al (29) discuss the differences in costs between the screened and non-screened 

paediatric CF population in the UK. The authors used a retrospective cohort study 

design using the UK CF Database, excluding those patients who were diagnosed by 

meconium ileus or family history, as these patients were likely to present early 

irrespective of newborn screening. The authors found significant differences in the 

cost of therapy between patients who were diagnosed by newborn screening and 

those diagnosed clinically. The authors report that newborn screened patients had a 

mean cost per annum of $8194 versus $13613 for clinically diagnosed patients. The 

authors also estimated that drug cost savings for the UK could have off set the 

estimated cost of adding CF to the UK‟s national newborn screening service.  

Cost descriptions 

Four studies found in the literature review described the costs and/or the outcomes 

but did not perform an economic evaluation. All studies (55, 59-61)  described the 
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costs of screening programmes.  Three studies were based on US data (all from the 

state of Wisconsin), and one on Irish data.  

Gregg et al (59) describes the costs of two methods of newborn screening in 

Wisconsin. One was using IRT with confirmatory sweat test and the other using a 

confirmatory genetic test. The analysis was carried out as part of a major clinical trial 

and therefore based on individual patient data. Costs are described in terms of cost 

per case detected and only take into account the cost of the tests. The authors 

found that it cost an estimated $13917 per CF patient detected using IRT/Sweat 

test, and between $15539 and $14678 using IRT with the confirmatory DNA test 

depending on the test used.  

A 2003 study from the Wisconsin trial was carried out by Lee et al (60). The authors 

looked at the costs arising from a screening programme using the IRT/Sweat test 

methodology. They estimated that if all costs arise only from the screening 

programme alone, rolling out the programme nationwide would cost $1184551, or 

$11750 per diagnosis, or $2.91 per birth. Rosenberg et al (61) also analysed the 

data from the Wisconsin trial and looked at costs arising from a screening 

programme using IRT/DNA (DeltaF508 only) assay versus IRT/DNA (CFTR) assay. 

The authors found that screening for only the DeltaF508 mutation only yielded a 

cost of $10210 per diagnosis, or $3.01 per birth. Screening using a DNA test that 

screens the entire CFTR for mutations costs an estimated $13009 per diagnosis or 

$4.53 per birth.  These studies were all carried out by similar teams working on the 

Wisconsin trial.  Therefore, it is not necessarily surprising that their results are 

similar for the cost of a screening programme.  
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In Ireland, Farrell et al (55) found that the cost of using a sweat test for a CF 

screening programme was approximately $4221 per CF diagnosis. The authors did 

discuss that because Ireland has the highest incidence of CF in Europe, and that the 

test is already routinely used in practice meant that their cost estimate was lower 

than most estimates of screening programmes for CF in the United States, where 

CF screening is not always routinely done, and therefore potentially have high set-

up and initial running costs.  

Cost-consequences: 

Cost-consequences studies give a summary measure of costs and of outcomes, but 

do not combine the results to get a cost-effectiveness ratio or perform any marginal 

analysis, and therefore are only partial economic evaluations. This review found 

seven cost-consequences analyses in the literature. Four of the studies focused on 

the usage of the mucolytic drug rhDNase (also known as Pulmozyme or DNase), 

two studies looked at the impact of tobramycin, and 1 study looked at four different 

types of nebulizers to deliver bronchodilators and antibiotics to CF patients. All the 

studies took the perspective of the healthcare system.  

Menzin, et al (67) carried out a multinational analysis of the use of rhDNAse in 

France, Germany, Italy and the UK.  The authors used clinical trial data (85) and 

linked costs to resources used to fight respiratory tract infections. While the authors 

collected data on lung function, the analysis did not include this information. The 

cost of rhDNase was not known at the time of the trial, and was added to the 

analysis after it was on the market.  The authors found that the mean cost savings of 

using rhDNase for respiratory tract infection related care was $1462 in France, 
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$1275 in Germany, $1180 in Italy, and $942 in the UK.  The authors did 

acknowledge that the differences in the costs could be attributed to the differences 

in the health care systems.  Oster et al (68) used the same clinical trial data and 

found that the mean cost for respiratory tract infection related care for the control 

group was $7436, $5671 for the group using rhDNase once daily, and $6731 for the 

group using rhDNase twice daily. The authors concluded that compared to normal 

therapy, rhDNase reduced average cost of RTI-related care by $1112-2298. 

However, these estimates did not include the cost of rhDNase. Neither Menzin et al 

or Oster et al included any discussion of uncertainty around their estimates. No 

sensitivity analyses were carried out. Neither study discussed issues around 

generalisability.  

Suri et al (73) also carried out a cost-consequences analysis of rhDNase use in CF 

patients.  The authors compared the use of alternate day rhDNase use, daily use of 

rhDNase, and the use of hypertonic saline (HS). The team found that the total health 

service cost was $10650 for the daily use of rhDNase compared to $8015 for HS. In 

comparing daily versus alternate day rhDNase, the authors found the mean costs 

were $3272 and $1604 respectively. The authors conclude that because of the cost 

of administering daily rhDNase was high, that alternate day therapy was better, and 

that either rhDNase option was better than HS.  

In 2003, Iles et al (64) used patient records to carry out a retrospective study on the 

use of Tobramycin (TOBI) inhalers on the paediatric patients in the east of the 

England.  The authors described the costs of hospitalisations and drugs from 

multiple centres. However, an explicit comparator was not given. The mean cost of 

therapy for patients was $51257 when TOBI was used and $44266 for the year 
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preceding the TOBI therapy. This represented a $6991 ($6737-$19735 95% CI) 

mean difference.  The authors found that, while TOBI was more expensive overall, 

the use of the drug did lead to a reduction in hospital stays and the use of other 

drugs.  Lelorier et al (66) found that in two provinces (Quebec and Ontario) in 

Canada, the mean weighted costs savings per patient for using TOBI was between 

$1984-$7967 in Quebec and $1362-6848 in Ontario. The comparator was a 

placebo. No price year was stated. Neither study carried out sensitivity analysis. As 

Iles et al and Lelorier et al did not use the same comparator, some caution should 

be taken in comparing the results of the studies.  However, both papers found that 

the use of TOBI reduced the number of hospitalisations and a reduction in the 

number of other drugs taken, both of which increase quality of life for CF patients 

and could perhaps result in a savings if the reductions were large enough.  

Cost-effectiveness analyses: 

The search yielded two published studies analysing the cost-effectiveness of 

different newborn screening strategies for CF and four analyses of different methods 

of giving rhDNAse to children. One screening study was carried out in the UK, and 

the other in the Netherlands. Four treatment studies were carried out in the UK, and 

one in Canada.  

Both of the screening studies used hypothetical patient cohorts to model the cost 

and effectiveness of different methods of newborn screening. In 1998, Simpson, et 
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al (70) used a decision tree with Markov processes8 to model a hypothetical UK 

health authority newborn population and compared costs and outcomes of using two 

stage immunoreactive trypsin test (IRT) screening with confirmatory genetic testing 

versus no newborn screening. The authors modelled the disease progression by 

starting all cases as pre-symptomatic, with a given chance of moving into a 

symptomatic disease state, a severe lung disease state, and finally death.  The 

authors excluded those cases diagnosed by meconium ileus or family history as 

these cases would‟ve received the same prognosis under both strategies.  In the „no 

screening‟ strategy, the patients would be diagnosed clinically by the presentation of 

symptoms (similarly for false negatives in the screening strategy). The authors 

assumed that the difference in the annual transition probability of remaining pre-

symptomatic in the screening arm was 69%, and 59% for those diagnosed clinically 

(resulting in a delay of the emergence of symptoms of 6 months).  

To populate the model parameters (probability, cost data, and quality of life 

estimates for the three health states), the authors used evidence gathered from the 

literature and assumptions.  For the population incidence of CF, the authors used 

information from Dodge et al (93) (from 1997). The probability of transitioning into 

each state was based on UK age-specific survival rates as well as hazard rates 

derived from Dodge et al (93). The model was set up to allow each person to 

                                                           

 

8
 A decision tree is a method that can be used to model decisions and their possible impacts.  The 

structure of the tree depends on chance events (where the tree branches), with the resource costs 

and utility associated with that chance. A Markov process allows a decision tree model to take into 

account time.  Decision trees and Markov processes are discussed in more detail in Chapter 3.   
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transition through each state before eventually dying of CF-related respiratory 

symptoms.  Evidence on the sensitivity and specificity of the screening test (both 

IRT and DNA) the authors extracted data from Robson et al (14).  Cost information 

(counselling time, IRT, DNA analysis, sweat chloride test) was taken from various 

local and national sources (e.g. Annual financial returns for NHS Trusts). Costs of 

taking the blood spot itself were assumed to be „sunk costs‟ in the National 

Screening Programme where other routine newborn screening already requires this 

procedure. Disease state costs were based on the findings of Robson et al (14) from 

a population of 161 adult patients at a UK CF unit.  The authors excluded non-CF-

related costs, and discounted future costs at 6% per year.  Quality of life information 

was derived from a study on an adult CF population by Congleton et al (94) which 

used the Quality of Well Being scale to derive utilities.  The authors ran three 

different scenarios based on survival information (conservative, balanced, and 

optimistic) and found that for a balanced CF patient survival rate in the UK, the cost 

per diagnosis was $10192 ($3.47 per screen); cost per case diagnosed clinically 

was $1771. They also state that newborn screening produces an incremental cost 

per QALY of $13446.  

In 2006, van den Akker-van Marle et al (74) analysed four different methods of 

newborn screening in the Netherlands. The authors compared 1) IRT screening with 

a follow-up IRT test for confirmation, 2) IRT with DNA confirmatory testing, 3) IRT 

with DNA and IRT confirmatory tests, 4) IRT with DNA and denaturing gradient gel 

electrophoresis analysis (DGGE) as confirmatory tests, and 5) no screening. The 

authors built a decision analysis model, although unlike Simpson et al, this model 
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appears not to use Markov processes to accumulate costs and outcomes over a 

lifetime for different states of health.   

The model was based on a hypothetical Netherlands birth cohort of 200000 

neonates. The authors assumed a gain of 40 life-years per CF death prevented by 

newborn screening. The authors appear to have based the gain in life years by 

screening on an RCT (95) which indicated a reduction of at least 50% in mortality for 

children with CF diagnosed by newborn screening versus clinical diagnosis. 

However, it is not explicitly stated how they derived the life years gained in the 

paper.  The authors only included the direct costs from the health care perspective 

(although a societal approach was stated in the paper) including the costs of IRT, 

DNA, DGGE and sweat tests, as well as genetic counselling and the cost of adding 

CF screening to the national screening programme (something that Simpson et al 

assumed was sunk). Lifetime costs were derived from Wildhagen et al (58). 

However, the authors state that costs incurred during life-years gained due to CF 

screening were excluded from the analysis.  An annual discount rate of 3% was 

used.  

Both univariate and multivariate sensitivity analyses were carried out.  The findings 

showed that the IRT/IRT method had the most favourable cost-effectiveness ratio of 

$30501 per life year gained. The IRT/DNA/DGGE strategy had a ratio of $40585 per 

life year gained, IRT/DNA strategy $47105 per life year gained, and finally 

IRT/DNA/IRT strategy had a ratio of $48950 per life year gained. The authors 

concluded that if future reproductive decisions were taken into account, the savings 

from screening could amount to $2.2 million annually.  They also stressed that 

newborn screening has proven health benefits to the newborn.  
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Christopher et al (44) carried out a cost-effectiveness analysis of rhDNase therapy 

in patients with mild-moderate lung disease.  Effectiveness, resource use, and cost 

data were collected from the literature.  The authors appraised the literature using 

the critical appraisal skills programme (CASP) checklist (96). The authors first 

estimated the life years gained by assuming that annual risk of death exceeded 50% 

once FEV1 fell below 30% of predicted and that rhDNase slows lung function 

decline (based on Kerem et al (18)). The model assumed FEV1 declines at a rate of 

4.3% per year from birth until age 13, then the rate of decline slows to 2.77% per 

year, that treatment is started for those patients whose lung function falls below 

61.1% predicted, and rhDNase would give patients an FEV1 5-8% higher than if 

they were not on it, and that death will occur in the year FEV1 falls below 28% of 

predicted.  Life years gained and direct costs (costs of rhDNase and hospital stays) 

were discounted annually at 6%. Quantities and costs were not reported separately. 

Some costs were taken from the BNF and from UK NHS Tariffs for the south and 

west region. The authors found that for all patients, cost per LYG was $101049 

(95% CI 39576-109711), and for those patients with FEV1 lower than 70%, cost per 

LYG was $30796.  

In 2003, Grieve et al (62) carried out a study in the UK based on 47 patients to 

compare the use of daily rhDNAse with alternate day use of rhDNAse with 

hypertonic saline. The perspective is likely to be the UK NHS, but it was not 

specifically stated. Generalisability was not discussed. The authors looked at lung 

function (FEV% predicted) as an outcome measure.  Costs and outcomes were 

linked to individual patient records. They found that the mean incremental cost 

effectiveness ratio (ICER) of daily rhDNase compared with HS was $204. The ICER 
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of alternate-day rhDNase compared with HS was $164. The ICER of daily compared 

with alternate-day rhDNase was $369. The authors state that if the decision makers 

have a Willingness to pay of $369 per 1% gain in FEV1, the probability of taking 

rhDNase daily being cost-effective versus hypertonic saline was 91%, and that the 

probability of alternate-day being cost effective compared with hypertonic saline was 

88%. Therefore, they state that for a given willingness to pay ($344) either rhDNase 

strategy is more likely to be cost-effective and that alternate day therapy may be 

more cost effective.  

This conclusion is supported by two studies by Suri et al (71, 72) .  Both studies had 

similar designs. Effectiveness and resource use data was collected from patients 

between 1999 and 2000 at two London hospitals. Quality of life was measured by 

the Quality of Well-Being scale (90). Cost information was gathered from hospital 

finance departments and national sources. All costs appropriate for the perspective 

were gathered.  The authors compared the use of alternate day rhDNase use, daily 

use of rhDNase, and the use of hypertonic saline (HS). The team found that the total 

health service cost was $10551 for the daily use of rhDNase compared to $7941 for 

HS, the mean difference was $2611 (95% CI: $814-4297). In comparing daily versus 

alternate day rhDNase, the authors found the mean costs were $10584 and $9634 

respectively, with a mean difference of $951 (95% CI: $913-2925). The authors 

conclude similar results to that of their cost-consequence study.  There was little 

difference in daily versus alternate day rhDNase in terms of costs or benefits, but 

that both were more effective than HS, and therefore likely to be cost effective. 

However, in 1994, Perras et al (69) found that the costs of using rhDNase in Canada 

far outweighed the benefits (measured as a reduction in future hospital costs) unless 
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the price of the drug nearly halved.  The authors carried out a cost-effectiveness 

analysis looking at rhDNase versus no rhDNase. The perspective was the Canadian 

health care system. The outcome measure was the hospitalisation rate and 

evidence was derived from the literature and one RCT (97) carried out in the USA. 

The source for resource use was from a clinical database which had data from a 

cohort of patients from two Canadian CF centres in Vancouver and Winnipeg at 6 

months, 12 months and 15.9 months. The authors found that the cost of using 

rhDNase to reduce hospitalisation by 1 visit was $38876 at 6 months, $15478 at 12 

months, and $7211 at 15.9 months.  The authors carried out univariate sensitivity 

analysis to find the threshold value at which implementing the use of the drug would 

be cost-effective.  They found the price of the drug needed to be $16 per dose (half 

the actual price at that time) and to reduce the number of hospitalisations by 30% in 

a year to be cost-neutral. The study did not discuss generalisability or uncertainty of 

their results.  

Discussion 

It is evident that there are relatively few studies on either the cost of paediatric cystic 

fibrosis or cost-effectiveness analysis of medicines or technologies used in care, 

especially from a UK perspective.  Overall, the literature indicates that the direct cost 

of care to the health care system ranges from $4969 to $29849 case per annum at 

2010 prices and that newborn screening has been shown to be cost-effective when 

compared to no screening. There also seems to be limited evidence or agreement 

on the costs of various treatments (e.g. TOBI and rhDNase) in the literature, and 

therefore more research on TOBI and rhDNase and the other drugs used in CF care 

may need to be carried out in order to help decision makers. Similarly, the only 
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screening study from a UK perspective is now relatively old (1998) and the 

emergence of new therapies and service delivery methods could alter the findings.  

It is apparent that individual study results vary greatly.  Reasons for this may include 

the use of the arithmetic mean which may not represent the most common cost per 

case due to skewed distributions often associated with cost data9, different disease 

severity of patients involved in the study, structural differences between 

geographical locations (i.e. different health systems), and base year of the study 

(changes in health care practice, medications, etc.).  

In their review, Krauth et al (47) rightly point out that many of these papers omit key 

cost variables, or restrict their analysis to one variable of interest (i.e. intravenous 

antibiotics) and therefore are likely to underestimate the cost of caring for CF 

patients. For example, none of the studies found looked at the cost of providing 

physiotherapy to CF patients, yet almost all CF patients receive physiotherapy as 

part of their regular interactions with the health service. In particular, the omission of 

key modern therapies, such as rhDNAse (first introduced in the UK in 1994 (98)), 

will heavily impact the cost of care.  Only Sims et al (29) and Johnson et al (92) 

include this cost item in their studies. All of the papers acknowledge that the costs of 

caring for CF patients vary with disease severity.  

Given the limited (either by time or by data) nature of the published evidence, likely 

candidates for further research would be for the cost-effectiveness of using rhDNase 

                                                           

 

9
 A more detailed description of the implications of skewed costs definitions occurs in chapter 3 and 

again in chapter 4.   
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on different (perhaps younger) age groups as this drug has been shown to be 

effective, but is still relatively expensive in relation to other CF drugs.  Another area 

of interest is the cost-effectiveness of different methods of service delivery.  This has 

yet to be studied in any detail.   

It is also difficult to draw any solid conclusions from the cost-effectiveness studies as 

they are mostly stand-alone studies, have not been replicated and did not discuss 

their generalisability. Although both screening analyses advocated the use of 

newborn screening, there is still limited published evidence as to its cost-

effectiveness and the most efficient methods to use in such programmes.  Although 

screening has recently been rolled out in the UK, it is now possible to make sure 

that this decision has been made wisely using more up to date and relevant 

epidemiological, resource use, and cost information.  

Methodological problems 

The wide range in per person costs of CF care in the studies can be attributed to 

various methodological problems. The positively skewed distribution of cost data 

could possibly bias the result; therefore, it would have been optimal if all the papers 

were to have reported the median as well as the mean in order to give a fuller 

description of the distribution of per person costs. Only Sims et al did this. Also 

many of the papers did not report standard deviations or other useful summary 

statistics.   

Studies should also be more explicit about the types of costs incorporated into the 

studies. For example, many studies stated that hospitalisation costs were included, 

but did not describe what that included. It is apparent that there is a need for a 
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standardised approach to cost-of-illness studies and that authors should re-examine 

the guidelines for reporting economic analyses (39).  

Given the wide variation in costs, it is interesting to note that very few authors 

discussed the generalisability of their findings or the problems therein. For example, 

the economic evaluations of screening programmes may not be easily and directly 

generalisable due to differing health systems, currency fluctuations, and treatment 

practices10.  As discussed above, evidence on COI and/or cost-effectiveness of 

treatments in the UK is very limited and therefore evidence from other countries 

must be used, but given the differences in the demographic make-up of populations 

and clinical practice should be analysed with caution.  

Conclusion 

The economic impact of paediatric CF was deemed a substantial cost by all the 

studies reviewed.  Newborn screening was advocated by both of the studies found.  

However, discrepancies existed between studies and are most likely due to 

methodological differences.

                                                           

 

10
 For instance, the US and the UK differ in terms of the preferred order (first line, second line, etc.) of 

antibiotic choices, as well as how often clinic visits occur.  Even within the US, the way clinics and CF teams are 

arranged differ between institution 99. Iles R. Personal Communication. Cambridge2011..  The BMJ has gathered 

together various treatment guidelines from Europe and North America, however an in depth discussion of their 

differences is not within the scope of this thesis. 100. British Medical Journal. Best Practice: Cystic Fibrosis. 

BMJ; 2010 [February 10th 2011]; Available from: http://bestpractice.bmj.com/best-

practice/monograph/403/treatment/guidelines.html. 
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Table 2.1: Cost-of-illness studies on paediatric CF 

Author 
Price 
Year Country 

Reported 
Currency 

Patients 
(n) 

Source of resource 
use data 

Source of Cost 
data Results* Notes 

Baumann U (54) 1996 Germany € 138 Insurance claims 

German public 
health insurance 
tariffs $29848   

Ireys I (56) 1993 USA US$ 204 Medicaid charges Medicaid charges $18802   

Johnson JA (92) 1996 Canada CAN$ 171 
US Epidemiologic 
Study of CF 

Ministry of Health 
sources 

$4969 (Inpatient 
$2553, Outpatient 
$927)   

Sims E (29) 2002 UK US$ 1134 UK CF database 

Local and 
national sources; 
pharmaceutical 
company quotes 

Screened 
population $8194, 
Non-screened 
population 
$13613, 
Estimated offset 
savings for drug 
costs by 
screening  
nationally 
$3851320 

184 
Screened 
patients, 
950 
clinically 
diagnosed 

Wildhagen MF 
(58) 1991 Netherlands UK £ 81 Hospital records Hospital charges 

$17874 total 
costs, $14985 
direct costs, 
Hospital care 
$10625, home IV 
antibiotics $9368, 
home care $1348   

Wildhagen MF 
(57) 

Not 
Stated Netherlands UK £ 21 

Questionnaire and 
Hospital records Not stated 

Non-hospital 
costs $11429   

*All results are annualised and adjusted to 2010 US$ using the OECD PPP Method and/or consumer price index for Health.  
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Table 2.2: Cost descriptions studies found by systematic review.  

Author 
Price 
Year Country 

Reported 
Currency Intervention 

Source of 
effectiveness 

Source of 
cost data 

Time 
Horizon Results* Notes 

Cost Description  

Farrell P (55) 1998 Ireland US$ CF NBS 
Single Study 
(Cohort study) Not stated 1 year 

Cost per CF diagnosis with 
sweat tests $4192.   

Gregg RG (59) 
Not 

Stated USA US$ 

CF NBS 
(IRT vs. 
IRT/DNA 
100ng/ml 
cut off vs. 
IRT/DNA 
110ng/ml 
cut off) 

Single Study 
(Cohort study) Not stated 1 Year 

Cost per CF patient 
detected for IRT was 
$12991, IRT/DNA (100 cut-
off) $15539, IRT/DNA (110 
cut-off) $14677. While 
costs per patient were 
similar, either IRT/DNA 
approach eliminates more 
psychosocial costs and is 
preferred.  

1993 was 
used as the 
price year 
for 
conversion 

Lee D (60) 2000 USA US$ CF NBS 
Single Study 
(Cohort study) 

One CF 
Centre  1 Year 

Total cost for CF neonatal 
screening were estimated 
at $11052736, or $10968 
per diagnosis, or $2.72 per 
birth.    

Rosenberg M 
(61) 

Not 
Stated USA US$ 

CF NBS 
(IRT/DNA 
(DeltaF508) 
vs. IRT/DNA 
(CFTR)) 

Single Study 
(Cohort study) 

One CF 
Centre  1 year 

Total cost for IRT/DNA 
(DeltaF508) was $10210 
per diagnosis, or $2.81 per 
birth, IRT/DNA (CFTR) was 
$13936 per diagnosis or 
$4.53 per birth.  

2005 was 
used as the 
price year 
for 
conversion 
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Table 2.3: Cost consequence studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

Cost-consequences 

Ho S (63) Not 
State

d 

Canada Can $? 4 types of 
nebulisers  

Literature Not Stated Dead 
Volume, 
respirable 
fraction, 
drug output 
within RF, 
time to 
complete 
nebulisation 

N/A For 
Salbutamol, 
Updraft II cost 
Can $4.60, 
Acorn II Can 
$5.94, Misty-
Neb $5.55, 
WJ Can 
$5.37.  
Updraft II 
generated the 
lowest costs 

1998 
price 
year 
was 
used 
for 
conver
sion. 
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Table 2.3: Cost consequence studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

Iles R (64) 2001 UK UK £ Tobramycin 
nebuliser 
solution vs. 
usual therapy 

Single Study 
(retrospective 
cohort 
analysis) 

NHS 
reference 
data 

No explicit 
outcome 
measure 

2 one 
year 
periods 

Mean total 
cost per 
patient was 
$51257 when 
TNS was 
administered 
and $44266 in 
the year 
preceding 
TNS 
treatment. 
Clinical benefit 
(reduced 
hospital 
admissions 
and IV 
antibiotics) 
were reduced 
with TNS 
treatment. 
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Table 2.3: Cost consequence studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

LeLorier J 
(66) 

Not 
State

d 

Canada Can $ Tobramycin 
nebuliser 
solution vs. 
placebo 

Canadian CF 
Foundation 
surveys, 2 
US-based 
RCTs 

Ontario and 
Quebec 
Health 
ministries 
and 
Statistics 
Canada 

Hospitalisati
ons 

24 
Weeks 

Total weighted 
cost-savings 
for using TOBI 
in Quebec 
were from 
$1984-7967, 
and for 
Ontario 
$1361-6847 
(95%CI). The 
authors state 
this would 
substantially 
offset the 
Canadian 
acquisition 
cost of TOBI 
($8707).  

1999 
price 
year 
was 
used 
for 
conver
sion 

Kretz S (65) Not 
State

d 

US US$ Specialised 
vs. non-
specialised 
home care 

Case study  Hospital 
records 

Exacerbatio
n free 
periods and 
relative 
wellness 

45 
Months 

Direct costs 
for non-
specialised 
care $76782 
vs. specialised 
home care 
$47656. 

1996 
price 
year 
was 
used 
for 
conver
sion. 
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Table 2.3: Cost consequence studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

Menzin J** 
(67) 

1992 Germany, 
France, 
Italy, UK 

US $ rhDNase 
therapy for 
respiratory 
tract 
infections vs. 
placebo 

Single Study 
(RCT) with 
expert opinion 

Per diem 
costs in 
Germany 
and France 
CF 
Centres, 
accounting 
data for 
Italy and 
UK 

RTI-related 
hospitalisati
on 

24 
Weeks 

Cost saving in 
RTI-related 
care of 
rhDNase over 
normal 
treatment over 
24 weeks was 
$1462 in 
France, $1276 
in Germany, 
$1180 in Italy, 
and $941 in 
the UK. 

  



 

 

 

62 

 

 

Table 2.3: Cost consequence studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

Oster G** 
(68) 

1992 US US $ rhDNase 
therapy for 
respiratory 
tract 
infections vs. 
placebo 

Single Study 
(RCT) 

Hospital 
discharge 
summaries 
and 
itemised 
bills 

RTI-related 
hospitalisati
on 

24 
Weeks 

Mean costs of 
RTI inpatient 
care was 
$7436 
(control), 
$5671 
(rhDNase 
once daily) 
and $6516 
(rhDNase 
twice daily). 
When cost of 
rhDNase was 
included, 
increase cost 
of therapy to 
$13464, 
offsetting 
therapy costs 
by 18-37%.  

Some 
import
ant 
cost 
items 
were 
left 
out.  
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Table 2.3: Cost consequence studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

Suri R (71) 1999 UK UK £ rhDNase 
therapy 
(alternate 
day vs. daily) 
vs. 
hypertonic 
saline 

Single Study 
(RCT) 

Finance 
depts., 
British 
National 
Formulary, 
literature 

FEV % 
Predicted 

Not 
Reporte
d 

$10649 for 
daily rhDNase 
and $8015 for 
HS, Daily vs. 
alternate day 
rhDNase 
$3272 vs. 
$1604. 
Although 
cheaper, HS 
was less 
effective than 
either daily or 
alternate day 
rhDNase.  

  

**These papers retrospectively modelled the cost of rhDNase into their measures as the drug did not exist at the time of the effectiveness data.  
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Table 2.4: Full and partial economic evaluation studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

Cost-effectiveness analysis 

Christopher 
F (44) 

1998 UK UK £ rhDNase 
therapy vs. 
normal 
therapy 

Literature, 
expert opinion 

Literature LYG  Lifetime Discounted cost 
per LYG for all 
patients was 
$101049 
($39576-109711). 
<FEV 70% 
predicted, 
discounted LYG 
was $30796 

  

Grieve R 
(62) 

2000 UK UK £ rhDNase 
therapy 
(alternate day 
vs. daily) vs. 
hypertonic 
saline 

Single Study 
(RCT) 

Finance 
depts., 
British 
National 
Formulary, 
literature 

FEV1 12 
Weeks 

ICER of daily 
rhDNase vs. HS 
was $204. Alt day 
rhDNase 
compared with 
HS was $164. If 
WTP was $369 
per 1% gain in 
FEV1, .91 (daily), 
and .88 
(alternate) prob 
that rhDNase was 
more cost 
effective than HS.  
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Table 2.4: Full and partial economic evaluation studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

Perras C 
(69) 

1996 Canada Can $? rhDNase 
therapy vs. 
normal 
therapy 

RCT, 
retrospective 
cohort 

Unknown Hospitalis
ations 

15.9 
months 

Costs associated 
with one less 
hospitalisation 
from the use of 
Dnase were 
$38875/6 Months, 
$15477/12 
Months, and 
$7210/15.9 
months. To be 
cost neutral, the 
price of Dnase 
would need to be 
$16. 

Unknown 
methodol
ogy 

Suri R (73) 2000 UK UK £ rhDNase 
therapy 
(alternate day 
vs. daily) vs. 
hypertonic 
saline 

Single Study 
(RCT) 

Finance 
depts., 
British 
National 
Formulary, 
literature 

QoL, 
pulmonar
y 
exacerbat
ions 

12 
Weeks 

Total health 
service costs 
were $10487 for 
rhDNase and 
$7893 for HS. 
Costs and 
benefits were not 
combined. But 
Daily rhDNase 
was more 
effective than HS.  
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Table 2.4: Full and partial economic evaluation studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

Suri R (72) 1999 UK UK £ rhDNase 
therapy 
(alternate day 
vs. daily) vs. 
hypertonic 
saline 

Single Study 
(RCT) 

Finance 
depts., 
British 
National 
Formulary, 
literature 

FEV% 
Predicted 

12 
Weeks 

Total incremental 
cost of Daily 
rhDNase vs. HS 
was $2635, Daily 
rhDNase vs. alt 
day rhDNase was 
$867 and alt day 
rhDNase vs. HS 
was $1779. ICER 
per 1% gain in 
FEV1 was $206, 
$399, and $166 
respectively.  

  

Simpson N 
(70) 

1998 UK UK £ CF NBS vs. 
no screening 

Literature 
review, 
authors 
opinion 

Literature 
review 

QALYs Lifetime Incremental cost 
per QALY gained 
with neonatal 
screening for CF 
over clinical 
screening was 
$13445. Authors 
concluded it was 
cost effective from 
the UK 
perspective 
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Table 2.4: Full and partial economic evaluation studies found by systematic review.  

Author Price 
Year 

Country Reported 
Currency 

Intervention Source of 
effectiveness 

Source of 
cost data 

Outcome 
measure 

Time 
Horizon 

Results* Notes 

van den 
Akker-van 
Marle ME 
(74) 

2004 Netherla
nds 

€ No screening 
vs. CF NBS 
(IRT+IRT, 
IRT+DNA, 
IRT+DNA+IR
T, 
IRT+DNA+D
GGE) 

Literature 
review 

Literature 
review 

Life 
Years 

1 Year Incremental cost 
per LY gained 
was $30501 with 
IRT+IRT, $47105 
with IRT+DNA, 
$48950 with 
IRT+DNA+IRT 
and $40585 with 
the 
IRT+DNA+DGGE 
strategy. Authors 
conclude IRT+IRT 
appears to be the 
most cost 
effective 
screening 
strategy. 
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Chapter 3: Methodology  

 

Introduction 

This thesis uses various techniques that are based on long-standing (and vigorously 

criticised) economic theory.  This chapter serves as a critical discussion of economic 

theory relevant to this thesis and a description and review of the evaluation tools 

that are available for analysing data in order to inform decision making. First is a 

discussion of various cost side issues pertaining to COI and economic evaluations.  

Second is a discussion of issues surrounding benefit valuation in relation to 

economic evaluation.  Next is a section discussing some of the tools used to 

analyse cost and benefit information.  

Economic evaluation is driven by two main theoretical approaches which have been 

referred to as welfarism and extra-welfarism(1). Both of the approaches share the 

assumption that individuals are utility maximisers; that is, we all want to make our 

lives better and therefore make decisions based on what we think will give us the 

greatest utility. These decisions generally take place in the market for goods and 

services, with the market mechanisms ensuring that sellers and buyers achieve the 

highest possible utility out of their transactions.  These theories are also used to 

drive decisions that impact society as a whole.  Decision makers (often the 

government) try to derive the best basket of goods that maximises the utility of an 

entire society.  However, there are often problems in making the leap from the 

individual to the society, given that there are bound to be differences in what is utility 

maximising between individuals. This is particularly difficult in areas where there are 

market imperfections.  
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Obtaining the best possible health outcome for society from health interventions 

means that certain conditions must prevail. One condition is that production 

processes must be efficient. There are generally two ways in which production can 

be inefficient - if large amounts of inputs are used where smaller amounts can be 

used, and if inefficient combinations of inputs are used.  For example, why employ 

40 people, when 10 can do the job? Or, if a relatively expensive doctor was doing 

the same job that a lower-paid nurse could do with the same result, it could be 

considered inefficient.  It is also quite possible that production is inefficient because 

an intervention is being used that is not the one with the lowest costs (to produce a 

given level of service).  

If services are being produced efficiently, then the second requirement to have total 

efficiency is to choose those services that will maximise welfare (i.e. health or utility). 

Combating these inefficiencies is the driving force behind most economic 

evaluations, or, comparing the benefits of different services and their relative cost.  

When people trade in the market, economists assume that they will do so until they 

reach their goods and budget constraint, and that they will buy and sell until they 

have the maximum benefit.  In a perfect market, everyone is assumed to maximise 

their welfare and there is optimal use of resources for any distribution of income. 

When the market reaches this equilibrium by definition, no one can be made any 

worse off without someone else being made better off. Or more formally, the 

marginal rates of substitution between all pairs of goods for all pairs of individuals 

are equal and equal to the marginal rate of transformation between all pairs of 

goods and the ratios of prices. In production, the marginal rate of technical 
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substitution between all pairs of inputs is equal to the ratio of prices for inputs. This 

state of being is called the Pareto optimum. (101) 

If the economy was not at an optimum equilibrium point, the only method of making 

Pareto improvements is through voluntary trades that will not make anyone worse 

off, but at least one person better off.  A Kaldor-Hicks improvement is made if an 

outcome is more efficient if those made worse off would, in theory, be compensated 

by those who gain from the exchange. This differs from Pareto improvements as the 

Kaldor-Hicks criterion do not require compensation to be paid, only for the possibility 

of compensation to exist and therefore a more efficient outcome may leave some 

people worse off. However, it is not often the case that Pareto improvements exist in 

the real world.  This concept, often called the welfare approach, is the building block 

of cost-benefit analysis (CBA). A CBA generally seeks to use monetary measures to 

value the entire range of health and other consequences of a policy change and 

compare it with resource costs as a compensation test.  

Extra-welfarism uses a form of constrained maximisation.  In other words, the 

function is designed to get the most efficient use of limited resources.  In the health 

context, the constraints are often defined by social objectives and a health care 

budget constraint. Extra-welfarist approaches are the theoretical foundation of cost-

effectiveness (CEA), cost-utility (CUA), and cost-minimisation analyses (CMA). (37) 

All forms of economic evaluation (CEA, CUA, CBA, CMA) of a health care 

intervention rely on information about costs and benefits of a particular 

intervention(s). Gathering information on both the cost and benefit side of an 

evaluation can be problematic.  A cost is generally thought of by economists as the 
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opportunity cost forgone, and therefore one of the aims of economic evaluation is to 

measure opportunity costs. Most organisations try to measure costs at some level, if 

only to have some financial control.  However, it is anything but straightforward. 

There are conceptual and practical problems to overcome. (101) For example, there 

is often limited availability of data as well as issues surrounding the treatment of 

overhead costs, discounting, and estimating productivity cost. Sections 3.1-3.2 

illustrate the types of costs usually measured in health economics, as well as the 

problems associated with measuring costs.  

Similarly, measuring the benefits of a technology can also be thorny.  If benefits are 

traded in the market, then they automatically have a value given that someone 

considers them worth paying for.  It may also be possible to measure an indirect 

estimate of the value people place on benefits from their behaviour.  However, it is 

often not feasible to put any money value on the outputs of a health intervention, but 

it may be possible to compare standard units, such as a life year gained. Similarly to 

the cost side, perspective also matters when measuring benefits. (101) For 

example, when carrying out an economic evaluation on a screening programme, 

should you simply measure cases detected, the parent‟s benefit, or the child‟s 

benefit? How do you measure the child‟s benefits?  Sections 3.3-3-4 discuss the 

issues surrounding the estimation and measurement of benefits.  

Types of costs 

Health service (direct) costs  

Direct costs are defined by those costs in which an actual payment has been made.  

These typically include medical costs, such as treatment, hospitalisation and 
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medication costs as well as some personal costs such as travel costs to the health 

care provider or specialist aides. 

Non-health service (indirect) costs  

Indirect costs are defined as those costs in which no payment has been made, yet 

resources were lost.  Generally, these can be separated into two groups: morbidity 

costs (productivity loss for the person, employer, or society due to illness) and 

mortality costs (present value for the productivity lost due to premature death 

caused by the disease). 

Non-resource costs  

The third type of costs, intangible costs, is defined by deterioration of quality of life in 

the patient.  These costs are generally captured the health related quality of life 

measures in utility scales (e.g. SF-36, EQ-5D).     

Concepts of cost 

It is important to discuss the different concepts of costs in order to get any 

meaningful interpretation of the costs out of an analysis. Box 3.1 gives the 

definitions of the concepts used in costing studies and economic evaluations. All of 

the aforementioned types of cost can be discussed in terms of total costs, fixed 

costs, variable costs and therefore average or marginal costs. 
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It is important to make the distinction between average and marginal cost because 

in economic evaluation, we are interested in finding out how much more input we 

need for an additional unit of output (marginal differences of cost and effect instead 

of average differences).  For example, the extra cost of putting an additional nurse 

on an ICU versus the average daily cost for that nurse could produce very different 

results.  However, in practice this issue must be explored in the context of the study 

as the savings from having the extra nurse may depend on other local factors such 

as staff availability and timing of the hours. (102) Therefore, marginal analysis is 

usually shown in conjunction with average results.  

Study Design – Costing Issues 

What costs to include? 

Viewpoint/perspective 

Most health economic evaluations will adopt a certain viewpoint (explicitly or 

implicitly).  Possible viewpoints are society, health system, government, the patient, 

employer or agency carrying out the programme. The perspective of the study is 

Box 3.1 Definitions of cost 

Fixed Cost (FC)           = costs that do not vary with the quantity of output in the 
short run 
 
Variable Cost (VC)      = costs which vary with the level of output 
 
Total Cost (TC)            = the cost of producing a particular quantity of output                         
(FC+VC) 
 
Average Cost (AC)      = TC/Q, the average cost per unit of output (Q) 
 
Marginal Cost (MC)    = (TC of x + 1 units) – (TC of x units)  
                                     = the extra cost of producing one extra unit of output. 
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important, as it helps define what costs are relevant to the study.  For example, in 

the English NHS, the cost of a nurse in a ward is relevant to the health system 

perspective, but not necessarily from the patient‟s perspective.  Similarly, time off 

work may be a cost from the patient‟s and employer‟s perspective, but not to a 

health maintenance organisation.   

Generally, the commissioning body of the study gives a clue about which viewpoint 

to adopt.  However, this is not always the case and when in doubt, a societal 

viewpoint should be adopted as this is the broadest perspective. (1) Often times in 

the literature, a “societal” viewpoint is stated but actually refers to a health service 

viewpoint, so it is imperative to be careful when analysing literature to make sure all 

the relevant costs were gathered in the study. 

Excluding costs 

When carrying out an economic evaluation, it may also be possible to exclude costs 

that are common to both interventions under study.  However, this is not advisable if 

at some point a wider analysis may be undertaken.  Another possible decision 

facing the researcher is whether to exclude costs that may simply confirm the result 

of other costs.  For example, if a study is looking at outpatient versus inpatient 

surgery, including patient costs may simply confirm the same result as hospital 

costs, and therefore may simply over-complicate the analysis. (1)   

Estimation of costs 

When the perspective has been chosen, and the relevant cost generating items of 

resource use have been identified, these items must then be valued.  Therefore, 

estimation of costs relies on the quantity of items consumed, as well as applying a 
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relevant unit cost to those items. How information is gathered on resource use is 

generally dependant on the analysis in question.  For example, an economic 

evaluation alongside a clinical trial can collect data on the report forms, whereas a 

retrospective analysis is likely to rely on patient notes and charts to gather resource 

use information.  

Valuing resource items 

It is important to remember that the theoretical cost of each unit of resource used is 

its opportunity cost (or, the value of forgone benefits because the resource is no 

longer available for its alternative use). However, in practical terms, market prices 

are used to attach a unit cost to a good unless there is a reason not to do so (for 

example if the resource is subsidized).    

There are several possible resource items for which it is not necessarily easy to 

attach a unit cost.  These items are generally „non-market‟ items (such as leisure or 

volunteer time). One method of valuing these items is to use market wage rates.  

However, this method can be problematic for leisure time as people are generally 

not paid for their leisure, and therefore it can be argued that zero is a valid value or 

perhaps average over-time earnings. Overtime earnings are suggested because it is 

thought this is how much an employer would need to pay to buy out leisure time.  

Depending on the perspective, this dilemma may not matter.  If from a health care 

provider perspective, the patient‟s time lost is not a relevant problem (unless this 

affects the patients utility? ref Brouwer et al various papers); however, if the analysis 

is from the societal perspective, these items are very important and should definitely 

be reported.  Drummond (1) discuss an alternative approach in which the amount of 
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time inputs for these items (i.e. volunteer time) is reported alongside other relevant 

costs.  This method, they argue, will enable the decision maker to see which 

interventions require large amounts of these difficult to value resources and 

therefore get an idea of the opportunity cost of changing the allocation of volunteer 

or family input into a programme. (This still begs the question of how you measure 

patient and other voluntary time inputs: adds cost to data collection and methods still 

are not well developed).  

Adjusting market prices 

Because of imperfections in the health care market, market prices do not 

necessarily reflect opportunity costs.  For example, in the USA, hospital charges 

often deviate from costs as the hospital may try to cross-subsidise activities. 

However, it is not necessarily clear when a researcher should adjust market prices.  

Drummond et al (1) recommend attempting adjustments when the researcher is 

sure that unadjusted prices will introduce significant bias into the results and when 

there is a clear method of adjusting the prices.  

Cost adjustments are especially important when it comes to comparisons across 

studies.  As many studies do not adjust costs, they are not necessarily comparable 

with those that do, even if similar outcomes are reported.  This becomes even more 

apparent when trying to compare across countries, as different countries often have 

different accounting systems and therefore costs are not necessarily comparable. 

Recommended practice (103) when gathering evidence for comparison or for use in 

economic evaluation from the literature is to adjust prices in two stage process, the 

first of which is to adjust for the time (i.e. from UK£ in 2000 to UK£ in 2010) and then 
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use exchange rate information to adjust to the target currency (UK£ to US$ for 

example).  Shemilt et al (104) recommend using the OECD or IMF purchasing 

power parity method to adjust prices over time and by currency.  

Time Horizon  

How long to track costs often depends on the intervention follow-up time as well as 

what agencies are involved in the intervention.  For example, if conducting a cost 

analysis of hip replacements from a hospital perspective, it would make sense to 

cost the intervention to discharge.  However, if you also wanted to know about 

revision rates, a long-term (life-time) analysis would be optimal as it would give you 

information on the life-time costs associated with one patient‟s hip replacement.  In 

other words, when looking at therapy specific or disease specific costs, the choice of 

follow-up period should not bias the results in favour of one intervention. Sometimes 

this could mean tracking costs over a lifetime and discounting costs to present 

values (see the next section for more on discounting). Figure 3.1 gives a graphical 

representation of these ideas.  
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Capital expenditures and overhead costs 

Capital costs are those costs involved in purchasing the major physical assets 

required by a programme.  Generally, this is land, buildings, and equipment.  These 

costs are different from operating costs as they are generally fixed at a single point 

in time and they represent an investment that may depreciate over time (land 

generally does not depreciate).  Capital costs can be described in terms of the 

opportunity cost of not using the investment money in some other way which yields 

positive benefits.  This aspect is usually calculated by applying an interest rate equal 

to the discount rate of the study.  Capital costs also represent the depreciation of the 

asset over time.  This is generally calculated by various accounting practices (such 

as declining balance) which are usually determined by tax laws rather than a real 

change in the value of the asset. (33) 

In practice, calculating capital costs is done by annuitizing the initial capital outlay 

over the lifetime of the asset. This method (105) incorporates both depreciation and 

Hospital + Patient, 

family, 

friends 

+ Other 

health care 

agencies Short term  

Medium 

Term 

Long Term 

Follow-up 

time 

Agencies considered 

Figure 3.1 Choices for costing over time 

(adapted from Drummond (1)) 
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opportunity costs into the valuation. It is important to consider the annuitization and 

discounting of capital expenditures as generally people have a positive rate of time 

preference.  In other words, people value money more today than they would in the 

future when they are likely to be better off or the resources you lay out for capital 

today is worth more than if you were to spend this later.  Discounting future costs to 

present values is one method of calculating these costs. If all costs are assumed to 

happen at the end of each year, then the present value (P) can be calculated using 

the following formula:  
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Where n is the number of time periods, Fn is the future costs at time n, and r is the 

annual interest (discount) rate.  The discount factor is the factor
nr  )1( . The 

discount/annuity factors can generally be obtained from standardised tables for ease 

of use. If the assumption is that the costs occur at the beginning of each year, the 

first year is not discounted, but otherwise the equation is the same.  

It may also be the case that most costs are easily expressed on an annual basis, but 

that capital costs differ from year to year.  Therefore, obtaining an equivalent annual 

cost by amortization or annuitization would be required. This is a function of the 

annuity factor, the period, and the interest rate in a similar way as finding present 

value. Instead of finding P, you would solve for the capital outlay.  

A = ( 1 / r ) - ( 1 / ( r ( 1 + r )n) ) 
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Where A is the annuitization factor, r is the discount rate, and n is the length of the 

items useful life.   

For example, if the total set-up costs for a screening programme were £200,000, 

and assuming a 5 year time period at a 3% interest rate, the annuity factor would be 

4.5797. Therefore the equivalent annual cost would be £43,671.   Or,  

£200,000 = E(4.5797)  

where E = the equivalent annual cost.  

The equivalent annual cost depends on both the useful life (both physical and 

clinical) of the equipment/building.  As clinical usefulness is highly dependent on 

technological change, it is generally recommended to assume short lives for clinical 

equipment. The annual cost also depends on the discount rate used in the 

calculations. Generally, there are two theories regarding how to measure the 

discount rate.  One, the social opportunity cost method is calculated by using a 

weighted average of discount rates applicable to different sectors of the economy 

that contribute resources to the programmes under evaluation. The other, the social 

rate of time preference, is a measure of society‟s willingness to not consume today 

in order to consume more tomorrow. One method of calculating this is to adjust the 

real rate of return on long term government bonds for inflation. This would represent 

an aggregated individual rate of time preference. Another method is commonly 

called the shadow price of capital (SPC) approach, which measures the forgone 

private investment (or the opportunity cost of a public programme) as the present 

value of consumption given up.  
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Practically, researchers in the UK have followed the government announced 

discount rate for public sector projects.  In areas where no advisement on discount 

rates has been given, the convention has been to use the prevailing discount rate in 

the literature (usually between 3-6 percent). Because of these differences, it is 

important to present costs both undiscounted and discounted. It is also important to 

conduct some sensitivity analysis around the discount rate and to explicitly state the 

base rate used.  

When calculating overhead costs for a project, it is important to allocate the costs 

correctly in order to produce as true a picture as possible.  It is first important to 

determine a unit of output for those departments that directly serve the 

programme(s) in question. The point is to try to calculate a cost per unit of output 

and then multiplying by the usage of each patient, therefore determining the cost per 

patient.  A common example is an in-patient day, or a workload unit (usually hours) 

for staff. Then, an allocation basis must be determined for each department.  For 

example, hotel costs for a bed day includes (among other costs) catering expenses. 

This means that catering costs would be in proportion to the number of patients in 

that bed and the number of meals a day. Similarly, hours paid to staff would be an 

allocation unit for administration costs.  

Estimation and inclusion of productivity changes 

Productivity costs in terms of cost analysis are generally seen as those costs that 

arise from the patient and/or family member taking time off work.  These costs can 

be substantial, or negligible, depending on the circumstances.  For example, if a 

patient is retired, then they are not employed and therefore do not necessarily incur 
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any loses. However, if a child‟s parent has to take time off work, then the 

productivity loss could be substantial. 

How productivity changes are measured, and when they should be included is a 

matter of debate.  There are two generally accepted methods of estimating 

productivity changes.  The human capital approach is probably the most common 

method employed and is generally estimated by using the gross earnings of a 

person or estimating equivalent earnings in unemployed people. This method is 

frequently criticised for overestimating the value of production (106).  This is 

because often there is negligible time off work, or perhaps in long-term illnesses, 

employers will hire a new person, thereby eliminating the productivity loss.  In other 

words, productivity changes depend on the length of time in question, and the cost 

of replacing a worker, as well as other adjustments in the wider economy. This is 

similar to the argument made above that average costs are not a good estimate of 

losses at the margin.  

In an effort to get around these issues, Koopmanschap et al (107) suggested that 

the friction cost method be used to estimate productivity changes.  This method 

attempts to measure productivity loss as a function of the time it takes an 

organisation to return to the initial production levels. The authors note that this 

measure depends on the organisation, location, industry, and type of worker. (108) 

For example, a Tesco's cashier will theoretically take less time to train than a health 

economist; therefore it can be argued that the productivity losses to Tesco's due to a 

week off ill would be less than a pharmaceutical firm's health economist. 



 

 

 

83 

 

 

Of course, the relevance of productivity will change depending on the viewpoint of 

the study.  If the study is from the healthcare provider perspective, the cost of 

productivity to the wider economy may not necessarily be important. For example, 

Gerrard and Mooney (109) argue that when the benefit of a cost-effectiveness or 

cost-utility study is health related, then the opportunity costs are only defined in 

terms of the health forgone, therefore researchers should only focus on the 

opportunity cost to the healthcare sector, and not other sectors of the economy.  

However, if a societal perspective is adopted, then the productivity change would be 

very relevant.  Drummond (1) argues that a societal viewpoint should be taken if at 

all possible, as this does not enforce budgetary boundaries simply to healthcare 

costs. The authors encourage presenting healthcare and non-healthcare costs and 

benefits separately, thereby giving the decision maker a clear idea of what the 

opportunity cost of the healthcare budget is.  

When a societal perspective is adopted, productivity changes are more difficult to 

untangle.  For example, if a community-based programme under analysis has higher 

costs to the health care system compared to an institution-based programme, but 

the number of workdays lost is less, is it correct to deduct the production gains from 

the healthcare costs?  It can be argued that productivity gains should be included, 

given there is little difference between these resource savings and labour inputs for 

healthcare costs. However, it can also be said that the assumption that the 

institution-based programme means losses for the community (through drawing 

people out of employment) could be false, as other (unemployed) members of the 

community could replace those in hospital.  
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Another major concern for the estimation of productivity changes is that of double-

counting.  This is especially an issue in relation to gains in productivity. If the value 

of improved health already included the value of increased productivity, then it would 

not be appropriate to create an additional measure of productivity. This situation 

typically arises in cost-utility and cost-benefit analyses where individuals are given 

health state information and asked to value these health states in terms of utility or 

money.  It may be the case that respondents will factor in the impact on their income 

when returning to work when creating a value for the health states. However, 

Brouwer (110) argued that income may only have a weak connection to productivity 

change, especially if employees have income protection (i.e. sick pay). The author 

advocated an approach where individuals were asked to ignore income effects when 

valuing the health state, but asked separately about the changes in productivity.  

Finally, the inclusion of productivity changes can raise issues surrounding equity.  If 

you are using wage rates of individuals in the study, it is obvious that certain 

individuals may have a larger share of the impact than others.  There are a few 

methods in which equity concerns can be alleviated.  Firstly, expressing productivity 

in terms of the days of work or activity lost or gained instead of the monetary 

amount. Secondly, using a general wage rate to value the productivity instead of 

individual wages will eliminate some people having a larger impact than others.  

Conclusions 

It is apparent that there are many stumbling blocks in front of a researcher trying to 

carry out an accurate cost-description of a technology. Therefore, it is important to 

be clear and explicit when designing a study just what costs you are interested in 

and exactly what methods will be used to estimate these costs.  While costs are the 
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main concern when carrying out a cost of illness study, for an economic evaluation, 

the costs only represent one part of the whole equation.  The following section will 

discuss how health benefits are measured and valued. 

For this thesis, I have adopted a rather narrow perspective of the tertiary NHS 

services in the east of England.  Therefore, cost information will only be collected for 

patient‟s resource use at the hospital level, and the drug use. While this is rather 

limited in scope, it is probably the most appropriate, as the guidelines for treating CF 

patients clearly recommend that the majority of CF care is carried out in a specialist 

centre at the tertiary level of service(2). The time period of the cost of illness study 

was determined by data availability, and covers the period of 1998 and 2004-2007. 

The CEA assumes a time horizon of 50 years, as I wanted to look at the lifetime 

benefits of newborn screening.   

Benefit measurement and valuation 

How to measure and value health benefits is a contentious issue. Before looking at 

why, it is important to differentiate between measurement and valuation in terms of 

health.  Many clinicians and psychometricians are seeking to measure health 

numerically according to one or more relevant dimensions.  Economists, on the 

other hand, who are concerned with choices and preferences between health states, 

are interested in the relative ordinal value that patients place on the range of 

different dimensions of health or on the process of providing health.  While the value 

of health is related to a measure of health, the concepts will not necessarily be 

exactly correlated. (1)  For example, even if physical therapy directed at clearing the 

lungs results in only a small improvement in lung function, it may nevertheless be 

highly valued by the patient.  
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One of the difficulties in measuring health benefits is that they are often 

multidimensional. For example, improvements in life expectancy cannot necessarily 

be judged by looking at improvements in blood pressure management. Quality 

improvements in a person‟s health can vary in different dimensions of health, such 

as mobility, sensory perception, pain relief and so on. As single measures of health 

improvement are not necessarily adequate to describe the health consequences of 

health care for patients, there have been attempts to develop multi-dimensional 

tools to measure well-being, ability to function or social activities. (111) Many tools 

have been developed for use in economic evaluation to try and measure health 

outcomes  such as the EQ-5D (112) or the Health Utilities Index (113).  

Evidence about Health benefits arising from care or treatment can also be shrouded 

in uncertainty. Evidence is often limited (i.e. few clinical trials for anti-bacterials used 

as prophylaxis in CF babies), leading to even more uncertainty surrounding clinical 

practice.  These uncertainties carry important implications for economic evaluations. 

(114) 

Measuring Health 

In order to measure health, it is necessary to define it.  The commonly quoted World 

Health Organisation definition that health is “[a] state of complete physical, mental 

and social well-being, and not merely the absence of disease and infirmity” (115) is 

broad and can be difficult to capture in a single measure.  It can also be argued that 

social well-being is not necessarily health, but a single aspect of quality of life.  In 

practice, developers of health measures often take a more narrow definition of 

health.  Therefore, different measures of health or quality of life can differ in content 

and sometimes in meaning. For example, a quality of life measure that is narrowly 
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focused around certain symptoms would yield very different information than a 

quality of life measure based around the WHO definition. Brazier et al (114) argue 

that the specific content of the description of benefit used in the measurement or 

valuation instrument is of utmost importance for health policy decisions.  

The features of health are often difficult to measure as the elements making up 

„health‟ (i.e. pain, ability, symptoms) vary by individual and therefore a measurement 

capturing only the medical component (for example, systolic blood pressure 

improvement) may not necessarily be useful to capture the entirety of „health‟ 

gained/lost by an intervention. It is commonplace within health economics and 

health services research that the experience of a health state should be elicited from 

the patients themselves, or from others on their behalf if this isn‟t possible (for 

example, an infant) in order to best reflect the experience of the disease and its 

treatment(114) (116).  

Valuing Health 

Once a measure of a health state is defined, it is essential for health economic 

analysis of cost utility or cost benefit  to obtain a value on that health state.  In other 

words, how does one adjust life years to reflect health levels during those years? 

Valuing health is generally done by using preference elicitation techniques.   Both 

cardinal (producing responses that are on some interval scale) and ordinal 

techniques (discrete choice experiments and ranking and standard gamble?) are 

used.  Different methods often result in different values, and therefore it is important 

to look at the different techniques in order to choose the most appropriate method. 

Cardinal techniques 
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The three most commonly used techniques for valuing health states are the 

standard gamble (SG), time trade-off (TTO), and the visual analogue scale (VAS).  

SG and TTO are both preference-based techniques, while VAS is not.  Other 

commonly used methods include the person trade-off (PTO). 

Visual Analogue Scale 

The VAS is usually represented by a line, with clearly defined end-points and clear 

interval properties (the difference between 10 and 30 is the same as the difference 

between 30 and 50 on a hundred point scale).  Respondents are then asked to 

indicate their judgements (or values, feelings) by placing a mark or line on the scale. 

The distances between the marks should therefore indicate a person's relative 

understanding of the differences in the concepts being measured. (114, 117)  

The VAS is used in many commonly used instruments, such as the Health Utility 

Index and the EQ-5D.   To use VAS in economic evaluation, it is necessary to 

ensure respondents are comparable. To do this, it is imperative to define 

unambiguous end-points.  Most commonly used are variations on 'full health' at the 

top end, and 'death' at the bottom end.  It is useful for economic evaluation if the 

valuations can be placed on a zero to one scale. The scale must be clearly defined 

(I.e. 0-1, 0-10, 0-100), but it is unclear whether the accuracy increases with a larger 

scale. (1)Zero is equivalent to dead, and one to full health. However, it is possible 

that there are states worse than death.  For these reasons, it is often asked of 

respondents to rate dead on the same scale along with their own health.  This 

allows all health state valuations to be transformed using the following formula: 

 )()(/)( deadRbestRdeadRRA ii   
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where Ai= adjusted VAS rating for health state hi; R(being dead) = raw rating given 

to being dead; Ri = raw rating given to health state hi; R(best) = raw rating given to 

the best health state.  (114) This allows for the value of 1 to be full health state, and 

zero for being dead.  Any negative values would be assumed to be worse than 

death. Figure 3.2 illustrates what a VAS would normally look like.  

Figure 3.2: Visual Analogue Scale example 
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The VAS can be used for valuing temporary health states (states lasting a specified 

period of time, assuming returning to good health or chronic health states).    In this 

scenario, a respondent would be instructed that health states would be for a specific 

amount of time, and at the end of that time returning to full health. They would then 

be asked to place the best state at one end of the scale, and the worst at the other 

end. The remaining states would then be placed between the endpoints, thus 

indicating how the respondent felt about the different health states relative to one 

another.  

The VAS is a useful tool for health state valuation as it has been shown to generate 

high response rates and relatively high completion rates. (1) (118) VAS methods are 

also relatively cheap and simple to administer. Mannion et al (2006) (119) and 

others (120) have found that the VAS is reliable in terms of inter-rater reliability and 

test-retest reliability.  

However, there have been some concerns that the choice-less nature of VAS 

means that it is unlikely to reflect preferences on an interval scale. Bleichrodt and 

Johannesson (121) found little evidence of a stable value function.  In 2001, 

Robinson et al (122) found that when VAS data was adjusted using the Parducci-

Weddel (PW) range-frequency model, the value function was stable, and therefore 

allowed VAS data to be used in economic evaluations. McCabe et al (123) found 

that using the PW model can produce data that is not on the 0-1 scale, and 

therefore is not necessarily appropriate for economic evaluation.  

There is some evidence that VAS methods are prone to response spreading and 

context effects.  This is when respondents use all areas of the scale when 
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responding, especially where multiple health states are valued on the same scale.  

This can lead to similar health states being placed some distance from each other, 

and different health states being placed close together.  If this occurs, then VAS 

does not produce an interval scale and therefore the numbers obtained may not be 

meaningful. (114) Robinson et al (122) found that some core health states were 

given lower values when in a set of more severe health states than when in a set of 

milder health states.  Torrance et al (124) found some evidence of end-point bias, 

where health states at either end of the scale are placed further apart than when 

directly compared. It is unclear whether or not adjustments in the PW model would 

adequately remove these biases from the data.  

Because the values elicited from VAS may not be directly applicable to economic 

evaluation research into mapping VAS values to SG or TTO utility values has been 

undertaken. Torrance et al (1996) and Feeny et al (2002) used VAS to elicit 

preferences for the various health states defined in the HUI2 and HUI3 instruments.  

The argument for the relationship between VAS and SG is based on the work of 

Dyer and Sarin (1982), which argued that utilities are made up of a combination of a 

value function and the relative risk attitude.  This means that risk-neutral individuals 

will have the same values for both SG and VAS.  Risk-averse respondents will have 

a concave relationship between VAS and SG (the respondent would prefer a certain 

health state with value x to an expected equivalent value). A risky individual would 

therefore have a convex relationship between VAS and SG. Torrance et al (125) 

and Feeny (113) transformed the values from the VAS into SG utilities using a 

power function similar to the following equation:  
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bVU )1(1   or 

bVU   

where the power term b represents a respondents constant relative risk attitude. 

Therefore, b>1 implies risk aversion, b=1 is risk-neutral. U is the SG utility, and V is 

the VAS value of the health state.   However, more recently, Stevens et al (126) 

found that the power function was outperformed by linear, quadratic, and cubic 

functions when analysing the relationship between VAS and SG in the context of a 

UK valuation study of HUI2.  

Mapping VAS values to TTO utilities has been fraught with difficulties. One major 

problem is the attribute of time preferences. A positive time preference would reduce 

the value of time spent in the chronic state by a larger proportion than the time spent 

in full health, and therefore TTO values would increase. Torrance (127) attempted to 

use a power function between VAS and TTO and found it explained 79 per cent of 

the variation. However, neither of these models used standard econometric 

diagnostic information on model specification and therefore it is unclear how well 

they actually fit the data or if they are comparable. The evidence therefore suggests 

that relationships between VAS and SG and TTO are not necessarily stable in terms 

of form of the relationship and the size of the model parameters. (114) 

Standard Gamble 

The SG method allows a respondent a choice between a certain health state, and 

the uncertainty of a gamble between two possible outcomes, one of which is better 

than the certain health state, and one of which is worse.  For example, a respondent 

must choose between alternative 1: living with asthma, and alternative 2: receiving a 

treatment that could either a.) return them to full health, or b.) result in death. The 
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probability P is assigned to returning the patient to full health for a certain time 

period, and 1-P is the probability that death will occur. Alternative 1 will have a 

certain outcome of a chronic state, h for life. To obtain utility values, the probability P 

is varied until the individual is indifferent between the certain outcome and the 

gamble (perfect health or death). This is then repeated for all intermediate 

outcomes. SG methods can be used to consider states worse than death and for 

temporary states by changing state h for a state worse than death, and changing the 

gamble by assuming the choice is between perfect health and a state worse than 

the certain state.  (111) (33) (1) 

SG is often referred to as the 'gold standard' for the measurement of utility 

associated with health states. This is because it is based on expected utility theory 

(EUT). EUT is a framework for describing how individuals make decisions under 

conditions of risk and uncertainty whereby individuals choose between prospects in 

a way that maximises their expected utility. (1) This method has been used 

extensively throughout the literature and has also been used (via a transformation of 

VAS) to value the Health Utilities Index 2 and 3, and the SF-6D. (117) 

There are various ways of carrying out the SG technique. Generally, they differ in 

terms of the procedure used to identify the point of indifference, and the method of 

administration (computer, interview, self-administered). One of those methods was 

developed by Torrance et al (128) and uses a visual aid (a probability wheel) to 

explain probabilities to respondents. This method works by using the wheel to iterate 

between values for the probability of success P (the ping-pong method), therefore 

helping the respondent choose their indifference point. This is done by using an 
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adjust wheel with coloured sectors.  The respondent is told that the relative size of 

the area coloured represents the probability of achieving that alternative.  

Another method, developed by Jones-Lee et al (129) does not use a visual aid, but 

instead uses a questionnaire with a titration method of listing the values for chances 

of success for treatment.  The chances are presented in a 'top-down' (100, 95, 90 

per cent etc.) method, or a bottom up method (0,5,10,15 per cent etc.).  

Respondents are asked to indicate which values of P they would accept and reject 

treatment, as well as which value of P they find most difficult to choose between 

treatment and remaining in a hypothetical health state. This method has been used 

in both paper and computerised form. (130) 

The SG method is generally accepted to be a practical and reliable method in terms 

of administration and completion.  Some studies have shown completion rates 

upwards of 95-100 per cent. (131, 132) SG methods also seem to be generally 

acceptable to various types of patients and clinical areas.  However, its use as the 

'gold standard' has been criticised, given evidence that the assumptions of the 

expected utility theory are violated in practice. (133) Therefore, SG methods may 

not adequately take into account other factors such as risk attitudes, gambling 

effects and loss aversion. Kahneman and Tversky (134) argued that respondents 

act risk-averse when choices are framed in terms of gains, and risk seeking if 

choices are framed in terms of losses. The authors also found that individuals 

overestimate small probabilities and underestimate large probabilities, which would 

potentially bias health state valuation tasks.  
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SG has shown consistency with expected rankings. Dolan et al (135) examined the 

performance of SG and TTO against 12 EQ-5D health states and reported that SG 

had high levels of consistency  Other researchers (136) found similar conclusions 

looking at how SG compared to ranking tasks.  

Time trade-off 

Torrance (127) developed the TTO technique as an alternative to SG.  It was 

designed to attempt to overcome problems surrounding explaining probabilities to 

respondents In TTO, respondents are asked to choose between two certain 

alternatives instead of a certain alternative and a gamble. In this case, respondents 

are given a paired comparison.  For example, in a chronic health state preferred to 

death, alternative 1 would involve being in a specified state worse than full health for 

time period t. Alternative 2 would be full health for time period x where x<t.  Time x 

is varied until indifference. Therefore, the score given to less than full health state is 

x/t.  

For states worse than death, modifications can be made to the TTO method. To 

achieve this, the alternatives would be immediate death;, and spending a length of 

time y in state h followed by x years in full health where x+y=t. Time x is varied until 

the respondent is indifferent between the alternatives. The value for state h, 

therefore, is -x/(t-x). Or, the more time that is required in full health to compensate 

the time spent in h, the lower the score for state h.  

Similarly, for temporary health states, the TTO method needs to be adjusted. 

Intermediate states are measured relative to the best state (full health) and the worst 

state (temporary state hj). The alternatives in this case are living in the temporary 
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health state hi for time period t (specified for the temporary health state) followed by 

a return to full health; and living in temporary health state hj for time x where x<t, 

followed by full health.  Again, time period x is varied until indifference is reached 

between the alternatives. To find the required preference value for state hi, hj should 

be set to 0, and the calculation would be hi=1-x/t. To return the values onto a full 

health/death scale, the worst temporary state must be redefined as a short chronic 

state and valued accordingly.  

Similarly to SG, there are variations on TTO methods, which use various elicitation 

procedures, props, and administration. For example, Dolan et al (135) use a moving 

sliding scale to represent life years. The TTO has been used in both self-

administered format and computer-based application. (137) 

Green et al (118) showed in a literature review that a variety of studies have shown 

the TTO technique as practical, reliable and acceptable method. However, there are 

two main criticisms of the method.  A major source of concern is that the technique 

relies on two certain choices, when health care is undoubtedly uncertain (138). Cher 

et al (139) argued that it is possible to incorporate attitudes to risk and uncertainty 

into TTO. However, adjusting for risk attitude is difficult when there is not a constant 

attitude to risk. 

Another major issue with the TTO method is the impact of time preference on the 

valuations. Van der Pol and Cairns (140) argue that the evidence suggests that a 

majority of individuals have a positive time preference for health (they give greater 

value to years of life in the near future than those in the distant future). If this is the 

case, then the assumption that people trade a constant proportion of their life 
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expectancy in the valuation of health states is not true, and therefore biasing the 

results of TTO.  

Indeed, Robinson et al (141) found that there is a 'threshold of tolerability' below 

which health states would have to fall before respondents would be willing to 

sacrifice even a short period of time. This corresponds to evidence found by Dolan 

et al (135) that found approximately 5 per cent of respondents were unwilling to 

sacrifice any life expectancy in order to avoid half of the states they valued.  

Person trade-off 

This technique is generally used to estimate the social value of different health 

states. (142) PTO asks the respondent to make a choice between alternatives; 

however, the respondent is asked to make the decision based on groups of people 

instead of asking them to value their own state. In this instance, a respondent would 

be asked to indicate how many people in health state A are equivalent to health 

state B.  The health states are generally described to the respondent For example, if 

50 people have severe liver cirrhosis and 50 people have mild liver cirrhosis, and 

only one group could be help, which group would you choose? The number of 

people in each state is then varied until the respondent finds the groups in 

equivalent need of help. The undesirability of health state B is then x/y times as 

great as that of health state A.  This process is then repeated for all other health 

states to be valued. This method is used by research in the context of social choices 

(such as the social value of a QALY) than more conventional individual perspective. 

(117) 
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The PTO method has not been widely used within the literature, and therefore the 

feasibility and acceptability is inconclusive. (117) However, Pinto Prades (143) and 

Murray and Lopez (144) found the PTO acceptable and feasible in separate studies, 

one pilot with 30 individuals and the other a group exercise. However, Nord (145) 

found that because PTO asks individuals to make decisions about others, there was 

some difficulty and refusal to participate (17 out of 53 respondents).  

Nord also found that there was a strong random element in PTO responses, but on 

aggregate, they may be reliable. There is, however, little evidence to support the 

reliability of this method. There are also few theoretical economics links that have 

been made to underpin the method.  However, it has been argued that PTO has at 

least a hypothetical advantage in economic evaluation for health care as it asks 

about trade-offs between people. (143) 

Ordinal techniques 

In the health economics literature, ordinal elicitation techniques have generally been 

seen as 'warm-up' exercises, instead of a method of deriving cardinal valuations. 

However, there is a strong methodological foundation for estimating cardinal values 

from ordinal information that was developed outside of health economics (in 

psychology, consumer marketing, environmental economics). (117) 

Ordinal data collection approaches are relatively easy to comprehend to administer, 

and also have fewer problems with measurement errors, making them an attractive 

option. These exercises usually place less cognitive burden on respondents, and 

therefore are useful in settings or populations where education and numeracy are 

limited, thus have an advantage over SG and TTO. Another advantage is that 

preferences and judgements elicited are not contaminated by values such as risk 
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aversion or time preference. Ordinal methods are usually framed in a way in which 

respondents simply choose over health states.  

As there are different types of ordinal information, different tools are required to 

collect it. Most commonplace are ranking exercises, contingent valuation and 

discrete choice experiments. In ranking tasks, respondents are asked to provide an 

ordering of a set of health states from best to worst (or vice versa). This can be done 

via an open-ended task, or via a more structured interview situation. In discrete 

choice experiments, respondents are asked to choose between two or more 

alternatives, usually described by their levels or attributes along several dimensions. 

(146) 

Ranking 

Methods of inferring cardinal values from ordinal choices began to develop in the 

early 1900's.  Thurstone (147) proposed the law of comparative judgement, by 

which perceptions arise along some dimension of interest. In other words, given a 

stimulus, a respondent has a “discriminal process” that will yield a distribution which 

is normal if applied repeatedly. He assumed that stimuli are associated with 

uncorrelated but similarly varied distributions. (117) In practice, this law can be 

illustrated by presenting a respondent with paired comparisons repeatedly, and 

asking them to consider which stimuli is of greater importance on the attribute of 

interest.  

This law provides the basic methods of transforming ordinal data into estimates of 

cardinal data. For health state valuation, McCabe et al (123) proposed the use of a 

random utility approach first described by Luce (148) to translate ordinal rankings. 
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This model is based on two functions: a statistical model that describes the 

probability of ranking a particular health state over another given the cardinal utility 

associated with each health state; and a valuation function that relates mean utility 

for a given health state to a set of explanatory variables. (117) 

The random utility model is operationalised by using a conditional logit regression.  

The conditional logit model produces estimated valuation on an interval scale, 

enabling meaningful comparisons of differences. The assumptions of the model 

define the origin and units of the scale. This produces a general specification of  

   )( ijjijU  

where U is utility given to state j by respondent i, alpha is the normalising constant 

for the model coefficients, mu is a systematic component that defines i's utility, and 

beta is the value assigned to a state where there are the best possible levels on all 

of the health dimensions. It would make sense to assume that when Beta = 1, it 

implies that a person with no difficulties on any dimension will have an expected 

health state valuation of 1.  

However, for alpha, there are a few more possibilities. Salomon (149) and McCabe 

(123) argue that alpha can have three choices. The first is normalisation using the 

exogenously defined value for at least one state (for example, the observed mean 

from TTO, VAS or SG values). The second being normalisation to produce a utility 

of 0 for the worst state. The final choice is normalisation to produce a utility of 0 for 

dead (though this only works if respondents have ranked 'dead' among health 

states).  
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Salomon used this technique to translate rank data from a study in the UK. Health 

states were described using the EQ-5D system, and respondents were asked to 

complete ranking alongside the EQ-5D descriptions of their own health, a VAS 

exercise, and TTO valuation. After fitting the model, the rank-based predictions were 

strongly correlated with the observed TTO values. McCabe et al also fitted a 

conditional logit model from two other valuation studies in the UK (using the HUI2 

and SF-6D). In this study, rankings were compared to SG values.  In the HUI2 data, 

the rank model was similar to the SG values; however, in the SF-6D data set, the 

rank based and SG values were different.  The authors found that in that case, the 

models were sensitive to excluding the highest and lowest ranked states.   

Discrete Choice 

Discrete choice experiments can be applied in a variety of types of valuation 

problems. The method is grounded in random utility theory, and is generally used to 

show what individuals are willing to trade between characteristics of a treatment or 

service. This allows a value judgement to be made on different aspects of a service 

or treatment. This is of particular use in cost-benefit analysis, as a 'cost' can be 

included as one of the attributes, thereby allowing a willingness-to-pay aspect to be 

included.  

There are various steps necessary to undertake a DCE. First, the characteristics of 

the item in question must be identified.  These are often gathered from the literature 

or from focus group discussions. Ryan and Gerard (150) recommend that four to six 

attributes was acceptable. Second, levels should be assigned to the characteristics. 

These levels can be cardinal, ordinal, or categorical. Third, scenarios must be 
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created that describe all possible configurations of the characteristics and levels 

chosen.  There is potential here to have unreasonable amounts of scenarios if a full 

factorial design is chosen, depending on the amount of characteristics and levels.  

However, a fractional factorial design that maintains orthogonality can be used.  

Ideally, designs should allow for interactions, minimise overlap, and be orthogonal-

in-differences. (151) Fourth, as preferences for the scenarios need to be elicited 

using discrete choices, respondents should be presented with a number of choices 

and asked which they prefer for each choice. For example, respondents can choose 

A over B, that A is better than B on a sliding scale, that the respondent is indifferent 

between A and B, or that neither or no participation is preferred. Which choices 

given to the respondent depend on the question.  However, exclusion of a 'neither' 

option may overestimate any obtained values. (152) 

Finally, econometric techniques are used to model the data. As the choices are in 

binary format, the utility function is described in an additive form. 

nn XXXU  ...2211  , where ∆U is the change in utility in moving from A to 

B, X is the differences between attribute levels A and B, and Beta are the coefficient 

estimates of the model. Different regression techniques are required depending on 

the type of questions asked (for example, nested logit for a non-participation 

question). (1) There are several examples where the DCE approach has yielded 

similar utilities as the SG, VAS, and TTO models. (150) (117) 

Using the DCE approach can allow for non-health characteristics (such as process 

utility) to be included in the utility estimates. The technique also tells us information 



 

 

 

103 

 

 

about the relative valuations of aspects of a whole package.  This is of particular use 

to health planners and clinical researchers when planning a new service.   

There are theoretical concerns with all of the methods described above.  Unadjusted 

VAS does not provide a basis for estimating preferences over health states, and 

methods of adjustment are still being researched. SG and TTO are both useful 

trade-off based valuations, but there is no real 'gold standard' choice.  PTO can be a 

useful tool for measuring social perspective values of health states, but more 

theoretical underpinning is necessary, as are tests of reliability and feasibility. 

Using ranking tasks and DCE to elicit utility data has also shown to be feasible, and 

reliable alternative to VAS, SG, TTO, and PTO.   One advantage ranking and DCE 

techniques have over the cardinal methods are that non-health dimensions are 

easily added into the value judgements. Also, these techniques may be cognitively 

more accessible to certain patient groups than SG, TTO and PTO. 

Self-reported measures of health 

Eliciting self-reported levels of health dimensions using a standardised numerical 

scoring system is often used to describe an individual‟s health. Generally, these 

approaches contain a quantitative description of health states which contain 

components of health that are thought to be the most relevant to patients.  These 

measures do not usually contain bio-medically, possibly clinically relevant 

measures, as these are not necessarily part of the patient‟s experience of their 

health. Self-reported measures of health can be non-preference based or 

preference based, as well as disease specific or generic.  
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Non-preference based measures 

It is also the case that the instruments used to gather information on self-reported 

health measures differ in content.  For example, the SF-36 health survey has 8 

dimensions of health, uses a patient or proxy for responses, and results in a health 

profile.  Whereas the disease-specific St. George's respiratory questionnaire has 4 

dimensions, uses patient responses and results in a health profile and an index 

score.  The content varies considerably between the two tools, covering generic 

concepts of functioning (physical function), to specific symptoms (wheezing) 

respectively. (52) Most measures of health use a simple summative scoring system 

which is transformed linearly onto a 0-100 scale. In the SF-36 questionnaire, the 

dimensions are not comparable and an equal weighting is assumed.  

One major problem with non-preference based measures of health is that the 

instruments generally assume equal intervals between the choices and those items 

are of equal importance. For example, in SF-36, the difference in 'limited a lot' and 

'limited a little' is assumed to be the same as 'limited a little' and 'not limited at all'. 

Another example would be the difference between 'mild' and 'very mild' would be 

equivalent to moving from 'moderate' to 'severe'. However, Brazier (114) provides 

evidence using visual analogue and standard gamble techniques that people are not 

necessarily able to perceive a difference between 'mild' and 'very mild', but there is a 

significant difference in perception between 'moderate' to 'severe'. This would 

indicate that people‟s preferences are not necessarily indicated by these scales.    

More sophisticated techniques have been developed to score self-reported health. 

For example, factor analysis weights items on their contribution to an underlying 
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variable with a stronger correlation indicating a stronger weight for an item or 

dimension. While this method may provide a method of comparing differences 

between populations, it does not necessarily indicate the relative importance to 

people in their lives. Another method used is Rasch analysis. This method is 

generally used when there is a group of people responding to a set of questions 

(items) that have categorical answers (for example, health status). The responses 

are then added across items to give every individual a total score.  The score is then 

summarised across all items, therefore giving an indication that a person with a 

higher total score than another one is deemed to show more of the variable 

assessed. In other words, this method allows an investigation into the degree of 

severity of an item in relation to an underlying scale that the item is measuring. 

Rasch analysis tests the idea that the comparison of two people is independent of 

which items may be used within a set of items assessing the same variable and 

assumes “that the probability of a given patient „passing‟ an item or task is a logistic 

function of the relative distance between the item location parameter (the difficulty of 

the task) and the respondent location parameter (the ability of the patient), and only 

a function of that difference.” (153)  

Similarly to factor analysis, Rasch analysis does not provide a method to value 

health for an economic evaluation. This is because, while it provides information on 

how difficult an item or dimension is for people, it does not necessarily provide 

information on preference-based weights which is necessary for a cost per Quality 

Adjusted Life Year (QALY) analysis.   

Another important limitation of non-preference based measures of health is that they 

do not take into account mortality.  This creates a statistical problem known as the 
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survivor effect.  The effect occurs when a lower survival rate in one arm of a clinical 

study can increase its mean health status score in comparison with other arms in 

the trial.  This occurs as patients who die generally have lower than average health 

status.  So if survival is a good thing, the researcher is unable to determine which 

treatment is better. As healthcare interventions generally have an impact on survival 

and health status, this is a crucial limitation. (117) 

In general, health status measures have very little scope in economic evaluation. It 

is for this reason that preference-based measures and multi-attribute utility scales 

for calculating the QALY were developed. However, health status measures are not 

entirely useless. In recent years, methods to map health status measures onto 

preference-based measures have been created. 

Disease-specific measures for CF-related quality of life 

A review in 2008 by Quittner et al (154) focused on measures used on children with 

respiratory diseases.  The authors found that there were three disease specific 

measures: the CF Questionnaire (CFQ-R)  (155), the Cystic Fibrosis Quality of Life 

Questionnaire (CFQoL) (156) and Questions on Life Satisfaction – Cystic Fibrosis 

(FLZM-CF). (157)  The authors note that only the CFQ-R has a child version for 

ages 6-13 and a parent proxy report for the child‟s HRQOL.  The CFQ-R and 

CFQoL has been validated for use in adolescents as young as 14, but the FLZM-CF 

has only been validated in patients over the age of 16.  The authors found that all 

three measures had “good” internal consistency (α=0.54-0.94) and that test-retest 

reliability was good for all the measures (0.45-0.90 over a 10-14 day interval).  The 

authors also state that all three measures were sensitive enough to detect different 
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levels of disease severity based on lung function tests. The CFQoL and CFQ-R 

have shown correlation (r=0.57-0.84) with the Short Form -36 item health status 

questionnaire (SF-36) generic utility measure (discussed in more detail below), but 

the FLZM-CF has not been tested. While the CFQoL and the CFQ-R have both 

been shown to correlate with the domains measured in the SF-36, there has been 

no mapping done from the domains of either measure to utility scores that would aid 

in the calculation of a QALY.  

The authors suggest that the FLZM-CF, while short, does not allow enough flexibility 

for more complex interventions, but that the CFQ-R and the CFQoL are 

“comprehensive, reliable and valid instruments for adolescents and adults,” while 

the CFQ-R is the only measure validated for children.  Table 3.1 gives a summary of 

the CF HRQOL measures (adapted from (154)). 
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Table 3.1: HRQOL measures for cystic fibrosis 

Measure Number of items/domains Validated 
population 

Pyschometrics 
reliability 

Psychometrics 
validity 

Cystic 
Fibrosis 
Quality of Life 
Questionnaire 
(CFQoL)  

52 items 
9 Domains (physical, 
social, treatment issues, 
chest symptoms, 
emotional responses, 
concerns for future, 
interpersonal 
relationships, body 
image, career) 

14-adult Internal 
consistency: α 
= 0.72-0.92;  
Test-retest 
r>0.80; no 
cross-
informant 
reported 

Discriminates 
between disease 
severity; sensitive 
to change 
following 
antibiotic 
treatment as 
measured by 
FEV%pred and 
BMI; Correlates 
with total SF-36 
scores (0.64-
0.74) 

Cystic 
Fibrosis 
Questionnaire 
– Revised 
(CFQ-R) 

Child version 
35 items 
8 Domains (physical, 
emotional state, social, 
body image, eating, 
treatment burden, 
respiratory and digestion) 
Adolescent/Adult version 
50 items 
12 domains (physical, 
emotional state, social, 
body image, eating, 
treatment burden, 
respiratory, digestion, 
role, vitality, health 
perceptions, and weight) 
Parent version 
44 items 
11 domains (physical, 
emotional state, body 
image, eating, treatment 
burden, respiratory, 
digestion, vitality, school, 
and weight) 

6 – adult  Internal 
consistency: 
α = 0.34-0.74 
(child); α = 
0.54-0.94 
(adolescent); 
α = 0.59-0.91 
(parent) 
Test-retest: r 
= 0.45-0.90 
(teen/adult) 
Parent-child 
agreement = 
0.27-0.57 

Teen/adult 
version is 
correlated with 
SF-36; child 
version correlated 
with PedsQL; 
discriminates 
between healthy 
children and 
children with CF; 
discriminates 
between disease 
severity; 
correlated with 
FEV%Pred, BMI, 
height and 
weight; Sensitivity 
to change 
following 
antibiotic 
treatment; used in 
Phase III clinical 
trial as primary 
endpoint 

Questions on 
Life 
Satisfaction-
Cystic 
Fibrosis 
(FLZM-CF) 

9 items 
9 domains (breathing 
difficulties, abdominal 
pain/digestive trouble, 
eating, sleep, routine 
therapy, adherence to 
daily therapy, 
significance for others, 
understanding, free from 
disadvantage) 

16-adult Internal 
consistency: α 
= 0.80 
Test-retest r = 
0.69 
No cross-
informant 
reported 

Correlates with 
FEV%pred and 
amount of time 
spent doing 
treatment; 
discriminates 
between disease 
severity; 
responsive to 
change after 
inpatient stay 
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Preference-based measures 

As has been discussed above, measures of health that give little indication of 

people's preferences for their health state are of limited use to analysts attempting 

economic evaluations.  One of the major advances in health economics has been 

the development of the QALY for use in evaluations of healthcare technologies. The 

QALY attempts to measure the value of a benefit in terms of the impact on longevity 

with a quality of life element into a common numeraire of a year in full health. (111) 

The QALY is a combination of quality of life and length of life into a single index 

number between 0-1, where zero is death, and one is perfect health. Certain 

assumptions must be made to allow the QALY to represent people's preferences 

over time.  One is that health state values must be independent of the duration, 

timing, and sequence of health states. It is also common to assume that people are 

risk neutral. The QALY can be constructed by multiplying the value of a certain 

health state by the length of time spent in that health state. As outcomes are 

uncertain, the expected value of each possible outcome can be expressed by the 

value weighted by its probability. The expected outcome of the treatment can then 

be represented by adding the expected values of all possible individual outcomes. 

The net benefit, therefore, is the difference between the expected outcome with and 

without treatment. The benefit of an intervention at the population level is the 

aggregate of net benefits to individual patients. Therefore, if the expected benefit of 

an average patient is found, then the aggregate benefit of the population programme 

can be found by multiplying the individual benefit by the number of patients 

expected. (1) At an individual level, the QALY can be used to compare the benefits 

of medical interventions through the calculation of cost per QALY ratios.  
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One of the major criticisms of the QALY and the cost per QALY approach used in 

CUA is that the approach fails to capture non-health benefits. As non-health benefits 

cannot necessarily be converted into units of health gain, they are often ignored or 

converted into monetary terms and processed as negative costs.  As CUAs are 

based on the idea that efficiency is the ratio of inputs to outputs, leaving out non-

health benefits would mean it is not representative of the ratio of all inputs and all 

outputs. Therefore, in this case, a CUA would only be useful in determining technical 

efficiency (whether one programme is more efficient than another given a certain 

threshold) but not allocative efficiency. To be allocatively efficient CUAs using the 

cost per QALY measure would need to know the decision maker‟s (be it at the 

societal or local level) cost-effectiveness threshold for the good or service in 

question.  If that threshold is not known, then basing a decision on a CUA could lead 

to a less than optimal decision.  

Disease specific measures versus generic measures  

The scope of measurement is a major aspect of the description of benefits.  For 

example, in economic evaluation, disease specific measures are often used, as are 

general measures of quality of life (i.e. QALY). The argument for using disease 

specific measures is that the specificity of the measure enables a more sensitive 

account of a given dimension of health. Also, disease specific measures cover 

important dimensions of the given condition that may be missed by generic 

measures. However, disease specific measures often miss the impact of co-

morbidities, side effects, and are not usually comparable across programmes.  The 

argument for using generic preference-based measures in economic evaluations is 

that they allow for comparisons between interventions. Generally, these measures 
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are derived by using a generic descriptive system (often using a spectrum of 

different health states), and a single preference based algorithm for creating an 

index value.  Generic measures may also capture co-morbidities that are missed by 

disease specific measures but may also be inappropriate or insensitive for many 

conditions (97) and therefore disease-specific measures may be more useful in 

certain situations.  

Because both methods have their weaknesses, it has been argued that both should 

be used in the same study. Another approach would be to create a specific measure 

that takes into account co-morbidities and/or side effects or to use a vignette that 

incorporates disease specific treatment effects. (1) 

Conclusions 

Clearly measuring health is anything but straightforward.  Practically, the measure a 

researcher chooses should be able to address the question being asked.  If the 

researcher wishes to carry out (or have study results use in)  an economic 

evaluation, then the measure of health needs to be a valid measure of the health 

dimension and status for utility estimation and preferably be able to be compared 

with other interventions. However, the measurement of health is only one aspect of 

a project.  Most evaluations require some method of valuing a health outcome.   

For the CEA within this study, I use a net benefit approach to evaluate the benefits 

of newborn screening using the QALY as the health benefit measure. I have used 

QALY estimates of paediatric CF from the literature. (70)  However, it should be 

noted that using self-reported measures of health in paediatric populations is 

problematic, as they or a proxy may not be able to accurately reflect changes in 
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health.  The choice of using QALY estimates was made in this case, as there are no 

agreed upon clinical measures of benefit, and using QALY estimates allow for 

comparison to other disease areas.  

Analysing Health Economic Data 

Once cost and/or benefit data have been collected and measured appropriately for 

the hypothesis in question, it is important to analyse the data to look for any patterns 

or other information that can help answer the question at hand. Data analysis in 

health economics usually involves the use of appropriate statistical and/or 

econometric methods. In cost studies, econometrics is often used in order to find the 

major cost drivers of the overall costs. For economic evaluations, decision modelling 

is often undertaken. It is also an important step to carry out sensitivity analysis. The 

next sections discuss the development of the methods to be used in this thesis.  

Cost-of-illness methods 

In 2006, Akobundu et al (158) carried out a systematic review of COI studies in 

health and analysed the various methods used within those studies. The authors 

found that more recent studies tended to focus on narrowly defined diseases, rather 

than wider burden of disease studies common in the past. The authors suggest that 

this is because of a possible shift in funding from government to private sources 

(pharmaceutical companies) and a general public interest in high-profile diseases.   

COI studies have often come under criticism in terms of their ability to add to a 

policy making discussion.  One reason is because most COI studies tend to 

estimate the monetary costs of illness, instead of the economic, or opportunity cost, 

of illness. Another was that studies typically focused on total costs, rather than 

marginal costs. (34)  Bloom et al (159) found that published COI estimates are of 
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limited value when making decisions as there is wide variation in methods and 

within diagnosis categories. This is partially because methods for carrying out COI 

studies are not standardised. For example, some studies include the impact of co-

morbidities, while others do not.   

In general, COIs attempt to estimate either total or incremental costs.   Total disease 

costs provide estimates on the entire healthcare expenditure of people diagnosed 

with the disease over a period of time. Incremental costs, on the other hand, 

estimate the increase in costs that is attributable only to the presence of the 

disease.  

Total cost methods include summing all (for ease, this method will be called the 

SumAll) the health care expenditures on a patient with the disease, regardless of 

whether these are attributable to the disease, or a more specific approach, where 

only costs believed to be attributable to the disease are counted (SumDisease). 

For incremental analysis, there are two general approaches used.  One method 

uses a matched control situation where a group of patients with a disease, is 

matched via demographic or clinical characteristics to a control group.  The SumAll 

method is then applied to both groups and the difference is the incremental cost of 

having the disease. Finally, regression analysis can be used to derive a COI 

estimate from the estimated coefficient of an indicator variable for the diagnosis of 

disease in the regression model. (160) This method is also useful to indicate the 

impact of co-morbidities.  

Ideally, COI studies would include all relevant individuals and would isolate the costs 

specifically due to the disease of interest. However, it is rarely the case that this is 
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done. The SumAll method is the easiest and the most straightforward.  It is also a 

useful method to employ for cross-country studies. This method is useful in disease 

areas where non-disease related costs are minimal (for example, AIDS). However, 

in a disease such as coronary heart disease, there may be significant costs from 

other co-morbidities. In this case, the SumAll method may overestimate the COI as 

it will attribute costs to CHD that are not directly related.  

The SumDisease method, on the other hand, may underestimate the COI if it fails to 

include all the relevant individuals and other spillover costs. For example, a person 

admitted for a heart attack may be included in a study of CHD, but not for high blood 

pressure. Costs could be attributed to both of those diagnoses, but it is unclear in 

what proportion.  

The incremental methods, matched control and regression, provide methods of 

isolating the costs specifically due to the disease. Therefore, they may provide 

better estimates of the true cost of illness. The matched control method assumes 

that there is no need to adjust for confounding factors after a matching algorithm has 

been applied. However, overestimates are possible using this method due to other 

confounding factors than medical conditions, such as demographics. Regression 

methods use various techniques to control for confounding factors. It has been 

shown that if done incorrectly, significant bias can be introduced into the parameter 

estimate on the disease. (161) The regression method can also introduce bias if the 

underlying cost distribution issues are not dealt with appropriately (usually by 

transforming costs into log (costs)). Model misspecification is also a problem with 

this method, and occurs when the statistical model imposes a structure on the 

underlying data that is not supported by the observed data (for instance distribution, 
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parameter invariance11, etc.). (163) Given these limitations, regression methods 

generally work well where disease is not necessarily linked to genetics, lifestyle 

choice, or other unobservable factors. None of the methods for COI are perfect; 

however, the regression approach is the most robust in controlling for co-

morbidities.  

Reporting issues 

Reporting of arithmetic mean COI estimates is not necessarily helpful for decision 

makers.  Sometimes, the mean COI will also equal the COI for the average 

individual.  However, if costs are skewed, then the average cost of a given disease 

will not equal the cost of disease for the average patient. Therefore, it is important 

also to report median costs and the skewness coefficient (or other indicators of the 

distribution of costs).  

Econometric methods for cost of illness data 

It is important to understand the associations between patient characteristics and 

costs following medical treatment.  This helps health care administrators and 

clinicians make decisions when resources are limited.  In order to do this, health 

economists frequently use multiple regression models to determine these 

associations. These methods can allow inter-institutional comparisons of the cost of 

treatment, predicting the impact of new interventions, and to evaluate the 

                                                           

 

11
 Invariance in this circumstance refers to the idea that values of item response parameters should 

be identical for different groups of respondents.  162. Galdin M, Laurencelle L. Assessing 

parameter invariance in item response theory's logistic two item parameter model: a monte carlo 

investigation. Tutorials in Quatitative Methods for Psychology. 2010;6(2):39-51. 
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relationship between certain constructs such as socio-economic status and methods 

of care delivery.  

Types of data 

The success of any econometric analysis depends on the available data.  Generally 

three types of data can be used for empirical analysis: time series, cross-sectional, 

and pooled data.  Time series data is a set of observations for variables that occur 

over time.  Cross-sectional data are data on one or more variables collected at the 

same point in time.  Pooled data generally contain elements of both time series and 

cross-sectional data.  Panel data and longitudinal data are types of pooled data.  

Panel data generally consists of multiple observations over time for the same 

groups/individuals.  Longitudinal data involves collecting repeated observations over 

time and can be cross-sectional, cohort, or panel data.  

This data can be quantitative or qualitative. Quantitative data is generally 

categorized by being discrete or continuous.  Discrete data can only take specific 

numerical values (i.e. number of siblings or shoe size) whereas continuous data can 

take any numerical value (i.e. mass or distance).  Categorical data can be nominal 

(no order in categories), ordinal (order in categories) or binomial (two categories). 

Qualitative data (i.e. eye colour, place of birth, etc.) can sometimes be transformed 

into quantitative data to aid in statistical analysis by creating binomial data out of a 

categorical variable (i.e. a patient has blue eyes or not).  

While useful tools, there are no agreed upon gold standards for regression 

techniques.  Certain models can be ruled out due to the nature of the data collected.  

As the data for this thesis is longitudinal data, with both categorical and continuous 
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data, the rest of this section will focus on the methods used when analysing 

longitudinal cost and health care data (Generalised Linear Models (GLM) and 

General Equilibrium Equations (GEE)).  

Ordinary Least Squares 

OLS Linear regression using OLS estimation can be used to determine associations 

between patient characteristics and costs.  A simple linear regression model can be 

described as 

  XY  where ),0(~ 2 N  (1) 

Assuming that E[ε] = 0 and that var[ε] =
2 , OLS results in an unbiased estimation of 

Beta. OLS estimates also achieve minimum variance of the linear unbiased 

estimators under the Gauss-Markov theorem. (163) Another advantage of using 

linear regression is that the model is additive, with the regression coefficients being 

interpretable as an increase in cost for a one unit increase in the predictor variable. 

However, for hypothesis testing and testing the statistical significance of the 

regression coefficients, the error terms must be normally distributed.  As cost data is 

usually positively skewed and subject to outliers, the distribution of error terms tends 

to be positively skewed, as opposed to normal, therefore the inferences made from 

the significance of the regression coefficients will be biased. (164) 

One method often used to overcome the positive skew of cost data is to use a log 

transformation.  This often tends to normalise the distribution of costs, therefore 

satisfying the distributional assumptions of a linear regression and therefore allowing 

valid statistical inferences to be made of the regressors. One of the major 
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drawbacks of using this method is that the model is interpreted on a multiplicative 

scale with regression coefficients being the logarithm of the relative or proportional 

change in median cost with each unit increase in the predictor variable. Interpreting 

the relative change in median cost is difficult to interpret.   

Median regression is commonly used to model data that have a skewed distribution 

or subject to outliers. This method contrasts with linear regression as it uses the 

median cost instead of the mean cost as a function of patient characteristics. As 

such, median regression is less sensitive to outliers than OLS regression, and 

therefore the data does not have to have a normal distribution. Regression 

coefficients can be interpreted as the change in median cost in relation to a unit 

change in the predictor variable. (164)  

Generalised linear models 

Generalised linear models are a more flexible generalisation of OLS models. The 

generalisation is brought about by allowing the linear model to be related to the 

response variables via a linking function and by allowing the variance of each 

measurement to be a function of its predicted value. (165)A detailed technical 

discussion of GLMs can be found in McCullagh and Nelder (166).  Under GLM 

assumptions, the dependent variable, Y, is generated from a distribution function 

(i.e. normal, binomial, Poisson, etc.). The independent variables determine the 

distribution of the mean, µ, thus:  

)()( 1  XgYE    (2) 
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where E(Y) is the expected value of Y; Xβ is the linear predictor, and g is the link 

function.  The unknown parameters, β, are typically estimated using maximum 

likelihood methods or Bayesian techniques.  (163) 

The maximum likelihood method uses an iterative re-weighted least squares 

algorithm to come up with estimates.  However this method can be prone to bias if a 

small sample is used. (167)  Bayesian methods are used when the posterior 

distribution is approximated using a prior (observed) distribution.  This method will 

usually use techniques such as Markov chain Monte Carlo (MCMC) simulation or 

Gibbs sampling in order to find the estimates. 

GLM with a logarithmic link function has been tested for analysing non-negative 

continuous outcomes that are subject to skewness (cost data, for example). (168, 

169) In 2003, Austin et al (170) analysed the determinants of cost in CABG therapy.  

The authors compared the performance of linear regression, linear regression with 

log-transformed cost, generalised linear models with Poisson, negative binomial and 

gamma distributions, median regression, and proportional hazards models.  The 

authors found 'structural sensitivity', that is, that without a gold standard for model 

structure any model could be useful for identifying factors that are associated with 

increased costs, but the models differ in terms of assessing the magnitude of effect 

on cost for a given variable.  The authors found the additive models were the easiest 

to interpret and the GLMs were best at predicting the risk-adjusted costs for the next 

patient admitted for surgery. 

Generalised estimating equations models 
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In their 2006 textbook, Hedeker and Gibbons (160) argue that because GLM models 

are fixed effects models that assume observations are independent of each other, 

they are not appropriate for longitudinal data analysis. The authors suggest that 

extending GLM models to account for correlation that is often inherent in longitudinal 

data would be a more appropriate tool.  Liang and Zeger (171) did this in 1986 when 

developing GEE models.   

A basic feature of GEE models is that it is only the marginal distribution of yij (where 

i = individual subject) at each time point (j) that needs to be specified.  In other 

words, GEE models assume that yi1 and yi2 are two univariate normals, rather than 

assuming yi1 and yi2 form a joint normal distribution. Another key feature is that GEE 

models treat the covariance structure of the longitudinal data as a nuisance, and 

instead focus directly on the regression of y on X. This means that even with a 

misspecification of the variance structure, GEE models yield a consistent, normal 

solution for the regression coefficients β.  

Similarly to GLM models, a linear predictor is specified (ηst = x′st β) where x′st  is the 

covariate vector for subject s at time t.  Then a link function is chosen (g(μst)= ηst).  

Common link functions include identity, logit, and log link for continuous, binary, and 

count data, respectively.  Identity link functions assume a like for like replacement, 

logit links assume the probability of the response being a “yes”, and log links return 

the natural log of the data. (160) The variance is then a function of the mean (

)()( stst vyV  ) where )( stv  is a known variance function and ϕ is a scale 

parameter that can either be known or estimated.  
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The final specification in a GEE model is for the correlation structure of the repeated 

measures.  The “working” correlation matrix is the size n x n as the assumption is 

that there are a fixed number of time points n at which subjects are measured. 

However, a useful feature of GEE is that a given subject does not need to be 

measured at every time point.  Each subjects correlation matrix, Ri is the size ni x ni 

with the appropriate rows and columns removed if there are missing observations. It 

is assumed that Ri depends on a vector of association parameters, α, where α is 

assumed to be the same for all subjects, therefore representing the average 

dependence across all subjects.  

Choosing a form for the correlation structure should be consistent with the observed 

correlations, however it does not have to be.  While GEE allows for misspecification, 

it loses statistical power (efficiency) if the choice is incorrect. Typical correlation 

structures are detailed below where Ri (α) is the correlation matrix that is specified 

by the vector of parameters (α); s = subject and t= time ( ts  = for all s and t) : 

 Identity matrix: Ri (α) = I, 

 Exchangeable correlation: corr (Yis Yit) = α; ts . 

So that the correlation matrix for ith individual is defined as Ri (α) = corr (Yis Yit) = α; 

ts . 

 Autoregressive correlation: corr(Yis Yit ) = α| s – t |; ts . Here, α is a correlation 

value and thus a fraction. So, in this type of correlation, we consider that for all t > k, 

α| s – t |> α| s – k | Then the correlation matrix can be defined as (Ri (α)) = corr(Yis Yit ) = 

α| s – t |; ts . 
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 Unstructured or Pairwise Correlation: corr (Yis Yit) = αst ; ts . The correlation 

matrix can be written as (Ri (α)) = corr (Yis Yit) = αst; ts  where, αs,s+1 = αs+1,s ; s = 1, 

2,…..,T 

Solving GEE involves iterating between the quasi-likelihood solution for estimating β 

and a robust method for estimating α as a function of β. The following steps are 

repeated until convergence achieved:  

1. With given estimates of )(iR  and  , calculate estimates of   using 

iteratively reweighted least squares where iterative estimates of   are used to yield 

new estimates of  .  

2. With given estimates of  , obtain estimates of α and  .  To do this, Pearson 

residuals are calculated ttststst Vyr )]ö([/)ö(  , which are then used to 

consistently estimate α and  .   

Upon convergence, hypothesis testing and confidence intervals are constructed by 

obtaining the standard errors associated with the estimated regression coefficient. 

The standard errors are obtained by taking the square root of the diagonal elements 

of the variance matrix. (160)  

GEE models are useful for longitudinal data as various types of data can be used to 

estimate the impact of covariants and the structure of the variance-covariance 

matrix is not as critical as in other models. However, it is not a useful method if there 

is interest in the variance-covariance structure. GEE also makes the somewhat 

restrictive assumption that missing data are missing completely at random.  This 
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may not be appropriate for all data sets. However, using Bayesian extensions to the 

GLM approach can get around this problem. (160)    

Conclusions 

Despite several limitations, cost-of-illness studies are used to inform decisions or at 

least to highlight the magnitude of the financial impact of diseases on the health 

budget. (30) The methods to gather information on costs and to analyse the cost 

data should be explicit to enable a reader to determine the strengths and 

weaknesses of the study, as well as if the study results are applicable to their 

circumstance.  

For the COI in this study, all direct and indirect hospital-related costs to the English 

NHS will be collected for all registered CF patients in the east of England.  A SumAll 

method of cost collection will be used, but with no health population control group for 

comparison. This method is appropriate for CF as non-CF related medical costs are 

likely to be minimal. Once estimates of costs for each patient are calculated, an 

econometric investigation into the drivers of costs will be undertaken.  Descriptive 

statistics of cost and key demographic and clinical data will be presented for each 

calendar year. Given the nature of the data (time-series panel data where not all 

individuals are in the model the whole time), GEE models will be used to identify 

relationships between the various demographic and health variables and total cost 

per patient.   

Economic Evaluation Methodologies  

Cost-effectiveness Analysis 

Cost-effectiveness Analysis (CEA) is a form of full economic evaluation in which 

both the costs and the benefits of a health intervention or programme are analysed 



 

 

 

124 

 

 

in comparison with an alternative programme with the same purpose. CEA is most 

useful in situations in which a decision maker has a limited range of options within a 

given area on which to spend a given budget.  

One of the most important decisions to make when carrying out a CEA is what 

measure of effectiveness should be used.  For example, if someone is looking at a 

newborn screening programme, it may be of interest to look at how many cases are 

being detected.   

However, screening programmes are generally put in place to reduce morbidity and 

mortality, and 'cases detected' would not necessarily give an accurate measure of 

outcome. In this case, a life-years saved approach may be more appropriate, but it 

would still not account for morbidity. It is for these reasons that cost-utility analyses 

(CUA) are gaining in popularity, as the QALY measure is able to incorporate 

information on length of life and quality of life changes. However, sometimes the 

question needing to be answered lends itself to the use of CEA and it is important to 

capture a useful effectiveness measure.  

Examining cost-effectiveness data sources 

Finding useful and good quality effectiveness data, however, can be problematic. A 

major source of effectiveness data is published medical literature. This data raises 

issues of quality (especially freedom from bias and precision of estimates), 

relevance, and comprehensiveness. Guyatt et al (96) and the Cochrane 

Collaboration (40) both offer guidance on checking the quality and robustness of 

effectiveness data. Drummond (1) suggests that probably the most important aspect 

of study design is to choose the study design that minimises selection bias, which 
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can be true if a random allocation of patients into treatment groups has taken place. 

The 'worst' most biased evidence would come from case-series data with no 

controls.   

However, it is often the case that even the 'best' source of evidence may not have 

everything necessary for an evaluation, and therefore other sources of evidence are 

needed. In many cases, clinical trial evidence does not exist or not in sufficient 

numbers to provide a precise result, and therefore other sources of evidence are the 

best possible sources of data (e.g. expert opinion).  

A final issue to consider when judging effectiveness data is the comprehensiveness. 

Freemantle and Maynard (172) and Coyle and Lee (173) argue that not using all the 

available evidence can lead to changes in the final outcome of the analysis. One 

method of ensuring a comprehensive data set is to carry out a systematic review.  

Systematic reviews use various methodological principles (inclusion/exclusion 

criteria, search techniques, clinical details, statistical procedures, sensitivity 

analysis, etc.) to collect the most robust and relevant evidence from the published 

literature.  

In situations where there is no good clinical evidence available, assumptions can be 

made on clinical evidence, and then undertaking sensitivity analysis of the economic 

results using different assumptions.  In theory, this should yield information about 

whether the final result is sensitive to an estimate used in the analysis.  (37)  

Incremental cost-effectiveness ratios 
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The most common approach to presenting the results of a CEA is in terms of the 

incremental cost-effectiveness ratio (ICER).  The ICER allows a comparison 

between two or more health interventions.  It is calculated by the simple formula:  

)/()( 2121 EECC   or EC  /  

or the change in costs divided by the change in effect. This shows how much we are 

paying for each additional outcome. ICERs are often illustrated on a cost 

effectiveness plane.  Many interventions when compared to standard care fall in the 

northeast quadrant, as they increase cost, but also effectiveness. However, it is 

often the case that one intervention will dominate another.  This occurs when it is 

both more effective and less costly than its comparator. If multiple interventions are 

being compared, there is the possibility of extended dominance.  This occurs when 

a treatment‟s ICER is higher than that of the next, more effective, alternative. In 

order for a programme to be considered „cost-effective‟, the ICER must fall below a 

certain threshold that is dependent upon a budget constraint. If the intervention lies 

above this threshold, then it is considered not „cost-effective‟. (1) 

There are generally two schools of thought on how to set the threshold.  One 

method assumes a fixed budget constraint, and sets a threshold that would 

maximise efficiency (i.e. health gains). Each health care programme would be 

included if it had an ICER below that threshold, and programmes would be replaced 

by more efficient ones as technology develops. The second method would assume 

that the threshold should represent some intrinsic social valuation of a QALY 

compared with anything else we want (willingness-to-pay). Using a societal 

willingness-to-pay threshold assumes that there is a flexible budget constraint, as it 
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implies that every intervention with an ICER below the societal WTP for a QALY (or 

LYG, etc.) should be financed.  This approach requires decision makers to know 

what the societal value of a QALY, which can be problematic. Even if a context-

specific societal WTP per QALY was used, the method runs a risk of reaching 

untenable budget requirements. Using previous decision as a benchmark for 

identifying the societal WTP for a QALY is an alternative method, but given 

decisions are generally context-specific, this method may produce misleading 

results. (174) 

In the UK, the National Institutes of Clinical Excellence have used a relatively 

arbitrary £20,000-£30,000 per QALY as a threshold for many years.  Other countries 

use similar figures (i.e. $50,000 per QALY in the US).  However, until recently, there 

has been little empirical evidence that these figures are correct. (175) In 2011, 

Donaldson et al (176) published research carried out in the UK on the social value of 

the QALY.  The authors used two methods to determine what the threshold for the 

ICER should be.  The first method modelled the current UK value of a prevented 

fatality used in transport policy combined with data on fatality age, life expectancy, 

and age-related quality of life.  The second method used surveys to combine 

respondents‟ answers to willingness to pay and health state utility questions to 

calculate the social value of a QALY.  The modelling methods yielded results 

between £10-70,000 per QALY, while the survey research resulted in a value of 

£18-40,000 for a QALY.  The authors concluded that the research did not provide 

“compelling” evidence that the NICE threshold should be changed in any way.   

The ICER itself does cause some problems when analysing data.  One reason is 

that the ICER does not tell anything about the size or scope of the interventions 



 

 

 

128 

 

 

under considerations.  The second is that the ICER presents some statistical 

difficulties.  One of those difficulties relates to the issue of negative ICERs, that is, 

when the comparison yields positive effects, but negative costs, or vice versa.  The 

problem with this is that the ICER point estimate could be in the northwest or the 

southeast quadrant of the cost-effectiveness plane.  From a deterministic analysis 

standpoint, this is not necessarily a problem as it is clear which quadrant the ICER is 

in.   

However, the uncertainty around the point estimate could span more than one 

quadrant. Another issue with the ICER is if the change in effects is zero.  This 

causes the ratio to be infinite.  Again, this may not be a problem for deterministic 

analysis, as one intervention is likely to dominate in terms of cost. Again, the 

uncertainty surrounding the point estimate causes problems as the effects could be 

negative, meaning there is no way to determine the variance of the ratio.  Finally, as 

a ratio statistic, the ICER is not easy to use as a dependent variable in regression 

analysis. This can hamper efforts to adjust for confounding variables. (1) 

One method that is often advocated for circumventing the problems associated with 

exploring the variability in the ICER is non-parametric bootstrapping. This method 

ignores assumptions about the underlying distribution in the ICER, and instead re-

samples the original data to obtain an empirical estimate of the sampling distribution 

of the ICER. The first step of this process is to draw a sample from the original 

observations from the „treatment group‟ and a sample from the original observations 

of the „control‟ group. The bootstrapped ICER is then calculated.  These steps are 

then repeated a large number of times to empirically estimate a sampling distribution 

of the ICER.  (177) 
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Another method is to avoid using the ICER altogether and adopt a net benefits 

approach.  This approach does not use a ratio, and instead places both costs and 

benefits on a single scale (net monetary benefit (NMB) or net health benefit (NHB)). 

The net benefit is calculated by changing the difference in effects into a monetary 

value using a threshold willingness-to-pay for a unit of effect. The difference in costs 

between the interventions is then subtracted from this value. As the threshold value 

is rarely known in reality, it is common to present the NMB as a function of the 

threshold ratio.  NMB is zero when the ICER is equal to the threshold ratio. (1) 

Decision Analytic Modelling 

As mentioned before, economic evaluation evidence comes from various sources.  

One of the most powerful tools in health economics are decision analytic models. 

This tool aims to bring all different types of evidence together for use in attempting 

to solve the particular problem the decision maker is facing.  Decision analytic 

modelling has theoretical foundations in statistical decision theory, expected utility 

theory, and Bayesian statistics.  As a method, it  

 provides a structured framework which takes into account uncertainty,   

 can accurately reflect patient pathways through an intervention,  

 makes use of all evidence available,  

 translates evidence into estimates of costs and effects (for CEAs, CUAs, 

and CBAs), 

 enables uncertainty analysis, 

 can identify priorities for future research. 
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Of course, to do all these things accurately, a modeller needs to ensure that all 

relevant options are considered, that all evidence has been gathered, and that any 

intermediate outcomes are linked to their final endpoints. It is also important to 

determine the relevant time horizon for the evaluation.  Trial data rarely follows up 

patients long-term, and therefore, if the question is about long term effects, then 

certain methods of survival analysis will be necessary to extrapolate the time 

horizon beyond available data. Finally, it is important to make the results applicable 

to the decision making context.  This seems obvious, but it is often the case that the 

evidence available does not necessarily translate into the relevant decision 

question. The use of decision models can translate existing evidence into data that 

can help inform the relevant policy decision. (37) 

There are two key elements to decision analysis: probabilities and expected values.  

Probabilities are generally thought of as a number that indicates whether an event 

will or will not happen.   Joint probability refers to the probability of two events 

occurring at the same time.  Conditional probability refers to the likelihood that one 

event will happen given another event has already occurred. Whereas 

independence refers to the fact that two events are unrelated.  

Expected values, on the other hand, are the expected costs and outcome of each 

possible pathway a patient takes in an analysis.  For example, a patient can have a 

surgical procedure or a medicinal intervention.  At the end of each of those paths 

lies an expected outcome and associated costs.  Expected costs are those of the 

intervention plus the therapy weighted by the probability of the patient following each 

pathway. Using this approach, incremental analysis can be undertaken.  
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Developing a Decision Model 

As with any scientific method, the first stage of developing a decision model is to 

determine the question. For example, it is important to identify the relevant patient 

groups, relevant treatments, and time horizon, to name a few considerations. As all 

models are simplifications of reality, it is important to explicitly state the boundaries 

and assumptions surrounding the model.  

Determining the structure of the model is a key stage of development.  Most 

economic evaluations of health technologies require different types of model 

structure given the nature of the condition.  For example, do events occur once or 

are they recurring? Is there more than one type of adverse event under 

consideration? Are probabilities stable over time, or do they change?  

There are several different model structures available to overcome these problems.  

Two of the most commonly occurring methods are the decision tree and the Markov 

model.  

Decision trees 

Decision trees allow a modeller to present individuals‟ prognosis following an 

intervention along a series of pathways. Figure 3.3 illustrates a simple graphical 

example of a decision tree. Normal notation used for decision trees shows decision 

nodes as square boxes.  These represent the decision being addressed by the 

model (i.e. to screen or not). Chance nodes, represented by circles, illustrate all the 

possible events that may happen to a patient after the intervention. These nodes 

represent areas of uncertainty. The branches all have associated probabilities.  



 

 

 

132 

 

 

These probabilities determine the likelihood that a patient would travel down this 

branch and experience the corresponding event. The pathways along which a 

patient travels are usually assumed to be mutually exclusive.  Each pathway has a 

probability that is calculated by multiplying the initial branch probability by 

subsequent conditional probabilities (the probabilities that certain events occurred). 

All branch probabilities belonging to an intervention should sum to one. (37) 

Figure 3.3: Sample decision tree 

 

 

Each pathway in the tree also has costs (and benefits) associated with it. The costs 

associated with each pathway are the sum of costs for each event the patient 

passes through along the path. The expected cost is calculated by weighting each 

pathway cost by the pathway probability and then summing across all the pathways. 

The same method can be used to determine the benefits of the intervention. (37) 
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Decision trees, while common, do have limitations. Inherently, decision trees are 

static.  In other words, they assume that the intervention takes place in a discrete 

period and do not include a time element. This is a significant limitation when trying 

to adjust survival duration for QALY analysis. However, some decision trees can 

include a time element through the use of Markov processes and tunnel states (for 

more on these techniques, see below and see Briggs et al (37)) Even when using 

these methods, however, it is difficult to account for patient „history‟ as they move 

through the model over time. Another major limitation of decision trees is that they 

can become unwieldy when used to assess complex diseases, especially chronic 

diseases. For example, when modelling a cancer intervention, there are many 

possibilities for adverse events, and each would require its own pathway, likely with 

several pathways relating to the timing of events, creating a „bushy‟ model structure 

that is time consuming to develop and to analyse.  

Markov Models 

Markov models were developed to tackle some of the weaknesses of the decision 

tree.  Unlike the branch structure of decision trees, Markov models are based 

around health states.  Time elapses in a Markov model, and the health state a 

patient occupies is determined probabilistically given a discrete period of time (a 

cycle). Cycle length is determined by the disease in question and the time period 

under investigation. Each state has corresponding costs and benefits and therefore 

expected costs and benefits can be calculated.   The timing of patients moving from 

one health state is determined by transition probabilities. Transition probabilities can 

be calculated from the counts of individuals that move between health states in a 

given period (e.g. a year). These probabilities can be static or change over time.  
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The methods of calculating costs and benefits is similar to that of a decision tree, 

except that the weights are associated with the length of time patients spend in a 

certain health state. (37) 

It is often the case that Markov models are embedded within a decision tree.  This 

usually occurs when there is a discrete decision that can lead to long-term recurring 

events.  However, it may be the case that a Markov model is not suitable for some 

prognoses. For example, Markov models are memory-less, that is, the nature of 

transition from one state to another does not depend on earlier transitions. This is 

difficult to justify in many chronic disease states (for example, in HIV, a previous 

sickness can further immunocompromise an individual, leading to a worse state in 

the near future).  Sometimes, this can be overcome by adding states to the model.  

However, this can lead to a “bushy” model.  

An alternative to the decision tree and the Markov models is to run a micro 

simulation or individual sampling model.  Unlike decision trees and Markov models 

which use cohorts to analyse decisions, the micro simulation method uses individual 

patients, and tracks the patient‟s costs and benefits throughout the different states 

over time.  This type of model has the advantage of retaining a „memory‟ for each 

patient, and therefore offer greater flexibility over cohort models. (178) (179) 

However, these models are often computationally taxing, especially when additional 

probabilistic sensitivity analysis (PSA) is undertaken.  

Dealing with uncertainty 
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There are various types of uncertainty that exist when carrying out economic 

evaluation. In terms of decision analysis, parameter and structural uncertainty are 

two major concerns.   

Parameter uncertainty refers to the uncertainty surrounding the inputs into the 

model.  This springs from the fact that measurements based on sampled date are 

estimated imprecisely. Generally, parameter uncertainty has been dealt with by 

using standard sensitivity analysis.  This meant varying certain parameters and 

determining the effect on the model‟s results.  This method is limited, as it will only 

allow for one, or perhaps a handful, of inputs to be varied at one time.  The results of 

which are often difficult to interpret and do not provide an overall picture of 

parameter uncertainty.  There is also no summary measure of uncertainty that can 

be communicated to decision makers. (37) 

In light of these limitations, probabilistic sensitivity analysis (PSA ) was developed.  

PSA allows an analyst to use probability distributions to reflect the different types of 

inputs.  Secondly, PSA allows a study of the uncertainty in all of the input 

parameters simultaneously.  This is often done by running a Monte Carlo simulation 

where the model is run a large number of times to gather a large number of sets of 

expected costs and effects.  The distribution reflects the parameter uncertainty in 

the model. Finally, PSA allows confidence intervals around the outputs (ICER, or 

incremental net benefit) of the models.  These are often presented as cost-

effectiveness acceptability curves (CEACs) or by a scatter-plot of the simulations on 

a cost-effectiveness plane. (1, 37) 
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Investigation of structural uncertainty involves assessing whether the model 

specification is likely to be the best one, and the assumptions used to build the 

model are in fact sensible. One method of assessing this is by carrying out PSA 

which would weight each assumption relative to its plausibility.  This is often called 

model averaging. (180) Another is by running multiple models and changing the 

baseline assumptions, often referred to as scenario analysis. Dealing with structural 

uncertainty is not necessarily straightforward. In 2006, Laura Bojke (181) conducted 

a review of decision analytic models used in Health Technology Appraisals to look at 

the methods used to address structural uncertainty. The author found that only 

scenario analysis had been undertaken, which was argued to leave the decision 

maker with a choice of multiple models without knowing what the “true” situation is 

likely to be.   This is an area that needs further research but is beyond the scope of 

this thesis.  

Conclusions 

 

Despite several limitations, current methods of economic evaluation using decision 

analytic modelling are used for informing decisions.  It is important when reporting 

methods and results of economic evaluations that researchers are as explicit as 

possible to enable future researchers as well as decision makers understand the 

strengths and weaknesses of the study.  

For the CEA in this study, a discrete simulation model will be built, using Markov 

processes to allow the tracing of individuals over time as they move through the 

model. This model also allows for probabilistic analysis as well as an investigation of 
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uncertainty around the estimates.  Results will be presented in terms of cost per 

QALY as well as the net marginal benefit of screening versus not screening.   
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Chapter 4: Cost of Illness  

Introduction 

The analysis was initiated to analyse the cost of caring for paediatric cystic fibrosis 

in the east of England. The analysis is a retrospective longitudinal study of the costs 

of tertiary cystic fibrosis care in the region. As mentioned in Chapter 3, a well-

designed cost-of-illness study not only provides important information on the burden 

of disease, but also where costs occur, what influences costs, and how they vary.  

The perspective of the study is from the NHS in the east of England.  The analysis 

takes a bottom-up, prevalence based approach, using data gathered from the 

ERCFD and participating hospitals on paediatric patients with cystic fibrosis and 

national unit costs to estimate the cost of illness.  

Methods 

Study Population  

Patients were recruited as part of a clinical and economics audit of the local clinical 

network at clinical centres in six counties in the East of England (Norfolk, Suffolk, 

Cambridgeshire, Essex, Hertfordshire, and Bedfordshire). Hospitals were invited to 

participate in the study if they cared for paediatric cystic fibrosis patients. All 

paediatric CF patients identified by the hospitals were invited to become part of the 

study and consent was taken by the consultant physician prior to inclusion. Data 

collection began in January 2009 and continued until December 2009.  

Eastern Region Cystic Fibrosis Database (ERCFD) 

Background 
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In 1998, the East Anglian CF Network12 (see Figure 4.1 for a map of participating 

hospitals) created the ERCFD in order to achieve uniformity of care across the 

region and to monitor the health status and service delivery within the region 

(Bedfordshire, Cambridgeshire, Essex, Hertfordshire, Norfolk, Suffolk).  A regional 

database was designed to collect routine clinical data from patient notes.  The 

information was then disseminated to clinics across the region. The network 

originally hoped to collect data on an ongoing basis; however, financial constraints 

have only allowed data to be collected for 1998 and again in 2004, 2005, 2006 and 

2007 for Cambridgeshire, Norfolk, and Suffolk. Data from this database was also 

routinely fed into the UK CF database and will be fed into the new national CF 

Registry when it comes online.  

Objectives of the ERCFD 

The objectives of the ERCFD are: 

 To obtain longitudinal data on the health care status of children with CF 

 To monitor and audit the provision of NHS services for children with CF 

throughout the Eastern Region 

 To assess future service needs. 

Data collection 

                                                           

 

12
 The East Anglian CF Network is a clinical network of health professionals in Cambridgeshire, 

Norfolk and Suffolk that have an interest in Cystic Fibrosis care.  The network aims to standardise 

quality of care across the region and meet regularly for professional development and exchange 

clinical information and experiences.  
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Data was collected by James Jarrett, Julia Leigh-Smith and Fiona MacLean13 from 

patient notes and annual review reports. Data on clinical and patient characteristics 

was collected in 1998 and then again in 2004, 2005, 2006, 2007. Appendix D shows 

the data collection sheet which was entered directly into the database. Any contact a 

patient had with the hospital was recorded as well as any drugs prescribed in 

Microsoft Access (182) database.  

The database collects routine clinical and resource use data from all hospitals which 

care for paediatric CF patients on a regular basis within Cambridgeshire, Norfolk, 

and Suffolk.  Figure 4.1 is a map of the region with the hospitals marked.  The only 

Specialist CF centre in the region is Addenbrooke‟s Hospital, in Cambridge (marked 

by a cross in Figure 4.1).  The other hospitals that care for paediatric CF patients in 

the region are Hinchingbrooke Hospital in Huntingdon, the Edith Cavell Hospital in 

Peterborough, the Queen Elizabeth Hospital in Kings Lynn, the Norfolk and Norwich 

University Hospital in Norwich, the James Paget Hospital in Great Yarmouth, the 

Ipswich Hospital in Ipswich, and the West Suffolk Hospital in Bury St. Edmunds 

The clinical outcomes for assessment of severity and analysis of factors affecting 

cost that were used in the study were periods of hospitalisation, number of clinic 

visits, body mass index (BMI), weight for height, number of positive sputums for 

Pseudomonas aeruginosa (PA), Staphylococcus aureus (SA), and any other 

infections (i.e. aspergillus) and banding.  Information was also collected on the 

                                                           

 

13
 JLS and FM were employed by Addenbrooke‟s Hospital to collect data for annual review 

for audit purposes for Norfolk, Suffolk and Cambridgeshire 
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patient‟s age, sex, genotype (if available), method of diagnosis (screened vs. 

clinical), and whether or not they were cared for in a specialist centre or had a 

shared care arrangement. Where necessary (in 2007, some patients already had 

bands assigned to them by their clinical teams) a retrospective banding exercise 

was undertaken by JJ based on the CF Trust suggested bands using the clinical and 

resource use information gathered from the ERCFD. The banding of the patients 

was verified by Dr. Richard Iles, consultant paediatrician at Addenbrooke‟s Hospital.   

Figure 4.1: Map of hospitals participating in the ERCFD  

(Specialist Centre marked with a cross) 
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Previous ERCFD findings 

An in-depth analysis was undertaken on the 1998 data. (183) The authors of that 

study found that in general, the health status of paediatric CF patients within the 

region was similar to the national averages. They also suggested that patients have 

decent access to local CF clinical care resources, either directly or through shared 

care arrangements with another hospital.  However, they found that those patients 

attending clinics serving less than 10 patients may be disadvantaged by not having 

a local CF team or community support. The study also found that the frequency of 

monitoring procedures as well as the availability of community care, social workers 

and psychologists varied across the region.  While the effect of these factors on 

health status was not examined in detail, the authors suggested that any health 

effects should be investigated further to ensure the best pattern of care.  The 

authors also mention that the lack of patients in the district hospitals make it difficult 

to justify creating specialist centres in all hospitals in the region. 

Resource use 

Direct costs included those for hospital care, outpatient care, and pharmaceuticals. 

Data on hospital care was recorded in the database in terms of the number of bed 

days in a hospital ward and the type of admission. Outpatient care consisted of clinic 

visits. A clinic visit typically consists of seeing the specialist CF team which includes 

a consultant physician, specialist nurse, nutritionist, physiotherapist, and 

psychologist. However, non-specialist centres typically only consist of a consultant 

physician, and a specialist nurse. 

Costing  

A prevalence-based costing model was applied to estimate the costs of caring for 

paediatric cystic fibrosis patients in the east of England. An NHS perspective was 
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taken, and the following cost components were included for each child with CF in 

1998, 2004, 2005, 2006 and 2007: inpatient care, outpatient care (including clinics), 

and drug costs. Unit costs for drugs were derived from the British National 

Formulary for children. (184) Intangible costs were not measured. As the study is 

from an NHS perspective, productivity costs (such as parental time and loss of 

schooling) were also not considered. Cost data was adjusted to 2010 prices using 

the consumer price index to adjust the prices over time. As banding tariffs were not 

proposed until the end of 2007, previous tariffs for paediatric services were used in 

the initial analysis, with a subsequent analysis using the banded tariffs for each 

patient.  A discussion of the implications of these changes is in chapter 6.  

Direct costs were estimated by combining the resource use data collected for each 

year with a unit cost for England from national reference cost lists following a 

general costing formula: 

             

 

   

  

 

   

                             

where i is the ith individual (i = 1, ... n) and r is the rth service received or resource 

used (r = 1, ... n).   

Statistical analysis 

Descriptive statistics (frequency, arithmetic mean, standard deviation, and median) 

of cost and key demographic and clinical data are presented for each year. 

Histograms were made to allow for a visual analysis of the distribution of key 

variables (such as cost).  Box plot diagrams were analysed to see if there are any 

significant changes in cost over time for various demographic and clinical indicators. 
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To find a distribution that fits the total cost data, the software @Risk (which is an 

extension of Excel) was used to test the best fit using the Chi-Square Statistic.  

There are many different types of regression analysis, none of which are presumed 

to be a gold standard. Initially, a simple linear regression using backward steps (i.e. 

removing insignificant variables from each consecutive model) will be used on the 

baseline (1998) data to identify potential variables for the longitudinal analysis. For 

the longitudinal analysis, I have chosen to use generalized estimating equation 

(GEE) models. As discussed in Chapter 3, GEE models are useful for analysing 

data that is highly correlated and for data where respondents do not have responses 

for some time periods.  Given that disease severity is likely to have a direct 

correlation on resource usage, this method seems to be appropriate.  

 I would hypothesize that age, shared care, and band (disease severity) would have 

a positive (increase) effect on cost.  As patients get older, their probability of getting 

more ill increases, and therefore a subsequent increase in resource use and cost of 

care would likely follow.  Although there is limited evidence, it seems likely that 

those patients who do not have regular access to a specialist team and receive their 

treatment in hospitals without a full complement of staff would be more likely to 

become ill, increasing the cost of care. I would fully expect that as a patient‟s 

disease becomes more severe and they move into the higher disease severity 

bands to be using the health service more frequently.   

I would also hypothesize that being screened, and having a better BMI and weight 

for height measures would have a negative (decrease) impact on costs.  Being 

identified early via screening enables health care professionals to use preventative 
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measures to ensure long-term health, and thus lower resource use in the long run.  

Similarly, a better nutritional status (BMI and weight for height) would indicate a 

healthier individual who would incur fewer costs.  

The dependent variable for the models was total annual cost per person. Depending 

on the outcome of the initial regression, the likely covariates considered, in addition 

to year, are listed below and are all baseline measurements:  

 Screened – categorical (yes or no)  

 Sex – categorical (Male, female) 

 Age – categorical  (<4 years, 4-8 years, 9-12 years, 13-17 years)  

 Shared care – categorical (yes or no) 

 Band – categorical (1,2,3,4,5) 

 Body mass index – continuous  

 Weight for Height (Z-scores) – continuous 

Model descriptions 

Baseline regression analysis 

The initial regression took the form of a linear backwards step regression.  The 

model assumed the relationship between total cost and the regressors is linear. This 

model takes the form 

iippii xxy   ...11       ,,...,1 ni   

Where i  is an unobserved random variable. As cost data is typically skewed the 

model will also be run with the natural log of costs. The backwards step regression 

takes out variables one or two at a time based on the F-test to create a model of 

“best-fit”.  

Generalised equilibrium equation models: identity and log link models with 

independent, exchangeable and unstructured correlation structures.  
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Using the variables identified by the initial regression, seven generalised equilibrium 

equation models were created. Each model carried out the same processes, but 

used different link, family and correlation structures that were outlined in chapter 3. 

For clarity, the process will be repeated again here:  

First a linear predictor is specified as 

 '

ijx
ij
  

Where ijx  is the covariate vector for subject i at time j. A link function is then chosen  

ijijg  )(  

with g representing the type of function (in this instance identity and log). The 

variance is described as the function of the mean,  

)()( ijij vyV   

Where )( stv 
 
is a known variance function and ϕ is a scale parameter.   GEE 

models use a quasi-likelihood approach to express the GEE for β, described by 

Liang and Zeger (171) as  

0)()]ˆ[()( 1
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and Vi is a working or approximate covariance matrix of Yi. The matrix can be 

expressed  

2121

)( iiii ARAV   

Where, Ai = diag[var(Yi1), ... , var(Yij)], and is a ni X ni diagonal matrix and α is a 

vector of parameters associated with a specified model for corr (Yi). This gives the 

estimating equations the form  




 
N

i

iiiii yVAXU
1

1 0)()(   (2) 

The final specification for the GEE model is the structure of the correlations. A 

discussion of the different types of the correlation of Y is in chapter 3. Three model 

correlation structures will be tested, independent, exchangeable, and unstructured.  

Independent correlation structures assume that the correlations have no relation to 

one another. Exchangeable correlations assume that all of the correlations in the 

repeated measures are the same, or “exchangeable.” In other words, all the 

correlations are equal. The third correlation structure tested assumes that the 

correlations are unstructured.  Given the regressions uses dummy, categorical, and 

continuous variables, it is important to take care when interpreting the results. For 

example, using the variable „band‟ as an independent variable assumes that 

someone in band 2 costs twice as much as someone in band 1.  To test the linear 

relationship between total cost and categorical variables like age group and band, 

pair-wise correlation tests will be undertaken.  The models were built and analysed 

using STATA 11. (185) 
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To estimate model fit, a quasi-likelihood under the independence model criterion, or 

“QIC” was used. (186) (187)This test is similar to the Akaike information criterion, 

which is widely used to determine model fit for GLM regressions, but takes into 

account the quasi-likelihood theories that underpin GEE models. The Akaike 

information criteria is given by 

            

where LL is the log likelihood and p is the number of parameters in the model.  The 

QIC is derived by making an adjustment to the above formula 

                         
       

where I is the independent covariance structure used to calculate the quasi-

likelihood and              and     is the inverse link function.  The    are the 

coefficient estimates and      is a robust variance estimator obtained by a working 

variance structure R.      is obtained under an assumption of an independence 

correlation structure. The lower the QIC, the better the model fit. If          
       

          , then a simplified version of QIC called QICu can be used.  

Results 

Study population 

Hospitals in Bedfordshire, Essex, and Hertfordshire declined to contribute to the 

study. Initial approaches to the hospitals in Bedfordshire, Essex, and Hertfordshire 

indicated that they would be willing to participate; however, after ethics approval was 

granted and project packs were sent to the consultants, the participating hospitals 
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either did not respond to enquiries from me, or declined to participate. The 

population of CF patients from those three counties would have allowed a “natural 

experiment” to take place as before 2007, they did not have routine newborn 

screening for CF. Also, there are no specialist centres in the three counties meaning 

the patients are all shared care patients with a majority of their care being carried 

out in London (where we did not seek ethics approval to gather information). As 

such, all results are from Cambridgeshire, Norfolk and Suffolk.  

Table 4.1 summarises the study population results by year. The population at 

baseline (1998) was 170 patients.  However, there were no significant demographic 

differences between the populations over time. The number of patients over time 

has been relatively stable, with new patients replacing those who transfer into adult 

care or die. However, there seems to be a dip in the number of patients in 2004.  It 

is unclear why this has occurred, though the population measures are similar to the 

other years.  Mean age for each year group was stable at approximately 8 years old 

and the sex ratio was similar over the time studied.  The majority of patients were in 

some form of shared care and most of the patients in Norfolk, Suffolk, and 

Cambridgeshire were identified using newborn screening (132 patients compared to 

38 clinically diagnosed patients).  The unscreened patients in the region were either 

identified at birth through meconium ileus (5) or presented with symptoms and were 

identified as CF cases. A few patients also moved into the area from areas that did 

not screen for CF. There was limited information on patient‟s genotypes, but the 

majority of those patients with information available were delta F508 homozygotes.  

There were no significant differences over time in terms of clinical outcomes (lung 

function, weight for height, number of infections). Median lung function as measured 
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by FEV1 percent predicted was in the upper 80‟s with an interquartile range (IQR) 

from 71-100 depending on the year.  Median weight for height measure has shown 

some (but not significant) improvement over time from baseline.  Median infections 

with Pseudomonas aeruginosa (PA) have not changed over time.  Infections of 

Staphylococcus aureus (SA) have fallen over time, while all other infections have 

stayed at the same median level with an IQR between 0-1 for SA, and 1-5 for other 

infections.   

In 2007, the CF trust released the first report from the national database(10).  The 

results from that report indicate that the population in this study are roughly 

representative of the national population though without having access to the data 

on the database, statistical checks cannot be made.  However, the age structure, 

median BMI, lung function, and genetic structure are presented in Box 4.1.  

Box 4.1: Comparison of national CF database statistics and ERCFD (2007) 

   Age Structure Nationally Eastern Region 

 
N Percent N Percent 

0 to 3 605 23% 40 23% 

4 to 7 621 23% 41 24% 

8 to 11 663 25% 47 27% 

12 to 15 773 29% 46 26% 

Median FEV1% Predicted 
   8-11 87% 
 

85% 
 12-15 82% 

 
83% 

 Delta F508 
Homozygotes 54% 

 
56% 
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Table 4.1: Population Characteristics 

  1998 2004 2005 2006 2007 

N 170 147 167 176 174 

Male 82 68 81 88 90 

Female 88 72 86 88 84 

Screened 160 (94%) 132 (89%) 148 (84%) 151(86%) 147 (85%) 

Not Screened 4 9 13 18 20 

Meconium Ileus* 6 6 6 7 7 

Delta F508 homozygotes** 21 (58%) 32 (57%) 41 (55%) 47 (58%) 45 (56%) 

Mean age (SD) 8 (5.1) 7.8 (4.3) 7.93 (4.7) 8 (4.7) 8.78 (4.5) 

Shared Care 144 (85%) 118 (80%) 132 (75%) 138 (78%) 135 (78%) 

Median FEV% Predicted (IQR) 87.05 (72.6-100.2) 85.4 (73-100) 87.4 (74.2-100.1) 87.2 (73-100.3) 84.5 (71.2-96) 

Median Weight for Height (IQR) 99.67 (57.3-163.3) 105.1 (74.7-164.1) 108.64 (73.7-221.1) 105.42 (69.9-100.3) 101.2 (66.2-160.4) 

Median Infections (IQR) 3.3 (2-5) 2.8 (2-3) 3.02 (2-3) 3.12 (2-4) 3 (2-3) 

Band 1 89 79 100 89 90 

Band 2 60 50 48 69 61 

Band 3 7 11 12 11 10 

Band 4 11 7 7 7 12 

Band 5 3 0 0 0 1 

+indicates a significant difference from baseline year (95% level) 
*Meconium Ileus patients are clinically diagnosed at birth 
** percentages represent percent of patients with genetic information available who are Delta F508 homozygotes 
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Data analysis 

Similar to the clinical and demographic data, there were no significant differences 

between years in terms of resource use or mean/median cost.  Table 4.2 lists the 

total and mean resource use in terms of the number of clinic visits and days spent in 

hospital by patients over the time period as well as the unit costs and source of 

information.  Table 4.3 shows mean and median costs broken down by clinic, 

hospital, drug and overall cost per patient per year. Confidence intervals at the 95% 

level and were bootstrapped.   

Table 4.2: Resource use and unit costs (£2010) 

Resource Use 

Year 

Total number of 
days in hospital 
(population mean) 

Difference in 
total days 
(from previous 
year) 

Total number of 
clinic visits 
(population mean) 

Difference  
in total 
visits (from 
previous 
year) 

1998 1512 (8.9) 
 

988 (5.8) 
 2004 1227 (8.3) -285 867 (5.9) -121 

2005 1534 (9.2) 307 988 (5.9 121 

2006 1346 (7.6) -188 1081 (6.1) 93 

2007 1328 (7.6) -18 1031 (5.9) -50 

Unit Costs (UK£)2010 Source 
 Clinic Visit 238.33 NHS Ref 
 Hospital Day 313.67 NHS Ref 
 Screening test 2.00 Addenbrooke‟s Finance  

Proposed Banding tariffs for paediatric CF (provisional tariffs in place post-2007) 

Paediatric Clinic 445.63 NHS Ref 
 Band 1 

 
542.02 NHS Ref 

 Band 2 
 

1,893.91 NHS Ref 
 Band 3 

 
2,276.79 NHS Ref 

 Band 4 
 

3,368.70 NHS Ref 
 Band 5 

 
1,269.77 NHS Ref 
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The total number of clinics increased over time, and the total number of days spent 

in hospital decreased, the changes are partly explained by changes in the number of 

children for whom data are recorded in each year. The mean number of clinic visits 

per child per year has remained relatively stable (between 5.8-6.1 clinic visits).The 

mean number of days spent in hospital on average has decreased slightly over time 

from 8.9 to 7.6. The increase (although not significant) in clinic visits is in line with 

good clinical practice, and the decrease in days spent in hospital is the preferred 

clinical outcome and is likely to reduce overall costs.  

Table 4.3 shows the mean and median costs of the entire population (not split by 

any clinical indicators) by year. Figures 4.2 through 4.5 give a graphical 

representation of the trend in mean costs over time.  Corresponding to the increase 

in clinic visits, mean and median clinic costs have increased over time, though not 

significantly. Median hospital costs have stayed at zero, meaning that over 50 

percent of patients did not have a stay in hospital during any one year. Mean 

hospital costs have decreased from £2784 per person at baseline, to £2389 in 2007.   

Drug costs have also increased, from a median cost of £1450 in 1998 to £1514 in 

2007. Mean drug costs have also increased from £1837 in 1998 to £2197 in 2007.  

This increase in drug costs is likely to be caused by more patients on expensive 

drugs such as rhDNase and inhaled tobramycin as well as changes in clinical care 

since 1998. Overall, median cost per patient has increased slightly over time 

(£3852.65 vs. 4249.94), though mean cost per patient has decreased slightly 

(£6118.16 vs. £6103.50).  This is mirrored by total costs per year.  At baseline, the 

overall cost of care in the region was £1,040,087, whereas in 2007, it was 

£1,062,008. 
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Table 4.3: Mean and median resource use and costs in 2006 UK £ (Bootstrapped 95% confidence interval for mean; IQR for median) 

 1998 (N=170) 2004 (N=147) 2005 (N=177) 2006 (N=176) 2007 (N=174) 

 Mean Median Mean Median Mean Median Mean Median Mean Median 

Costs  

Clinic Costs 
(95%CI) 

1499.43  
(1387-1612) 

1290  
(1290-1548) 

1521.67 
(1400-1643) 

1548  
(1290-1548) 

1526.37 
(1431-1621) 

1548  
(1290-1548) 

1584.65 
(1476-1693) 

1548 
 (1290-1548) 

1528.72 
(1426-1631) 

1548  
(1290-1548) 

Hosp Costs 
(95% CI) 

2783.86 
 (1983-3583) 

0  
(0-1252) 

2612.59 
(1822-3402) 

0  
(0-0) 

2875.10  
(2060-3690) 

0 
(0-626) 

2393.74 
(1840-2947) 

0 
(0-1878) 

2388.87 
(1821-2957) 

0  
(0-0) 

Drug Costs 
(95% CI) 

1837.03  
(1334-2340) 

1439.76  
(695-1790) 

1891.47 
(1336-2446) 

1451.74 
(695-1822) 

1935.14 
(1435-2435) 

1398.85  
(695-1556) 

2093.92 
(1596-2592) 

1475.87  
(695-1788) 

2197.96 
(1674-2721) 

1514.02  
(695-1949) 

Ave total 
(95% CI) 

6118.16  
(5127-7109) 

3852.65 
(2986-4912) 

6029.43 
(5106-6952) 

3694.38 
(2999-4844) 

6339.97 
(5313-7365) 

4360.02 
(3497-5679) 

6063.08 
(5339-6788) 

4355.83 
(3300-5445) 

6103.48 
(5298-6909) 

4249.94 
(3558-5588) 

Total cost 1,040,087 886,326 1,058,775 1,067,103 1,062,008 
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over time
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Table 4.4 gives a breakdown of median costs by age group.  This table shows that 

the two younger age groups have an increasing median cost over time, the patients 

aged 9-12 seem to have a slowly decreasing median cost.  It is difficult to find a 

trend in the oldest age group, although generally this group had a higher median 

cost at baseline and in 2007 (although in 2004 and 2005 it had a lower median than 

other age groups).  While it is hard to tell an overall trend from this data, it may be 
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Figure 4.4: Mean drug costs 
over time 
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Figure 4.5 Mean total costs over 
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an indicator that more aggressive treatments being are being used to counteract 

chronic infections at a younger age and therefore causing later age groups to be 

more healthy. However, the spike in median costs in the 4th year of the study seems 

to throw doubt on that reasoning, but this may be an artefact of the data.  Figure 4.6 

shows a graphical representation of the trends in median total costs by age group 

over time. Looking at the differences in cost between groups, there may be an 

indication that this is the case as it looks as though when patients incur greater 

costs at an early age, they require fewer resources in the next age category.  The 

regression analysis sheds more light on this aspect.  

Table 4.4: Median costs over the entire time period by age group (2010 UK£) 
Year 0 to 3 years 

(N) 
4 to 8 

years (N) 
Differenc
e (from 0-

3) 

9 to 12 
years (N) 

Differenc
e (from 4-

8) 

13-17 years 
(N) 

Difference 
(from 9-

12) 

1998 2,725.34 
(39) 

2,522.24 
(55) 

-203.10 3,267.50 
(39) 

745.26 5,646.34 
(37) 

2,378.84 

2004 2,419.12 
(31) 

3,267.40 
(50) 

848.28 2,746.48 
(51) 

-520.92 2,545.80 
(15) 

-200.68 

2005 3,326.62 
(39) 

2,349.89 
(48) 

-976.73 2,765.45  
(54) 

415.56 2,639.13 
(26) 

-126.32 

2006 3,709.10 
(39) 

3,883.32 
(50) 

174.22 2,661.40 
(60) 

-1,221.92 6,215.78 
(27) 

3,554.38 

2007 3,214.90 
(31) 

5,167.22 
(50) 

1,952.32 2,725.34 
(57) 

-2,441.88 3,786.32 
(36) 

1,060.98 
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Figures 4.7 and 4.8 look at the differences between the clinically diagnosed group 

and the newborn screening group in the population. It is clear that there are 

differences in cost between those patients that were screened and those that were 

not. However, it is difficult to draw firm conclusions as to the difference between 

groups. Indeed, running a two-sample t test showed no significant differences 

between groups, but this could be due to a small numbers problem.  From a visual 

inspection of the graphs, both the mean and median costs of the unscreened 

patients are marginally less than the screened patients.  Both groups have an 

increasing mean and median over time. Figure 4.9 shows the cumulative frequency 

plots of total cost s between clinically diagnosed and screened groups from all the 

data (not sorted for time).  This plot reiterates the previous charts by showing that 

the two groups are similar in cost, with 80% of patients who were clinically 

diagnosed patients and patients identified by newborn screening patients cost less 

than £10,000 per year. Figure 4.9 shows both groups of patients, but also 

differences between 1998 and 2007.  Again, the frequency plots show that the 
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groups do not have a dramatically different profile, though this figure shows that the 

differences between groups become even smaller between baseline and 2007.   

This is in contrast to the findings of Sims et al, who found clear differences between 

the groups. The authors found that around 75% of those who were screened had 

annual costs below around $4000, whereas only 50% who were clinically diagnosed 

had annual costs below $4000. (29) 
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 Figure 4.11 shows the box plots for total costs by diagnosis group and band.  As 

the plot shows, there are outliers in the data. These are often patients that have 

been in hospital multiple times or have many different drugs, or both.  These plots 

show that overall, cost is increasing by band, however it is not clear if there are 

differences between diagnosis groups.   
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Figure 4.12 shows box plots for total costs by band, age group and diagnosis group.  

This plot also indicates that total costs are increasing by band and perhaps by age, 

and diagnosis, though it is unclear as the boxes overlap.   
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Figure 4.11: Box plots of total costs by diagnosis type and band 
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Using banding tariffs for unit costs 

As discussed in the introduction, the CF Trust argued for the introduction of disease 

severity banding as a method of funding for CF patients.  Provisional tariffs were 

introduced in 2007. In addition to inpatient care tariffs, outpatient clinic visits also 

received a tariff that was separate from general paediatric tariffs. This section gives 

a brief comparison of total, mean and median costs to the provider for the population 

based on methods using the NHS reference costs described above, which was the 

amount that could be claimed for CF care before the banding tariff was introduced, 

and the new banding tariffs which are the amount that the provider can claim for the 

care given within each band. Figure 4.13 shows the difference between total costs 

by year between the old NHS reference costs and the new proposed tariffs.  There 

is a dramatic increase in total cost when comparing the two tariffs.  Referring back to 
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Table 4.2, this is perhaps not surprising given the increase in clinic costs and the 

variability and increase of the inpatient hospital stay tariffs.  Given the nature of the 

band-based tariffs (i.e. they‟re based on resource use as determined by disease 

severity) it may be that these are a more accurate measure of the costs actually 

associated with caring for CF patients.  Assuming the tariffs are an accurate 

reflection of the cost of care, it is clear the paediatric tariffs from the NHS reference 

costs are a severe underestimate of the true cost and that this level of care was 

probably underfunded and/or was being subsidised by NHS Trusts.  

 

Figure 4.14 shows the trends between the mean and median costs using the NHS 

reference costs and the new banding tariffs.  Given the tariffs are based on resource 

use associated with disease severity, it is not surprising to see that both the mean 

and the median cost of care using the new tariffs are higher than the reference 

costs.  The trends generally have the same shape, however the tariff based means 

1998 2004 2005 2006 2007

Total costs NHS reference 
costs

1040086.72 886326.11 1058775.44 1067103.09 1061940.47

Total costs banding tariffs 3270585.97 2299343.26 2940211.53 2838236.21 2677824.25
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Figure 4.13: Comparison of total costs using different 
costing sources
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have a slightly more pronounced shape.  This may be due to the differences in 

hospitalisation costs associated with each band (i.e. one cost for hospitalisation 

versus five different costs). The previous analysis shows a slight increase in total 

costs over time, while using the new banding tariffs indicates a very slight reduction 

in total costs over time.  Again, this is likely to be due to the change in the method of 

costing hospitalisations.   

 

Figure 4.15 shows the trends in terms of percentage of total costs for the cost 

drivers (drug costs, clinic costs, and hospital costs).  It is clear that banding tariffs 

gives a much greater weight to hospitalisations (32.5 percent versus 72.39 percent).  

However, using the banding tariffs shows an increase in clinic costs (13.46 percent 

in 1998 rising to 17.16 percent in 2007), while the NHS reference costs shows a 
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Mean total cost using NHS 
reference costs

£6,118.16 £6,029.43 £6,339.97 £6,063.09 £6,103.11

Mean total cost using 
banding tariffs

£19,238.74 £15,641.79 £17,606.06 £16,126.34 £15,389.79

Median total cost using 
NHS reference costs

£2,729.85 £2,680.08 £2,692.00 £4,056.48 £3,610.83

Median total cost using 
banding tariffs

£5,265.73 £5,069.93 £4,267.73 £9,032.20 £7,176.21
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Figure 4.14: Comparison of mean/median total costs 
using different costing sources
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relatively flat contribution of clinic costs to total costs (22.64 percent in 1998, 23.14 

percent in 2007). Drug costs have an increasing contribution to total costs over time 

using both costing methods.   

 

Figure 4.16 details the most expensive drugs that are driving the increase in drug 

costs in CF patients.  Pulmozyme (DNAse) is by far the most expensive drug, and 

has been increasing its share of the total drug budget as more people are put on the 

drug.  This is closely followed by inhaled Tobramycin which has nearly doubled its 

share of the costs  over time.  Creon, the pancreatic enzyme supplement is given to 

most CF patients and therefore its proportion of the drug budget remains relatively 

steady.  The cost of IV antibiotics has increased slightly over the time period, while 
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Figure 4.15: Comparison in trends 
between cost drivers 
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Serevent and insulin has remained stable.  

 

Figure 4.17 shows the trends in median costs over time by age group.  From a 

visual inspection, there does not seem to be a clear pattern for most of the age 

groups, with the exception of the youngest age group, which has steadily risen over 

time, which reflects current practice of treating younger children more aggressively 

to prevent the first or recurrent infections.  

1998 2004 2005 2006 2007

Sum of Insulin 5821.2 4158 5821.2 5821.2 5821.2

Sum of Serevent 6417.84 6417.84 6417.84 6417.84 6795.36

Sum of Total IV Antibiotics 8552.91 8759.83 9760.91 10030.71 10081.61

Sum of Creon 10000 22176 20160 22848 24360 24360

Sum of Tobramycin 49862.4 78355.2 85478.4 99724.8 99724.8

Sum of DNAse 180310 131765 159505 187245 201115
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Figure 4.16: Changes the total costs of common drugs 
used in CF Care 
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Figure 4.18 shows the cumulative percentage of total costs between screened 

patients and clinically diagnosed patients.  This figure shows a slightly different 

relationship between the groups than in the previous NHS reference cost analysis.  

Although the differences are small, this diagram indicates that 90% of patients who 

are screened had costs below £45,000, whereas 90% of patients who are clinically 

diagnosed had costs below £55,000.  Figure 4.19 shows the cumulative percentage 

of total costs between screened and clinically diagnosed at baseline (1998) and 

2007.  Again, these results are slightly different than the previous analysis using 

NHS reference costs.  In 1998, those 90% of patients who were clinically diagnosed 

cost below £50,000 whereas 90% of screened patients cost below £60,000.  

However, in 2007, this trend is reversed, where 90% of those patients identified by 

newborn screening cost below £40,000, but 90% of clinically diagnosed patients 

£0.00

£5,000.00

£10,000.00

£15,000.00

£20,000.00

£25,000.00

£30,000.00

£35,000.00
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Table 4.17: Trend in median costs by age 
group over time (Banding Tariffs) 
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cost below £65,000.  These results, however, must be interpreted carefully as there 

were very few clinically diagnosed patients throughout the study and therefore 

outliers may have an impact.  
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Figure 4.18: Cumulative percentage of total cost 
between screened/not screened (all observations)
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The major differences in means and median costs between the two costing methods 

shown here is indicative that previous NHS payment by results tariffs may not have 

been adequate to cover the costs of caring for CF patients. As band-based tariffs 

are currently being used, the remainder of this analysis will use the banding tariffs to 

cost individuals.   

Statistical analysis 

As mentioned previously, it is important to analyse cost data in the knowledge that it 

is often skewed.  To visually determine if the cost data for the CF cases in this study 

was skewed, a histogram was plotted (Figure 4.20) of total costs by year.  It is 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Figure 4.19: Cumulative percentage of total cost 
between screened/not screened at baseline and in 2007
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relatively clear that the distribution of cost is not normal, and that the data is skewed 

towards zero.  To determine if taking the log of costs would be a more appropriate 

option for the initial regression, a histogram of the logged costs is given in figure 

4.21. It is unclear from a visual inspection of the histogram of logged costs is closer 

to a normal distribution.   
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Figure 4.20: Histograms of total costs by year 
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As a visual inspection was relatively inconclusive, the data was subjected to a 

skewness test as well as a distributional fit test.  Table 4.5 indicates the results of 

the variance, skewness, and kurtosis tests for each year for total cost and the log of 

total cost. The table also indicates the results of a distributional fit test (the lower the 

chi-square statistic, the better the distributional fit) carried out in Excel using the 

@Risk software. First, the variance in the data does not necessarily seem to be 

related to time, with a peak variance for both total cost and logged total cost in 2005.  

The data indicate that the variable of total cost is strongly skewed (2.59-3.22). The 

logged total cost was not as strongly skewed, with skewness close to zero, but still 

indicating a slight skew. Similarly, the total cost data seem to suffer more strongly 

from kurtosis.  The initial regression analysis was run using both the skewed 
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Figure 4.21: Histograms of logged total cost by year 
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distribution of cost as well as with the dependent variable being the natural log of 

cost. The subsequent GEE analyses were run assuming an inverse Gaussian 

distribution of cost as shown by the distributional fit scores for both total costs and 

logged total costs.  

Table 4.5: Results of skewness test on total cost and natural log of total cost 
by year.  

 Year Total Cost Log Total Cost 

  Variance Skewness Kurtosis Variance Skewness 
Kurtosi
s 

1998 1.06 2.92 12.46 1.57 0.77 2.53 

2004 5.37 2.73 11.21 1.44 0.46 2.43 

2005 9.18 3.22 14.36 1.58 0.69 2.51 

2006 5.1 2.86 12.2 1.2 0.49 2.37 

2007 5.25 2.59 10.94 1.33 0.32 2.31 

Chi-Square statistic for various distributions of total costs (for all years) 

Fit 
Inverse 

Gaussian LogNormal LogLogistic Weibull Exponen Triang 

Chi-Sq 
Statistic 280.90 357.56 366.17 646.34 801.35 4211.95 

Chi-Square statistic for various distributions of natural logged total costs 
(for all years) 

Fit 
Inverse 

Gaussian LogNormal LogLogistic Gamma Weibull Triang 

Chi-Sq 
Statistic 302.39 304.40 329.71 330.82 479.741 1101.77 

 

The initial regression analyses in tables 4.6 and 4.7 show that disease severity, age, 

and being screened may play a role in individual costs. Both models started with the 

independent variables of age, sex, screened, shared care, body mass index, weight 

for height z-scores, FEV1% predicted, and band.  The initial model (Table 4.6) 

excluded shared care, FEV1% predicted, and sex and retained age, weight for 

height, bmi, screened, and band.  The adjusted R-squared for the final model was 

0.46.   The second model (Table 4.7), regressed against logged total costs similarly 
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found that weight for height and band were important variables to include, but 

excluded the other variables. The adjusted R-squared for the logged total cost 

model was 0.43.   From the two initial models, it appears that the predictors 

suggested in the methods section are the correct predictors for the more complex 

regression analysis. 

 

 

 

 

Table 4.6: Initial regression analysis on baseline data (Total Costs) 

Backwards regression beginning: total costs = age, sex, screened, shared care, 
bmi, weight for height, fev%predicted, band 

p = 0.5935 >= 0.2000  removing sharedcare 
 

  

p = 0.4960 >= 0.2000  removing fevpp 
  

  

p = 0.3742 >= 0.2000  removing sex 
  

  

Source SS df MS Number of obs =     101 

Model  7.1958 5 1.4392 F(  5,    95) =   18.17 

Residual 7.5266 95 
7922689
08 Prob > F      =  0.0000 

Total 1.4722 100 1.4722 R-squared     =  0.4888 

  
   

Adj R-squared =  0.4619 

  
   

Root MSE      =   28147 

Total 
Costs Coef. Std. Err. t P>t 95% Conf Interval 

age -1222.06 834.8437 -1.46 0.147 -2879.44 435.3131 
weight for 
height 17.56619 3.553869 4.94 0.000 10.51086 24.62151 

screened -19520.7 14458.03 -1.35 0.180 -48223.5 9182.134 

band 16931.98 2850.368 5.94 0.000 11273.28 22590.67 

bmi 1465.243 1062.959 1.38 0.171 -644.997 3575.484 

constant -3874.39 21185.55 -0.18 0.855 -45933 38184.24 
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GEE results 

Table 4.9 gives the results of the model fit test for GEE models. The table gives the 

number of parameters in the model (p), the trace, the QIC score and the QICu score.  

Several attempted models did not reach convergence, meaning any estimates from 

those models could be biased. The model with the lowest QIC that used total cost 

as a dependent variable was the inverse Gaussian family with a log link and an 

Table 4.7: Initial regression analysis on baseline data (natural logged total 
costs) 

Backwards regression beginning: lntotalcosts = age, sex, screened, shared care, 
bmi, weight for height, fev%predicted, band 

p = 0.6561>=0.20  removing sex 
  

  
p = 0.5396>=0.20 removing screened 

  
  

p = 0.3872>=0.20 removing sharedcare 
  

  
p = 0.3292>=0.20 removing age 

   
  

p = 0.4867>=0.20 removing bmi 
  

  
p = 0.3080>=0.20 removing fevpp 

  
  

Source SS df MS Number of obs =     101 

Model 80.72 2 40.36 F(  2,    98) =   38.95 
Residual 101.56 98 1.04 Prob>F = 0.0000 
Total 182.27 100 1.82 R-squared = 0.4428 

  
   

Adj R-squared = 0.4315 
  

   
Root MSE = 1.018 

Ln Total Costs Coef. Std. Err. t P>t 95% Conf Interval 

weight for 
height 

0.00018
6 

0.00012
6 1.48 0.142 -0.0000637 0.000436 

band 
0.81498

9 
0.10028

1 8.13 0.000 0.6159838 1.013993 

constant 
7.61027

6 
0.19899

5 38.24 0.000 7.215377 8.005175 
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independent correlation structure.  The model with the lowest QIC that used logged 

total cost was the inverse Gaussian with the identity link and an independent 

correlation structure.  However, all the other models that reached convergence had 

relatively similar QIC scores, therefore all the models will be analysed.  

Table 4.10 shows the results of the 7 models identified as good fits by the QIC tests. 

Models 1, 2, and 3 use total costs as the dependent variable and Models 4, 5, 6, 

and 7 use logged total cost as the dependent variable. The independent variables 

were dummy variables for: age categories (0-3, 4-8, 9-12, 13-17), sex, screened or 

clinically diagnosed (1 and 0 respectively), shared care, and as well as variables for 

band (split into dummy variables), bmi, weight for height (Z-scores) and FEV1% 

predicted..  The model grouped the patients by patient ID (pid).  Though not 

reported, STATA automatically reports the Wald test which indicates if we can reject 

the null hypothesis that all the coefficients are equal to zero (as indicated by the 

Prob>chi2 being significant at the 1% level). All models indicated that we can reject 

the hypothesis that the coefficients are equal to zero. All models also omitted the 

fourth dummy variable for age (13-17 year olds) and the fifth dummy variable for 

band (band 5) due to collinearity.  

The first model assumed an inverse Gaussian family with a log link function and an 

independent correlation structure. The model indicated that being male is associated 

with a slightly higher cost.   The model also indicates that at the 10% level of 

significance, being screened is indicative of lower costs over time.  A higher FEV1% 

predicted is also indicative of having lower costs over time, although the effect is 

small.  Interestingly, the age categories and disease severity bands were significant 

at the 1% level. The negative coefficients indicate that being in any age group or any 



 

 

 

177 

 

 

of the bands (except band 3, which was not significant) would reduce costs, which is 

counter-intuitive.  As all the models show bands and age categories having a 

negative coefficient, this is discussed more below after describing the other models.  

Model 2, which assumed an exchangeable correlation structure had similar findings 

to model 1, but weight for height z-scores seems to be significant at the 10% level, 

but the coefficient is close to zero, indicating a very slight relationship.  Model 3 

assumed an unstructured correlation relationship, but unlike the first two models, did 

not find sex and screened to be significant.  

Models 4 and 5 use logged total costs with an inverse Gaussian family and an 

identity link, with model 4 assuming an independent correlation structure and model 

5 assuming an exchangeable correlation structure.  Models 6 and 7 assume an 

inverse Gaussian family and a log link, with model 6 assuming an independent 

correlation structure and model 5 assuming an exchangeable structure.  All of these 

models also indicate that the age and band categories have a negative coefficient, 

and similarly to the total cost models, indicate that having a higher FEV1% predicted 

indicates a lower cost.     

Although not significant in models 3-7, the models all indicate that being screened 

indicates a lower cost, though this does not necessarily agree with the indications in 

figures 4.7 and 4.8.  Again, although not significant in most models, the signs of the 

coefficients indicate that a higher BMI and being male indicates a higher cost, which 

could reflect the difficulty in maintaining a healthy weight through pancreatic and 

other dietary supplements, driving up costs for those patients. Being in shared care 

was not significant in any of the models, but was consistently associated with a 
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lower cost. It is unclear from this analysis if this is due those patients receiving less 

clinical care or if patients in shared care are simply healthier and therefore they 

require less treatment.  

The negative coefficients for the age categories and disease severity bands are 

surprising, as you would expect age and disease severity to have a positive 

relationship with cost. This may be due to the signs indicating the marginal effect, 

not the total effect (i.e. band one has a negative relationship to total costs (is 

cheaper) when compared with the other bands) or perhaps age/band and total cost 

have a linear relationship.  If the variables and total cost do have a linear 

relationship, it is possible for the coefficients to have the wrong sign if they are split 

into dummy variables. (160) To determine the linear relationship between total costs 

and the categorical variables of band and agecat, pairwise correlations were run in 

STATA.  Table 4.8 shows the results of these correlation tests, which indicate that 

band has a positive linear relationship with total costs and logged total costs (the 

analysis also ran correlations by year, and found a significant positive linear 

relationship for each year), but that age category does not have a significant linear 

relationship with either variable.  This suggests that age category should be split into 

4 dummy variables, and although this test suggests that band can be used as a 

variable, as it is not perfectly linear, band will also be split into 5 dummy variables, 

but the models will be run without the oldest age group and band 1 to test the 

marginal effect theory.  
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Table 4.8: Pairwise correlation of total costs and logged total costs (by band and 
age category *at 95% significance) 

Obs (834) Total Costs band 
 

Total cost Agecat 
Total costs 1 

 
Total costs 1 

 Band 0.2999* 1 agecat 0.0046 1 

 

Logged total 
costs band 

 

Logged total 
costs Agecat 

Logged total 
cost 1 

 

Logged total 
costs 1 

 band 0.2808* 1 agecat 0.0186 1 
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Table 4.9: Model Fit Statistics 

 Total Costs 
 Inverse Gaussian with Identity link 

  Correlation p trace QIC QICu 
 Independent Convergence not achieved 

  Exchangeable Convergence not achieved 
  Unstructured Estimates Diverged 

   Inverse Gaussian with log link 
   Correlation p trace QIC QICu 

M1 & M8 Independent 14 11.46 22.89 27.97 

M2 & M9 Exchangeable 14 11.76 23.5 27.97 

M3 & M10 Unstructured 14 11.93 23.82 27.97 

 Logged Total Costs 

 Inverse Gaussian with Identity link 
  Correlation p trace QIC QICu 

M4 & M11 Independent 14 14.88 -22.46 -24.22 

M5 & M12 Exchangeable 14 14.97 -22.27 -24.22 

 Unstructured Convergence not achieved 
  Inverse Gaussian with log link 

   Correlation p trace QIC QICu 

M6 & M13 Independent 14 14.99 -22.21 -24.22 

M7 & M14 Exchangeable 14 15.15 -21.92 -24.22 
 Unstructured Convergence not achieved 
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Table 4.10: Regression results (1st age category and last band dropped due to 
collinearity) 

 

   
Total Cost Logged Total Cost 

   
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Independent 
Variables b/se b/se b/se b/se b/se b/se b/se 

4-8 Years -0.996** -0.977** -0.922** -1.611** -1.644** 
-

0.162** 
-

0.166** 

   
-0.19 -0.19 -0.18 -0.15 -0.15 -0.02 -0.02 

9-13 Years -0.905** -0.881** -0.787** -1.532** -1.567** 
-

0.153** 
-

0.157** 

   
-0.19 -0.19 -0.18 -0.15 -0.15 -0.02 -0.02 

14-17 Years -0.998** -0.976** -0.874** -1.417** -1.457** 
-

0.140** 
-

0.145** 

   
-0.23 -0.23 -0.21 -0.18 -0.18 -0.02 -0.02 

Sex (1=Male) 
 

0.262+ 0.256+ 0.215 0.053 0.04 0.006 0.005 

   
-0.14 -0.14 -0.14 -0.12 -0.12 -0.01 -0.01 

Screened (1=Yes) -0.369+ -0.373+ -0.28 -0.101 -0.096 -0.012 -0.011 

   
-0.21 -0.21 -0.2 -0.21 -0.21 -0.02 -0.02 

Shared Care 
(1=Yes) 0.075 0.072 0.015 -0.112 -0.099 -0.013 -0.012 

   
-0.16 -0.16 -0.16 -0.15 -0.15 -0.02 -0.02 

Body Mass Index 0.018 0.018 0.019 0.01 0.008 0.001 0.001 

   
-0.03 -0.03 -0.03 -0.03 -0.03 0 0 

Weight for Height 0 0.000+ 0.000+ 0 0 0 0 

   
0 0 0 0 0 0 0 

FEV1% Predicted -0.006* -0.007* -0.007* -0.005* -0.005* -0.001* -0.001* 

   
0 0 0 0 0 0 0 

Band 1 -1.788** -1.805** -1.822** -2.167** -2.124** 
-

0.223** 
-

0.218** 

   
-0.26 -0.25 -0.24 -0.3 -0.32 -0.03 -0.03 

Band 2 -1.248** -1.226** -1.131** -1.631** -1.634** 
-

0.163** 
-

0.164** 

   
-0.27 -0.26 -0.25 -0.31 -0.33 -0.03 -0.03 

Band 3 -0.426 -0.41 -0.321 -1.398** -1.400** 
-

0.138** 
-

0.139** 

   
-0.41 -0.41 -0.37 -0.43 -0.45 -0.04 -0.05 

Band 4 -0.827* -0.788* -0.851** -1.087** -1.102** 
-

0.106** 
-

0.108** 

   
-0.33 -0.32 -0.31 -0.39 -0.41 -0.04 -0.04 

Constant 
12.358*

* 
12.395*

* 
12.272*

* 
12.843*

* 
12.834*

* 2.590** 2.589** 

   
-0.76 -0.77 -0.76 -0.67 -0.67 -0.07 -0.07 

+ p<0.10, * p<0.05, **p<0.01 
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Table 4.11: GEE Regression results (forced removal of oldest age group, and 1st 
band) 

Independent 

Variables 
Total Cost Logged Cost 

Model 
8 

Model 
9 

Model 
10 

Model 
11 

Model 
12 

Model 
13 

Model 
14   

 
b/se b/se b/se b/se b/se b/se b/se   

0-3 Years 0.998** 0.976** 0.874** 1.417** 
1.457*

* 
0.140*

* 
0.145*

* 

 
-0.23 -0.23 -0.21 -0.18 -0.18 -0.02 -0.02 

4-8 Years 0.002 -0.001 -0.048 -0.193 -0.187 -0.022 -0.021 

 
-0.23 -0.23 -0.21 -0.17 -0.17 -0.02 -0.02 

9-13 Years 0.093 0.095 0.087 -0.115 -0.11 -0.013 -0.012 

 
-0.15 -0.15 -0.14 -0.13 -0.13 -0.01 -0.01 

Sex (1=Male) 0.262+ 0.256+ 0.215 0.053 0.04 0.006 0.005 

 
-0.14 -0.14 -0.14 -0.12 -0.12 -0.01 -0.01 

Screened 
(1=Yes) 

-
0.369+ 

-
0.373+ -0.28 -0.101 -0.096 -0.012 -0.011 

 
-0.21 -0.21 -0.2 -0.21 -0.21 -0.02 -0.02 

Shared Care 
(1=Yes) 0.075 0.072 0.015 -0.112 -0.099 -0.013 -0.012 

 
-0.16 -0.16 -0.16 -0.15 -0.15 -0.02 -0.02 

Body Mass Index 0.018 0.018 0.019 0.01 0.008 0.001 0.001 

 
-0.03 -0.03 -0.03 -0.03 -0.03 0 0 

Weight for Height 0 0.000+ 0.000+ 0 0 0 0 

 
0 0 0 0 0 0 0 

FEV1% 
Predicted -0.006* -0.007* -0.007* -0.005* 

-
0.005* 

-
0.001* 

-
0.001*  

 
0 0 0 0 0 0 0 

Band 2 0.541** 0.579** 0.691** 0.535** 
0.490*

* 
0.060*

* 
0.055*

* 

 
-0.14 -0.13 -0.13 -0.12 -0.12 -0.01 -0.01 

Band 3 1.362** 1.395** 1.500** 0.769* 0.723* 
0.084*

* 0.079*  

 
-0.34 -0.33 -0.3 -0.31 -0.31 -0.03 -0.03 

Band 4 0.961** 1.017** 0.971** 1.079** 
1.022*

* 
0.117*

* 
0.111*

* 

 
-0.25 -0.23 -0.23 -0.27 -0.27 -0.03 -0.03 

Band 5 1.788** 1.805** 1.822** 2.167** 
2.124*

* 
0.223*

* 
0.218*

* 

 
-0.26 -0.25 -0.24 -0.3 -0.32 -0.03 -0.03 

Constant 9.571** 9.615** 9.577** 9.259** 
9.254*

* 
2.226*

* 
2.226*

* 

 
-0.77 -0.78 -0.77 -0.64 -0.63 -0.07 -0.07 

+ p<0.10, *p<0.05, **p<0.01 
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Table 4.11 shows the results of the seven models that removed the last age band, 

and the first disease severity band. Similarly to table 4.10, the first 3 models (8-10) 

use total cost as a dependent variable, and the last four (11-14) use logged total 

cost. Models 8 and 9 indicate that being male is indicative of a higher cost, while 

being screened is associated with lower costs. Model 9 also indicates that weight for 

height is indicative of a higher cost, though the coefficient is close to zero.  Model 10 

also indicates that weight for height has a positive relationship with costs. All of the 

models (8-14) indicate that having a higher FEV1% predicted is associated with a 

lower cost.   

Models 8-14 indicate that only the youngest age group has a significant impact on 

total or logged costs, and unlike the first seven models, all the age groups now have 

positive signs.  This indicates that there is a marginal effect being shown in the 

model with regards to age.  The results show that being in the youngest age group 

has a larger impact on costs than the other age groups over time. This isn‟t entirely 

consistent with the trend graphs earlier, although the youngest age group was the 

only group to have a continuous increase over time. 

Removing the least severe band category has also changed the signs of the 

coefficients in all the models. This indicates that the other bands are more 

expensive than band one, and the negative coefficients in models 1-7 could be the 

result of excluding the most expensive band, therefore all the other bands were 

“cheaper” in comparison.  However, as the pairwise correlation test found a linear 

relationship, the seven models were run again without splitting band into 5 dummy 

variables. As they were “new” regressions, the QIC test was run for each model and 

the results are given in Table 4.12. Similarly to the first models, the inverse 
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Gaussian family and a log link with an independent correlation structure (Model 15) 

gave the best fit for total cost as a dependent variable and in fact, had a better score 

than when band was split, indicating this may be a better model. For the logged total 

cost, the inverse Gaussian family with an identity link and an exchangeable 

correlation structure (Model 19) had the smallest QIC. Models 15-17 indicate that 

again, being male, being in the youngest age group and band is associated with 

increasing costs over time. Models 15 and 16 indicate that being screened is 

associated with a lower cost over time. All the models indicated that having a higher 

FEV1% predicted is associated with a small negative change in cost over time.  

Figures 4.22 and 4.23 give a visual indication of the predicted versus actual total 

costs to see if the model outputs are comparable.  Figure 4.22 plots the total cost 

models values of total cost versus the actual values and while they have a similar 

shape, the fit lines show a divergence. Figure 4.23 shows the predicted versus 

actual logged total cost models.  While the scatter plots for the most part overlap, 

the linear relationships do seem to diverge slightly.   

The regression analyses have shown that band (whether split into dummies or as a 

continuous variable) is probably the strongest driver of costs, followed by age, 

although the relationship with age is not exactly clear. Being screened and having a 

high FEV1% Predicted may result in lower costs over time, but being male may 

result in having higher costs.  
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Table 4.12: GEE Models with band as a non-categorical variable 
 

 
Total Costs Logged Total costs 

 
Model 

15 
Model 

16 
Model 

17 
Model 

18 
Model 

19 
Model 

20 
Model 

21 

 
b/se b/se b/se b/se b/se b/se b/se 

QIC 20 21.01 21.26 -28.47 -28.61 -28.19 -28.25 

0-3 Years 1.025** 0.998** 0.931** 1.513** 1.537** 0.152** 0.155** 

 
-0.21 -0.2 -0.19 -0.15 -0.15 -0.02 -0.02 

4-8 Years 0.021 0.014 -0.027 -0.173 -0.172 -0.019 -0.019 

 
-0.23 -0.23 -0.21 -0.17 -0.17 -0.02 -0.02 

9-13 Years 0.099 0.101 0.096 -0.105 -0.102 -0.011 -0.011 

 
-0.15 -0.15 -0.14 -0.13 -0.13 -0.01 -0.01 

Sex (1=Male) 0.262+ 0.260+ 0.237+ 0.063 0.046 0.007 0.005 

 
-0.14 -0.14 -0.14 -0.12 -0.12 -0.01 -0.01 

Screened 
(1=Screened) 

-0.393+ -0.396+ -0.299 -0.105 -0.096 -0.012 -0.011 

 
-0.2 -0.21 -0.2 -0.21 -0.21 -0.02 -0.02 

Shared Care 
(1=Shared 
Care) 

0.092 0.086 0.035 -0.101 -0.088 -0.012 -0.011 

 
-0.15 -0.15 -0.15 -0.15 -0.15 -0.02 -0.02 

Body Mass 
Index 

0.021 0.021 0.022 0.012 0.009 0.001 0.001 

 
-0.03 -0.03 -0.04 -0.03 -0.03 0 0 

Weight for 
Height 

0 0 0 0 0 0 0 

 
0 0 0 0 0 0 0 

FEV1% 
Predicted 

-0.006+ -0.006* -0.006* -0.005* -0.005* -0.001* -0.001+ 

 
0 0 0 0 0 0 0 

band 0.520** 0.562** 0.625** 0.424** 0.396** 0.046** 0.043** 

 
-0.09 -0.09 -0.09 -0.07 -0.07 -0.01 -0.01 

Constant 8.979** 9.004** 8.871** 8.809** 8.826** 2.179** 2.180** 

 
-0.79 -0.79 -0.78 -0.64 -0.63 -0.07 -0.07 

+ p<0.10, *p<0.05, **p<0.01 
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Figure 4.22: Predicted versus Actual values 
for models using total cost
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Discussion 

Given the variability of the disease course and treatment in CF, it is not surprising 

that costs also show variability between individuals.   Aggregated cost results may 

be of limited use to a decision maker, but analysing the changes in mean and 

median costs could help plan for new patients, and help to „insure‟ budgets for 

patients that have extreme costs.  As the histograms in figure 4.20 and 4.21 

indicate, a small number of patients generate high costs, which skews the 

distribution of cost data, possibly inflating the mean value above the median value.  

The median value does give an indication of what the most typical cost is for an 

individual patient. The number of high cost individuals may vary from year to year 

and this has an implication for long-term planning within departments with a tight 

budget.  

Hospitalisation (inpatient) costs are still the greatest contributor to the hospitals cost 

of care, but have fallen from 77% (46% using NHS Ref costs) of costs in 1998 to 

69% (39%) of costs in 2007.  Drug costs have risen from 10% of the burden in 1998 

to 14% in 2007.  Clinic costs (outpatient) have also increased their share of the 

overall cost from 13% in 1998 to 17% in 2007.  This is indicative of the increasing 

number of clinics and more expensive and/or aggressive drug treatments and the 

(perhaps resulting) fall in the number of days patients are spending in hospital.  

Compared to the only other UK study to look at the cost of care for paediatric 

patients (3), median costs per patient were marginally higher.  Possible reasons for 
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this could be that (i) the population in this study was different; (ii) the setting and 

method of care; (iii) data quality; (iv) availability of routine cost data for health care.  

The authors looked at a younger (and larger) cohort of patients than this study, and 

it is apparent that the older a patient is, the more likely chronic infection is going to 

occur, therefore increasing drug and hospital costs.  While Sims et al had access to 

a robust national database, the current study used patient notes to record episodes 

of resource use and therefore may have found more cost-generating activity. 

However, the results of this thesis agree that patients who were screened had a 

lower average cost over time than those patients who were clinically diagnosed 

though not as pronounced (£17216/ £16766 = CD/NBS = 1.03 from  this study 

versus $12707/7649 = 1.66 in Sims et al) 

It is important to note that this study only took into account the costs to the health 

service at a tertiary level.  It is likely that CF patients also generate a large number 

of primary care contacts, and therefore this study is likely to underestimate the total 

cost to the health service as a whole.  It is also important to consider the fact that CF 

patients often generate costs outside of the health service. Many patients and their 

families have support from social services and educational services that can 

generate substantial costs for the public sector. This study also does not assess the 

out of pocket costs and productivity losses to the family, which may be substantial.   

Overall, this study found no significant differences over time in terms of total cost; 

however the make-up of the cost has changed with changing clinical practice.  As 

the study relied on patient notes and letters that recorded the prescribed drugs, it is 

possible that some resource use was missed which may influence the overall 

results.  It is clear from the data that there seems to be a dip in the number of 
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patients in 2004, though the reason for this is less than clear.  However, given that 

there are no significant differences in the population in terms of clinical outcomes or 

cost, this is unlikely to bias the overall results.  

As mentioned in the methods section, there is no gold standard in terms of the best 

statistical techniques used in the analysis of cost data.  However, GEE models are 

useful tools to analyse longitudinal data where members of the panel do not have 

complete data sets because they were not present when the initial or final data was 

collected.  The models chosen here all indicate that they were a good fit and 

therefore the results are likely to be reliable.  
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Chapter 5: Cost-effectiveness analysis of newborn screening 

for cystic fibrosis 

 

Introduction 

One of the main aims of this study was to investigate the cost-effectiveness of 

newborn screening for cystic fibrosis.  As the WHO (188) sets out, a screening 

programme should only be implemented if:  

 The condition sought should be an important health problem for the 

individual and community. 

 There should be an accepted treatment or useful intervention for patients 

with the disease. 

 The natural history of the disease should be adequately understood. 

 There should be a latent or early symptomatic stage. 

 There should be a suitable and acceptable screening test or 

examination. 

 Facilities for diagnosis and treatment should be available. 

 There should be an agreed policy on whom to treat as patients. 

 Treatment started an early age should be of more benefit than treatment 

started later. 

 The cost should be balanced in relation to the possible expenditure on 

medical care as a whole. 

 Case finding should be a continuing process and not a once and for all 

project. 
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Cystic fibrosis clearly meets the clinical aspects of these criteria. In the UK, newborn 

screening for cystic fibrosis was rolled out nationally in 2007.  Although previous 

views (70) have suggested that there is a positive impact, it is still unclear if there 

are net economic benefits to screening in the UK, given the current costs of CF 

care. One method commonly employed by health economists to analyse costs and 

benefits of a screening programme is a cost-effectiveness analysis. 

Methods 

In this study, I have carried out a cost-effectiveness analysis which uses various 

decision modelling techniques. The perspective of the study is the NHS and the 

comparator is no screening. 

Model design 

It is the goal of this study to compare newborn screening in the UK for cystic fibrosis 

to not screening.  The method of cost-effectiveness analysis chosen uses a decision 

analytic model to simulate the outcomes of the decision, based on data from the 

ERCFD (chapter 4) and the literature. Applying the taxonomy of the application of 

decision models illustrated by Brennan et al (179), the variable nature of disease 

progression and severity for CF, a simple decision tree is not adequate to look at 

both short and long-term implications of a screening programme. Similarly, a simple 

Markov model will not adequately take into account patient history over a long 

period of time and therefore is inappropriate for this study. Therefore I have adopted 

a discrete time Markov Chain model. This type of model is a cohort model, but 

assumes that fractions of the cohort can experience specific health states and that 

changes are deterministic. The number of individuals in each state is tracked and 
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the event is processed and remembered over time. The model assumes a time 

period of one year, and a total of 60 years was adopted as a lifetime horizon based 

on epidemiological data in Dodge et al. (5) 

A diagram of the model is illustrated in figure 5.1. Boxes represent a decision or 

clinical result. Solid lines indicate the path of the cohort, thick dashed red lines 

indicate delays to treatment. Ovals represent health states. The thin red dotted lines 

represent the probability of transition from one state to another.  There were four 

possible health states: successful intervention (equivalent to Band 1), intermittent 

infections (equivalent to Band 2 and 3), chronic infection (equivalent to Band 4 and 

5), and death.  The bands (discussed in chapter 1) were “matched” to the chosen 

disease states in order to assign costs to each patient in that state. If a patient 

received a positive result in the screening group, it is assumed that treatment started 

immediately.  Patients in the non-screening group also started treatment 

immediately upon receiving a clinical diagnosis. Patients who were clinically 

diagnosed at birth, either through family history, or presenting with meconium ileus 

were excluded from the analysis as they would receive the same treatment 

regardless of which arm they were in.  It was assumed that any false negatives in 

the screening arm would be picked up clinically (and therefore has the same delay 

to treatment as those in the non-screened clinically diagnosed arm).   The model 

was programmed using Microsoft Excel. (189) Appendix E contains the worksheets 

of the model (double click on the embedded excel worksheet to see all worksheets) 

as well as the Excel macros (the model is also available electronically, as the 

embedded model will not run macros). Table 5.6 gives a summary of the parameters 
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input into the model.  Other tables (5.1-5.5) in this section give more detail on the 

methods used for estimation.  

 The starting assumptions, methods of disease progression, and exclusions from the 

model (patients who are diagnosed at or shortly after birth by meconium ileus for 

example) are similar to that of Simpson et al. (70)  However, there are some 

important differences. This model uses infection status as a disease progression 

indicator instead of lung function, and includes sex as an added survival rate 

indicator. As argued in previous chapters, lung function may not give an accurate 

assessment of disease severity for various reasons, not least of which is that it 

cannot be accurately measured in children under 5. (60) (29) Using infection status 

is a more accurate measure as sputum samples can be gathered from all age 

groups and the number of infected sputum samples (over a year) gives an indication 

of the health of the lungs. The cost of care was based on 5 years of annual 

treatment costs from the ERCFD instead of one year as in the Simpson study.  Also, 

in the analysis reported here, cost was based solely on disease severity (i.e. HRG 

band) and not age. Assuming the banding structure remains in place, this makes 

more sense as the NHS is spending money based on disease severity and not 

necessarily age.  The model also differs from Simpson et al as I have used a 

probabilistic approach which allows testing for uncertainty as the model runs instead 

of changing one parameter at a time.   
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Demographic characteristics 

The starting population of the model is the total number of live births in England and 

Wales (in 2008), or 669,601. (190)  The model assumed an incidence of CF of 

1:2831 based on estimates from Dodge et al. (5) The model ran scenarios with the 

entire population in each arm, however, in the clinical diagnosis arm, it was 

assumed that the patients encountered a delay to treatment due to the lack of 

immediate diagnosis.  Data from the ERCFD indicated that of those patients who 

were clinically diagnosed, 90% of patients were identified in the first year through 

the onset of symptoms.  Subsequently approximately 2% were identified per year 

until all patients were identified (dependent on the starting population and incidence, 

in this case, all patients were identified by year 6). As it was a newborn screening 

model, all patients begin the model at age zero and progress through the model in a 

yearly cycle.  

Table 5.1: Demographics at Baseline 

Characteristic Starting Value Source 

Population 669601 ONS (190) 

Incidence CF 0.000353 Dodge et al(5) 

Incidence MI 0.15 ERCFD 

Clinically diagnosed in year 1 0.9 ERCFD 

Subsequent Clinical diagnoses 0.02 ERCFD 

Age 0 Assumption 

Sex Ratio 1.05 ONS (190) 

 

Transition probabilities and risk factors 

The patient then moved through the states of the model on a yearly cycle according 

to a set of transition probabilities. Transition probabilities between disease states 
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were derived from creating a Markov matrix from the ERCFD information (See Table 

5.2) in STATA, while estimates for progressing to death were based on 

epidemiological data from the literature (4) which used age and sex-specific survival 

rates.  For the probabilistic analysis, the transition probabilities assumed a Dirichlet 

distribution (a multivariate generalisation of the Beta distribution).   

Table 5.2: Transition Probabilities and Dirichlet Beta distributions estimated 
from the ERCFD* 

 
Success Intermittent Chronic Death Total 

Success 0.62 0.33 0.04 0.01 1 

Intermittent 0.44 0.51 0.03 0.02 1 

Chronic 0 0 0.95 0.05 1 

Success Beta (.62,33,.04,.01) 
   

Intermittent Beta (.44,.51,.03,.02) 
   

Chronic Beta (.95,.05) 
   

*probability of death calculated from life tables in Dodge et al (5) 

 

Patients could move from a successful state to intermittent infection, chronic 

infection, or death or stay in a successful state.  Patients in the intermittent infection 

state could move to a successful state, chronic state, or death, or stay in the 

intermittent infection state.  Patients in the chronic state could only move to the dead 

state, or stay in chronic infection state.  Death was considered an absorbing state.  

Excel calculated the number of patients in each category by the following formulas:  

Successful state: Patients in successful statet-1 * (1-RRinf) + (Number of patients in 

intermittent infection statet-1 * InterSuccess) + (Number of patients in chronic 

infection statet-1 * ChronicSuccess) - Number of patients in successful state * 

(SuccessInter + SuccessChronic + SSuccessDeath) 
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Intermittent state: Patients in Intermittent statet-1 + (Patients in successful statet-1 * 

RRinf) + (Patients in successful statet-1 * SuccessInter) + (Patients in chronic statet-1 

* ChronicInter) – Patients in intermittent state * 

(SInterDeath+InterChronic+InterSuccess) 

Chronic State: Patients in Chronic statet-1+ (Patients in successful statet-1 * 

SuccessChronic) + (Patients in intermittent statet-1 * InterChronic) – Patients in 

chronic state*(SChronicDeath+ChronicSuccess+ChronicInter) 

Where t-1 is the population in previous cycle, RRinf is the relative risk of acquiring 

the first infection, SuccessInter, SuccessChronic, InterSuccess, InterChronic, 

ChronicSuccess, ChronicInter are all transition probabilities for the three available 

health states, and SSuccessDeath, SInterDeath, SChronicDeath are all mortality 

rates derived from life tables (shown in Appendix E).  

CF patients have a higher relative mortality risk than the general population.  Life 

table estimates (available in Appendix E) were built using data taken from Dodge et 

al (5) and is available for the total population and disaggregated by sex, though the 

model here uses the entire population for the life tables.  

It has also been shown that once a patient has their first infection, they are more 

likely to progress more quickly to a chronically infected state.  Therefore the relative 

risk of acquiring the first infection is important. Including parameters that allow for 

the estimation of the probability of this event allows the transition parameters to 
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change over time.  To estimate these parameters, a Weibull regression14 (table 5.3) 

using data from the ERCFD was used to input coefficients and standard errors in 

order to calculate the hazard function.  This regression assumes a lognormal 

distribution, and therefore the hazard ratio is calculated by exponentiating the 

coefficient.  The regression shows that the gamma, or shape parameter is greater 

than one, but less than 2, indicating that the hazard rate of first infection increases 

over time but at a decreasing rate.    

As we know the covariance relationship of the parameters from the regression, a 

Cholesky decomposition technique was used to enable correlated random draws 

from a normal distribution. The Cholesky decomposition matrix is the square root of 

the covariance matrix.  Once this is calculated, a vector of correlated variables can 

be generated. Z is a randomly generated lognormal vector, Tz is that vector 

multiplied by the Cholesky decomposition and mu+Tz is the vector of parameter 

means. Table 5.4 gives the co-variance matrix, correlation matrix, Cholesky 

decomposition matrix and the random variables used to incorporate uncertainty into 

the model. The calculations can be seen by clicking the “hazard tables” tab on the 

embedded workbook in appendix E.  Using the Cholesky decomposition method 

enabled the transition probabilities to be calculated using a Weibull distribution, 

                                                           

 

14
 A Weibull model is a two parameter proportional hazards model, with a shape (gamma) and scale 

(lambda) parameter that is used to model the hazard of failure rates (in this case, infection) 37.

 Briggs A, Sculpher M, Claxton K. Decision Modelling for Health Economic Evaluation. Oxford, 

UK: Oxford University Press; 2006. 
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which is suitable for modelling data with hazard rates that increase or decrease over 

time. 

Table 5.3: Regression to calculate hazard function for relative risk of infection 

Weibull Regression – log relative-
hazard form 

 

Number of obs      
= 324 

Group variable: pid 
   No of subjects = 157 
   No of failures = 121 
   Time at risk = 324 
   Log likelihood = -132.5275 
 

LR chi2(4)       = 17.42 

  

Prob > chi2        
= 0.00 

Time to 
Infection 

Coefficien
t 

Std 
Err Hazard Ratio  

95% Conf Int (of hazard 
ratio) 

Age -0.40 .02 0.961  .9382072 1.01327 
Sex 0.13 .18 1.139  .7099908 1.462772 
Screened 0.16 .025 1.174  1.053336 1.155197 
Gamma 0.40 .67 1.492  1.227258 1.814183 
Constant -5.49 .21 0.004  .0000987 .0015578 
Lambda .02      
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Table 5.4: Covariance matrix, Cholesky decomposition, and random variable 
generation for probabilistic analysis (based on coefficients, standard errors 
and hazard ratio from regression in table 5.3) 

Covariance matrix 
     

      

 
lngamma cons age male screened 

lngamma 0.0081 
    cons -0.0057 0.0441 

   age 0.0000 -0.0008 0.0004 
  male 0.0000 -0.0072 0.0000 0.0324 

 screened 0.0003 -0.0006 -0.0001 0.0002 0.0006 

      

      

      Cholesky decomposition 
    

      

 
lngamma cons age male screened 

lngamma 0.0900 
    cons -0.0632 0.2003 

   age 0.0000 -0.0039 0.0196 
  male 0.0001 -0.0362 -0.0055 0.1762 

 screened 0.0029 -0.0023 -0.0061 0.0004 0.0240 

      

      Random variables 
     

 
z 

 
Tz 

 
mu + Tz 

lngamma -0.2234 
 

-0.0201 
 

0.3799 

cons -1.0806 
 

-0.2023 
 

-5.6932 

age -0.4214 
 

-0.0040 
 

-0.0440 

male -0.5203 
 

-0.0503 
 

0.0797 

screened 0.9801 
 

0.0277 
 

0.1877 

 

Health economic data 

The model is based upon an NHS perspective. The costs included where those for 

inpatient/outpatient care, and drugs, as well as the cost of screening. In the case of 

CF, the cost of screening is relatively cheap, as many of the costs of a screening 

programme are already sunk into the existing national newborn screening 

programme.  Cost of care was assigned to different health states of the model by 

using data from the cost of illness study in chapter four.  Details of the methods 
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used to gather that information is in Chapter 4.  To incorporate uncertainty around 

the cost estimates, a lognormal distribution was assumed (this distribution was 

shown to be appropriate in chapter 4).This was calculated in excel by using the 

=LOGINV(RAND(),LN(Cost),STDEV(LN(Cost)) command.   All future costs were 

discounted to present value at 3.5% annually and were presented for the year 2010 

in UK pounds sterling (GBP).   

Quality of life information was taken from a study by Simpson et al. (70) These 

estimates were based on previous evidence  (191) that forced expiratory volume 

results were indicative of a change in the quality of life as measured by the Quality 

of Well-Being Scale (111) which can be used in economic evaluations to derive 

QALY estimates.   While not based on infection information, these QALY estimates 

are currently the only available in the literature for paediatric patients.  QALY 

estimates were modelled using a Dirichlet (Beta) distribution with alpha being 

calculated by (U*(U*(1-U)/(seU^2)-1)) and beta being calculated by (U*(1-

U)/(seU^2)-1-alpha) where U is utility, and seU is the standard error of the utility 

estimates.  

Table 5.5: Starting Cost and Utility parameters 
Cost parameters  

 
Unit Source 

Cost of one Success cycle £    10,301 ERCFD (Ch 4) 

Cost of one Intermittent infection cycle £    22,928 ERCFD (Ch 4) 

Cost of one Chronic cycle £    34,351 ERCFD (Ch 4) 

Cost of Screening one individual £            2 
Addenbrooke‟s 

Hospital 

Cost of Treatment (pre-symptom Clinically Diagnosed) £      1,170 Simpson et al 

  
 

 
 

Utility of Markov states per cycle 

  
 

Utility gained of one Success cycle 0.95 Simpson et al 

Utility gained of one Intermittent cycle 0.75 Simpson et al 

Utility gained of one Chronic cycle 0.68 Simpson et al 
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Table 5.6: Summary of model parameters 

Name 'live' value 
probabilist

ic 
determinist

ic 
standard 

error distribution alpha beta Description 

Population 669601 
      

Live births in England 

Incidence CF 
0.0003532

3 
      

Incidence of CF 
Incidence MI 0.15 

      
MI 

Clinically diagnosed 
in year 1 0.9 

      
Percent clinically diagnosed year 1 

Subsequent Clinical 
diagnoses 0.02 

      

Percent clinically diagnosed yearly after 
year 1 

Age 0 
      

Average age of all patients at receipt of 
primary implant 

Sex 2 
      

Sex indicator (0 for female, 1 for male) 
Sex Ratio 1 

       cDR 3.5% 
      

Cost discount rate 
oDR 3.5% 

      
Outcome discount rate 

Transition probability variables (see diagram on page <Model Figure> for details) 
   SuccessDeath 0.01 0.02 0.01 0.010 Beta 1 99 Mortality Rate for "well" patients 

InterDeath 0.02 0.27 0.02 0.014 Beta 2 98 Mortality for intermittent patients 

ChronicDeath 0.05 0.29 0.05 0.022 Beta 5 95 Mortality for chronic patients 

SuccesInter 0.33 0.31 0.33 0.047 Beta 33 67 Chance of moving from healthy to inter 

SuccesChronic 0.04 0.32 0.04 0.019 Beta 4 96 
Chance of moving from health to chron 
state 

InterSuccess 0.44 0.32 0.44 0.049 Beta 44 56 Chance of moving from inter back to health 

InterChronic 0.06 0.31 0.06 0.024 Beta 6 94 
Chance of moving from inter  into chron 
state 

ChronicInter 0.01 0.34 0.01 0.010 Beta 1 99 Chance of moving from chron to inter state 

ChronicSucces 0.00 0.35 0.00 0.000 Beta 0 100 
Chance of moving from chron to healthy 
state 
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Name 'live' value 
probabilist

ic 
determinist

ic 
standard 

error distribution alpha beta Description 

Risk of acquiring first infection (see <Hazard function> for details) 
    

         

cons -5.49 -4.95 -5.49 0.21 LogNormal 
  

Constant in survival analysis for baseline 
hazard 

ageC -0.04 -0.08 -0.04 0.02 LogNormal 
  

Age coefficient in survival analysis for 
baseline hazard 

maleC 0.13 -0.23 0.13 0.18 LogNormal 
  

Male coefficient in survival analysis for 
baseline hazard 

lambda 0.02 
      

Lambda parameter survival analysis 
(depends on chosen mix of above 
coefficients) 

gamma 1.49 0.36 0.40 0.09 LogNormal 
  

Ancillary parameter in Weibull distribution 

rrNBS 1.17 0.15 1.17 1.03 LogNormal 
  

Relative risk of moving to ill state once 
screened 

Cost parameters 
       

cInter  £22,928  1226 22928.45 
 

LogNormal 9.24 1.28 
Cost of one cycle in the intermittent 
infected state 

cChronic  £34,351  17911 34351.13 
 

LogNormal 9.70 1.33 
Cost of one cycle in the chronic infection 
state 

cSuccess  £10,301  6901 10301.12 
 

LogNormal 8.65 1.00 Cost of one cycle in a 'success' state  

cScreening  £ 2  2 2.00 
 

LogNormal 0.59 0.02 Cost of screening 

cCDTreatment  £1,170  211 1170.49 
 

LogNormal 7.07 1.32 Cost of clinical diagnosis 

Utility of Markov states per cycle 
      uSuccess 0.95 0.94 0.95 0.03 Beta 49.19 2.59 Utility of being well 

uInter 0.75 0.71 0.75 0.04 Beta 87.14 29.05 Utility of being intermittently infected 

uChronic 0.68 0.72 0.68 0.03 Beta 
163.7

3 77.05 Utility of being chronically infected 
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Data analysis 

Once the parameter data was in the model, the model was programmed to run 1000 

simulations for each patient.  Each simulation added the costs and the QALY scores 

of every patient in each disease state to determine the overall cost and QALY 

gain/loss for the population for each simulation.  This information was then used to 

calculate the incremental cost-effectiveness ratio:  

                                                                            

   )   

divided by 

                                                                            

   )  

Where k = the number of simulations, i = the number of individuals in the model, 

Cscreening and Qscreening = cost and QALYs associated with screening, 

Cnonscreened  and Qnonscreened = cost and QALYs associated with the non 

screened group, and θ is the set of parameters set out in table 5.6.  The ICERs from 

each simulation were then plotted on a cost-utility plane, which illustrates a joint 

distribution of costs and utility.  This provides a visual indicator of the amount of 

uncertainty around the estimate.  Knowing the joint distribution of the costs and 

effects allows standard statistical analysis of cost-effectiveness data.  Negative 

ratios (those that appear in the SE and NW quadrants of the CU plane) yield 

negative ICERs.  As mentioned in Chapter 3, the ICER fails to distinguish between 

two situations we would treat differently when it becomes negative.  A histogram of 
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the ICER will be presented to look for negative ratios and intractability of the 

variance.   

Given there is no set decision rule on whether or not to adopt screening if it is below 

a certain ceiling willingness-to-pay, a net-benefit approach is taken. This approach 

allows us to multiply the incremental effect by the ceiling ratio, which generates the 

maximum willingness to pay in monetary terms for the effect gain.  Subtracting the 

incremental cost of the intervention leaves the net-benefit on a cost scale. 

               

where NMB is net monetary benefit, λ is the threshold, and delta E and delta C are 

the changes in effect minus the change in cost.  A positive incremental net-benefit 

suggests that the intervention represents good value for money, while a negative 

incremental net benefit suggests the intervention is not cost-effective. Using the net 

benefit approach allows the determination of how much of the estimated joint 

density falls on either side of a line representing the decision rule by plotting a cost-

effectiveness acceptability curve over a range of monetary thresholds of choice 

(CEAC).    

To understand model uncertainty, and the relative effect of different parameters in 

the model, the expected value of perfect information (EVPI) and the expected value 

of perfect parameter information (EVPPI) approaches will be used at the population 

level.  The EVPI helps to look at the cost of making the wrong decision and the 

opportunity costs of error.  The expected costs of uncertainty can be interpreted as 

the EVPI, as having perfect information eliminates the possibility of a wrong 

decision.  A health care system‟s budget constraint is generally considered the 
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maximum that the health care system is willing to pay for additional evidence to 

inform the decision.  For this thesis, a non-parametric approach was taken to 

estimate EVPI by calculating the maximum net benefit for each iteration from the 

simulation (1000) for a particular willingness to pay threshold (0-100,000), then take 

the mean over the maximum net benefits over the values of the willingness to pay 

threshold, or:  

                                   

Where θ is the willingness to pay threshold and j represents the alternative 

interventions.  To ensure that the decision is applicable for all patients and across a 

useful time period, it is important to express the EVPI for the total patients who 

stand to benefit from additional information (in this case, CF patients).  This can be 

calculated by:  

                              
  

      
     

 

Where T is the period over which the information will be useful and I is the incidence 

over the period. EVPI associated with future patients is discounted at rate r to 

provide the total EVPI for the population of current and future patients.  

EVPPI can give us information about what type of additional evidence would be 

most valuable.  It is calculated in a very similar way to EVPI where:  

                                           

Where φ is the value of perfect information about a parameter, ψ is the expected net 

benefit of a decision by choosing the alternative with the maximum expected net 
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benefit when those expected net benefits are averaged over the remaining uncertain 

parameters. The EVPPI will use 100 inner and 100 outer loops to estimate the 

expected values.  

Results 

The model assumed that all 669,601 births in 2006 were started in the model at age 

0.  Once in the model, patients were either screened or not screened.  Excluding a 

percentage of patients with MI and/or a family history meant that the number of 

patients with CF was 237.  Table 5.7 gives a deterministic run of the numbers of 

patients in each health state by year.  The no screening group had fewer patients 

spending time in the success state than the screened group (2014 versus 2312).  

The no screening group had more patients spending time in the intermittent state 

than the screened group (1521 versus 1486). The no screening group also had 

fewer patients spending time in the chronic state than the screened group (1356 

versus1383) though the average age was slightly younger (10.72 for the not 

screened and 12.26 for the screened). The no screening group had more patients 

ending in the dead state faster, although the average age of death (calculated by 

averaging the ages at death) was only marginally different (21.85 in the screening 

group, 21.93 in the not-screened group).  This may indicate that the patients in the 

no screening arm may progress faster through the model due to the delay to 

treatment.  

  



 

 

 

208 

 

 

Table 5.7: Number of people in each health state by year (total life years in each 
state) 

Year No Screening Screening 

Succ Inter Chron Dead Succ Inter Chron Dead 

1 132 72 9 0 237 0 0 0 

2 118 81 18 1 148 78 9 0 

3 113 81 27 2 127 88 20 1 

4 109 79 35 4 119 86 29 3 

5 106 78 43 5 112 82 38 4 

6 103 76 50 7 106 78 46 6 

7 96 74 57 9 101 75 53 8 

8 91 71 63 12 96 71 59 10 

9 86 68 65 18 91 68 65 12 

10 81 64 67 24 87 64 67 19 

11 77 61 68 31 82 61 68 25 

12 73 58 68 37 78 58 69 32 

13 69 55 69 44 74 55 70 39 

14 65 52 69 50 70 52 70 45 

15 62 50 68 57 66 49 69 52 

16 59 47 67 63 63 47 69 58 

17 56 45 67 69 60 45 68 64 

18 53 43 66 75 57 42 67 71 

19 49 39 57 91 54 40 66 77 

20 45 36 50 104 50 37 57 92 

21 42 34 44 117 46 34 50 106 

22 39 31 39 127 43 32 44 118 

23 36 29 35 137 40 29 39 128 

24 33 27 31 146 37 27 35 138 

25 30 25 28 154 34 25 31 147 

26 28 23 25 161 31 23 28 154 

27 26 21 23 167 29 21 25 161 

28 24 19 21 173 27 20 23 168 

29 21 15 10 191 25 18 20 173 

30 18 13 5 200 22 14 9 191 

31 15 11 3 207 19 12 5 200 

32 13 9 2 212 16 10 3 207 

33 11 8 2 216 14 9 2 211 

34 9 7 2 219 12 7 2 215 

35 8 6 1 222 10 6 2 218 

36 7 5 1 224 9 5 1 221 

37 6 4 1 226 7 5 1 223 

38 5 3 1 227 6 4 1 225 

39 2 1 0 233 5 3 1 227 

40 1 0 0 235 2 2 0 233 

41 0 0 0 236 1 0 0 235 

42 0 0 0 236 0 0 0 236 

43 0 0 0 236 0 0 0 236 

44 0 0 0 237 0 0 0 236 

45 0 0 0 237 0 0 0 237 

Life 
Years 2,014 1,521 1,356 5,682 2,312 1,486 1,383 5,464 
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Table 5.8: Costs of health states by year 

Year 

No Screening Screening 

Cost Succ Cost Inter 
Cost 
Chron Total Cost (all) 

Cost 
Succ Cost Inter 

Cost 
Chron Total Cost (all) 

1 1,356,460 1,659,500 292,496 3,308,456 2,436,468 0 0 2,436,468 
2 1,211,969 1,857,153 610,906 3,680,028 1,527,635 1,798,354 324,995 3,650,984 
3 1,159,273 1,852,904 915,074 3,927,250 1,312,596 2,019,862 677,420 4,009,879 
4 1,123,805 1,817,475 1,199,664 4,140,943 1,221,166 1,973,814 1,006,976 4,201,955 
5 1,093,128 1,778,884 1,464,954 4,336,967 1,154,420 1,886,482 1,307,014 4,347,916 
6 1,065,040 1,741,673 1,712,072 4,518,786 1,095,054 1,796,634 1,578,298 4,469,986 
7 990,296 1,706,537 1,942,214 4,639,048 1,039,870 1,710,679 1,822,734 4,573,284 
8 936,644 1,635,195 2,150,022 4,721,861 988,122 1,629,459 2,042,306 4,659,888 
9 886,549 1,549,902 2,229,092 4,665,543 939,499 1,552,870 2,238,892 4,731,261 

10 838,469 1,471,787 2,286,720 4,596,975 891,468 1,469,324 2,302,971 4,663,763 
11 793,188 1,398,238 2,325,744 4,517,170 844,891 1,393,774 2,347,385 4,586,050 
12 750,637 1,328,678 2,348,615 4,427,930 800,827 1,323,006 2,374,811 4,498,643 
13 710,639 1,262,833 2,357,507 4,330,980 759,294 1,256,269 2,387,538 4,403,100 
14 673,018 1,200,484 2,354,347 4,227,849 720,152 1,193,235 2,387,584 4,300,970 
15 637,609 1,141,428 2,340,848 4,119,884 683,247 1,133,657 2,376,738 4,193,643 
16 604,259 1,085,476 2,318,527 4,008,263 648,432 1,077,320 2,356,588 4,082,340 
17 572,832 1,032,450 2,288,731 3,894,013 615,571 1,024,023 2,328,537 3,968,131 
18 543,198 982,182 2,252,649 3,778,029 584,538 973,580 2,293,827 3,851,945 
19 504,221 902,987 1,970,524 3,377,733 555,215 925,820 2,253,558 3,734,592 
20 465,886 834,387 1,731,547 3,031,820 516,234 850,861 1,967,790 3,334,885 
21 430,087 771,245 1,528,272 2,729,604 477,948 785,906 1,726,267 2,990,121 
22 396,880 712,735 1,354,511 2,464,126 442,069 726,287 1,521,282 2,689,638 
23 366,127 658,508 1,205,221 2,229,856 408,702 671,112 1,346,451 2,426,265 
24 337,669 608,275 1,076,306 2,022,250 377,729 620,015 1,196,582 2,194,325 
25 311,354 561,765 964,424 1,837,543 349,007 572,708 1,067,452 1,989,168 
26 287,034 518,723 866,847 1,672,604 322,394 528,930 955,626 1,806,950 
27 264,570 478,905 781,340 1,524,815 297,749 488,434 858,300 1,644,483 
28 243,828 442,083 706,069 1,391,979 274,939 450,986 773,180 1,499,106 
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Year 

No Screening Screening 

Cost Succ Cost Inter 
Cost 
Chron Total Cost (all) 

Cost 
Succ Cost Inter 

Cost 
Chron Total Cost (all) 

29 219,051 346,150 326,342 891,542 253,838 416,368 698,386 1,368,592 
30 186,556 293,204 177,769 657,529 228,462 326,081 322,601 877,144 
31 158,440 248,820 115,211 522,471 195,977 276,185 175,874 648,036 
32 134,416 211,256 84,959 430,631 167,391 235,179 114,256 516,826 
33 113,979 179,387 67,492 360,858 142,814 200,449 84,583 427,846 
34 96,626 152,325 55,616 304,567 121,790 170,904 67,506 360,199 
35 81,902 129,338 46,595 257,835 103,841 145,732 55,900 305,472 
36 69,415 109,811 39,318 218,544 88,529 124,272 47,067 259,868 
37 58,826 93,224 33,279 185,329 75,471 105,973 39,917 221,361 
38 49,850 79,135 28,202 157,187 64,338 90,369 33,957 188,664 
39 16,996 26,343 13,481 56,820 54,846 77,061 28,925 160,831 
40 5,659 9,158 4,500 19,317 18,980 45,857 0 64,837 
41 1,957 2,979 1,533 6,469 6,426 9,156 4,725 20,307 
42 638 1,071 513 2,223 2,248 3,027 1,633 6,907 
43 227 330 176 734 751 1,094 556 2,401 
44 71 128 58 257 267 349 193 810 
45 71 128 58 257 87 132 65 285 

Cumulative 
Total 20,749,347 34,875,179 46,570,347 102,194,873 

23,811,29
1 34,061,591 47,497,244 105,370,126 
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Table 5.8 shows the accrual of cost by state over time.  It does not, however, show 

the cost of screening or the cost of caring for the pre-symptomatic clinically 

diagnosed patients. The total costs of care in the non-screened arm amounted to 

£102,194,873 and £105,370,126 in the screened arm over 45 years Reflecting the 

differences of numbers of patients in each state, the cost of the successful state is 

approximately £3 million more in the screened arm than the no screening arm.  The 

screened arm also accrued higher costs in the chronic stage of approximately £1 

million more than the non-screened arm.  The non-screened arm accrued 

approximately £800,000 more in the intermittent state than the screened arm. 

Overall, the screened arm was more expensive by approximately £3 million.   

Figure 5.2 gives a graphical representation of total state costs over time.  Initially, 

the total cost group is more expensive, reflecting the number of people diagnosed 

from the symptoms of CF.  Over time, however, newborn screening arm becomes 

more expensive.  This reflects the findings in the above tables, as patients who are 

screened stay alive longer and therefore accrue more costs. 
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Table 5.9: Utilities gained in health states by year 

Year 

No Screening Screening 

Utility 
Succ 

Utility 
Inter 

Utility 
Chron 

Utility 
Succ 

Utility 
Inter 

Utility 
Chron 

1 195 0 0 217 0 0 

2 117 51 5 132 55 6 

3 101 55 11 109 60 12 

4 93 53 16 98 56 17 

5 87 50 20 90 52 22 

6 82 47 24 82 48 25 

7 77 45 27 75 44 28 

8 69 42 29 69 40 31 

9 63 39 31 64 37 33 

10 58 36 31 58 34 32 

11 53 33 31 53 31 32 

12 48 30 30 49 29 31 

13 44 28 30 45 26 30 

14 40 26 29 41 24 29 

15 37 23 28 38 22 28 

16 34 22 27 34 20 27 

17 31 20 26 32 19 26 

18 28 18 24 29 17 24 

19 26 17 23 27 16 23 

20 23 15 20 24 14 20 

21 21 13 17 21 12 17 

22 19 12 14 19 11 14 

23 17 11 12 17 10 12 

24 15 9 10 15 9 10 

25 13 8 9 14 8 9 

26 12 8 8 12 7 8 

27 10 7 7 11 6 7 

28 9 6 6 10 6 6 

29 8 5 5 9 5 5 

30 7 4 2 8 4 2 

31 6 3 1 6 3 1 

32 5 3 1 5 3 1 

33 4 2 1 4 2 1 

34 3 2 0 3 2 0 

35 3 1 0 3 1 0 

36 2 1 0 2 1 0 

37 2 1 0 2 1 0 

38 1 1 0 2 1 0 

39 1 1 0 1 1 0 

40 0 0 0 0 0 0 

41 0 0 0 0 0 0 

42 0 0 0 0 0 0 

43 0 0 0 0 0 0 

44 0 0 0 0 0 0 

45 0 0 0 0 0 0 

Cum 
QALY 1,468 748 556 1,531 738 571 
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Table 5.9 shows the number of quality adjusted life years gained by each health 

state over time.  The screening arm accumulated more QALYs over time in the 

Successful and Chronic health state in comparison to the no screening arm, but 

accumulated fewer QALYs in the intermittent health state.  This again indicates 

patients in the screening arm are staying in the successful state longer, and staying 

alive longer, and therefore reaching the chronic state.  

Table 5.10: Results of the probabilistic analysis 
          

  Intervention Cost QALYs   
          

  No Screening  £ 110,238  11.23   

  NBS  £ 110,417  11.51   

  difference  £       179  0.28   

          
  ICERs:       

  NBSvsNot  £       641  per QALY   

          
 

Table 5.10 shows the ICER calculation for the simulations run by the model.  

Overall, newborn screening was more expensive than not screening, though only 

just (£110,238 vs. £110,417).  However, newborn screening seems to be more 

effective in generating quality adjusted life years (11.51 vs. 11.23).  This meant that 

the ICER was estimated to be £641/QALY gained.  This means that generating one 

additional QALY costs approximately £641.  Assuming the “typical” NICE cost/QALY 

threshold of £30,000 per QALY, newborn screening seems to be a cost-effective 

option.   

In order to gain a better understanding of the variance in the estimates, a cost-utility 

plane (Figure 5.3) was plotted with the cost and utility data from the simulations.  

The plot shows that simulations are spread relatively equally in the northeast and 
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southeast quadrants, meaning that in approximately half the scenarios, newborn 

screening dominates the no screening option, meaning  screening was both cost 

saving and generated better utility gains than no screening (southeast quadrant).  

The diagram also shows that there were relatively few outliers within the 

simulations.  

 

A visual inspection of the ICER distribution (Figure 5.4) also indicates that there are 

negative ICERs as well as outliers.  However, the majority of ICER simulations are 

between 0 and £10000 per QALY gained. While a useful tool to get an idea of the 

variance within the replications, the distribution does not tell us about how much 

overall or parameter uncertainty there is within the model.   
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Table 5.11 gives a list of the incremental net monetary benefits for a number of 

ceilings. The net benefit approach indicates that if the willingness to pay threshold is 

above £2,000 per QALY, newborn screening is the most cost-effective option.   

Table 5.11: Net Monetary Benefit 

Ceiling Net Monetary Benefit 

-£10,000 -£2,973 

-£8,000 -£2,414 

-£6,000 -£1,856 

-£4,000 -£1,297 

-£2,000 -£738 

£0 -£179 

£2,000 £380 

£4,000 £938 

£6,000 £1,497 

£8,000 £2,056 

£10,000 £2,615 

£12,000 £3,173 

£14,000 £3,732 

£16,000 £4,291 

£18,000 £4,850 

£20,000 £5,409 
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While this is consistent with the ICER, a CEAC was created to estimate the 

probability of the interventions being cost-effective given a certain ceiling. Figure 5.5 

shows the CEACs for this analysis.  This figure illustrates that until a ceiling of 

approximately £2,000, no screening has a higher probability of being the more cost-

effective option.  Thus, if a decision maker is not willing to pay anything for a gain in 

QALYs, then not screening has a 60% chance of being the cost effective option but 

there is a 40% chance that will be the wrong decision. However, after £2,000 per 

QALY gained threshold, newborn screening becomes more likely to be cost 

effective.  However, there is still uncertainty surrounding the decision (until a 

willingness to pay threshold of approximately £65,000 per QALY gained).   
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It is obvious from the cost-utility plane and the CEACs that there is a substantial 

amount of uncertainty in the decision rule for ceiling values under £18,000.  To aid 

decision makers in determining if further research should be done to eliminate this 

uncertainty, the population EVPI was calculated (Figure 5.6).   The population EVPI 

was calculated by multiplying the maximum net benefit by the effective population of 

CF patients in the England and Wales for one year‟s birth cohort over 15 years 

(cumulative population 1957).  The EVPI has its highest point (~£31,000,000) at a 

ceiling ratio of £2000, which is where the two CEACs meet and uncertainty is 

highest.  If the cost of research is assumed to be £30,000 per QALY, there is very 

little value in conducting further research.  However, if the cost of research is closer 

to £2000, then it may be worthwhile to carry out the research to reduce the amount 

of uncertainty.  
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Although it is unlikely that new research would be funded at a £30,000 per QALY 

threshold, it is worth checking what parameters may be worthwhile to investigate. 

The EVPPI (figure 5.6) shows that the utility and cost parameters contribute a large 

amount of uncertainty to the model.  Further information on survival parameters and 

disease progression (transition probabilities) may also benefit the model.   However, 

all the parameters or groups of parameters have an EVPPI of £0 after a ceiling ratio 

of £10,000, indicating that if research costs on any of these groups of parameters 

are more than £10,000, it is unlikely that it would be worthwhile.  

Discussion 
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Compared to no screening, our model estimated that the incremental cost 

effectiveness of £641 per QALY gained.  This is significantly cheaper in comparison 

to the incremental cost-effectiveness ratio of £6864 per QALY gained as estimated 

by Simpson et al (70) in 1998.  This may be due to differences in cost estimates, 

updated epidemiological evidence, and model design.  However, both models suffer 

from uncertainty of evidence on the impact of screening on various health indicators 

(such as height and weight and lung function) and how they affect quality of life. The 

quality of life estimates used in this model were relatively conservative with a 

relatively high value placed on the chronic state. However, a more accurate 

reflection of quality of life for this particular study would probably make newborn 

screening even more cost-effective.   

The survival estimates are based on the most recent and reliable age-specific 

survival data, but there is still very limited information on the interactions between 

CF and the normal aging process as well as how and when patients move from one 

health state to another. There is also limited information on the use of the Quality of 

Well-Being scores to estimate QALYs, and therefore these may not be indicative of 

the true state of health.  Indeed, the EVPPI shows that the utility estimates 

contribute the most amount of uncertainty to the model.  The recent emergence of 

the disease and age specific CFQoL measure is likely to improve estimates of utility 

by disease state for children with CF.   

The model and data inputs would satisfy most of the criteria for good practice in 

decision modelling. (192) While the model has not been externally validated, running 

a probabilistic model with uncertainty analyses should control for biases in the 

estimates.  
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Due to the narrow costing approach, it is likely the cost estimates in the model are 

underestimates of the total cost of CF care to the economy, though they are 

representative from the tertiary NHS perspective.  This may, however, impact on the 

generalisability of the study outside the NHS and the UK.  Care would need to be 

taken as newborn screening approaches differ from country to country and area to 

area.   

In conclusion, this model presents the most up to date evidence on the cost-

effectiveness of newborn screening in the UK.  As the screening programme was 

rolled out in 2007 nationwide based on the evidence available at the time (70), it 

seems that the Department of Health‟s decision was the correct one based on a 

£30,000 per QALY threshold.  Indeed, both the Simpson study from 1998 and this 

one indicate that it is highly likely that it would be a cost-effective decision at even 

lower thresholds.
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Chapter 6: Discussion 
In this final chapter I will outline the main results for each of the objectives of this 

thesis.  I will then discuss the methodological limitations of the approaches in this 

thesis and how I have tried to address them.   This will be followed by a discussion 

of the policy implications of the findings of the thesis as well as areas of further 

research.   

Overview of thesis 

Rationale and objectives 

Cystic Fibrosis is the most common genetic disorder in the UK.  It is a chronic, life-

shortening, multisystem disease. CF disease severity differs between individuals, 

though it is not entirely clear why this is the case.  Due to the variability in morbidity 

and range of types of interventions that can be helpful, caring for CF patients 

requires a team of medical professionals: including consultants, specialist nurses, 

physiotherapists, nutritionists and psychologists.   

Given the complex and intensive nature of CF treatment, it is important for NHS 

decision makers to have an idea of where costs fall and how they vary when treating 

CF patients so that the proper funding is in the right place to provide the right 

incentives to ensure care is of the highest standard.  As CF disease severity (and 

therefore resource use) differs between patients, the best way of gathering 

information on patient costs is by looking at individuals resource use over time. 

One of the major clinical developments in the last 10 years was the introduction of 

nationwide newborn screening for CF in 2007 (although some areas such as the 
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counties in this study have been screening for 20+ years).  Newborn screening 

allows for earlier intervention, which in theory could lead to a better long-term 

prognosis for the patient.  Newborn screening and the subsequent treatment has 

resource and cost implications for the NHS.   

The first aim of this thesis was to collect and analyse data on patient resource use 

and subsequent costs to the NHS over time.  The second aim of the thesis was to 

analyse the cost-effectiveness of a newborn screening programme for CF versus 

clinical diagnosis.  

Main findings  

Review of the current evidence on the economics of paediatric CF: 

The systematic review of the economics of paediatric CF (Chapter 2) highlighted a 

number of limitations of existing published research.   The age of some of the cost-

of-illness and cost-effectiveness studies meant that they are likely to be of limited 

use now, given changes in clinical such as the introduction of rhDNAse.  Most of the 

cost studies also only reported the arithmetic mean, which could possibly lead to an 

overestimate of costs given the skewed nature of cost data. There were also wide 

variations in the type of health system, and treatment regimes which limits the 

applicability of the studies in the UK context.   

The cost of paediatric CF in the East of England 

Chapter four describes the findings of the cost-of-illness analysis.  The analysis 

showed that in 2007, the total cost of caring for 174 paediatric patients was 

£1,062,008. Median costs per year varied from £3853 to £4249 over time. Despite a 
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slight fall in the number of days spent in hospital, inpatient stays contributed the 

most to the cost of care, followed by drug costs and clinic costs (outpatient visits). 

These findings were marginally higher than those of Sims et al (3).  Using the 

banding tariffs as unit costs instead of NHS reference costs shows a total cost of 

just under £2.7 million in 2007, with median costs ranging from £5266 to £7176.   

Analysis using generalised estimating equation regressions indicated that costs 

were higher for the youngest (0-3) age group over time, that being screened at birth 

generated lower costs over time. Regression analysis also showed that cost was 

higher for those patients who were between 0 and 3 years old than those between 4 

and 8 years old. This may indicate that more intensive treatment earlier is indicative 

of healthier patients later on. The models also suggested that, although not the 

conventional significance level of .90, that having better nutrition (as measured by 

BMI and weight for height) also contributed to lower costs over time.  

Cost effectiveness of newborn screening for CF 

Chapter 5 discusses the results of a model built to assess the cost-effectiveness of 

newborn screening versus clinically diagnosing patients. Compared to no screening, 

the model estimates that the incremental cost effectiveness of newborn screening is 

approximately £641 per QALY gained.  From the CEAC analysis, the probability that 

accepting newborn screening at this level has a 50% probability of being the correct 

decision, rising to 100% at a threshold around £65,000.  This indicates that the 

government was willing to pay at least that amount per QALY gained, as they have 

implemented the programme nationwide.  Subsequent analysis shows that there is 

significant uncertainty surrounding some of the estimates, particularly around the 
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utility and cost estimates.  However, as the cost of research would likely exceed 

£10,000, where the added value of finding more information becomes zero, it is 

unlikely that more research is good value for money, at least to answer the question 

of whether or not newborn screening for CF is cost-effective.    

Methodological considerations 

This thesis raises a number of methodological issues for consideration, most notably 

in the area of the statistical analysis and interpretation of longitudinal panel data, 

and in the methods used to model the cost-effectiveness of newborn screening.  

Methodological limitations 

As Chapter 3 points out, there are many considerations and many pitfalls when 

conducting cost analysis and economic evaluations.  This section does not intend to 

go into as much detail as Chapter 3, but discusses the impact this thesis‟ limitation 

may have had on the conclusions drawn in this thesis and how I have attempted to 

minimize the impact.  

Point-of-view considerations 

The analyses in this thesis adopted the viewpoint of tertiary NHS services in the 

East of England.  This is, admittedly, a narrow perspective.  Paediatric cystic fibrosis 

patients and their families use the primary care setting for some of their care, as well 

as incurring out-of-pocket costs and probable productivity losses as a result of the 

illness. In the Netherlands in 1991, Wildhagen et al (57) indicated that this could be 

up to 16% of the total cost of care.  Wildhagen carried out another questionnaire 

based study that found the mean non-hospital costs of care for paediatric patients to 
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be $11,429 annually. This means that the total cost of paediatric CF to the economy 

could be much larger than the estimates presented here (in both the cost-of-illness 

analysis and the cost-effectiveness analysis).  This narrow perspective was 

purposefully chosen;  the funding for CF is distributed to tertiary NHS facilities,  

therefore knowing the costs directly related to resource use in these facilities is most 

relevant to the intended audience of this thesis.  

Cost-of-illness considerations 

 Initially, I had hoped to gather data from across the six counties in the eastern 

region to enable a “natural experiment” situation as three counties (Cambridgeshire, 

Norfolk and Suffolk) had been carrying out newborn screening for decades, and the 

other three (Essex, Hertfordshire and Bedfordshire) had not.  However, participation 

in Essex, Hertfordshire, and Bedfordshire, (approximately 7 hospitals) was non-

existent.  When contacted after initial ethics approval was granted to get local R&D 

approval, none of the hospitals responded to email or phone inquiries.  I am not sure 

if they decided not to participate due to having to take patient consent, or due to 

other administrative issues (e.g. sponsoring me for honorary contracts so I could 

collect data).  If this was the case, a “research passport” situation would have eased 

the administrative burden, as gaining ethics approval and honorary contract in one 

hospital would have enabled me to work throughout the region.  Unfortunately this 

system was only put in place in 2009, after data collection had ended. This led to the 

study having nearly half the numbers of patients to analyse, which can lead to 

biased estimates, especially in the mean.  To minimise the impact of small numbers 

in the cost-of-illness study, bootstrapped confidence intervals for the mean and 

interquartile ranges for the median were estimated.   
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A related possible limitation is the representativeness of the data gathered.  

Information gathered from a small sample in a relatively rural region may not be 

nationally representative.  However, the paediatric CF population in this region 

seems to be nationally representative in terms of age and sex as well as in terms of 

disease severity when compared with the information gathered from Sims et al(3), 

Dodge et al(4), and the CF Trust (10).   

As mentioned in Chapter 3 and 4, there are many methods of analysis available to 

investigate the relationship between a dependent variable and other covariates.  I 

chose to use a generalised estimating equation models.  This method does not 

allow for investigation of the variance-covariance structure, but instead focuses on 

the relationship between the covariates and the dependent variable.  Given that I 

was only interested in the impact the variables had on total cost over time, this 

seemed the most appropriate model choice.  The method also allows for individuals 

to enter and leave the sample at different times, meaning that it did not discard or 

treat as incomplete, those individuals who did not have all five years of data 

available.  GEE models have been used in healthcare before to analyse longitudinal 

data sets (Marshall 2011, Asche CV 2010) and the models have had a model fit test 

designed for them (186) (187).  The models in chapter 4 had a very low QIC, 

indicating that they were a good fit and therefore the results were reliable. It would 

be ideal to gain access to the information in the national database to increase the 

number of observations in the data set and compare the results to those found in 

chapter 4.  

Cost-effectiveness analysis considerations 
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Given the complex nature of cystic fibrosis, any model created to estimate the costs 

and effects of a technology will probably deviate from reality.  However, as 

mentioned in Chapter 3, there is often a trade-off between model complexity and 

reality.  As with econometric analysis, models rely on robust data. Therefore, it is 

important to address the uncertainty that surrounds any parameter in the model.  By 

using a probabilistic cohort  simulation model, I was able to address both concerns.  

This type of model uses Monte Carlo simulations to repeatedly estimate cohort  

costs and outcomes over time, with each variable having a distribution that each 

simulation pulls from.  

In terms of model validation, the cost-effectiveness model was not externally 

validated by any primary screening versus not screening research studies. However, 

the model did have face validity, as the estimates produced did make sense.  It 

could also be argued that the model was predictively validated, as some of the 

model‟s inputs were taken from the Simpson et al (33) modelling study. The model 

also had between model validity, as the results were not remarkably different from 

those of Simpson et al.   

Conclusions 

The analyses in this thesis have led to three main conclusions: the costs of caring 

for paediatric CF patients have increased over time; disease severity (as measured 

by band) and age are significant drivers of those costs; and that newborn screening 

for CF is a cost-effective intervention when compared with clinical diagnosis on 

suspicion or appearance of signs.  
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While there are implications of the small numbers of patients in the sample for the 

results of the cost-of-illness analysis, the results seem robust when compared with 

other estimations on the cost of caring for the paediatric CF patients in the UK. (3) 

The results also are within the range of those found in the literature review, which 

included patients in the US and Europe.  However, as mentioned in Chapter 2 and 

Chapter 3, comparing results across different health care settings must be done with 

caution. Although the method of capturing disease severity in this thesis may be 

unique to the UK (at least in terms of the banding system) the move away from 

using lung function alone as a disease severity indicator is becoming more common 

(99). Also, the outcomes of the regression analysis also seem to chime with the 

literature. 

Finally, the results of the cost-effectiveness analysis indicate that the government 

has made the correct decision in implementing a national newborn screening 

programme for CF in the UK.  While the model indicated that there was uncertainty 

in most of the parameters, the cost of research to eliminate the uncertainty was 

prohibitive.   

The methods used for the cost-of-illness study are not necessarily new, however the 

application of GEE models for longitudinal CF analysis does seem to be the first of 

its type.  GEE models are particularly useful for investigating longitudinal data where 

patients do not have information available at every time point. There is an 

opportunity to explore the data more fully as the database becomes more populated 

and the bounded nature of paediatric CF care (0-16) makes the GEE method an 

attractive option for looking at longitudinal relationships.  
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 Information from the ERCFD in terms of cost, transition parameters, linear 

relationships, and risk factors were used to populate the model in chapter 5.  The 

cohort model built to look at the cost-effectiveness of newborn screening was robust 

in terms of allowing for disease variability and the probabilistic analysis of the 

various parameters being input into the model.  This type of model is useful for 

investigations of interventions that have lifetime cohort cost and utility implications.   

Policy implications 

The findings of this thesis have implications for existing NHS policies on the care of 

CF patients. The cost-of-illness  analysis has implications for various funding 

policies, and the cost-effectiveness findings confirm current NHS policy as good 

value for money.  

Cost-of-illness 

As mentioned in Chapter 1, funding for the care of paediatric CF patients is still 

allocated on a case-by-case basis. The cost-of-illness study in this thesis has 

illustrated that the costs of caring for patients with CF can vary from year to year 

(and more likely month to month).  These results also indicate that young patients 

accrue more costs due to preventative treatment.  These findings echo those of the 

CF Trust, who have argued that the Payment-by-Results system is not appropriate 

for CF, given the high costs of sustaining patients‟ health.  I would agree that 

funding a package of care surrounding a patient‟s banding is an appropriate method 

of funding hospital trusts and specialist centres as a patient who is relatively healthy 

costs considerably less to care for than a patient who is in band 3 or 4.  The banding 

system recognises this distinction, whereas the old system would have charged the 



 

 

 

230 

 

 

same tariff for both patients, which could have resulted in a shortfall in funding for 

the more expensive patient that may have had to have been subsidized by the NHS 

in other ways.  

The results of the regression analysis indicate that disease severity is the major 

driver of costs.  While not surprising, the related finding that those patients who are 

the youngest are accruing greater costs than the next two age groups (4-13 year 

olds) indicates that the preventative measures taken for  younger children may 

actually reduce costs and (by association) health care use for a period of time.   

However, it is not clear from this thesis‟ analysis whether and what clinical 

interventions are resulting in the reduction in costs in childhood and adolescence. A 

more in depth and longer term analysis of longitudinal data from the ERCFD and the 

national database may be able to answer these questions.   

It was also unclear from the regression analysis what the relationship is between 

total cost and being in a shared care setting.  While currently the CF Trust 

advocates for patients to be seen in a specialist centre so patients can access the 

best quality care, it is not clear from the data in this study that users of district 

hospitals are more likely to require higher intensity care.   

Developments since 2007 (5) have indicated that funding will be allocated via 

banding tariffs, and that patient information is key to acquiring funding.  Hospitals 

will be allocated funding based on the information about their patients they enter 

onto PORT CF (a national database).  The implications of this policy are interesting 

in light of the inconclusive data on the impact of shared care on individual total cost.  

On the face of the policy, hospitals would have an incentive to try to enter more 
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patients on the higher bands, therefore getting more funding.  However, as the 

PORT CF is also a clinical audit tool, poorly performing hospitals may be asked to 

refer more of their patients to the specialist centre, and therefore lose a significant 

amount of funding.  If that is the case, specialist centres could become increasingly 

burdened by large patient numbers and will either need to expand or perhaps set up 

new specialist centres to deal with the influx of patients.  Hopefully, this policy will 

encourage hospitals and specialist centres to work more closely together (perhaps 

in more formal clinical networks) to ensure quality and continuity of care across all 

hospitals.   

Newborn screening 

The results from Chapter 5 go some way towards confirming that newborn 

screening for CF is good value for money.  The government rolled out nationwide 

screening in 2007 with the only economic evidence assuming a UK setting available 

being the paper by Simpson et al (33). I attempted to take their analysis further with 

a more robust model and used updated epidemiological data and the results of this 

thesis suggest an even better cost per QALY estimate.  The results of the 

regression analyses in Chapter 4 also support that screening does indicate lower 

costs over time.   

Recommendations for future research 

 

Given the current state of public finances in England, it is likely that there will be a 

push from the government to streamline services. While this thesis attempted to give 

an overview of the hospital and drug costs associated with paediatric CF care, there 

are still many unanswered economic questions. For example: what is the most cost-
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effective method of caring for paediatric CF patients?  Are the most efficient 

treatments being used?  Are there areas of wastage that could be contained? What 

is the economic impact of CF on the family?  Answering these questions, particularly 

questions surrounding the cost-effectiveness of treatments and the most cost-

effective method of care could help produce a more efficient and effective service for 

paediatric CF.   

As shown in Chapter 2, there are still relatively few economic evaluations or cost 

studies surrounding many of the therapies used in CF care. The evidence that is 

available is now relatively old, with new therapies and techniques for delivering 

therapies (such as nebulised Tobramycin) having emerged in the last decade have 

not been adequately scrutinised. As the cost of some therapies can be quite high, it 

would be useful to investigate the cost-effectiveness of therapies such as rhDNAse 

and Tobramycin.  Cost effectiveness methods such as those used in chapter 5 could 

be appropriate to estimate the effectiveness of the drugs over time in terms of both 

clinical outcomes and quality of life.   

Another priority area where there is a gap in published research highlighted by 

Chapter 2 is on information relating to the type of care paediatric patients receive.  

In the UK, care for CF patients in both paediatric and adult populations generally 

revolves around specialist centres. The CF Trust advocates as much Specialist 

Centre care as possible, but the evidence suggesting that this is better is based on 

one paper (126).  However, within the Eastern Region and many other areas in the 

UK, due to the large geographical area that the specialist centres need to cover, 

paediatric CF care is shared between various NHS centres (in accordance with UK 
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CF Trust guidelines). In the east, shared care can be generally separated into five 

different models:  

1) All care at the specialist centre (SC);  

2) most care at district general hospital (DGH) with annual review done at 

SC; 

3) most care at DGH with SC team travelling to DGH to do annual review; 

4) an even split of care between SC and DGH; 

5) most care at DGH with SC being used when required (25). 

In various places (the East and Southwest of England, for example) there are 

coordinated clinical networks that care for CF patients where there is only one 

specialist centre and several district hospitals without specialist teams.  Research 

into the clinical and cost-effectiveness of these networks would benefit Strategic 

Health Authorities who will no doubt be searching for ways to streamline services.  

The ERCFD is currently being expanded with patient data back to 1992.  This could 

be a valuable resource for a natural experiment, using regression methods to look at 

the clinical outcomes and resource use of patients before and after the clinical 

network began in 1998.   

There is little agreement or knowledge on the clinical effects or benefits of different 

models of care, and no economic evaluation of shared CF care has been published. 

van Koolwijk et al (127) found that there were little differences in clinical outcome 

amongst the patients in their shared care study. Assuming our clinical outcomes are 

the same for the various regimes within the region, it makes sense to compare the 
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value of different regimes in terms of patient and/or patient‟s family‟s values. No 

study has analysed patient preferences for shared care, or tried to value a service 

as a whole. The lack of clinical and economic evidence for shared care 

arrangements indicates a hole in the evidence base for decision makers not only for 

CF but also for other paediatric chronic diseases. In order to conduct a cost-

effectiveness analysis on the different methods of care, a model could be developed 

using information from the ERCFD, however the small numbers in the database may 

make it problematic to see the effects.  However, the PORT CF database also has 

information on the type of care patients receive and is probably a better source of 

information for a study of this type as it would allow for wider geographical analysis 

(i.e. is shared care more cost-effective in remote areas like the Scottish Highlands 

than in rural areas such as East Anglia).   

While this thesis has examined the cost to the tertiary NHS services, caring for 

paediatric CF patients also has an impact in the primary care setting, as well as 

potentially significant out-of-pocket and productivity costs to the family.  The impact 

of paediatric CF from these points of view has not been studied in the UK.  

Investigating both of these could have major policy implications for how services are 

arranged.  For instance, if it is found that a significant portion of care for CF patients 

is done in the primary care setting, then perhaps a proportion of the specialist 

service money available to the tertiary care centres could be transferred to the 

primary care setting.   

Related to both the evaluation of therapies for CF care and to the most effective 

service delivery method is the lack of information on CF quality of life in paediatric 

patients.  It is only recently (2005) that a validated, disease specific measure been 
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developed(128) for paediatric CF. To date, this measure has only been used in the 

USA and on children above 6.  Although more research on Quality of Life did not 

seem like a good investment for the cost-effectiveness of newborn screening in this 

study, an analysis of paediatric patients (and parental proxies) quality of life with CF 

could drastically improve economic evaluations of both treatments and service 

delivery. 

Conclusion 

This thesis has shown that the cost to the NHS of caring for paediatric patients with 

CF has increased slightly over time, but that the makeup of these costs has 

changed alongside clinical practice.  Results from the econometric analysis seem to 

indicate that aggressive treatment approaches to keep disease severity low is an 

appropriate clinical tactic. The results also indicate that patients who were screened 

under the newborn screening programme used fewer NHS resources.  This finding 

was supported by the cost-effectiveness analysis of newborn screening for CF 

versus clinical diagnosis, which indicated that newborn screening was a cost-

effective intervention.   

As with any research, there are always more questions than answers.  Further 

research on methods of service delivery, the costs to families and/or primary care, 

and information on the cost-effectiveness of new therapeutics is advocated.  Also 

welcome would be more in depth information on quality of life in CF patients, as well 

as information on the cost of caring for adult CF patients.  
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Appendix A: Medical Glossary    (193) 
Antibiotic: a group of drugs used to treat infections caused by bacteria. 

Anti-inflammatory agent: these drugs act by inhibiting the formation of 

prostaglandins, which are mediators of inflammation.  They act as analgesics to 

relieve pain and as inhibitors of inflammation 

Autosomal recessive: genetic trait that is linked to one of the 44 non-sex linked 

chromosomes. For a trait to be autosomal recessive, those affected must have the 

faulty gene on both copies of the chromosome pair.  

Bacteria: simple, single celled organisms which can be both beneficial and harmful.  

Biofilm: a large body of microorganisms that adheres to tissues 

Body Mass Index (BMI): A method used to define degrees of over and 

underweight. Calculated by dividing a person‟s weight by the square of their height.  

Bolus: a rapid intravenous injection of fluid or a drug.  

Bronchoscopy: the use of a bronchoscope to see the interior of the bronchial tubes 

within the lungs.  

Burkholderia Cepacia Complex: common bacteria that infects animals 

Carrier: a person who does not necessarily express a disease or genetic trait, but 

can pass on infection or genetic disorders.  

Chromosome: rod shaped bodies found in the nucleus of cells that contain genes 

which establish the traits of an organism 

Chronic disorder: a persistent or recurring condition or group of symptoms.   

Cirrhosis:  a condition where normal tissue is replaced with fibrous tissue 

Cystic Fibrosis Transmembrane Regulator (CFTR): chloride channel that aids in 

the regulation of salt and water movement through the cell membranes.  Cystic 

fibrosis patients have gene mutations which encodes for this channel, resulting in 

thickened secretions in mucus membranes 

Enzymes: a protein that acts as a catalyst for the body‟s metabolic processes.   

Exacerbation: a clinical event that indicates a worsening of a patient‟s condition 

Failure to thrive: a patient does not gain weight or height normally 
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Gastrostomy: an operation on the stomach by which, when the oesophagus is 

blocked (i.e. by a tumour) an opening is made from the front of the abdomen into the 

stomach, so that fluid food can be passed into the organ.  

Heterozygous: an individual having dissimilar members of the pair of genes coding 

for a given characteristic 

Homozygous: an individual having similar members of a pair of genes coding for a 

given characteristic 

Inflammation: the reaction of the tissues to any injury, which may be the result of 

trauma, infection, or chemicals.  

Intravenous (IV): an intravenous injection is one that is given into a vein 

Jejunostomy: an artificial opening in to the intestine to allow for a feeding tube.  

Malabsorption: condition characterised by faulty absorption from the intestine of 

foodstuffs such as fat, vitamins, and mineral salts.  

Mucolytic: the term used to describe the property of destroying or lessening the 

strength of mucus.  

Mucus membrane: The general name given to the membrane which lines many of 

the hollow organs of the body and are generally lubricated by mucus.  

Nasal gastric feeding: a plastic or rubber tube is passed into the stomach through 

the nose, pharynx and then the oesophagus used to pass food and/or drugs into the 

stomach.  

Oral Glucose Tolerance Test (OGTT): medical test in which glucose is given and 

blood tests are run afterwards 

Pancreatic insufficiency: condition in which the pancreas does not produce 

sufficient pancreatic enzymes which aid in the absorption of nutrients 

Pseudomonas aeruginosa: common bacteria that causes disease and damage to 

tissues in animals 

Pulmonary: relating to the lungs 

Pulmonary function tests: tests to assess how the lungs are functioning.  They 

can range from simple spirometry (measuring breathing capacity) to sophisticated 

physiological assessments including Vital Capacity (VC) which tests the maximum 

volume of air that can be expelled slowly and completely after a maximum deep 

breath; forced vital capacity (FVC) is similar technique using forced maximum 
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exhalation; and functional residual capacity (FRC) is the volume of air in the lungs at 

the end of a normal expiration.  A dynamic technique, the forced expiratory volume 

(FEV1) test is the amount of air forcefully exhaled during the first second after a full 

breath.  

Screening: testing a population of apparently healthy people to identify those who 

may have a treatable disease. 

Spirometer: a device used to test how the lung is working (see pulmonary function 

tests).  

Sputum: secretions expectorated by coughing  

Sputum culture: testing the sputum for organisms such as bacteria and fungi 

Staphylococcus aureus (Staph) 

Surfactant: a surface active agent lining the alveoli of the lungs which does not let 

alveoli collapse at the end of respiration 

Sweat test: measures the concentration of chloride that is excreted in sweat.  It is 

commonly used to test for Cystic Fibrosis. 

Tolerability: the response to a particular amount of a drug or physiological 

messenger 

Toxicity: how toxic a drug is to a patient 

Virus: a group of infective agents which are more difficult to treat than bacteria.  
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Appendix B: Literature searches 

Pubmed: 

PubMed search  1: Cost$ AND cystic fibrosis 

("economics"[Subheading] OR "economics"[All Fields] OR "cost"[All Fields] 

OR "costs and cost analysis"[MeSH Terms] OR ("costs"[All Fields] AND 

"cost"[All Fields] AND "analysis"[All Fields]) OR "costs and cost analysis"[All 

Fields]) AND ("cystic fibrosis"[MeSH Terms] OR ("cystic"[All Fields] AND 

"fibrosis"[All Fields]) OR "cystic fibrosis"[All Fields]) 

March 2010 result: 583 references 

PubMed search 2: Search (#1) AND (Economic evaluation OR cost benefit 

OR cost effectiveness OR cost utility) 

AND ((("economics"[MeSH Terms] OR "economics"[All Fields] OR 

"economic"[All Fields]) AND ("evaluation studies"[Publication Type] OR 

"evaluation studies as topic"[MeSH Terms] OR "evaluation"[All Fields])) OR 

("cost-benefit analysis"[MeSH Terms] OR ("cost-benefit"[All Fields] AND 

"analysis"[All Fields]) OR "cost-benefit analysis"[All Fields] OR ("cost"[All 

Fields] AND "benefit"[All Fields]) OR "cost benefit"[All Fields]) OR ("cost-

benefit analysis"[MeSH Terms] OR ("cost-benefit"[All Fields] AND 

"analysis"[All Fields]) OR "cost-benefit analysis"[All Fields] OR ("cost"[All 

Fields] AND "effectiveness"[All Fields]) OR "cost effectiveness"[All Fields]) 

OR (("economics"[Subheading] OR "economics"[All Fields] OR "cost"[All 

Fields] OR "costs and cost analysis"[MeSH Terms] OR ("costs"[All Fields] 

AND "cost"[All Fields] AND "analysis"[All Fields]) OR "costs and cost 

analysis"[All Fields]) AND utility[All Fields])) 

March 2010 result: 226 references 

 

Cochrane Library/NHS Economic Evaluation Database:  

Search: Cystic Fibrosis AND Pediatrics 

March 2010 result: 29 results 

 

Embase: 

Search 1: cystic fibrosis AND (pediatric OR paediatric) {Including Related 

Terms} 
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Search 2: limit 1 to (abstracts and human and english language and yr="1990 

-Current") 

Search 3: 2 and cost.mp. [mp=title, abstract, subject headings, heading word, 

drug trade name, original title, device manufacturer, drug manufacturer 

name] 

March 2010 result: 258 
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Appendix C: Literature Review Pro-forma (adapted from (38, 

39)) 
 

First Author 

Type of Evaluation 

Price Year 

Intervention 

Population 

Location (setting) 

Currency 

Outcome measure 

Types of costs gathered 

Source of effectiveness data 

Source of cost data 

Modelling 

Time horizon 

Results 

Notes 
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Appendix D: Data collection sheet for the ERCFD 
THE EASTERN REGION CYSTIC FIBROSIS SURVEY        PATIENT DATA 

Demographics 
Patient Name 
Patient Address 
Sex 
Date of Birth 
Shared Care 
 Shared care hospital 
 Consultant 
Diagnosis 
Date of diagnosis 
Age at diagnosis 
Presenting features 
 IRT Screening 
 Genetic Screening 
 Affected Sibling (Name) 
 Meconium Ileus 
 Diarrhoea/Steatorrhoea 
 Failure to thrive 
 Respiratory 
 Prolonged Jaundice 
 Prolapsed Rectum 
 Other 
Annual review 
 Date 
 Does not have one 
Care discontinued (date) 
 Died 
 Not CF 
 Moved 
 Transfer to Adult Clinic 
Clinics/Admissions 
Clinics attended 
 Number 
 Location 
Hospital Admissions and length of stay 
 Admission 
  Bed days 
  Reason 
  Location 
Health Outcomes 
Complications 
 Diabetes 
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 Liver disease 
 Oesophageal Varices 
 Other 
Naso Gastro Feeding 
Gastrostomy 
Porta Cath or Equivalent 
Home Oxygen 
Height 
Weight 
Lung Function Tests 
 FEV1 (%Pred) 
 FVC (%Pred) 
Bacteriology 
 Staphylococcus Aureus 
 Haemophilus influenzae 
 Pseudomonas aeruginosa 
 Burkholderia cepacia 
 Aspergillus fumigates 
Drugs taken 
 Drug (all drugs listed on next page) 
Dosage 
 Length of time 
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Acetylcysteine 
Acyclovir 
Acyclovir IV 
AeroBec 
Aerolin 
Amikacin 
Amikacin IV 
Amikin 
Amoxil 
Amoxycillin 
Amphotericin 
Amphotericin IV 
Ampicillin 
Ampicillin IV 
Aspirin 
Atrovent 
Augmentin 
Augmentin IV 
Augmentin Duo 
Azetreonam 
Azetreonam IV 
Aziathioprine 
Azithromycin 
Azithromycin IV 
Azlocillin 
Azlocillin IV 
Beclofort 
Beclomethasone 
Becodiscs 
Beconase 
Becotide 
Benzylpenicillin 
Betnasol 
Bricanyl 
Budesonide 
Calcium 
Carbamazepine 
Cefaclor 
Cefadroxil 
Cefixime 
Ceflucoximine 
Cefotaxime 
Cefotaxime IV 
Ceftazidime 
Ceftazidime IV 
Ceftriaxone 
Ceftriaxone IV 
Cefuroxime 
Cephradine 
Cerumol 
Chloramphenicol 
Chlorpeniramine 
Cidomycin 

Cimetidine 
Ciprofloxacin 
Ciprofloxacin IV 
Ciproxin 
Cisapride 
Clarithomycin 
Clarithomycin IV 
Clarityn 
Clindamycin 
Co-amoxiclav 
Codydramol  
Co-fluampicil  
Colistin  
Colistin IV  
Co-trimoxazole  
Colomycin  
Colomycin IV  
Creon 10000 
Creon 25000 
Cyclosporin  
Daktarin  
Desmopression  
Destolit  
Dioctyl  
Distaclor  
DNAse  
Domperidone  
Dopamine  
Efexor  
Ephedrine  
Erythromycin  
Fabrol  
Fersamal  
Flagyl  
Flixonase  
Flixotide  
Flucloxacillin  
Flucloxacillin IV  
Fluconazole  
Fluoride  
Fluticasone  
Folic Acid  
Frusemide  
Frusemide IV  
Fucidin  
Ganciclovir  
Gastrografin  
Gaviscon  
Gentomycin  
Gentomycin IV  
Humulin  
Hydrocortisone  

Hydrocortisone 
IV  
Hypostop  
Iboprofen  
Imipenem IV  
Immodium  
Insulin  
Intal  
Ipratroprium 
Bromide  
Iron  
Itraconazole  
Ketotifen  
Klaricid  
Lactulose  
Lamotrigine  
Lansoprazole  
Loperamide  
Loratadine 
Losec  
Magnesium 
Carbonate  
Maxolan  
Meropenem  
Meropenem IV  
Metanium  
Methylphenidate  
Metronidazole  
Metronidazole IV  
Movicol  
Naprosyn  
Naseptin  
Neoral  
Nifedipine  
Nizatidine  
NSAID  
Nystatin  
Oestrogel  
Ofloxacin  
Omeprazole  
Ondansetron  
Otrivine  
Oxis  
Oxygen (at 
home)  
Paracetemol  
Parvolex  
Penicillin  
Penicillin IV  
Periactin  
Phenytoin  
Phyllocontin  
Piperacillin  

Piperacillin IV  
Piptazobactum 
IV  
Piriton  
Pizotifen  
Plesmet  
Potassium  
Prednisolone  
Prepulsid  
Prozac  
Pulmicort  
Ranitidine  
Rifamipicin  
Salbutamol  
Salmeterol  
Senokot  
Septrin  
Serevent  
Singulair  
Sodium  
Slow Sodium  
Sodium 
Valporate  
Steroids  
Sudacrem  
Sytron  
Tagamet  
Taurine  
Teicoplanin  
Teicoplanin IV  
Terbutaline  
Theophyline  
Thyroxine  
Tobramycin  
Tobramycin IV  
Tocoplurol  
Trimethoprim  
Triple Saline  
Unichem  
Ursodeoxychlori
c acid  
Vancomycin  
Ventolin



 

 

 

246 

 

 

 

Appendix E: Excel Workbook and Macros for cost-

effectiveness model 
 

Double Click Icon to open workbook: 

 

Macros for probabilistic analysis, CEAC, EVPI, EVPPI 

Sub Probabilistic() 
' 
' Probabilistic Macro 
' Macro recorded 12/08/2008 by James Jarrett 
' 
 
Application.ScreenUpdating = False 
Sheets("Parameters").Select 
Range("D3").Select 
ActiveCell.FormulaR1C1 = "1" 
Application.DisplayStatusBar = True 
Sheets("Simulation").Select 
Dim Index 
Dim Trials 
Index = 0 
Trials = 1000 
 
Do 
     
    Range("C4:AA4").Select 
    Selection.Copy 
    Range("C6:AA6").Select 
    ActiveCell.Offset(Index, 0).Range("A1").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
            False, Transpose:=False 
    Index = Index + 1 
    Application.StatusBar = "Simulation " & Index & " of 1000 trials" 
         
Loop While Index < Trials 
 
Application.DisplayStatusBar = False 



 

 

 

247 

 

 

Sheets("Parameters").Select 
Range("D3").Select 
ActiveCell.FormulaR1C1 = "0" 
Sheets("Simulation").Select 
Range("A1").Select 
Application.ScreenUpdating = True 
 
 
End Sub 
 
Sub CEACurve() 
' 
' CEACurve Macro 
' Macro recorded 17/11/2008 by James 
' 
 
Application.DisplayStatusBar = True 
Sheets("Simulation").Select 
Dim Index 
Dim Trials 
Index = 0 
Trials = 58 
 
Do 
     
    Range("AK6").Select 
    ActiveCell.Offset(Index, 0).Range("A1").Select 
    Selection.Copy 
    Range("AE1").Select 
    ActiveSheet.Paste 
    Range("AG4:AI4").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Range("AL6").Select 
    ActiveCell.Offset(Index, 0).Range("A1").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
        Index = Index + 1 
    Application.StatusBar = "Calculation " & Index & " of " & Trials 
         
Loop While Index < Trials 
 
Application.DisplayStatusBar = False 
Sheets("Simulation").Select 
Range("AK1").Select 
        
 
End Sub 
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Sub EVPI() 
' 
' EVPI Macro 
' Macro programmed September 2008 by JJ 
' 
 
' 
Application.DisplayStatusBar = True 
Sheets("Simulation").Select 
Index = 0 
Trials = 60 
 
Do 
     
    Range("AU6").Select 
    ActiveCell.Offset(Index, 0).Range("A1").Select 
    Selection.Copy 
    Range("AE1").Select 
    ActiveSheet.Paste 
    Range("AU1").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Range("AV6").Select 
    ActiveCell.Offset(Index, 0).Range("A1").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
        Index = Index + 1 
    Application.StatusBar = "Calculation " & Index & " of " & Trials 
         
Loop While Index < Trials 
 
Application.DisplayStatusBar = False 
Sheets("Simulation").Select 
Range("AK1").Select 
        
End Sub 
 
 
Sub Survivalpartial() 
' 
' Survivalpartial Macro 
' 
 
' Set number of outer loops 
 
    oloops = 100 
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' Backup existing formula 
 
    Sheets("Parameters").Select 
    Range("B29:B33").Select 
    Selection.Copy 
    Range("N29:N33").Select 
    ActiveSheet.Paste 
 
' Set up outer loop and then record one realisation from distribution 
 
    Index2 = 0 
     
    Do 
     
    Application.ScreenUpdating = False 
    Application.DisplayStatusBar = True 
 
    Sheets("Parameters").Select 
    Range("C29:C33").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Range("B29:B33").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
 
' Now run standard simulation (same as MCsimulation macro - but total simulations 
reduced to 100) 
 
    Sheets("Parameters").Select 
    Range("D3").Select 
    ActiveCell.FormulaR1C1 = "1" 
    Sheets("Simulation").Select 
    Index = 0 
    Trials = 100 
 
    Do 
     
        Range("C4:AA4").Select 
        Selection.Copy 
        Range("C6:AA6").Select 
        ActiveCell.Offset(Index, 0).Range("A1").Select 
        Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
            False, Transpose:=False 
         
        Index = Index + 1 
        Application.StatusBar = "Realisation " & Index2 & " of 100 for parameter 
Revision Cost and simulation " & Index & " of 100" 
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    Loop While Index < Trials 
 
        Application.DisplayStatusBar = False 
        Sheets("Parameters").Select 
        Range("D3").Select 
        ActiveCell.FormulaR1C1 = "0" 
        Sheets("Simulation").Select 
        Range("A1").Select 
 
' And record the resulting net benefit given that realisation of the parameter of 
interest 
 
        Sheets("Simulation").Select 
        Range("AC4:AE4").Select 
        Selection.Copy 
        Range("Ax6:az6").Select 
        ActiveCell.Offset(Index2, 0).Range("A1").Select 
        Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
            False, Transpose:=False 
 
' Close outer loop 
 
        Index2 = Index2 + 1 
     
    Loop While Index2 < oloops 
 
' Record final partial EVPI (average over the outer loop realisations) 
 
    Sheets("Simulation").Select 
    Range("BC7").Select 
    Selection.Copy 
    Range("BC13").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
 
 
' Now restore the original rrNP1 formula 
 
    Sheets("Parameters").Select 
    Range("N29:N33").Select 
    Selection.Copy 
    Range("B29:B33").Select 
    ActiveSheet.Paste 
    Range("N29:N33").Select 
    Selection.ClearContents 
    Range("D1").Select 
    Selection.Copy 
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    Range("C1").Select 
    Selection.PasteSpecial Paste:=xlFormats, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
    Application.CutCopyMode = False 
    Range("C3").Select 
     
Application.ScreenUpdating = True 
Application.DisplayStatusBar = False 
 
End Sub 
 
Sub infpartial() 
' 
' infpartial Macro 
' 
Dim Index As Integer 
Dim Trials As Integer 
Dim oloops As Integer 
Dim Index2 As Integer 
 
 
' Set number of outer loops 
     
    oloops = 100 
 
 
' Backup existing formula in Utility cells 
 
    Sheets("Parameters").Select 
    Range("B34").Select 
    Selection.Copy 
    Range("D8").Select 
    ActiveSheet.Paste 
 
' Set up outer loop and then record one realisation from distribution 
     
    Index2 = 0 
     
    Do 
     
    Application.ScreenUpdating = False 
    Application.DisplayStatusBar = True 
 
    Sheets("Parameters").Select 
    Range("C34").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Range("B34").Select 
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    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
 
' Now run standard simulation (same as MCsimulation macro - but total simulations 
reduced to 100) 
 
    Sheets("Parameters").Select 
    Range("D3").Select 
    ActiveCell.FormulaR1C1 = "1" 
    Sheets("Simulation").Select 
    Index = 0 
    Trials = 100 
 
    Do 
     
        Range("C4:AA4").Select 
        Selection.Copy 
        Range("C6:AA6").Select 
        ActiveCell.Offset(Index, 0).Range("A1").Select 
        Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
            False, Transpose:=False 
         
        Index = Index + 1 
        Application.StatusBar = "Realisation " & Index2 & " of 100 for Utility parameters 
and simulation " & Index & " of 100" 
         
    Loop While Index < Trials 
 
        Application.DisplayStatusBar = False 
        Sheets("Parameters").Select 
        Range("D3").Select 
        ActiveCell.FormulaR1C1 = "0" 
        Sheets("Simulation").Select 
        Range("A1").Select 
 
' And record the resulting net benefit given that realisation of the parameter of 
interest 
 
        Sheets("Simulation").Select 
        Range("AC4:AE4").Select 
        Selection.Copy 
        Range("AX6:aZ6").Select 
        ActiveCell.Offset(Index2, 0).Range("A1").Select 
        Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
            False, Transpose:=False 
 
' Close outer loop 
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        Index2 = Index2 + 1 
     
    Loop While Index2 < oloops 
 
' Record final partial EVPI (average over the outer loop realisations) 
 
    Sheets("Simulation").Select 
    Range("BC7").Select 
    Selection.Copy 
    Range("BC11").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
 
 
' Now restore the original Utility formulae 
 
    Sheets("Parameters").Select 
    Range("D8").Select 
    Selection.Copy 
    Range("B34").Select 
    ActiveSheet.Paste 
    Range("D8").Select 
    Selection.ClearContents 
    Range("D1").Select 
    Selection.Copy 
    Range("D8").Select 
    Selection.PasteSpecial Paste:=xlFormats, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
    Application.CutCopyMode = False 
    Range("C3").Select 
     
Application.ScreenUpdating = True 
Application.DisplayStatusBar = False 
 
 
End Sub 
 
Sub Costpartial() 
' 
' Costpartial Macro 
' 
' Set number of outer loops 
 
    oloops = 100 
 
' Backup existing formula 
 
    Sheets("Parameters").Select 
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    Range("B39:B42").Select 
    Selection.Copy 
    Range("N39:N42").Select 
    ActiveSheet.Paste 
 
' Set up outer loop and then record one realisation from distribution 
 
    Index2 = 0 
     
    Do 
     
    Application.ScreenUpdating = False 
    Application.DisplayStatusBar = True 
 
    Sheets("Parameters").Select 
    Range("C39:C42").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Range("B39:B42").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
 
' Now run standard simulation (same as MCsimulation macro - but total simulations 
reduced to 100) 
 
    Sheets("Parameters").Select 
    Range("D3").Select 
    ActiveCell.FormulaR1C1 = "1" 
    Sheets("Simulation").Select 
    Index = 0 
    Trials = 100 
 
    Do 
     
        Range("C4:AA4").Select 
        Selection.Copy 
        Range("C6:AA6").Select 
        ActiveCell.Offset(Index, 0).Range("A1").Select 
        Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
            False, Transpose:=False 
         
        Index = Index + 1 
        Application.StatusBar = "Realisation " & Index2 & " of 100 for parameter 
Revision Cost and simulation " & Index & " of 100" 
         
    Loop While Index < Trials 
 
        Application.DisplayStatusBar = False 
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        Sheets("Parameters").Select 
        Range("D3").Select 
        ActiveCell.FormulaR1C1 = "0" 
        Sheets("Simulation").Select 
        Range("A1").Select 
 
' And record the resulting net benefit given that realisation of the parameter of 
interest 
 
        Sheets("Simulation").Select 
        Range("AC4:AE4").Select 
        Selection.Copy 
        Range("Ax6:az6").Select 
        ActiveCell.Offset(Index2, 0).Range("A1").Select 
        Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
            False, Transpose:=False 
 
' Close outer loop 
 
        Index2 = Index2 + 1 
     
    Loop While Index2 < oloops 
 
' Record final partial EVPI (average over the outer loop realisations) 
 
    Sheets("Simulation").Select 
    Range("BC7").Select 
    Selection.Copy 
    Range("BC14").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
 
 
' Now restore the original rrNP1 formula 
 
    Sheets("Parameters").Select 
    Range("N39:N42").Select 
    Selection.Copy 
    Range("B39:B42").Select 
    ActiveSheet.Paste 
    Range("N39:N342").Select 
    Selection.ClearContents 
    Range("D1").Select 
    Selection.Copy 
    Range("C1").Select 
    Selection.PasteSpecial Paste:=xlFormats, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
    Application.CutCopyMode = False 
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    Range("C3").Select 
     
Application.ScreenUpdating = True 
Application.DisplayStatusBar = False 
' 
End Sub 
Sub Partials() 
' 
' Partials Macro 
' 
' Select simulation sheet and enter 4000 as ceiling ratio 
 
    Application.ScreenUpdating = False 
    Application.DisplayStatusBar = True 
 
    Sheets("Simulation").Select 
    Range("AE1").Select 
    Application.CutCopyMode = False 
    ActiveCell.FormulaR1C1 = "4000" 
     
    Range("C6:AA1005").Select 
    Selection.ClearContents 
    Range("Ax6:AY1005").Select 
    Selection.ClearContents 
     
' Run the separate partial macros 
 
    infpartial 
    Survivalpartial 
    Costpartial 
    Transitionpartial 
    Utilpartial 
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