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Abstract:

The past decade has seen an increase in intetaiacypscience and in the analysis
of Social-Ecological Systems (SES). The study efd¢bmplex interactions between
humans and nature is central to the understandiongrglanet’s state and to plan for
the future. This thesis develops a systemic apprdbat uses network theoretical

tools to analyze structural properties, agent basedels to simulate dynamics of a
system, and a resilience framework to analyze, pio@lize and discuss the results
given by the theoretical models. A combination addels and techniques drawn
from different disciplines is synthesised in orderdevelop a uniform set of tools

which is effective for a structural analysis of SES

The first step in this research integrates netvaot#t resilience theory, and builds a
theoretical model that analyzes how landscapesictstral properties affect the
dynamics of a simple predator-prey system. Therskstep builds upon the first and
introduces a “managing institution” that is ablediter the landscapes’ structural
properties according to pre-determined rules. Hlymes how human intervention
influences the landscape network of a given systard how these properties
influence the predator-prey system under study.tfiing step in this work constructs
a model that analyzes management communities’aatiens. The model aims to
uncover the relationship between authority and meameent path homogenization,

which influences the ability of the social systemptoactively build resilience.

Methods, techniques used, and the models presentdatlis thesis can prove
extremely useful as a first assessment of a SEfeneg. They potentially assist
policymakers to make more informed decisions based combination of empirical
experience and computer assisted reasoning. Maretive research contributes
towards a theoretical understanding of the complealutionary mechanisms that

govern a SES.
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1 Introduction

The world is becoming increasingly complex andriimiked due to globalization and
the advancements of technologies. Ecological deds@d conflicts, persistent
poverty and hunger are all signs of an increasingitable world. The inter-linkages
existing between the social and the ecologicalesysare important as the two
systems depend on one another. The social systéuoilitsand shaped by relations
happening within the system. Social variables, radtng with each-other, may
shape the ecological system in which they are eddmbédnd vice-versa (e.g. the
food crisis, that is, the sharp increase in stdptal prices experienced in 2007,

highlights the interconnectedness of the sociakesysvith the ecological system)

In this context “linear thinking” has proved to beadequate. New practical
approaches to assess the capabilities of societiadapt and transform themselves
in an ongoing changing environment need to be uaklen. In order to explain the
increasing complexity and interrelations, the cgboef ecological resilience, first
introduced by Holling, has been extended in ordecadmbine ecological and social
systems by scholars of different disciplines (mufsthe literature deals with social
ecological system abbreviated to SES). Resilieac fundamental feature of most
SES as it denotes the amount of external and mitshrocks that a SES can undergo
without being totally disrupted. Its study, embragrthe methods and tools of the so-
called “science of complexity”, can prove of paramb importance in the
understanding of a system’s behaviour. The concépésilience is based on non-
equilibrium dynamics and is crucial for the compmesion of weaknesses, strength,
and recovery capacity of a given site. For examplak of the recovery of the
tourism industry after the Asian Tsunami, the rezg\wof the economy after 9/11, the
impacts of intensive agriculture on water soureesl the impacts of energy on the

economy.
However, the complexities and the interrelationsuogng in a SES call for a
definition of a different (new), formalized thedoeti framework. To serve this

purpose best, the tools and the definitions praliole the study of networks should
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be integrated in resilience thinking. Representogiplex systems with a network
(nodes attached to each other through edges) adowsmderstanding of the network
resilience erosion of various systems at varioumpt#al and spatial scales.
Resilience of a SES viewed from a network perspeatiay help to explain which
actions should be undertaken in order to “plan” &adapt” in a sustainable way.
The relation between networks and resilience cd@ddentified through specific
metrics that enable a redefinition of resiliencaaapts from a network perspective
and may give rise to a network-resilience theolgvahg a better understanding of
sustainable development, adaptation and of thefwamations occurring throughout
the world today. In other words, a network resitentheory will improve the
understanding of SES by looking at individual SE®systems (of a given spatial
territory) and hence feeding back on where the wesées and the strength of a SES
lies. In an interconnected and interdependent wathds different approach to
resilience can provide useful insights on how tbagce the adaptability of societies
to climate change and other external shocks, whethtiral or anthropogenic in

nature.

1.1 Research questions and objectives

In order to integrate network methods and resiketianking, there is a need to
introduce both theories. Subsequently, it will becdssed how the two can be
integrated and why a structural approach (i.e. agtvapproach) is useful in helping
to assess the resilience of the system. Thus, ghzat/main research questions to

which this thesis wants to provide an answer agddhowing:

1. Is it possible and to integrate resilience priregpand network theory, and if
yes, how?
2. How do the dynamics of a system unfold and howtlaeg influenced by the

structural properties of the system?

The first question relates to the feasibility ofteigrating network methods in

resilience thinking (see Chapters 3, 4, andThe second main research question
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pertains to the feasibility of measuring the influe of different structural properties
on the resilience of a system, while taking dynanmto account (see Chapters 5, 6,
7, and 8). The second question is closely relaietie first but it also encompasses

the concept of network adaptability to internakeaternal disturbance.

The questions outlined above need to be answereohhoconceptually, but there is
also a need for a more formalized, numerically $iead, approach to network
resilience in order to better comprehend an evglgacial-ecological system. The
creation of an algorithm representing the mainuiesst of a SES could give useful
insights on its evolution, its strengths and weakes.

1.2 Thesis Outline

The thesis is organized as follows.

Chapter 2 justifies how resilience of SES is assgsMore precisely, the chapter
first frames the research in a broader epistemcdbgview, then looks at the
definition of complex adaptive systems and commaeoristhe availability (and

suitability) of tools to analyse such systems ideorto accomplish the objectives of

this thesis.

Chapters 3, 4, and 5 present the main theordiaizkground and methods used in
order to build the theoretical models reported ihagters 6, 7, and 8. More
specifically, Chapter 3 is an overview on netwtrkory. In Chapter 3, terminology
regarding network theoretical tools is first detin&econd, the most commonly used
network metrics are presented in detail, as welth&s characteristics of network
classes such as random, small world, scale-freeemdar networks are described.
Finally, the chapter looks at how network theowsdtiools have been applied so far,

with particular focus on ecological networks.

Chapter 4 is an overview of the resilience framigwdhe first part of the chapter is

concerned with defining resilience and liking sb@ad ecological resilience, thus
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shifting the focus of the analysis from a singlesteyn (social or ecological) to a
combination of the two: Social-Ecological SysterheTmain resilience concepts are
then described in detail as well as the difficsltencountered in applying resilience

concepts in the field.

Chapter 5 describes a first possible integratibmeawork theoretical tools in the
broader resilience framework. It introduces simale and agent based models,
methods used in subsequent chapters (i.e. Chapt&sand 8). Agent based models
are further analyzed pointing out strength and weakes of this approach to
modelling complex systems. Moreover, the chaptesgmts possible advantages and
limitations of a case study in relation to the thesbjectives. Section 5.2 of this

chapter is based on Baggio (2011).

As previously mentioned, Chapter 6 presents atfieoretical model that deals with
a simple landscape viewed as a network in whicldgioes and prey interact.
Predator-prey is the simplest possible food web @&l been chosen to not over-
complicate the model so as to focus on how the ortwtructure and connectivity
properties influence the “resilience” of the systdrere resilience is specifically
defined as the amount of connectivity disturbartbas a simple system (such as the
one represented by the model) can absorb whileteaaing coexistence of predators
and prey. The model presented in Chapter 6 heinte ta represent a rather simple
ecological system. Chapter 6 further develops amajyresented in a paper published
in Landscape Ecology (Baggio et al. 2011), wheeefitst author (i.e. the author of
this thesis) has designed the research, coded tuelmanalyzed the model and
wrote the paper. Kehinde Salau assisted the authooding the model, Michael
Schoon assisted the author in writing the paperMarto Janssen and Orjan Bodin

have helped the author with the research desigmeanelwing the paper.

Chapter 7 builds on Chapter 6 adding managemeteraction to the system
analyzed. Thus, it incorporates an agent that septe a social system, allowing for
the construction of a simplified SES. The objectfeChapter 7 is to understand the
impacts of simple management strategies within raptex system, by looking at

how different management strategies give rise teerde landscape structures.
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Moreover, the chapter looks at possible feedbackstieg between social actors
(such as managers) and the ecological system CGhapteer develops analysis

presented in a paper at NAACSOS (Baggio et al. pdtere the first author (i.e.

the author of this thesis) has designed the reseaoted the model, analyzed the
model and wrote the paper. Kehinde Salau has helpeduthor in revising and

coding the model, Michael Schoon assisted the authawriting the paper and

Marco Janssen reviewed the paper and the reseesand

Chapter 8 focuses more on the social aspectseasyistem, presenting a model that
looks at how authority influences the heterogenafymanagement strategies.
Diversity in the range of management strategiemdseded in order to foster a
resilient SES. High homogenization is responsilde rfarrowing the windows of

opportunity for experimentation and innovation tbéen allow a SES to adapt and

transform in the face of potential internal andeemal disturbances.

Chapter9 outlines and discusses conclusions from each heogeentrating on how

structural properties are able to indicate a pésséinhancement or erosion of the
resilience of a SES. Moreover, it brings the thremlels together from a theoretical
point of view, and gives an overlook of differerdsgible avenues that can further
enhance our understanding of SESs (e.g. by linkmegels, experiments and case

studies).
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2 Justifying the approach

This chapter is concerned with the justificationtleé approach chosen throughout
the research. In particular, section 2.1 expl#nesepistemological point of view of
the author regarding this research. Section 20bHs at how it is possible to acquire
knowledge of a real system, while section 2.1.plars the usefulness of the
practice of analogy. Finally, section 2.1.3 ciasf the suitability of the
methodological approach chosen in view of the matdithe research undertaken.

The second part of the chapter presents the paidin of using network methods
rather then other complex-system analysis toolti@e 2.2 defines complex
adaptive systems (CAS) by outlining their main elotgrizing features. Section 2.2.1
gives a brief overview of the tools used to analgamplex adaptive systems: non-
linear dynamics, statistical mechanics or physiasd anetworks. A more

comprehensive review of the science of networlgven throughout Chapter 3.

2.1 An epistemological point of view

The methodological approaches adopted are cleaflyenced by one’s own
viewpoints and convictions. There is still muchenast in the way knowledge is
acquired, a research question studied in philosdéphynore than 2000 years dating
back as far as Plato, Socrates and before. Ityisrakthe scope of this thesis to dwell
into the debate, since it is not the main objedhd field of study, but my viewpoint
on how knowledge could and should be achievediglprexplained. Although the
importance of an epistemological frame in whicheegsh should be embedded is
recognised, this frame is not considered to proadg strict guideline. Finding
reasonable explanation of the phenomena under ssudy my opinion, the crucial

aspect of a researcher and of this research.

In recent years a number of concepts and techndgr@ged from physics have been
applied in different fields such as biology, ecoypreociology, ecology. Network

theory is one notable example of techniques derifretch physics and applied
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elsewhere (see Barabasi and Bonabeau (2003) ands W2004) for non-
mathematical reviews and Chapter 3). Howeveridéa of applying instruments that
derive from physics and mathematics to other dis@p is far from new. Indeed,
Hobbes’ workThe Leviathan(1651) attempts to use Galilean laws of motion to
derive an ideal configuration of society; Hum&a Enquiry Concerning Human
Understanding(1748) hoped to build a science of society thas wareflection of

Newton’s theories of the solar system.

However, the work presented in this thesis doesmmethanically apply physical

laws and theorems to the object of the researdhi makes the best possible use of
the knowledge that is available in order to buildedfic methods aimed at

understanding the actual and predicted performaheesystem. In order to reach a
reasonable understanding of a system, a set @lindnditions and a series of agent
based models (explained in section 5.2) are land analyzed so as to derive
possible future behaviours of such system. Ater Istiage, understanding the system
could contribute to identify the correspondencewieen adopted choices and

outcomes, allowing reasonable forecasts of futetetsiour.

As Einstein points out, mathematical constructs €dinst, and it is only after these
constructs are built and conclusions are drawn deaddly that it is possible to
confront these conclusions with reality (van Gig2hp2a). Once, confronted with
the real world, mathematical constructions candeepted, modified or rejected. In
other words, formulated theories should be empiyickested so as to reject or
modify parts which fail to represent a reality (Pep 1959). Today it is better to
refer to computational models, rather than mathm@alatonstructions, as uncertainty
and the importance of agents in the social sciemcdé particles in quantum
mechanics have led scholars to re-think ways of efing reality (for in depth
information on agent based modelling and simulatiaier to section 5.2). This new
type of modelling is the product of the aforememéid testing of theoretical
constructions; in fact the axiomatic base of modslsnadequate to explain the
complexity of real world phenomenon (Henrickson &Hélvey, 2002).
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Majorana (1942) draws a parallel between physies quantum mechanics) and
social sciences. In particular, in quantum meclathere is no fatal succession of
phenomena (e.g. no pure/strong determinism), betettexists a probability of

consequences. Moreover, this probability (or siatis character) is not dependent
on the uncertainty resulting from a voluntary agtibut it is an intrinsic quality of

the system. This leads also to a “lack of objectess in the description of

phenomena{Mantegna, 2005: 139) since

the result of any measure seems, [...], to be coedewith

the state where the system is led during the same
measurement rather than the undetectable statdizhwhe
system was before the perturbation.

According to Majorana’s reasoning there is scopest statistical mechanics (in the
case of this research, network theoretical teclesgs explained throughout Chapter
3) methods and tools in social sciences. Alwaysorting to Majorana and as
reported by Mantegna (2005: 140):

the statistical laws of social sciences might iasee their
function, since their function is not only of empally
establishing the resultant of a great number ofnomk
causes, but, above all, it is to provide an imntedand
concrete evidence of reality. The interpretation tbfs
evidence requires a special skill, which is an inga
support of the art of government.

Generally speaking, theories fit in a general franor& (following the paradigms
discussed in Kuhn (1962)), that is applied untitdrealternatives are found or until
their inefficiency is proved. Although this frameskacan be falsified, it is under its
“shield” that a research is often set up (Lakatd/4). This shield provides core
principles that allow the researcher to not haveadwtinually defend them. In other
words, core paradigms are changed only if empiresadlence clearly shows that
they are false statements or completely inefficiatkatos, 1974). However, it is
also possible that core paradigms might changetdusonceptual problems that
could arise (i.e. problems of internal/external sistency or discrepancies with
traditions in other/our fields) rather than forithempirical invalidity. The research
tradition or framework used defines the charadiessconsidered problematic (i.e.
conceptual and quantification aspects) as welasrtethod/s which is/are to be used
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to deal with these problems (Laudan, 1977). Theegefprogress in science occurs
either by investigating the real world empiricallgy abstracting features and
representing reality through models (section 2, when it is possible to increase
the applicability of existing theories through tee of analogy, concept explained in
section 2.1.2. The use of analogy follows the rsgtyiPluralitas non est ponenda
sine necessitaté”

2.1.1 Acquiring knowledge of the Real World:

The process of acquiring knowledge is a long debetgsue in philosophy. Aristotle
and the Stoics thought that a real system shouldtiidied through four different
aspects, namelghysica(aisthésisfor the Stoics), i.e. the study through observatio
of perceivable quantities (e.g. the five sens&xica (logos, or reasoning, thus
formulation of theories (e.g. mathematical congtamns or computational models);
ethica (aret, or the norms in which the real system are eméedd.g. values and
norms);politica (horm@, or dealing with the actions that shape and baped by the
real system (e.g. action research) (Nijland, 206®nce, knowledge is not only
acquired via feedbacks occurring between deducggsoning and empirical testing
(as in Figure 2-1A), but also from two other comgats that might as well be
equally important: actionpplitica) and the model of valuegthicg (as shown in
Figure 2-1B).

/\‘ Model of |~ »  Action
Deductive Empirical Values
Reasoning Testing A A
\_/ A 4
v - Deductive
Empirical »| Reasoning
Testing |
A R

Figure 2-1 Interrelation between cognitive acts
Without (A) and with (B) action and model of values arrows indicate the relations between the
“domains” (adapted from: Nijland, 2002).

! Entities should not be multiplied unnecessarigngence attributed to Ockham (1284-1347)).
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According to Figure 2-1 and to a more constructiperspective, reason alone can
not provide us with an objective knowledge of taalworld (i.e. absolute, objective
Truth does not exist), but experience based aesviare equally important (van
Gigch, 2002b). Moreover, actions undertaken andntioelel of values to which a
researcher and the object/subject of the reseafehn to, interact with reason and
empirical testing in improving knowledge. For exdep@s van Gigch states (2002b),
management science has tried to formalize the idecimaking processes, often
making tied assumption on the model of values @ged) and on the influences of
actions, thus not looking at action and values sdoatake into account clients-
recipients relations. However, as Nijland (2002inoout, an unarticulated holistic

approach is not useful; “a longitudinal, interd@iriary, participatory but
quantitative social-system analysis” is preferrédjldnd, 2002: 212). The four
aspects of cognition are more or less importanedémg on the methodology used
(e.g. observation in statistical analysis, reagpmnsimulation of system dynamics)

(Nijland, 2002).

Since the aim of this research is to integrate agkwheoretical tools (Chapter 3) and
resilience thinking (Chapter 4), the theoreticgppects are prevalent. Therefore, the
approach used in this research concentrates omagpects relating to reason.
Although the importance of integrating reasoninthwie other aspects of cognition
is recognised, at this stage focussing onldiges is thought to be the best way to
undertake this research. The starting point is rgibg the problems arising in
“measuring resilience” (Carpenter et al.,, 2001)e(€hapter 4), and an abstract
selection of the fundamental variables that areghbto drive a system’s resilience
is performed. These fundamental variables are usedrder to construct and
simulate a theoretical model. Future stages ofwtbek might as well include the
empirical testing of the model and how values aatioa can influence and are

influenced by it.
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2.1.2 Analogy: a way of integrating different disci plines

Analogies are useful when the objective is to campe unfamiliar system with one
that is better known. In particular, according t@ell (Turner, 1955), analogies
generate science through the transferring of a enadtical problem’s solution from

one branch of science to another (e.g. from physic®cial sciences), and through
the fact that, making an analogy more complete midgvelop into a “new

theoretical and experimental inquiry” (Turner, 19334). The use of analogy helps
with the identification of mathematic formulatio$ relations and actions, since
they are transferred from familiar system to unfanones: analogies extend a line

of reasoning of a known field to an unknown one.

When it is possible to establish some similaribeswveen different phenomena, it is
also possible that a common law or principle exiBkss line of reasoning could lead
in the right direction, especially if similaritiesxist not only between attributes of
two phenomena but also between the functions ofetbments or the structure of
different systems. The usefulness of analogy dependwhether consequences can
be tested or observed and then passed from one famikar system to a rather
unfamiliar one (Gentner, 1983). A mathematical madght be constructed if it is
possible to reproduce structural relations fronetids known environment. Although
analogies have to be used with caution, in ordeavinid the possibility of abuses
(Daniel, 1955), Nagel (1961) claims that theorieewd show at least a formal
analogy to already familiar (existing) constructggtems in order to understand how

to apply it to concrete problems.

It is also worth mentioning the difference thatstxibetween analogy and homology,
since often the definitions of the two terms overed are not clear. Following Fitch
(2000: 229, Box 1):

homology is the relationship of any two charactbet have
descended, usually with divergence, from a common
ancestral character and analogy is the relationshgmy two
character that have descended convergently frorelated
ancestors.
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Homology means similarity attributable to commorgior, while analogy might be
interpreted as similarity attributable to commorolatior’. As for the research
undertaken, it is referred to homology if two diffat systems have a set of
empirically tested correspondence of propertiesraadhanisms. Homology is rarely
used as it is not easy to find different complestegns with an exact correspondence
of empirically tested properties and mechanism.légais used to better illustrate
certain aspects of the work, since it has been shtyat analogies can lead to the
development of new fields of inquiry (see for exdéenplajorana, 1942; Mantegna,
2005; Turner, 1955).

2.1.3 Thesis Approach

There are numerous papers dealing with epistemzabgsues comparing or trying
to integrate methodologies and approaches in sacidlnatural sciences (Nijland,
2002; van Gigch, 2002a, 2002b). Thus, a structapgroach, using the tools of
network theory (explained in Chapter 3), couldegiseful and new insights on how
coupled SESs behave. Clearly, this approach arsl whirk is centred on the
“reasoning” chapter of Nijland (2002) tetrahedrof knowledge acquisition

(depicted in Figure 2-1B) as elucidated in secfiochl, and once a computational
(or agent based) model is constructed, there wilhlmeed for empirically verifying

these model, and to look at the different contembdel of values) and different

management (action) that will affect and will béeated by the models itself.

The role of this thesis is to explain, rather thamedict, systems’ strengths and
weaknesses, since social systems might be inhgrenpossible to predict, as
pointed out by Bernstein et al. (2000). Since SESapen systems, problems of
replicability or applicability may arise, but theissues may be raised and addressed
once a first set of coherent and logical argumargsput in place (i.e. the aim of this
research). Further, the key purpose of this rebeiaraot to assess the behaviour of
single actors (e.g. individuals), that is inhergntkery difficult or impossible to

predict, but in the behaviour of a SES on the agmjes starting from single

% Here evolution is intended in its general mearfig. not biological evolution).
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heterogeneous agents interacting between themseNas the objective is to

understand if and how regularities may emerge ftbenbehaviour of single actors
(Majorana, 1942). In this perspective, the buildomfga coherent theory might be
useful in order to explain if and how differentustiures influence the dynamics of a

SES, so as to assess the resilience of a given SES.

To conclude, the final aim of this thesis is teegrate network methods in resilience
thinking, so as to analyze the resilience of an 8B a structural perspective. In
this context SESs are approached from a networkt mdi view, trying to capture

only the most important properties of single no@eg. individuals, species etc.) and
their interactions (e.g. edges that connect twoespdn a dynamic setting. | am
aware that | will not find any absolute or objeetitdruth”; however, | think that this

research will allow a better understanding of SB&adhics, hence an increased
verisimilitude of real system representation andsgay the design of policies that

are more able to enhance or erode the resilienacsS&S.

2.2 Complex Adaptive Systems

It is not easy to define complex adaptive syste@AS) in an unambiguous way,
however, following Levin (2002) a system is chagaized as complex and adaptive
if a) its components (or agents) are diverse andawe differently, b) these
components interact locally (where locally is noecessarily geographically
constrained), and c) there is an independent psotieat is based upon those

interactions and that allows for change in the cositppn/behaviour of components.

The properties of a CAS described above assigniA® €bme characterizing features
(Levin, 2002; Waldrop, 1992). More precisely, ssghtems are characterized by:
* Non-determinismsince it is impossible to precisely determine ltkbaviour
of CAS; the only predictions that can be made aobabilistic;
* Presence of feedbacke/hether positive or negative, loops are present i
such systems and the relationships that forms legtwitee components

become more important than the component itself;
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» Distributed nature hence it becomes very difficult to precisely le&ca
functions and properties;

* Qualitative difference between larger and slowerctions (or cycles) and
smaller and faster ongsiolling, 2001, 2004; Levin, 2002; Waldrop, 1992)

» Limited decomposabilityas the structure of such systems is studied as a
whole. Again, the interactions between the comptmane a fundamental
variable, thus it is very difficult if not imposddy to analyze CAS by
decomposing it;

» Self-similarity implies that a system will have the same strestuat
different scales;

 Emergence and self-organizatiore. universal structures might emerge in
CAS as they self-organize, although it is not dassio foresee these by

looking at its components.

Interactions between species in an ecosystem,ghavibur of consumers, or people
and groups in a community, the stock-market, thenime systems, the river
networks, and birds’ flying patterns among otheng all examples of CAS. The
analysis of CAS, given its peculiarities, calls Bomew strategy, in order to make
cross-disciplinary comparisons searching for fesguhat are common to different
systems in different domains (Lansing, 2003). Imtipalar, different tools have

“emerged” in order to try to understand CAS.

2.2.1 Tools for analyzing complex systems

In order to analyze CAS, Amaral and Ottino (20@®nitify three main “toolboxes™:
* Non-linear dynamics
» Statistical mechanics

* Networks
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Non-linear dynamics

Complex adaptive systems are characterized by dhdinearity of the interactions
of their components. Although non-linear dynamiod ahaos are nowadays part of
science (Amaral & Ottino, 2004), it is worth striegsthe fact that non-linearity does
not imply non-predictability, but rather that deténistic views of the world should

be critically examined.

There are a number of mathematical techniquesethable one to deal and to find
solutions for systems characterized by non-lingarachics, however, most of these
solutions are obtained through numerical approxmnat and thus there is a need of
powerful computers that allow nonlinear dynamicshibit self-organization and
chaos. Since chaotic behaviour often arises framténation of simple mathematical
equations, it is possible to affirm that chaos &s¢g that systems that are simple
when decomposed, become very complicated when dheytreated as a whole.
Systems that display such non-linear behaviourvateally everywhere, examples
of which can be the economies, stock markets, @dpual growth, and turbulent
fluids.

Statistical mechanics

The origin of statistical mechanics (or physics)het turn of the 20 century led to a
new meaning of prediction, and permitted the inticobn of discrete models such as
cellular automata and agent-based models (AmaraDténo, 2004). Moreover
statistical mechanics allows us to reason in teofrensembles, thus leading the way

to conceptualizing “universality” and “scaling” (Aaral & Ottino, 2004).

Thanks to the techniques of statistical mechatiesavailability of data and the use
of computers, it has been discovered that manyigdlysystems display universal
properties that do not depend on the single commerand on the single interactions
that exist within a system. Moreover, it can beuadythat some universality exists in
other complex systems as well (e.g. social, ecoldyialthough exact solutions are
very difficult, if possible, to obtain, and mostrmnt research use numerical

simulations (i.e. see section 5.2) in order tocheprobable solutions. Statistical
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mechanics is also concerned with the idea thaetbgrist a set of relationsqaling
laws), that could help the understanding of differenttical exponents that

characterize the behaviour of parameters and fumti

Finally, statistical physics methods introduce e models. Discrete, or agent-
based modelling has been successful especiallgdlogy and social sciences (e.g.
see section 5.2.1 and 5.2.2 and references thg@@maral & Ottino, 2004). This

type of modelling is concerned with algorithms (guter programs) rather than
equations and allows its components to interactevulve. More precisely, agents
(or basic building blocks) live in a certain enviment, and they may possess
different characteristics, which can change ovweetiThis type of modelling allows

to investigate different scenarios and in some sdbhes approach has replaced
equation based ones (e.g. predator prey modebs,spreading etc.) (Amaral &

Ottino, 2004). This thesis makes wide use of agsted models combined with
network theoretical tools in order to look at thesilience of SES. Agent based

models and simulations are discussed in depthcinose5.2.

Networks

Most systems can be viewed as networks; that énehts that interact with each
other. Networks are described extensively in Chaptdnere the explanation will be
limited to how networks can help us in analyzinghptex systems by giving a very
simple and hypothetical example. First of all, dirdégon of a SES is required.

Figure 2-2 represents a closed, simplified syst€he analysis is based on two
different types of agents: ecological and socioreoaic ones. In this case,
ecological nodes are defined as those nodes that @ resources that are non-
human (abiotic or biotic environment), while soeicenomic nodes refer to those
that are based on humans. Moreover, the interactitat occur between ecological
and socio-economic nodes and between nodes thahdoeb the same macro-

category are analysed.
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To begin with, assume a closed, small, geograplsigate, in which two resources
are present (ecological nodes) and two type of rorgéion exist (socio-economic

nodes), as shown in Figure 2-2.

Resource 1: Water .| Resource 2: Staple
resource - Food
A 4 A 4
Agent 1: Tourism .| Agent 2: Primary
workers - sector workers

A A

Figure 2-2 Over-simplified interactions in a geogaphical space
(Own elaboration)

Figure 2-2 can be represented by a network as shrofigure 2-3:

Q >

Figure 2-3 Network representation of the simplifiel system

(Own elaboration)

The network representation is very effective inigating which relations exist
between the different nodes. At this point, thétigrey dots represent the ecological
agents and the dark grey dots represent the soommelic ones. Moreover, the
connections can be directed (represented by awjpoobi-directed (represented by
a double arrow). Directed connections symbolizesnaction, type of relationship,
that is, a relation that represents a flow of reses from one agent to another. Bi-
directed edges symbolize a bargaining (or exchatyge) of relation. The network

represented in Figure 2-3 can be shown in an ewplsetting. After defining the two
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macro-categories explained in the previous pardgras possible to affirm that, in
this example, there exist some agents that are ooomeected than others.

The dark grey dots are connected by a bi-directemirva representing the fact that
they both need to interact in order to divide tik&aetion from the light grey dots
(represented by the two directed connections). bl@e there is an additional
extraction type of relationship (single-pointedoavy also between the two socio-
economic nodes, meaning that one of the two nodedsexclusively “something”
from the other. As it is shown, even in this ovendified example, the collapse of
one dot can lead to the collapse of the entireesygFigure 2-4, moving clockwise

from graphs A to D):

D

Figure 2-4 Effects of the removal of the most coratted node in time

(Own elaboration)

Figure 2-4 graphically explains the effects of temoval of one ecological agent. In
this case, in which we simulate a close system wiily two resources and two
agents, the main resource dries out (A); this leadshe disappearance of the
extraction connections that connect to the secamdbgical dot and to the socio-
economic ones (B); since the dried out ecologicalenis crucial, as it is the only
input for the survival of the other two nodes, thter also “disappear” (C). The

process described in (B) repeats itself creatiosgszading effect, which will lead to
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the disappearance of the remaining edges and todllegpose of the whole system

(D).

It is possible to reproduce a more realistic systgmgiving characteristics and
behaviour rules to single nodes and edges (orarlaetween nodes) existing in the
system represented by a network. In other words, pbssible, and possibly better,
to integrate network theoretical tools with ageasdd modelling, thus allowing for
pre-determined actions and dynamics to unfold upordentified network. Chapters
6, 7, and 8 propose three different theoretmalbels that look simultaneously at
dynamics that unfold on a network so as to lookat structural properties affect

the resilience of a SES.

28



3 Network theory

This chapter resumes section 2.2.1 and expandgdindes, explains, and defines the
terminology that refers to science of networks gps (section 3.1). Secondly it
deals with the measures that are commonly usethticaly characterize a network
(section 3.2) and metrics widely used in sociawoek analysis (section 3.2.1).
Section 3.3 introduces different classes of ndta/obased on previous definitions
and measurements. More precisely it defines regn&works (3.3.1), random
graphs (3.3.2), small worlds (3.3.3), scale-fneéwvorks (3.3.4), and introduces the
concept of modularity (3.3.5). Section 3.4 re\salve main studies dealing with real
network and reports the main findings. A particulecus is given to ecological
networks (food webs) characterizing them as trartapon networks (3.4.1). Finally

a brief summary of what has been explained in theleichapter (3.5) is provided.

| am aware that networks are used across diffedestiplines, but, since the
objective is to integrate it with Socio-Ecologic®ystem (SES) resilience there is a
need to use an unambiguous terminology. Hence,lll net adopt sociological
definitions, but rather a more mathematical onefér to nodes and edges, and not
to actors and ties; to adjacency matrices and matotio-matrices, to clustering
coefficient and average shortest path length, rathen to fraction of transitive
triples and characteristic path length. The terost mmentioned are defined and
explained in detail in the first two sections oistkbhapter (i.e. sections 3.1 and 3.2),
but listing the terms that | will use and their oterparts in sociology enhances

communication across disciplines.

3.1 Network Structure

Networks can be considered as a tool to analyseabsttactly represent complex
systems. A network can be thought of as a s&idkesconnected througbdgesas
shown in Figure 3-1:
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Figure 3-1Network representation

The black dots are called nodes, while the lines moecting any pair of nodes are called edges
(Own elaboration).

Network theory (here also called graph theory) sldtie conceptual origins back to
the 1730s thanks to Euler (1736); but the startiomt of modern graph theory is
considered to be the work of two Hungarian math&maas on random graphs
(Erdés & Rényi, 1959, 1960). The terminology and deiims used in this chapter
follow the work of Bérner et.al (2007), integratby authors that have extensively
written on networks measures and terminology (Al8eBarabasi, 2002; Amaral &
Ottino, 2004; Barabasi & Bonabeau, 2003; Bornaal 2007; da Fontoura Costa et
al., 2007; Dorogovtsev & Mendes, 2002; Newman, B)@&rogatz, 2001; Wang &
Chen, 2003; Watts, 2004).

As explained above, a network is a set of nodeseded through edges. Following
a more rigorous definition it is possible to sagttagraph (network) Qs defined by

a non-empty set of nodesV :{vl,...,vn} and a non-empty set of
edgeE :{(vl,ul),...,(vi WU, )} G = (V, E) The total number of nodes in the graph of

the setV is represented by, while the total number of edges in the networkhef
setE is represented byl. Thei-th node of the se¥ can be connected to thth node
through an edge; that is, an edge connects gipgirof nodes. If an edge belonging

to E connects a pair of nod€sj), i andj are said to baeighbours
Networks can be undirected or directgadirected graphfiave edges that connect a

pair of nodes in a transitive fashion (that is, exithat connect nodeo nodej and
vice-versa), whilalirected graphsre composed only by directed edges connecting a
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pair of nodes in a given directiotdndirected edgeqor edges) are normally
represented by a straight line or a double arraw, liwhile directed edgesare

normally represented by an arrow indicating thedation of the relation between a
pair of nodes. Figure 3-2 gives a graphical repredmn of an undirected and a

directed graph:

Figure 3-2 Undirected Network (right) and a Direced Network (left)
Undirected edges (right) and directed edges (leffDwn elaboration).
Networks can also be weighted. Real networks dysplavide heterogeneity when it
comes to assess the strength of the relationsettiat between nodes. Weighted
networks can be directed or undirected. Figure @isplays an example of a

weighted undirected graph.

Figure 3-3 Weighted network
The strength of the edges is given by the thicknes$ the line (Own elaboration)

To be more rigorous, in weighted networks each dadgp is associated with a
weight w; (also be called theveight of an edge Having defined the weight of an

edge, it is possible to define teength of node ig) as the sum of the weights of

its edgess, = Zvvij . Weighted networks clearly provide more informatigpon the
j

graph, since they combine topological informatiathwquantitative measures.
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Independently from whether weights or edges dioestihave been defined, a
network is termed connected if no isolated nodest.eA giant componentan be

defined as the largest connected part of a network.

In a network, sub-graphs may be defined. Sub-gtgmoperties in random graphs
were first extensively studied by Esland Rényi (1959). Aub-graphis a graph
whose nodes and edges are all also nodes and efdgdarger network. Formally a
sub-graph can be defined as follows: consider plg@a= (V, E) then a sub-graph
G;: = (V4, Ey) of G is a sub-graph o& if and only if all the nodes df; belong toV
and all the edges & belong toE.

The simplest types of sub-graphs are caltegs cyclesand complete sub-graphs

The notations used by Albert and Barabasi (2008)used to formally assess the
order and the property of sub-graphs. Trees amarcigical graphs in which every
node has only one node from which it originatesqalalled parent node). The order
of the tree is defined by the number of nodes t@hposes it, as shown in

Figure 3-4: a tree of ord&rhask nodes and-1 edges.

Figure 3-4 Trees
Tree of order 3 (left), a tree of order 4 (centre)and a tree of order 5 (right) (Own elaboration).

Cycles are closed loops in which every two conseeutdges have one node in
common. The node needs to belong exclusively tactimsecutive edges. The order
of the cycle is again defined by the number of sod®ore precisely, a cycle of order

k hask nodes and edges, as shown in Figure 3-5:
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Figure 3-5 Cycles

Cycle of order 3 (left), a cycle of order 4 (centle and a cycle of order 5 (right) (Own

elaboration).

Complete sub-graphs are sub-graphs that are falipected. The order of complete
sub-graphs is again given by the number of nodaisdbmpose the sub-network. In
other words, a complete sub-graph of otkdbask nodes and(k-1)/2 edgesK(k-1)/2

is the maximum number of edges in a graph if eymly of nodes is connected
through one edge and node do not have edges #thtdehemselves), as shown in
Figure 3-6:

Figure 3-6 Complete sub-graphs
Complete sub-graph of order 4 (left) and order 5 (ight)
(Own elaboration).

As explained in the previous paragraph, the maximumber of edges that exist in a
graph is given by(k-1)/2. A graph can not contain self-referring edgesgds or
multiple edges that connect a pair of nodes. Ifraply contains loops or multiple

edges, it is calledhulti-graph Figure 3-7 shows multiple edges and loops.

Q.:.

Figure 3-7 Loop (right) and multiple edges connedatg a pair of nodes (left)
(Own elaboration).
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Last but not least, the definition of a bipartiteyoh is given. A bipartite graph is a
graph in which two different set of nodes co-existthe case of this work, social
and ecological node will be represented as twaeebfit sets. Hence, it is possible to
define a bipartite-graph &=(Vse+Vec, E)whereVseis the non-empty set of social
nodes,Vecis the non-empty set of ecological nodes, Bnd the non-empty set of

edges. An example of a bipartite-graph is showiguire 3-8:

Figure 3-8 Bipartite-graph representation
Only the relations between the two different setsf;modes are represented (here socio-economic
nodes in dark-grey and ecological nodes in light-gry) (Own elaboration).

Graphs and networks can be represented graphieallghown so far) or as a matrix.
The matrix that defines a network is also calétjacency matrix The adjacency

matrix is a square matrix in which values are & ifonnection exists between the
nodes to which the cell refers (interception ofucoh and row), and O if the two

nodes are not connected. Formalizing: the adjacemalyix A, :{a,.j} isaNxN
matrix defined such ag; = 1If i,jOE anda; = 0if i,jOE. If the matrix is
representing an undirected graph, then it will yenrsetric asa; =a; . If the

adjacency matrix is representing a directed grépm there is the possibility that the

matrix is asymmetric; i.ea; # a; . Finally, if the adjacency matrix is representang
weighted graph, than the matrix is not represehted, ,a; = 10 but by the strength

of the edgesw; ,w; , whose value is given by the strength of the ection between

ji*
nodei and nodej (and vice-versa). Figure 3-9 depicts the adjacaatrix for

undirected, directed, unweighted and weighted ggaph
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1 1
1 2 3 45 1 2 3 45
5 4 1/01 00O 2 4 1/01 00O
2/1 0 0 01 2/0 0 0 0O
3/0 0011 3]0 0010
3 5 3 5
4/0 01 01 4/0 0 0 0O
5|01 110 5|01 110
1 1
1 2 3 45 1 23 45
) 4103000 2 4 10 3000
2/3 00 01 2/0 0 0 0O
3000423 5300040
3 5 4/0 0 4 05 4/0 0 0 0O
5|01 250 5|01 250

Figure 3-9 Networks and their adjacency matrices

Undirected (top-left), directed (top-right), weighted undirected (bottom-left) and weighted
directed (bottom-right) graph representation with their respective adjacency matrix. Note how
the matrix is symmetric when the graphs are undireted, asymmetric when directed. Moreover,
the weights are represented by the thickness of tHime and weights are given arbitrarily on a
scale from 1 to 5 (1 the weakest, 5 the strongegQwn elaboration).

3.2 Network Measures

So far, section 3.1 has dealt with different dnes that highlight certain properties
of a whole network. This section introduces the sneas that are commonly used in

order to statically characterize a network’s togglo

This section starts by defining local measures.alLoteasures are those metrics that
refer to a single node or to a pair of nodes. Adared before, a network is a set of
nodes connected through edges. If it is possibleach a node from another node
then an “ideal” walk on certain edges is carried. ¢uthe walk connects a pair of
nodes, this walk will have a finite distance. Moren in graph theory the walk is

defined apath Formally, a pathR ; that connects nodetoj is defined as an ordered
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sequence of+1 nodes anch edges that will connectandj; the length of the path

P ,is equal ton.

Now, it is possible to define the nearest neighbaiira node keeping in mind what a
path is. In this context it is possible to affirhmat the nearest neighbours of a node
are those nodes that are reachable in a unit patjtH. In other words, the nearest
neighbour of node are those nodes whoBe ;= 1, where z represent any node in
the unitary distance.

When referring to length or distance between twdesoin an unweighted network
only the geodesicdistance between the two is taken into accoune géeodesic
distance is unitary (or its length is equal to aoh@pdei andj are connected through
an edge, independently from the actual physicdaadce that may exist between the
nodes as shown Figure 3-10. In case of weightedanks, the distance may as well
be calculated as the sum of the weights of the tit# it is necessary to bypass in

order to reach nodefrom nodei.

1

Figure 3-10 Geodesic distance
In an undirected graph, the geodesic distance betwe nodes 1,2 and 1,3 is equal to 1, while the
physical distance is different (being distance 1,2kstance 1,3) (Own elaboration).

Given the definitions above, it is possible to deftheshortest path lengtf/; ;) as

the shortest geodesic path that is exist from nddenodej; if nodes are connected

through directed edges, thef; # ¢,,. The diameter (D) of a network is then

defined as thenaximum shortest patangth in a graph. In other words, the diameter
of a network is the maximum of the shortest patigtles that exist in a networkiax

(¢;;) wherei andj represent any pair of nodes existing in the graph.
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The average shortest path lengfii/)) of a network is, as the name suggests, the

mean value of/; ; over all possible pairs of nodesj that exist in a network.

Formally: Zé” N Where N, ; is equal to the number of all the possible pair of
ij

nodes.

Making use of the definition opath it is also possible to defineeachability
Reachability can be defined as the possibilityeaithing nod¢ starting from node,
irrespective of the number of edges and nodes ith&t needed to bypass. In
Figure 3-11, for example, all nodes are reachabtee undirected network, while in
the directed graph, if we start from node 2 no nisdeeachable, while if we start

from node 1, only nodes 2, 3, and 4 are reachable.

Figure 3-11 Undirected (left) and Directed (right)graph

(Own elaboration).

Another important measure that characterizes a rottee number of edges that are
linked to it. The number of edges that are conmetdiea node is also called thede
degree(or the degred of nodei: k). The average degree of a network is then the

sum of the node’s degrees divided by the numbeodes that exist in the network:

i e. (k)= Zk% . The degree of a network can also be definetesumber of the

nearest neighbours of a node. In undirected grapbsjefinition given above holds
perfectly. In directed graphs, it is possible tGedentiate the in-degree of a node
(ki) and the out-degree of a nadg,; ).

The in-degree represent the incoming edges thatareected to node while the
out-degree measures the number of edges outgoges étbm a node Figure 3-11
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graphically shows the definition of degree, and tlearest neighbours of a given
node. More precisely, referring to Figure 3-ki=k;= 3; ks = 2; ko = ks = 1; for

the undirected graph. Moreover, the nearest neigisbaf node 1 are nodes 2, 4 and
3. As for the directed graph, the in-degree of denis separated from its out-degree,

hence:kin,lz 1’ kout,lz 27 kin,2 = 17 kout,2: O’ kin,3: 1’ kout,3: 1’ kin,4: 27 kout,4: 17

Kns= 0, K,.s= 1. In the directed graph it is also possible toirsefthe nearest

neighbours in two ways; the nearest neighbour fedrich node 1 can be reached is
node 4, while the nearest neighbours that candshesl from node 1 are nodes 2 and
3. Clearly, the higher the degree of a node, theertitat node will be important for
the network structure (Albert & Barabasi, 2002; &ssi & Bonabeau, 2003;
Dorogovtsev & Mendes, 2002).

When not all nodes in a network have the same degjten it may be interesting to
study how wide is the nod#egree distribution( P(k)) (Albert & Barabasi, 2002).
The degree distribution in undirected graphs isptabability that node will have
degree (or number of edges) In directed graph we need to differentiate the in
degree distribution and the out-degree distribution

Another measure that is widely used to charactesizeetwork topology is the
clustering coefficiendf nodei (Ci). The clustering coefficient can be thought ofas
way to determine how many nearest neighbours o€ nace also nearest neighbours
to each other. More precisely, if we select a nodeh degreek, then the maximum
number of edges between the nodes connected toi natlde equal td (k. —1)/2,

and the actual number of edges betweenkthdes will be equal t&;; thus the
clustering coefficient of node C;, can be defined as the ratio between the maximum

number of edges and the actual number of edges.zl%(k‘ ~1)°

After defining the clustering coefficient of a giveode, it is possible to define the

average clustering coefficie@ The average clustering coefficient is definedhas
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average value of the nodes clustering coeffici€h)t ¢ver the possibléN nodes:
2o/
c=1 N

There are other numerous metrics found to chaiaetexr network’s topological
properties.. Amongst them it is worth to highlighe concepts of global and local
efficiency. Global and local efficiencyare measures introduced by Latora and
Marchiori (2001). The efficiency measure is buifpom the assumption that the
network transmits information and that there isdeea scope to explore how well its
nodes can interact locally and globally (Crucittia¢, 2004; Latora & Marchiori,
2001). Unlike the average shortest path length, itheeasonable for the connected
component of a network, or for completely connectetivorks, the global efficiency
is well-defined even for unconnected networks (@tuet al., 2004; Latora &
Marchiori, 2001).

More precisely, the efficiency in communicationveegén a pair of nodess j can be
defined as being inversely proportional with respex the shortest path; i.e.
& :ifor every pair of nodes, j . If there is no path that connects nodeg,

i
d; =+ thusg; = Q Given the definition of efficient communicationis possible
to define the global efficiency as the averagecedficy of the network (Latora &
Marchiori, 2001). Formalizing:

ZiijDG & 1 1

HOENN-D TN 2,

In order to allow comparisons of the efficien&(G agross different networks,

E(G) is normalized considering the case in which avoek with the same number of

N(N -1)
2

nodes is fully connected; that i§(G) is normalized by edges, case in

which communication is most efficient. Thil< E(G) < bging E(G) = 1only if
the network is fully connectedE(G is) the global efficiency of the network:

E(G)=E

glob *
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If the global efficiency is the average efficiermythe network, it is possible to think

at the local efficiency as the average efficiendysob-graphs. In mathematical

notation, that is: E, :%Zm E(G), where G, is the sub-network of the

neighbours of node.

Another important characteristic of complex netvgik assortativityAssortativityis

a measure that allow us to understand if the nétwl@plays a positive correlation
between the degree of its nodes and the probaliiay they are attached to one
another: a node with high degree will preferenjialitach itself to a node of a high
degree as well (Newman, 2002, 2003a). In othedwjoassortativity refers to the

fact that similar nodes tend to connect with eatieo

A simple way to measure assortativity is by usimg Pearson correlation coefficient

between the degredof a given pair of nodes (e.g,j) (Newman, 2002):
r Okk, —k Ok, . When r >0the network is considered to display assortative

mixing; when r < 0 the network displays disassortativity and wher the

network does not display assortativity (or disatsgimity).

An example of an assortative network will be a aboetwork in which people tend
to connect with those that have similar charadiesge.g. income, age, sex, race,
type of work etc.); on the contrary, if people tetodconnect with those that have
different characteristics, then the network willsplay disassortative mixing
(Newman, 2003a). An important characteristic teetako account is the degree of a
node. If the network displays assortative mixirggrt high degree nodes will prefer
to attach to other high degree nodes. Vice versathé network displays
disassortative mixing, high degree nodes will peféally connect to low degree
nodes. Most social networks seem to display ads@tanixing, while most
technological and biological networks tend to dgpldisassortative mixing
(Newman, 2002, 2003a).
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3.2.1 Social Networks metrics

Social network analysis has developed its own teology. Nonetheless, social
network analysis focuses on different measures tihase described above. In
particular, the concept afentrality of a network node with respect to others is
considered. There are numerous measures of cgn{tdinneman & Riddle, 2005),
but it is possible to group each measure into twaath categories: local measures

and global measures.

Local centralitycan be thought of as a measure of how well a mdennected to
its neighbours; a node degree refers to the simptesml measure of a node

centrality.

Global centrality takes the whole network structure into accountonder to
determine the importance of a node with respethécentire graph. There exist two
common measures that are used to compute glob#dabign closeness centrality

andbetweenness centrali(orner et al., 2007).

Closeness centralitys used to calculate the geodesic distance betwdiférent
nodes. A node is globally central if it constitueeseighbour to many other nodes. In
other words the shorter the path between niodad other nodes, the higher the
centrality of node. Formalizing:

Co(i)=— 1.

2P,

j=1
Betweenness centralitiescribes the importance of a node in a netwoskdhan the
flow it can control. In other words the importanoé a node is given by its
uniqueness. As an example it is possible to thinkva different communities that
speak different languages (hence facing commupicdiarriers). A problem arises
when the two communities need to talk to each othed there is only one person

who is able to communicate effectively with bothnuoounities. The node that
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represents this individual will have a high betwsess centrality. More precisely the
betweennesk of nodei can be formalized as follows:

b = Z ll'_h'i'j where L, ; represents the total number of shortest path fidmj and
h,j

L,; ; represents the number of those paths that wik paugh node, It is also

possible to characterize the betweenness distoibuliore specifically, it is possible
to compute the probability distributioﬁ(b) that a node has betweennbssFinally,
it is also possible to calculate edge betweenngssHdge betweenness has the same
L, .
meaning of node betweenness and is calculatedlaw$o b, = Zﬂ where L, ;
h.j

represents the total number of shortest path floto j and L represents the

he,j

number of those paths that will pass through exige

Since both measure€¢ andb) depend on the size of the network, both measanes
normally standardized in order to allow comparisoRkre precisely, closeness
centrality is divided byN-1 and betweenness centrality is divided(by-1)(N - 2).

Another measure that may be of interest is the ated distribution of node
distances. According to Borner et al. (2007), ipassible to characterize two main
measures of node distances. The first being sirtipyprobability distribution of
finding two nodes separated by a distahcdhe second indicator is called the
average massf a graph, since it involves computing how manoes it is possible
to find within a distance less or equal 4o Thus, if we define the average mass of a

graph a (ﬁ) then at/ = (@verage mass includes only the starting node, hence
M(0)=1; if /=1 than M(1)=1+k (that is, the starting node plus its nearest

neighbours) and so on.

Since the objective of the thesis is to look atcttiral properties of networks whose
nodes represent social components (human) andgecal@omponents of a SES, at
this point, there is no need to go beyond the fbheacription of the most important
measures that will be used throughout the thesis.
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3.3 Network Classes

The characterization of the structural propertiea network is usually defined by its
connectivity properties (in simple words, how nodesl edges are formed and
attached to each other) (Albert & Barabasi, 20021afal & Ottino, 2004; Barabasi
& Bonabeau, 2003; Dorogovtsev & Mendes, 2002; Sting2001; Watts, 2004). In
the previous sections (i.e. sections 3.1 and &rictural properties and measures
commonly used to define connectivity properties endoeen characterized. This
section defines four major categories radtwork classesA network class is an
ensemble of networks that share the same propemiasly with respect to their
degree distribution function, average clusteringfftoient, and average shortest path

length.

Four network classes are widely reviewed in therditure according to their
statistical properties: regular networks, randompys, small worlds, and scale-free
networks (Albert & Barabasi, 2002; Amaral & Ottin2004; Barabasi & Bonabeau,
2003; Borner et al.,, 2007; Dorogovtsev & MendesQ2Z0Erdds & Rényi, 1959,
1960; Newman, 2003b; Strogatz, 2001; Wang & Ché632Watts, 2004).

3.3.1 Regular Networks

As intuition suggests, regular networks display sheallest average path length and
the highest clustering coefficient. Regular netwbeve N nodes andN(N -1)/2
edges. Regular networks do not appear in real-wbldehetheless they may be useful
to study a particular case of a regular graphsthealledregular lattice The regular
lattice is a model in which every nodées connected only tk of its neighbours. The
term “lattice” as explained by Wang and Chen (20@8uld suggest a two-
dimensional §=2) square grid, but the most simple lattice is untehsional and
can be represented by a row or a ring. This typaativork is highly clustered,

beingCre; = 34, while the average path length tends to infinga— o .

43



3.3.2 Random Graphs

Erdos and Rényi (1959; 1960) were the first to gttle statistical properties of
random graphs (thus also called ER model). Sinee tioneering work, random
graphs have been widely studied in graph theoryigBas, 1985). This section looks
at random graphs describing the properties thatreme important from a “complex

network” point of view.

First of all, an informal definition of random gtarandom network) is provided. As
described by Erdés and Rényi (1959), imadihbuttons scattered randomly on the
floor, if one ties two buttons randomly togethethwprobabilityp, one will end up

with a random graph with on averagelIN(N —1)/2edges distributed randomly

(Albert & Barabasi, 2002; Dorogovtsev & Mendes, 20&rdss & Rényi, 1959,
1960; Strogatz, 2001). Random graphs describeklisnsection have a fixed number
of nodes, while the number of edges varies accgrtiinthe probability of edge
existence f§ in the previous paragraph) (Dorogovtsev & Men@)2) as shown in
Figure 3-12.
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Figure 3-12 E-R (random) graph
N=20 and different probability of nodes being conneted: from 0 (top-left), 0.05 (top-right), 0.1
(bottom-left), 0.25 (bottom-right) (Own elaboration).
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Moreover, random graphs are characterized by thewimg average shortest path
length: (/) =In(N)/In(pN)=In(N)/In((k)), that is, the average shortest path

length increases as the natural logarithml ébr largeN.

As explained section 3.2 on network measuresglimstering coefficient is a way to
answer the following question: how many nearesgm@ours of noda are also
nearest neighbours to each other? In random gtaphprobability that two of the
nearest neighbours of nodare also nearest neighbours to each other is ¢gpal

Thus, the clustering coefficient of a random gragshles according to/M. More

precisely:Cez = p=(k)/N.

Erdds and Rényi were also the first to study th&imam and minimum node degree
in a random graph (Eéd & Rényi, 1959). The random graph degree distidbut
approaches a Poisson distribution for lakg@lbert & Barabasi, 2002; Dorogovtsev

& Mendes, 2002). As explained above, a random grapttains pDN(N —1)/2

edges on average. Furthermore, the degree distnibus binomial (thus it
1 -
]p"(l— p)" 7, ie.

the average degree will then be equapta(N —1). As mentioned above, for large

approaches a Poisson distribution for laM)e PER(k):(k

the degree distribution of a random graph can baght of as a Poisson distribution,

(k) {1\
hence:P.,(k) = © <k>1 , Where the expected value and variance are eqLiaDt

(see Figure 3-13).
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Figure 3-13 Degree distribution of a random graph

p=0.0015 and N=10000 (dots) compared to a Poissoistdbution (line), where k is the degree
and <k> is the average degree and y axis represent probdity of finding a node with degreek
(after Albert & Barabasi, 2002).

Thus, it is possible to define a random graph gsgaaph whose degree distribution
follows a Poisson. This peculiar distribution ofdeodegree in random graph means
that although edges are placed randomly, the megulnetwork is rather
homogeneous, with most of the nodes having the skageee, while the distribution
rapidly decays for large and small degrees (Dortsgpwé& Mendes, 2002).

3.3.3 Small-World Networks

Watts and Strogatz (1998) discovered that somenealorks can not be classified
as completely random graphs nor regular graphss,Tiney thought of a model that

could preserve important characteristics of bottfdcem and regular graphs.

The original small-world (SW) network can be thoughas the result of the lattice
example described above. In this case, Watts armh&r represented a regular
uniform and one-dimensional (represented by a riatjice, where every nodeis
connected t& nearest neighbours. From the regular lattice, tteamery edge is
rewired with a probabilityp. The higher the parameter, the more the graph will
resemble a random graph. Thus small-world graphbeadtefined as a class of graph
that is neither completely ordered nor completedyndom, but somewhere in

between.
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The original model by Watts and Strogatz (1998) @lao be obtained by adding new
edges between the nodes of the lattice. In this,casda andj, wherej is not one of

the nearest neighbours pfare connected through an edge with probalalityAs
shown in Figure 3-14, increasing has a very similar effect on the regular lattise a

when increasing in the rewiring small-world.

rewiring of links

addition of links

Figure 3-14 Generation of small-world networks

Rewiring edges (top) or addition of edges (bottom)n both cases the generation starts with a
regular graph (left), as edges are rewired (top) oadded (bottom) the graph becomes a small
world (centre); continuing the process of rewiringedges (top) or addition of edges (bottom)
leads to a random graph (right) (after Dorogovtse& Mendes, 2002)

SW graphs can be positioned somewhere betweenmagoaphs and regular graphs,

with regard to two measures explained in sectigh A& regular lattice will display

long average path length, scalir\‘ugREG> asN, while at the same time, it will be
highly clustered, withC,.; independent of scale and equal3@for large k. On
the contrary, random graphs (ER-type) display atsigerage path length aerER>

scales adn(N) (as explained in section 3.3.2), while they da display a high

clustering coefficient, scalin@., asl/N .
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Figure 3-15 Average shortest path length and clusting coefficient in Small World networks
Normalized shortest path length (here L) and clusténg coefficient (C) as a function of p

(rewiring probability) for the SW graph with  N=10000 and «>=10 (after Watts & Strogatz,

1998)

As depicted by Figure 3-14 and Figure 3-15, anagdained above, there is an
abrupt change in the average path length that sdour given value gf. Thus, it is

of interest to identify the value @fat which this transition occurs independent from

the network siz&l . Since there is a sizbl", such as ifN <N",(¢g,) O N, but if
N > N*,<£SW> O In(N) thenp is dependent upon the system size. In other words,

(¢ sy) does not start to decrease ungik NK , at least one shortcut has to exist.

The clustering coefficient is slightly different the case of the rewiring small-world
graph or in the case of the edge addition smalldvgraph. More precisely:
» The clustering coefficient for the rewiring versi@n
SwR =%(1— p)’:
» The clustering coefficient for the addition versisn
Cop s 3(K -1 |
2(2K -1)+4Kp(p +2)

As Newman (2003b) points out, the degree distitioudf small-world network does
not approximate reality very well. This differenbetween the small-world degree
distribution and the degrees distributions seemeim networks derives from the

construction process of the small-world network.rétwver, SW degree distribution
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is calculated differently, whether it refers to tiesviring or the adding edge version

of the model (with the latter simpler to calculatealytically).

If p=0 than the degree distribution will be a verticalelito<k> (such as the degree

distribution of a regular lattice) as shown in Fig3-16:

P(k) 1

(k) k

Figure 3-16 Regular lattice degree distribution
where <k> is average degree, anB(k) the proability of finding a node with degreek, being k the

degree of a node (Own elaboratioh

In the adding edges case, each node has at ledsgrae equal toK plus a
binomially distributed number of shortcuts, thusistpossible to affirm that the

probability P(k) of having degre& is equal to:

oo W) [FRE]

for K=2K andP(k) =0 for k <2K .

In the rewiring edges case, fgr> dach node will still retain at leakf2 edges

after the rewiring process is complete. Followirayfat and Weigt (2000) the degree

distribution in the rewiring case can be formalizsdollows:

min(k-K,K) k-K-n

prd (k- K —n)
for k= K and P(k) = Ofor k<K.

The resulting degree distribution is a rather homeges one, similar to the degree
distribution of a random graph (Poisson), with akpand an exponential decay as
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shown in Figure 3-17. Moreover, Figure 3-17 shows lsmall-world networks are
rather homogeneous, with the majority of nodesrathe same degree (as the peak

at (k) = K suggests).
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Figure 3-17 Degree distribution of the small-worldnetwork

Rewiring edges for K=3, different levels of p and N1000; full circles represent the
corresponding ER graph.k = degree of node and P(k) = probability of finding a node with
degreek (after: Barrat & Weigt, 2000).

3.3.4 Scale-Free Networks

ER graphs and SW networks have similar degree loligioins, that is, both classes of

networks peak at a certain val<le> and then they decay exponentially (as depicted

in Figure 3-13 and Figure 3-17).

However, in real networks, nodes and edges areamoiomly assigned, but the way
they behave and attach follows specific rules. Gfnilese rules can be classified as
preferential attachmennew nodes will connect to the already most cotetenodes

in the network. Preferential attachment can alsothmright of as popularity is
attractive (or the rich get richer).

Barabasi and Albert (1999) construct a model (B#s}t is capable of reproducing the
preferential attachment behaviour. Moreover, the Bédel differs with respect to
ER and SW in the fact that it is a dynamic modehdeg it looks at the evolution of a
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network, assuming that the topology of a networnk lsa explained by its evolution
through time. More precisely the BA model is basgdn the application of two

rules, which are considered key features of neta/tkt are built on real data.

» Growth: starting with a small number of nodég, at every time step one new
node is added and connectedtalready existing nodes, beim< N, ;
 Preferential attachment the probabilityl that a new node will attach to an

already existing node depends on the defrekthe already existing node

(k)

= —ki
2.k
J

After a certain time interval, the network constructed following the rules defin
here, will haveN =t + N,nodes andktedges (Figure 3-18 shows the evolution and

construction of such a scale-free network).

O O
t=0 t=1
t=2 =3

Figure 3-18 Evolution of a the BA model

Starting with No=3 number of nodes, at each time step a new node iddeed as well ak<Ngy=2
number of edges, new nodes attach according to tipeeferential attachment rule (Own
elaboration).

Numerical simulations show how the BA model evoli#e a scale invariant state

(thus the name Scale-Free) where the probabilitfinofing a node with degreke

follows a power law with exponeng,, equal to 3: i.e. for largd, P(k) O k™.
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Figure 3-19 depicts numerical simulations for th& Bodel with different starting

number of nodes.

Figure 3-19 Numerical simulation of the BA model

Where N=Ny+t=300,000and N, differs, being 1 (circles), 3 (squares), 5 (diaonds), 7

(triangles). Beingk the degree of nodé and P(k) the probability of finding a node with degreek
(after Barabasi et al., 1999).

The average path length of the BA model is smakbengared to that of a random
graph (ER), as shown in Figure 3-20. More precigily,average path length of the

BA network increases with respect to the logarithinN, with the best fit assuming

the following form: (¢ 5,) = AIn(N - B)+C.
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Figure 3-20 ER (random graph) and BA model averagpath length ()

The network having <k>=4 and being of the same sizN (after Albert & Barabasi, 2002).

The fact that the BA model has a smaller average lpaigth than that of a random
graph ER indicates the higher efficiency of the &dalee topology compared with
the random graph topology when nodes are hit bgiaamnerrors (see section5.1 for
more information on errors and attacks effect dfedint network topologies). The

clustering coefficient has been widely investigated Small-Worlds and Random

Graphs; there is no analytical formulation@for the BA model. However, Albert

and Barabasi (2002) show that the clustering cdiefit of a BA network will be of

the following form:C,, O N~°, which is higher than the clustering coefficiefiao

random graph (bein@, 0 N™*) as shown in Figure 3-21.

53



107
©Q 4p 3 E
10° L ~ BA model 1
random graph ]
1 |:|_5 ; 2 — ] : ’ . £ ' — ’ =
10 10 10 10
N

Figure 3-21 Clustering coefficient C) of the BA model and the ER graph

Note how the two clustering coefficient diverge wheN (size of the network) increases (after

Albert & Barabasi, 2002).

Another important property of the BA model is tliatnode degrees are correlated.
This result is the outcome of the construction @f tietwork (that evolves) and is a
feature that is not present in random graphs (whede degrees are uncorrelated).
In other words, if nodes that have degke@nd nodes that have degieare taken

into account, then the number of pairs connectdtl degreek andl will be n, .
Since n, #n.n,, correlations do exist (in random networky, =nn,). It is

important to know that this correlation arises fporously, but are nevertheless

non-trivial (due to the dynamical process that gates the BA network).

3.3.5 Modularity

All the network classes described in section &8 bave different characteristics
based on the metrics portrayed in section 3.2.terocharacteristic of complex
networks is modularity. Modularity or community igtture seems to be a common
feature of many different networks (Newman, 200@éwshan & Girvan, 2004). A

modular structure refers to a network whose nodesdansely connected within a
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specific group and loosely connected to nodes lgahgnto other groups. Figure 3-22
graphically displays a modular network.

Pajek

Figure 3-22 Modular network with 10 communities

(Own elaboration)
Discovering the best possible partition of a netwacross communities is a non-
trivial problem. There is a need to balance accueaay computational limits given
by present-day possibilities (and costs). Newman @irvan (2004) propose the
following algorithm in order to detect communitywttures (or modules) in complex

networks:

1. The betweenness scores for all edges in the netwadculated (i.e. refer to
section 3.2.1 for detailed information on betwesss).

2. The edge with the highest betweenness score is emhfoym the network; if
two or more edges have the same highest scoreedge will be randomly
chosen and removed.

3. Repeat steps 1 and 2.

This algorithm allows defining different modules sig in a network and

introduces a new network metric: theodularity index(Newman & Girvan, 2004)
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The modularity index is a measure that allows thaparison of different network
partitionings. FormalizingQ being the modularity index:

K.
Q =1 a; —L O, ¢, » Where ¢, represent the community to which node
2M 5 2M )

belongs andch'Cj is the Kronecker delta function taking value Inddesi andj

belong to the same community, and 0 otherwMeaepresents the total number of

edges in the network ang represents the network’s adjacency matrix (segogec

3.1).

To this point , this chapter introduced and desdribetwork structures and the most
common metrics used in the literature. Moreovebyiaf classification of networks
based on certain metrics is given. The next sedfdhis chapter characterizes real

networks as found in the literature and reportg tihain metrics.

3.4 Real Networks

In the previous sections of this chapter, the mamasures used to topologically
characterize a network have been explained, andnimaels that are often used to
classify a graph have been presented: regularoran(&R), small-world (SW) and
scale free (SF). This section summarizes a sampleetiorks studied, giving a

central role to ecological networks (more precistdpd webs).

The increased use of complex network tools is lgrgatributed to the growing

interest in complexity issues since the turn of ided decade, thus the will to go
beyond reductionism and understand organizing imies of complex systems
accompanied by the increase in computing powerthadoossibility of accessing
large databases. This led to the study of the feat world networks (Albert &

Barabasi, 2002; Dorogovtsev & Mendes, 2002).

Since 1999 a number of real networks have beerysedisee the reviews of Albert
& Barabasi, 2002; Caldarelli, 2007; Dorogovtsev &mdes, 2002; Newman, 2003b;
Watts, 2004). Some of the most meticulously studiede networks are: the World
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Wide Web, the citation of academic papers and ¢rensfic collaboration networks.
This is also due to the availability of data and ¢hneall relative cost of obtaining

them.

At present, the World Wide Web represents the krgeetwork on which
information is available. The WWW network is definasl a graph whose nodes are
the web pages and whose edges are the hyperlinkecting two web pages. It is a
directed network; thus, it has an in-degree distidn and an out-degree distribution.
At first, as explained in Barabasi and Albert (Atb& Barabasi, 2002; Barabéasi &
Albert, 1999), scholars were expecting the WWWadlbofv a Poisson distribution,
hence behaving as a random graph. However, thay discovered that the WWW
was following a power law degree distribution, thiesembling what has been
classified as a scale-free network. Table 3-1 gaeverview of the studies that
refer to the World Wide Web.

Table 3-1 World Wide Web based networks

Network N <k> Vout Vi <€> C
WWW 325729 451 245 210 11.20

WWW (Altavista) 203549 10.46 2.70 2.10 16.18

WWW pages (nd.edu) 269504 555 240 210 11.27 0.29
WWW, site level 153127 35.21 1.94 3.10 0.11

Notes: The table reports their sizelN), the average degree<(k>) the in and out degree exponent

of the power law distribution (), and ), the average path length (€>) and the clustering
coefficient (C) (adapted from: Albert & Barabasi, 2002; Dorogovtev & Mendes, 2002;

Newman, 2003b).

In citation networks, academic papers represenhdlaes of the network and citation
to other papers represents the edges. This typetabrk excludes or renders highly
improbable the appearance of loops, since it iy vatikely to cite papers that are
still not published (with the citation of forthcong papers as an exception).
Collaboration on scientific papers is another vetlidied network. Here, nodes are
represented by authors and an edge is formed wheratthors collaborate on a
paper. This type of network is often limited to aurth that pertain to a certain

“literature” (e.g. medline, biology, mathematic,yglts and so on). Table 3-2 gives

57



an overview of citation and collaboration netwotkat have been analysed in the

literature.
Table 3-2 Co-authorship and citation based network

Network N ky v () c
SPIRES co-authorship 56 627 173.0 1.2 4.0 0.73
Biology co-authorship 1520251 155 49 0.60
Neuroscience co-authorship 209293 115 21 6.0 0.59
Math. co-authorship 70975 39 25 95 0.76
LANL co-authorship 52 909 9.7 5.9 0.43
Citation 783 339 8.6 3.0

Notes: The table reports their size ), the average degree<(k>) the degree exponent of the

power law distribution ( ), the average path length @>) and the clustering coefficient C)
(adapted from: Albert & Barabasi, 2002; Dorogovtsew& Mendes, 2002; Newman, 2003b).

Networks have also been analysed in different ctrgech as biology (e.g. protein
and neural networks) and linguistics (e.g. words tippear in the same sentence).
Networks examining the structure of boards of doesx have also been studied,
where every director is a node and an edge is fonwigen two directors sit on the
same board. Finally, other types of networks suitha network of sexual contact
and of telephone or e-mail exchange have been zsthlyable 3-3 gives a summary

of these studies.
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Table 3-3 Other networks

Network N <k> y Vo  Vin <€> C
Caenorhabditis elegans 282 14.0 265 0.28
Escherichia coli (metabolic 778 74 22 3.20
Metabolic network 765 96 2.2 256 0.67
Protein interactions 2115 21 24 6.80 0.07
Saccharomyces cerevisiae 1870 2.4 24 24

Word co-occurrence 460902 70.1 2.67 044
Words Roget's Thesaurus 1022 5.0 487 0.15
Words, synonyms 22 311 135 2.8 450 0.70
Film actors 449913 1134 2.3 3.48 0.78
Company directors 7673 144 460 0.88
E-mail messages 59912 14 20 15 495 0.16
E-mail address books 16881 34 522 0.3
Phone call 533106 3.2 21 21

Sexual contacts 2 810 34 34 320

Notes: The table reports their size ), the average degree<(k>) the in and out degree exponent
of the power law distribution (y;,, and ) or the degree distribution if the network is

undirected ()), the average path length (€>) and the clustering coefficient C) (adapted from:
Albert & Barabasi, 2002; Dorogovtsev & Mendes, 2002Newman, 2003b).

3.4.1 Ecological Networks: Food Webs

Although ecological networks resemble topologidaracteristics of other networks
(Dunne et al., 2002a, 2002b), recent developmenntpoat treating them as
transportation networks (Caldarelli, 2007; Garladich2004; Garlaschelli et al.,
2003). In other words, ecological networks are @spnted as the structure on which

other dynamics unfold.

Ecological networks, more precisely food webs, regjthie detection of the predator-
prey relationships of every species with all othfnessent in the designed study area.
This predator-prey relationship may as well be regméed by a network whose

nodes are species and whose directed edges areat@rpcey relations.
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Theoretically, in order to properly describe an egadal system it would be crucial
to know the amount of predation as well, but, sitkes information requires
extensive field work it is usually overlooked by shdood webs studies. Although
the nodes of a food web usually represent diffespicies, recent studies prefer to
design ecological networks whose nodes represephit species (Caldarelli, 2007,
Dunne et al., 2002a, 2002b; Garlaschelli, 2004]aSehelli et al., 2003; Williams &
Martinez, 2000). Trophic species are defined as @umrof species that are

functionally equivalent, that is, that share theeaet of prey and predatars

A food web shapes and is shaped by the environn&miple organisms such as
bacteria and plants form the basis of a food-weld, far this reason they are also
called basal (species that have no prey). Basal species hacerteert the flow of
resources that comes from the environment intoa @f resources fontermediate
species (species that have preys and predators)intharn will transform more
resources in order to sustdop species (species that have no predators). Figd 3

graphically represents such relations.

© =environmer
@ -=basa

@ -intermediat
® -

Figure 3-23 Food-web graphic representation
The flow of resources is represented by the direadleedges while nodes represent trhophic
species (Own elaboration).

The flow of resources is the crucial element in adfaveb, and the ecological
network can be thought of as a transportation nétwo which resources are
transferred from the environment up to top spefilaschelli, 2004; Garlaschelli
et al., 2003). According to Dunne et al. (2002&)21) connectancé¢also callecedge

density plays a crucial role in assessing the robustnessfobd web. Connectance
can be defined as the number of edges (predatibashre present in an ecological

network with respect to the maximum number of pussiedges (predations).

% From here on, for brevity the word species refersophic species unless other specified.
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Formally: c = %(n—l) ,where m =the number of edges that exist in the web and

n(n—-1) = the number of possible edges (hence for big enoyugti] %2 ).

Recent studies that depict food webs as transpmrtatetworks have led to the
discovery of scale-invariance of the system (GaHali, 2004; Garlaschelli et al.,
2003). Moreover, depending on the graphical reptasen of the transportation
network it is possible to assess the efficiencytref food web, with a star-like
network appearing as the most efficient and thaneliee network as the least

efficient (see Figure 3-24).

A

Figure 3-24 Food webs as transportation networks
From the most efficient (star-like at the left) tothe least efficient type (chain-like at the right),
(Own elaboration).

Furthermore, it is possible to associate the dtardnd the chain-like topology of a
food web to an “efficiency exponentj; with 1 = lattributed to the most efficient
network (shown at the left in Figure 3-24) apnd=  to2the most inefficient network
(shown at the right in Figure 3-24) (Garlaschelld04; Garlaschelli et al., 2003).
Table 3-4 reports the main food-webs studied sowdh the most important

measures used to characterize them.
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Table 3-4 Food-webs

Food web N C (0) C n
Bridge Brook Lake 25 0.171 1.85 0.16

Skipwith Pond 25 0.315 1.33 0.33 1.13
Coachella Valley 29 0.312 1.42 0.43 1.13
Chesapeake Bay 31 0.071 2.65 0.09

St Martin Island 42 0.116 1.88 0.14 1.16
St Marks Seagrass 480.096 2.04 0.14 1.16
Grassland 63 0.026 3.74 0.11 1.15
Silwood Park 81 0.030 3.11 0.12 1.13
Ythan Estuary 83 0.057 2.20 0.16 1.13
Scotch Broom 85 0.031 3.11 0.12

Little Rock Lake 93 0.118 1.89 0.25 1.13
Canton Creek 102 0.067 2.27 0.02

Stony Stream 109 0.070 2.31 0.03

Ythan Estuary 124 0.038 2.34 0.15 1.13
El Verde Rainforest 155 0.063 2.20 0.12

Lake Tahoe 172 0.131 1.81 0.14

Mirror Lake 172 0.146 1.76 0.14

Notes: Where possible, for every food web the numbef trophic species (sizé\ ), connectance
(C), average path length <€>), clustering coefficient (C) and the efficiency exponent{}) are

reported. Ythan Estuary is reported without (1) andwith (2) parasites (adapted from: Dunne et
al., 2002a; Garlaschelli, 2004)
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3.5 Concluding Remarks

This chapter has introduced one of the tools ankniqoes that will be used at a
later stage in order to assess the resiliencesylstem. First of all the structure of
networks has been explained and some definitionsetfork structures have been
presented (e.g. sub-graphs, trees, cycles, conglbtgraphs).

The most commonly used measures have been introdced to characterize the
topological features of a network (e.g. global @éincy, local efficiency, degree,
degree distribution, closeness centrality etc)alyn the interdisciplinary character
of network theory has been demonstrated by lookinpow networks have been
applied in very different domains. Section 3.4 BAswn how network theoretical
tools have been used in different disciplines tmtrom biology to ecology, from

economics to sociology, highlighting food webs ems$portation networks. Given
the use of network approaches in such differentiglises, the use of network
metrics appears to be a promising avenue for ctaaiaog CAS, such as SES from
a structural perspective. Network theoretical tonéed to be used in conjunction
with a framework that allows us to explicitly inparate SES characteristics.
Network theoretical tools embedded in a resilieinamework (explained in Chapter
4) will be used to assess SES resilience in sulesgeqthapters of this work (i.e.
Chapters 6, 7, and 8).
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4 Resilience Theory

This chapter centres on the concept of resilienceas to put in context the
methodological tools that will be used as the asialproceeds (i.e. chapters 6, 7, and
8). Section 4.1 defines resilience and justifies linkages that exist between the
social and the ecological systems. Section 4dpbrts the main methods used and
the theoretical advancements made in resilienceryh@.e. adaptive cycle and
panarchy). Section 4.1.2 introduces the pecukariof humans and how they can

influence ecological systems.

Section 4.2 glances upon the several attempts radeeasure resilience across
different disciplines. Section 4.2.1 shows the anmt@nce of human interactions with
the ecological system using the framework of Aretegt al. (2004). Finally, section
4.3 summarizes the main characteristics of th@éieese theoretical framework in
relation to thiw work, and gives brief concludingnmrarks on the importance of
resilience for the analysis of a SES.

4.1 Linking Social and Ecological Resilience

Resilience is the ability of a SES to absorb disinde and re-organize while
undergoing change, so as to still retain esseynttak same functions, structures,
identity and feedbacks (Walker et al., 2004).

The definition above has evolved from the originaé¢ antroduced by Holling in the
early 1970’s when equilibrium thinking was stiletimost important way to look at a
system. In his seminal paper, Holling (1973: 17Ajraes resilience “as the ability of
an ecological system to return to an equilibriuatesefter a temporary disturbance”.
Resilience as defined by Walker et al. (2004) canthought of as the synthesis
between Gunderson and Holling definition of resitie given in 2002 (Gunderson &
Holling, 2002) and the operational definition givéyy Carpenter et al. (2001).
Specifically resilience refers both to the amouhtlisturbances that a system can

undergo while maintaining its original functionsdacontrols (Gunderson & Holling,
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2002, as well as to the extent to which a SES is ablsetborganize, learn and
adapt (Carpenter et al., 2001)

The resilience definition used is based on non-émiliim and accommodates the
need to be “integrative” (i.e. using a systemicrapph) in order to understand any
SES. That is, it goes beyond reductionism and looksw a system behaves as a
whole. It is not possible to look at single andasaped causation relation, as it is
important to look for and understand multiple casusleat are at least partially
interlinked with each other. Furthermore, it isaal to incorporate uncertainty, and
base decisions upon multiple hypotheses, and rmt thge testing (approve/reject) of

a single one (Holling, 1998).

Since the resilience concept embraces uncertaintly raultiple hypotheses, the
interaction between humans and nature (charactebyeuncertainty, surprises and
multiple possible explanations) becomes centraloider to be able to give a
reasonable explanation of a SES. Moreover, it is epted that
production/consumption and well-being do not ordpend on the social system, but
also on the ecological system in which they are exidbd (Arrow et al., 1996;
Olsson et al., 2004; Scoones, 1999; Walker e2@02).

According to Scoones (1999) the ecological systerthé result of the interaction
between itself and the social system, more prectbel ecological system affect the
social one, which in return impacts upon the edcklgsystem as shown in
Figure 4-1.

N

Ecological Social
System System

~N_

Figure 4-1 Interaction between social and ecologit systems
(Own elaboration).

“i.e. a measure of the system’s ability to copé witexpected/unpredictable events (Holling, 2001).
® For in depth information on the various definitiofresilience used in the literature, please refer
(Brand & Jax., 2007).
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Therefore, a specific SES is the result of a consgecific history of (inter)actions
occurring between humans and the environment (201999), hence the
importance of linking social issues to ecologisalues. It is then possible to define a
spatial systefhconsisting of two major components: humans andraeat.e. social
system and ecological system). Thus, resilience haracteristic of the whole
system (social AND ecological) and the interactiand processes that exist between

and within the two system are fundamental for #segsment.

It is worth recalling that resilience is the alyildaf a system to absorb disturbance and
re-organize while undergoing change so as to stiiin essentially the same
function, structure, identity and feedbacks (Walkar al., 2004). Given the
interlinkages that exist between the social andett@ogical system, it is possible to
argue that social and ecological resilience aretlstrrelated. According to Adger
(2000) the link that exists between the social #redecological system is stronger
the more a community is resource dependent. Therefwe resilience of an SES will
depend on the biodiversity of the ecosystem amdhgraecological variables, and
on the institutional rules and the means of praduacthat are present in the social
system. The stronger the resource dependency ofem gommunity, the stronger
the relation between social and ecological resskenill be. Thus it is possible to say
that for many predominantly rural societies, socgdéitions are mainly shaped by the
local environment in which they are embedded. Sichmunities are not able or do
not have the possibility to substitute natural fean-made capital. This reasoning
leads to assert the importance of enhancing thieree of a SES. From this point
of view the resilience of a system is a vital comgrat of sustainable development

and sustainable resource utilization (Adger, 2000).

® Here a spatial system refers to any territoriakspwhere there exist nature and human interaction
(directly or indirectly). To some degree a spatitem can be defined as any region or territory on
earth. The boundaries will be artificial in any €as
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4.1.1 From Adaptive Cycles to Panarchy

Starting from the original definition of resilienae 1973, and proceeding to the most
recent definition given by Walker et al. (Holling973; Walker et al., 2004), it is
possible to affirm that the complexity of SES doex rely upon the random
interaction of a great number of elements, but,triksly, on the interlinkages that
occur between a small set of controlling variakfldslling, 2001, 2004). Amaral
and Ottino (2004: 148) defirmmplex adaptive systeas follows:

A complex system is a system with a large number of

elements, building blocks or agents, capable dofrauting

with each other and with their environment. The riaat&éon

between elements may occur only with immediate

neighbours or with distant ones; the agents canabe

identical or different; they may move in space ecupy

fixed positions, and can be in one of two statesfanultiple

states. The common characteristic of all complexesys is

that they display organization without any external

organizing principle being applied. The whole is mugore

that the sum of its parts.
According to Holling (2004) and to the definitiobave, self-organization is crucial,
and is achieved thanks to a small set of contgpliiariables interacting with each
other. These interactions are the drivers of theptexity, the adaptability and the
transformability of a SES. The evolution of these kdgrconnected elements can be

represented by aadaptive cycle

The adaptive cycle is an abstract construction iithvfour stages are represented. A
system does not follow the four stages linearly, ibean jump from one phase to
another, forward or backwards. The four phases asénetl as: growth,
accumulation, restructuring, renewal and they camlibided into two main parts: a
front-loop of growth (or exploitation)r() and accumulation (or conservatior )
and a back-loop of novelty (or release or creatigstruction) Q) and renewal (or
reorganization) & ). The front-loop is generally more predictable alets
characterized by uncertainties and surprise (thore retable), while the back loop is
generally less predictable or unpredictable archagacterized by a higher degree of

surprise and uncertainty (thus more unstable). rEigli2 represents the adaptive
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cycle. It is important to stress again that theceasion is not linear, but a system can
jump from one phase to another independently ofath@ws shown in Figure 4-2. It
is also worth noting that accumulation refers tousmculation of resources that can be

either desirable or not (e.g. phosphates accuroulatisoil due to fertilizers).

potential —=-

connectedness —

Figure 4-2 Adaptive cycle representation

Arrows on the loops indicate the succession of stag (after: Gunderson & Holling, 2002).

Three main dimensions allow the definition of th&eadent stages of the adaptive
cycle: potential, connectedness and resiliencegtler words: the capacity of the
system to accumulate and use resources, the iecofdble rigidity of connections
and the capacity of the system to absorb shocksir&i4-2 represents the adaptive
cycle on a plane: the axis of “resilience” is nbbown. If the third axis is added and
the cycle is projected in a three dimensional spdces possible to observe how
resilience increases or decreases depending ophtiee of the cycle (as shown in
Figure 4-3).

More precisely, in this thesis, the most importeeiationship is the one occurring
between connectedness and resilience: as connesteditreases, the resilience of
the system seems to decrease. Connectedness ¢houight of a measure of the
rigidities of a system. A rigid (highly connectesljstem undermines the ability to
respond (adapt effectively, or maintain controlsd &nnctions) to surprise and
uncertainty, since the flexibility and learningrnalifferent experiences is crucial for
maintaining a system in a desirable state. For el@mone may think of
connectedness as wires between two objects. At éirsincrease in connectedness

renders the two objects more stable, thus enhanbeigstate, but if the number of
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wires keep increasing, than eventually the two abjill be unable to move. In this
case, a shock affecting one of the two objects trhsmit entirely to the other,

favouring a “cascading” collapse.

potenial

Figure 4-3 Adaptive cycle projected in a three dimansional space

(after: Holling & Gunderson, 2001).

The Lake Mendoza case study (Carpenter et al., 2860Eported as an example to
facilitate the understanding of the adaptive cySiace the object of the example is a
lake, it is possible to affirm that the managemeititattempt to keep the lake in its
desirable state of clear water versus the unddsisthte of turbid water (from here
on: clear state and turbid state). According topEater et al. (2001) Lake Mendoza
in Wisconsin is an example of a slow change froendlear state to the turbid state.
The lake was characterized by a first front loogm@iwth and accumulation (from

to K) when the first settlers came in the 1840’s. Agtigal production did not
increase much, but population did, as well as thmdn-produced waste. After
World War Il, an increase in agricultural produatias well as urbanization in the
area triggered a sharp decrease (collapse) in watdity (with the lake being now

in the Q phase as a result).

Given the situation, the proposed solution favouheddiversion of sewage effluents
from the lake (phase, reorganization and experimentation of new ways).
Unfortunately, when completed, the diversion did ingorove the water condition of
the lake, since what was saved from sewage waddamdthe lake as increase in

fertilizer use. The spread of bacteria created puhlisance and lowered even more
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the water quality of the lake, hence returning apto anotherQ phase. Since the
failure of the sewage effluent diversion, managéithe lake thought of another way
to tackle the continuing decrease of water quahignce initiating another set of
policies aimed to restore/increase water qualitydke Mendoza (another phase),
but due to low participation of the most affecteteérest groups (social problem), this
possible remedy produce limited results, leadingriotherQ phase. Again, a new
set of possible solutions was put in place (thisetibio-manipulation) initiating a
new reorganizationd ) phase, and for the fourth time, the policies lexcp did not
result in the desired outcome. Hence, nowadaysva set of policies is tried,
although the effects can still not be ascertaiféglire 4-4 summarizes the adaptive

management cycles of Lake Mendoza:

Rasdisnce \\_

of Clear V’
Water State

Figure 4-4 Adaptive cycle representation of managmeent of Lake Mendoza

(after: Carpenter et al., 2001).

From Figure 4-4 it would seem that the stages @faitiaptive cycle are subsequent to
one another, but again, it is important to remimat the phases of the adaptive cycle
do not follow any order by definition (Walker et.,aP004): its stages are by no
means intended to be fixed and regular. Systemsnoae forward, or go back from

one phase to another, may even jump certain sthgesnost importantly, cycles
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occur at a number of different scales, hence csoake interactions are crucial in
determining the dynamics of a SES (Walker et al0420

SES are characterized by multiple cross-scale ictierss, involving high levels of

uncertainty and possible surprises. In additioassiscale interactions are, according
to the resilience perspective, what defines a SESi-stable behaviour (Folke,

2006); that is, SES can have multiple stabilitiesh@ same basin of attraction (as

explained in section 4.1.2). Therefore cross-sicaégactions may be the reason why

policies that seem to be appropriately targetedafesmgle issue do not succeed, as

these kind of policies fails to address other Igvef the system. Cross-scale

interaction can be divided into two main categoasshown in Figure 4-5:

Time interactions: policies and actions implementeday may have
undesired consequences in the future and may héedinby actions and
policies implemented in the past.

Space interactions: policies and actions at thal llmvel may be influenced
or may influence unintentionally policies and antdaken at a higher level
(e.g. local actions are influenced and may infléemounty policies and

actions that influence or are influenced by natigmadicies and action).
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Figure 4-5 Stylized Panarchy
(after: Holling, 2001)
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In this contextPanarchymay be defined as the whole of the hierarchioatl&(i.e.
the whole of the different time and space scalebgre each level is characterised by
an adaptive cycle. More precisely, the conceptasfaPchy combines the hierarchical
structure of systems evolving from small and fgstems, such as individual choice
or a leaf of a tree, to large and slow systemdh siscsocial embedded institutions or
a whole forest. This nested structure exchangesvadrend conservation thanks to
two processes, called revolt (e.g. dramatic chargesh as a fire or a disease), and
remember (e.g. rebuilding based on past historyn dke case of unused seeds or
embedded institutions). Smaller and faster systaffect larger and slower ones
through the revolt element, while larger and slowgstems have an impact on
smaller and faster ones through the remember elenmen shown in
Figure 4-6. Although the representation of the @mtions existing between different
levels is far from complete, as multiple linkagestvieen different phases of each
level may exist, the two described above (revaltrfrsmallerQ to larger K and
remember from biggeK to smallera) may be crucial for the understanding of a
system (Holling, 2001, 2004).

lerge
and slow

L1

Figure 4-6 Panarchy: small and fast vs slow and gi
How smaller and faster cycles are influenced and fluence slower and bigger cycles in the
Panarchy context (after: Gunderson & Holling, 2002)
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To explain the Panarchy nature of SES it is possitaink of the management of a
particular rural area where a policy to enhancéaljural production is put in place.
The policy aims at incentivizing the use of ferglig. Fertilizers will increase

agricultural production, but an extensive use matually reduce soil capacity
(increasing the phosphate present in the soily lading, in the long run, to an
actual decrease of ecosystem resilience, and eaBnaifecting in an undesired way
the agricultural production at a different time Iscée.g. in the long run). In the
context of the lake example proposed above, one thaak of an increase in

fertilizer use due to prior policies designed t@iove agricultural production. The
increased use of fertilization introduces phosphate the soil, and from there into
the lake, eventually creating the conditions faransition from a clear state to a
turbid state (EImqvist et al., 2003; Folke et ab02).

According to the adaptive cycle and Panarchy of S&fjan history exhibits non-
regular changes but rather disruptions that aremspdic and catastrophic (e.g. the
collapse of the Western Roman Empire, the French thadSoviet Revolution)
followed by a long period of development (HollingQ01). More precisely, it is
possible to affirm that two main trends have beeseoved in the history of SES:

* Levels of Panarchy are added over time: an increaske complexity of
societies and differentiation of species in an gst@sn (e.g. from the tribal
organization to the nation states, from unicell@iayganisms to mammals).

* Changes from one regime to another are rapid aswbuiinuous, often non-

predictable and surprise-generators.

Discontinuous and unpredictable shifts may be #mult of small changes and
shocks that accumulate throughout the various $eokthe Panarchy. In particular,
an abrupt shift of a system (collapse) could happéen the adaptive cycle at
various levels finds itself in theQ phase (Holling, 2001, 2004; Holling &
Gunderson, 2001). To clarify this concept, a vemgpdified example is presented.
Recall the previous example of Lake Mendoza anuktbf two groups deriving their
livelihoods from local resources: farmers and frsten. Moreover, for the sake of

simplicity, let us assume that both groups are athacand fully informed on the
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state of the lake and the amount of phosphatesmtatause a shift of the lake from
a clear to a turbid state. Let us further assuraettie regional government decides
to increase agricultural production, thus incemtivy the use of fertilizers (that
contain phosphates). We also assume that thesetives if used, will provoke a
regime shift and both, farmers and fishermen ararawf such consequences. What
will happen in this hypothetical situation? Sindee tkey objective is to define

Panarchy, let us depict only two different scersrio

* The two groups have created a joint institution tmage the local lake and
surroundings in order to enhance the standards iwhgl of the
community(social system i phase). In this case, it may well be the case
that farmers renounce to introduce more phosphé&tehe soil and the lake.

e There is civil unrest and the two groups are in kcinfsocial system inQ
phase). In this context, the farmers may welconeengw set of policies and
increase fertilizer use. The lake shifts to a tudimte and the fishermen are
forced to leave the lake (which may also lead toutural” change, in the

case of fishermen losing indigenous knowledge enléimg run).

4.1.2 Introducing interactions with and within huma ns

As the example above reveals, the interactionsuafdns with one another and the
environment in which they are embedded is fundaatéat the resilience of a SES.
Moreover, collapse is often triggered by events #r@ almost non-predictable
How can humans then adapt to this uncertainty amngrise state that characterises

the world in which they live?

Humans have the ability to foresee and intentignallrsue different paths of SES
management. As the management of Lake Mendozadrmaserstrated, humans are
able to adopt strategies based on their experieswce, based on an envisioned
specific objective. Moreover, they are able to aelkose strategies that they deeme

to be the most appropriate one. The social systeatses able to learn from prior

" In the example given in section 4.1.1, informatiall be very limited, not permitting a clear cut
decision even to the joint institution, leadingtaltiple different possible outcomes.

74



knowledge and to experiment new ways (or manageipathts) so as to achieve
desired outcomes. However, as the same examplesskiosvability to foresee and to
intentionally manipulate certain aspects of a SE&dwt always lead to the desired
result. Since the knowledge of a panarchical adaystem (as a SES is) can never
be complete, one should always plan for the pdgilthat uncertain and extreme
events may happen. Social-Ecological systems amacieaized by a high level of
uncertainty and surprise; policies that are deslgneorder to optimise one scenario
(or one possible foreseen future) could result iorsening the situation, since
predictions often fail to materialise. Thus, it isnth to implement policies that can
be robust across multiple scenarios (alternativesipte foreseen futures), and that
can enhance the resilience of the overall SES (Ba@#2). Furthermore, as Alfred
Marshall pointed out more than a century ago, agtimg one scenario is a useful
solution only in the short run and when the systerfairly stable (i.e. institutions,
culture, politics, and general economic conditio(f8ster, 2005), and this is not

clearly the case in the present world and for nfosit all of the SES.

Another characteristic that can be thought quitecupar in humans is

communication. More precisely, humans are capableoommmunicating ideas and

experiences. Communication plays a crucial rolthendevelopment of feasible and
flexible strategies necessary to manage adapt{eelgo-manage adaptively) SES. In
this context a very interesting result has beeoadisred through simulations (Bodin
& Norberg, 2005): if the social network (or netwarkrelations) is over-connected,
the flexibility of the system is reduced and theolehcommunity behaves as a single
entity, hence not allowing for experimentation ameducing the resilience of the
overall SES. However, relations and communication fster (if not locked-in)

flexibility and new ideas, as well as inform leami In the the Lake Mendoza
example, communicating past experiences allowecagens to experiment with new
management paths (strategies) that could have peddbetter results. Moreover,
they preserved prior knowledge and increased tleiperience in resource

management.

Finally, the third main characteristic that diffete@te humans is technology.

Technology amplifies the actions undertaken and permm wider range of
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possibilities. To return to the Lake Mendoza examfgehnological advances have
given the possibility to divert sewage, and to mmanipulate the lake. Clearly,
technology can also be a drawback, as it has theeoase for fishing industry in the

North Sea, where new ways of fishing have almdst tiepleted the stocks of cod.

Summarizing, it is possible to affirm that humamér)actions strongly influence the
resilience of a SES. It is possible to assume tmatrésilience of a system is the
result of four crucial aspects, with the first tarapplicable to every level of the

panarchy. The four aspects are defined as in Walkal (2004 2-3):

« Latitude: the maximum amount a system can be clthnge
before losing its ability to recover (before crossia
threshold which, if breached, makes recovery diffior
impossible).

* Resistance: the ease or difficulty of changing skstem;
how “resistant” it is to being changed.

» Precariousness: how close the current state afytsiem is
to a limit or “threshold.”

» Panarchy: because of cross-scale interactionsetfi@nce
of a system at a particular focal scale will dependthe
influences from states and dynamics at scales abade
below. For example, external oppressive politicgasions,
market shifts, or global climate change can triglpmal
surprises and regime shifts.

Social actors (humans) of a SES can influencelatieide, the resistanceand the
precariousnessf the system. More accurately, Walker et al. @Q@define the four
crucial aspects of resilience from a different pecdive. In the context set by Walker
et al. (2004) a system tends to move toward a lHsattraction. Besides, there may
be more than one basin of attraction dependingheniritial conditions and the
position of a system. To explain: think of a basfnatiraction as a bowl, and the
system as a ball that continuously moves insidéotve (assuming hence a non-stop
movement, so that no single equilibrium is reachBdw, assume that there may be
more than one bowl and the ball can, driven byringeand external factors, jump
from one bowl to the other. Different bowls reprasgifferent basins of attraction as

depicted in Figure 4-7 and Figure 4-8.
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Figure 4-7 Basin of attraction representation

The dashed line representing the different bowl's bundaries and the black dot representing the
ball (as described above) (after: Walker et al., 21).

After defining the concept of basin of attractignis possible to redefine the four
aspects of resilience as follows (the four charssttes are also shown in Figure 4-8)

(Walker et al., 2004):

» Latitude (L): the width of the basin of attraction (of thewl); as latitude
increases, the resilience of the system also isegeas it is more likely that
the ball (system state) will remain in the basirattfaction: a greater number
of states can be achieved without crossing anglhimid.

* ResistancgR): the depth of the basin of attraction (of thewl); as the
resistance increases, greater magnitude of distaeb required for our ball
(system state) to cross the threshold and movingariother basin of
attraction.

* Precariousnes$Pr): how near is the system (our ball) to theruary of the
basin of attraction in which it moves. The more slgstem is precarious, the
more it will be position itself near the threshold.

» Panarchy how the three attributes/characteristics abowe iafluenced by
cross-scale interaction. That is, how slower anddrigystem influence/are
influenced by our ball and how our ball influencesifluenced by faster and

smaller system.
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Figure 4-8 Representation of the four crucial asps of resilience
L being latitude, R being resistance, Pr being prexriousness as described above. The dashed
line represent the threshold between the differenbasin of attraction (after: Walker et al., 2004)

Given the definitions above, it can be claimed tmatans are capable, given their
unique features, to alter the basin of attractierwhich their SES is embedded.
Communication fosters new ideas, or preserves desleas and allows for
experimentation or neglect experimentation, while ability to predict and take
action based on prior information can better ors&artheir situation. Technology
enables to alter the movement of the system antddbia of attraction. However, the
limitation and the drawbacks of these charactesstieed to be addressed. More
precisely, the social system can influence théudé (widening it or narrowing it),
the resistance (making the basin deeper or shaljpveed the precariousness
(moving the system away or near the threshold.lifejo models that deal with the
presence of humans and management strategiesitfws) mlevised for simple SES

are presented in Chapters 7 and 8.
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4.2 Theory into practice?

As seen in section 4.1.2, humans have uniquergsathat enable them to manage
SESs; however, these characteristics are usefuheoextent that predictions are

accurate and communication is effective and trémslato action.

The concept of resilience implies the capacity otoabing disturbances and
reorganization maintaining the same functions, cétime and feedbacks while
undergoing change (Olsson et al., 2004). Thus, raterstanding of the SES is
essential, and so is its “measurement”. Althoughieéhs ongoing research regarding
the “measurement” and the adaptive management of B&® a resilience

perspective (Anderies et al., 2004; Anderies eR806; Carpenter et al., 2001; Folke
et al., 2004; Janssen et al., 2006; Perrings, 1R6§giani et al., 2002; Walker et al.,
2002), quantitatively assessing resilience remansery difficult task, due to

complications in disentangling interactions withihme subsystems and identifying

clear causal relationships.

These difficulties are mainly due to the complicasiarising from the panarchical

nature of SESs, and the uncertainty that exists vdedéermining the resistance, the
latitude and the precariousness of the basin o&dibn in which the system is

embedded. In other words, variation in one systéfecis other systems, often at
different spatial and time scales (e.g. fertilizased in agriculture to enhance the
economic system, actually lower the resiliencehefécosystem and, in the long run,
of the economic system as well). Actions that malyaemce resilience in one system
in a certain space at a certain time may lowetieesie of that very same system at

another space or time scale.

Given these interaction and the complexity of Sdiculties arise in assessing the
build up or erosion of resilience in a quantitatway. Thus, the literature discussing
the resilience perspective stresses the importahadaptive management in order to
either prevent an undesirable basin of attractromave away from an undesired one

(Walker et al., 2002). Adaptive management is basedhe continuous feedbacks
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occurring between the social and the ecologicatesys These feedbacks should
enhance the learning and the ability to devise iplesslternative future scenarios,
maintaining the diversity needed for reorganizatiGarpenter et al., 2001; Olsson et
al., 2004; Walker et al., 2002). Adaptive managemnmereds to handle the interplay
between disturbance and reorganization, stressiagtae capacity, learning, and
possible innovation allowing for cross-scale intéin and uncertainty. Therefore,
the management of SES’s implies the advancementrdomare desirable states in

the same basin of attraction, and/or a shift inbeose desirable basin of attraction.

4.2.1 Resilience: a first practical definition

As seen throughout this chapter (Chapter 4), aiSEBaracterized by external (e.g.
increased urbanization, regional policy that affexctal context etc.) and internal
variables (such as farmers, policy entreprenewrs. éslthough there are different
frameworks used to conceptualize resilience, tmeeptual framework proposed by
Anderies et al. (2004) is used here in order tovala first working definition of
resilience. In order to comprehend the framewookustnes®f a SES needs to be
defined. Robustnass is defined as the maintenaheesgstem performance under
different possible scenarios (different possibld anpredictable external or internal
events and uncertainty about the information exjston the system). Thus,
according to Anderies et al. (2004) a robust systeaiy not have the most efficient
configuration for one possible future (so as tofgremn at an optimum level), but it
will be able to perform in more possible futureshile the most efficient
configuration for one future will easily collapsethat one future does not happen
(Anderies et al., 2004; Bankes, 2002).

Moreover, this approach is used as the startingtdor integrating resilience and
network theory in Chapter 5 and subsequent chapfehis thesis (i.e. Chapters 6, 7,
and 8). The robustness conceptualization is the pyoposed by Anderies et al.
(2004) and reported in Figure 4-9.
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Figure 4-9 SES conceptual framework
as proposed in Anderies et al. (2004), (after: Aradies et al., 2004).
To better illustrate the framework, an example Wél provided; specifically we will
take into account two systems, one that deals agticulture and another that deals
with fisherie$. In the two different contexts just outlined, #dlements in Figure 4-9

are described as follows (Anderies et al., 2004):

A. The resource being water supply for irrigation shéry.

w

The resource users being farmers and fishermen.

C. The public infrastructure providers being the logmvernment (or the
farmers and the fishermen themselves, dependirigeolocal context).

D. The public infrastructure being the works for irtiga, dams etc. (i.e.

physical capital) or the rules, norms and beli¢fat those managing and

using the system adopt (i.e. social capital).

These four key elements link with one another asr€ig-9 depicts. What follows is
a possible description of these links keeping indrthe two systems outlined above
(Anderies et al., 2004):

8 For in depth information on the framework herdioat and the potential complication that may
arise please refer to the original paper by Andegical. (2004).
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Resource and resource users: water or fish aviitjalbin the case of water, it
may be pointed out that availability when needechagse important, than the
overall availability irrespective of time. Moreovehe link may reveal
information regarding the exploitation (use) of tiesource and the possible
lessons that can be learned from what has beeniddne past.

Resource users and public infrastructure provideais: link could represent
negotiation and/or interest groups, the votingh#@ context allows it) or the
monitoring of the performance of the providers.

Public infrastructure providers and the public astructure itself: building
the infrastructure needed and their maintenance.

Public infrastructure and resource: how the publfcastructure affects the
resource (e.g. irrigation is putting water avaliligpiat risk? Is the provision
of free technology for fishermen putting the fighetocks at risk?)

Public infrastructure and resource dynamics: hofragtructures affect the
dynamics that have contributed to create. In otherds, it is necessary to
look at the feedbacks between public infrastrustuaed the ecological
system (e.g. over-fishing or overuse of water resesl due to the
infrastructures provided). This link may seem simitathe previous one, but
the main feature here has to do with the feedbtoktsre.

Public infrastructure and resource users: monigpniasource users (e.g.
fishers and farmers). Make sure resource users thigesules set for the use
of the infrastructures provided. Sanctioning (aockesforcement) is also part
of this link as well as maintenance and productidnthe infrastructures
themselves.

Biophysical external events such as floods, drasjgrdrthquakes etc.

. Social external events such as migration, chanmgesmmodity prices, major
changes in the political arena, civil war etc.

The framework proposed tries to broadly illustrdte structure of agents and links

that exist in a SES. In addition it is possible igeganother and more precise

definition of what a shift might be when looking atSES as a single integrated

system. In this context, it is important to undansk that a resource collapse does not

necessarily imply a system collapse; that is, geofor the SES to collapse (change
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basin of attraction) both, the ecological and theiad system need to collapse. If this
Is not the case, we may simply have a SES closetoollapse threshold (or nearer
to shift to another basin of attraction, as exm@dity Figure 4-7 and Figure 4-8). In
other words, the SES may find itself in a more plieca state being precariousness
defined as in section 4.1.2, nevertheless the S&S not yet shifted basin of

attraction. To be aware of what a SES collapse Jskifinifies, involves the

comprehension of how interactions between and withe different agents of the

system affect the overall SES. In other words, itpassible to enhance our
understanding of the resilience of a SES by loolkahdiow single agents interact
with one another and with the surrounding environtr(ee. refer to Chapters 6, 7,

and 8 for a theoretical application of these thuisy

4.3 Concluding Remarks

This chapter explained what resilience is, and htavdefinition has evolved.
Moreover, it links social and ecological resilienbence allowing treating a SES as a
single system. Section 4.1 introduced and exptiaihe recent advances in resilience
theory, particularly focusing on the concept of @dee cycle and Panarchy. This
explanation was facilitated by a practical exan{hbke Mendoza).

The features characterizing humans have been dedchib section 4.1.2. These
features have been integrated in a wider SES costeas to explaine how the social
system is able to intentionally affect and beinfgetted by the ecological system.
The terminology used is borrowed by Walker et @00, and the description of the

attributes that can be shaped by social systembdespresented.

Although progress has been made since Holling imsbduced the concept (and
since scholars first linked social and ecologigatems), there is still much ongoing
research with regard to ways to understand, conaépé and measure the resilience
of a SES. In this context, the tools used in netwtrkory may be applied
successfully to resilience theory, permitting adretisualization and comprehension

of a system’s strengths and weaknesses, so as Vigedbetter strategies or
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management paths that lead to adaptation and/osftnanation. The integration
between network theoretical tools and the resiBeframework, or, in other words
how network theoretical tools can be used in otdeassess the resilience of a SES,
will be the focus of the Chapters 5, 6, 7, 8nd
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5 Network-Resilience Integration

Chapters 3 and 4 have introduced network theody leave summarized the main
features of resilience thinking. This chapter loaks a first possible network
resilience definition (section 5.1). Moreover iveps a brief summary of the different
impact that disturbances (namely errors and atjaclse on network topological
features. Thus, section 5.1.1 analyzes how errods atack influence network
metrics described throughout Chapter 3, in difieneetwork classes, described in

section 3.3.

The second part of the chapter (section 5.2) widlfly outline the preferred avenue
so as to achieve meaningful insights on how togmaie network metrics and
resilience of a SES. At first, section 5.2 providesintroduction and justification of
the use of simulations and agent based modeldattee are investigated in section
5.2.1 where they are introduced. Section 5.2.8in@s$ important application for
Chapters 6, 7 and 8. Section 5.2.3 highlights sofmthe main issues concerning
agent based models. Section 5.2.4 explains howgamt based model might be
evaluated and validated. Section 5.2 is a rewsesion of Baggio (2011).

Section 5.3 examines the possibility of devisingase study as an approach to
analyze resilience from a network perspective.llgease studies will be used in the
future in order to validate the models presente@, i@, and 8, However, at this stage
of the research a case study is beyond the scepindiis as first, it is necessary to
theoretically advance our knowledge and the undedstg of how network metrics

influence the resilience of a SES. Finally, a bsemmary of the chapter and of the
purpose of using theories and methods describeddsewell as in Chapters 3 and 4

is provided in section 5.4.
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5.1 Resilience of a Network

At this stage, a clear definition of network remice is not available. However,
network theory has dealt in depth with the conaépbbustness. The robustness of a
network is assessed (in network theory) by anatytire effect of nodes’ failures on
common network metrics such gg&nt connected componefGCC), clustering
coefficient, average shortest path length, glolnal lcal efficiency (please refer to
sections 3.1, 3.2 and below). Moreover, failuresiades can be random or targeted
as explained in section 5.1.1 (Albert et al. 200fycitti et al. 2004). Robustness has
been widely studied on static networks, specificalhvestigating structural
properties of random and scale-free networks (Alleeral. 2000; Crucitti et al.
2004); however, it does not take into account thieachic processes shaping the

evolution of networks and the evolution of processefolding upon the networks.

On the other hand, as explained throughout Chahtegsilience is an intrinsically
dynamic concept, thus the starting point is defjmetwork resilience as the amount
of disturbances a network can undergo without bewtglly disrupted, that is,
without breaking down its giant component, whileoaing the network to evolve
(that is to create or delete nodes and edges). Tvhike robustness refers to semi-
static networks, resilience of a network referat&obustness” analysis in the case
of evolving networks, that is, allowing for a netkdo change in time by removing,

adding edges and nodes.

The giant connected component contains most of étearks’ nodes. In network
theory giant components are studied in relatiorhwandom graphs, since they
appear unexpectedly once thercolation thresholds reached (Albert & Barabasi,
2002; Borner et al., 2007; Caldarelli, 2007; Doragev & Mendes, 2002; Newman,
2003b). Thepercolation thresholadcan be thought of as the critical edge-density at
which a giant component emerges. A rigorous dédimitis also provided by
Dorogvtsev and Mendes (2002: 1151):

percolation is a phenomenon determined for strestuvith
well defined metric structure, e.g., regular latién case of
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networks [...] one can speak about the emergencegudrd
component.

Moreover, since an SES can be represented by areateti or by a directed graph,
the structure of the giant component in both castde analyzed. First of dll it is
important to stress that in a directed networkekistence of a path from nodeto

node j does not imply that an inverse path exists. Theeefahat is defined as a

giant component in an undirected network is comsie giant weakly connected
component (GWCC) of a directed network. To bettetenstand this concept, refer
to Figure 5-1. The components not connected to WG (or GCC in undirected

networks) are called disconnected components (BEN(Figure 5-1).

Figure 5-1 Giant connected component (GCC)

Sample network composed by a GWCC (connected liglgrey nodes) and DC (disconnected
dark-grey nodes) (Own elaboration)

Further, in case of a directed network (a netwohose edges are directed) the
GWCC can be divided into a giant strongly connectmtiponent (GSCC) a giant in-
component (GIN), and a giant out-component (GOUTe GECC consist of nodes
that are joined by directed paths (i.e. every noflthe GSCC is reachable by any
other node of the GSCC). The GIN consists of nodas fwhich it is possible to
reach the GSCC and the GOUT consists of nodes #dratbe reached from the
GSCC. Finally, the GWCC contains tendrils and tubBsndrils are nodes that
cannot reach or be reached by the GSCC but areectathto the GOUT or GIN
while tubes are nodes that connect GIN and GOUTurEi§-2 is built on Figure 5-1
but the GWCC is divided into the components judlined above.

® This section will use the terminology, definitioasd acronyms from Bérner et al (2007) and from
Dorogvtsev and Mendes (2002).
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Figure 5-2 Giant connected component of a directedetwork

Sample network as in Figure 1; the GWCC is divideds follows: GSCC (black nodes), GIN
(stripe nodes), GOUT (grid nodes), tendrils (grey ades), tube (white nodes) and DC (dark-grey
nodes); (Own elaboration).

5.1.1 Disturbances and Resilience in a Static Netwo  rk

Given the starting definition of network resiliendeis important to distinguish

between two main disturbances that may affecteébiience of a network: errors and
attacks. Errors are considered random failures, ewhitacks are failures that hit
specific nodes. Errors and attacks have differefecef on the main statistical

features of a network depending on its topologybél et al., 2000; Crucitti et al.,

2004). Random failures and specific failures (eeors and attacks) have been
studied in relation to random and scale-free ndtaiohAs discussed in sections 3.3.2
and 3.3.4, random graphs are homogeneous while-Bea networks are non-

homogeneous as shown in Figure 5-3. In random nktwmst of the nodes have
more or less the same degree (i.e. the degreebdistn of a random network

follows a Poisson distribution). In scale-free nettiks the majority of the nodes have
a low degree; although some nodes have a very Hegree (i.e. the degree
distribution of a scale-free network follows a powanv).
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Figure 5-3 Random and Scale-Free network

Random network (left), scale-free network (right) with 100 nodes and 99 edges

(Own elaboration).

The degree distribution is found to heavily affdet behaviour of a network when it
is hit by random or targeted failures. More préegisa random graphs there is no
appreciable difference between an error and aaclgttvhile on the contrary, scale-
free networks seem to be much more robust to eftbus random failures) rather
than to attacks (Albert et al., 2000). This diffexenn behaviour is intuitively very

easy to understand. Since in random networks mibgiheo nodes have the same
degree, targeting one of them or eliminating rangoome node does not have any
differentiated impact. On the contrary, the degtis¢ribution of scale-free networks
follows a power-law and is highly heterogeneous.stale-free network, as one
recalls from section 3.3.4, a high number of nodas low degree and very few
nodes have high degree (as shown in Figure 5-3),Tihis intuitive when a random

error occurs, there is a high probability that aleavith low degree is hit, thus

having a low impact on the whole network struct@a.the contrary, if an attack on
the highly connected nodes takes place, the netwdllbe more easily disrupted,

with respect to a comparable random network, as/shio Figure 5-4.
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Figure 5-4 Attack and random errors on random andscale free networks

A represents the rail network of the USA (i.e. a radom network); B the airport network of the
USA (i.e. a scale free network); C shows the effeaf random errors on the railway network; D
shows the effect of random errors on the airport nvork; E shows the effect of attacks on the
airport network. Attacks and errors have the same ect on random network, thus the attacks
for the railway network of the USA are not reported (after: Barabasi & Bonabeau, 2003)

Figure 5-5 also looks at the behaviour of a random a scale-free network when
errors and attacks occur, but, the effect of eraoid attacks is measured by how they
influence the average path length and the relasive of the giant connected
component. As Figure 5-5 portrays, the topologyhef network clearly influences
the robustness of a graph with respect to erradsattacks. Figure 5-5 gives a visual
representation of the key argument of this sectioth of the whole thesis: topology
matters. Due to the degree distribution of its mpdandom networks are more
susceptible to errors in comparison to scale-fret@vork that are very robust to this
kind of failure. On the contrary, scale-free netkgare highly vulnerable if the most

connected nodes are attacked.
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Figure 5-5 Error and attack tolerance

Represent the effect of errors (squares) and attask(circles) (i.e.f represents the fraction of
nodes that has failed) on the relative siz& (a and b) and the average path length(c and d) of
the giant connected component of a random graph (@nd c) and of a scale-free network (b and

d). (after: Albert & Barabasi, 2002).

Moreover, it is possible to look at the effecteeafors and attacks from an efficiency
(global and local as described in section 3.2hipoi view. Again, Figure 5-6 clearly
shows, the topology of a network plays a significaole with regard to the
maintenance of efficiency as defined here. As esly explained, scale-free
network are more tolerant to random failures treamdom graphs, while on the other

hand, random network are more tolerant than scakefetwork to targeted failures.
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Figure 5-6 Global efficiency of a network with regrd to errors and attacks

Errors are considered random failures, while attacktarget the nodes with highest degree. ER =
Random graph as described by Erds and Rényi (1959; 1960), BA = Scale-free networkitiv
preferential attachment as described by Barabasi ahAlbert (1999) (after: Crucitti et al., 2004).

Furthermore, failures influence the average shbgath and the relative size of the
giant connected component, and they also shapeftivzeency of a network. It is

then possible to confirm that designing a topoldwt is able to tolerate errors and
attacks could be a first step in building a SES thatore resilient (i.e. network

resilient as defined in section 5.1)

Finally it is worth looking at how assortativity e section 3.2) influences the
resilience of a network. A network that displaysagative mixing will be more
tolerant to attacks, since its high degree noddk be&i clustered with other high
degree nodes, while networks that display disaseet mixing are much more
susceptible to attacks (Newman, 2002, 2003a% Warth remembering that errors
and attacks are defined as random and targetedesilMoreover, it is possible to
think of attacks as targeted interventions. In &StiGe social system may decide to
intervene locating a particular node of the foodwe of the landscape network, and
such intervention can be thought of as an attaackotier consequence of the

assortativity of a network is the formation of thEnt component. In assortative
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networks® the giant component forms more easily than insisgative networks
(Newman, 2002). At the same time, the relative eizan assortative network’s giant

component is smaller than that of a disassortaigtreork.

5.2 Assessing Resilience: Simulations and Agent-Bas  ed
Modelling

Social and ecological systems might be inheremtiyassible to predict (Bernstein et
al., 2000) and can be defined as CAS. As alreaglagred in section 2.2, it is not
easy to define CAS in an unambiguous way. Howebhere | summarize the
definition reported in section 2.2 and used thhmug this work. Following Levin

(2002), a system can be defined as a CAS whentaiceumber of elements - its
components - are interacting in interdependent walgese interactions are typically
nonlinear and, although “simple” at a local leviiley collectively form a non-

predictable set of behaviours and structures abie mmacro level (i.e. not derivable
as a straightforward composition of the local chteastics, or, the sum is

greater/smaller the its parts).

The properties of a CAS described above resultsomescharacterising features
(Levin, 2002; Waldrop, 1992) already extensivelylained in section 2.2. Here
these features are just briefly recalled so asttember them to the reader:

* Non-determinism

* Presence of feedbacks.

» Distributed nature.

* Qualitative difference between larger and slowernctions (or cycles) and

smaller and faster ones
* Limited decomposability.
* Self-similarity.

* Emergence and self-organisation.

19 Assortative network and disassortative network nél used for brevity, although the following
terminology is more appropriate: a network thapldigs assortative/disassortative mixing.
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Interactions between species in an ecosystem,ghavibur of consumers, or people
and groups in a community, the stock-market, thenume systems, the river

networks, and patterns of birds’ flight are all eydes of complex adaptive systems:
in these cases emergent configurations are oftérpossible to understand via a
reductionist analysis. That is, via an approach tedtices a complex system into
sub-components, assuming that relations betweese theb-components are stable
and static. It is counterproductive and can be lgighisleading to assume that a

complex system is a mere sum of its components.

The study of CAS calls for a new strategy, which emlkcross-disciplinary

comparisons looking for features that are commodifferent systems in different

domains (Lansing, 2003). CAS differ from systemsi&d in other disciplines such
as classical physics, where success is achievedodine high power of theoretical
predictions, and to the accurate representatiorthaf part of reality that the

researcher wants to represent (Henrickson & McKel2€02). When dealing with

CAS, it is possible to argue that the role of a elahould aid the understanding of
the fundamental processes, regularities and uralies that might or might not

exist in such systems. Simulations may prove taheebest tool to analyse and
understand the complexities of social and ecoldgygstems.

Models are a representation of reality, not reatgglf, and modelling is the activity

of abstracting from what one considers as fundaahégatures of a real system for a
specific purpose. Models used to represent realgy be a result of different
techniques: statistical, mathematical (e.g. difiée¢ equations) or simulations.
Statistical models are constructed from existintadthus they might be inherently
flawed if we are to model complex systems that ldismonlinearities, critical

thresholds or sensitive dependence on initial ¢deordi. Statistical models are able to
forecast a limited timeframe only if the systemtthe want to represent is fairly
stable (Farmer & Foley, 2009). Moreover, in econtangeneral equilibrium models
are used. Unfortunately, these models assume &tpretned, “perfect” world and

hence are not able to display patterns such ag thieserved in the recent financial
and economic crisis (Farmer & Foley, 2009). Theseet®omight be appropriate to

explain certain outcomes only under a pre-deterdyimarrow set of conditions,
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while failing to explain outcomes of complex adaptisystems. Mathematical
models can be more complex; however, the compésxiéxisting in social and
ecological systems often do not allow for differeahéquation based models to have
exact analytical results, unless the system istlgrsamplified by making strong
assumptions (e.g. the homogeneity assumption) ikeroto obtain tractable
representations (e.g. the impossibility of findiagalytical solutions to the three-
body problem, as pointed out by Poincaré (1892-)8%llowing Galan et al.
(2009) is possible to describe a formalised modefraathematically intractable”
when, given today’s state of mathematics, the madehot provide solutions or
understandable insights of the model’s behaviounther words, when assumptions
and simplifications do not permit a correct repreagon of the unique features of
human behaviour (e.g. reflexivity, learning, hetgnoeity of agents etc.) (Henrickson
& McKelvey, 2002). Given the adaptiveness and thearacteristics of CAS
described at the beginning of this section andeictisn 2.2, it is not possible to
model CAS as an entity that passively respondsctermal forces but rather as an

entity that actively responds to external and maemputs.

Simulations (or computational modelling) can be duséo build formal
representations of reality (thus a model) withdwg heed for over-simplification or
very strong assumptions. They seem a natural caedida representing complex
adaptive systems, while other techniques might beerappropriate in explaining the
behaviour of systems that are fairly stable, incuhihe outcomes are the result of
linear combinations of internal relations, relyeaguilibrium conditions and focus on
universality. In other words, the laws that govetman behaviour are a result of
chain path selections, thus inherently differeminfrcertain laws physics such as
Newton’s second law of motionF = ma, where relations are linear and solutions

are deterministic.

Simulations imitate processes (Hartmann, 1996) aad be thought of as
representations of reality in which it is possildte explore different hypotheses,
assumptions and parameters. They provide insights time world represented
through the use of analogy (Peck, 2008). They mayhdipful for descriptions,

building scenarios or devising new theoretical dgwaments (Garson, 2009;

95



Hartmann, 1996). Simulations enable us to explbeedynamics of a real process,
where it is often not possible to proceed by emgpirexperiments either because of
scale, cost, ethical considerations or theoretioglossibility (e.g. what would have
been the response to a policy that has not beelemented but that could have been
a possible alternative solution?) (Hartmann, 199@ulations are a powerful tool if
used correctly, and much effort should be devate@fiecting upon the assumptions
made in order to represent reality. It is cruatalhderstand the role of assumptions
in the model building process. Every equation, patam rule, inclusion, or
exclusion of variables is based upon certain hygsxh, and a model’s validity is as
good as its assumptions (Silvert, 2001). Thus, thegry role of a researcher should
be the identification and the understanding ofithplications of such assumptions.
Every model, especially when seeking to represé@®d, needs to be built through
a process of continuous interactions between madelland researchers or
practitioners that deal with empirical issues. dt vital to understand what is
happening in the field and how case studies, exyaaris, and other techniques are
employed (Peck, 2008; Silvert, 2001).

5.2.1 Agent Based Models

Agent-based models (ABM) (or individual-based msdelBM- as often called in
ecology) allow the simulation of a system from thetom-up, that is, through an
ensemble of individual entities called agents. Théshave according to a
predetermined set of rules and are subject to eéefinitial parameter configurations
(Bonabeau, 2002; DeAngelis & Mooij, 2005; Macy & Wi, 2002). Agents in the
model can represent any scale of social or ecabgicganisation, from single
individuals to institutions, from a single organisim species (Bonabeau, 2002;
DeAngelis & Mooij, 2005; Macy & Willer, 2002; PecRP08; Srbljinovic & Skunca,
2003). The application of ABM has grown consisteimlythe last 15 years, both in
ecology as well as in social sciences (Brecklingle 2006; DeAngelis & Mooij,
2005; Macy & Willer, 2002). Human beings as wellthe environment in which
they live, are complex, non-linear, path-dependent self-organising (Bonabeau,
2002; DeAngelis & Mooij, 2005; Macy & Willer, 2002)Understanding these
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dynamics may provide a description of a systemahain averaged aggregate, global
level (i.e. using standard analytical techniqua#)ds an emergent configuration of
the interactions between individual agents (MacyW&ller, 2002). Even simple
ABM can display complex and surprising behaviouttggas such as Schelling’s
segregation models (1969; 1971), which providegims$ul and novel information on
the mechanisms for social groupings (Bonabeau, 2882xplained below and in

Figure 5-8.

Agent based models are widely regarded as an apai@pnodelling technique for
the study of emergent phenomena and CAS. They dassume that a system will
move towards an equilibrium, although the systendefied might reach one (e.g.
segregation in the Shelling model (1971)). In ABMS,every simulation time-step
(i.e. every time the whole iteration process shawfigure 5-7 is restarted), agents
act according to the surrounding environment amhe &@ction following the rules
defined, thus allowing the discovery of criticalrdbholds and the emergence of
behaviours not easily (or not) inferable when cdesng single agents. This
happens, for example, when interactions betweemtgagare characterised by
nonlinearities and thresholds, when agents dispiaynory, path dependence and
time-correlations such as with learning and adaptatwhen space is explicit and
fundamental (e.g. distances and landscape hetezibgexist) and agents’ positions
are not fixed (e.g. agents move on an heterogerlaadscape, thus their interaction
also depend on their position in time), or when jafions are heterogeneous
(Bonabeau, 2002; Breckling et al., 2006; DeAngé&lislooij, 2005; Macy & Willer,
2002). The description of these single agents’ ataratics with reference to the
whole system can be very difficult to model in amalgtical way (Srbljinovic &
Skunca, 2003), as the agent behaviour becomes coonplex, the complexity of
equations increases exponentially leading to tinéiactability. Moreover, in ABMs
stochasticity (i.e. probabilistic behaviour) is ntitoise” but is deliberately an

inherent component of the model and agents’ bebayi®onabeau, 2002).

In an ABM setting, agents are programmed in ordeslktey predetermined rules, to
react to certain environmental conditions, to iaterwith one another, and might
even to be able to learn and adapt (Bonabeau, 2Bill&rt & Terna, 2000). Thus,
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the modeller needs to define the agents by progiagtheir cognitive abilities and
the interactions amongst themselves and with théra@rment. More precisely, a
researcher who uses computer simulated ABM to sepitea real system needs to
undertake a model-building process that can benelied in three stages (Galan et
al., 2009). First of all, one needs to concepteal® system that will be represented,
thus defining the purpose, the “research questiand identifying the crucial
variables of the system and their interrelationssgquently, it is necessary to find a
set of formal specifications that is able to fudllgaracterise the conceptual model.
Finally, the model needs to be coded, implementedexecuted (Galan et al., 2009).
According to Gilbert and Terna (2000) when the maodelterative, every agent
receives input from the environment, processeand, act (reacts), generating a new
input until a pre-determined condition is met (etigre limit or all agents find

themselves in a given condition). Figure 5-7 graglty represents this process.

setup agent interacti ons
. —w 22l
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Figure 5-7 Graphical representation of the simulabn process
(Own elaboration)

Agent based models can generate series (time senegst cases) of state variables
at different scales. The results should be analyssidg advanced statistical
techniques and tools, since a single simulationiswsimply a particular case in the

infinite parameter space.

Numerous applications of ABMs exist, especiallysiocial sciences and ecology
(Bernardes et al., 2002; Bodin & Norberg, 2005; d@nodton & Yodzis, 2000; Hovel
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& Regan, 2008; Nonaka & Holme, 2007; Schelling, 1,93znajd-Weron & Sznajd,
2000; Sznajd-Weron & Weron, 2002; Weins, 1997; Whls1998). Section 5.2.2
reports and explains in detail two selected ABM.af\sexample, consider a model in
which a number of agents are spread over a twordiioral lattice. Each one of
them has an opinion which, for the sake of simgljatan only assume two values.
An agent can change her opinion conforming to the of the four immediate
neighbours if all neighbours have identical opisiohet also assume that these
changes happen with a certain probability distrdutinfluenced by an external
factor. This is the simple scheme according to BzWeron and Sznajd (2000),
which is based upon a well known model for the nedigation in a material
proposed by Ising (1925) (which has become prob#i@ymost famous model in the
recent history of physics). This simple ABM has edisnuch attention and many
applications have confirmed its validity. For exdeapt has been used to reproduce
distributions of votes in political elections (Bardes et al., 2002), to infer how
strong an advertising campaign has to be in ordehdlp one of two products
dominate the whole market (even if the former afiyi captured a small part of it)
(Schulze, 2003), or to simulate price formatioraifinancial market (Sznajd-Weron
& Weron, 2002)

At this point, it is worth to examine in depth anfaus example of ABM so as to look
at the architecture (or how an ABM may be buildyr Ehis purpose, Schelling’s
model of segregation (Schelling, 1971) re-impleradnin NetLogo (lozzi, 2008;

Wilensky, 1997a), can be taken as a first exan§dbelling developed two different
agent based models in order to explain self-segjmgéSchelling, 1969, 1971). The
simplest uses a one-dimensional space (a linehiohatwo types of agents (blue and
red, circle and crosses) are randomly placed. Egeht&knows her neighbours in a
determined region (number of agents left and rigiih a determined agent). Each
agent can be in two different states: happy or pphadepending on how many
neighbours of the same type she has and an int@arameter that defines a
“happiness threshold” (i.e. the percentage of simdgents in the neighbourhood
necessary to be happy). If the agent is unhappy,vw8hh move to another empty

space. “Happiness” is computed at every time-shepthe simulation stops when no

more unhappy agents exist. Even with this simple, riilis possible to discover an
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interesting emergent behaviour as the populatiowemges and self-segregates, thus
having regions populated by one type of agent agobns populated by another. The
other model of segregation proposed by Schellings us two-dimensional space.
Here the neighbourhood is defined using the von nNewn neighbourhood
construction (i.e. four cells orthogonally surroungd the cell where the agent is
placed). This second model resembles the first aadents’ attributes (happiness
thresholds and movement). Again, after a certaimber of time-steps the model
converges to a state where no unhappy agents argstiegions of different types of
agents are created (thus again, there exist sglégation and regions of only circles
or only crosses appear). The “strength” of self-sggtion critically depends on the

“happiness threshold” of each agent as shown inrEi§-8.

Figure 5-8 Schelling’s self-segregation model iNetLogo

Self segregation model as resulted in the NetLogoyalation: 3 different values of “happiness
threshold”, two types of agents (light grey and dak grey). Figures were generated by using the
same random-seed (90) so as to be sure that thefeiiences in the results reported graphically
are only effect of the happiness threshold parameteA represent the initial state, B represent a
world in which happiness threshold = 25%, C happinss threshold = 50% and D happiness
threshold = 75% (Own elaboration).
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More precisely, it is possible to report a pseuddec that enables a better
understanding of the mechanisms involved in the ehodn the NetLogo

environment (Wilensky, 1999) it is necessary tatfisetup global variables and
variables that will only be property of a certaygpe of agent. In the example above,
global variables are the average similarity and peecentage of unhappy agents.
Average similarity is computed by looking at thegemtage of agents of the same

type (the same colour in our example). Four agew's variables exist:

1. happy?reports whether an agent is happy, thus if thesthold condition is met;
happy can assume two values: true or false, beuggwhen an agent is happy
and false when an agent is not happy;

2. similar-nearbyreports how many neighbouring patches are occupyeath agent
of the same colour;

3. other-nearbyreports how many neighbouring patches are occupyedn agent
of a different colour;

4. total-nearbyis the sum of the previous two variables.

Once defined the main variables used or computatidynodel, one has to initialise
the model (thus performing a setup procedure)sligood practice to reset all
variables to zero before the setup. In the setupeSchelling model it is necessary
to input the number of agents that will populate awrld. Once the agents are
created, they need to be assigned to a specifitic@h the example used, agents are
equally split between light grey and dark grey) atgb assign them to a location
(agents in this case are randomly assigned). lgant is assigned to a cell where
another agent already exists, the agent will trfirtd another location and will move
until she finds an empty cell. When agents have then colour and are placed on a
two dimensional space, it is possible to set thapfiiness threshold” variable. In the
example proposed, this threshold is equal formalagents in the model, but it is also
possible to assign different happiness threshaddevery agent (this may be an
interesting exercise in order to look for possidl#erences between the original
model and the “personalised happiness thresholelt)od
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Once the model is configured, it is possible totdtee simulation, thus looking for
patterns that emerge during the time-developmenih@fmodel. In order to run the
simulation, at every time-step agents need to parfpredetermined tasks. In our
example, the simulation stops when all agents arappyn (thus

happy? = true [Jagent). In case there are unhappy agents, these wilemooking

randomly for a new empty cé&f). Once all the agents have checked if they argyhap
or not (and in the latter case have moved), glehahbles and own agent’s variable
are computed, and the simulation is ready to emtesw time-step. As stated before,
the simulation will run until all agents are happgws until the variablaappy?is set

to true for every agent.

5.2.2 Selected applications of Agent Based Models

As described in section 5.2.1, ABM have been esttety used in ecology
(DeAngelis & Mooij, 2005) and in social sciencesthwa particular focus on social
dynamics (Castellano et al., 2009). In this sectiwo selected ABM are presented.
The two models presented will form the foundatioms the ideas and the
development of the theoretical work described ibssguent Chapters 6, 7, and 8.
First of all, a simple predator-prey model is preged. This model has been
implemented in NetLogo (Wilensky, 1997b) and usgd\ilson (1998) to compare
ABM results with more traditional predator-prey netithg techniques. More
precisely, in the ABM presented two type of ageaist: predators and preys. Both
types of agent move randomly on a two-dimensioatick, but are able to move
only if the chosen location is not occupied by gerd of the same type. Prey type
agents are simpler, as they die only via predatmmh each prey has a set probability
to reproduce (e.gorey reproduce if random 100 < prey_reproduce ).
Each predator has a handling time. Handling time insrthe handling and eating of
the prey by the predator; when the handling time @iredator is greater than zero
(handl > 0), predators can reproduce. Each predator repreduwgth a given
probability, similar to prey-type agents. Whaand| = Q, predators look for prey and

' For more detailed discussion on problems of randmwement and differences between the
NetLogo implementation and the original movemerscdied by Schelling see lozzi (2008).
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kill the prey when their location overlaps; onceray is killed the predator who
killed a prey “replenishes” its handling time; thiene-step ends and the whole
iterative process starts again. Figure 5-9 visaslibe graphical interface, where one

can easily change predators and prey settings.

Prey settings Predator settings

populations
9130 Mprey
M predators

pop.

0 time 395

Figure 5-9 Predator-prey model interface
(Own elaboration).

This simple ABM has been used to investigate thecesfof parameter changes on
predator-prey dynamics and to compare ABM resulith wother modelling
techniques. Nonetheless, referring to the populatignamics’ context, the function
of such model is, in Wilson’s own words (1998: ),260 bridge the fundamental
gap between real biological systems and generallabpn-level models”. The use
of simulations seems to be fundamental in produciew theoretical insights on
complex adaptive systems. Simulations and ABM imtipalar, seem to be a
promising tool, and, as of now, numerous applicetidiave been proposed in
ecology (DeAngelis & Mooij, 2005). More preciselyBM models could set the
agenda for a new research process exploring legaamd evolution issues, which can
be better described by rule-based simulations siscABM than by mathematical
models. Evolution dynamics and predator-prey undérdnt modelling assumption
are the most prominent candidates of this new reBeagenda, given that single

103



agent interactions may give rise to emergent bela\at population and community
level, (Cuddington & Yodzis, 2000; Hovel & Rega008; Nonaka & Holme,
2007).

Social science, in particular social dynamics, m®ther very promising field in

which ABM and simulations have been widely usedin@m dynamics, cultural and

language dynamics, crowd behaviour and the formatib hierarchies have been
looked through the lenses of simulation and ABM qiehano et al., 2009). More
precisely, here we will concentrate on opinion whfon following the Deffuant

model (Deffuant et al., 2000; Stauffer et al., 2084d a subsequent modification
(Deffuant et al., 2005).

In its original formulation (Deffuant et al.,, 200@ population of N agents is
considered. These agents are represented by nodesaah node might interact
(discuss) with any other neighbouring ntfdélo each nodei{ an opinion x; is
assigned. Opinions are randomly chosen in the viatef0, 1]. A determined
threshold7r is set. This threshold represents a “maximum wicgtaof opinion”; in
other words, if the opinions are too distant, nal discussion is possible, and no
change in opinion will occur. The rules of the moaled as follows: at each time-step

a randomly selected node interacts with one ofings neighbours. Lei and | be
two interacting nodes at time If ‘xi (t) = x; (t)‘ >r1 nothing happens, and, as
explained above, both agents will retain their apimions; if‘xi (t) = x; (t)‘ <1 then

the opinions of both agents will start convergiftpw fast they will converge

depends on another parametmmy which lies in the interval [0, 0.5]. More

precisely:
X+ =x(t)+ con*xj (t)—x (t)‘ [eq. 5-1]
X (t+1) = x, (1) + con\*xi t) = x; (t)‘ [eqg. 5-2]

2 Terminology refers to Network theory, please réée€hapter 3 for an in-depth discussion of
network theoretical related concepts.
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The same dynamics occur in the case when opiniensamsidered discrete (Stauffer
et al., 2004); that is, they do not assume contiswalues between two numbers
(e.g. 0 and 1), but assume values with intervats @ly integer values such as 1, 2,
3). As briefly explained, the difference lies iretfact that the opinion of each node
can take an integer valls&1Q, wheres is the opinion taken an@ the ensemble of

all possible opinions. In this case, the differemcth the previous model is that the
threshold is also an integer, and that the regubipinion after a discussion with a

neighbouring agent is rounded to the nearest intege

This model in its continuous form has been useekfdain the formation of clusters
of people that share the same opinion and the ldespolarization of opinions in
societies. Clusters of nodes sharing the sameapiiorm for different values of the

“discussion threshold”; polarizing societies happ#rr = 0.2 while homogenisation

occurs if 7 = 05independently from the convergence parameten, as shown in
Figure 5-10.
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Figure 5-10 Deffuant model results

Opinions convergence wherr = 0.5 (left) and 7 = 0.2 (right), N = 1000 andcon\ =0.2

(after: Deffuant et al., 2000).

Social dynamics is also a field in which the useiofulations and ABM has proved
very promising. Humans are able to learn, adapttiem$form their opinion and their
strategies according to their social environmenearhing, adaptation and
transformation allows emergent behaviour that iseasily (or impossible) to infer
by looking at individual interactions or by makirgfrong assumptions about

homogeneous mixing and the “average” individual.
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5.2.3 Issues with ABMs

Agent based models are often very complicated artén understanding them in
detail can be a quite intricate exercise (Galaralet2009). There is scepticism
around computational models, as the results mightcbunterintuitive (though
counterintuitive does not necessarily suggest mectmess). Here, it is worth
remembering that the main purpose of simulatiorss ABMs is to allow for new
theoretical developments and advances. If the misdsdnsidered plausible (within
reason) and coded correctly, even if its resulightnbe counterintuitive, it can still
assist in advancing existing theories or deepepungtheoretical understanding of
the system under study. One risk is that the resulght be the consequence of an
unknown process inside the “black box” (the computesed to perform the
simulation (Macy & Willer, 2002). The latter can laed has to be tackled by
publicising the models and by exposing the modmsle to the scientific community
so that it will be possible to validate and repicthe results. Moreover, the value of
ABMs for theoretical development could be dismisasdmuddying in the water”
as the number of variables, parameters and théatioes may approach the
complexity found in the real world (Peck, 2008)islimportant to take into account

that agent-based models are not a universal solutio

At present day, there is no formal methodologicalcpdure for building an ABM,
although there are certainly similarities acro$sraddel building methods. The first
step that needs to be considered is to make satetliere are no discrepancies
between what one thinks the model is representimd v@hat the coded model is
actually doing (Galan et al., 2009). More precisélyis worth taking into account
that a model has to serve a purpose, and hencé baatain the right level of detail.
As already noted, a model cannot retain all ofrda world’s details and it should be
a simplified, although meaningful, representatioh reality (Axelrod, 1997,
Bonabeau, 2002). When constructing a model it cesgary to abstract from the real
world, hence in ABMs more than in other modellimghniques it is necessary to
refer to practitioners or draw on empirical reshaar carefully reviewing the

existing literature in order to gain insights ipi@cesses and fundamental behaviours
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that characterise single agents and their intéioels It is important to look for
implications, and evaluate that very same modek @&bsence of a clear research
question to answer will render the model less dsefuunderstanding the part of
reality under investigation. Thus, assumptions neede thoroughly identified and
the impact of each one of them on the results medby the model needs to be
measured (Galan et al., 2009). Moreover, ABMs khdne treated with caution,
when looking for the quantitative aspects of thsuls (Bonabeau, 2002), as the
importance and the validity of ABMs relies on thaibility to explain different
configurations arising from the set of parametesed, and in allowing a (mainly)
gualitativeunderstanding of the system studied.

ABMs and simulations need to be treated and appeshdifferently from traditional
analytical models (Peck, 2008). The most challemgispect of ABMs resides in a
careful understanding and planning of how singlenég) behave. The choice of the
rules that will allow them to interact with the @mmnment and between themselves is
a central issue. There is a need for a systemaiagedure and it is necessary to avoid
assumptions that are not confirmed by “general ansd(existing literature, experts
assessments etc.). Therefore, as already streasemntinuous interaction and
feedback between researchers and “experts” is s&gesso that it may be possible
to shed light over the appropriate parameter spagigon to explore and the
interactions that exist between agents. This wikoaallow to assess the
appropriateness of the model in its different ssa@eitiation, running, validation)
(Farmer & Foley, 2009; Galan et al., 2009; Peck&0

Even when one engages continuously with experts @rdfully plans his/her

simulation following all good practices possibletive model building process, there
is still room for errors and artefacts (Galan et 2009). More precisely, errors refer
to a disparity between the coded model and the hthdethe modeller intended to

code (e.g. the modeller wants the model to caltdskA before taskB, but the model
runs taskB before taskA). It is important to highli the fact that there is no error if
there is no disparity between the actual modelveimat was meant by the researcher,
thus it is not possible to assert that an errostexf the modeller’s objectives are not

known. Obviously, the modeller’s intentions shoaldiays be stated in a clear way.
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Artefacts, on the other hand, are disparities betwthe assumptions made by the
researcher and thought to be the cause of speesidts and what is actually causing
them. This might happen as sometimes it is necgssaiormulate hypotheses that
are not critical for the system’s representationdre nevertheless required in order
to run the simulation code (e.g. the size of a gright influence the results although
the size is not a one of the critical assumptiohgshe modelled system). It is

important to point out that an artefact ceases d@oah artefact as soon as it is
discovered, and the cause of the results becommsrkrBoth errors and artefacts
can be avoided. In order to avoid errors, one néedseticulously check the coding

procedure and all its parts in order to make soat the coded model is performing
exactly as it was intended to. Artefacts can badmeby implementing a model with

the same critical hypotheses but with differenuagstions, as to control how results

are affected. This is a common procedure to askesslidity of the outcomes.

5.2.4 Evaluation of ABM

Validating, verifying and evaluating ABMs can belemanding task. The revealed
behaviours of simulations are usually not undedsdate at first glance (Srbljinovic

& Skunca, 2003). Nonetheless, it is possible tduata an ABM or a simulation.

The first criterion is an assessment of its religbby allowing for different separate

implementations and comparing the results. In otherds, if time and resources
allows it, it is good practice to implement the raban different machines on
different platforms or even coding the model infetént programming languages.
This is by itself, however, not sufficient to evale an ABM, Taber and Timpone
(1996) propose three more methods for validatisgraulation model. They ask:

1. Do the results of a simulation correspond to thofsthe real world (if data
are available)?

2. Is the process by which agents and the environmésract corresponding to
the one that happens in the real world (if the gsses in the real world are

known)?
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3. Is the model coded correctly so that it is posstblstate that the outcomes

are a result solely of the model assumptions?

Answering the first two questions allows for assegsthe validity of the
representation (model), thus gauging how well ga system we want to describe is
captured and explained by its representation. Anagethe third question
guarantees that the model's behaviour is what tbdetfter really intended it to be
(Galan et al., 2009). Evaluating an ABM requiretadaom the real world and the
involvement of knowledgeable experts that mightabé to give insights into the
“real” processes and dynamics and hence help eealisaability to represent reality.

Moreover, it is worth highlighting the importancétbe conceptual accuracy that is
needed in order to build ABMs that are able to adezour theoretical understanding
of a system. Every part of the code in a model khba grounded in the literature or
be informed by “experts” (i.e. empirical research@actitioners etc.), and the final
test of any ABM is its importance in advancing thederstanding and the
development of new formal theories. ABMs explaithea than predict, allowing for

a qualitative understanding of the fundamental @sses underlying the system
modelled. Finally, as Henrickson and McKelvey (200295) state:

Future, significant, social science contributionsl wmerge
more quickly if science-based beliefs are based jtet
results of both ABMs and subsequent empirical dmoration.

5.3 Assessing Resilience: Case Study Research

Case study research has been widely used in thheNvase precisely, in the 1930’s

case study research was already employed in theetsity of Chicago amongst
sociologists (Tellis, 1997b). The popularity of eastudy research led to a public
debate between the Chicago school and researchdrprafessors at Columbia
University, who thought that case study methodstéetliased result and were not-
scientific. The debate was won by researchers aotegsors of the Columbia
University, thus leading to a decline of case stuadgthodology (Tellis, 1997b).

Nonetheless, case study methodology is still widebed especially in social
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sciences, though the discussion on its validitysii ongoing (Gerring, 2004).
Moreover, case studies have not been widely usetligxely in social sciences.
Charles Darwin drew his ideas on evolution aftesirale trip to the Galapagos in
1835; Alfred Wegener discovered the same fossitispealong the South American

and the African coast, leading him to form his aoental drift theory in 1915.

Often, one or more carefully chosen cases havadetmend, assess and/or reject
theoretical frameworks. Therefore, a “case studgnisntensive study of a single unit
for the purpose of understanding a larger clasésiofilar) units” (Gerring, 2004:
342). Irrespective of the area of research, itmipartant to have a clear theoretical
framework and a clear purpose when deciding onitalda case. Theory plays a
central role, knowledge of prior research is crugiaorder to build up knowledge
from a case study, and it is not simply a matteran$wering a single, isolated
empirical question (Yin, 1994). Having a clearlyfided theoretical framework, as
the one proposed in Chapters 3 and 4 and seétibnallows for selecting the
case/cases to be studied, since case studies caf firgle or multiple design
(Gerring, 2004). A clearly defined theoretical fnwork enables to specify what is
going to be explored, hence allowing to stipulatalrtheories and generalising the
results. In other words, a theoretical frameworknpts the definition of a limited
number of variables (issues) considered cruciatHerunderstanding of the system
studied (Tellis, 1997b).

Case studies can be defined according to theirgserTellis, 1997a, 1997b; Yin,
1994). Exploratory case studies help the identificaof research questions and
hypotheses. Explanatory case studies try to giyptaasible explanation of causal
relations. Descriptive cases are used to assesalidéy or to help in the formation
of a theoretical framework, thus requiring a thetwybe developed before starting
the study. Case studies validity is enhanced whésrences are descriptive, when
propositional depth is preferred over breadth, whscovering causal mechanisms
IS more important than discovering cause-effeciemtine strategy of the research is
exploratory, thus helping in tuning a theoreticednfiework (model), rather than
confirm it (Gerring, 2004).
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Can case studies be generalized? This is a longtetehssue. Critics claim that
results of a case study can not be widely gene@l{zee for example: Lincoln &
Guba, 1985), although others counter this ideaifigrdntiating between two main
different types of generalization: analytic andtistecal generalization (Yin, 1994).
Yin defines analytic generalization as a “templatgh which to compare the
empirical results of the case study” (Yin, 1994),34nd statistical generalization
when “an inference is made about a population (ovarse) on the basis of
empirical data collected about a sample” (Yin, 1983). Analytical generalization is
what is possible to achieve using a case studg,itinoring the sampling limitations.
Furthermore, single-unit case studies can allowdsting of causal implications of a
theory and can provide evidence in order to vadidahend certain theoretical
arguments since they are likely to be comparabkr{g, 2004). However, single-
unit case studies might show problems of represeatess if universal/general
conclusions are drawn from a single case studytipledunit cases are best suited in
order to confirm results coming from given thearatimodels, although one need to
be careful in making assumptions on the compatgbdcross the chosen case

studies.

For the scope of this research, | do think thaingls-unit case study might not be
representative in order to confirm a theoreticaldeio Moreover, given that the
concept of resilience is intrinsically dynamic,d think that a single case study will
not be suitable for enhancing the theoretical keolge of how networks metrics can
help us understand the resilience of SESs. Sirgiaghe unit case study is centred
upon a single space and time unit, for the purpdskis thesis it is worth to resort to
other methods in order to better comprehend thaioels between network metrics
and the resilience of a SES. Such methods areidedan Chapters 3 and 4, and
sections 5.1 and 5.2. Nonetheless, | do hopéhenfuture, to be able to have the
necessary resources in order to design a multgde study in order to validate and
amend the models presented in Chapters 6, 73.ad@ally, the multiple case studies
will involve different locations and repeated wsibver a determined time-span.
Unfortunately, the design of such research isresent, impossible, given the time-

frame and the resources of a PhD student.
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5.4 Concluding Remarks

This chapter described a first possible integratodnthe Resilience framework
outlined in Chapter 4 and network theoretical $oaks outlined in Chapter 3.
Differences in impact between failures (or rand@maoval of nodes) and attacks (or
targeted removal of nodes) have been explainedependling on the network
topology. Unfortunately, the differences have basgsessed only in static networks,
that is, networks that do not evolve over time. pheblem of temporal spatial scales
Is paramount in assessing the resilience of a SE® two possible ways of
assessing resilience of a SES have been outlinedsea study and the use of agent
based models. Agent based models have the limtat@nd the problems of
validation described in sections 5.2.3 and 5.Ridwever, if carefully planned and
implemented they allow exploring the dynamics (timee dimension) and spatial

features of a SES.

Case studies have the advantage of giving in digfdinmation and directly link to
reality, nonetheless, in order to assess the eas#i of a system using network
theoretical tools a case study should be investithatpeatedly in time. Moreover,
the case study should be multiple; different caselies should be carried out in
different location for a determined time-span. Tikislue to the specific properties of
SES, the need to look for some universality initttegration that has been proposed.
Given the scope, the time-frame and the resourtasRhD student, this avenue is
not feasible at the moment, but it will be highhlgportant in the future, in order to
falsify, enhance, or accept the models that aregmted and analysed in Chapters 6,
7, and 8.

Before discussing the work that forms the substactntribution of this thesis and
is presented in the following chapters, it mightw@th summarizing the theoretical
framework used in this thesis. Chapters 3, 4, anthve presented a number of
methods and theories that form the theoreticalsbési the development of the
models presented in the subsequent chapters6(i.&, and 8). It is also worth
repeating that the main aim of this thesis is thagice the understanding of how

structural properties influence (or not) the resitie of a SES. In order to answer the
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main research questions outlined in section lis thesis develops a systemic
approach that uses network theoretical tools tdyaeastructural properties, agent
based models to simulate the evolution of a systeththe resilience framework to
analyze, conceptualize and discuss the resultsngbse the theoretical models

presented in the next three chapters.
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6 Assessing Resilience: Integrating Network Metrics
and Agent Based Modelling

As briefly outlined in section 5.4, Chapters7f6and 8 aim at a formal integration of
network metrics, resilience thinking and agent Hassodelling. It is worth to
highlight the fact that initial parameters in thedel presented in Chapters 6, 7 and 8
do not determine a priori the findings presentduatTis, model's parameters have a
probability of influencing a change in the basinatfraction, however, given the
stochasticity of ABM (as explained in section 52)y allow for the same
parameters to lead to a change in basin of atracti to a change of the state in the
same basin of attraction. A change in the basimatohction refers to change in
species composition (as explained in Chapter 67andhile a change in the state of
a system simply refers to different population lsver if local extinctions occurs
without leading to global changes in the specieapmsition. On the other hand, if
deterministic models are used, it is possible tirmafthat the initial parameter
configuration already determines the state of tfstesn and if a change in the basin

of attraction occurs.

The model developed in this chapter has been ddisn Landscape Ecology
(Baggio et al., 2011) and is a first step in theegnation of the different methods
extensively explained in Chapters 3, 4 and 5s Thapter will present an ABM of
predator-prey dynamics on a landscape represegtednetwork. The agents of the
model (predators and prey) are able to move betwdifarent nodes of the
landscape network. Population levels and the ctenag probability given node-
centrality and network metrics are analyzed. Hefferént basins of attraction (see
Chapter 4) of the simple ecological system undeidys are represented by
coexistence or not-coexistence of species. Diftestates of the system in the same
basin of attraction are represented by differenpupattion levels and different
dynamics that unfold during the simulations of thedel. The model presented in
this chapter shows that both predator and preyiepéenefit from living in globally
well-connected patches enhancing the resiliencehef “coexistence” basin of

attraction. However, the maximum number of preycsseis reached, on average, at
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lower levels of connectivity than for predator spec Hence, prey species benefit
from constraints imposed on species movement gnfemted landscapes since these
constraints reduce the need for anti-predatoryegies and may allow safe heavens

for prey.

6.1 A simple ecological system

The model presents a simple ecological system ilchwtwo species (predator and
prey) exist. Predator-prey relations represent simplest possible food web as
explained in section 3.4.1. Species are distributeterogeneously and, given the
variety of habitats that exist in nature, habitedgimentation per se does not
necessarily threaten species. However, in recearsyéragmentation seems to have
conspicuously accelerated given human populatiowtyr and urban sprawl, and the
pace and scale of fragmentation is increasinglyngothreats for species’ survival.
Understanding the ecological consequences of hdpbdgmentation is now part of
many research agendas that deal with conservatiodjversity and adaptation to
climatic change. More recently there has been areased use of network
approaches in conservation of both marine and siaé landscapes (Bodin &
Norberg, 2007; Planesa et al., 2009; Urban et28l09). This network approach
describes landscapes as networks of habitat pafctuekes) connected by edges
representing links between different patches (UrkaKeitt, 2001), indicating the
ability of an organism to directly disperse/diffulsem one patch to another (from
nodei to nodej) (Pascual-Hortal & Saura, 2006). Movement of orgias to/from a
specific patch is limited to connected habitat pas; or patches that are situated
close enough to allow species migration (Bodin &ridwg, 2007). Therefore, a
network perspective allows combining landscape epast and predator-prey
dynamics (Bodin & Norberg, 2007; Minor & Urban, 200Jrban & Keitt, 2001) so
as to better understand the influence of structpraperties on a simple ecological
system (landscape on predator-prey dynamics henc@opulation persistence).
However, almost all of these studies have focusediogle species and how they
might be affected by various levels of habitat fn@gtation. Here, the focus will be

more broadly on how habitat fragmentation (thusdémape heterogeneity) may
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affect two interacting species (a predator andey gpecies) with active movement
decisions as opposed to the widely used random mene

Issues of space and time-scale increase the coityptéxpredator-prey dynamics as
their inclusion leads to substantially differenttaames even if all other variables
that affect these dynamics are kept constant (§aamNuttle, 2005). Past literature
has dealt in depth with land-fragmentation aneftsct on movement (Bolker, 2003;
Droz & Pekalski, 2001; Fahrig & Nuttle, 2005; Inciséi & Ballesteros, 2008;
Nonaka & Holme, 2007; Pascual-Hortal & Saura, 20R6éugharden, 1977, 1978).
In order to understand the importance of spatidierogeneity (or landscape
heterogeneity), it is necessary to focus on hognfrentation affects the resilience of
the system. Recalling the importance of definingilience of what to what (see
Chapter 4), resilience refers to how levels of fnagtation measured through
network metrics (explained extensively in Chap8rincrease or decrease the
probability of a change in the basin of attractidhus, landscapes are represented by
a network in order to uncover the significance etenogeneous fragmentation.
Network representation of a landscape allows lapkinhthe relationship that exists
between predator-prey dynamics and network methic®ther words, this chapter
seeks to understand how the structure of hab#agiientation affects the resilience

of a simplified ecological system.

As species diffuse and respond to landscape pattamd the surrounding
environment, connectivity properties, spatial ctinds, hence fragmentation, need
to be taken into account (Rougharden, 1977, 19A8cording to previous
experimental papers, the landscape structure éstakdlter predation pressure (With
et al., 2002), thus modifying how prey behave dirae, depending on the landscape
structural changes (Kareiva, 1987). Landscape tg¢erityper sedoes not seem to
have any significant effect on predator-prey dyr@mhowever, when combined
with movement capabilities, it may lead to impottaiterations of predators and

prey populations (Fahrig, 1998).

The interaction between predators and prey has Istatied with differential

equations (i.e. Lotka-Volterra), reaction-diffusi@guations (Benson et al., 1993;
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McLaughlin & Roughgarden, 1991), and individual édsnodels (Cuddington &

Yodzis, 2000; DeAngelis & Mooij, 2005; Droz & Pekki, 2001; Hovel & Regan,

2008). In analytical models, population is treadsda whole (homogeneous mixing)
in order to achieve tractable results (see alstse®&.2). Agent (individual) based
models (IBM or ABM) centre on individual differeregBreckling et al., 2006;

DeAngelis & Mooij, 2005; Grimm & Railsback, 200%s extensively explained in

sections 5.2.1, and 5.2.2, ABMs allow populatidgnamics to emerge from

individual predators and prey. This approach isetal in order to uncover the
complexities arising in predator-prey systems otetogeneous and fragmented
landscapes (McCauley et al., 1993).

This chapter focuses on the consequences of movésatmeen patches, rather than
the spatial details of a single patch, as the foties in uncovering how
fragmentations alters the resilience of the sygpeasented. Individual predator and
prey on heterogeneous landscapes, representedvesrkee of habitat patches, are
modelled. The central research questions thatbeilhnswered in this chapter are the

following:

* How does the underlying network of habitat patdhésence population levels?
» Does network connectivity, more precisely patch d@jo centrality, drives
predator-prey dynamics and the probability of ceexice?

Referring to the definition of system resilienceagi at the beginning of this chapter,
and at the terminology extensively described in@#a4, the two questions above

can be rewritten as follows

* How does network connectivity affect populationdklsvin the same basin of
attraction?
* How network connectivity favours or hinder the pabbity of shifting basin of

attraction?
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6.2 Methods

In a given landscape, predator-prey interactioesnandelled according to the ABM
proposed by Wilson (1998) (see section 5.2.2 héormation on the model). The
study presented by Wilson (1998) is extended bjudiog a networked landscape
where nodes represent habitat patches. Habitahgmtare considered land where
prey can eat, predators can hunt, and both speareseproduce (Droz & Pekalski,
2001; Ives & Dobson, 1987). Edges represent movemessibilities between
different patches. In the past, species modelsediorks with small and large patch
numbers have been studied. Small number of patwnes been studied to resemble
ecosystems, while a larger number have been usedamine the coexistence of
multiple species (Blasius et al., 1999; Cominsa &ss¢tll, 1996; Hastings, 2001,
Jansen, 2001). More recently Holland and Hastig30g) have developed a
manageable ten-patch model that supplements tHismeaf models with small
number of patches while displaying results simitanetworks with a larger number
of habitat patches.

Given the aim of this model, the focus is centrachivement capabilities of agents
between different habitat patches. Recently, theemznt of predators and prey has
been widely researched in order to explicitly irpmate space into modelling
species interaction, with an emphasis on predasaa’ching strategies and the anti-
predatory behaviour of prey (Inchausti & Ballesger@®008; Linhares, 1999;
McLaughlin & Roughgarden, 1991). Nonetheless, féwdies take active behavior
into account and | think that species do move atingrto the feedback they receive
from the surrounding environment (e.g. intra-spe@empetition, search strategies
and anti-predatory behavior). Therefore, in thedatgpresented, agents actively
choose to move according to signals (inputs) givan their surrounding
environment. The results of the model presented, ivelnere a threshold rule is used
to determine the movement decisions by prey andgpoes, can be compared to
more simplistic models of migration based on diffasand random movement. This
comparison may shed further light on the importasfcenderstanding the effects of

landscape connectivity.
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A detailed description of the ABM proposed is pdrd in the ODD (Overview,
Design concepts, and Details) protocol availableéAppendix Il, section Il.i. The
ODD protocol is a standard protocol for describingividual and agent based
models (Grimm et al., 2006), so as to allow foreapmer understanding of the model
and to facilitate replication.The code used for tin@del presented in this chapter is
reported in Appendix Ill, section Ill.i.

6.2.1 The network of habitat patches

To build on the work of Holland and Hastings (2QG8)andscape witN=10 habitat
patches and varying number of edgE} that connect them is considered. Habitat
patches (nodes) are placed randomly on a two-dimeaisgrid and are connected
through edges according to their proximity to otpatches (patches within small
Euclidean distance from each other are connectst). fGeographic proximity is an
important aspect concerning the network topologw ¢dndscape (Minor & Urban,
2007, 2008); the networked landscape presentbdsed on Euclidean distances in
order to better simulate movement of species onaadscapes. The network used is
considered simple: the use of loops and multiplgesds not allowed. All habitat
patches are considered equal; as a result, thigyaloilsustain prey does not vary
throughout the patches. The landscape is inteigbr@tean undirected, un-weighted
network (see section 3.1) and a graphical reptasen of the network used is given
in Figure 6-1. An undirected network contains edipes enable movement from one
node to another and vice versa. An un-weighted ortwnly considers edges as
connectors and not pathways with explicit distafrade, Euclidean distance is only
used in order to determine if a connection, an edp®uld exist between two
patches). Although more complex network repres@mtaimay lead to different
results, an undirected, un-weighted network isl silble to provide adequate
information that enables the assessment of patghoriiance on the species’
movement abilities (Estrada & Bodin, 2008).
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6.2.2 The species

There are two types of agent-sets, predator any, ga@ch of which is assigned
randomly to a habitat patch. In the mathematicahtmmn subscript 1 is used to
represent prey and subscript 2 is used to reprgsedators. The initial number of
predators and prey is proportional to the numbemnaafes in the network, as shown
in Table 6-1. Each prey has the ability to repr@wdth probabilityP,; at each
time-step and to die via predation with probabif, if both prey and predator are
assigned to the same patctPredators may also reproduce at every time-sidp w
probability P, » , given they have successfully attacked (thus &jlle prey and are
currently in their handling period), a timeframe in which predators are consuming
the prey and hence have the “energy” to reprodRmdators die naturally according
to a fixed death ratePf,»). Drawing from the literature, movement behaviadir
agents between patches is simplified. Agents matevden patches according to
density thresholds characterising one or both sgedihe prey moves if its density in
a given patch (Dny) is higher than a predetermined thresh@d 1), so as to mimic
intra-species competition for food. The prey alsoves if the predator densiti,)
rises above a predetermined threshdll, ) in order to mimic anti-predator
behaviour (Creel et al., 2005; Fischhoff et al.020Ilves & Dobson, 1987; Lima,
2002; Luttberg & Schmitz, 2000; Nelson et al., 200fiprey density falls below a
predetermined thresholdD( ;), predators move between patches looking for mighe
densities of prey, thus imitating predatory seastfategies (loannou et al., 2008;
Lima, 2002; Linhares, 1999). Table 6-1 summarizasables and values used in the
ABM presented.
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Table 6-1 Summary of variables, symbols and valuassed in the ABM.

Simbol Variable Name Values from distributions used in
Monte Carlo simulations

N Number of nodes 10

E Number of edges Varies from 0 to 45

C Size of a node 100

ng Initial number of prey Poisson with mean 25N *

Pr1 Prey reproduction rate Poisson with mean 0.25 (25%)

Dua Prey density upper limit Random uniform distributi®.5, 0.9]

D1 Prey density lower limit Random uniform distributif0.2, 0.4]

n, Initial number of predators Poisson with mean 10 *

P Predator reproduction rate Poisson with mean @%6§2

Px2 Predation probability Poisson with mean 0.2 (20%)

Pm2 Predator death rate Poisson with mean 0.06 (6%)

Dy Predator density upper limit Random uniform disitibn [0.3, 0.6]

Th Predator handling time 3

Note: Parameters are set at the beginning of eaclum as described. Internal species parameters
are drawn from the distributions described. The nunber of edges,E, varies from 0 to 45 as
shown in Figure 6-1.

Population levels for both predators and prey areasured for every patch
throughout the different simulation runs. The meaalues of the parameters
presented in Table 6-1 are one of the configuratitimt enable fairly stable
coexistence in the model presented by Wilson (1998pat is, using the mean
parameters presented and a full network, the hkell of coexistence is almost
certain (being probability of coexsistenc 99.9%)eT™onte Carlo method is used to
explore a wider parameter space and test for thsitsety of the outcomes. The
importance of landscape fragmentation in the welfaf predator-prey systems is
assessed by altering the number of existing comomect between patches

independently from species reproduction, deathpmaedation rates.
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Figure 6-1 Geoproximity Network
Graphical representation of a geoproximity networkfor E =5 (A),E = 15 (B),E = 20 (C) andE
=25 (D),E =30 (E),E = 35 (F), andE = 45 (G) (Own Elaboration).

6.2.3 Network structures and predator-prey dynamics

The analysis is based on network metrics thatssidily characterize landscape
connectivity (extensively explained in section &and 5.1). More precisely, the
following node-centrality and network metrics aedédn into account (numbers in
parenthesis refer to sections in the thesis wherepth information on each of the
metrics can be found).

» closeness centrality (clog3ection 3.2.1)

* average closeness centrality (avgclsyction 3.2.1)

» global efficiency (avged}ection 3.2)
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* local efficiency (elfsection 3.2)

» average local efficiency (avggBection 3.2)

» degree centrality (dedyection 3.2)

* average network degree (avgdéggction 3.2)

e cde:(clos+el+deg/3

* average cde (avgcde): avgcdd avgclos + avgel + avgded 3
» density (densfsection 3.2 and 3.4.1)

» giant connected component (g¢sgction 5.1)

* average cluster coefficient (avggsection 3.2).

The focus of the analysis is on node-centrality atiter network metrics that are
relevant for measuring the dispersal of speciesail®€ results for each metric used
are presented in Table 6-8 and Table 6.9.

Although results are presented for all outlined mastthe analysis is confined to
selected metrics for the sake of simplicity. Moreqgisely, the analysis is based on
two node-centrality measures and three network icsethat are most important
when assessing coexistence probabilities and shapredator-prey population
levels: i.e. closeness centralitglds), an average of node-centrality measures
(closeness centrality, node degree and local effey) denotedde network average
local efficiency évge), global efficiency &vgeg, and the percentage of nodes
belonging to the giant connected compongut)( Closeness centrality measures the
average geodesic distance (shortest path lengtijebe one node and all other
nodes in the network within its reach. In other @gra node is globally central if it is
reachable from many other nodes. Local efficierscthe average efficiency of local
sub-graphs (Latora & Marchiori, 2001). In esseritcis,a measure of how effectively
information spreads through a network on a localesdn this case, the information
is perceived as species diffusion between connege#tches. Global efficiency is
defined as the average of the inverse distancedesetwwo nodes; it is related to an
agent’s movement ability and it is measurable fazamnected graphs (Crucitti et al.,
2004; Latora & Marchiori, 2001). The giant connect@mponent can be defined as
the largest part of the network whose nodes arenamind to each other. All
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measures used are normalized to facilitate congesisbetween the different
networks created through the simulations.

6.3 Results

The Monte Carlo method is used to gain a broadelerstanding of the model
dynamics. The number of edges varies from O toR#5.a given number of edges,
1000 simulations with different parameter confidgimas drawn from the

distributions presented in Table 6-1 are perfornteach simulation lasts for 5000
time steps. Since the main focus is on long-termputadion dynamics and the
probability of species coexistence, data on theamespopulation levels of predators
and prey from the last 1000 time-steps as well a&a gopulation levels for every

time-step are collected.

The use of the Monte Carlo method enables to agbessmportance of node
centrality and other network metrics under a widege of dynamics. Figure 6-2
displays the dynamics of 8 select runs from theioal 10000. These runs were
specifically chosen because they represent thendistegimes and population
patterns that arise from simulations. Figure 6-Baukes on the population level of
the whole network, while Figure 6-2B and Figure G-fcus on population at the
node level, specifically nodes 1 and 5, respectivdbdes 1 and 5 have been chosen
as representative of local interaction. Note tHéeinces between global and local
dynamics. Species can abandon a certain node fioe period of time due to intra-
and/or interspecies competition (i.e. prey on nba@e run 1) but may persist on other
connected nodes, thus fostering global survival {otal prey on the network during
run 1). Moreover, if nodes are connected, tempoeattynction on a node is also
possible (i.e. local extinction), as shown in Fegér3D as the very same nodes may
as well be repopulated by migration of species (dués connectedness to other
nodes where extinction has not occurred). The grdtctuation of both species that
occur on a local scale, compared with what hapgengopulation trends at the
network level, is due to migration, i.e. it is @& phenomenon (e.g. Figure 6-2A and
Figure 6-2B or run 7 represented in Figure 6-3A &igure 6-3B). Figure 6-3
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displays selected runs from Figure 6-2 with shotbere intervals for magnified

viewing of some of these dynamics.

Table 6-2 contains the internal species paramats&d and the corresponding values
for the metrics of the whole network, while Table3 6contains the centrality
measures for nodes 1 and 5, for the 8 represeatatins. Figure 6-2, Table 6-2, and
Table 6-3, demonstrate the existence of a postoreelation between connectivity
levels and long-term coexistence; as one progrdssesrun 1 to 8, the number of
edges increase and so does the possibility foristeece. However, between runs 4
and 6, where the network contains 30 to 35 edgesptedator population becomes
variable. In run 4 (30 edges), the predators ake tabcoexist, while they fall victim
to early extinction in runs 5 (30 edges) and 6 €d8es). All three intermediate runs
consist of similar network metrica{gegof 0.833, 0.826, and 0.889 respectively),
and so, the reason for the variable dynamics steonsinternal species parameters.
The predation rate of predators in runPg = 0.12) is about half the value in other
runs, and as a result, the predators reproducdyshhwe to inefficient hunting and
stay at relatively low levels until sudden extiocti The early dynamics of runs 4 and
5 are almost identical; increased predation rafgs £ 0.20 and 0.24, respectively)
implies that the predators are more effective atuwang prey and hence boosting
their population. It is this prey dependency theads to heightened predator
oscillations, as the efficient hunters begin to naig from one node to another (if
possible) in search of prey. The predator populatiorun 4 outlive that of run 5 due
to the interplay between the movement thresholdeeprey. It is worth to take note
of the reduced oscillations in run 4 versus rum3he network level in Figure 6-2A.
Compared to run 5, the prey population in run 4ratgs to other connected nodes
when its current node is less crowded with preynare crowded with predators,
which amounts to less variability in the ‘boom-Busycles of the predator

population.

The richness in dynamics that occur on each nau tlze network as a whole, do
depend on the internal species parameters. Noeethelarious network metrics
allow valuable conclusions to be drawn on the uUeefs of a “corridor” or

networked landscape approach. On average, wellecbeh (or more central) patches
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enhance the probability of coexistence betweengtoesl and prey, independently

from the different dynamics that arise across tioatber parameter space analyzed.

Table 6-2 Parameters for selected runs graphicallsepresented in Figure 6-2A, 6-3A and 6-3C

Network Metrics

General Internal Species Parameters
(global-scale)

run E |ny n; Prg P P2 Pxz2 Dua Dy Dy, avgel avgeg gcc

1 0 27 150.28 0.25 0.09 0.21 0.626 0.238 0.359, O 0 0
2 5 28 1603 02101 0.190.793 0.252 04 0 0.133 0.3
3 10 | 45 140.24 0.21 0.04 0.2 0.578 0.258 0.598§ 0.397 0.375 0.8
4 30 |33 180.28 0.25 0.06 0.2 0.701 0.346 0.3 0.892 0.833 1
5 30 |42 160.31 0.2 0.03 0.24 0.856 0.217 0.392] 0.898 0.826 1
6 35 |46 180.28 0.31 0.09 0.12 0.545 0.349 0.346| 0.934 0.889 1
7 40 | 39 130.23 0.12 0.01 0.27 0.664 0.33 0.484| 0.959 0.944 1
8 45 | 40 130.34 0.16 0.08 0.24 0.58 0.248 0475 1 1 1

Note: 8 runs representative of the different dynamd regimes of the parameter space. This table
summarizes the values of the internal species paraaters and metrics of the whole network for
the 8 runs.
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Table 6-3 Node-centrality metrics for runs represeted in Figure 6-2B, 6-2C, 6-3B, 6-3D

General Node Metrics
(local-scale)

Run N; clos cde
1 1 0 0
1 5 0 0
2 1 0.2 0.104
2 5 0 0
3 1 0 0
3 5 0.509 0.457
4 1 0.643 0.668
4 5 0.9 0.87
5 1 0.9 0.876
5 5 0.9 0.876
6 1 0.9 0.894
6 5 0.75 0.806
7 1 1 0.977
7 5 1 0.977
8 1 1 1
8 5 1 1
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Figure 6-2 Dynamics of the model for 8 select runs

These runs represent the total regime of dynamicsnaler the parameter space explored. Global
(network) dynamics (A) and local (node) dynamics (Band C) . Parameter values, network and
node centralities are presented in Table 6-2. Netwio population levels are divided by 10. y axis
represent population levels and x axis representrtie-steps. Graphs are indexed by run (from 1
to 8 following Table 6-2 (A) and Table 6-3 (B and £(Own elaboration).

128



>
0o

Run 7 g Run 7
60 80+
© o
4 >
g & 60- , /
— =
§ 401 5 ‘
5 5 407} 'l |
8 301 ,ﬂ/\ 2 ' |
o o i
o 20 x 20
10- T T T T T T O- T T T T T T
4000 4200 4400 . 4600 4800 5000 4900 4920 4940 § 4960 4980 5000
Time Time
Prey on Network Predators on network | ‘ Prey on node 1 Predators on node 1
C Run 5 b Run 8
1504
° °
> >
3 100 3
c (=
S N S
s f s
g 50 2
o o
o ) o
O- T T T T T T T T T
0 500 i 1000 1500 2500 2600 2700 . 2800 2900 3000
Time Time

Prey on Network

Predators on network ‘

Prey on node 5

Predators on node 5

Figure 6-3 Magnified Dynamics

Dynamics of the model for selected runs, from Figu 6-2, on shorter time intervals (to magnify
visuals). A and B represent run 7 at the global andt the local scale (network vs node 1), where
local oscillations are more amplified. Difference the time-scale used are necessary in order to
clearly visualize the patterns. C represent a magfied visual of the high fluctuation that occur
in run 5, while D is a magnified representation opredator-prey dynamics on node 5 of run 8,
where temporary local predators extinction occur (Qvn elaboration).

Internal parameters regarding reproduction, predatideath rates and active
movement behaviour are crucial in allowing coexiseein the long-term, and give
rise to different dynamic regimes as depicted iguFeé 6-2 and Figure 6-3.
Independently from internal species parametergralon of the landscape by
connecting different patches or enhancing the aétytrof particular patches further
increases the probability of coexistence betweeedaior and prey. In short,
increasing connectivity matters, as it is evidewking at run 3 in Figure 6-2B and
Figure 6-2C. In this run only the connectivity peofies of the nodes differ, leading
to quick extinction of predators on node 1 (bethgs =0) , and leading to a longer

persistence of predators on node 5 (beilog =0.509).

The importance of node-centrality is visualizedrigure 6-4, where the behaviour of

average population levels for the last 1000 tinepstis evaluated based on node-

129



centrality measures. Given the stochastic naturghef model, data relative to

predator and prey population levels are smoothed using a locally weighted

regression of predator and prey populations onnttae-centrality measures used.
The use of smoothed data allows for a better utatwting of the relationship that
exists between node-centrality and population kvef predators and prey.

Additionally, regression results are truncated,asoto discard negative population
levels. LOESS smoothing methods allows fitting Idegree polynomial regression
to a subset of the observed data, giving lowerm@rgweights to points further away
from (closer to) where the dependent variable iagestimated (Cleveland, 1979;
Cleveland & Devlin, 1988). The weights given totdixe between points of the

independent variable follow the tricube weightingdtion, which assigns weights as

follows:
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Figure 6-4 Node-Centrality vs Population Levels

Relation between node-centrality and population legls of predator and prey per node. Raw (the
average population level of the last 1000 time-stepand smoothed (resulted from the LOESS
regressions) predator and prey population levels a& reported on the y axis, while node-
centrality measures are represented on the x axi§&raphs are drawn on two different scales:
one for the raw data (from O to 280) one for the soothed data (from 0 to 70) (Own
elaboration).

Examining node-centrality measures allows for atebetinderstanding of local
connectivity properties of a node, and consequemily importance of that node
from an ecological point of view, as shown in Fg@-4, where the direct effect of
network connectivity measures on species populdéwels is visualized. Predators
are the more dynamic species in this model as showAgure 6-2, Figure 6-3 and
Figure 6-4. Moreover, data collected and analyseghsst that low node/network
connectivity contributes directly to predator egtion both locally and globally. In
other words, low node/network connectivity erodbe tesilience of the system,
facilitating a change of the basin of attractionr Example, as shown in Figure 6-4,
an increase in local network connectivity, as meabuby closeness centrality,
promotes survival and coexistence of both speaied,thus enhances the resilience
of the system as previously defined. When closeappsoaches 1 the population of
both species begin to stabilize. A fully connecteetwork represents a fully

connected landscape. If a fully connected landscapeéer the range of parameter
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values considered, promotes coexistence and cosvesg towards a viable
population level (as shown in Figure 6-4), an ies¢ing research question arises. Is
closeness centrality (or, more generally, noderaétyf) a significant measure for
assessing the probability of coexistence betweegisp in general, or better, how

does closeness centrality influence the resilieddbe basin of attraction?

In order to answer this question, data on predadpulation extinction for different
measures of network connectivity have been colfecExtinction of predators is
recorded at the node and network level, so as $esashow node-centrality and
network metrics affect the probability of predasorvival. The metrics used are real
numbers that take values from the closed inte@®dl][ Our dependent variable is a
dummy variable that assumes a value of O if predajo extinct on a specific node

or on the network and 1 otherwise.

As preliminary analysis, Spearman correlations Haen computed and are reported
in the following tables. As Table 6-4 and Table 6How, average population levels
on the whole network and on the nodes cannot lecttirassociated with model
parameters. The only internal parameter that seerhave a strong direct effect on
population levels is the upper-prey density thré$i{Dy ;) that influences average
prey levels on nodes and on the network. Hencej ftos preliminary analysis, it is
possible to infer that general population levele arctually dependent on a
combination of parameters. Moreover, if all pareaemetand centrality and
connectivity measures are used in isolation, ialso possible to affirm that node
centrality and network connectivity play a more orant role than all but one
internal species parameteDi) (confront Table 6-4, Table 6-5 Table 6-6 and
Table 6-7). Connectivity seems to be more relaveaveraged population levels than
most of the internal parameters (when taken simiyjlarhus, connectivity matters
and enhances the probability of coexistence inddpaty from the internal

parameters considered.
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Table 6-4 Spearman correlations of prey and predats on nodes vs internal parameters.

DU,Z

nodeprey nodepred

0.0079*
0.1509*
-0.0013
-0.2011*
0.2392*
-0.1269*
0.6010*
0.2077*
-0.0071*

-0.0051
0.2349*
0.0167*
0.1925*
-0.2904*
0.0969*
0.1900*
-0.1313*
0.0261*

Note: * denote significance at 5% level

Table 6-5 Spearman correlations of prey and predats on network vs internal paramenters.

n
Pra
n;
Pr2
Pm,2
Pk
Du
DL
Du2

netprey
0.0070*
0.1641*
-0.0037
-0.2163*
0.2591*
-0.1393*
0.6394*
0.2249*
-0.0050

netpred
-0.0055
0.2785*
0.0201*
0.2063*
-0.3060*
0.0851*
0.2267*
-0.1444*
0.0203*

Note: * denote significance at 5% level

Table 6-6 Spearman correlations of average prey ampredators on nodes vs node centralities.

clos

cde

nodeprey nodepred

0.3002*
0.3004*

0.4738*
0.4622*

Note: * denote significance at 5% level

Table 6-7 Spearman correlations of average prey ampredators on network vs network metrics.

avgeg
avgel

gcc

netprey
0.2648*
0.2628*
0.2645*

netpred
0.4146*
0.4057*
0.4395*

Note: * denote significance at 5% level
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The claim that connectivity matters and enhancediminishes the probability of
coexistence, thus the resilience of the systemedisiadl in the beginning of this
chapter, is reinforced by the results of the loggressions reported in Table 6-8 and
Table 6-9. Logit regressions have been calculabedlifferent node-centrality and
network metrics, all of which are relevant for Ibgaegulating the dispersion of
agents (i.e. all the metrics used have the samegcal meaning as they all relate to
the ability of species to diffuse from one patchatmother) (Estrada and Bodin,
2008). Results are similar given the high correlatihat exists between the metrics
used as reported in Table 6-10 and Table 6-11.

Table 6-8 Logit regression results of local survial probabilities for predator
populations given node centrality measures

dep var indepvar |pparest pparest pparest pparest
3.505
locpred clos
(0.023)*
2.787
deg
(0.021)*
2.572
el
(0.195)*
3.436
cde
(0.023)*
Pseudd? |0.179 0.142 0.151 0.178
Class 67.90% 66.57% 66.73% 68.79%
AlIC 1.130 1.181 1.169 1.129

Note: Standard errors in parenthesis, * = significat at 1% level. 100000 observations,
McFadden adjusted R is reported as well as the probability of correcy classifying the
dependent variable given the parameter estimates (&ss). Akaike Information Criterion is

reported (AIC).
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Table 6-9 Logit regression results of global surval probabilities for predator
populations given network metrics

Indep var | dep var| p par est p par est  par est p par est p par est B par est p par est B par est
obored | 3.162
obpred | avgclos
gonp J (0.023)*
d 3.111
avgde
J9e9 (0.003)*
3.204
avgel
(0.023)*
3.163
avgcde
(0.023)*
2.799
dens
(0.225)*
3.140
avge
9¢9 (0.022)*
3.910
gcc
(0.029)*
3.264
avgcc
(0.233)*
Pseudo
- 0.142 0.122 0.157 0.146 0.122 0.152 0.167 0.150
Class | 66.69% 66.72% 67.08% 66.81% 66.72% 67.49%5167 66.77%
AIC 1.187 1.213 1.166 1.182 1.213 1.172 1.149 a.17

Note: Standard errors in parenthesis, * = significat at 1% level. 100000 observations,
McFadden adjusted R is reported as well as the probability of correcy classifying the
dependent variable given the parameter estimates (&ss). Akaike Information Criterion is

reported (AIC).
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Table 6-10 Correlation between node-centrality ugkin the logit models presented in Table 6-8

clos deg e cde
clos 1
deg 09764 1
el 0.7938 0.7461 1
cde 0.9708 0.9520 0.9100 1

Table 6-11 Correlation between network metrics ugkin the logit models presented in Table 6-9

avgclos avgdeg avgel avgcde dens avgeg gcc avgcc

avgclos |1
avgdeg (0.9872 1

avgel 0.9407 0.9071 1

avgcde [0.9937 0.9816 0.9816 1

dens 0.9872 1 0.9071 0.9816 1

avgeg |0.9908 0.9638 0.9476 0.9854 0.9638 1

gcc 0.8774 0.8012 0.8870 0.8725 0.8011 0.9198 1

avgcc  [0.9478 0.9253 0.9941 0.9753 0.9252 0.9455 0.8670 1

Centrality measures provide a mean to assess timlpfity of local survival of
predators on a heterogeneous landscape. From giie régressions reported in
Table 6-8, closeness centrality has the strondésttémagnitude of the coefficient)
on survival probabilities. This preeminence is agwwn in Figure 6-5, where
predicted probabilities at specific closeness edityrvalues and at specifitde are
reported. Predator survival probabilities graduailhcrease depending on the
connectedness of the network, and no abrupt changrs. These results seem to
indicate that even without controlling internal sigs parameters, enhancing the
connectivity between different patches increases phobability of coexistence

between predators and prey. Moreover, if only aensdtaken into account, a value
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of closeness centrality higher than 0.65 (or aeaicde>0.67) leads to a favorable
probability (>0.5) of survival.
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Figure 6-5 Predicted survival probabilities vs noé centralities
Predicted predator survival probability (y axis) vs closeness centrality and cde (x axis) (Own
Elaboration).

For nodes witltloseness centralitgqual to zero, the probability of predator survival
is low as they are unable to disperse to any athdes in search of new prey sources
and, likewise, replenishment of their current pssyurce is also impossible from
outside sources. It is important to stress thatvarable probability (>0.5) of survival
for the predators does not guarantee species rsts As the probability does not
=1, at some point, the predators may still die dbugh this time to extinction
grows longer as increased connectedness of thegzaémnd heightened feasibility of
migratory movement for both predators and prey eksss the odds of predator
extinction. It is also important to remember thaere highly connected patches do
not guarantee coexistence. Internal species pagasnetight be of fundamental
importance in allowing persistence of a species, this is well represented by the
reported results, which demonstrate that evenlin é@nnected landscape networks,
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where centrality measures reach their maximum vydluehe probability predator
survival is around 0.77 (hence much below 1)

Global survival probability is best predicted gc (i.e. the percentage of nodes
belonging to the giant connected component), afhoother network metrics give
similar estimates. Connectivity in a landscape oekws crucial as it allows species
more freedom of movement and enhances their abdityigrate in search of food
and safety. Between the other metrics examigézhal efficiencyand theaverage
local efficiencyof the landscape networks also play an importalg in assessing
these probabilities. Both measures are relatedh&o ability of the networked

landscape to facilitate/hinder in species diffusion

The importance of connectivity for increasing globarvival probabilities is clear
from the analysis performed. Both local and glofavival probabilities gradually
increase by increasing the level of connectivityhat node and at the network level.
When the network is connected (i.e. when all itdda® belong to the giant
component), global survival probabilities are erdeah although, given the
importance of internal species parameters, ther@ways a chance that even the
most well connected network leads to some spegiascdon.

The robustness of the results of the model preddras been assessed by conducting
similar analyses in different types of networkstsf: the same ABM using a random
network has been analyzed, varying the number gégdrom 0 to 45. The results
are qualitatively the same as those presented here, an ABM using the same
“geoproximity” network but with fixed parameters the mean values used in this
study, while varying the number of edges and rdganihg the network structure,
has been analyzed. Similar results are found, adhan the latter case, network
centrality measures play a major role in deterngngmedator survival probability
(logit regressions show a correct classificationoeér 90% compared to the 65%
presented here). Moreover, at mean values, anasern@ closeness centrality from 0
to 0.2 leads to an increase in predator survivabability from 0.09% to 5.79%,
while an increase of closeness centrality from 10.2.4 leads to an increase in

survival probability from 5.79% to 80.66%, thus gasgting the existence of
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“connectivity thresholds” for species with certagproduction, death and predation
rates, and with specific movement thresholds gibgnintra and inter species
competition. Lastly, using mean values, favourahlevival probabilities (i.e. above
0.5) arise at a much lower level of closeness abtyt(0.333 instead of 0.65). Mean
values of the model presented here are used imdiel presented in Chaptéas to
assess how management decisions affect the netivtakdscape and therefore the

resilience of the system.

6.4 Discussion

Understanding the ecological consequences of hatségmentation is becoming
increasingly important, given the mounting pressoirdiuman population and the
possible effects of climatic changes on ecosysteéxddressing possible effects of
fragmentation on predator-prey dynamics becomescialrufor biodiversity

conservation and in order to understand the resiieof a system. In this context,

this study highlights three main findings.

First, at high levels of node-centrality for diféext patches, predators move so
rapidly through the fully connected network thatvlprey numbers in any specific
node do not hamper their population growth. In ptwerds, predators become a
successful population of migrants constantly movingearch of patches where it is
easier to find, attack, and feed on prey. Thist firsding demonstrates that the
connectivity of a landscape is of particular impoxe to predators’ survival, with
the latter largely dependent on movement throudferént patches (ecological
areas) due to range requirements, that is, the toeiyrate long distances in search
for food and mating (Coppolillo et al., 2004). Jagupresent a real world example of
predators with large ranges that are highly depetole movement between different
patches, as landscape connectivity is essentiah@r survival (Michalski & Peres,
2005; Ortega-Huerta & Medley, 1999). Loss of preyhe driving force that leads
predators to move between patches in the modeémies here, and the possibility
of migration is a key aspect of their survival.
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Second, increasing connectivity benefits both pied@nd prey species however, the
maximum population for both species occurs at hfié levels of connectivity.
Predator and prey species benefit from living iabglly central patches (i.e. with
high closeness centrality) as shown in Figure @G-fbwever, the maximum
population of prey is reached, on average, at loeleseness centrality levels
compared to predators. Prey benefits from the caing$ imposed on predator
movement, with the latter supporting prey populadioas the risk of predation and
the use of anti-predatory strategies decreasesrdihtoduction of grey wolves in
North America and the respective decline in elkidafion densities provides a real
world example of our model results. Increasing @mtinity, as well as living on
globally central and locally central patches, emeanthe probability of coexistence
between prey and predators, thus enhancing théeres of the system. In this
instance, the ‘top-down’ process of predation kgapy populations in check, while
allowing for coexistence, which is fundamental foe maintenance of biodiversity
(Terborg et al., 1999).

Third, the results of the ABM presented match te&oal expectations from corridor
ecology (Hilty et al., 2006). In corridor ecologgonservation centers upon
connecting different patches rather than consmgcisolated protected areas or
islands of conservation. Moreover, it is importantnotice how internal species
parameters, such as reproduction rates, death, ratedation rates and active
decision regarding migration, have a significante@f upon population levels.
However, while human management of the connecthatyveen different patches is
a possible conservation strategy, altering spantesnal parameters on a large scale
is not (at least with present-day technology). Atoday, biologically controlling for
reproduction, death and predation rates of largenanpopulations have not
succeeded (leaving ethical considerations and Iplessinintended consequences

aside).

To conclude, the results of the effect of increasmuhectedness between patches on
predator-prey dynamics can lead to different waysmanage a given landscape.
Strategies of managing landscapes differ accoringanagement objectives. Some

possible management decisions depending on populbvels are analyzed in the
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following chapter; nonetheless more connected enwents increase the resilience
of the system. The relation between connectivity assilience is not so straight
forward, as the model shows, the interplay of catinigy with population dynamics
can be two-fold, leading to the need for thoughfialicies that take all the three
main findings presented into account. Specificaly model could be used to look
at better ways to manage large mammal speciesalboitto manage possible pests
that are able to move actively from one environnteranother, following their prey.
Finally, even if it is recognized that a simplewetk may hide important variables
that drive predator-prey dynamics in reality, a @ennetwork representation still
allows for a coarse-grained assessment of whichagement strategies lead to set

managerial goals.
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7 Assessing Resilience: Introducing a simple social
system

This chapter is an extension of the model preseme&hapter 6. The model
presented in this chapter has also been presented gaper at the NAACSOS
conference in 2009 (Baggio et al., 2009). Both nedeal with a landscape network
on which predator and prey interact according te-getermined rules. The main
difference between the two models lies in the aoldibf an external manager that is
able to alter the landscape network in the modekgmted in this chapter. Both
models are ABMs (called also metapopulation modatg] in both, the analysis
centers upon the role of network metrics and hagehmetrics affect the probability
of a regime shift. A regime shift, or change in baesin of attraction occurs when the

species composition changes.

This chapter explores the consequences of manageteeisions in a networked
landscape by adding management actions to the nsysdtéanagement actions
translate in the ability to increase or decreasisg’ cost of movement between
habitat patches. The goal of this exercise is tdewstand the impacts of simple
institutional arrangements within a complex systdfore precisely, exploring how
simple management rules may give rise to diffetantiscape structures affecting

predator-prey dynamics, hence affecting the rewibeof a simple ecological system.

The interesting aspect of adding managers to thdstape arises because humans
possess agency and have the ability to foreseeirdedtionally pursue different
paths for managing landscapes (Holling, 2001; Hgll& Gunderson, 2001 and
section 4.1.2). Thus, managers can adapt to ampt a@ifferent mechanisms, which,
based on their experience, they deem as most apgimplhey also have the ability
to learn from their experience as well as experimégth new techniques in order to
achieve desired outcomes. However, the ability eoedee and intentionally
manipulate certain aspects of a landscape doesilwalys lead to desired results
(Holling & Gunderson, 2001 and section 4.1.2).sThiay happen for either of two
reasons. Since our knowledge of complex adaptedogical systems can never be

complete, managers may not have sufficient infoionato make appropriate
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decisions. In addition, managers should be awaat dhe to system stochasticity,
uncertain events and surprises will eventually o¢elolling, 1998).

In the system modelled in this chapter, predatesmynamics on a landscape are
characterized by a degree of uncertainty and segas in Chapter 6). Therefore,
policies that are designed in the view of a mariagebjectives, to optimise one

possible foreseen future, could result in worsernirggsituation. As stressed during
the whole thesis, it is not possible to exactlydmeeven the behaviour of a rather

simple ecological system such as the one presented.

As in the previous chapter, the system changes bafsiattraction according to
species extinction. Three possible basins of ditra@xist: in the first predators and
prey coexist, the second is a landscape where pely survives, and the third is a
landscape where both predators and prey becomacexihe model allows to
evaluate how management actions aimed at maintpitoexistence of species can
have unintended consequences, hence leading &3 afl@esilience. Thus, the model
presented assesses the resilience of the predatpispstem in face of management
actions that intentionally disturb the landscaptvoek, so as to affect migration of
species from one patch to another.

Managers interact with their environment in a vgrief ways. Today’s world is
characterized by a high level of technology. Tedbgy refers to the tools, both
physical and institutional, that allow humans tdemltheir environment more
effectively, and/or on a larger scale. Technologyplfies the actions undertaken
and permits a wide range of possibilities as expldithroughout section 4.1.2. More
precisely, in this chapter technology refers to aibdity to build bridges, tunnels,
fences and other means able to modify ecologigaidmys so as to increase/decrease
species’ perceived distance (or cost of movemesityvéen one patch and another
within the landscape. In the language of networklysis, technology enables a
manager to increase/decrease the weights of enhd@sgl different nodes (patches).
Technology may also be a drawback (again, as extdpsexplained in section
4.1.2), as it might add uncertainty, have unineghdide effects, or allow people to

over-harvest or improperly manage a landscape swurees and assets. As brief
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examples of the drawbacks of technology, one canktlf the new fishing
technology and the results on the cods in the N®eth. Further it is possible to look
at how the building of huge dams changed the egotifgwhole regions, hence
adding new uncertainties such as the increasedihilcal of events that never
happened before. Finally, it is possible to lookuaintended consequences of
management actions suche as the construction® dfaifriers that were supposed to
protect New Orleans from flooding and how thesehmetogical solutions have

performed during Hurricane Katrina.

Conservationists and protected area managers wdtk issues pertinent to the
management of local and global species popula@maspatch dynamics on a daily
basis. Many of their options focus on increasingexreasing the cost of movement
between patches through habitat restoration, thation of barriers and bridges to
habitat movement, and the translocation of speBadon, 1994; Griffith et al.,
1989) given budgetary constraints. Translocatiorspécies relates to the forced
movement of species or of individuals pertainingtspecies towards or to a certain
area. Due to increasing habitat fragmentation (gnarmt al., 2002), the difficulty in
bringing more land under strict protected areaustgBrockington et al., 2008),
encroachment on existing protected areas by humemeinities (Child, 2004), and
threats to species from global and regional clin@tange (Hannah et al., 2002),
many conservationists now view protected areasrig art of a broader set of
conservation options. Instead of parks that ptdteg landscape patches in corridors
of conservation, managers work to protect animalentent between patches within
a protected area and between patches along a laoggdor that may include
protected areas (Beier & Noss, 1998; van Aarde &slan, 2007). In this particular
context, it is possible to use the model presehté to look at habitat patches as
nodes and the corridors that connect differentlEt@s edges.

As seen in Chapter 6, node characteristics orl lwé global population dynamics
Is a very important feature for the resilience afyatem as the one modelled here.
More precisely, centrality measures or measurefao tightly the nodes of a
network are interlinked, affect predator-prey dyimesn Although species have

always dealt with habitat fragmentation, fragmeotais rapidly increasing mainly
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due to human interventions. Populations are endadgeot only by natural means
such as climatic change, but also due to rapid huypsopulation expansion (Meyer &
Turner Il, 1992), increased urbanization, and ther€éncreasing impact of humans
on the landscape through technology that allowhé&avy landscape alterations. As
elucidated in Chapter 6, spatial heterogeneitypka crucial role in the coexistence
of species, given the importance of the structdra @ndscape due to its effect on
movement ability of a species. Therefore, specesirpatches across a landscape to

be connected in order to maintain local and glpoglulations (Weins, 1997).

Consequently, this chapter centers upon the abditya manager to alter the
landscape in order to allow coexistence while nepleting resources that are
fundamental for prey survival. As previously expkd (see section 5.2), the main
objective of using ABM is not to prove theoremst tauallow a better understanding
and representation of reality, hence, hopefullystddng improved landscape

management based on given objectives.

7.1 Methods

As mentioned above, the aim of this chapter is noouer possible management
strategies that lead to coexistence of speciesuincase predators and prey, while
maintaining vegetation, i.e. the resources neededhe prey to be able to feed
themselves and reproduce. The ABM designed is aension of the model

developed in Chapters

7.1.1 The landscape

Habitat patches are represented by nodes and thke Wandscape is fixed (that is,
nodes do not vary throughout simulations) with bdles N = 10). Every node has
an ability to sustain preyC), which affects prey density. The ability of a eotb

sustain prey decreases if the number of prey isdnighan a determined threshold;

nonetheless, the same node is able to recoveretoriginal ability to sustain prey

13 please refer to the ODD presented in Appendiséction ILii ILii for in depth information othe
ABM proposed, and to Appendix IIl, section lllfgr the code of the ABM presented in this chapter.
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when prey density is below a determined threshblds assumption is based on a
recent study by Asner (2009) who shows significdifiierences in the structural
diversity of canopy in African savannas betweentgui®d and accessible to
herbivores areas. However, research to uncoverethgon between herbivores and
vegetation, hence ecological restoration, is stitlerway, and results might differ
(Suding et al., 2004) as they are space and tirperkent (e.g. topographic location,
and geologic substrate) (Asner et al., 2009). fline of recovery will be different
depending on the density of prey present on a pewxide. More preciselytj (time

of recovery) varies according i,; (density of prey on a specific nogeas follows:

if 015<D,,<03

i1 S
set ti, =ti,, —05;
if 0<D;, <015
set ti, =ti,, — 075;
if D;,=0

set ti, =ti_, —1.

The number of edge<) is fixed in order to represent a fully connecteztwork
(E=N(N-1)/2=45), and the presence of an edge captures the pagsibr a
predator (or prey) to diffuse from one patch totaea Multiple edges and loops are
not considered. Edges will have an initial weighinputed as the Euclidean distance
between the nodes they connewatg(). The weights mimic the difficulty/ease with
which predators and prey are able to move frompateh to another, in other words,
weights of edges correspond to the cost of movernent one node to another for

predators and prey.

7.1.2 The Species

The number of prey and predators will be propogloto the number of nodes

(n, ON and n, ON). At every time-step, both type of agents (predand prey)

have the ability to reproduce according to a premeined probability®; ; andP; ).
Predators and prey also have the ability to dienfr@atural causes with probability
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Pm1 andPn2 respectively. The prey has a probabilys of dying via predation, if a
predator and the designed prey find themselvesherséme node. Both, predators
and prey have the ability to move according to s$tm distribution with mea8,
and S,. Movement behaviour between patches is simplifeetbpting a recent
framework proposed by Nathan et al. (2008) thatbksathe study of species’
movement by looking at four different dimensionsd aheir interaction. In this
context, in order to mimic the external conditiaighe framework used, movement
between different nodes is possible only if an eegists and if the weight of that
edge is lower than the predator or prey movemepaluéty. Prey and predators

move only to nodes whereg, < S (or $). If no edge exists or all edges have an
exceedingly high cost of movement being, > S, for all we;, the agent (predator

or prey) dies. In order to simplify the work by Nah et al. (2008), agents are
thought to be “semi-intelligent”, thus predatorsdgorey have limited navigation

capacity, as they are only able to locate reachablies (wherewg, < S or )

(Nathan et al., 2008). If more than one reachalléenexists, the agent chooses
randomly one of its possible destinations. Bothnagypes (predators and prey) face
no limitation on in-patch movement, however, betwpatch movement is limited
by the motion capacity of each predator (or prégsed ors, and S respectively
(Nathan et al., 2008). Agents move driven by “inegmmotivations” (internal state of
the framework proposed by Nathan et al. (2008)p@ated with intra-species
competition, anti-predatory behaviour and predate€arch strategies.

Thus, agents move between different nodes basdteodensity of that particular

species and its competitors on the same node. Enare computed based on the

node size as foIIowsDi,lz%and Di,zz%. Such densities are compared to
density thresholds. Prey move according to a pgyeu limit threshold @y ;) in
order to mimic intra-species competition (for foadd space), thus referring to the
internal state or motivation for movement (Bartusi&uLevin, 2008). Furthermore,
prey move between nodes if predator density ribesea certain thresholdy »),
mimicking anti-predatory behaviour (Creel et a003; Fischhoff et al., 2007; Ives &

Dobson, 1987; Lima, 2002; Luttberg & Schmitz, 208@json et al., 2004). Finally,
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predators move between patches if prey densitys fatlow a pre-determined
threshold D ;) to mimic predatory search strategies (Bartumeuke&in, 2008;
loannou et al., 2008; Lima, 2002; Linhares, 1999).

7.1.3 Management of a landscape

Since the aim of this chapter is to look at posslahdscape management strategies
and subsequent effects on predator-prey dynannexistence and ability to sustain
prey preservation, a manager agent is added tanttael. The manager has the
ability to act on every edge of the network. Duri@ach time-step, a manager is
given a budgetR). The budget will vary across the different rubst not during a

single run (that is, the budget allocated at esuh-step is determined a-priori).

Humans, as previously mentioned, have the abititjotesee and alter landscape
thanks to the modern technology (Holling & Gunders2001) (see section 4.1.2 for
more information on the unique abilities of humams resilience context). Thus, a
manager will act upon those patches that s/he derssiendangered, in order to
maintain either coexistence, or prey on a singlden@atch); i.e. in order to maintain
a desired basin of attraction. A manager will axoading to his/her own thresholds
that mimic alarms or warning signalit; andMt,). Both thresholds refer to prey,
since a large number of preMi ) endangers the ability to sustain prey of a node,
due to vegetation depletion; while a critically lagnsity of prey Nit) endangers
the existence of predators (at least locally) asdfw@esources become scarce.
Moreover, there is a possibility that a managercail@ilates the density of predators
and prey. This error, if present, will be normatlystributed with mean 0 and
standard deviation of 5. The error term followsoanmal distribution with mean 0 as
it can be assumed that the over and under estimafipopulation size are likely to
be balanced. Standard deviation is chosen arlytiarorder to induce mistakes that
might affect the action of the manager on the di/eystem, but are not too high in
magnitude, given the recent advances in technglegy use of aerial surveys, GPS,
satellites etc.). In other words, a manager taki®ra according to the following

rules:
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it n, +err >C, D, Mt
and/or
it n,+err <C; 0D_,; OMt,

set node i “endangered”.

The manager also assesses the need to take aatied bn the ability to sustain prey
on a node and a corresponding threshbldt) is set.Mct represents another type of
warning signal. It relates to the preservation anttie will to recover the ability to
sustain prey of a single patch (node). In otherdspif the ability to sustain prey
of nodei is lower than the thresholct the manager will act trying to reduce the
number of prey on that very same node. Howeveraaager might hold his/her own
views or estimates of the ability to sustain préyhe node C), hence a variabl¥
that represent a manager’'s own view of is introdudéne view of a manager has
effects on the ability to sustain pre§)( and thus a manager will always over or
underestimate the ability to sustain prey of a Hijgecode i. More precisely,
considering—20<V < +20, a manager will take action based Mot according to
the following rule:

if C +V <Mct

set node i “endangered”.

The manager selectively takes action to protect ria@st endangered nodes.
Endangered nodes are those neste¢endangered” by the rules described in this
section. A manager takes action by manipulatingcttet of movement (weights) of

the edges. Increasing and decreasigy bears a fixed cosMci, Mcp respectively)

and a maintenance cost. Maintenance costs refeextonple, at the necessary costs
to maintain a tunnel, a bridge or an electrifiesici® The maintenance cost is
calculated as the natural logarithm of the absolatee of the original Euclidean

distance used to compute the weight of edges at @irfive,, ) and the actual weight

at time-stegt we;, ; thus, the maintenance costhi‘é{;vvejO —wqjt‘. The use of natural

logarithm is given by the negative returns of saaflenaintenance cost. Increasing

we

. imitates the building of fences and other acedtiaimed at preserving
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predetermined areas from predators and prey (atstisige other human activities

other than the manager are not taken into accowhtle decreasingve; mimics the

building of tunnels, bridges, corridors, and othegans that facilitate the diffusion of

species from one patch to another.

However, the manager is able to act upon the lapsonly if the budgeB] s/he is
allocated covers for both the maintenance as welfixed costs. Every time a
manager takes action, he/she has to check whetkebudget is sufficient. For
instance, if a manager needs to act upon diffenexies and thus edges that are
connected to these nodes, and wants to increassogief movement towards one
node, or decrease the cost of movement towardsh@natode, s/he will assess
actions and for every action s/he will have to gerf the following check, thus

actually solving a maximisation under constraints.

if (B - In‘we”.O - We; ‘)> M, (if increasing cost of movement)
increase WE; by S
if (B - In‘weqj0 - We;, D > M, (if decreasing cost of movement)

decrease WE; by Sp

As the aim of the paper is centred upon the abilitg manager to alter a landscape
and look at the landscape itself from a networkspective, parameters regarding
predators and prey are kept constant at the meaislased in Chapter 6. Variables
concerning the manager such as the budget B)zeiey population thresholdM(,
andMt,), the increased and decreased cost of movemesvéoy action§ andS),
the fixed costs sustainedl¢, and Mcp), the view of the manageW), and the
possibility to miscalculate the predator and pragnbers €rr) are varied throughout

the simulations as depicted in Table 7-1.

Table 7-1 Managing Landscapes: ABM input parameters

Simbol Variable Name Value
N Number of nodes 10
E Number of edges 45
we Cost of movement (weigh) | ¥21es according to manager actons (MA
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Simbol

Variable Name

Value

ti

Time-lag of recovery

5

C Capacity of a node 100, varies according to sinanatvents
n, Initial number of prey 25*10
Pr1 Prey reproduction rate 0.25 (25%)
Pm.1 Prey natural death rate 0.10 (10%)
. Poisson distributed with mean 30 calculat¢d
S Prey movement ability at every time-step
Dy Prey density upper limit 0.9
D1 Prey density lower limit 0.15
n, Initial number of predators 10*10
P2 Predator reproduction rate 0.2 (20%)
Px2 Predation probability 0.2 (20%)
P2 Predator natural death rate 0.06 (6%)
S Predator movement ability ;’:)ésvséc;; S:ﬁtgztggd with mean 60 calculat¢d
Du, Predator density upper limit 0.6
T Predator handling time 3
B Manager budget (does not 100, 250, 500
accumulate)
\% Manager view of capacity -15, 0, 15
. . . Yes/No variable if Yes, error varies at evefy
err Errors in counting species time-step
Mty Manager Upper threshold 0.6, 0.8
Mt, Manager lower threshold 1.2,1.4
Mct Manager capacity threshold 50, 70, 90
Mcp Cost of decreasinge 50
Mc Cost of increasing 100
Amount ofwe increase in case of
S . . 100
action that increasese
S Amount ofwe decrease in case of 10

action that decreases
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7.1.4 Running the model

As explained in section 7.1.1, the landscape lie hepresented by a fully connected
network and internal species parameters are kemtaot during the simulations,
while parameters regarding management decisions vareed as reported in

Table 7-1. Managers are able to act upag, since the purpose of this chapter is to

shed light on the impacts of simple managementsd®ts on the landscape structure
(as well as explore how corresponding landscapectstres affect predator-prey

levels). Structural properties are here measur@davierage closeness centrality,
global efficiency, average local efficiency and @age strength (see section 3.2 for in
depth information on the metrics used). Averagenrgfth is used instead of average

degree given that weights on edges exist.

The model runs for 10000 time-steps and is repe@@dimes per parameter
combination. From Table 7-1 is easy to infer thl parameter combinations based
on management decisions are explored. The landswtp@rk is recorded at every

time-step as management decisions may algr according to the rules outlined in

section 7.1.3. Moreover, prey and predators leadsrecorded at every time-step at
the network level. Differently from the model pressd in Chapter 6, here only
network levels are analyzed, but population leagld network metrics are collected
at every time-step (as they may change at every-st@p). Figure 7-1 is a snapshot

of the model interface used in NetLogo 4.1.
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Figure 7-1 Snapshot of the Netlogo interface
(Own elaboration).

7.2 Results

The analysis of the model centres upon the stractproperties resulting from

management decisions. The key variables of intenesthe following (numbers in

parenthesis refer to sections in the thesis wheepth information on each of the
metrics can be found):

* average closeness central{fgection3.2.1)

» average local efficiencfsection3.2)

» average strengtfor average weighted degree) (section 3.1 a2d 3.

« global efficiencysection3.2)

All measures used to assess the structural prepatithe networked landscape have
the same ecological meaning, as in Chapter 6. Tdieyelate to the ability to
facilitate or impede diffusion/movement from onegbato another. Amongst the
metrics proposed, global efficiency is the meadhet better captures the overall

ability of the network of diffusing species (preola and prey). All the metrics used
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depend on management decision (the alteratiow&f). The evolution of network

measures over time is analyzed. Thus time serieewiork metrics are considered
as the best method of analyzing the results. Howewe standard statistical time
series analysis is used given the limitation okéheechniques explained in section
5.2. In other words, in order to look at how diffiet structural properties influence
the probability of coexistence, the evolution ofwark metrics over time has been

used (as shown in Figure 7-2).
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Figure 7-2 Global efficiency vs time

Left Figure represents a landscape on which coexece is highly possible, while right Figure
represent a landscape on which total or predator @inction is very likely. y and x axes are on
different scales as what is important is the qualétive difference in the global efficiency
evolution, independently of the actual values. (Owelaboration).

Looking at Figure 7-2 two different patterns emerbiee pattern on the left displays
convergence and stability, and it indicates highr@babilities of coexistence, while
the pattern on the right displays two critical s#iions and corresponds to systems
that are more likely to shift basin of attractidthere, as in the previous chapter, a
change in basin of attraction occurs if speciespmsition changes; three basins of
attraction exist, one in which species coexist, mnehich predators go extinct but
prey survive, and one in which both, predators prely go extinct. Thus, it is
possible to assess the resilience of the systerdefased at the beginning of this
chapter, by looking at the two distinct patternsualized in Figure 7-2. Figure 7-2
clearly shows a difference in the evolution of glblefficiency. Figure 7-2 is an
example of two main different patterns observedr dd480 similar figures (216
parameter combinations times 30 repetitions). THiferent patterns as reported in
Figure 7-2 influence the resilience of the systendefined at the beginning of this
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chapter. As the analysis can not be based onlyisralintuition, global efficiency
variance and has been calculated (that is the destaistical moment). Variance,
and higher statistical moments relate to the dhgtion of the time series thus
highlighting characteristics on the amplitude amdgible transitions of such series.
Moreover, they are the simplest tools to asse$ardifces in patterns such as the one
visualized in Figure 7-2.

Other methods can be used to assess critical ticarssin time series or to highlight

how chaotic is a time series. These techniqued) ascthe use of Lyapunov and
Hurst exponents, are prone to different interpretat and different methods are
actually used for their calculations. For this mgsthis thesis prefers to use the
simplest possible tool that is able to deliver niegiul (insightful) results given the

models presented, and the intuition given by thsuali results of the model. This
approach follows the modeller's paradigm that it usnecessary to increase
difficulties and complexities when other, simpledaeasier to use instruments are
available. Table 7-2 presents the two classificeti@tionales used in order to divide
the evolution of networks into two main grousnally, the author is aware that
parameters configuration has an effect on the fmbtyaof coexistence and thus on
the resilience of a system. However, the aim of thapter is to analyze how the
evolution of structural properties influences tlesilience of the system portrayed.
Thus the analysis will concentrate on the evolutdrglobal efficiency over time

starting by the visual results and intuition aslaix@d above.
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Table 7-2 Rationale of time series classification

Groups of time
series
Group O Group 1

Classification type
Ist: Variance var close to 0 var >0
[Ind: Higher moments: sdskew <or close to 0.025 sdskew >0.025
sd of skewness@skew AND AND
sd of kurtosisgdkur) sdkurt <or close to 0.05 sdkurt >0.05

Note: variance and higher moments refer to varianceand higher moments of the evolution of
the global efficiency metric

Variance of global efficiency can be used as a toohssess the probabilities of

changing basin of attraction as also shown in lEguB.

coexistence—| WD) o]
-
@ predator extinction| @ o o} CoO0 oo
total extinction=] o o O 0O @@o oo o OuEDI0
T T T T T
oo .0oo om ooz 0oz
egvar

Figure 7-3 Time series Ist classification
(i.e. classification of the basin of attraction basd on variance of global efficiency (egvar) (Own
elaboration).
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More precisely, Figure 7-4 divides the predatorygyatcomes into two groups based
on the structural properties of the evolving netwadn fact, it looks at the evolution
of global efficiency. The first group of time segighoted as group 0), has variance of
global efficiency close to zero (or in the neighttmod of 0), and resembles the
pattern visualized on the left of Figure 7-2. Tirstfgroup (or group 0) allows for
high probabilities of coexistence (0.95 or in tfe4d8% of cases). However, even if
the evolution of the networked landscape resemttiespattern followed by the
second group, there is still a probability thatyoptey survives, i.e. there is still a
probability of a change in the basin of attractienth the probability of predator
extinction close to 0.05 (or in the 4.51% of cases)

The second group of time series (noted as groupak)yvariance of global efficiency
>= (0 (where= Odenotes in the neighbourhood of 0), and corresptmdhe pattern
visualized on the right of Figure 7-2. If the netked landscape evolves over time
resembling this pattern, total extinction has antpgobability of occurrence (0.77 or
in the 76.92% of cases); predator extinction hawderate probability of occurrence
(0.21 or in the 20.51% of cases), while coexistesceery unlikely (probability of

coexistence being 0.03 or in the 2.56% of cases).
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Figure 7-4 Probabilities of shifting basin given $t classification

i.e. probabilities of coexistence, total extinctiomnd predator extinction given variance of global

efficiency. Groups are characterized as in Table 2; where group 0 characterizes runs in which
variance of global efficiency is close to 0 and gop 1 has variance of global efficiency >0 (Own
elaboration).

Moreover, it is possible to classify the two diffat clusters of global-efficiency

evolution over time by analyzing higher momentsgtdbal efficiency. Here, the

author of this thesis recognizes the arbitrarine$sthe approach. However,

increasingly higher moments of the global efficigniene-series have been tried so
as to look for the “lowest higher moments” thatdda a perfect classification of at
least one basin of attraction (i.e. total extinatio this case). As a matter of fact,
looking at higher moments of global efficiency (iskewness’ standard deviation
and kurtosis’ standard deviation), it is possildehtive a more precise division, as
visualized in Figure 7-5. The classification basedhigher moments clearly divides
total extinction from the other two possible out@sm(coexistence, predators’

extinction) as it is shown in the following figure.

158



@total extinction
D predator extinction
D coexistence
@
080
]
.'
&
]
[ ]
070+
= o
=3
- L]
@ 'f
&
L]
B0 &
=]
"
050
Q
T T T T
025 030 035 040
sdskew

Figure 7-5 Time series lInd classification
i.e. classification of the basin of attraction bagkon standard deviation of skewness (sdskew) and
standard deviation of kurtosis (sdkurt) (Own elaboation).

Recalling that 216 parameter configurations exiss indeed valuable to be able to
classifying different simulations runs independgritbm their configuration. Being
able to classify all the different simulation runsking at the evolution of structural
properties, more precisely, at the evolution of pse dimension (one variable, one
structural property in our case), allows to asskesmportant impact that network
metrics have on population dynamics. Based onrEi@eb and on higher statistical
moments, it is possible to divide the evolutiongbdbal efficiency into two main
groups (as before). The first group (noted groups @haracterized by low values of
higher moments of the evolution of global efficignover time, being standard
deviation of kurtosis lower than the neighbourhod@.05 and standard deviation of
skewness is lower than the neighbourhood of 0.02%he evolution of global
efficiency over time has characteristics belongmghis first group (noted as group
0) in Figure 7-6, it will be highly unlikely thabtal extinction will occur, although it

may be possible that a change in the basin ofctittrawill happen, as probability of
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coexistence is close to 0.91 (or 91.40% of casds)ewprobability of predator
extinction= 0.09 (or 8.60% of cases).

The second group (noted as group 1) is charactetigehigher values of higher
statistical moments of the global efficiency timeries; more precisely, standard
deviation of kurtosis is higher than 0.05 and ssaddleviation of skweness is higher
than 0.025. If global efficiency follows the patiecharacterized by this second
group, as Figure 7-6 clearly shows, total extirnctiwill most likely occur, being

probability of total extinctiors 1.
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Figure 7-6 Probabilities of shifting basin given Ind classification

i.e. probabilities of coexistence, total extinctiomnd predator extinction given the groups defined
in Table 7-2. where group 0 characterizes runs iwhich the standard deviation of kurtosis
(sdkurt) of global efficiency is < 0.05 and the stadard deviation of skewness (sdskew) of global
efficiency is < 0.025. Group 1 represent runs in wbh the sdkurt of global efficiency is > 0.05
and the sdskew of global efficiency is > 0.025.0n elaboration)
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7.3 Discussion

The model presented in this chapter is an extersfitile model analyzed in chapter
6. However, the model presented in Chapter 6ndidexplicitly look at possible
management interventions on a landscape. Althoegbgnizing consequences of
habitat fragmentation on the resilience of simptelegical system is important,
understanding consequences of simple managemategés is crucial in order to
assess possible outcomes that may enhance or rédeicesilience of a simple
ecological system. Moreover, looking at possibleagement strategies also enables
to start to understand how management can actadllyuncertainty to the whole
system. Further, looking at the implementation chnagement strategies may
facilitate the recognition of which actions may teysor lower the resilience of a
SES. .

The model presented here assumes that manageméuelyacpursues the
maintenance of the system in a specific basin wéaton (i.e. coexistence) and is
able to alter the landscape thanks to technologiohltions in order to favor the
achievement of such objectives. Nonetheless, theonachieve coexistence and the
technology available to reach such purposes mag hewntended consequences.
Unintended consequences (here the transition teva lmasin of attraction where
either of the two or both types of agents go exlintay arise, in case of managers
possessing poor or wrong information (the lattep theing represented by the
parametererr andV), but it may also arises due to the complexitied the non-

linear dynamics inbuilt in the ecological system.

As the complexities inbuilt in SES are difficult tonderstand, surprise is always
possible. As an example, of possible surprises rgéed by management paths
chosen, Liu et al (2007: 1514) report the following

Smelt (Osmerus mordax) was initially introduced to
Wisconsin as a prey species for game fish suchadieyes
(Stizostedion vitreum), but smelt ate juvenile wgds
leading to loss of walleye populations. In Pugetur&h
growth management policy has caused urban density t
intensify inside the urban growth boundary while
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unintentionally facilitating sprawl outside the arb growth
boundary

Moreover, given the complexities described abowgemplanning possible protected
areas, not only predator-prey relations need tdaken into account, but also the
presence of humans. Establishing protected areast carefully planned, can have
unintended consequences. High-quality panda haligatexample, has degraded
faster when a protected area was established,bidfane the creation of the reserve
(Liu et al., 2001).

Further, management paths that are thought todeahse of the ecological system
degradation could result to be quite the oppoditee Kristianstads Vattenrike has
been established as a protected area under the aRa@wmnvention (is an
intergovernmental treaty on maintaining the ecalafgcharacter of their wetlands of
international importance). In protected areas sbelKristianstads Vattenrike human
activities such as grazing were not allowed as theye thought to be one of the
causes of wetland’s degradation. However, as Olssbnal. (2004) have
demonstrated, without grazing, the wetland wasgresvn. This consequence led to
rethink management strategies and allowed humawitees, such as grazing, in the
Vatternike. Grazing is now perceived as an impar@spect for conserving the
wetland system. (Olsson et al., 2004).

The model presented in this chapter is a step tisvéine understanding of the
interplay between humans and nature. Given théegies and the behavior of the
manager, according to the rules expressed in se¢tib.3, the landscape is altered.
Looking at the evolution of the landscape’s streadtyproperties, it is possible to
assess the probability of maintaining a determin&sin of attraction; that is, simple
rules give rise to different landscape structuresthese structures allow us to assess
possible effects on predator-prey dynamics.

Moreover, while in Chapter 6 the landscape is dlesd as an un-weighted,

undirected network, here the landscape is vieweal wsighted although undirected
network. Global efficiency has been proposed asttmsis” measure of the
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structural properties. Global efficiency has thmsaecological meaning as the other
metrics presented (i.e. average closeness ceptralierage local centrality, average
strength), but is more suitable to be applied i ¢hse of weighted and not fully
connected networks as explained in section 3.2asMiéng global efficiency through
time, it is possible to reach the following mainnclusions. First, structural
properties are a promising indicator when assegsiagesilience of an ecological
system. Second, if no critical transition occurdha evolution of network metrics,
the system is more likely to remain stable, thusyisfy in the same basin of
attraction. On the other hand, if critical trarmis have occurred in the past, the
system is more likely to approach a threshold aedcé change its basin of

attraction.

The main conclusions above could have importantcpapplications. As of now,
few studies have concentrated on how the underlyuaglving network alters
dynamics over time. The model presented is a ditstmpt in this direction. Policies
could then look at problems of structural propertend how they impact upon
population dynamics, leading to better plan resem®vorks based on the corridor
ecology approach, or foster new understanding aqubrénenting new ways of
managing natural resources and maintaining bioslityer-or example, it is possible
to devise interventions that aim to exclude speftim® a certain area (e.g. through
fencing) in order to maintain or to allow vegetatim grow back again. Excluding
species from a certain area is likely to give tsa critical transition in the network
metrics over time such as the one presented inr&ig2. Therefore, it may be best
to search for possible alternatives such as thatiore of protected areas that find
themselves geographically near the one that neebls fenced, so as not to allow a
critical transition in the structural propertiestbé& network of protected areas.

Extensions of the model are possible, but may coabethe expense of
methodological problems; i.e. the risk that the ABcomes too complicated (see
section 5.2.4) and provide few meaningful insighis addition, complicating the
model further may also give rise to errors andauts (see section 5.2.3) that may be
difficult to discover. Nonetheless, the model cobkl extended by adding possible

perturbations on the capacity of the nod€} énd/or on the weight of the edges
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(weg;) and/or on the recovery of the node’s capacity ¢r by endogenising the
management thresholds and viewdt , Mt,, and Mct). Extending the model
considering different type of perturbations (ortdibances) could deliver insights on
which simple management strategies are more efeestireducing the probability of
shifting basins of attraction. Extending the modgl endogenising management
thresholds (on which rules for altering the langecare based) may allow for the
introduction of learning, although as in the presiccase, the model may loose its

value as it can easily become too complicated agige meaningful insights.

To conclude, by altering the connectedness betwe&tiches (nodes), simple
management decisions have important consequencgeeaiator-prey dynamics.
Strategies of managing landscapes differ accortbngianagement objectives, and
ability to learn from or imitate successful (or hetrategies implemented by other
managers, with whom information is shared. The m&epter looks at how diverse
strategies evolve depending on authority of a mansgetwork. The existence of
multiple managers in a network, that are indivitiuable to alter only a fraction of
the landscape, is the next step towards a more redrapsive integration of Social
and Ecological Network Resilience. Chapter 8 wilesent a model of strategy
diffusion looking at how different atuhority didtttions give rise to more

homogeneous or more heterogeneous strategies.
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8 The Social System: Strategy Diffusion between
Managers

Chapters 6 and 7 introduce models that mainlyreamon the ecological side of a
SES. Chapter 6 looks at network effects on a smgaological system, while
Chapter 7 introduces feedback mechanisms betweerdblogical and the social
system; however, in Chapter 7 only one single mangakes action. This chapter
expands on the previous ones and deals with tisteede of multiple managers and
management communities and the interaction amathgsh. In other words, this
chapter deals with the diffusion of possible difer management strategies
(management paths) betwedmanagement units. This chapter can be thought as a
extension of the manager unit of Chapter 7, althong explicit reference to the
ecological system is made. Moreover, Chapter 8 dudsexplicitly analyze the
resilience of a system. However, resilience isratiréct consequence of the number
of options existing in a system. More preciselymbére room for pursuing novel
strategies exists, a system will be more resil{embre options), while if strategies
are homogenous and there is no room for experirientand for developing new
management paths, a system is likely to be lesigerdégless options). As of now, it
is best to keep separated the ecological and tbelspart of a SES due to the
complications that arise when the systems are aedlyn conjunction. In other
words, there is a need to first understand howctiral properties influence the
ecological part of the system, analyze possiblelldaek mechanisms and effect
between the social and the ecological systems fiaatly, looking at an expanded
social system.

Humans have distinctive abilities, as extensivetplaned in section 4.1.2. As
already seen in the introduction to Chapter 7, dnsrare able to forecast, within the
limits of prediction regarding complex systems, amghursue different management
paths. Moreover, managers communicate with oneratheas and experiences.
Communication is a fundamental feature for develgpflexible strategies to
adaptively manage a SES. Finally, thanks to tedgyl humans are able to

implement a devised set of alternative strategeeg. (see section 7.1.3) having
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sensible effects on the ecological system (as set#re model presented in Chapter
7). Therefore, human (inter)actions play a crudé in influencing the resilience of
a SES. More precisely, the ability to foresee ansye different management paths
and the technology used to implement differenttstias* depend on the ability to
learn, interact and communicate. Humans that ale tabalter or to have a say in
devising strategies for managing an ecologicalesystan be defined as managers.
Therefore, in managing natural resources, it issorable to assume that if no
interaction occurs, each manager adopts a perssinailegy, given the inputs
received from the environment, but independentbmfrthe behaviour/choices of
other managers in the network (Castellano et &Q92 On the other hand, if
managers are able to communicate effectively, opsjiideas, and strategies may be
exchanged and diffuse. These distinctive abilitelow humans to adaptively
manage a SES. In order to adaptively manage a SESheeds to definadaptive
capacity

Following Nelson et al. (2007: 397) adaptive capyaacan be defined as the
“preconditions necessary to enable adaptation,udiety social and physical
elements, and the ability to mobilize these elesiertdaptive capacity is a crucial
attribute of a resilient SES, being the capacitynenage a SES so that the SES can
maintain itself in the same basin of attractionspi® internal and external shocks
that may affect the ecological, the social or bettmponents of the system.
Moreover, adaptive capacity also allows managetsytto shift the SES towards a
more desired (according to who manages it) basattodction. Adaptive capacity, as
the definition hints, is time and space specifi@ttis, adaptive capacity is local,
being dependent on elements that are specificgivean community or environment
at a given time. Nonetheless, it is possible tangepreconditions necessary for
adaptive capacity that are common to all commusiied environments at all times.
These preconditions, from here on named generiptagacapacity, depend on
ideas, opinions, and hence management strategée®tist in the SES. Thus, it is
important to assess the diversification of idegsinions and strategies as they

represent very important determinants of adaptagacity.

% In this chapter strategies and management pathssad as synonyms.
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In order to clarify the concept of generic adaptbapacity, it is possible to look at
real world example and plan a scenario with highbmogeneous societies. A
determined management path is thought to be cadsiggadation in the whole SES.
A new management strategy is devised by a highigdgeneous society. The new
management path involves declaring the Kristiarsstaatternike protected area. No
human activity is allowed inside the protected afdae manager(s) that devise this
strategy are those with the highest power to imiheebehaviours or opinions through
reputation and legal means. In a highly homogenesmgsety no one is able to
challenge this strategy. Although the technologg passible solutions are at hand,
as demonstrated by Olsson et al. (2004), new mamage paths will not be

implemented, thus in our hypothetical scenario, wetland will overgrow thus

nullifying the purpose of the implemented strategy.

Generic adaptive capacity not only results from ltiffierent managers perceive the
world and the range of their managerial objecti\mg, also, and foremost, on the
ability of these managers to exchange, learn, adaphte their strategies from and
with each other. Communication as well as the ers# of different management
paths is crucial for adaptive capacity and thusddaptive management of a SES.
The existence of different strategies is importbont adaptively manage a SES,
consequently it is important to understand unddckvhonditions homogenization of

management paths is more likely to occur. Moreipedg, if authority is defined as

the power to influence behaviours or opinions thfoteputation and legal means:

» Are there different authority structures that favthe homogenization (or
synchronization) of management strategies, thusicied the adaptive
capacity to manage a SES?

 What is the importance and what are the conseqaeatéaving an
“external force” that pushes management towardsif&ed opinion, idea

and consequently, towards the existence of one geamant path?

In order to answer the questions posed above, niecessary to understand what

variables are fundamental in order to enable masagesynchronize their strategies.
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Management strategies depend to some extent oanag¢rspinions and the way an
individual perceives the world given his entrenchpstsonal, social and cultural
values forldviewfrom here on). The chosen strategies often departtie network
of contacts and the authority of this of these aotst (Henrich, 2004). In this context,
the role of worldview often explains the difficulty diffusing novel ideas that may
counter the entrenched worldviews that exist imdigular community, even though
such new strategies potentially allows for improeets in the management of
natural resources (Deffuant et al., 2005). Deffietrdal. (2000) proposed a model of
opinion diffusion, were people interact only if thevorldview is similar enough,
while they do not interact if the magnitude of difnce in worldview exceeds a
predetermined threshold (please refer to secti@r Jor in depth information on the
Deffuant model). The original model has been sulidiedifferent settings and with
several minor modifications (Castellano et al.,2(Deffuant et al., 2005; Stauffer et
al., 2004), but none deals specifically with issakauthority and allows not only to
assess the presence of strategies, but also thteintal synchronisation. Moreover,
it is reasonable to assume that strategies maygehamer time due to internal
(change of opinion, or idea, or learning etc.) axternal (change in management

objective, new constraints etc.) factors.

Societies where strategies are highly synchronisgaesent more homogeneous
societies, where less room for experimenting wetvmdeas is allowed. If no or less
room for novel strategies is permitted, imitatioh sirategies implemented by
managers with higher authority may lead, in theglam, to a reduced generic
adaptive capacity, or in other words, a reduceditalip adapt to slow and fast
changes surrounding environment (Levinthal & Mart®93). As an example, it is
possible to imagine a particular community/socigtgt has the technology and the
resources to deal with shocks that affect the enmrent in which they live, such as
climatic changes, lakes’ eutrophication, and cdrlaching. The community is
highly homogeneous, thus only traditional strategiee explored. If the traditional
strategies fail, and there is no room for experitimgnnovel strategies, the society is

bound to not to be able to adapt and risks to pséa
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As exemplified above, in highly synchronized, hehoenogeneous societies, where
strategies are similar, and no room for novel expentation is given, managers may
be unable to understand the appropriate way to wdéhl a highly unpredictable
environment, where extreme events have a non-zetmapility to occur. Not being
able to express new ideas that lead to new stestdgivers the generic adaptive
capacity of the society itself, impacting on theptive capacity and ultimately on

the resilience of the whole SES.

8.1 The Model

Let's assume that strategies used in order towihlour surrounding environment
(ecological system in our case) vary with time.’d @lso assume that these strategies
are not fixed but they can change (“oscillate” wahgiven frequency or time
interval) over time and a mechanism that synchesmindividual strategies exists.
Under these conditions, the homogenization probleecomes a problem of
synchronization. The pioneering work of Kuramoto94{%) and subsequent
modifications (Arenas & Pérez Vicente, 1994; Plachet al., 2006) become highly
relevant in this type of analysis. The model présgrby Kuramoto (1975) is very
generic, but is still able to highlight the fundanted drivers of spontaneous
synchronization. The model refers to an ensembtesoilators that have an intrinsic
frequency (i.e. oscillators move with different &gal”); all oscillators influence one
another, so that the frequency at titms given by the intrinsic frequency plus the
influence that oscillators have on one another. iHfieence or coupling, can be
thought of as a “force” that draws the oscillatdcsvards a common centre.
Numerous applications and modification of the Kustmnmodel exist in biological
sciences, engineering, and computer science (feférenas et al (2008) for an in
depth review of the Kuramoto model). Applicatiorfstiee Kuramoto model can be
also found in social sciences. More precisely, i@ppbns in social sciences mainly
refer to opinion formation (Pluchino et al., 20@8)d economics and finance, where
synchronization is normally assessed looking atetations (Forbes & Rigobon,
2002; Onnela et al.,, 2003). The Kuramoto model hesn widely studied on

different network topologies (Arenas et al., 2008).
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Humans communicate and exchange ideas and opirtlmosigh networks of
contacts (Boccaletti et al., 2006; Bodin et alQ@0Caldarelli, 2007; Dorogovtsev &
Mendes, 2002; Galstyan & Cohen, 2007). These né&sniafluence the possibility of
synchronization. Although in a different contextdd® and Norberg (2005) have
presented a very interesting result relating theotedness of the underlying social
network and the ability of the social system toflegible. The more a community
behaves as a single entity, the more there iskathit the resilience of the overall
SES is reduced, as no room for novelty and expertatien is allowed. Nonetheless,
a degree of connectedness is necessary so aste¢o hosel ideas and flexibility in

management.

In this chapter, the synchronization of strategiepends on how different people
that have the authority to manage a given systean@gers) are connected to each
other, and on how different levels of authoritylueince the synchronization of
strategies. Managers share information, ideas,i@msn and hence strategies based
on a network of contacts. Since different manageénmmmunities exist, the
network on which managers act can be thought aftaghly modular network (i.e. a
network whose density of edges within a module/comity is fairly higher than the
density of edges between modules/communities, as 8e section 3.3.5). When
acting on a modular network, every module represarimanagement community”.
Managers are able to share strategies along theirections within their community
based on their own world view and the authorityythave within the community.
Managers are also able to share strategies withageas from different
communities; in the latter case, the synchronipatibstrategies will depend on their
own world view and the authority of the whole commity to which a manager

belongs.

8.1.1 Constructing the Model

As mentioned in the previous section, manager®aa modular netwofR Every

node of such a network represents a single managermodular network is created

!> please refer to Appendix Ill, section llLiiifthe code of the model presented in this chapter.
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by joining different random networks that represedifferent management
communities. More precisely, the modular networkspalized in Figure 8-1, are

created as follows:

1. 10 different random networks are generated withn@fles each, so as to
represent a network of management communities rbgd200 people (10
management communities, each having 20 managers).

2. Each of the nodes has a probabilipy to be connected to another node
belonging to the same initial random network.

3. Every node of the ten different networks has a @bdlty p, to be
connected to a node of a different initial randagtwork.

4. P, > Py Where p, is drawn from a random uniform distribution betwee
0.9 and 1, whilep,, varies from 0 to 0.2 with a 0.025 increment, hence

creating 9 different networks, so as to mimic a olad network whose
modules (or communities) are very densely connectechpared to the

connections between modules (communities).

Once the network is created, attributes are asgdigmevery manager as follows:

1. The community to which a manager belongs, calcdlatgh the algorithm
proposed by Newman and Girvan (2004) and repontegdtion 3.3.5ci
2. Initial strategy of managaer, represented by a number drawn from a random

uniform distribution between -1 and &;

3. Authority that a manager has within the communRyy that assumes values
in the interval [0,1]

4. Authority that a management community has whensdeath managers
belonging to other communitie®h that assumes values in the interval [0,1]

5. Its own world view, represented by a number dras@mfa random uniform

distribution between 0 and v,
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Figure 8-1 Networks visualization for different vdues ofpq.
where p,. =0 (A), 0.05 (B), 0.1(C), 0.15(D), and 0.2(E) (Ownld@oration).

A general parameter representing the “strengttédroéxternal force is proposed:.
When a = 0 no external force acts upon the system, while whenl a powerful
external force pushes the whole system towardshsgnization. This external force
can be a homogenising factor that exists in a givegion of management
communities such as strong cultural values or imlg beliefs or the external

influence of an organization such as the UN.
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The dynamics on the network unfold as follows:
X =% +Y,0}" Osinfx; - x ) - Dsin(x,)
jOK
when world views throughout the managers differ,

and as according to:

% =x +3 0, Osin(x, - )-a Osin(x )
jOK
when no different world view exist.

Where:

K = first neighbours of node

o, =Pw, -Pw if i,j0ci ANDif o, =Pw, -Pw =20
Uij:ij_Ph if i,jOci AND if Uij:ij—PQZO
o, =0if Pw, -Pw <0 OR Pb -Ph <0

If o0,=0than o =0

W :‘Wi _Wj‘

[eq. 8-1]

[eq. 8-2]

Constraints ong; are imposed, as it is reasonable to assume thedreager will

synchronize his/her strategies only with those rgarathat have a higher degree of

authority.

173



8.1.2 Simulating the Model

Different modular networks with increasing,. are constructed. Manager's

parameters are initialized 50 times for each ndtywand the dynamics represented
by eq.8-1 and eq.8-2 are run for 1000 time-step}. (t

The model is run for differentr values (i.e. 0, 0.25, 0.5, 0.75, and 1) and for
different authority distributions. Authority withitrommunities is distributed as

follows:

1. Pw is normally distributed with mean 0.5 and standdediation 0.125. If
values are above 1 or below 0, they are reportedetequal to 1 and O
respectively, so that: § Pw< 1.

2. Pw is exponentially distributed with one agent havenghority = 1. If values
above 1 or below 0 exist, they are reported toeleal to 1 and O

respectively, so that: 9 Pw< 1.

Authority between communities is distributed asowk:

1. Pb is equally distributed (every community has thensaauthority) with
value 0.5

2. Pb represents a more “democratic” distribution of hauity between
communities, and thus is represented by a norns#ilglition with mean 0.5,
and standard deviation 0.125. If values above batow O exist, they are
reported to be equal to 1 and O respectivelyhab 0<Pb<1.

3. Pb represents a highly hierarchical system in whicle @ommunity has
Pb =1 and the other communities hatd exponentially distributed between
0 and 1. If values above 1 or below O exist, theyraported to be equal to 1

and 0 respectively, so that<(Pb< 1.

Table 8-1 reports a summary of the different coratiams explored and the symbols

used to represent different authority distributions
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Table 8-1 Symbols used and corresponding authoritgtistributions

Distribution of authority Distribution of authority
Symbol - : iy
within community between communities
dexp exponential normal
dnorm normal normal
egexp exponential equal
egnorm normal equal
exexp exponential exponential
exnorm normal exponential

Simulations for eq.8-1 and eq.8-2 are performedliiberent values oty (beinga =
0, 0.25, 0.5, 0.75 and 1), for different values mf (being p,.= 0, 0.025, 0.05,

0.075, 0.1, 0.125, 0.150, 0.175, 0.2) and for tkarity distributions described in

Table 8-1. Furthermore, it is important to notet @l values that represent different

authority and different worldviews are not to beempreted in absolute terms but

only relatively to other values of the same attiébu
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8.2 Results

In order to assess if different authority distribos lead to different synchronization
states at the end of the simulation (1000 timesjtegverage “strategy values” of the
50 initializations are collected for every peribdTo assess the synchronization
degree at the end of every run, a synchronizataarpeter is calculated following

Pluchino et al. (2006).

r(©) =1-UNY (x () - X O leq. 8-3]

The system is fully synchronized whe(t) = . Qnce the synchronization parameter

given by eq.8-3 is calculated, the different dmsition combinations shown in
Table 8-1 are ranked from the most synchronizedheo least synchronized one
(ranking values from 1 to 6, with 1 being the auityadistribution combination that
leads to the most synchronized state and 6 thé $gashronized one). Ranks are
used as the focus is on how different authoritytrithgtions lead to different
synchronization states, hence, the focal poinnhisvhich authority distribution leads
to the most synchronized state relatively to theeotuthority distributions, rather
than in absolute terms. It is important to lookhe relative synchronization in order
to highlight how differences in authority distribwts across and within management
communities lead to relatively different synchradzstates. Uncovering the relation
between synchronization and authority distributicléows understanding how

different structures of authority lead to differeleigrees of homogenisation.

Figure 8-2 reports rank distribution and the typawthority distribution used. Figure
8-3 reports the mean rank(tf) for different authority distributions, Figure 8-4
reports median rank(f)) for different authority distributions and Figu8e5 reports
the mode rankr(t)) for different authority distribution. All figuremdicate which of
the different authority distribution combinatiorssthe most likely to lead to a more

synchronized (homogeneous) state.
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Figure 8-2 Distribution of rank versus authority distribution
Rank is displayed on the y axis, while different atinority distributions are displayed on the x

axis for eq. 8-2 (no wv) and for eq. 8-1 (wv). Higkst homogenization is reached at rank 1, lowest
at rank 6 (Own Elaboration).
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Figure 8-3 Mean rank versus authority distribution

Mean rank for the different simulation performed is displayed on the y axis, while different
authority distributions are displayed on the x axisfor eq. 8-2 (no wv) and for eq. 8-1 (wv).
Highest homogenization is reached at rank 1, lowest rank 6 (Own Elaboration).
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Figure 8-4 Median rank versus authority distribution

Median rank for the different simulation performed is displayed on the y axis, while different
authority distributions are displayed on the x axisfor eq. 8-2 (no wv) and for eq. 8-1 (wv).
Highest homogenization is reached at rank 1, lowest rank 6 (Own Elaboration).
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Figure 8-5 Mode rank versus authority distribution

Mode rank for the different simulation performed is displayed on the x axis, while different
authority distributions are displayed on the x axisfor eq. 8-2 (no wv) and for eq. 8-1 (wv).
Highest homogenization is reached at rank 1, lowest rank 6 (Own Elaboration).
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As it is evident, the authority distributions haa® important effect when a
worldview is absent (i.e. following eq.8-2). Thdfeiences in our worldview, could
in theory mitigate the effect of differences in laurity, but, when worldviews are
very similar (or alternatively when cultural, sdaad personal beliefs are not crucial
in devising strategies) different distributions af@ithority give rise to different
degrees of homogeneity. More precisely, exponedistibutions are more prone to
lead to the most homogeneous states as shown uneR832, Figure 8-3, Figure 8-4

and Figure 8-5.

Moreover, most of authority distributions resulthigher synchronization wheg is

not present (= 0). Thus, it is possible, even i$ tlesult may seem counterintuitive,
that an external force that pushes individuals td&aynchronization, does actually
generate more heterogeneity. In shart,does not seem to significantly alter the

synchronization characteristics, as shown in Figu6e
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Figure 8-6 Rank for different values of alpha

Rank (y axis) from 1 (highest ranking) to 5 (lowestanking) for the six authority distributions
given different alpha (x axis) for eq. 8-2 (no wvand eq. 8-1 (wv). Authority distributions are
ranked according to alpha (i.e. which alpha valuedads to the most homogeneous state in a
particular authority distribution) (Own Elaboration ).
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The fact that the external force gives results #natnot aligned with our intuition is
common in socio-physics (Castellano et al., 20B%imilar model (i.e. with respect
to the role of external influence) that helps exptay the counterintuitive results of
the a parameter has been proposed and studied in refatiopinion formation by
Tessone et al. (Tessone et al., 2006; Tessone &,12009). The model differs from
the one presented here as its coupling is not gimgndissimilarities between
individuals and the dynamics are qualitatively @iéint since it does not take
different phases (thus oscillating strategies) attoount. However, the external force
(social pressure, advertisement etc.) is modekepegiodic forcing (e.g. in the form

C Dsin(x) ) similarly to the model presented in this chapidre external force in the
model presented in eq.8-1 and eq.8-2r(Jsin(x, )) represents a common institution

whose strength is given by the parameter The institution acts upon the whole
system and, has different effects according the duysmeity or heterogeneity of
strategies, as in Tessone et al.(2006) and Tes&oieral (2009). Despite the
differences in the synchronization of the varioustharity distributions, the
proportion of non-synchronized individuals is velgw (see Table 8-2 where
minimum and maximum degrees of synchronizationefgery authority distribution
for eq.8-1 and eq.8-2 are reported), thus, givenréiative high homogeneity that
results from the model, the external common drigenot able to act and force
individuals towards a specific phase. Moreover,ufégas 8-6 showsg seems to
significantly affect the results only when it is sabt (i.e. a = 0 thus

- a Tsin(x ) = 0), leading almost in all cases and for both eq#hd eq.8-2 to the

most synchronized state.

Table 8-2 Min and max values of synchronization aesulted by the simulations performed

authority eg. 8-1 eq.8-2
distribution min max min max
dexp 0.7982 0.8916| 0.8048 0.9260
dnorm 0.7897 0.8994| 0.8103 0.9226
egexp 0.7859 0.8800| 0.8042 0.9049
eqgnorm 0.7914 0.8747| 0.8108 0.9153
exexp 0.8016 0.8933| 0.7942 0.9282
exnorm 0.7953 0.8968| 0.8178 0.9188
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This counterintuitive result could be a consequerafe the model inbuild
characteristics, since given the dynamics of deedrin eq.8-1 and eq.8-2;, acts

upon the reinforcement of the original “strategyagdi’, hence, in presence of a
highly synchronized society, it counter-balances ¢oupling paramet@rijw”' or gy,

limiting the synchronization factor. This resuls previously mentioned, is not new
in the socio-physics domain. External forces hawtr@ng “homogenization” effect
only if an intermediate degree of heterogeneitystsxin the system (Tessone et al.,
2006; Tessone & Toral, 2009). Figure 8-7 gives suai representation of the
explanation given regardingso as to facilitate the understanding of the rexetnip
between the external force effect and homogenizatis Figure 8-7 shows, the
external force has a substantial positive effecly cat intermediate levels of
heterogeneity, while it has a negative effect (tlmwgering synchronization) at high
level of heterogeneity or very low level of hetesogity. In other words, at
intermediate levels of heterogeneity, the extefoiae will drive the system towards
homogenization, while at low and high levels ofdnegeneity, the external force
will act as a positive feedback, thus enhancingrogieneity.
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Figure 8-7 Relation between external force and hetogeneity: negative and positife effects
Positive and negative effects on homogenization apgrtrayed by the signs (Own Elaboration).

The relationship between heterogeneity and theedfiean external force can also be
applied in an archaeological context, such as the a@escribed by Nelson et al.
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(2006). In their paper Nelson et al. (2006), déschiow Mimbres villages went from

a more centralized (thus more homogeneous sodety decentralized (or more

heterogeneous society). Mimbres villages refengltages in the Mimbres region in

the modern US Southwest around thé” X2ntury AD, as during that time the
Mimbres region underwent a transition from whatcéled the classic Mimbres

period to the post-classic reorganization phasdsti¥eet al., 2006). More precisely,

regarding the aspects that more are affected lgreift management paths, Nelson
et al. (2006: 425) affirm the following:

House size and configuration and the organizatiostarage

and food preparation were not more homogeneous or
standardized immediately preceding reorganizatmm;the
contrary, they became increasingly homogeneous #ie
abandonment of Mimbres villages and reorganizatiomo
dispersed hamlets.

This can be explained by the model presented B ¢hapter as the external force
(e.g. common overarching state organization, strmrtural beliefs common to all
the Mimbres villages) acting upon all members @f tillage becomes 0 (i.e.= 0),
thus allowing for authority distributions to affettte homogenization of strategies
between different households (in this case one thayk of households of the
Mimbres villages as managers in the model presantdds chapter).

8.3 Discussion

Three main conclusions can be drawn from the residiscribed in the previous
section. First, as shown in Figure 8-3 there sgaificant difference amongst the
different authority distributions in case of equairld views. More precisely, if the
authorities of the different communities follow aexponential distribution,
resembling highly hierarchical governance strucutbe whole system becomes
more homogeneous. It is possible to argue thathhiginchronized systems are
beneficial in theK phase of the adaptive cycle as homogeneous maeagem
improves efficiency; however, a small degree of bganeity is actually beneficial
and necessary in any phase of the adaptive cydtealisws preserving strategies to

manage resources and relations (Nelson et al.,)200this context, the small degree
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of homogeneity can be thought of as a necessargitaam for the social system to
preserve valuable knowledge (“remember”) (see gedtil.1 on the adaptive cycle).

The second conclusion drawn from the model predentnfirms that authority
distributions between different management comnesitinfluence far more
significantly the possibility of synchronizationdithus homogenization of strategies
than differences of authority distribution withinet same management community.
As Figure 8-2 and Figure 8-3 show, differences ketwdistributions of authority
inside the very same community do not lead to Siamt differences (e.glexpvs
dnorm, egexpvs egnormand exexpvs exnorm, while distributions of authority
between community seem to have a highly signifiedféct. Therefore, more effort
should be put into examining cross-community rel&i as these may as well be the
drivers of strategic decisions. The third main dosion drawn suggests that for high
synchronization values, an external force causesre mdeterogeneity
(asynchronization) rather than homogeneity (synuizedion) at least in relative
terms. This result should lead to a reconsideragiathe role of informal and formal
institution in presence of different levels of hegeneity and synchronization in the
system. The so called external force can be emasi@s an overarching institution
(formal or informal) that is common to all manageasd hence management

communities who exist in the system.

Given the results of the model presented, a highrede of synchronization is
generally observed (as shown in Table 8-2). Higmbgenization is responsible for
narrowing the windows of opportunity for experimaian. Thus, high
homogenization reduces what has been previouslinetefas generic adaptive
capacity and lead to an “efficiency trap”, wherenowvel strategies are explored and
managers concentrate on a single way of dealing thi¢ environment. Managers
that are able to devise only one type/set of sirasewill refine the very strategies
they are familiar with, at the expenses of othessijmle ones (Levinthal & March,
1993; Scheffer & Westley, 2007). In other wordsnks to the available technology,
managers will become increasingly competent in gimgnthe environment rather
than adapting to it. In the long-run, differentastgies are lost thus lowering the

generic adaptive capacity. The reduction in genadaptive capacity leads to a
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system that lacks the precondition necessary faptinme capacity especially in case
of novel disturbances. In other words, such systs@s the ability to adapt to shocks
that have not been previously experienced or treahat known or expected by the

managers of a SES.

In order to be adaptive, the management of the S§t68ld exhibit some degree of

heterogeneity, if the management’s objective idind the best possible strategy

while maintaining flexibility and the possibilitpf novel ideas to emerge (Levinthal,

1997). Given the results above, highly hierarchgmalernance structure are less able
to respond to fundamental shifts in the slow vdeslthat causes the system to
change its basin of attraction. This final statememlso confirmed by a study on the

resilience of three different archaeological caedbe U.S Southwest by Hegmon et

al. (2008).

More specifically, regarding the hierarchy thus thstribution of authority, the
authors find a relation between highly hierarchicacieties (in our model
represented by thexexpdistribution) and the magnitude of the societdlapse.
Moreover, it is possible to assume that the pelpgpley in the three societies studied
(Mimbres, Mesa Verde and Hohokam) had very simflanot the same worldview
within their own community. In this context, e8can fairly represent the
diversification of strategies or management pathssgnt in the three different
settlements. As it has been explained in this papky homogeneity reduces the
window of opportunity, thus lowering the generi@aptive capacity that will reduce
localized adaptive capacity that will reduce thsilrence of a SES. Hegmon et al.
(2008: 319) affirm that in “Mimbres there are orgntative indications of social
differentiations” hence authority could have beeuadly or normally distributed
throughout the population (being here the poputatédso able to manage the
environment, thus effectively being representedh®y “managers” of our model).
Mesa Verde, present more social differentiation hoostly in the latest years, thus
again, Mesa Verde can be represented by a nornedpamential distribution within
and between communities belonging to it. Finalk/nated by Hegmon et al. (2008:
319) “in the Hohokam case, there is strong evidesfadifferential access to social

power as well as wealth and status, although tivaseintraregional variation”.
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Analyzing the three cases supports the conclusiesepted here and allows for an
understanding of the role of authority in the adeptapacity and at last on the
resilience of a SES. The three cases can be repeesdy different authority
distributions of the model presented, and as sihey, can be seen at different levels
of homogenization. These levels of homogeneity gk an important effect on the
outcome of the societal collapse, as the authdirsnaf'the Mimbres transformation
was clearly the least severe” while “Mesa Verde &lmhokam, evidenced much
harsher conditions prior to their more severe fansations” (Hegmon et al., 2008:
321), due to the rigidity imposed by a homogenesnsety and the lack of new
possible management paths that could have faeilitathe adaptation or

transformation of these societies.

The importance of the management or social systenthe resilience of an SES is
clear. Different ways to manage our landscape,emofogical system may lead to
resilient paths or may lead to painful collapsed eimanges in the basin of attraction.
Throughout history there have been different s@sethat are thought to have
collapsed due to purely ecological reasons (Diam@005). Thesis such as the one
proposed by Diamond can be and have been dispagetlie social component of the
SES is often what actually triggers transformataaaptation and in cases, a painful
shift in the basin of attraction. As Tainter poiotg (2006) a pure ecological collapse
(i.e. a change of the basin of attraction only thuecological reasons) has not been
proven as it “denies the human capacity for flexiddjustments, including

intensifying production” (Tainter, 2006: 72).

To conclude, this chapter has shown how differe@nagement systems may
actually facilitate or hinder the fostering of newanagement paths. Possible
strategies that managers could implement are eagblor Chapter 7. This chapter
starts posing question of relating authority witaimd between communities and the
ecological system that is been managed. Answennth developing questions on
issues of authority in the management of ecologisgttems may help the

understanding of how SES resilience is eroded dhef SES finds itself in an

efficiency trap. The following and last chaptertbis thesis will first summarize the
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conclusions drawn from Chapters 6, 7, and 8thearit will build a common
framework in order to unify the models presentedhis thesis so as to integrate
social and ecological networks that, as it has lEanonstrated, play a crucial role

in shaping the resilience of a Social-Ecologicattsgn.
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9 Conclusions

Linking social and ecological systems in an evajvamd complex world poses great
challenges. Linear thinking, deterministic and lolase a reductionist approach, has
proved to be inadequate to explain complexities laakaviours of such systems.
New approaches are deemed necessary in orderdp &t8ES with its strengths and
weaknesses. More precisely, this work integratésor& theoretical tools and agent
based modelling in the resilience framework smaspproach SESs from a structural

perspective.

As recalled throughout this thesis, the concepéesilience developed by Holling and
co-workers (Brand & Jax., 2007; Holling, 1973, &98lolling & Gunderson, 2001;

Walker et al., 2004) is an appropriate lens throudtich analyse and understand
spatial and temporal evolution of a SES. The conoépesilience is based on non-
equilibrium or multi-equilibrium; it takes uncentdies and surprises into account,
and looks at feedbacks and cross-scale interactdhs and between the social and

the ecological components of the system.

However, resilience concepts do not automaticalgntify a set of straightforward
metrics and techniques able to assess the statthamesilience of a SES. Given the
complexities of such coupled systems, an approaatvidg from and integrating
different disciplines, methods and tools in a ceherand rigorous framework is
needed. In this research, tools and methods prowigenetwork science (Albert &
Barabasi, 2002; Barabasi & Albert, 1999; Boccalkettal., 2006; Borner et al., 2007;
Caldarelli, 2007; da Fontoura Costa et al., 200@roDovtsev & Mendes, 2002;
Newman, 2003; Watts, 2004; Watts & Strogatz, 1988)used to analyze SES from
a structural perspective. Representing a SES ans@mble of networks is a first
step towards a network of networks representatlostructural perspective helps to
understand structural weaknesses and strengthsgétam, so that it is possible to
plan and adapt accordingly, as the relationshipumwtwy between structural
properties and functions of a complex system has becognized in different fields ,

both theoretically and empirically (Baggio et @010; Boccaletti et al., 2006; Bodin
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& Norberg, 2005; Pastor-Satorras & Vespignani, 20®04nesa et al., 2009; Stauffer
et al., 2004; Vazquez, 2006). A resilience assessifnem a structural perspective
may allow a clearer understanding of the fundamdettures of SES, enhancing
knowledge of adaptation and transformation occgrrim an interdependent and

interconnected world.

9.1 Advancing SES science: new methods and tools fo r
understanding SES resilience

In order to gain the insights presented in secti®ds 7.3, 8.3, and summarized in
sections 9.2 and 9.3, a mix of methods and tool® lmeen used throughout this
thesis. More precisely, as explained in Chapteh thesis makes extensive use of
analogy, adapting tools and methods drawn fromehfit disciplines. It combines
network theoretical methods with the resiliencenieavork and makes extensive use
of ABMs, since they are judged to be the most gpmate modelling technique
when dealing with CAS (as explained in Chapter™)e aim of this thesis is to
uncover the relation between structural propertied resilience of a SES. The
structural properties of a system are the focughef analysis in all the models
presented; nonetheless, networks are considerestais and supportive of the
evolution of dynamic processes in the models ptesem Chapters 6 and 8. In
Chapter 7, the network supports dynamic processedsadso evolves over time

according to predetermined rules.

It is well known that dynamic processes unfolding wetworks relates to the
topology and the characteristics of the networkubinch they evolve (i.e. metrics or
structural properties) (Boccaletti et al., 2006)owever, the way in which the
underlying network influences dynamics of SES i ah open question. Different
tools and methods are needed in order to underS8&&iresilience from a network
perspective. The analysis of CAS such as SES sHmildased on the continuous
interactions between the abstraction of fundamerddhbles (model), pilot studies
and experiments in order to validate or falsify thedel constructed, and actual case
studies and fieldwork. This thesis represents itisé $tep of this cycle. Agent based

models are used in order to mimic dynamics on amledying network,
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approximating reality in order to understand théuence of networks on the
resilience of SES.

Significant contributions in social sciences and,ould say, in the understanding of
SES will, in the words of Henrickson and McKelve3002: 7295) “emerge more
quickly if science-based beliefs are based ondhm fesults of both agent-modelling
and subsequent empirical corroboration.” This thésithus a step towards building
science beliefs based on ABM, accompanying the& wi&h network theoretical

tools, both set in the resilience framework.

9.2 Understanding resilience from a network perspec  tive

As stated in the introduction, two research questire central to this thesis, the first

being:

* Is it possible and to integrate resilience prinespand network theory, and if

yes, how?

To set the background in which this work has beenduacted, aspects of both,
resilience thinking and network science are intosdlin Chapters 3 and 4. A first
working definition of resilience from a network ppective is given in Chapter 5:
network resilience is the amount of disturbancesetwork can undergo without
being totally disrupted, that is, without breakohgwn its giant component.

Chapter 5 reports literature results regardingwied known existing relationship
between the topology and the resilience of a ndtylbert et al., 2000; Crucitti et
al., 2004; Latora & Marchiori, 2001). Failures uhce the most important network
metrics such as the size of the giant componeatetficiency (global and local) and
the average shortest path length. However, thdtsedescribed refer to a semi-static
analysis, where networks do not evolve and no dyceprocess except the collapse
of nodes is present. To mimic the evolution of SEB# a network perspective, it is

possible to think at how networks evolve when naalesadded or disappear, edges
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are added, disappear or are rewired. It is alscsiples to envisage networks
remaining fairly stable (e.g. infrastructure anddscape networks), and working as a
support for dynamical processes, such as preda&y ipteractions, epidemics, or
rumour and information spreading (Boccaletti et 2006). SESs are evolving
systems, they may move between different statéseirsame basin of attraction, or
shift basin of attraction. These concepts and figslilead to a second research

question of this thesis:

* How do the dynamics of a system unfold and howtlaeg influenced by the

structural properties of the system?

To answer this question, it is necessary to agbessesilience of a system from a
structural perspective, analyzing dynamic procesbas unfold on fairly stable
networks. Given the presence of feedbacks, craas-stynamics (temporal and
spatial), emergence and self-organisation thatacherise SESs, networks are used
as a support for the models developed in Chapteis &d 8. In these chapters,
networks are the “infrastructure” on which certdymamic processes evolve. More
precisely, in order to assess how structural ptagsemay influence the resilience of
a system, following Carpenter et al. (2001), “iesite of what to what” is defined
in the first section of every chapter. It is hererilw highlighting that resilience is a
neutral term, and that there are different typesesilience. Further, there is often a
trade-off between resilience to different type wtarbances and between resilience
at different spatial and temporal scales. In otlerds, it is possible to enhance
resilience at a particular spatial and temporalesaahile decreasing resilience at a
different temporal and spatial scale as well &s itossible to enhance resilience of a
system to a specific type of perturbation while rdasing resilience to another
specific perturbation. Therefore, when analyzing tesilience of a SES, it is
necessary to identify as precisely as possible rdslience of what to what
(Carpenter et al., 2001).

Chapter 6 presents a first theoretical model whesample landscape, represented as
a network, is built. The landscape is first repnésé as a disconnected network, and
connections are added until the landscape is repted by a fully connected
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network. The effects of the underlying landscapevaek are assessed on predator-
prey interactions. In Chapter 6 and Chapter 7 # shthe basin of attraction occurs
when there is a change in the species composifitheosystem. Hence, in theory,
three basin of attraction exist: one in which ptedaand prey coexist, one in which
only prey survive, one in which there are no predaand no prey. More precisely,
Chapter 6 centres upon understanding one main taspdiee relationship between

structural properties and system resilience asnddfinamely:

» Does network connectivity facilitate or hinders thl@ft onto a new basin of

attraction?

As seen in sections 6.3 and 6.4, the connectiith@ network and the probability
of shifting basin of attraction are related. Nodmteality influences probability of
coexistence on a local scale (e.g. on one noddgwhbntrality at the network level
influences the probability of coexistence on a globcale (e.g. on the whole
network). The relationship discovered supports texgstheories such as corridor
ecology and the creation of reserve networks ineortb foster long-term
biodiversity (Cabeza & Moilanen, 2001; Hilty et,aP006): connecting different
patches of protected areas seems to enhance thenoesof the system modelled
with respect to the coexistence of species. Thesyark connectivity has a tangible
effect on the resilience of the ecological systenmd@amonstrated in Chapters 6 and
7.

In order to investigate further the relationshipatthexists between structural
properties of a SES and the resilience of a SE8than model is presented in
Chapter 7. This model builds on the results obthime Chapter 6, adding
management (human) interaction with the ecologsyatem. A manager is able to
voluntarily alter the landscape that in return | affect predator prey interactions (as
demonstrated in Chapter 6). While Chapter 6 ceminethe relation between basin of
attraction and network metrics, Chapter 7 explicitidresses the temporal dynamics
of structural properties, introducing the simplpsssible social system, formed by
one social agent (manager in this case) able & #ie landscape network. More

precisely, the manager is able to act upon the®dggights, representing an animal
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perceived cost of movement, and connecting diffel@mdscape patches represented
as nodes. Further, the model presented in Chapteokés at possible feedbacks
existing between social actors (such as managads}ree ecological system. Most
importantly, the model described in Chapter 7 aflae relate the evolution over
time of structural properties and the resiliencetted system; in other words, it

answers the following question:

* How does the evolution of structural propertiedlitate or hinders the shift to

another basin of attraction?

From the outcomes presented (see sections 7.2.8hdthe evolution of structural
properties seems to play an important role in tslience of a system. Using
network metrics that are suitable for weighted meks, a relation between the
temporal dynamics of these metrics and the resiiesf a system is found. More
precisely, using simple statistical measures sgchaaiance, kurtosis and skewness
(i.e. statistical moments) of the evolution ovendiof selected structural properties,
it is possible to have a coarse-grain assessmetfitegbrobabilities that the system
will shift basin of attraction. If no critical traition occurs in the time evolution of
network metrics, the system is more likely to remiai the same basin of attraction.
If critical transitions occur in the evolution o&twork metrics, the system is more
likely to approach a threshold and hence chandeagé of attraction. As in Chapter
6, structural properties are confirmed to be a pso1g indicator when assessing the
resilience of an ecological system. Chapter 6 mtssa model mainly centred on a
simple ecological system; Chapter 7 builds on tlegleh presented in Chapter 6 and
introduces a simple social system and feedbackweeet the social and the
ecological system. Chapter 7 may represent adttsmpt to model a SES through
ABM using network theoretical tools in order to baa the effects of structural
properties on the resilience of the SES. Howewvett) bhapters are more centred on
the ecological system rather than the social one.

The model presented in Chapter 8, on the other,hdmeks not take explicitly into
account the ecological system and focuses on tlgalssystem. The model
portrayed, analyzes the relationship between aighodistributions and
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homogenization of strategies. Being homogenizati@nact of becoming more and
more synchronized. In contrast to the previous trap Chapter 8 does not assess
the resilience of a SES per se. However, Chaptenighlights the existing
relationship between strategy homogenization anctwh defined as generic
adaptive capacity (i.e. the preconditions necestatye adaptive and that relate to
learning, experience and knowledge). Thus, the Sdsuon social characteristics
assumed to be necessary for adaptive managemarB8. The model mainly aims
to uncover the relation between authority structiaed homogeneity of management
paths; thus, by extension, the relation betweernaaily structures and generic
adaptive capacity. The model presented in Chapisriiilt mainly to answer the

following question related to the resilience ofESS

» Are there different authority structures that favthe homogenization (or
synchronization) of management strategies, thusiciad the adaptive
capacity to manage a SES?

Authority distributions in management communitieience the homogenization of
strategies as seen in section 8.2 and 8.3. Higlogenization of management paths
is responsible for narrowing the possibility of ekmentation and pursuing novel
management paths. In other words, high homogeanizagduces generic adaptive
capacity. Systems in which strategies are highimdgeneous are assumed to lose
the ability to adapt to shocks that have not beewipusly experienced or that are
unknown or unexpected by the management of a SE8dver, the model confirms
previous findings as, for example, those from aechagical studies in the U.S
Southwest by Hegmon et al. (2008): highly hierax@hgovernance structure are
less able to respond to fundamental shifts in tbe sariables, to novel shocks and

unexpected outcomes, hence lowering the adaptpacds of a SES.

Previous findings have shown the importance ofsthaal system for the resilience
of a SES (see for example: Adger, 2000; Anderied.eP004; Anderies et al., 2006;
Bodin et al., 2006; Bodin & Norberg, 2005; Carpergeal., 2001; Elmqvist et al.,
2003; Folke, 2006; Holling, 2004; Liu et al., 20@lsson et al., 2004; Walker et al.,

2002). Different ways to manage the ecologicalesysinay lead to resilient paths or
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to painful collapses and changes in the basintodcion. In this context, adaptive
capacity is a fundamental feature of the resilientea SES. Lowering adaptive
capacity decreases the possibility to experimetit wovel management paths, and

ultimately, lowers the ability of the social systéonproactively build resilience.

9.2.1 Relevance for policymakers

As seen in section 9.2, and throughout the thesigctural properties influence the
resilience of SES. These findings are also supg@drieprevious research that links
networks and resilience of SES (Bodin et al., 2@din & Norberg, 2005; Janssen
et al., 2006; Newman & Dale, 2005). Remembering tha models presented in
Chapters 6, 7 and 8, following Carpenter et al.0(30 define typologies of
resilience, it is possible to affirm that in thesea presented, connectivity plays a
central role in increasing or decreasing the ste of a SES. Moreover, as seen in
Chapters 6 and 7, there is a number of well-knowtwark metrics that play an
important role in assessing resilience from a stmat perspective. These metrics are
the ones that indicate the easiness or the difficof dispersal and diffusion of
processes from one node to another (i.e. closereggrality, global efficiency, local
efficiency, giant connected component, degreengtheor weighted degree, density,
betweenness etc.). Variation in the structure afystem (viewed from a network
perspective) influences the ability of a SES tontan its original functions and
controls despite disturbances and other paramebMoseover, as described in
Chapter 8, authority distributions influence themugenization of management
paths. Thus network properties and authority distron have an important effect on

the ability of a SES to self-organize, learn andpad

Structural properties of the landscape or the so@tvork are thus important for
SES resilience. This importance can be also asbdsgeaeal-life examples. As
described in section 6.4, jaguars’ behaviour presid first real world example of the
conclusions drawn in section 9.2 and Chapter 6.yTére highly dependent on

movement for searching prey and for mating. Conwiggtis thus essential for their

194



survival, hence for the resilience of the systendisd (Michalski & Peres, 2005;
Ortega-Huerta & Medley, 1999).

These findings have implications for policies thah at biodiversity conservation.
Such policies, based on the conclusions drawn f@rapters 6 and 7 should avoid
establishing isolated protected areas, and congideropportunity to establish a
network of protected areas. Increasing connectiasy well as occupying globally
and locally central patches, enhances the probabiflicoexistence between prey and
predators, hence maintaining biodiversity. Impedimgvement, on the other hand,
by fencing and other means, may actually produdetemded effects, as seen in the
model presented in Chapter 7. Excluding species feo certain area in order to
maintain vegetation or other specific endangerextisg may give rise to a critical
transition in the evolution of the structural prapes of the landscape. As seen in
section 7.2 and 7.3, these transitions negativiégiathe probability of coexistence,
hence biodiversity and ultimately the resiliencetioé system under study. Both
Chapters 6 and 7 lead therefore to the conclusianpolicies that aim at biodiversity
conservation should foster the creation of a nditwadrprotected areas. Moreover,
following the results presented in sections 6.4 &R it is important to create
potential protected areas geographically near heroareas of the reserve network
that may need to be enclosed. The enclosure oégqieut areas may be decided for
vegetation depletion or increased human pressurkat&Ver the reason, it is
important to pinpoint alternative areas in spabiaiximity so as to avoid a critical
transition in the evolution of the reserve netwerktructural properties, which will

erode the resilience of the specific SES underystwdh respect to biodiversity.

Further, human activities (i.e. management patlegdnto be taken into account
along with possible unexpected consequences amaises that specific strategies
may raise. Examples of unexpected consequenceE®h&nagement can be drawn
from Olsson et al. (2004) and Liu et al. (2007; P0O0n both cases protected areas
were designed without taking into account the dayatem and the actual effect of
some existing management strategies. In both dhsedas produced unintended
results. Thanks to what can be referred to as atgh@s defined in Chapter 8), at

least in the case of the Kristianstadt Vetternike, consequences were addressed by
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changing management path (Olsson et al., 2004 )s¢set®n 7.3 for a more complete
description of the examples reported here).

Management paths decided by the social componeatQES are fundamental for
the resilience of the whole system. As mentionedughout the thesis (i.e. section
4.1.2, and Chapters 7 and 8), the social systenstm@® peculiar features, such as
the ability to foresee, communicate, and the teldgyo to heavily affect the
ecological system. These features allow the s@gistem to play a crucial role in a
SES, devising different management strategies d@eroto maintain the SES in the
desired basin of attraction. In this context, hoerogation of strategies and its
consequences have been analyzed. Some conclusipolibymakers can be drawn
also from the analysis and the findings of Chapger Policymakers should
concentrate not only at the creation of networkspadtected areas while taking
human (inter)actions always into account, but thlep need to consider the authority

structure of the social system that is part ofSES they are trying to address.

Homogeneity as defined in Chapter 8, reduces tlssipitity of pursuing different
strategies, thus lowering the generic adaptive agpthat will reduce the resilience
of a SES. However, it is possible to speculate th@nhogeneous societies are
economically more efficienct and thus work bettercase of fairly stable systems.
Unfortunately, SESs are generally, at present, inét®p more and more unstable
given globalization and the continuous changes mapeed throughout the world
(i.e. changes in the geopolitical arena, infornratiechnology, technology, climate
changes etc.). Policy makers should then devissesgiies that press on highly
hierarchical governance structures to allow thelémgntation novel strategies and
experimentation. Therefore they need to look athibierogeneity that already exists
in a social system and relate the existing hetereigghomogeneity to the possibility
of acting as an external force in order to incragdssed on the conditions of a SES
and the desired goals. The statement that homdgeofestrategies lowers adaptive
capacity is supported by various studies on anaenlizations and populations,
such as the one reported by Nelson et al. (2006) Hegmon et al. (2008) in the
U.S. Southwest and some of the examples proposé&dibjer (2006).
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To conclude, structural properties influence th&lience of a system and should be
taken into account when devising policies that @amincrease or decrease the
resilience of a specific system to a specific disamce. More so, if the disturbances
that need to be addressed relate to diffusion aspledsal. It is also important to

mention, that connectivity may not be always pwsitibut can generate traps and
lock-in situations (Bodin & Norberg, 2005, 2007gWman & Dale, 2005). As

explained in section 9.4, none of the models ptesemhas tried to address the

drawbacks of connectivity, such as the spreadingests and viruses.

9.3 Future directions

The main aim of this work is to assess the impadaof structural properties and
how structural properties affect the resilienc&SafS. As it is possible to recall from

section 5.2, CAS, such as SES, differ from stalilear systems, where once it is
possible to know the starting conditions and thesldhat govern the system, it is
also possible to exactly predict its evolution. &ivthe complexities of SES, the role
of a model should be to understand, rather thadigrethe fundamental processes
that govern it and the effect of these processeshis highly uncertain context,

simulations may prove to be the most appropriatétmanalyse and understand the

complexities of a SES from a structural perspective

The models presented in Chapters 6, 7 and 8 regrésedamental processes that
interplay in a simple SES. It is also known thamadel is only as good as its
assumptions, and for this reason, all assumptiamsthe behaviour of agents
(predators, prey, and managers) in the models me$ehave been accurately
checked so as to ground every behavioural ruleeaedy relation between variables
in the available literature. The work presentetiugt on key papers in the literature
concerning the tools and methods used, at thedbesy knowledge; been the fields
of study (networks, resilience and ABM) expandiagtfit is possible that not all the
available literature has been taken into accoumerd are two main limitations of the
work presented here, limitations that are also agsrfor future research. Future

work will concentrate on the empirical validatiohtbe models presented and the
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diffusion/dispersal of concurrent processes suclprapagation of shocks viruses,
invasive species and pests so as to assess howtustfuproperties influence

enhancement and, at the same time, the decreas8E® resilience.

9.3.1 Empirical validation of the models presented

As explained in section 5.2.4, validating, verityiand evaluating ABMs can be a
demanding task. It is worth recall here, that ih& Criterion to assess an ABM is its
reliability by allowing for different separate ingshentations and comparing the
results. The ABM presented are written in NetLoGigpters 6 and 7) and Matlab
(Chapter 8), and have been implemented on diffgpiiforms (namely Windows,

Unix/Linux and MacOs). However, the same modelsehaot been recoded in
different languages; that is, the models have m@nbcoded in C++ or Java and
compared to the ones written in Netlogo and Matksb described in Chapter 5, in

order to evaluate ABM Taber and Timpone (1996)taskollowing questions:

1. Do the results of a simulation correspond to thofsthe real world (if data
are available)?

2. Is the process by which agents and the environiméract corresponding to
the one that happens in the real world (if the gsses in the real world are
known)?

3. Is the model coded correctly so that it is possiblstate that the outcomes

are a result solely of the model assumptions?

It is possible to state that the results repomesirctions 6.3, 7.2 and 8.2 are the result
of model assumptions, as the code has been chelifecent times by different
scholars and no errors or artefacts exist, at ¢s of my knowledge. On the other
hand, the first two evaluation questions can beessexl only through in depth,
multiple case studies over a period of time. Ineortb validate empirically the
models presented, a large amount of data needs twlkected. Data that are not
easily available: reproduction, death and predatiates for predators are very

difficult to obtain (it is very easy to “miss” arvent, even using new technologies
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such as GPS collars); authority distributions witnd between communities and
their effect over time (as synchronization happewsr time) can also be hard to
acquire. The processes presented, the rules, anduttadamental variables are
grounded in the available literature. However, menepirical work is needed to
confirm the validity of the rules, processes, alea and parameter values proposed
in the models. Moreover, in order to validate thBM\presented, data on predator
prey are not the only ones needed. The evolutiastrattural properties over time is
a critical component of every resilience assessjantesilicence of a SES is an
intrinsically dynamic, spanning over different teon@l and spatial scales (as
reported in Chapter 4). Unfortunately, empiricaltaddhat span over different

temporal and spatial scales are difficult to ohtain

To conclude, a complete empirical evaluation of Wk presented in this thesis
requires data from the real world and the involvetn&f knowledgeable experts,
possibly through focus groups. Thus, in order taggathe validity of the models
presented it will be necessary to perform a muitt-gase study over time. In other
words, in order to validate, modify or falsify tmeodels presented, multiple case
studies in different locations need to be desigkedther, these case studies should
be analyzed on at least a 5 year time span, dgenes is an intrinsically dynamic
concept. Cross temporal and spatial scales interscare fundamental in order to

understand the resilience of a SES.

199



9.3.2 Network effects on diffusion of concurrent pr ocesses

The second main avenue for future research foaus@alyzing network effects on
the diffusion of concurrent processes. More prégisthe models presented in
Chapters 6 and 7 refer to diffusion and dispersédpasitive” or beneficial. In other
words, diffusion and dispersal are viewed as factioat help the system to remain in
the same, desired, basin of attraction. The efféthe interplay between beneficial
and detrimental dynamics on a network has not Hedy investigated. More

precisely, future work will need to address the faltlowing questions:

1. Which network structures facilitate or impede thdolding of positive and
negative dynamics on the social and on the ecabgietwork related by
feedbacks mechanisms?

2. How is it possible to influence the network struetof a system in order to
minimize the diffusion of negative dynamics and amte the diffusion of

positive dynamics?

These two questions are directly related. Only ahce possible to understand the
influence of the network on the diffusion of posgitiand negative dynamics, it is
possible to look at how to intervene on the edgesreodes of a network to uncover
which structures minimize negative dynamics (suelvieuses and pests and shocks
that may alter the system) and enhance positivardigs (such as predator dispersal

or information diffusion).

9.3.3 A network of networks to represent SESs

Network analysis as demonstrated throughout thésish is a promising tool to
understand weaknesses and strengths of a SES teoassess its resilience. The
language of networks, carefully defined, is commfon social and ecological
systems. Despite the fact that nodes and edgesperéyrm functionally different
tasks, the overall structural properties (i.e. mekametrics) and the representation of

social and ecological systems remains the same.
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A first possible avenue to unify social and ecatagjinetworks such as the ones
presented here is to represent a SES network asn@nk where humans are nodes
of a wider food-web. In this context “human nodas2 classified according to their
main occupations (e.g. fishermen, farmers, hun&xgaction of natural resources
such as logging, minerals, etc...). The edgesisfiétwork are weighted and weights
represent energy exchanges between species. Thepnodilem of this approach is
in the difficulty of reaching meaningful resultsdaan understanding of the dynamics
of the system. A network such as the one describgkls to be very densely
connected, not allowing a clear comprehension efiriplications and the effects of

different structures on resilience.

However, it is possible to envision a network ofwaarks (Buldyrev et al., 2010; Gao
et al., 2010; Parshani et al., 2010; Shao et &10Q comprised of a network
representing a landscape, such as the one presant@thpters 6 and 7, a network
representing management communities, such as thpresented in Chapter 8, and a
food-web, whose predator-prey interactions in Céiap6é and 7 are a simplification.
Two types of edges need to be taken into accoutkesigning a network of networks
such as the one described: one type representiognation flows between nodes,
and the other representing support (dependen@tjarships. The first type of edges
mainly exists within the management network, whkil@port/dependency edges exist
within and between the three networks. The basictire of a possible network is

depicted in Figure 9-1.

m- fm

Figure 9-1 Network of Networks

Where M = management community network, L = landscpe/resource network, F = food web.
Edges between the networks are bidirectional, whiltheir weights represent the density of
support/dependency edges that exist between two n&irks of the network of networks (Own
elaboration).
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The analysis of such network of networks may en#iideanalysis of SES as one
whole network, looking at different connectivityvids and how the interplay of
connectivity within and between the networks afettte resilience of SES from a
structural perspective. The robustness of a netvadrinetworks has only been
recently investigated. More precisely, only a feyedfic cases have been analyzed,
one example being the analysis of the power disyapdccurred in Italy in 2003
(28" of September) where the network of networks cotmgmel the power grid
network and the Internet (Buldyrev et al.,, 2010,0Ga al., 2010; Parshani et al.,
2010; Shao et al.,, 2010). These studies seem tovanan inbuilt fragility of
networks of network increasing with the number efworks that are interrelated.
However, research in this field is just at the haegig and more is needed.
Nonetheless, | do think that a network of netwar&s be a very promising avenue in
order to unify social and ecological networks ineometwork of networks
representing a SES. Further, the design of a uhifetwork of networks representing
a SES could and should be coupled with dynamicga®es unfolding on them, such
as harvest, predation, reproduction, erosion obuess, diffusion/dispersal of
species, viruses, pests, shocks, and managemems. pete study of dynamic
processes that unfold on this network of network®lves the use of ABM, for the
reasons explained in Chapter 5 and as demonstitateagghout this thesis, so as to
further enhance our understanding of SES and betssess their strength,

weaknesses and resilience.

This thesis is a step towards representing a SB® f structural perspective.
Network theoretical tools and ABM have been embdddathin the resilience

framework. Structural properties influence the lresce of SES. Numerous

challenges lie ahead in order to reach a comprehemspresentation of a SES
network that is able to take into account dynamrocpsses and cross scale
interactions (Cumming et al., 2010). This sectidrthe thesis suggests interesting
developments in SES network representation. Stprfrom the fundamental

processes used in this work, it is possible to tlifferent networks and the dynamics
unfolding on them. Hopefully, in the future, it Wide possible to to represent a SES
from a network perspective, and thus, it will beadible to assess strength,

weaknesses, traps and resilience of a SES by amglyz structural properties.
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9.4 Stating the innovations presented in this work

Besides the answer to the research questions pbs$led beginning of this work, and
summarized in section 9.2, this thesis has maderdar of significant contributions
to the study of resilience of SES and the studgASs.

The first, and most important one, is of methodwalgnature. The combination of
models and techniques drawn from different disogdihas been synthesised in order
to develop a uniform set of tools which has prowdtictive for the structural
analysis of SES. As it has been noticed severadim the discussion contained in
this Chapter and throughout this thesis, both giadive and qualitative instruments
are necessary to fully exploit the potential of thethods presented here. This work,
therefore, strongly supports the idea, already esged by many scholars, that
triangulation of research methods can give the sszug clues to lead to a ‘truer

analysis’ of SES.

As it has been discussed, network representatiowska wide range of simulations.
Even simplified models, such as the one presemt&hapters 6, 7 and 8 are able to
provide insightful results that have relevant swigas for policymakers (as
discussed in section 9.2.1). This is an importaint@me. Social-Ecological systems
are, indeed, complex, adaptive phenomena anddmsplexity is the essential unit of
analysis for the understanding of the resilienca &ES. Its behaviour can be well
considered to be in that ideal phase space regitwelen a completely ordered
conduct and a completely disordered one which e lalso called the edge of
chaos. This idea has been intuitively with us fdorzg time. However, only in the
last years a group of scholars has considerechthaear deterministic description is
largely insufficient to explain the behaviour ofgstem whose components interact
in so different ways as extensively explained tigiwut this thesis. The relationships
among the different component of a SES can be yigbhlinear and the whole
ensemble can exhibit features which cannot be dorbe with enormous difficulty)

derived by meaningful compositions of those ofgimgle components.
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Probably the most important result of this visienthe claimed impossibility to
predict fully the dynamic evolution of the systemdao recognise that a successful
management of a CAS need to be adaptive itself. éizad simulations seem to be
the only real possibilities to overcome, at leasttiplly, these difficulties and
provide a range of solutions which will (BankesP207266) “allow users to iterate
with the computer to gradually evolve policy schenthat have particular policy

instances with desirable properties”.

The dynamic progress of the ecological system leas loelated to the modifications
of the network topology and proved models have beeoked to explain this
evolution. Again, even with the limitations discedsthe results presented can prove
extremely useful, as a first assessment of thdieese of a SES and thus for
assisting policymakers in taking more appropriageisions. In other words, this
work is another step towards assisting policymakersake decisions based on a
combination of computer assisted reasoning, neettedhelp understanding
(theoretically) the complex evolutionary mechanisthat govern a SES, and

empirical data.

As a final point, it is a firm conviction of the #@or that a more rigorous
establishment of methodological tools such as theassd in this work, can be a
powerful way to help a transition towards a lesslistiplined set of theories and
models for SES and that this can be greatly beaéfior the understanding of the
structure and the behaviour of these systems amrhponents.
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|. Appendix: Glossary

Glossary Term

Adaptive cycle

Adjacency
matrix

Assortativity

Attacks

Average mass of
a graph

Average shortest
path length

Betweenness
centrality

Closeness
centrality

Clustering
coefficient

Connectance

Degree

Degree
distribution

Directed edge

Disassortativity
Edge

Edge density

Errors
Geodesic
distance
Giant
component

Definition

Is an abstract construction composed by for stages. These stages are defined as
growth, accumulation, restructuring, and renewal. A system jump from one stage to
another forward or backward.

Is a square matrix that defines a network in which rows and columns represent
different nodes and the values are n if there exist a connection between a pair of
nodes, and 0 otherwise, where n is 1 if the network is unweighted. If the matrix
represents an undirected network, it will be symmetrical. If the matrix represents a
weighted graph, the strength of the edges is represented (i.e. the strength of the
connection between the pair of nodes is represented by n).

Measures the correlation between the nodes of a network. It indicates if a network's
nodes will preferentially attach to similar nodes (assortative mixing) or to nodes that
are different (disassortative mixing)

Failures of a network's nodes and/or edges (e.g. highest degree, betweenness etc.)

It consists in computing how many nodes are possible to find within a specified
geodesic distance.

Is the average of all shortest path length that exists in the network. The shortest path
length is the shortest geodesic distance that exists between a pair of nodes.

Is a measure used to describe the importance of a node in a network. This
importance is given by the uniqueness of a node (or edge). Betweenness centrality
can be calculated for nodes or edges.

Is a measure used to calculate the geodesic distance between different nodes. A
node is globally central if it is neighbour of many other nodes. The shorter the path
between a particular node and other nodes, the more that particular node will be
central.

Is the probability that two neighbours of a node are also neighbours to each other.

Is the number of edges that are present with respect to the maximum number of
possible edges. (see also edge density).

The number of edges connected to a node. If the edges are directed it is possible to

distinguish in-degree from out-degree of a node (being the first the number of
incoming edges, and the latter the number of outgoing edges.

Is the probability that a particular node will have a determined degree.

An edge that connect a pair of node in a given direction. They are normally
represented by an arrow indicating the direction of the relation.

(see assortativity)

A connection between two network elements (between a pair of nodes)

Is a measure used to calculate the "density" of the edges. Namely it is the ratio
between the existent number of edges and the maximum number of possible edges
of a network.

Random failures of a network's nodes and/or edges

Is the distance between a pair of nodes connected through an edge. It is always
unitary.

Can be defined as the largest part of the network whose nodes are connected to
each other. The giant component contains most of the networks’ nodes.
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Global efficiency

Graph
Local efficiency

Modularity

Network
Node

Panarchy

Percolation
threshold

Random graph

Regular network

Resilience of an
SES

Scale-free

Small world

Sub-graph

Undirected edge

Is the average efficiency of a network where efficiency in communication between a
pair of nodes can be defined as being inversely proportional with respect to the
shortest path.

(see Network)

Is the average efficiency of sub-graphs.

It refers to a network whose nodes are densely connected within a specific group
and loosely connected to nodes belonging to other groups.

A set of elements connected to each other. It can be considered a tool to analyse
and abstractly represent complex systems.

A network element

Can be defined as the whole of the hierarchical levels each of whom is constituted
by an adaptive cycle. The concept of Panarchy combines the hierarchical structure
of systems going from small to and fast to large and slow.

Can be defined as the number of edges that exist in the network when the giant
component emerges.

Random graph are networks in which nodes are connected randomly to each other.
In random graphs the average shortest path length increases as the natural
logarithm of the number of nodes and the degree distribution follows a Poisson (i.e.
nodes that deviate significantly from the average degree are extremely rare).

Regular networks display the smallest average path length and the highest
clustering coefficient. The regular lattice is an example of a regular network in which
all nodes have the same degree.

Is the ability of a Social-Ecological System (SES) to absorb disturbance and re-
organize while undergoing change so as to still retain essentially the same function,
structure, identity and feedbacks.

Networks that are scale-free are mainly characterized by their degree distribution
that follows power law. It seems that most real networks follow this power law
distribution.

Small worlds are network whose characteristic lies in between random graphs and
regular networks. This class of networks is characterized by small average shortest
path length (thus similar to that of a random graph) and a high clustering coefficient
(feature of regular networks).

A Graph whose nodes and edges are also nodes and edges of the Network. The
simplest sub-graphs are called trees, cycles and complete sub-graphs.

An edge that connect a pair of nodes in a transitive fashion. They are normally
represented by a straight line.
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Il. Appendix: ODD for the models presented
Il.i. Landscape connectivity and predator-prey dyna  mics

Purpose:

An agent (individual) based model has been develdpeassess how connectivity of
patches on a landscape influences predator-pregnoigs and to assess the dependence
of population levels on nodes and/or network cotiviég measured in node degree and

network density.

State Variables and Scales:

The model contains predator, prey and habitat pat¢the latter is also referred to as

nodes). Variables differ for the three main groapgollows.

Individual predator-prey variables

* Prey:
o Location (which node they feed on)
o Density (of prey) on a node
0 Reproduction rate

* Predators:
0o Location (which node they search for prey)
o Density (of predators) on a node
o0 Reproduction rate
o Predation (probability of attacking and killing ap that is located on
the same node)

o Handling (time in which the predator does not &tawgt can reproduce)
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Landscape variables:

* Nodes (or habitat-patches):
0 Number of nodes
o Size of nodes (based on maximum number of pregnitstipport)
o Connectivity of the network (number of edges in tregwork and the

configuration)

Process Overview and Scheduling:

The initial network of patches will not vary, as \ae2 mainly interested in how the
landscape (viewed as a network) affects the dyrmramd the population sizes of
predators and prey.

The landscape is initialized first, the number ofles is fixed, and distances between
nodes are not taken into account (thus the existémrcabsence) of an edge connecting
two nodes is the only point of relevance). Moreopvke size of the nodes is assumed
constant and equal for every node. The number gé®gresent in the network varies
but not during the simulation (only in the initsgttings). Nodes are randomly set on a
two-dimensional grid; edges are added based ormpritva@mity of the nodes, starting
with the nodes that are closest to each other.

Prey and Predators are assigned randomly to eadd tiroough, their initial population

is fixed.

The following is a precise outline of model procestuduring one time step. The
procedures are sequential (i.e. one prey perfolmaswhole procedure, followed by
another prey etc.). However, the order in whichnhgee selected is random (preyl may
perform the procedure before prey2 in a given tgtep, but prey2 may perform the
procedures described before preyl in a later ti@g}sEach agent (predator or prey)

will complete the first procedure before movingtorthe next:
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1) Each prey sets node densiBny;), so they know how many predators and prey
reside on their current patch.

2) Each predator also sets node dengiy,)

3) Each prey has the ability to reproduce with prolighi; ;.

4) Each prey then has the ability to move to anotlelerbased on current density
thresholds. That is, if the current node is cone@end possesses high predator
or prey density, each prey moves to a randomly emnannected node and

recalculates current node density, else the prey. dilore precisely, prey move
if Dnli:ﬁ>DU1 or Dnzi:ﬁ>DU2. If the chosen node for migration
C ’ C '

already has a high prey density, the migratory mheg instantly. This is the
final prey procedure in one time step

5) In the same time step, each predator can succlgssfiith and kill a single prey
with probabilityPx »; given both prey and predator reside on the saatehp

6) Successful capture of prey means the predatorwsinahe handling period,
where it may give birth to a single offspring wigirobability P;,. Note,
predators may be in the handling period for sevimad steps, during this time,
they cannot hunt prey.

7) Then, with probabilityPy, o, each predator may die ‘naturally’.

8) Lastly, predators may move between nodes accorting prey density
threshold. If the current node is connected andsgrses low prey density,
predators move to a randomly chosen connected anderecalculate current
node density, else the predator immediately dieshd prey density of the
chosen node is low, the migratory predator dies edhiately. More precisely,

predators move iDnli:%< D,, and die if Dn; <D, on the chosen node.
This is the final predator procedure in one timepstand the final procedure of

any agent.

The following diagram gives a graphical represenmtadf what has been explained in

this chapter:
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Setup of Landscape
as a network

A 4

Initialization of Prey

and Predators
A\ 4 v

) Prey procedure: Predator Procedure: —
Set density Set density
v ¥
Prey procedure: Predator Procedure:
Reproduce prey Catch prey
Prey procedure: Predator Procedure:
Move prey Reproduce

A 4

Predator Procedure:
Predators death

v

Predator Procedure:
v Move predators

Time-step ends

Design Concepts:

Emergence

* Population cycles and size depending on the lapasgeetwork) configuration

Interaction

* Prey and predator interact through predation amditiedependent migration.

Stochasticity
« The model assumes probabilistic events (predati@production, death,

movement to other nodes, connection between nadégl placement of

predators and prey).
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Observation

» The focus is on the size of predators and preg¥ery node and node degree.

Initialization:

The total number of nodes are fixed and each ahthee placed randomly on a two
dimensional grid. Edges are formed based on Euwliddistances between nodes,
connecting the nearest nodes first. Predators eeydgre randomly assigned to a node.
Their numbers are proportional to the number ofesodRkeproduction rates are fixed
within a given species (thus every prey/predatos llhe same probability of
reproducing). Rates of mortality and predationase fixed for all predators.

Upper and Lower density thresholds are assigngutay, while just an upper density

threshold is assigned to predators. Density thidshdp not vary across nodes.

Variables are initialized as shown in the tableobelin order to correct for the high
stochasticity of the model, repeated runs are pmdd. Moreover, during the
simulations the number of edges will vary from twith a 5 edge increment, while
internal species parameters such as reproducteathdpredation rates and movement
decision are initialized according to the table obeland fixed. The biological
parameters are not varied during the simulatiorabge the purpose of the model is to

assess the effect of network connectivity on pr@adatey population dynamics.
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Input:

Symbol Variable Name Values drawn from diétributi-on used
for Monte Carlo simulations
N Number of nodes 10
E Number of edges Varies from 0 to 45
C Size of a node 100
ny Initial number of prey Poisson with mean 25 * 10
Pra Prey reproduction rate Poisson with mean 0.25 (25%)
Dy Prey density upper limit Random uniform distributj@.5, 0.9]
DL Prey density lower limit Random uniform distributif0.2, 0.4]
n, Initial number of predators| Poisson with mean 1®*
P2 Predator reproduction rate Poisson with mean @%6§2
Px.2 Predation probability Poisson with mean 0.2 (20%)
Pm,2 Predator death rate
Poisson with mean 0.06 (6%)
Dy, Predator density upper limjt Random uniform disttibn [0.3, 0.6]
Th Predator handling time 3
Submodels:
Model Setup:
* Network

o Landscape is represented by an undirected network

0 Multiple edges and loops are not allowed

o Edges are placed between nodes based on Euclidganags

o N number of nodes are generated

0 The network will contairk edges whereO< E<N(N -1)/2

o SizeC is assigned to every node

* Prey and Predators

o

Initial number of preyn;, calculated from a poisson distribution with
mean 25 (before every run, a value is chosen argptd a poisson

distribution with mean 25).
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Initial number of predatorsy, calculated from a poisson distribution
with mean 10 (before every run, a value is chosepraing to a poisson
distribution with mean 10.)

Random assignment of predators and prey to a node

The density of prey on nodeDny; = %

The density of predators on noidé)nzi:%

Model Development:

Prey
o Prey reproduce with probabili§; ; derived from a poisson distribution
with mean 0.25 (for every run, a value is chosawating to a poisson
distribution with mean 0.25. The value is fixed fboe whole simulation
run).
o Intraspecific competition for space/food
= If the current node is isolated (its degre8), then the migratory
prey dies.
= If Dny; > Dy 1 then prey move to a randomly chosen connected
nodej and recalculate current node density
* If Dny; > Dy, then the prey dies.
o Anti-predator behaviour
= |f the node is isolated (its degred)), then a migratory prey dies.
= If Dny > Dy 2 then prey move to a randomly chosen connected
nodej and recalculate current node density
» If Dny > Dy then the prey dies.
Predators

o Predators search and attack prey. If predatorpendare on the same

nodei, and handling timel},, equals zero, Predators kill prey with
probability Py » derived from a poisson distribution with mean a2 (
every run, a value is chosen according to a poidgiribution with

mean 0.2. The value is fixed for the whole simolatiun)
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» If predator is successful then it s&tsto 3
» T, decreases by 1 at every timestep
o If predator is successful then it reproduces wittbpbility P; » derived
from a poisson distribution with mean 0.2 (for gvain a value is
chosen according to a poisson distribution withm@2&. The value is
fixed for the whole simulation run)
o Predator search behaviour
= |f the current node is isolated (its degre8), the migratory
predator dies.
» If Dny < Dy 1 then predators move to a randomly chosen
connected nodgin order to look for prey
» Recalculate density of the prey on the new rjode
» If Dny < Dy 1 then the predator dies.
o Predators die of natural death with probabifty. derived from a
poisson distribution with mean 0.06 (for every ranjalue is chosen
according to a poisson distribution with mean 00 value is fixed for

the whole simulation run).

Implementation

The model is implemented in NetLogo 4.1
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Purpose

Managing Landscapes’ Resilience

An agent (individual) based model has been deveélap@rder to assess how a single

manager is able to alter the connectivity of a mage thus influencing predator-prey

dynamics. Do population levels of predators andy tepend on actions a manager

undertakes via changes in the network connectiviignce can manager enhance

resilience of a system or preventing resilienceiers?

State Variables and Scales

The model presents one manager agent, populatiomedators and prey, and habitat

patches (nodes). Variables differ for the fourmgioups as follows.

Individual predator-prey variables

* Manager

o

o

o

O O O o

* Prey:

Budget (yearly and does not accumulate)

Cost of infrastructure (one time cost for everydithe manager acts)
Cost of maintenance (defined as the natural Idgaribf the absolute
value of the original weights divided by the cutrareight of the edges
on which he has acted upon)

View of the world

Possibility of errors in counting species

Priority list based on densities of predators ar&y p

Possibility of decreasing/increasing the cost ovement (weight) of an
edge

Location (which node they feed on)

Density on a node
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0 Reproduction rate
o Natural death rate

o Movement capability

* Predators:

0 Location (which node they search for prey)
Density on a node
Reproduction rate

Natural death rate

o O O o

Predation (probability of attacking and killing aep that is located on

the same node)

(@)

Handling (time in which the predator does not &ttact can reproduce)

o Movement capability

Landscape variables:
* Nodes (or habitat-patches):
0 Number of nodes
0 Size of nodes (maximum capacity)
o Time till recovery of maximum capacity
 Edges
o Number of edges in the network

o Weight of edges represent the cost of movemertidtr species
Process Overview and Scheduling

The landscape is initialized first, the number ofles is fixed, and edges are placed
randomly between nodes with a given weight (coshofement) that is, originally, the
Euclidean distance between two given nodes. Theaotigpof the nodes is equal for
every node, but it can decrease if too many prey fepon a given node (patch).
Moreover, the capacity of the node is recoverdtiefe are no preys present or if prey
density on that node is particularly low for a giveumber of time-steps. The number
of edges present in the network varies but notndutine simulation (only in the initial

settings), but their weight will vary accordingttee actions taken by the manager.
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Prey and predators are assigned randomly to eaddn tteeir initial number is fixed and

proportional to the number of nodes.

Prey have the ability to reproduce or die via ptedaat every time-step (with some
probability). Moreover, prey die according to aefikdeath rate (natural death). Note
that the predation event will only occur if predatand preys are located on the same

node.

Predators also have the probability to reproducevaty time-step, given they have
successfully attacked a prey and find themselvesiandling time. Predators die
naturally according to a fixed death rate.

Prey move between nodes according to densitieshblgs, that is, if the density of
prey is too high and/or the predator density ishah in their current node, prey will
move towards a randomly chosen connected nodenangiaich. Prey die if their current
node has no connections, the weights of the edtgshad to their current node are all
higher than their ability to move (thus the othedes are not reachable), or the chosen

node has a prey density considered too high.

Predators move between nodes according to a ddahs#ghold, more precisely, if the
prey density of the current node is too low, predatmove to a randomly chosen
connected node within reach Predators die if theeatinode is isolated, the weights of
the edges attached to their current node aregtliehithan the predator’s ability to move

(thus not reachable), or the prey density of theseh node is too low.

Managers have a given budget, and they have trebildg of reducing/increasing the
weights of the edges (cost of movement for prey@edators). The manager decides to
decrease the cost of movement based on his ownespéensity thresholds (which
differ from predator and prey density threshold)aogiven node. The manager decides
to increase the cost of movement if the capacitythef node falls below a certain
threshold. Moreover, managers can have a “viewhefworld” that causes them to

over/under estimate the capacity of a node; moreovanagers can be inaccurate when
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counting the prey and the predators (thus addingriaor term to the count of predators
and preys on a given node).

The following diagram gives a graphical represeotadf the process above:

Setup of Landscape Initialization of
viewed as a Network Manager

A 4

A 4

Initialization of Prey
and Predators

A 4 A 4

.| Prey procedure: Predator Procedure: |
"l Set density Set density bl
\ 4 Predator Procedure:
Prey procedure: Reproduce.
Reproduce ¢
v Predator Procedure:
Prey procedure: Catch prey
Move prey
A
v Predator Procedure:
Prey procedure: Move predators
Prey death i
Predator Procedure:
Predators’ death
N Manager assessing .| Manager assessing | Manager assessing

Prey on nodes Capacity of nodes - Predators on nodes

A 4
Manager takes (or

not) action
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Design Concepts

Emergence
» Population cycles and size dependent on landsecegie/drk) configuration and

the actions of the manager

Interaction
« Prey and predator interact through predation antsites that depend on the
capacity of the node on which they are located. Mla@ager interacts with the
landscape based on predator and prey densitieshwlepend on the capacity of

the node on which the species are located.

Stochasticity
e The model assumes probabilistic events (predati@mroduction, death,

movement to other nodes, connection between nadégl placement of

predators and prey).

Observation
» The focus is on the size of predators and pregvery node and on the overall
network, and on the ability of the manager to aiterlandscape by altering the

cost of movement (weights of edges).

Initialization

Nodes are fixed and placed randomly. The netwofllig connected and edges have a
weight attribute initially based on Euclidean dmstas between the nodes (between 0.1
and 92 given the size of the “environment”). Iditi@de’s capacity is equal for every
node. Predators and prey are randomly assigned twde. Their numbers are
proportional to the number of nodes. Reproduction aeath rates are fixed for
predators and prey (thus every prey /predator hesame probability of reproducing
and to dying from natural causes). Predation, tiedability that a predator will kill a

prey at every given time-step, is also fixed.
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Upper and Lower density limits are assigned folypvehile an upper density threshold
Is assigned for predators. Density thresholds dwawy across nodes.

A budget is assigned to a manager who will act dbasefixed density thresholds that
refer to predators and prey. The manager agentbeaimaccurate in counting these
densities or not. Moreover, the manager has his pgmsonal view of the world that
influences the capacity threshold and thus theoadiaken in reference to the node

capacity.

Variables are initialized as shown in the tableobelin order to correct for the high
stochasticity of the model, repeated runs withsdu®e set of parameters are performed.
Budget levels, fixed costs, and threshold levetgtie manager will also vary since the
objective of the model is to look at possible stgats and their consequences on
population dynamics.

Input
The following table summarizes symbols, actualatalea names and values used in the
simulations.
Simbol Variable Name Value
Number of nodes 10
Number of edges 45
. Varies according to manager actions
we Cost of movement (weight) (MAX we= 92 without manager action)
ti Time-lag of recovery 5
C Capacity of a node 100, varies according to sinmadatvents
ny Initial number of prey 25*10
Py Prey reproduction rate 0.25 (25%)
Pm1 Prey natural death rate 0.10 (10%)
S Prev movement abilit Poisson distributed with mean 30
y y calculated at every time-step
Dy1 Prey density upper limit 0.9
D1 Prey density lower limit 0.15
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Simbol Variable Name Value
n, Initial number of predators 10*10
P2 Predator reproduction rate 0.2 (20%)
Px.2 Predation probability 0.2 (20%)
Pm.2 Predator natural death rate 0.06 (6%)
S Predator movement ability Poisson distributed Wlth mean 60
calculated at every time-step
Dy, Predator density upper limit 0.6
T Predator handling time 3
Manager Yearly budget (does
B not accumulate) 100, 250, 500
Y Manager view of capacity -15, 0, 15
err Normally distributed errors in | Yes/No variable if Yes, error varies at
counting species every time-step
Mty Manager Upper threshold 0.6,0.8
Mt Manager lower threshold 12,14
Mct Manager capacity threshold 50, 70, 90
MG Cost of decreasinge by a fixed 50
D amount
Cost of increasingve by a fixed
Mc amount ye 100
S Amount ofwe increase in case 100
of action that increasese
S Amount ofwe decrease in case 10
of action that decreasese
Submodels
Model Setup:
* Network
o0 Landscape is represented by an undirected network

O O O O

N number of nodes is chosen

Multiple edges and loops are not allowed

Edges are placed randomly between nodes
Edges will have an initial weight (cost of movemerdmputed as

Euclidean distance between the nodes they conmeqt (
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The network will contaire = 45 edges (fully connected network)
CapacityC is assigned to every nod€:=120N

Capacity is recovered at spee@hat is,ti is initially set, and when it
reaches 0, ol unit of capacity is recoveradjaries according to the
density of prey present on a specific nodg.%ti,_, — iD5

015<D,, < 03; ti, =ti_, - 075if 0<D,, < 015; andti, =ti_, — 1if

Di1)-

Prey and Predators

o

o

o

Initial number ofn; =25CN
Initial number of predatons, =10C N
Random assignment of predators and prey to a hode

Let n 1 be a prey assigned to nade¢hen the density of prey on node
Dii= 2N

C
Let n;» be a predator assigned to nog#hen the density of predators on

nodel Di’2 = &
C

Manager

o

Budget is assigned at each time-step and doe<ooiralate B will
vary)

Manager has the probability of making mistakesaanting prey and
predators for its own thresholds( Yes/N®. ThresholdsNity andMt,)
are used in order to decide when to act in redueigbetween nodes.
Decreasingve has a fixed costicp andweis reduced by a variable
amountSp.

Manager has its own view of the capacity of theasol) and, based on
a thresholdNIct), he decides whether to increase the cost of mexem
to a specific node or not. Increasing cost of mosetwe has a fixed

costMc, andwe by a variable amour&.

0 Manager maintenance costs definedla.:wqjO - WE; ‘
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Model Development:

* Prey

0 Prey reproduce with probabili®; = 0.25

o

Intraspecific competition for space/food

If the node is not connected (its degre@), orwe; > S, for every
connected node, the prey dies.

If Di1> Dy, then prey move to a randomly chosen connected
nodej if wgj < $;

Recalculate density of the prey on the new rjode

If Di1> Dy then the prey dies.

o Anti-predator behaviour

If the node is not connected (its degre@), orwe; > S;for every
connected node, the prey dies.

If Di1> Dy then prey move to a randomly chosen connected
nodej if wg; < S

Recalculate density of the prey on the new rjode

If Di1> Dy, then the prey dies.

o Prey die of natural causes with probabifty, = 0.08

* Predators

o

o

If handling timeT,, > O predators reproduce with probabilRy, = 0.20

Predators search and attack preys. If predatorpm@aydare on the same

nodei, and handling tim&, =0, Predators kill preys with probabiliB »

=0.2

If predator is successful then it s&ts= 3

* Thdecreases by 1 at every timestep

Predator search behaviour

If the node is not connected (its degre@), orwe; > S, for every
connected node, the predator dies.

If D;1< DL 1then predators move to a randomly chosen connected
nodej if wg; < S, in order to look for prey.

Recalculate density of the prey on the new rjode
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» If Dj;< D then the predator dies.
o Predators die of natural causes with probabiify = 0.06
 Manager
0 RenewB
0 Assess the need to take action to preserve theitapéa single node
(if C +V < Mct).

= Calculate maintenance cost,(B - In‘wqjO - We; ‘)> Mc, then

the manager acts and increases the cost of movevegtity S
to prevent prey from entering a particular noffem its
neighbouring nodes.
o Determine the need to take action in order to alaiél extinction of
prey and predators acting upon the number of preyodlei (if ny + err
> C*Dy 1*Mty and/orng + err < C*D_*Mt )

= Calculate maintenance cost,(B - In‘wqjO - We; ‘)> Mcp then

the manager acts and decreases the cost of movemn&nt
according to priority lists from the highest
| ny + err - C* Dy 1*Mty | to be connected to the lowest

| g + err - C* D__1*Mt | and so on.

Implementation

The model is implemented in NetLogo 4.1
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l1l.Appendix: Models’ codes

Code belonging to models presented in chapterds 7aand explained thanks to the
ODD protocol in Appendix II, section Il.i and illrespectively are implemented in
NetLogo 4.1. The model presented in chapter 8niglemented in Matlab R2008a.
Some of the modules used in order to build the mpasented in chapter 8 have been
adapted from matlab files build by other authorsfeRences to the author are made in
the comments to the code. More precisely, the cbdlee following functions has been
adapted from Gergana Bounovandom-graphandwritepaj, the code of the module

substrhas been adapted from Peter J. Acklamrandint from Christoph Teuscher.

1.1 Landscape connectivity and predator-prey
dynamics

This model is implemented in Netlogo 4.1.

breed [prey a-prey]

breed [predators predator]
breed [nodes node]

breed [donothing]
undirected-link-breed [edges edge]
globals [time

pred-extinction-time
prey-extinction-time
geo
name
filename
netime
initial-number-prey
initial-number-predators
prey-reproduce
predation
predator-reproduce
predator-death-rate
preydens-up
preydens-low
predens-up

preyl

prey2

prey3

prey4

prey5

prey6

prey7

prey8
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prey9
prey10
predl
pred2
pred3
pred4
pred5
pred6
pred7
pred8
pred9
pred10
degreel
degree2
degree3
degree4
degree5
degree6
degree?
degree8
degree9
degreel0

predators-own [handling]

patches-own [countdown]

turtles-own [preydens
predens
nodenum
nodesize
my-node
node-degree

edges-own [geodist]

to setup-one
clear-all

set-default-shape donothing "triangle”
create-donothing 1
[ set color black]
ask turtles with [color = black] [die] ;; the w
before the first report
end
to setup
; random-seed seed

set-default-shape nodes "circle"
create-nodes numnodes |

set color blue

set size 0.1

set nodesize capacity

if nodesize =0 |

set nodesize 1]

set nodenum [who] of self

set label nodenum

setxy random-xcor random-ycor

ho = 0 dies out
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if (netipe? = "full") ;;creates a fully
ask nodes [
create-edges-with other turtles
set node-degree count edge-neighbors

]
]

if (netipe? = "geoprox™)[
;; creates a network based on geographical proximi
edges in the interval [0, N(N-1)/2]

ask nodes [
create-edges-with other turtles

]
set geo (list)

ask edges [
set geodist precision link-length 8
set geo fput geodist geo

]

while [count links > numedges] [
ask edges with [geodist = max geo] [

die

]
set geo remove max geo geo

]

]

if (netipe? = "random")[
creates a simple random network with N nodes and N(
while [count links < numedges] [
;;Note that if the link already exists, nothi
ask one-of nodes [create-edge-with one-of oth
]
ask nodes|
set node-degree count edge-neighbors

]

if (netipe? = "e-r")[
creates an Erdos and Reiny graph
ask nodes [
;;we use "self > myself* here so that each pai
;;is only considered once
create-edges-with turtles with [self > myself a
random-float 1.
set node-degree count edge-neighbors
]
]

set-default-shape prey "square”
set initial-number-prey random-poisson 25
create-prey initial-number-prey * numnodes ;; cre
initialize their variables
[
set color white
set label-color blue - 2

connected network

ty with N nodes and

N-l)/2”edges

ng happens
er turtles]

r of turtles

nd
0 < prob]

ate the sheep, then
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set nodenum random numnodes
;;number of the node i belong to

if nodenum =0 |

set nodenum numnodes]

set my-node one-of nodes with [nodenum = [noden

same as nodenum, but useful for some coding procedu
; setxy random-xcor random-ycor
hide-turtle

]

set-default-shape predators "square"
set initial-number-predators random-poisson 10
create-predators initial-number-predators * numno
predators, then initialize their variables
[
set color red
set handling O
set nodenum random numnodes
;;number of the node i belong to
if nodenum =0 |
set nodenum numnodes]
set my-node one-of nodes with [nodenum = [noden
same as nodenum, but useful for some coding procedu
; setxy random-xcor random-ycor
hide-turtle

]

ask prey|[ ;;set
set-dens

]

ask predators|

set-dens

]

export-network

set degreel [node-degree] of nodes with [nodenu
set degree2 [node-degree] of nodes with [nodenu
set degree3 [node-degree] of nodes with [nodenu
set degree4 [node-degree] of nodes with [nodenu
set degree5 [node-degree] of nodes with [nodenu
set degree6 [node-degree] of nodes with [nodenu
set degree7 [node-degree] of nodes with [nodenu
set degree8 [node-degree] of nodes with [nodenu
set degree9 [node-degree] of nodes with [nodenu
set degreel0 [node-degree] of nodes with [noden

set preyl O
set prey2 0
set prey3 0
set prey4 0
set prey50
set prey6 0
set prey7 0
set prey8 0
set prey9 0
set preyl00
set predl 0
set pred2 0
set pred3 0

um] of myself] ;;
res

des ;; create the

um] of myself] ;;
res

intial densities

m = 1]
m = 2]
m = 3]
m = 4]
m = 5]
m = 6]
m=7]
m = 8]
m = 9]
um = 10]
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set pred4 0
set pred5 0
set pred6 0
set pred7 0
set pred8 0
set pred9 0
set pred100

set time 0

;; Setting parameters using Monte Carlo method:
set initial-number-prey random-poisson 25

set initial-number-pred random-poisson 10

set prey-reproduce random-poisson 25

set predation random-poisson 20

set predator-reproduce random-poisson 20

set predator-death-rate random-poisson 6

set preydens-up random-float 0.4 + 0.5
set preydens-low random-float 0.1 + 0.3
set predens-up random-float 0.3 + 0.3

end

to go
if not any? prey and not any? predators [ stop ]

ask prey|[
set-dens

ask predators|
set-dens

]
ask prey [

reproduce-prey

if preydens > preydens-up
[move-prey]

if predens > predens-up
[move-prey]

ask predators [
if handling > 0 [set handling handling - 1]
catch-prey
if handling > O [reproduce-predators]
mortpred
if preydens < preydens-low
[move-predators]

]

if pred-extinction-time =0 |
if not any? predators|
set pred-extinction-time time

]
]

if prey-extinction-time = Q[
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if not any? prey [
set prey-extinction-time time
]

]

if time > 4000[
set preyl (preyl + count prey with [nodenum = 1]
set prey2 (prey2 + count prey with [nodenum = 2]
set prey3 (prey3 + count prey with [nodenum = 3]
set prey4 (prey4 + count prey with [nodenum = 4]
set prey5 (prey5 + count prey with [nodenum = 5]
set prey6 (prey6 + count prey with [nodenum = 6]
set prey7 (prey7 + count prey with [nodenum = 7]
set prey8 (prey8 + count prey with [nodenum = 8]
set prey9 (prey9 + count prey with [nodenum = 9]
set prey10 (prey10 + count prey with [nodenum =
set predl (predl + count predators with [nodenum
set pred2 (pred2 + count predators with [nodenum
set pred3 (pred3 + count predators with [nodenum
set pred4 (pred4 + count predators with [nodenum
set pred5 (pred5 + count predators with [nodenum
set pred6 (pred6 + count predators with [nodenum
set pred7 (pred7 + count predators with [nodenum
set pred8 (pred8 + count predators with [nodenum
set pred9 (pred9 + count predators with [nodenum
set pred10 (pred10 + count predators with [noden

]

tick
set time time + 1
update-plot

end

to set-dens ;; to set densities

set nodesize [nodesize] of my-node

set preydens ((count prey with [nodenum = [noden
nodesize)

set predens ((count predators with [nodenum = [n
/ nodesize)
end

to move-prey ;; prey procedure, prey move along ed
the denisities

ifelse any? [edge-neighbors] of my-node
[set nodenum [nodenum] of one-of [edge-neighb
set my-node one-of nodes with [nodenum = [no
set nodesize [nodesize] of my-node
set preydens ((count prey with [nodenum = [
myself]) / nodesize)
if preydens > preydens-up [
die]
]
[die]
end

to move-predators ;; predator procedure, predaot m
depending on the densities

*0.001)
*0.001)
*0.001)
*0.001)
*0.001)
*0.001)
*0.001)
*0.001)
*0.001)

10] * 0.001)
= 1] * 0.001)
= 2] * 0.001)
= 3] * 0.001)
= 4] * 0.001)
5] * 0.001)
6] * 0.001)
= 7] * 0.001)
= 8] * 0.001)
= 9] * 0.001)
um = 10] * 0.001)

um] of myself]) /

odenum] of myself])

ges depending on

ors] of my-node
denum] of myself]

nodenum] of

ove along edges
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ifelse any? [edge-neighbors] of my-node

[set nodenum [nodenum] of one-of [edge-neighb ors] of my-node
set my-node one-of nodes with [nodenum = [no denum] of myself]
set nodesize [nodesize] of my-node

set preydens ((count prey with [nodenum = [n odenum] of

myself])/ nodesize)
if preydens < preydens-low [
die]
]
[die]
end

to reproduce-prey ;; prey procedure
if random-float 100 < prey-reproduce [ ;; throw "dice" to see if
you will reproduce
hatch 1 [
set nodenum [nodenum] of myself
]

]

end

to reproduce-predators ;; predators procedure
if random-float 100 < predator-reproduce [ ;; th row "dice" to see
if you will reproduce
hatch 1 [ ;set handling O
set nodenum [nodenum] of myself

] :; hatch an offspring and move it forward 1 step
]

end

to catch-prey ;; predator procedure

if handling =0 [
if any? prey with [nodenum = [nodenum] of mysel 1l
let victim one- of prey with [nodenum = [nodenum] of myself]
;; grab a random prey
if random- float 100 < predation

;; did we get one? if so,
[ ask victim [ die ]
;i Kill it
set handling handling + handling- time
;; get energy from eating

]
]
]

end

to mortpred ;; turtle procedure
if random-float 100 < predator-death-rate [ die ]
end

to update-plot
set-current-plot "populations”
set-current-plot-pen "prey"
plot count prey
set-current-plot-pen "predators"
plot count predators

end
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to-report pad [ number digits ]

let expanded ( word "000000000000000" number )

let len length expanded
report substring expanded ( len - digits ) len
end

to-report next-log-filename [ prefix digits suffix]
;; report the first filename that does not exist
let next-id# O
let next-id$ ™"
let keep-looking? true
while [ keep-looking? ]
[ set next-id# next-id# + 1
set next-id$ ( word prefix ( pad next-id# digi
set keep-looking? file-exists? next-id$
1
report next-id$
end

to export-network
set name new-seed
random-seed name
let z random 10000
set netime date-and-time
set netime remove ":" netime
set netime remove "." netime
set netime substring netime 0 10
set netime word z netime
set filename next-log-filename netime 5 ".txt"
file-open filename
let blank " "
let namenodes [who] of nodes
let nnodes max [who] of nodes
file-type "*Vertices"
file-type blank
file-print nnodes
file-print "*Arcs"
ask nodes [
let neigh link-neighbors
if (count neigh) >0 [
foreach [who] of neigh [
file-type who
file-type blank
file-type ?
file-type blank
file-print 1
]
]
]

file-close
end

IEREERERRERRERE]

ts ) suffix )
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H1.ii. Managing Landscapes’ Resilience

This model is implemented in Netlogo 4.1.

breed [prey a-prey]

breed [predators predator]
breed [manager]

breed [nodes node]

breed [donothing]
undirected-link-breed [edges edge]
globals [time

pred-extinction-time
prey-extinction-time
error-nodelist
prey-priority
pred-priority
neutral-priority

ce

eff

cost

cost-previous

no

pri

remaining

maincost
maincost_list
filename

netime

name

preyl
prey2
prey3
prey4
prey5
prey6
prey7
prey8
prey9
preyl0
predl
pred2
pred3
pred4
pred5
pred6
pred?7
pred8
pred9
pred10
nodesizel
nodesize2

254



nodesize3

nodesize4
nodesize5
nodesize6
nodesize7
nodesize8
nodesize9
nodesizel0
predators-own [handling]
patches-own [countdown]
turtles-own [
preydens
predens
count_prey
count_pred
nodenum
nodesize
my-node
node-degree
dist-prey
dist-pred
my-desired-node
]
edges-own [origdist
dist
dist-previous
]
manager-own [mmm]
nodes-own [time2
fence
time-recovery
real_lag
reco]

to setup-one
clear-all

set-default-shape donothing "triangle”

create-donothing 1

[ set color black]

ask turtles with [color = black] [die] ;; the w
before the first report

;; procedure for avoiding same output filename in m

;; behaviour space!
set name new-seed
random-seed name
let z random 10000
set netime date-and-time
set netime remove ":" netime
set netime remove "." netime
set netime substring netime 0 10

set netime word z netime

ho = 0 dies out

ultiple core
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set filename next-log-filename netime 5 ".txt"
file-open filename

end
to setup
random-seed seed

set-default-shape nodes "circle"
create-nodes numnodes |
set color blue
set size 2
set nodesize capacity
if nodesize =0 |
set nodesize 1]
set nodenum [who] of self
set label nodenum
set time2 time-lag
set real_lag time-lag
set fence 0
setxy random-xcor random-ycor
loop [
ifelse count nodes-here > 1 [
setxy random-xcor random-ycor]
[stop]
]
]

if (netipe? = "full”) [ ;;creates a fully
ask nodes [
create-edges-with other turtles
set node-degree count edge-neighbors
]
ask edges [
set dist link-length
set dist-previous dist
set origdist link-length
]
]

if (netipe? = "random")[
;; creates a simple random network with N nodes and
while [count links < numedges] [
;;Note that if the link already exists, nothi
ask one-of nodes [create-edge-with one-of oth
]
ask nodes|
set node-degree count edge-neighbors
]
ask edges [
set dist link-length
set dist-previous dist
set origdist link-length

]

if (netipe? = "e-r")[
;; creates an Erdos and Reiny graph

connected network

N(N-1)/2 edges

ng happens
er turtles]
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ask nodes [

;;we use "self > myself* here so that each pai r of turtles
;;is only considered once
create-edges-with turtles with [self > myself a nd
random-float 1. 0 < prob]
]
ask edges [

set dist link-length
set dist-previous dist
set origdist link-length

]
]

set-default-shape manager "triangle"
create-manager 1
[hide-turtle]

set-default-shape prey "square”

create-prey initial-number-prey * numnodes [
set color white
set label-color blue - 2
set nodenum random numnodes

;;number of the node i belong to
if nodenum =0 |
set nodenum numnodes]

set my-node one-of nodes with [nodenum = [noden um] of myself]
;; same as nodenum, but useful for some coding proc edures

setxy random-xcor random-ycor

hide-turtle

]

set-default-shape predators "square"
create-predators initial-number-predators * numno des
;; create the predators, then initialize their vari ables
[
set color red
set handling O
set nodenum random numnodes
;;number of the node i belong to
if nodenum =0 |
set nodenum numnodes]

set my-node one-of nodes with [nodenum = [noden um] of myself] ;;
same as nodenum, but useful for some coding procedu res

setxy random-xcor random-ycor

hide-turtle

]

set preyl count prey with [nodenum = 1]

set prey2 count prey with [nodenum = 2]

set prey3 count prey with [nodenum = 3]

set prey4 count prey with [nodenum = 4]

set prey5 count prey with [nodenum = 5]

set prey6 count prey with [nodenum = 6]

set prey7 count prey with [nodenum = 7]

set prey8 count prey with [nodenum = 8]

set prey9 count prey with [nodenum = 9]

set prey10 count prey with [nodenum = 10]
set predl count predators with [nodenum = 1]
set pred2 count predators with [nodenum = 2]
set pred3 count predators with [nodenum = 3]
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set pred4 count predators with [nodenum = 4]
set pred5 count predators with [nodenum = 5]
set pred6 count predators with [nodenum = 6]
set pred7 count predators with [nodenum = 7]
set pred8 count predators with [nodenum = 8]
set pred9 count predators with [nodenum = 9]
set pred10 count predators with [nodenum = 10]
set nodesizel capacity

set nodesize2 capacity

set nodesize3 capacity

set nodesize4 capacity

set nodesize5 capacity

set nodesize6 capacity

set nodesize7 capacity

set nodesize8 capacity

set nodesize9 capacity

set nodesizel0 capacity

settime 0
export-network

ask prey [ ;e t intial densities
set-dens
set-dist-prey
]
ask predators [
set-dens
set-dist-pred

ask nodes|
set my-node self ;S0 nodes ¢ an also run the
'set-dens' code with no errors
set-dens
]
set remaining budget
set maincost_list []
end

sonnnnnRUNNING PROCEDURES; i S

to go
if not any? prey and not any? predators [stop]

ask nodes|
;; ADDING NODESIZE (CAPACITY) EROSION need to do be tter for the time
lag when preydens=0
setreco 0
set-dens
recovery

ask prey [
set-dens]
ask predators [
set-dens]
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ask prey [
reproduce-prey
if preydens > preydens-up
[move-prey]
if predens > predens-up
[move-prey]
mortprey

]

ask predators [
if handling > O [reproduce-predators]
if handling > 0 [set handling handling - 1]
catch-prey
if preydens < preydens-low
[move-predators]
mortpred

]

if pred-extinction-time =0 |
if not any? predators|
set pred-extinction-time time

]
]
if prey-extinction-time = Q[
if not any? prey [
set prey-extinction-time time
]
]

;if time > 4000][
set preyl count prey with [nodenum = 1]
set prey2 count prey with [nodenum = 2]
set prey3 count prey with [nodenum = 3]
set prey4 count prey with [nodenum = 4]
set prey5 count prey with [nodenum = 5]
set prey6 count prey with [nodenum = 6]
set prey7 count prey with [nodenum = 7]
set prey8 count prey with [nodenum = 8]
set prey9 count prey with [nodenum = 9]
set prey10 count prey with [nodenum = 10]
set predl count predators with [nodenum = 1]
set pred2 count predators with [nodenum = 2]
set pred3 count predators with [nodenum = 3]
set pred4 count predators with [nodenum = 4]
set pred5 count predators with [nodenum = 5]
set pred6 count predators with [nodenum = 6]
set pred7 count predators with [nodenum = 7]
set pred8 count predators with [nodenum = 8]
set pred9 count predators with [nodenum = 9]
set pred10 count predators with [nodenum = 10]

]

set nodesizel ([nodesize] of nodes with [nodenum =1])
set nodesize?2 ([nodesize] of nodes with [nodenum =2)
set nodesize3 ([nodesize] of nodes with [nodenum =3)
set nodesize4 ([nodesize] of nodes with [nodenum =4])
set nodesize5 ([nodesize] of nodes with [nodenum =5])
set nodesize6 ([nodesize] of nodes with [nodenum =6])
set nodesize7 ([nodesize] of nodes with [nodenum =7)
set nodesize8 ([nodesize] of nodes with [nodenum =18]
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set nodesize9 ([nodesize] of nodes with [nodenum
set nodesizel0 ([nodesize] of nodes with [nodenum

if (feedback? = "error")[
set prey-priority []
set pred-priority ]
set remaining budget
ask-concurrent nodes [set-error]
ask manager [manager-strategy]

]

if (feedback? = "exact")[
set prey-priority []
set pred-priority []
set remaining budget
ask-concurrent nodes [set-count]
ask manager [manager-strategy]

]

ask edges [

if dist<=10 [

set dist 10]

]

export-network

tick

set time time + 1

update-plot

update-plot2
end

to set-dens ;; to set densities

set nodesize [nodesize] of my-node

if nodesize =0 [

set nodesize 1]

set preydens ((count prey with [nodenum = [noden
nodesize)

set predens ((count predators with [nodenum = [n
/ nodesize)
end

to set-dist-prey
set dist-prey random-poisson preymove
end

to set-dist-pred
set dist-pred random-poisson predmove
end

to move-prey ;; prey procedure, prey move along ed
the denisities

ifelse any? ([edge-neighbors] of my-node) with
[who] of self [who] of [my-node] of myself < [dist-

set my-desired-node one-of (Jedge-neighbors]
[[dist] of edge [wha] of self [who] of [my-node] of
prey] of myself]

=9))

um] of myself]) /

odenum] of myself])

ges depending on

[[dist] of edge
prey] of myself]

of my-node) with
myself < [dist-

260



set nodenum [nodenum] of my-desired-node
set my-node one-of nodes with [nodenum = [no
set nodesize [nodesize] of my-node
set preydens ((count prey with [nodenum = [n
myself]) / nodesize)
if preydens > preydens-up [
die ]

]
[die]
end

to move-predators ;; predator procedure, predators
depending on the densities

ifelse any? ([edge-neighbors] of my-node) with [[
of self [who] of [my-node] of myself < [dist-pred]

set my-desired-node one-of ([edge-neighbors]
[[dist] of edge [wha] of self [who] of [my-node] of
pred] of myself]

set nodenum [nodenum] of my-desired-node

set my-node one-of nodes with [nodenum = [nod

set nodesize [nodesize] of my-node

set preydens ((count prey with [nodenum = [no
/ nodesize)

if preydens < preydens-low [

die]

]

[die]
end

to reproduce-prey ;; prey procedure
if random-float 100 < prey-reproduce [ ;; throw
you will reproduce
hatch 1 [
set nodenum [nodenum] of myself
]

]

end

to reproduce-predators ;; predators procedure
if random-float 100 < predator-reproduce [ ;; th
if you will reproduce
hatch 1 [ ;set handling O
set nodenum [nodenum] of myself

] :; hatch an offspring and move it forward 1

]

end

to catch-prey ;; predator procedure
if handling =0 [
if any? prey with [nodenum = [nodenum] of mysel
let victim one-
;; grab a random prey
if random-float 100 < predation
;; did we get one? if so,

denum] of myself]

odenum] of

move along edges
dist] of edge [who]
of myself]

of my-node) with

myself < [dist-

enum] of myself]

denum] of myself])

"dice" to see if

row "dice" to see

step

fll

of prey with [nodenum = [nodenum] of myself]
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[ ask victim [ die ]
;i Kill it
set handling handling + handling-
;; get energy from eating

]
]

end

to mortprey
if random-float 100 < prey-death-rate [ die ]
end

to mortpred ;; turtle procedure
if random-float 100 < predator-death-rate [ die ]
end

to update-plot
set-current-plot "populations”
set-current-plot-pen "prey"
plot count prey
set-current-plot-pen "predators"
plot count predators

end

to update-plot2
set-current-plot "performance”
set-current-plot-pen "cost"
plot cost-previous
set-current-plot-pen "noeffect"
plot no

end

;Strategies to be implemented:

; ERROR in MEASURMENT

; error = follows a normal distribution with mean 0
decided (error_pred and error_prey)

; correctestimation = no error in feedback, that is
exactly known by the manager (count_prey and count_

to set-error
set count_prey count prey with [nodenum = [no
+ ( random-normal 0 5)
if count_prey < 0 [set count_prey 0]
set count_pred count predators with [nodenum
myself] + (random-normal 0 5)
set prey-priority []
set pred-priority ]
if (count_prey > nodesize * prey
set prey-priority fput my-n

if (count_prey < nodesize * pr
manlow) [
set pred-priority fput my-n

]
set prey-priority sort-by [[count_prey] of ?1
?2] prey-priority

time

and sd to be
count prey/pred is
pred)

denum] of myself]

= [nodenum] of

dens-up * manup) [
ode prey-priority

eydens-low *
ode pred-priority

> [count_prey] of
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set pred-priority sort-by [ [count_prey] of ?
?2] pred-priority

set pri (length prey-priority) + (length pred
end

to set-count
set count_prey count prey with [nodenum = [no
set count_pred count predators with [nodenum
myself]
set prey-priority []
set pred-priority ]
if (count_prey > nodesize * pr

set prey-priority fput my-n

if (count_prey < nodesize * pr
manlow) [
set pred-priority fput my-n

set prey-priority sort-by [[count_prey] of ?1 > [co
prey-priority

set pred-priority sort-by [ [count_prey] of ?1 > [c
pred-priority

set pri (length prey-priority) + (length pred-prior

end

; TYPE OF PARAMETER CONFIGURATION

; 3 types: need to be found in the literature (poss
data,

; S0 as to relate it to possible different

; AIM OF THE MANAGER

; carrying capacity threshold before size
; coexistence

; combination of carr capacity and coex

; HOW MANAGER CAN INTERVENE
; increasing/lowering cost of movement (thus the va
time (and then it returns to its previous value)

; increasing/lowering cost of moevement permanently

; limited intervention to x unit of increase/reduct
to manager-strategy

;;to calculate maintenance cost, we use the origina
lenght) - the actual distance (dist) in absolute va
;;subtracting it from remaining

ask edges [
set maincost_list fput (((abs (origdist - dis
maincost_list
]
set maincost sum maincost_list
if maincost != 0[
set remaining remaining - 10 * In maincost

]

if remaining <0 [

1 > [count_prey] of

-priority)

denum] of myself]
= [nodenum] of

eydens-up * manup)

ode prey-priority
eydens-low *
ode pred-priority
unt_prey] of ?2]
ount_prey] of ?2]

ity)

ibly empirical

ecosystems)

riable cost ) one

ion

| distance (link-
lue and sum it

0)1712))



set remaining O ]
ask edges [set dist-previous dist]
if remaining > 0 [

;; How the manager intervenes to preserve patch (n
fencing and excluding animals on a determined patch

ask nodes |

if nodesize + view < capth [
if fence =0
if remaining > incost [
ask edges with [end1 = myself or end2 = m
set dist dist + inwe

]

set fence 1
set remaining remaining - incost

]
]
]
if fence = 1 and (nodesize + view = capacit
if remaining > 10 [
ask edges with [end1 = myself or end2 =
set dist dist - inwe
]
set fence 0
set remaining remaining - incost
]
]
]

ask nodes [
if fence =0 [

while [(empty? prey-priority = false) and (empt
false)]
[
let target_node one-of prey-priority
let endangered_node one-of pred-priority
ifelse remaining > decost[
ifelse any? edges with [endl = target_node
endangered_node] or any? edges with [end1 = endange
target_node][
ask edge [who] of target_node [who] of e
set dist dist - dewe
set prey-priority remove target_node p
set pred-priority remove endangered_no
]
set remaining remaining - decost
|
[stop]
]
[stop]
1

ode) capacity by

yself] [

y + view) [

myself] [

y? pred-priority =

and end2 =
red_node and end2 =

ndangered_node [

rey-priority
de pred-priority
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while [(empty? prey-priority = false) and (empty
true)]
[
let target2_node one-of prey-priority
let neutral one-of nodes with [member? self
false]
ifelse neutral != nobody [
ifelse remaining > decost [
ifelse any? edges with [end1 = target2__
neutral] or any? edges with [end1 = neutral and end
ask edge [who] of target2_node [who]
set dist dist - dewe
set prey-priority remove target2_no

set remaining remaining - decost

]
[stop]
]
[stop]

[stop]
]

while [(empty? prey-priority = true) and (empty?
false)]

let endangered_node2 one-of pred-priority
let neutral2 one-of nodes with [member? sel
false]
ifelse neutral2 '= nobody [
ifelse remaining > decost[
ifelse any? edges with [end1 = endanger
neutral2] or any? edges with [endl = neutral2 and e
endangered_node2][
ask edge [who] of endangered_node2 [w
set dist dist - dewe
set pred-priority remove endangered
priority

]

set remaining remaining - decost
]
[stop]

]

[stop]

]
[stop]

]
]

to recovery

? pred-priority =

prey-priority =

node and end2 =
2 = target2_node][
of neutral [

de prey-priority

pred-priority =

f pred-priority =

ed_node2 and end2 =
nd2 =

ho] of neutral?[

_hode2 pred-

1111111111111111
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if count prey with [nodenum = [nodenum] of mys
preydens-up + nodesize * preydens-up / 100 * 10)[
set nodesize nodesize - 1
setreco 1
set time-recovery time-lag
if nodesize =0 [
set nodesize 1
]
set time2 time-lag
set real_lag time-lag

ifreco=0]
let rec (count prey with [nodenum = [nodenum
nodesize)
ifrec>0.15and rec <= 0.3 [
set time-recovery real_lag - 0.5
set real_lag time2
set time2 time2 - 0.5
if time-recovery <=0 [
set nodesize nodesize + 1
set time2 time-lag
set real_lag time-lag

]

ifrec>0andrec<=0.15[
set time-recovery real_lag - 0.75
set real_lag time2
set time2 time2 - 0.75
if time-recovery <=0 [
set nodesize nodesize + 1
set time2 time-lag
set real_lag time-lag

]
]

if count prey with [nodenum = [nodenum] of m
set time-recovery real_lag - 1
set real_lag time2
set time2 time2 - 1

if time-recovery <=0 [
set nodesize nodesize + 1
set time2 time-lag
set real_lag time-lag
]
]
if nodesize >= capacity [
set nodesize capacity
]

]

end

to-report pad [ number digits ]
let expanded ( word "000000000000000" number )
let len length expanded
report substring expanded ( len - digits ) len

end

to-report next-log-filename [ prefix digits suffix

elf] >= (nodesize *

] of myself] /

yself] =0

IEREERERRERRERE]
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;; report the first filename that does not exist

let next-id# 0
let next-id$ "

let keep-looking? true
while [ keep-looking? ]
[ set next-id# next-id# + 1
set next-id$ ( word prefix ( pad next-id# digi
set keep-looking? file-exists? next-id$

]

report next-id$
end

to export-network
if any? nodes [
let blank " "

let namenodes [who] of nodes
let nnodes max [who] of nodes

file-print "*start*"

file-type "prey on node"

file-type blank
file-type preyl
file-type blank
file-type prey2
file-type blank
file-type prey3
file-type blank
file-type prey4
file-type blank
file-type prey5
file-type blank
file-type prey6
file-type blank
file-type prey7
file-type blank
file-type prey8
file-type blank
file-type prey9
file-type blank
file-print prey10

file-type "predators on node"

file-type blank
file-type predl
file-type blank
file-type pred2
file-type blank
file-type pred3
file-type blank
file-type pred4
file-type blank
file-type pred5
file-type blank
file-type pred6
file-type blank
file-type pred7
file-type blank
file-type pred8
file-type blank
file-type pred9
file-type blank

ts ) suffix )
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file-print pred10

file-type "node-capacity"
file-type blank

file-type nodesizel
file-type blank

file-type nodesize2
file-type blank

file-type nodesize3
file-type blank

file-type nodesize4
file-type blank

file-type nodesize5
file-type blank

file-type nodesize6
file-type blank

file-type nodesize7
file-type blank

file-type nodesize8
file-type blank

file-type nodesize9
file-type blank

file-print nodesize10

file-type "predator extinction"
file-type blank

file-type pred-extinction-time
file-type blank

file-type "prey extinction"
file-type blank

file-type prey-extinction-time
file-type blank

file-type "remaining budget"
file-type blank

file-type remaining
file-type blank

file-type "id"
file-type blank

file-print netime

file-type "*Vertices"
file-type blank
file-print nnodes
file-print "*Arcs"
ask nodes [
let neigh link-neighbors
if (count neigh) >0 [
foreach [who] of neigh [
file-type who
file-type blank
file-type ?
file-type blank
leti who
letj ?
file-print [dist] of edge i |
]

end
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L1 iii. Management strategy synchronization

This model is implemented in Matlab2008a.

%This script runs all the model with different powe
between and within communities. More precisely the
power btw, the second the power structure within.

clear

clc

if exist('D:\A_STUDNAnalysing\Matlab\strategy dyn__
mkdir(‘'data’);

end

diary ('data\modelrun.txt’)

%number of networks is 10,with increasing connectiv

R =10; %number of runs per network
T =1000; %time-steps per run

c=10; %components of the network

n = 20; %nodes for every component

for p_bet = 0:0.025:0.2 %probability of h

a community
hh = ['netnum: ' num2str(p_bet)];
disp(hh);
a=0.8; b=1,;

p_att = a + (b-a)* rand;
%prob of attach within communities [0.8,1]

[ci net] = modnet (n,c,p_att,p_bet);

N = length(net);

%this is to write the network in pajek format
nome_rete = strcat('net_',num2str(p_bet),".net'
writepaj (net,nome_rete);

for state=0:0.25:1

disp(‘'eq_norm"); datestr(now)
eg_norm_strategy _dyn (R,T,c,n,state,net,ci,

disp('eq_monao'); datestr(now)
eg_mono_strategy dyn (R,T,c,n,state,net,ci,

disp('dem_norm"); datestr(now)
dem_norm_strategy dyn (R,T,c,n,state,net,ci

disp('dem_mono'); datestr(now)
dem_mono_strategy dyn (R, T,c,n,state,net,ci

disp('mono_norm"); datestr(now)
mono_norm_strategy_dyn (R, T,c,n,state,net,c

disp('mono_mono'); datestr(now)

r structures
first term is the

model\data')~=7

ity btw communities

aving edges outside

p_bet);

p_bet);

,p_bet);

,p_bet);

i,p_bet);
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mono_mono_strategy dyn (R,T,c,n,state,net,c

end

end
disp('Finish all');datestr(now)
diary off

BUILDING THE MODULAR NETWORK
functi on [ci net] = modnet (n, c, p_att, p_bet)

%creates a modular network,
N = n*c; %number of nodes (agents) of t

%following loop needed to generate ¢ number of rand
is the number of communities.

fori=1:c;
z = genvarname (strcat (‘'gi', numa2str (i)));
eval ([ z '=rnd (n, p_att););

end

%following procedure is needed in order to chain th
networks in one single matrix (or network)

a=1[[
fori= 1l

a = [a strcat(',gi',num2str(i))];
end

aa = substr(a,1);
z = genvarname ('net’);
eval ([z '= blkdiag(' aa ");']);

%following procedure needed to connect different co
%probabilty p_bet

ci = components (net);

fori=1:.c;
a = find (ci==i);
b = find (ci~=i);
fori=1:N;

aa = randselect (a,1);
bb = randselect (b,1);
if rand < p_bet;
net(aa,bb)=1; net(bb,aa)=1;
end
end
end

function graph =rnd (n, p_att)
%this function creates random-graphs and connects t
%modular network.

graph = random_graph (n, p_att);
graph = connect_graph (graph);
end

% Random graph construction routine with various mo

i,p_bet);

he whole network

om networks where ¢

e different c

mmunities with

hem into one single

dels
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% INPUTS: N - number of nodes

% p - probability, O<=p<=1

% E - fixed number of edges

% distribution - probability distribution:
"connecting-stubs model" generation model

% fun - customized pdf function, used only
‘custom’ - used as:

% random_graph(n,p,E,distribution,@m
where myfun is the function name,

% of a fn saved in myfun.m

% degrees - particular degree sequence, us

distribution = 'sequence’

% OUTPUTS: adj - adjacency matrix of generated grap

% Note 1: Default is Erdos-Renyi graph G(n,0.5)

% Note 2: Can generate a disconnected, multi-edge g

loops - check using isconnected.m/issimple.m

% Source: Various random graph models from the lite

%
% Gergana Bounova, October 31, 2005

functi on adj = random_graph(n,p,E,distribution,fun,degrees)

adj=zeros(n); % initialize adjacency matrix

switch nargin
case 1 % just the number of nodes, n
p = 0.5; % default probability of attachmen
for i=1:n
for j=i+1:n
if rand<=p
adj(i,j)=1; adj(j,)=1;
end
end
end

case 2
% the number of nodes and the probability of attach
for i=1:n
for j=i+1:n
if rand<=p
adj(i,j)=1; adj(j,)=1;
end
end
end

case 3 % fixed number of nodes and edges, n, E
while numedges(adj) < E
i=ceil(rand*n); j=ceil(rand*n);
if not(i==j) % do not allow self-loops
adj(i,j)=adj(i,j)+1; adj(j,i)=adj(i
end
end

otherwise % pick from a distribution; generate
from a distribution
Nseq=1; % ensure the while loops start
switch distribution
case 'uniform'’
while mod(sum(Nseq),2)==1 % make su

use the
if distribution =

yfun,degrees),

ed only if
h (symmetric)
raph with self-

rature

ment, n, p

5)B

*n* random numbers

re # stubs is even
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Nseq = ceil((n-1)*rand(1,n));
end
case 'normal’
while mod(sum(Nseq),2)==1 % make su
Nseq = ceil((n-1)/10*randn(1,n)
end
case 'binomial’
p=0.5; % default parameter for bin
while mod(sum(Nseq),2)==1 % make su
Nseq = ceil(binornd(n-1,p,1,n))
end
case 'exponential'
while mod(sum(Nseq),2)==1 % make su
Nseq = ceil(exprnd(n-1,1,n));
end
case 'geometric’
while mod(sum(Nseq),2)==1 % make su
Nseq = ceil(geornd(p,1,n));
end
case 'custom’
% pick a number from a custom pdf f
% generate a random number x betwee
% accept it with probability fun(x)
while mod(sum(Nseq),2)==1 % make su
Nseq = [I;
while length(Nseq)<n
x = ceil(rand*(n-1));
if rand <= fun(x)
Nseq = [Nseq x];
end
end
end
case 'sequence’
Nseq = degrees;
end

% connect stubs at random
nodes_left = [1:n];
for i=1:n

node{i} = [1:Nseq(i)];
end

while numel(nodes_left)>0 % edges < sum(N

randi = ceil(rand*length(nodes_left));
nodei = nodes_left(randi);

node
randj = ceil(rand*length(node{nodei}));
stubj = node{nodei}(randj);

stub

randii = ceil(rand*length(nodes_left));
nodeii = nodes_left(randii);

random node
randjj = ceil(rand*length(node{nodeii})
stubjj = node{nodeii}(randjj);

stub

% connect two nodes, as longs as stubs

re # stubs is even
+(n-1)/2);

omial distribution
re # stubs is even

re # stubs is even

re # stubs is even

unction
n1land N-1

re # stubs is even

seq)/2
% pick a random

% pick a random

% pick another

).

% pick a random

different
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if not(hodei==nodeii & stubj==stubjj)
% add new links
adj(nodei,nodeii) = adj(nodei,nodei
adj(nodeii,nodei) = adj(nodei,nodei
% remove connected stubs
node{nodei} = setdiff(node{nodei},s
node{nodeii} = setdiff(node{nodeii}

end

% remove empty nodes
nodes_leftl = nodes_left;
for i=1:length(nodes_left)
if length(node{nodes_left(i)})==0
nodes_leftl = setdiff(nodes_lef
end
end
nodes_left = nodes_leftl;

end
end % end nargin options

% Gergana Bounova, December 18, 2005

function A = connect_graph(B)
%the following code connects different random-graph
modular network

A=B;
N = length(A);
[ci cmp] = components(A);
if length(cmp)>1
nn = find(ci>1);
k = length(nn);
if k>0
r = randint(k,1,[1,N]);
A(nn,rn)=1; A(r,nn)=1,;
fori=1:N
A(i,i)=0;
end
end
[ci cmp]=components(A);
if length(cmp)>1
A = connect_graph(A);
end
end

functi on [ci sizes] = components(A)

% Compute connected components

% [ci sizes] = components(A) returns the component
and the size of each of the connected components (s
of connected components is max(components(A)). The
computes the strongly connected components of A, wh
connected components of A if A is undirected (i.e.

%

% This method works on directed graphs.

A = double(A);

i)+1;

i);
tubj);
,Stubjj);

t1,nodes_left(i));

S so as to build a

index vector (ci)
izes). The number
algorithm used
ich are the
symmetric).
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if ~issparse(A)
A = sparse(A);
end

[ci sizes] = comps(A); %refers to a dll library.
f unct i on writepaj(adj,fnm,x,y,z)

% Write adjacency matrix to a Pajek .net format

%

% CAUTION: Before loading the .net file into Pajek,
% close it in WordPad. That fixes some strange UNIX
incompatibility

% Gergana Bounova, March 14, 2006

% EXAMPLE

% *Vertices 4
% 1"v1"
0.5000

% 2"v2"
0.5000

% 3"v3"
0.5000

% 4 "v4"
0.5000

% *Edges

% 14 311
% 46 511
% 51 601

dirname = 'U:\AA_JACO\strategy_dynamics\strategy_dy

% dir for net file
filename = strcat (dirname, fnm);

N = length(adj); % number of nodes
fid = fopen(filename,'w");

fprintf(fid,*Vertices %6i\r',N);
if nargin < 3
for i=1:N
fprintf(fid,” %3i %s %1
%21.4f\r'i,strcat("'v',num2str(i),""),rand,rand,0.
end
elseif nargin >2 && nargin <5
for i=1:N
fprintf(fid,” %3i %s %1
%21.4f\r'i,strcat("'v',;num2str(i),""),x(i),y(i),0.
end
else % 3D coords
for i=1:N
fprintf(fid,” %3i %s %1
%21.4\r'i,strcat("'v',num2str(i),""),x(i),y(i),z(
end
end

fprintf(fid,"*Edges\r");
for i=1:N
for j=1:N
if adj(i,j)>0

open, save and
-Win

0.1000 0.5000
0.1000 0.4975
0.1000 0.4950

0.1001 0.4925

n_model\data\’;

AF %14
5);

AF %14
5);

Af %1.4f
);
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fprintf(fid,” %4 %4i %2i\r'i,j,adj(i
end

end

end

fclose(fid)

SETTING ATTRIBUTES FOR THE DYNAMICS OF THE MODEL

Equal authority/reputation distribution between com
distribution within

function eq_norm_strat_dyn (R,T,c,n,state,net,ci,p_bet)

strategy = [];
op_mod = [];
norm_dyn = zeros(T, c*n);

forp=1.R

%attributes assigned to every node
attrib = eq_norm_gen_attr(ci,c,n);

%Run the dynamics of the kuramoto model and retreiv
and last opinion(dyn and end_strat). Opinions are n
min)/(max-min)

dyn = dynamics (net,attrib,c,n,T,state,p_be
[r cc]=size(dyn);
end_strat = dyn(r,:);
strategy = [strategy ;end_strat];
norm_dyn = norm_dyn + dyn;
end

% save dynamics matrix (averaged node dynamics per

norm_dyn = norm_dyn./R;

matname =
[data\eq_norm_dyn_'/'state_',num2str(state)," net
txt1;

save (matname, 'norm_dyn',"-ascii', '-tabs’)

functi on attrib = eq_norm_gen_attr(ci,c,n)

N = length(ci);

attrib = ci; %= component to which
attrib = [attrib rand(N,1)] ; %= World view
aj=-1;

bj=1;

attrib = [attrib (aj+(bj-aj)*rand(N,1))]; %= strat

w=0.5 ;
sd =0.125

%= mean of nor
; %= sd of norma

%generating normal distribution for power within co

munities, normal

e opinion evolution
ormalized (a-

t);

network)

num2str(p_bet),".

a node belongs
[0.1]

egy ['111]

mal
|

mmunities
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pw = zeros(N,1);
forzz = 1:c
normpw = normrnd(w,sd,n,1);
pw(ci==zz) = normpw;
end
attrib = [attrib pw]; %= power withi n communities
p_bet2 = repmat(0.5,1,c);
p_bet3 = repmat(p_bet2,n,1);
attrib = [attrib p_bet3(})]; %= power betwe en communities

Equal authority/reputation distribution between com munities,
exponential distribution within
function eq_mono_strat_dyn (R,T,c,n,state,net,ci,p_bet)

strategy =];

op_mod = [];

norm_dyn = zeros(T, c*n);

forp=1R

%attributes assigned to every node
attrib = eq_mono_gen_attr(ci,c,n);

%Run the dynamics of the kuramoto model and retreiv e opinion evolution
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min)

dyn = dynamics (net,attrib,c,n,T,state,p_be t);

[r cc]=size(dyn);

end_strat = dyn(r,:);

strategy = [strategy ;end_strat];
norm_dyn = norm_dyn + dyn;

end
% save dynamics matrix (averaged node dynamics per network)
norm_dyn = norm_dyn./R;
matname =
[data\eq_mono_dyn_'/'state ',num2str(state),’ net num2str(p_bet),".
txt1;

save (matname, 'norm_dyn',"-ascii', '-tabs’)

functi on attrib = eq_mono_gen_attr(ci,c,n)

N = length(ci);

attrib = ci; %= component to wh ich a node belongs
attrib = [attrib rand(N,1)] ; %= World view [0,1 ]

aj=-1,

bj=1;

attrib = [attrib (aj+(bj-aj)*rand(N,1))]; %= stra tegy [-1,1]

%procedure for calculating power within:
pw = zeros(N,1);

forzz =1:c

pwr = round (1+rand*19); %= select rando m agent that will
be the most powerful

monopw = exprnd(0.125,n,1); %= generate vec tor of low power
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monopw(pwr,1) = 1; %= insert power
vector

pw(ci==zz) = monopw;
end
attrib = [attrib pw]; %= power within ¢

p_bet2 = repmat(0.5,1,c);
p_bet3 = repmat(p_bet2,n,1);
attrib = [attrib p_bet3(})]; %= power betwee

Normal authority/reputation distribution between co
distribution within

function dem_norm_strat_dyn (R,T,c,n,state,net,ci,p_bet)

strategy =[];
op_mod = [];
norm_dyn = zeros(T, c*n);

forp=1R

%attributes assigned to every node
attrib = dem_norm_gen_attr(ci,c,n);

%Run the dynamics of the kuramoto model and retreiv
and last opinion(dyn and end_strat). Opinions are n
min)/(max-min)

dyn = dynamics (net,attrib,c,n,T,state,p_be
[r cc]=size(dyn);
end_strat = dyn(r,:);
strategy = [strategy ;end_strat];
norm_dyn = norm_dyn + dyn;
end

% save dynamics matrix (averaged node dynamics per

norm_dyn = norm_dyn./R;

matname =
[data\dem_norm_dyn_','state_',num2str(state)," net
Axt;

save (matname, 'norm_dyn',"-ascii', '-tabs’)

functi on attrib = dem_norm_gen_attr(ci,c,n)

N = length(ci);

attrib = ci; %= component to whic
attrib = [attrib rand(N,1)] ; %= Worl
aj=-1,

bj=1;

attrib = [attrib (aj+(bj-aj)*rand(N,1))]; %= stra
w =0.5;

sd = 0.125;

%procedure for calculating power within:
pw = zeros(N,1);
forzz = 1:c
normpw = normrnd(w,sd,n,1);
pw(ci==zz) = normpw;

ful agents in

ommunities

n communities

mmunities, normal

e opinion evolution
ormalized (a-

t);

network)

_,num2str(p_bet),’

h a node belongs
d view [0,1]

tegy [-1,1]
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end
attrib = [attrib pw]; %= power withi n communities

%procedure for power between:

p_bet2 = normrnd(0.5,0.125,1,c);

p_bet3 = repmat(p_bet2,n,1);

monopb = p_bet3(:);

attrib = [attrib monopb]; %= power between communities

Normal authority/reputation distribution between co mmunities,
exponential distribution within

function dem_mono_strat dyn (R,T,c,n,state,net,ci,p_bet)

strategy =];
op_mod = [];
norm_dyn = zeros(T, c*n);

forp=1R

%attributes assigned to every node
attrib = dem_mono_gen_attr(ci,c,n);

%Run the dynamics of the kuramoto model and retreiv e opinion evolution
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min)

dyn = dynamics (net,attrib,c,n,T,state,p_be t);
[r cc]=size(dyn);

end_strat = dyn(r,:);

strategy = [strategy ;end_strat];

norm_dyn = norm_dyn + dyn;

end
% save dynamics matrix (averaged node dynamics per network)
norm_dyn = norm_dyn./R;
matname =
[data\dem_mono_dyn_','state ',num2str(state),’ net _,num2str(p_bet),’
Axt;

save (matname, 'norm_dyn',"-ascii', '-tabs’)

functi on attrib = dem_mono_gen_attr(ci,c,n)

N = length(ci);

attrib = ci; %= component to whi ch a node belongs
attrib = [attrib rand(N,1)] ; %= Worl d view [0,1]

aj=-1;

bj=1;

attrib = [attrib (aj+(bj-aj)*rand(N,1))]; %= stra tegy [-1,1]

%procedure for calculating power within:
pw = zeros(N,1);
forzz = 1:c
pwr = round(1+rand*19); %= select random agent that will be
the most powerful
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monopw = exprnd(0.125,n,1); %= generate vect

monopw(pwr,1) = 1; %= insert powerf
pw(ci==zz) = monopw;

end

attrib = [attrib pw]; %= power within com

%procedure for power between:

p_bet2 = normrnd(0.5,0.125,1,¢);

p_bet3 = repmat(p_bet2,n,1);

monopb = p_bet3(:);

attrib = [attrib monopb]; %= power between

Exponential authority/reputation distribution betwe
normal distribution within

functi on mono_norm_strat_dyn (R,T,c,n,state,net,ci,p_bet)

strategy = [];
op_mod = [];
norm_dyn = zeros(T, c*n);

forp=1.R

%attributes assigned to every node
attrib = mono_norm_gen_attr(ci,c,n);

%Run the dynamics of the kuramoto model and retreiv
and last opinion(dyn and end_strat). Opinions are n
min)/(max-min)

dyn = dynamics (net,attrib,c,n,T,state,p_be

[r cc]=size(dyn);

end_strat = dyn(r,:);

strategy = [strategy ;end_strat];

norm_dyn = norm_dyn + dyn;

end

% save dynamics matrix (averaged node dynamics per

norm_dyn = norm_dyn./R;

matname =
[data\mono_norm_dyn_','state_',num2str(state)," ne
ixtT;

save (matname, 'norm_dyn',"-ascii', '-tabs’)

functi on attrib = mono_norm_gen_attr(ci,c,n)

N = length(ci);

attrib = ci; %= component to w
attrib = [attrib rand(N,1)] ; %= Worl
aj=-1,

bj=1;

attrib = [attrib (aj+(bj-aj)*rand(N,1))]; %= stra
w = 0.5;

sd = 0.125;

%generating normal distribution for power within co
pw = zeros(N,1);
forzz =1:c

normpw = normrnd(w,sd,n,1);

or of low power
ul agents in vector

munities

communities

en communities,

e opinion evolution
ormalized (a-

t);

network)

t_',num2str(p_bet),

hich a node belongs
d view [0,1]

tegy [-1,1]

mmunities
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pw(ci==zz) = normpw;
end
attrib = [attrib pw]; %= power within communities

%procedure to calculate power between
p_bet2 = exprnd(0.125,1,c);

p_bet3 = repmat(p_bet2,n,1);

monopb = p_bet3(:);

pbr = round (1+rand*9); %= select powerf ul community
maxpbc = ones(n,1); %= max power of community
monopb(ci==pbr) = maxpbc; %= one community has max power
attrib = [attrib monopb]; %= power between communities
Exponential authority/reputation distribution betwe en communities,

exponential distribution within

functi on mono_mono_strat_dyn (R,T,c,n,state,net,ci,p_bet)
strategy = [];
op_mod = [];
norm_dyn = zeros(T, c*n);

forp=1.R

%attributes assigned to every node
attrib = mono_mono_gen_attr(ci,c,n);

%Run the dynamics of the kuramoto model and retreiv e opinion evolution
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min)

dyn = dynamics (net,attrib,c,n,T,state,p_be t);

[r cc]=size(dyn);

end_strat = dyn(r,:);

strategy = [strategy ;end_strat];
norm_dyn = norm_dyn + dyn;

end
% save dynamics matrix (averaged node dynamics per network)
norm_dyn = norm_dyn./R;
matname =
[data\mono_mono_dyn_','state ' ,num2str(state),’ ne t_',num2str(p_bet),
LixtT;

save (matname, 'norm_dyn','-ascii', '-tabs’)

functi on attrib = mono_mono_gen_attr(ci,c,n)

N = length(ci);

attrib = ci; %= component to w hich a node belongs
attrib = [attrib rand(N,1)] ; %= Worl d view [0,1]

aj=-1;

bj=1;

attrib = [attrib (aj+(bj-aj)*rand(N,1))]; %= stra tegy [-1,1]

%procedure for calculating power within:
pw = zeros(N,1);
forzz = 1:c
pwr = round (1+rand*19); %= select rando m agent that will
be the most powerful
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monopw = exprnd(0.125,n,1); %= generate vec

monopw(pwr,1) = 1; %= insert power
vector

pw(ci==zz) = monopw;
end

attrib = [attrib pw];

%procedure to calculate power between
p_bet2 = exprnd(0.125,1,c);

p_bet3 = repmat(p_bet2,n,1);

monopb = p_bet3(:);

pbr = round (1+rand*9); %= select powerf
maxpbc = ones(n,1); %= max power of
monopb(ci==pbr) = maxpbc; %= one community
attrib = [attrib monopb]; %= power between

Dynamics of the model

function dyn = dynamics(net,attrib,c,n,T,state,p_bet)
%dynamics of the model: Syncrhonization = homogenei
strategies. in case of equation 8.2 wv=1 as 1 is th

is like saying that wv has no effect on the authori
differences.

N = length(net);

alfa = 3;
fac = 10;
fort=1.T
fori=1:N
neighb = find(net(i,:)==1);
oscilw_v =];
oscilb_v=1];

sum_oscilw = 0;
sum_oscilb = 0;

sum_w = ];
sum_b =1];
cpw=[];
cpb=(];

for k = 1:length(neighb)
if attrib(i,1)==attrib(neighb(k),1)
coup_w = (attrib(neighb(k),4) - att
wv = (abs(attrib(i,2) - attrib(neig
if coup_w<=0

coup_w =0;
else

coup_w = (coup_w”™wv)*fac;
end

stratl= attrib(i,3);
strat2= attrib(neighb(k),3);
oscilw= (sin(strat2-stratl)-state*s
oscilw_v(1,k) = oscilw;
sum_oscilw = coup_w*(oscilw);
sum_w(:,k) = sum_oscilw;

else
coup_b = (attrib(neighb(k),5)- attr
wv = (abs(attrib(i,2) - attrib(neig

tor of low power
ful agents in

ul community
community

has max power
communities

zation of
e “neutral” (thus
ty/reputation

rib(i,4));
hb(k),2)));

in(stratl));

ib(i,5));
hb(k),2)));
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if coup_b<=0

coup_b =0;
else

coup_b = (coup_b”wv)*fac;
end

stratl= attrib(i,3);
strat2= attrib(neighb(k),3);
oscilb= (sin(strat2-stratl)-state*s
oscilb_v(1,k) = oscilb;
sum_oscilb = coup_b*(oscilw);
sum_b(:,k) = sum_oscilb;
end
end

stratl = stratl+ sum(sum_w)+sum(sum_b);
attrib(i,3)=strat1;
dyn(t,i)=stratl;
end
end

Functions used as “utilities” in the building of mo

functi on outstr = substr(str, offset, len, repl)
%SUBSTR Extract a substring out of a string.

%

% SUBSTR(STRING, OFFSET, LENGTH) extracts a subst
with

% given LENGTH starting at the given OFFSET. Fir
offset 0.

% If OFFSET is negative, starts that far from the

If

% LENGTH is omitted, returns everything to the en
If LENGTH

% is negative, removes that many characters from
string.

%

% SUBSTR(STRING, OFFSET, LENGTH, REPLACEMENT) wil

substring

% as specified by STRING, OFFSET, and LENGTH (see
replace

% it by REPLACEMENT and return the result.

%

% Examples:

%

%  Get first character: substr(str
%  Get last character: substr(str
%  Remove first character: substr(str
%  Remove last character: substr(str

%  Remove first and last character: substr(str

%

% SUBSTR is a MATLAB version of the Perl operator
name.

% However, unlike Perl's SUBSTR, no warning is pr
substring is

% totally outside the string.

% Author: Peter J. Acklam
% Time-stamp: 2004-02-21 22:49:14 +0100

in(stratl));

del

ring out of STRING
st character is at
end of the string.
d of the string.

the end of the

| not return the

above) but rather

ing, 0, 1)
ing, -1, 1)
ing, 1)

ing, 0, -1)
ing, 1,-1)

with the same

oduced if the
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% E-mail:  pjacklam@online.no
% URL: http://home.online.no/~pjacklam

% Check number of input arguments.
error(nargchk(2, 4, nargin));

n = length(str);

% Get lower index.
Ib = offset + 1; % offset from begin
if offset <0

Ib=1Ib+n; % offset from end o
end
Ib = max(lb, 1);

% Get upper index.
if nargin == % SUBSTR(STR, OFFSE
ub =n;
elseif nargin > 2 % SUBSTR(STR, OFFSE
iflen>=0
ub=Ib+len-1;
else
ub =n +len;
end
ub = min(ub, n);
end

% Extract or replace substring.
if nargin < 4
outstr = str(lb : ub);
substring
else
outstr = [str(1:lb-1) repl str(ub+1:end)];
substring
end

functi on r = randint(i,j,interval)
% Random integers

% r = randint(i,j,[from,to]) Returns a ixj matrix w
% integers from the interval [from,to].

%

% Note that randint is also function of the Matlab
% toolbox!

%

% Inputs:

% i : Matrix i dimension

% j : Matrix j dimension

% interval : Integer interval [from to]

%

% Outputs:

% r . ixj random integer matrix
%

% Examples:

% r=randint(1,1,[1,10])

% r=randint(1,1,[1,10])

% r=randint(3,4,[1,10])

ning of string

f string

)

T, LEN)

% extract

% replace

ith random

communication
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%
% (c) 2006 Christof Teuscher

% christof@teuscher.ch | http://www.teuscher.ch/chr
%

from = interval(1);
to = interval(2);

r = from + round(rand(i,j) * (to - from));

function A =randselect(x,n)
% Select n random elements from a list

if size(x,1)==1
X=X";
end
¢ = length(x);
y = rand(c,1);
C = sortrows([x y],2);
A =C(1:n,1);

function[A]=intrnd(n, min, max, rep)

% Generates n random integers in (min, max), no rep
% rep = 0 -> no repetitions

% rep = 1 -> repetitions

if nargin<4
rep =0;
end
if rep>1
rep=1,
end
if max<=n
error('Interval must be > No. of items');
end

if rep==1
A = round(min + (max-min).*rand(n,1));
else
A=
A(1) = round(min + (max-min)*rand);
i=2;
while i<n+1
k = round(min + (max-min)*rand);
if ~ismember(k, A)
A() = k;
i =i+1;
end
end
end
A=A

functi on norm = normalize(mat,type)
norm = [J;
[row col]=size(mat);

if nargin<2
type=0;

etitions
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end

if type~=1;
ms=max(mat);
ms=max(ms);
mn=min(mat);
mn=min(mn);
norm=(mat-mn)./(ms-mn);
end

if type==1
ms=max(mat);
mn=min(mat);

for ii=1:col
norm=[norm (mat(:,ii) - mn(:,ii))/(ms(:,ii)
end
end

end

Results analysis (or degree of synchronization/homo

functi on order = rparam(mat)

%to calculate the synchronization parameter of our
pluchino et al.; in order to measure the synchroniz
system, we adopted an order parameter related to th
deviation of the end-strategies.

[row,col] = size(mat);
m = mean(mat);
diff=[;

for co=1:col;
diff =[diff (mat(:,co)-m(:,c0)).*2];
end

sdiff = sum(diff);
order = 1-sqrt(sdiff.*(1/(r
ow)));

- mn(.,ii)];

genisation)

model, based on
ation of the
e standard
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