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Abstract

Phylogenetics is a flourishing research area that studies the evolution-

ary relationships between species. Phylogenetics has attracted a great

deal of attention from researchers in different areas due to its inter-

disciplinary nature, its importance to understanding evolution, and

the increasing availability of molecular sequence data. At the heart of

phylogenetics is the reconstruction of evolutionary histories or phylo-

genetic trees. Based on splits, i.e. bipartitions of a set of species, this

thesis makes contributions to understanding how to use evolutionary

histories to understand the diversity of species, and how to reconstruct

more intricate histories for species which evolve in complex ways. Re-

garding the former, we study the phylogenetic diversity optimisation

problem under various situations, prove the NP-hardness for some

cases and derive efficient algorithms for the others. Regarding the

latter, we develop a new method to reconstruct a planar phylogenetic

network from a distance matrix and make an initial investigation of

its performance.
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Chapter 1

Introduction

Phylogenetics studies the evolutionary relationships among various kinds of or-

ganisms, e.g. at the individual, species, or population level, which are nowadays

commonly deduced from molecular sequence data. Phylogenetics is interdisci-

plinary, it makes use of the developments in different fields including Biology,

Computing Sciences, Mathematics, and Geometry. Even though it is a young

field, phylogenetics has attracted a great deal of attention from researchers, has

seen fast moving developments in recent times and has opened up many questions.

This thesis focuses on two major aspects of the field: Phylogenetic diversity and

phylogenetic networks.

Phylogenetic diversity is a measure used to quantify how evolutionarily di-

verse a group of taxa is. Although there are a variety of technical definitions

of phylogenetic diversity, there is a common problem of finding a group of taxa

within a set of given taxa that has the highest diversity. This main problem and

its variations, e.g. those with additional constraints on cost for preserving taxa,

are important to conservationists who want to understand and/or maintain the

diversity of a specific species, or the biodiversity within a geographic region.

Concerning phylogenetic networks, initially, phylogenetic trees were first used

to illustrate the evolutionary relationships. Later on it was found that there

are evolutionary events such as e.g. hybridization, horizontal gene transfer, and

recombination, that cannot be represented with the tree since they are naturally

non tree-like. Therefore phylogenetic networks were developed to complement

1



trees. Phylogenetic networks have found practical applications to studying real

life data such as mitochondrial DNA or virus genuses.

In this thesis, we develop some novel approaches to phylogenetic diversity and

phylogenetic networks based mainly on the mathematics of bipartitions of a set,

or splits for short. The contents are structured as follows:

Chapter 2 provides the background information for the thesis. We first in-

troduce some basic concepts in graph theory, then use them to define the key

concepts: Phylogenetic trees, collections of splits, or split systems, and split net-

works. We also briefly describe some common methods used to reconstruct phy-

logenetic trees and split networks. After that, we place the so-called phylogenetic

diversity optimisation problem into the context of split systems (problem MPD,

or MaximumPhylogeneticDiversity), which can be specialised to both trees

and networks. We also summarise some recent algorithmic developments to the

optimisation on trees and networks.

In Chapter 3, we study complexity aspects of the MPD problem. Using the

reduction technique, which is widely used in studying complexity, we show that

not only MPD but many of its variations, either split-based or not, are NP-hard.

These results suggest to study the problem for special classes of split systems or

using heuristic approaches.

Chapter 4 is dedicated to studying the phylogenetic diversity problem on

phylogenetic trees. Inspired by the recently developed greedy approach to the

MPD problem on trees, we propose a new algorithm that has the best running

time compared to available methods, and is optimal in this respect. We then

utilise the special structure of trees to develop a dynamic programming-based,

polynomial time algorithm for problem MaximumAverageDiversity which is

generally NP-hard.

The MPD problem is studied further in Chapter 5 under two other special

structures of input data: Using some geometric transformation, we translate the

optimisation problem on affine split systems to the closely related problem of

finding optimal convex polygons, and develop a polynomial time algorithm for

this. The geometric approach is then exploited further to study the problem on

circular split systems. In particular, we develop an algorithm that has a better

running time than the current methods to solve the problem.

2



Parts of Chapters 3, 4, and 5 are extracted and adapted from the paper

“A. Spillner, B. T. Nguyen, and V. Moulton. Computing phylogenetic

diversity for split systems. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 5(2):235 244, April-June 2008” which was worked out in

collaboration with Dr. Andreas Spillner.

Chapter 6 and 7 are dedicated to the improved methods to represent data

with split networks. We first introduce flat split systems (FSSs), which are the

most general class of split systems whose corresponding split networks can be

drawn on the plane, and then give an initial investigation of their application.

In Chapter 6, we provide a constructive foundation: We define FSSs, show

how to represent them using labelled wiring diagrams, and how to draw their

corresponding planar split networks. We then define several basic operations

on FSSs and study properties of these operations. These make it possible to

manipulate the FSSs and to search through the space of FSSs. In Chapter 7 we

make a comparative study of the application of FSSs: We give a method to find

a weighted FSS to represent a given distance matrix and compare this method to

the well known NeighborNet method. We evaluate the results on both random

and real life data.

We conclude this introduction by noting that in addition to the above, during

the course of work undertaken for this thesis, we proposed a method to help anal-

yse the origin of phylogenetic diversity in a species. This resulted in the paper

“B. Nguyen, A. Spillner, B. Emerson, and V. Moulton. Distinguishing

between hot-spots and melting-pots of genetic diversity using haplotype connec-

tivity. Algorithms for Molecular Biology, 5:19, 2010”. The work was inspired by

the fact that, while phylogenetic diversity is commonly used to measure the di-

versity at the genetic level, more needs to be understood about how this diversity

arises. This is important to conservationists since they need to know if a region

with high genetic diversity is a “hot-spot”, i.e. the species has come to the region

and evolved there for a long time, thus the diversity is stable, or is a “melting-

pot”, i.e. the high diversity is the result of the different gene pools that have

merged in the region only for a short period of time, thus have not become stable

yet, and therefore may not be stable enough in the future. We proposed a new

measure called haplotype connectivity which is easy to understand and efficient

3



to compute given the distance matrix between the taxa. The measure was tested

on published data and shown to provide a useful addition to the current tools.

We did not include this work in this thesis as it fell somewhat out of the general

theme - the computation and interpretation of haplotype connectivity does not

require splits at all.
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Chapter 2

Background

2.1 Summary

In this chapter, we give some background on phylogenetic trees and phylogenetic

networks - the mathematical objects used to represent evolutionary relationships.

We first summarise some foundations from graph theory, and then introduce the

concept of an X-tree as a bridge between trees in graph theory and phyloge-

netic trees. After this, phylogenetic trees are defined, and several methods to

reconstruct phylogenetic trees are reviewed. We then review split networks -

an important special class of phylogenetic networks. We also recall the concept

of splits and split systems which are the mathematical objects underlying both

X-trees and split networks.

2.2 Phylogenetic trees

Phylogenetic trees are diagrams that are used to depict evolutionary relationships

in evolutionary biology. In 1837, in his Notebook B, Darwin sketched what was

later considered the first phylogenetic tree ever produced, see a photograph of it

in Figure 2.1 (11)1. However, Haeckel (71) is usually considered to be the first

biologist who published a phylogenetic tree in 1866. There are various forms of

1From Wikipedia (http://en.wikipedia.org/wiki/File:Darwin_tree.png), URL last

checked 30/6/2010. This photograph is in the public domain because the author died prior to

1 January 1940.
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2.2 Phylogenetic trees

phylogenetic trees for various purposes: For example, Haeckel’s diagram looks like

a real tree (see Figure 2.2), Romer’s diagram of vertebrates (125) incorporates

an absolute time frame and an estimate of the numbers of species of each group

at any one time, Milne and Milne’s tree of caddis flies (104) is three dimensional

and incorporates factors like habitat and casing construction. To formally define

phylogenetic trees, we first recall some related definitions in graph theory.

2.2.1 Basic concepts in graph theory

We now review several concepts in graph theory that will be used later on in this

thesis. For more on graphs the reader can refer to e.g. (12; 37). We only consider

undirected graphs, which we shall refer to simply as graphs.

A graph G is a pair (V,E) where V is a non-empty, finite set and E is a subset

of

(
V
2

)
. Here

(
M
k

)
denotes all k-element subsets of a finite set M , k ∈ N

- the set of natural numbers. The set V is called the set of vertices of G and E

is called the set of edges of G. Sometimes we use V (G) and E(G) to refer to the

sets of vertices and edges of a graph G, respectively.

A graph G = (V,E) is called bipartite if V can be partitioned into V1 and V2

so that for every edge {u, v} ∈ E, either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1.
A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) with the property

that V ′ ⊆ V and E ′ ⊆ E. Two distinct vertices u, v ∈ V are called adjacent

if {u, v} ∈ E. The degree of a vertex v ∈ V is the number of vertices that are

adjacent to v. An isomorphism of graphs G = (V,E) and G′ = (V ′, E ′) is a

bijection f : V → V ′ such that, for every u, v ∈ V, {u, v} ∈ E if and only if

{f(u), f(v)} ∈ E ′. In that case, G and G′ are called isomorphic.

A path from a vertex u to a vertex v in a graph G = (V,E) is a sequence

u = w0, w1, w2, . . . , wl = v, l ≥ 0, of pairwise distinct vertices of G such that

{wi−1, wi} ∈ E for all i ∈ {1, 2, . . . , l}. The edges {wi−1, wi}, i ∈ {1, 2, . . . , l}, are

called edges on the path. The number of edges on the path is called the length of

the path. A shortest path between two vertices u and v of G is a path between

u and v that has the minimum length among all paths from u to v. A cycle is a

path w0, w1, w2, . . . , wl such that l ≥ 2 and {w0, wl} ∈ E. In a bipartite graph,

the number of edges on a cycle is always even.
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2.2 Phylogenetic trees

Figure 2.1: Darwin’s “I think...” tree. The text annotations read: “I think...

Case must be that one generation then should be as many living as now. To do

this & to have many species in same genus (as is) requires extinction... Thus

between A & B immense gap of relation. C & B the finest gradation, B & D

rather greater distinction. Thus genera would be formed. Bearing relation (page

36 ends - page 37 begins) to ancient types with several extinct forms...”.
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2.2 Phylogenetic trees

Figure 2.2: Haeckel’s phylogenetic tree of the animal kingdom (71).
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2.2 Phylogenetic trees

1

2

3

4

5678

Figure 2.3: An unweighted, connected graph with V = {1, 2, 3, 4, 5, 6, 7, 8},
E = {{1, 2}, {1, 4}, {2, 3}, {3, 4}, {2, 5}, {3, 6}, {3, 7}, {4, 8}}. The degree of, for

example, vertices 1 and 3 are 2 and 4, respectively; the sequence 5, 2, 3, 4, 8 is a

path; the path 1, 2, 3, 4, 1 is a cycle.

A graph G = (V,E) is weighted if there is a function w : E → R≥0 assigning

to every edge e ∈ E a non-negative real number referred to as the weight of the

edge. On a weighted graph, the length of a path is defined as the total weight

of the edges in the path. A graph that is not weighted is called an unweighted

graph.

A graph G = (V,E) is called connected if there is at least one path between

any pair of vertices of V . Figure 2.3 shows a connected graph and illustrates

some of the terms introduced above.

A tree is a connected graph T = (V,E) with no cycles, see Figure 2.4(a). Note

that for any pair of vertices u and v of V , there is always a unique path between

them. On a tree, a vertex of degree at most 1 is called a leaf, a vertex that is not

a leaf is called an inner vertex. A subtree of T is a connected subgraph of T .

A rooted tree is a tree T = (V,E) where a special vertex r ∈ V is distinguished.

This vertex introduces a parent-child order on the vertices: Vertex u is the parent

of vertex v (or v is the child of u) if u is the predecessor of v on the path from

r to v. Figure 2.4(b) depicts a tree rooted at vertex r. The distinguished vertex

r is called the root of the tree. On a rooted tree T = (V,E), for any v ∈ V ,

9
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(a) A tree

r

(b) A rooted tree

Figure 2.4: Trees in graph theory.

the subtree rooted at v is the subtree composed of v, its successors and all edges

connecting those vertices.

A rooted tree is called a binary tree if the root has degree two and all other

inner vertices have degree three. In other words, in a binary tree, every inner

vertex has two children. For convenience, two children of an inner vertex of a

binary are called left and right children where “left” and “right” are topologically

recognised where the tree is drawn. The subtree rooted at the left and right

children of a vertex v are called the left subtree and right subtree of v, respectively.

For a graph G = (V,E) and a function f : V → C from V into a non empty,

finite set C, the changing set of f is the subset

Ch(f) = {{u, v} ∈ E : f(u) 6= f(v)}

of E. The cardinality of Ch(f), denoted by ch(f), is called the changing number

of f .

2.2.2 Phylogenetic trees.

We now give a formal definition for a phylogenetic trees. An in-depth introduction

to such trees may be found in (140).

Let X be a non-empty, finite set. An X-tree T is an ordered pair (T, φ), where

T = (V,E) is a tree and φ : X → V is a map such that every vertex of degree

at most two is contained in φ(X). An X-tree is also called a semi-labelled tree

10



2.2 Phylogenetic trees

(on X), T is called the underlying tree (of T), and φ is called the labelling map

of T. Sometimes, when we mention the vertices and the edges of an X-tree, we

are actually referring to the vertices and edges of the underlying tree.

Two X-trees T1 = (T1, φ1) and T2 = (T2, φ2) where T1 = (V1, E1) and

T2 = (V2, E2) are isomorphic if there exists a bijection ψ : V1 → V2 that is

an isomorphism of the graphs T1 and T2, and satisfies φ2(x) = ψ(φ1(x)) for all

x ∈ X. If ψ exists, it is also unique.

A phylogenetic X-tree T is an X-tree (T, φ) with the property that φ is a

bijection from X to the set of leaves of T . In other words, a phylogenetic X-tree

is an X-tree where the leaves are in one-to-one correspondence to the elements

of X. A phylogenetic X-tree is also called a phylogenetic tree (on X). If every

inner vertex of the underlying tree of a phylogenetic X-tree T has degree three,

T is called a binary phylogenetic tree (on X). An example of a phylogenetic tree

is pictured in Figure 2.5(a).

An X-tree, and therefore, a phylogenetic tree can be rooted. A rooted X-tree

T is an ordered pair (T, φ), where T = (V,E) is a rooted tree with root vertex r,

and φ : X → V is a map such that for every v ∈ V − {r} of degree at most two,

v ∈ φ(X). A rooted X-tree is also called a rooted semi-labelled tree (on X).

A rooted phylogenetic X-tree T, or a rooted phylogenetic tree (on X), is a

rooted X-tree (T, φ) such that φ is a bijection from X to the set of leaves of T and

the root r has degree at least two. An example of a rooted phylogenetic tree is

pictured in Figure 2.5(b). If the underlying tree is binary, then T is called a rooted

binary phylogenetic tree (on X). Note that the root is considered to represent the

common hypothetical ancestor of the taxa represented by the leaves, and the tree

represents how the ancestor evolved to become the current (labelled) taxa.

Rooted phylogenetic trees are useful when there is evidence that the taxa

in consideration have a common ancestor. In an (unrooted) phylogenetic tree,

the common ancestor assumption is not applied; the tree simply illustrates the

evolutionary relationships between the taxa. Unrooted phylogenetic trees are

important because it is not always possible to determine which of the vertices is,

or should be, the common ancestor. In both rooted and unrooted phylogenetic

trees, inner unlabelled vertices are considered to represent intermediate unknown

or extinct taxa.
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a b

c

de

(a) A (unrooted) phylogenetic tree.

a

b c

d e

r

(b) A rooted, binary phylogenetic

tree.

Figure 2.5: Two phylogenetic trees on the set of taxa X = {a, b, c, d, e}.

In this thesis, we shall focus on unrooted trees. For more about rooted trees

see e.g. (53; 82; 140).

2.2.3 X-trees and split systems.

We now define combinatorial objects called splits and split systems which un-

derly phylogenetic trees and, as we shall see, phylogenetic networks which will

be defined in the next section. Given a finite set X, an X-split, or a split of X is

a bipartition of X into two non-empty sets A and B. Such a split is denoted as

A|B, and, since the order of A and B is arbitrary, we consider A|B and B|A as

being the same. The subsets A and B are called the parts of the split. A split

A|B is trivial if |A| = 1 or |B| = 1, otherwise it is non-trivial.

Now, consider an X-tree T = (T, φ) with underlying tree T = (V,E). If an

edge e ∈ E is deleted, T will be divided into two subtrees T1 = (V1, E1) and

T2 = (V2, E2). Let X1 = φ−1(V1) and X2 = φ−1(V2). Then both X1 and X2 are

non-empty, X1 ∩X2 = ∅ and X1 ∪X2 = X. These properties imply that X1 and

X2 form a bipartition of X, or X1|X2 is an X-split. For example, the deletion

of the red edge in Figure 2.5(a) gives rise to the split {a, b, c} | {d, e}. If the split

corresponding to the edge e ∈ E is denoted by Se, then the edges of the tree T
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2.2 Phylogenetic trees

induce a set of splits ST = {Se : e ∈ E}.
A pair of splits A1|B1 and A2|B2 is said to be compatible if at least one of

the four intersections A1 ∩ A2, A1 ∩ B2, B1 ∩ A2, and B1 ∩ B2 is empty. For

example, the two splits corresponding to the red and green edges in Figure 2.5(a)

are {a, b, c} | {d, e} and {a} | {b, c, d, e}, respectively; and since {d, e} ∩ {a} = ∅,
this pair of splits is compatible. A split system (on X) is a subset of the set of all

X-splits. A split system is called compatible if every pair of splits in the system

is compatible.

The Splits-Equivalence Theorem by Buneman (26) characterises those split

systems that arise from X-trees, in terms of compatible split systems.

Theorem 1. (Split-Equivalence Theorem (26)) Let S be a collection of X-splits.

Then, there is an X-tree T such that ST = S if and only if every pair of splits

in S is compatible. Moreover, if such an X-tree exists, then, up to isomorphism,

it is unique.

For illustration, the split system induced by the X-tree in Figure 2.5(a) is S =

{{a} | {b, c, d, e} , {a, c, d, e} | {b} , {a, b, d, e} | {c} , {a, b, c} | {d, e} , {a, b, c, d} | {e} ,
{a, b, c, e} | {d}}. It is easy to check that S is compatible.

If the (underlying tree of a) phylogenetic X-tree is weighted, the weight w(e)

of an edge e is assigned as the weight of the corresponding split Se. The length

of the path between two elements x and y in X (also called the phyletic distance

between x and y) is the total weight of the splits corresponding to the edges on

the path between φ(x) and φ(y). If S = X1|X2 is such a split, then note that

x and y never belong to the same part of S, i.e. either x ∈ X1 and y ∈ X2 or

x ∈ X2 and y ∈ X1. We shall therefore also say that the split S separates x and

y.

2.2.4 Reconstructing phylogenetic trees.

Having described what a phylogenetic tree is, we now review how such trees

are commonly reconstructed. There are basically two main approaches to re-

construct phylogenetic trees from biological data: Character-based and distance-

based. Methods in the first direction, e.g. Maximum Parsimony (MP), Maximum
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Likelihood (ML) (52), Bayesian phylogenetic inference (152), build the phyloge-

netic tree directly from so called character data, a concept that will be explained

below. Here we briefly describe the MP method (42; 91) as an example.

In biology, “characters” describe attributes of the species being studied and

can be, for example, morphological (e.g. wings versus no-wings), behavioral (e.g.

active-by-day versus active-by-night), or genetic (e.g. the nucleotide at a par-

ticular position in a DNA sequence). The central idea underlying MP is to fit

character data to a phylogenetic tree in such a way that the total number of

changes of characters hypothesized by the tree is minimum, in accordance to

‘Ockham’s Razor’ principle (7) which states that one should always prefer a sim-

pler explanation (less changes, in this case) over a more complicated one (more

changes).

Let X be a set of taxa. Mathematically, a character on X is a function

χ : X ′ → C where X ′ ⊆ X,X ′ 6= ∅ and C is a non-empty, finite set of character

states. If X ′ = X,χ is called a full character, and if |χ(X ′)| = r, χ is called an

r-state character. A character χ on X is a binary character if χ is a two-state

full character. Allowing X ′ to be a proper subset of X means that a character

state may not be defined for some taxa.

Let T = (T, φ) be a phylogenetic tree on X where T = (V,E). An extension

of a character χ on X to T is a function χ̄ : V → C for which χ̄ ◦ (φ|X ′) = χ,

where φ|X ′ denotes the restriction of T to X ′. The parsimony score of χ on T,

denoted by l(χ,T), is the minimum changing number ch(χ̄) over all extensions

χ̄ of χ to T. If χ̄ is an extension of χ to T such that ch(χ̄) = l(χ,T), then χ̄ is

called a minimum extension of χ to T.

Let C = {χ1, χ2, . . . , χk} be a sequence of characters on X. The parsimony

score of C on a phylogenetic X-tree T, denoted by l(C,T), is the sum of the

parsimony scores of the characters in C on T, or:

l(C,T) =
k∑

i=1

l(χi,T).

A phylogenetic X-tree T that minimises l(C,T) among all phylogenetic X-

trees is called a maximum parsimony tree for C and the corresponding value of

l(C,T) is denoted by l(C).
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Figure 2.6: A minimum extension of a character.

For example, let X = {1, 2, 3, 4, 5, 6} and T be the phylogenetic tree on X

depicted in Figure 2.6(a). Let χ : X → {A,C,G} be the character defined by

χ(1) = χ(3) = A,χ(2) = χ(5) = C, and χ(4) = χ(6) = G. It can easily be verified

that l(χ,T) = 3 with a minimum extension χ̄ of χ to T shown in Figure 2.6(b)

along with the three corresponding edges in Ch(χ̄) (indicated by extra dashed

lines). Note that in general, there can be more than one minimum extension of

a character χ on X to a phylogenetic X-tree T.

If a phylogenetic tree T and a full character χ : X → C are given, then l(χ,T)

can be computed quickly either by a general dynamic programming scheme which

runs in O(|X| ∗ |C|2) time (140) or by the Fitch - Hartigan algorithm (55; 73)

which runs in O(|X| ∗ |C|) time.

However, the problem of finding a maximum parsimony tree for a sequence

C of binary characters is NP-hard (58). Therefore, different methods have been

developed to study the problem for different case. For example, there have been

branch-and-bound algorithms for determining optimal and near-optimal maxi-

mum parsimony phylogenetic trees from protein sequence data (75). For large

data sets, heuristic methods based on tree rearrangements, e.g. Nearest Neighbor

Interchange, or NNI (109; 123), Sub-tree Pruning and Regrafting, or SPR, and

Tree Bisection and Reconnection, or TBR (6; 53; 140; 142), have been used to
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find candidate tree(s). These trees will then be labelled using e.g. the Fitch -

Hartigan algorithm mentioned above.

The MP method is widely used since it tries to reconstruct the character states

for ancestral species/nodes and is relatively robust, i.e. a small change in input

data causes a small change in the results and the like. On the negative side,

it produces incorrect phylogenetic trees in some cases (53; 91) and is generally

slower than distance-based methods, which we will discuss briefly next.

Distance-based methods build a phylogenetic X-tree from a distance matrix

dX on X, i.e. a function dX : X x X → R≥0 where dX(v, u) = dX(u, v) and

dX(u, u) = 0 for all u, v ∈ X; dX(u, v) represents the distance between u and v.

There are a number of ways to derive a distance matrix from biological data.

For example, the Hamming distance (72) between two gene sequences of the

same length is the number of positions at which the two nucleotides in the two

sequences differ. For other approaches to define a matrix for a set of sequences,

the reader can refer to e.g. (66; 105; 113; 134).

There are several methods to reconstruct a phylogenetic tree from a dis-

tance matrix, e.g. UPGMA (Unweighted Pair-Group Method Using Arithmetic

Mean) (103), Least Squares (56), and Minimum Evolution (126). We now briefly

describe the widely-used Neighbor-Joining (NJ) method by Saitou and Nei (127).

For explanations concerning the other methods, we refer the reader to (53; 114).

NJ, as well as UPGMA, is an agglomerative algorithm and thus, follows the

general agglomerative framework: Starting with a simply structured graph G

(depending on the specific algorithm) where each taxon of X is represented by a

vertex of G, the method works recursively. At each step of the recursion, a pair

of vertices p and q of G is selected based on some criterion and is replaced by a

new vertex g. Then p and q are temporarily removed from and g is added into

G with suitable adjustments on the edges of the graph. The process continues

until only two (or three) vertices remain. At this time those vertices that have

been temporarily removed are brought back whilst added vertices are kept and

become inner vertices; edges connecting every new inner vertex to the vertices

that it replaced are added and the resulting tree is obtained.

NJ starts with a star-like tree, i.e. a phylogenetic X-tree T(T, φ) with |X|
edges. Note that up to isomorphism, there is only one such tree. An example of
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such a tree where X = {1, 2, 3, 4, 5, 6, 7, 8} is given in Figure 2.7(a). Let z be the

(only) interior vertex of T , L be the set of leaves of T and d be a distance matrix

on L where d(u, v) = dX(φ−1(u), φ−1(v)) for all u, v ∈ L. The agglomerative

process only chooses the pair of vertices to merge from L.

The criterion used to select the pair of vertices to merge is based on a matrix

Q which is defined as

Q(u, v) = (|L| − 2)d(u, v)−
∑

w∈L

d(u,w)−
∑

w∈L

d(v, w)

for all u, v ∈ L.

Among the pair(s) of leaves p and q where Q(p, q) is minimum, an arbitrary

one is selected and is replaced by a new vertex g. To repeat the agglomerative

process, Neighbor-Joining adjusts the tree, adapts d, and puts L = L\{p, q}∪{g}
so that d becomes the distance matrix on the new set L. To this end, the edges

(z, p) and (z, q) are removed from, and the edges (g, p), (g, q) and (z, g) are added

to T , see e.g. Figure 2.7(b) where vertices p = 1, q = 2 and g = 9. Then, the

modification of d is made using the following formula:

d(w, g) = d(g, w) =
1

2
[d(w, p)− d(p, g)] +

1

2
[d(w, q)− d(q, g)]

for all w ∈ L\{g}. The agglomeration is repeated until L contains only two (when

|X|=3) or three (when |X| > 3) elements.

Not only does Neighbor-Joining incrementally find a phylogenetic X-tree but

it also computes edge weights for that tree: Before two vertices p and q are

temporarily removed, the weight of the edge {p, g} is computed using the following

formula:

d(p, g) =
1

2
d(p, q) +

1

2(|L| − 2)

[∑

w∈L

d(p, w)−
∑

w∈L

d(q, w)

]
,

d(q, g) is calculated similarly.

It has been shown that Neighbor-Joining is consistent (8; 21) in the sense that

given a weighted phylogenetic X-tree T, and taking the phyletic distances in T

between all pairs of elements of X as the input distance matrix, then Neighbor-

Joining will reconstruct a phylogenetic X-tree T′ which is isomorphic to T.
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(a) The star-like starting tree for

the Neighbor-Joining algorithm; L =

{1, 2, 3, 4, 5, 6, 7, 8}.

9
1

3

4

5

6

7

8

z

2

(b) If Q(1, 2) is minimum, then create

new node 9 and connect it to 1, 2, and

z; L = {3, 4, 5, 6, 7, 8, 9}.

Figure 2.7: Constructing the Neighbor-Joining tree.

NJ has run time O(|X|3), hence it can handle reasonably large data sets. On

very large data sets, a relaxed version of the algorithm (45; 132) whose running

time is O(|X|2 log |X|), can be used.

Although being fast, Neighbor-Joining has some disadvantages: It only gives

one possible tree and is strongly dependent on the model of evolution used to

derive the distance matrix. A model of evolution describes how the process of

evolution took place. There are many models of evolution, for example, a simple

model by Newman (115), the JC69 model of DNA sequence evolution by Jukes

and Cantor (87), causal models (93). However, Neighbor-Joining is still among

the most widely used tree reconstruction methods in use (62).

In addition to sequence-based and distance-based approaches, merging phy-

logenetic trees is also an approach to reconstruct phylogenetic trees. In this

approach, given a collection of compatible split systems, one have to find a com-

patible split system that contains as many splits in the input split systems as

possible. Typical methods in this direction are consensus trees (2; 3; 138) and

super-trees (13; 14; 128; 131).

Bayesian inference is another approach used to produce phylogenetic trees.

The approach assumes a prior probability distribution of the possible trees and
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works in a way that is closely related to Maximum Likelihood. Bayesian inference

methods are usually implemented using Markov chain Monte Carlo sampling

algorithms (101; 152).

2.3 Split networks

Phylogenetic trees are not always suitable to represent evolutionary histories since

events such as hybridization, horizontal gene transfer and recombination are not

tree-like (80). In those cases, phylogenetic networks can be employed.

Phylogenetic networks can be viewed as a generalisation of phylogenetic trees,

that represent conflicting signals or alternative evolutionary histories. There are

several types of labelled graphs that are generally referred to as phylogenetic net-

works, as pointed out by Huson and Bryant (84). In particular, they propose

to define a phylogenetic network as any network in which taxa are represented

by vertices and their evolutionary relationships are represented by edges. This

generic concept allows them to classify the diverse usages of the term “phyloge-

netic networks”, see Figure 2.8.

We will focus on split networks and will formally define them later. From now

on, by saying “phylogenetic networks”, we are referring to “split networks” if not

stated otherwise. To learn more about other types of phylogenetic networks, see

e.g. (53; 80; 83; 84; 100).

Recall that in Section 2.2, we described how a phylogenetic tree corresponds to

a compatible split system. However, not every split system arising from biological

data is compatible. The reason is that using (biological) properties of the data set

being studied, a collection of splits is derived (usually together with the weight of

each split representing the split’s importance) without applying any assumption

on compatibility. Conflicting and incompatible phylogenetic relationships yield

larger classes of split systems, e.g. weakly compatible and circular split systems

as introduced in (9). A split system S is called “weakly compatible” if for any

three splits A1|B1, A2|B2 and A3|B3, at least one the the four intersections

A1 ∩ A2 ∩ A3, A1 ∩B2 ∩B3, B1 ∩ A2 ∩B3, B1 ∩B2 ∩ A3
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2.3 Split networks

Figure 2.8: An overview of several types of “phylogenetic networks” and how

they are related (84). Reused with license (No. 2458771343775) from Oxford

University Press.

is empty. Such a split system can be produced by split decomposition or related

methods (9).

A split system S on X is called circular if there exists an ordering θ =

(x1, x2, . . . xn) of the elements of X such that every split S ∈ S has the form

{xp, xp+1, . . . , xq}|X\{xp, xp+1, . . . , xq} for some p, q ∈ N, 1 < p ≤ q ≤ n. In this

case, we also say that θ = (x1, x2, . . . xn) is a circular order of X with respect

to S. On a fixed ordering, for two elements u, v ∈ X, we denote by u < v (or

v > u) that u precedes v in the order, and by u ≤ v (or v ≥ u) that u < v or

u ≡ v. For every non-empty subset Y ⊆ X, the ordering θ|Y of Y induced by

some circular order θ = (x1, x2, . . . xn) of X is also defined as a circular order

(of Y , with respect to S). Circular split systems are generated by methods like

NeighborNet (23) which will be briefly described later in this section.

Next we formally introduce the concept of split networks, a type of network

that is used to represent a split system. To this end, we first define a split

graph. Consider a graph G = (V,E), let C be a non-empty, finite set, whose

elements are referred to as colors and σ : E → C be an edge coloring. For a path
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2.3 Split networks

P = w0, w1, w2, ..., wl in G, we define σ(P ) = {σ({wi−1, wi})|i = 1, . . . , l} and call

P properly colored if |σ(P )| = l, that is, the edges on P have pairwise distinct

colors. Let dG(u, v) be the length of a shortest path in G between vertices u and

v, and Cσ(u, v) be the set of all colors c ∈ C with the property that c occurs in

every shortest path between u and v in G. We call σ an isometric coloring if

dG(u, v) = |Cσ(u, v)| for all u, v ∈ V , or, equivalently, all shortest paths between

any two vertices are properly colored and use the same set of colors. A connected,

bipartite graph G = (V,E) is called a split graph if there exists an isometric

coloring of G.

The next theorem is crucial to understand how split systems are represented

by split networks, which will be defined afterward. The proof of the theorem can

be found in (39).

Theorem 2. (39) Let G = (V,E) be a split graph and σ : E → C be an isometric,

surjective edge coloring of G. For any c ∈ C, the graph Gc, obtained by deleting

all edges of color c, consists of precisely two separate connected subgraphs, which

we will denote by G0
c = (V 0

c , E
0
c ) and G1

c = (V 1
c , E

1
c ).

Given a split system S on X, a split network for S, denoted by NS, is an

ordered pair (G, φ), where G = (V,E) is a split graph with the color set S, and

φ : X → V is a vertex labelling, such that G together with φ represents S in the

sense that every split S = A|B of S has the form S = ∪v∈V 0
S
φ−1(v)|∪v∈V 1

S
φ−1(v),

that is, the deletion of all edges of color S produces two connected subgraphs of

G, one containing all vertices labelled with elements of A and the other containing

all vertices labelled with elements of B.

When it comes to the representation of a split network NS = (G, φ), all the

edges that are colored by the same split are drawn to be parallel and have the

same length to graphically comply with the property of the underlying split graph

that all the shortest paths between any two vertices are properly colored and use

the same set of colors, see e.g. Figure 2.9.

If S is weighted, i.e. there is a weighing function w : S→ R≥0, the weight of

split S ∈ S is assigned to be the length of all the edges colored by S. We now

extend the term “phyletic distance” defined for the phylogenetic trees to work on

split network G that represents S: The phyletic distance between two vertices u
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Figure 2.9: An example split network: Red edges represent split

{a, b, c, d}|{e, f, g}, blue edges represent split {a, g}|{b, c, d, e, f}.

and v of G, denoted as dS,w(u, v), is the length of a shortest path between u and

v, i.e. the sum of the weights of the splits that separate u and v:

dS,w(u, v) =
∑

S=A|B∈S,
u∈A,v∈B or
u∈B,v∈A

w(S). (2.1)

If there is no confusion on the weight vector w we will write the function as

dS(u, v). Equation (2.1) can be used to compute distances between all pairs of

vertices to form a distance matrix on X. For this reason, we denote the distance

matrix induced by split system S with weight vector w as dS,w.

Note that even though a split network represents only one split system, there

can be many split networks that represent the same split system as pointed out

by Wetzel (149). For this reason, it is not suitable to consider unlabelled nodes in

a split network as hypothetical ancestors (9). The main purpose of split networks

is to visualise conflicts in the grouping of the taxa supported by the data.
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2.3 Split networks

Trying to represent incompatible splits by split networks as outlined above

can result in networks that cannot be drawn without any crossing edges, i.e. the

networks are non-planar (98). However, a circular split system can always be

depicted by a planar split network (111).

There are a variety of methods to reconstruct split networks. Here we briefly

describe the NeighborNet method which reconstructs a weighted circular split

system from a distance matrix. To learn about other methods, the reader is

recommended to look at e.g. (80; 81; 85; 100).

NeighborNet uses the same agglomerative approach as Neighbor-Joining. The

main difference between the two methods is that in NeighborNet, when two leaves

are selected, they are not combined and replaced right away. Instead, the method

waits until a leaf is selected a second time, then replaces the three linked leaves

by two linked leaves, and applies changes on the distance matrix. Computing the

weights is another point where NeighborNet is different from Neighbor-Joining:

Neighbor-Joining computes the weights of the branches while the tree is being

constructed, using a variant of the least squares formulae. NeighborNet does

that after getting all the splits, and uses an optimal least squares with a non-

negativity constraint algorithm, which is more costly. Otherwise, NeighborNet

chooses the neighboring leaves and adjusts the distance matrix in the same fashion

as Neighbor-Joining. For detailed formulae used in NeighborNet, the reader can

refer to the original paper (23).

NeighborNet runs in the same time complexity as Neighbor-Joining, i.e. O(n3),

except for computing edge weights. This allows the application of the method on

pretty large data sets. Like Neighbor-Joining, NeighborNet is consistent: If the

input distance matrix is induced by a weighted circular split system, the method

will return the corresponding collection of weighted circular splits, if the input

distance matrix is induced by a weighted compatible split system, NeighborNet

will return the corresponding weighted compatible split system (23; 25).

NeighborNet only outputs a weighted split system. This split system needs

to be drawn. Dress and Huson (39) present algorithms to compute a split net-

work for a given split system, and to draw the network as well. All algorithms

mentioned in the paper, including Neighbor-Joining, NeighborNet, Split Decom-
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2.4 Phylogenetic diversity

position, Parsimony Splits, Consensus Tree, Consensus Network, Super Networks,

are included in the software package SplitsTree (84).

2.4 Phylogenetic diversity

In this section, we review some measures of diversity that are based on phyloge-

netic trees and phylogenetic networks. After the definition of these measures and

some related optimisation problems, we will discuss known algorithms to solve

those problems.

2.4.1 Phylogenetic diversity on phylogenetic trees

Various authors, e.g. William et. al. (150), Nehring and Puppe (112), suggest

several diversity measures on a phylogenetic tree and call them all phylogenetic

diversities. However, in this research, by “phylogenetic diversity” (PD) we refer

to the diversity measure introduced by Faith in 1992 (47). Faith defines the PD

of a subset of taxa on a weighted phylogenetic tree as the total weight of the edges

on the subtree spanning those taxa. For example, in Figure 2.10, the PD score of

taxa {b, c, e, f} is the total weight of the bold edges and is 2+4+1+3+5+1 = 16.

Nowadays, there are several theoretical results about computational problems

related to PD, and PD is widely accepted and used in practice, see e.g. (10; 46;

48; 49; 50; 57; 110; 124).

A fundamental problem in phylogenetics is to identify subsets of taxa with

high diversity. This gives rise to the following optimisation problem: “Given a

phylogenetic tree on a set X of n taxa and an integer number k, 1 ≤ k ≤ n, find a

subset Y ∈ X, |Y | = k, so that PD(Y ) is maximum among all subsets of X with

size k”. Faith proposed a greedy approach to solve this problem: 1) Start with

two taxa with maximum pairwise distance. 2) Repeat (k − 2) times: Choose a

taxon that contributes most to the current PD score. This algorithm has recently

independently been shown to give optimal solutions by Steel (139) and Pardi and

Goldman (116). Minh et. al. proposed two implementations of the algorithm

which run in O(n log k) and O(n+ (n− k) log (n− k)), respectively (106).
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Figure 2.10: A weighted phylogenetic tree, PD({b, c, e, f}) = 16.

2.4.2 Phylogenetic diversity on split networks

Consider the compatible split system corresponding to a phylogenetic tree. Note

that the PD score of a subset Y of taxa, as defined by Faith, is also the sum

of the weights of all splits separating at least two taxa in Y . For example, in

Figure 2.10, those splits are {a, c, d, e, f}|{b}, {a, b, d, e, f}|{c}, {a, b, c}|{d, e, f},
{a, b, c, d, e}|{f}, {a, b, c, f}|{e, d}, and {a, b, c, d, f}|{e}.

Hence it is straight forward to generalise PD to general weighted split systems.

The PD score of a subset Y of taxa on a split network is the sum of the weights

of all splits in the corresponding split system that have at least one taxon of Y

in each of the blocks. Mathematically, if we denote by S the corresponding split

system, and by w the weight function on S, then:

PDS(Y ) =
∑

S=A|B∈S
A∩Y 6=∅,B∩Y 6=∅

w(S). (2.2)

If there is no confusion on the split system in use, we will write PDS(Y ) as

PD(Y ) only.

The split-based definition of PD allows the natural extension of the PD opti-

misation problem on phylogenetic trees to apply on split systems:
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2.4 Phylogenetic diversity

MaximumPhylogeneticDiversity (MPD)

Input: a set X with n elements

a split system S on X

a split weight function ω : S→ R>0

an integer k ∈ {1, . . . , n}
Output: a subset Y ⊆ X with the property that |Y | = k and

PD(Y ) = max{PD(W )|W ⊆ X, |W | = k}

This problem will be shown to be NP-hard later in Chapter 3. However, for

a circular split system, using the dynamic programming technique, an optimal

solution can be computed in polynomial time (107), which we now briefly explain.

In general, dynamic programming is used to solve an optimisation problem

that exhibits the characteristics of so-called overlapping subproblems and optimal

substructure. A problem is said to have overlapping subproblems if it can be bro-

ken down into subproblems which are reused multiple times. Having the optimal

substructure means that the globally optimal solution can be constructed from

optimal solutions to subproblems. For more details on dynamic programming,

we refer the reader to (33, Chapter 15).

Without loss of generality, it can be assumed that θ = (x1, x2, . . . , xn) is a

circular order of X with respect to S, we fix this ordering from now on. The

first key observation made in (107) is that for any subset Y of X with ordering

θ|Y = (y1, y2, . . . , yk), the PD score of Y can be computed using the formula:

PD(Y ) =
1

2

(
dS(y1, yk) +

k−1∑

i=1

dS(yi, yi+1)
)
.

A collection of k taxa y1, y2, . . . , yk is called an ordered k-path if x1 ≤ y1 <

y2 < · · · < yk ≤ xn with respect to the ordering θ. Its length is defined by

L(y1, y2, . . . , yk) =
∑k−1

i=1 dS(yi, yi+1). A circular k-tour is achieved from an

ordered k-path by adding yk+1 = y1 to the list. The tour’s length is then

L(y1, y2, . . . , yk, y1) = L(y1, y2, . . . , yk) + dS(y1, yk), which is twice the PD score

of Y = {y1, y2, . . . , yk}. So finding a subset Y of maximum PD is equivalent

to finding a longest circular k-tour. Note that if (y1, y2, . . . , yk, y1) is a longest

circular k-tour, then (y1, y2, . . . , yk) is a longest ordered k-path from y1 to yk.
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2.4 Phylogenetic diversity

This is because the length of such a circular k-tour is only different from that of

a k-path by the constant dS(yk, y1).

For a pair of elements u and v, to find a longest ordered k-path starting at

y1 = u and ending at yk = v, we need to find the k−2 intermediate elements that

maximise the path’s length. Let y1, y2, . . . , yk be an arbitrary longest ordered

k-path from y1 to yk, then y1, y2, . . . , yk−1 is a longest ordered (k − 1)-path from

y1 to yk−1. This can be seen as follows: Suppose y1, y2, . . . , yk−2, yk−1 is not a

longest ordered (k − 1)-path from y1 to yk−1. Hence there is an ordered (k −
1)-path y1, y

′
2, . . . , y

′
k−2, yk−1 that is longer than y1, y2, . . . , yk−2, yk−1. But then

y1, y
′
2, . . . , y

′
k−2, yk−1, yk is longer than y1, y2, . . . , y

′
k−2, yk−1, yk, contradicting that

y1, y2, . . . , yk−2, yk−1 is a longest ordered k-path from y1 to yk, see Figure 2.11.

This suggests the following strategy to find the k − 2 intermediate elements:

Consider all possible yk−1. For each yk−1, find a longest ordered (k − 1)-path

from u to yk−1, add up dS(yk−1, v) to the length and globally select the maximal

value. This reduces the problem of finding a longest ordered k-path to finding a

longest ordered (k − 1)-path and forms the basis for the dynamic programming

approach.

The longest (k − 1)-path from u to yk−1

The longest k-path from u to v having yk−1 preceeding v

u = y1

yk−1

v = yk

Figure 2.11: To find the longest ordered k-path from u to v with a fixed yk−1,

one just needs to find the longest ordered (k − 1)-path from u to yk−1.
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We have briefly presented the analysis of the dynamic programming approach

with respect to the MPD problem for circular split systems. Consider all pairs

of u and v and apply the strategy represented above, one would find the longest

ordered k-paths with given endpoints u and v. Among those paths, choose one

with the maximum length. As analysed before, the set of taxa on that path is a

k-element subset of X with maximum PD.

Formally, for any two taxa u and v, u < v, let Li(u, v) be the length of a

longest ordered i-path from u to v and Y i(u, v) be the set of vertices on that

path. Then the length of a longest circular k-tour, denoted as lkmax, can be found

by solving the following iterative maximisation:

Li(u, v) =

{
dS(u, v) if i = 2,

maxu<s<v{Li−1(u, s) + dS(s, v)} if 3 ≤ i ≤ k,
(2.3)

lkmax = max
1≤u<v≤n

{Lk(u, v) + dS(u, v)}. (2.4)

The values of Li(u, v) are initialised by −∞ to prevent the case where there

are less than i− 2 vertices between u and v.

To implement the method, first calculate L2(u, v), L3(u, v), . . . , Lk(u, v) for all

pairs u < v using (2.3), and then compute lkmax using Equation (2.4). Note that

Equation (2.3) does not require a recursive implementation. Instead, the results

computed in the previous step are stored in such a way that they can be looked

up efficiently later on. The results for ordered 2-paths is the split distance matrix

itself. Once the results for ordered i-paths are available, they will be used together

with the split distance matrix to find the results for ordered (i + 1)-paths. The

memory space used for ordered i-paths can then be released.

We finish the section by briefly discussing the time and memory consumption

of the resulting algorithm. Considering all pairs u and v requires O(n2) time.

For each pair, choosing the element preceding v requires O(n) time. All the

above have to be done for the length from 2 to k. So constructing all Li(u, v)

using Equation (2.3) requires O(kn3) time. Choosing a maximum k-tour from

the O(n2) maximum k-paths using Equation (2.4) requires O(n2) time. The total

running time is thus O(kn3).

For the memory requirement, from Equation (2.3), it can be seen that for a

fixed starting point u, to calculate Li(u, v), we only need to refer to Li−1(u, v)
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and the original split distance matrix. Thus, we can compute Li(x1, v), infer

the longest circular k-tour containing x1. After that, the memory space can be

reused to calculate the longest k-tours containing x2, . . . , xn−k+1, respectively.

For a fixed starting point u, we need to consider O(n) ending points, for each

endpoint v, we need O(k) storage for the ordered i-path from u to v. Therefore,

the total memory requirement is O(kn).

2.5 Concluding remarks

We have introduced the theoretical foundations underlying the research presented

in this thesis, namely phylogenetic trees, split systems, split networks and phy-

logenetic diversity. Splits are building blocks for all of these and are a powerful

tool for studying the evolutionary history of species. In the following chapters,

based mostly on splits, we will present some new results to the MPD problem

considered in different situations. We will also formally introduce a new kind

of split system that can be visualised by a planar split network and make some

initial investigation of its applications.
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Chapter 3

Hardness results

3.1 Summary

In this chapter we first briefly review the concept of NP-hardness. After that

we prove that the general Maximum Phylogenetic Diversity problem introduced

in Section 2.4.2 is NP-hard. Finally, we present some hardness results on the

optimisation problems with several other measures of diversity.

The following results on problems MPD, WAPD, MED, MO and MSS are

adapted from the paper (136). The analysis of problem MAD, and the heuristic

algorithm for problem MSS presented in this chapter are additional results.

3.2 Basic complexity concepts

We used the term of “NP-hardness” in Chapter 2 to indicate that it is unlikely

that for certain problems, there exist efficient algorithms to solve them. We also

used the big-O notion to represent the running time and memory consumption of

an algorithm. In this section, we introduce these concepts more formally following

the books by Cormen et. al. (33) and Garey and Johnson (60).

In computational complexity theory, a problem Π is specified by its input and

its output. An example of a problem is VertexCover (VC) (33):

VertexCover (VC)

Input: a graph G = (V,E)
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an integer k ∈ {1, . . . , |V |}
Output: the answer to the question “Is there a subset C ⊆ V such that

|C| = k and C ∩ e 6= ∅ for all e ∈ E?”

For a C ⊆ V , if C∩e 6= ∅ for some edge e ∈ E, then we say that C covers e; if

C∩e 6= ∅ for all edges e ∈ E, then we say that C is a vertex cover of the graph G.

In particular, VC is an example of a so-called decision problem, that is, the output

is a member of a two-element subset, for example {“yes”, “no”} or {“1”, “0”}.
The size of the input usually refers to a quantity that is polynomially related to

the amount of memory needed to store the problem’s input in a computer. For

example, in the VC problem, the size of the input is the number of vertices of

the graph.

We say that an algorithm A solves a problem Π if for every input to that

problem, A computes a correct output. The complexity of such an algorithm A

is O(f(n)), or for short, algorithm A is O(f(n)), where f(n) is a function on

the size n of the input, if there exists a pair of positive integers C,K such that

the number of operations performed by A is at most C ∗ f(n) for all inputs of

size n ≥ K. Similarly, the memory consumption of an algorithm can also be

measured. We say that algorithm A takes O(g(n)) memory if there exist a pair

of positive integers C ′, K ′ such that the amount of memory required by A on any

input of size n is at most C ′ ∗ g(n) for all n ≥ K ′.

We now give an overview of several complexity classes that are related to the

results in this thesis. We say that problem Π is in the class P, or Π is polynomially

solvable, if there is an algorithm A to Π such that A is O(nk) where n is the size

of the input and k is some positive integer.

In the remainder of this section, if not stated otherwise, we only deal with

decision problems. A problem Π is in the class NP (Nondeterministic Polynomial)

if it is polynomially verifiable (33). For example, considering the problem VC,

given a k-element subset C of V , it is easy to check in polynomial time if C∩e 6= ∅
for all e ∈ E. So VC is in NP.

The class NP-Hard contains problems that are “as hard as” any problem in

NP in the sense that if any NP-Hard problem is polynomially solvable, then every

problem in NP can be solved in polynomial time. More formally, a problem Π
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is NP-hard if every problem Π′ ∈ NP can be reduced to Π, that is, there exists

a polynomial time algorithm A′ that computes for every input α of Π′ an input

A′(α) of Π so that the output for Π′ with input α is “yes” if and only if the output

for Π with input A′(α) is “yes”. In that case, Π is also said to be polynomially

reducible, or shorter, reducible, from Π′, and the algorithm A′ is called a reduction

from Π′ to Π.

The immediate consequence of a problem Π being reducible from a problem

Π′ is that if there is a polynomial time algorithm A to solve Π, then Π′ can be

solved by a polynomial time algorithm A∗. This algorithm A∗ works by first

transforming an input α for Π′ to an input for Π via A′, and then applying A on

Π with input A′(α). As a result, one way to prove that a problem Π is NP-Hard

is to choose a problem Π′ that has already been known to be NP-Hard, and then

design a reduction from Π′ to Π. If a problem is in NP and is NP-Hard, then it

is called NP-Complete. VC is also an example of an NP-Complete problem (33).

Many problems arising in applications are not decision problems but are op-

timisation problems, i.e. problems where the aim is to optimise (maximise or

minimise) a so-called object function. For instance, a well known optimisation

problem in graph theory is MinimumVertexCover (MVC) (60):

MinimumVertexCover (MVC)

Input: a graph G = (V,E)

Output: a subset C ⊆ V of minimum cardinality such that

C ∩ e 6= ∅ for all e ∈ E

Here the object function is the size of the subset C. Usually, it is straight-

forward to associate a decision problem with a given optimisation problem such

that if there is a polynomial time algorithm to solve the optimisation problem,

then there is also a polynomial time algorithm for the decision problem. For ex-

ample, clearly any polynomial time algorithm for MVC yields a polynomial time

algorithm for VC: Let C be an output for MVC, if |C| ≤ k then the output for

VC is “yes”, otherwise it is “no”. As a consequence, we say that an optimisa-

tion problem is NP-Hard if the corresponding decision problem is NP-Hard. In

particular, MVC is NP-Hard. It is noticeable that even though the two classes
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NP and NP-Complete are restricted to decision problems, the class NP-Hard can

contain non-decision problems.

3.3 Hardness results

3.3.1 The Maximum Phylogenetic Diversity problem

We now apply the concepts introduced just above to study the complexity for

some optimisation problems arising in the study of phylogenetic diversity. Let X

be a finite set of n elements. Let S(X) = {{A,X \ A}|∅ ⊂ A ⊂ X} be a split

system on X, and let ω : S→ R>0 be a split weight function on S. Referring to

the MPD problem defined in Section 2.4.2, we prove the following theorem.

Theorem 3. MPD is NP-hard.

Proof. To show the NP-hardness of the optimisation problem MPD, we consider

the corresponding decision problem DMPD which is defined as follows:

DecisionMaximumPhylogeneticDiversity (DMPD)

Input: a set X with n elements

a split system S on X

a split weight function ω : S→ Z>0

an integer p ∈ {1, . . . , n}
a positive integer B

Output: the answer to the question “Is there a subset Y ⊆ X such that

|Y | = p and PD(Y ) ≥ B?”

We will show that DMPD is NP-Hard by a reduction from VC. We describe

the algorithm to transform an input of VC to an input of DMPD: Let X = V ,

we associate to G the split system SG = {{e, V \ e}|e ∈ E} together with a split

weight function ωG that assigns 1 to every split in SG. By this construction, for

a subset C of V , |C| ≥ 3, PD(C) equals the number of edges that are covered

by C. Since it can be checked easily in polynomial time whether there exists a

2-element subset of V that covers all edges of G, we will assume that k ≥ 3. Let

p = k,B = |E|. Then, it is not hard to see that the output for the given input
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of VC is “yes” if and only if the output for the constructed input for DMPD is

“yes”.

Note that even MPD is NP-hard, a greedy approach similar to that proposed

by Faith (47), i.e. start with a two-element subset of X with maximum diversity,

then sequentially add k − 2 elements, such that in every addition the increase

in the diversity is maximum, is guaranteed to obtain a k-element subset Y ′ of

X such that PD(Y ′) is at least (1 − 1
e
) times the maximum possible PD of a

k-element subset (78).

We now shed some light on the complexity of dealing with data sets arising

from multiple regions of a genome by addressing a problem that was recently

raised in (106, p.772). In this problem, one wants to compute optimal PD subsets

in case one is given several trees on the set X (where e.g. each tree is derived

from a different genome region). Formally, the problem is as follows:

WeightedAveragePD (WAPD)

Input: a set X with n elements

a collection C of compatible split systems on X

split weight functions ωS : S→ R>0, S ∈ C

an integer k ∈ {1, . . . , n}
Output: a subset Y ⊆ X with the property that |Y | = k and

1
|C|
∑

S∈C PDS(Y ) =

max{ 1
|C|
∑

S∈C PDS(X ′)|X ′ ⊆ X, |X ′| = k}

It is straight-forward to show that this problem is equivalent to solving MPD

on the split system

S′ = ∪S∈CS

with split weight function ω′ : S′ → R>0 defined by

ω′(S) =
∑

S∈C,S∈S

ωS(S)

|C|

for all S ∈ S′. Since, conversely, every split system can be written as the union

of a collection of compatible split systems, the problems MPD and WAPD are in

fact equivalent. So we have:
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3.3 Hardness results

Theorem 4. WAPD is NP-hard.

Note that it can be shown by reduction from Maximum3DimensionalMatching (60)

that WAPD is NP-hard even when collection C contains only three compatible

split systems. Recently, Bordewich et. al. (19) presented an O(n3 log2 n) algo-

rithm to solve the special case of WAPD problem when the collection C contains

precisely two compatible split systems.

As mentioned in Chapter 2, an important motivation for studying the problem

MPD comes from conservation needs and the natural extension from phylogenetic

trees to phylogenetic networks. Some variations of MPD for compatible split

systems are also studied in (110) where additional constraints must be satisfied.

Maybe not surprisingly, many natural constraints lead to computationally hard

optimization problems. Indeed, in (110) it is shown that geographic constraints

can lead to NP-hard problems (the Optimizing Diversity With Regions

and the Optimizing Diversity With Coverage problems); see also (18).

However, as reported in (124), integer linear programming can be of use in solving

such problems.

It is worth noting here that another variation, the Optimizing Diversity

with Dependencies problem considered in (110) is also NP-hard. In this prob-

lem, we are given a compatible split system S on X and an acyclic digraph

D = (X,A). A subset Y of X is viable if for every x ∈ Y vertex x in D has either

out-degree 0 or there exists some y ∈ Y such that (x, y) is an arc in D. The goal is

to compute a k-element subset of X that maximizes PDS among those k-element

subsets of X that are viable. We can form the corresponding decision problem

for this by changing the goal to the question “Is there a viable subset of k so that

its PD score is greater C?” for a pre-defined given constant C. For this problem

the NP-hardness can be shown by a reduction from MinimumVertexCover.

Another variation of the MPD problem is the Noah’s Ark Problem, which was

proposed by Weitzmann (147). In this problem, a cost for boosting the probability

of survival of a species is given and the goal is to maximize the expected PD

subject to a given budget. It has been remarked (76) that the Noah’s Ark Problem

is a generalisation of the well known Knapsack problem (60) and thus is NP-hard.
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However polynomial solutions have been developed for the problem considered

on phylogenetic trees (108; 117) and circular split systems (108).

To end this section, we would like to point out that, besides PD, several

other measures of diversity have been proposed in the literature, see for exam-

ple (124; 130). These measures also yield computationally interesting optimi-

sation problems. In the next sections we examine the optimisation problems

attached to some of the measures and prove that they are NP-hard.

3.3.2 The exclusive molecular phylodiversity

The exclusive molecular phylodiversity, denoted as ED, was proposed by Lewis

and Lewis (97) in 2005. On a phylogenetic tree on taxa set X, the exclusive

molecular phylodiversity of a subset Y of taxa is the total weight of all the edges

that support either individual taxa or clades composed exclusively of taxa in some

group of interest. In other words, it is the sole contribution of Y on the diversity

of the whole tree, or the total weight of those edges that are not in the subtree

spanned by X \ Y . Figure 3.1 illustrates the ED measure in comparison with

PD on a tree.

(a) PD (b) ED

Figure 3.1: Y contains the taxa in green, bold edges in 3.1(a) show PD(Y ), those

in 3.1(b) show ED(Y ).

Generalising the measure for a weighted split system S, we define

EDS(Y ) = PDS(X)− PDS(X \ Y )

for every subset Y of X. If there is no confusion about the split system S to be

used, we write ED instead of EDS. The ED optimisation problem (MED) is

defined as:
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MaximumExclusiveMolecularPhylodiversity (MED)

Input: a set X with n elements

a split system S on X

a split weight function ω : S→ R>0

an integer k ∈ {1, . . . , n}
Output: a subset Y ⊆ X with the property that |Y | = k and

ED(Y ) = max{ED(W )|W ⊆ X, |W | = k}

Note that by definition, maximising EDS(Y ) is equivalent to minimising

PDS(X \ Y ). Moulton et. al. (110) created a simple example to show that

greedy algorithms will not work for MED. Here we go a step further and show

that the MED problem is NP-hard.

Theorem 5. MED is NP-Hard.

Proof. A similar argument as given in the proof of Theorem 3 can be used, so we

only outline the idea. We consider the corresponding decision problem of the ED

optimisation problem where an additional integer B is given and the question is:

“Is there a subset Y ⊆ X such that |Y | = k and EDS(Y ) ≥ B?”. The reduction

is from the NP-hard decision problem Clique (60). The input for Clique is a

graph G = (V,E), a positive integer p ∈ {1, . . . , |V |} and the goal is to decide

whether there exists a subset C ⊆ V such that |C| = p and C forms a clique

in G, that is, every 2-element subset of C is an edge of G. We encode G by

the weighted split system SG we introduced in the proof of Theorem 3. The

key observation is that, by construction, for a subset C of V , |C| ≤ |V | − 3,

EDSG
(C) = PDSG

(V )−PDSG
(V \C) = |E|−PDSG

(V \C) equals the number

of edges in E with both endpoints in C. Hence we set B =

(
k

2

)
and k = p,

then an answer “yes” for the constructed instance of MED yields an answer “yes”

for the given instance of Clique and vice versa.

3.3.3 The M score for diversity

A somewhat different measure of diversity is inspired by a dissimilarity-based

method proposed for model strain selection (79, Section 5.3). In that method,
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given a set of individuals of a single species, to choose one individual as the set’s

representative, it is suggested to take the one whose maximum distance to the

other individuals is minimum. Contextually, that minimum maximum distance

could be considered an indicator of the “closeness” of the individuals. In contrast,

to quantify the diversity of the set, we can choose the maximum of the minimum

pairwise distance between the individuals. That is, for X a set of taxa, we set

MS(Y ) = min{PDS({u, v})|{u, v} ⊆ Y 2}

for every subset Y of X. In other words, MS(Y ) is the minimum pairwise distance

among elements of Y . If there is no confusion about the split system to be used,

we will write M(Y ) instead of MS(Y ). Then the M optimisation problem (MO)

is formally defined as follows:

M-Optimisation (MO)

Input: a set X with n elements

a split system S on X

a split weight function ω : S→ R>0

an integer k ∈ {1, . . . , n}
Output: a subset Y ⊆ X with the property that |Y | = k and

M(Y ) = max{M(W )|W ⊆ X, |W | = k}

Again, it was shown by an example in (110) that the greedy approach will

not find an optimal solution for the MO problem. And again we will prove that

MO is eventually NP-hard.

Theorem 6. MO is NP-hard.

Proof. Again, as the proof is similar to the proof of Theorem 3, we only outline

the idea. We consider the corresponding decision problem of the M optimisation

problem where an additional integer B is given and the output is the answer to

the question: “Is there a subset Y ⊆ X such that |Y | = k and MS(Y ) ≥ B?”.

The reduction is from the NP-hard IndependentSet problem in graphs where

all vertices have degree three (60). Given such a graph G = (V,E) and a positive

integer p ∈ {1, . . . , |V |}, the goal is to answer if there exists a subset C ⊆ V such

that |C| = p and C forms an independent set in G, that is, no edge in E has both
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endpoints in C. We encode G by the weighted split system SG we introduced in

the proof of Theorem 3. Here the key observation is that, due to the fact that

every vertex in G has degree three, for a subset C of V , |C| ≥ 2, MSG
(C) = 6 if

and only if C is an independent set in G. Now we set p = k and B = 6, then an

answer “yes” for the constructed instance of MO yields an answer “yes” for the

given instance of IndependentSet and vice versa.

3.3.4 The number of segregating sites

In this subsection we show how PD on split systems can also be used to shed

light on intra-species diversity. The genetic diversity (GD) for a subset of a

finite, non-empty set of aligned molecular sequences is commonly used to measure

the diversity within intra-species studies, and is defined to be the number of

segregating sites that the subset induces, that is, the number of sites where not

all sequences in the subset display the same character (146). If the sequences

come from the same gene of individuals of a species, then each segregating site

represents a polymophism. The corresponding optimisation problem is as follows:

MaximumSegregatingSites (MSS)

Input: a set X of n (gene) sequences of the same length

an integer k ∈ {1, . . . , n}
Output: a subset Y ⊆ X with the property that |Y | = k and

Y induces the maximum number of segregating sites

among all k-element subsets of X.

Theorem 7. MSS is NP-hard.

Proof. If we restrict our attention to sequences of binary characters, 0 and 1 say,

then for a set X of such sequences having length m, the genetic diversity of a

subset Y is given by

GD(Y ) =
m∑

j=1

max
σ,σ′∈Y

|σ(j)− σ′(j)|

where we consider every σ ∈ X as a map σ : {1, . . . ,m} → {0, 1} in the obvious

way. Now, defining the split Sj = {{σ ∈ X|σ(j) = 0}, {σ ∈ X|σ(j) = 1}} for
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all j ∈ {1, . . . ,m}, the split system SX = {Sj|1 ≤ j ≤ m}, and the split weight

function ωX : SX → R>0 by ωX(S) = |{j ∈ {1, . . . ,m}|Sj = S}|, it can be

checked that GD(Y ) = PDSX
(Y ) for any subset Y of X. In particular, it follows

that the same reduction from VertexCover presented for MPD in the proof

of Theorem 3 can also be used (graph ⇒ split system ⇒ alignment) to show

that the problem of finding a k-element subset of sequences maximising genetic

diversity among all k-element subsets of X is NP-hard.

In intra-species studies, it may be of interest to find good heuristics for com-

puting subsets of high diversity under the measure GD. We propose a simple

greedy heuristic inspired by Steel’s algorithm to compute a subset of maximum

PD on phylogenetic trees (139) as follows: Start with Y containing two sequences

with maximum number of segregating sites among all 2-element subsets of X,

then incrementally include a sequence that adds the most segregating sites to Y .

Interestingly, this very simple algorithm can sometimes be very efficient: For the

data set published in (43), it computes an optimal solution for all values of k

(exhaustive search was used to check the optimality).

3.3.5 The AD score for diversity

In 1983, Tajima (143) proposed mean and variance of the average number of

nucleotide differences as a measure of diversity. The mean number of nucleotide

differences of a set X of sequences, d̂(X), is defined by

d̂(X) =
2(
|X|
2

)
∑

x,y∈X
x6=y

d(x, y),

where d(x, y) is the number of nucleotide differences between sequences x and y.

It is straight-forward to extend this measure to an arbitrary distance function

on X. Given a set X of n taxa, and a distance function d : X ×X → R≥0, the

average pairwise distance of elements of a subset Y ⊆ X is defined as

AD(Y ) =
2(
|Y |
2

)
∑

x,y∈Y
x 6=y

d(x, y).
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Based on the AD measure, the resulting diversity optimisation problem is

formally stated as follows:

MaximumAverageDiversity (MAD)

Input: a set X with n elements

a distance function d : X ×X → R≥0
an integer k ∈ {1, . . . , n}

Output: a subset Y ⊆ X with the property that |Y | = k and

AD(Y ) = max{AD(W )|W ⊆ X, |W | = k}

MAD is known to be NP-hard and it is studied under the name of Maxi-

mumDispersion in Operations Research (28; 35; 63; 118; 120). In the Max-

imumDispersion problem, n locations are given and one would like to choose

k out of them to build a network of “dispersed” facilities, i.e. the average dis-

tance between selected locations is maximised. The distance used in the origi-

nal MaximumDispersion problem is the Euclidean distance and it was shown

that MAD is even NP-hard for that special type of distance (120). The Maxi-

mumDispersion problem belongs to a class of multi-facility location problems

like the p-median (38; 92), p-center (30; 40), the incapacitated facility location

(UFL) (59; 141), etc. Recently, Tamir (144) presented a survey on algorithmic re-

sults for this class indicating that in a number of cases, many of which concerning

trees, these problems can be solved efficiently.

3.4 Concluding remarks

In this chapter, we have studied optimisation problems on several measures of

diversity that have been employed in different contexts and/or for different pur-

poses. Maybe not surprisingly, all measures we considered lead to NP-hard prob-

lems. However, as is usual in complexity theory, depending on the actual struc-

ture of input data, there may be properties of the input that can be exploited

to design efficient algorithms for those problems. In the next two chapters, we

present some new results in this direction. In Chapter 4, trees, i.e. compatible

split systems, will be studied with PD and AD measures. In Chapter 5, we will
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propose an efficient method for so-called affine split systems, then make use of

this method to develop a new algorithm for circular split systems.
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Chapter 4

Optimising diversity on trees

4.1 Summary

In this chapter, we study problem MPD with PD measure and problem MAD in

the context of phylogenetic trees, i.e compatible split systems. The PD optimisa-

tion problem on trees has been solved in polynomial time in (116; 139) but here

we will present an implementation with linear running time, which is obviously

optimal. The method makes up one part of the paper (136). The MAD problem

has been shown to be NP-hard in the previous chapter but by making use of the

tree structure, we will also develop a polynomial time algorithm for solving it.

4.2 Computing phylogenetic diversity for com-

patible split systems

The problem of computing sets of maximum PD on phylogenetic trees and some

approaches to solve it have been introduced in Section 2.4.1. Here we use the

idea presented in (133) for computing tree cores to derive an algorithm with run

time O(n). Interestingly, this run time is independent of k and clearly optimal.

To describe our algorithm we assume that the compatible split system S is

given as an edge-weighted phylogenetic tree T = (V (T ), E(T )) on a leaf set X,

no vertices of degree two and a function that assigns a non-negative weight to

each edge of T . This assumption was also made in (106).
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4.2 Computing phylogenetic diversity for compatible split systems

The following notation will help simplify the description of the algorithm.

Let L(T ) = X denote the leaf set of T . For any pair of vertices u and v of T

let π(u, v) denote the unique path in T between u and v, and d(u, v) the sum

of the weights of the edges along path π(u, v), also referred to as the length

λ(π(u, v)) of path π(u, v). We denote the vertices on path π by V (π). For

any non-empty proper subset U ⊂ V (T ) and any v ∈ V (T ) \ U we also define

d(U, v) = min{d(u, v)|u ∈ U}.
We now recall Faith’s greedy algorithm (47) which is illustrated in Figure 4.1:

First select two leaves l1 and l2 of T such that d(l1, l2) is maximized. Let π1 =

π(l1, l2). Next select a leaf l3 ∈ L(T )\{l1, l2} such that d(V (π1), l3) is maximized.

Note there exists a unique vertex u in V (π1) such that d(V (π1), l3) = d(u, l3)

and the path π2 = π(u, l3) has no edge in common with π1. Now iterate this

procedure. At iteration i, 1 ≤ i ≤ n − 2, we have a collection βi = {π1, . . . , πi}
of pairwise edge-disjoint paths. Define Ui = ∪ij=1V (πj) and the set of leaves

Li = {l1, l2, . . . , li+1} selected so far. Select a leaf li+2 ∈ L(T ) \ Li such that

d(Ui, li+2) is maximized. As above, there exists a unique vertex u in Ui such that

d(Ui, li+2) = d(u, li+2) and path πi+1 = π(u, li+2) has no edge in common with

any of the paths in βi. This completes the description of the greedy algorithm.

It has been shown (116; 139) that for every k ∈ {2, . . . , n} the set Lk−1

is an optimal solution for MPD. Note that λ(π1) ≥ λ(π2) ≥ · · · ≥ λ(πn−1) and

PD(Lk−1) =
∑k−1

j=1 λ(πj). Thus, once we have computed the collection βT := βn−1

of paths, we only need to select for the given k the k − 1 longest among them.

But this can be done in O(n) time, independently of k (16). It therefore only

remains to describe how to compute βT in O(n) time.

A path π of maximum length in T can be found in O(n) time using a breadth

first search procedure, see e.g. (145). We then select an arbitrary endpoint r of

π. Vertex r is a leaf of T and we root the tree T at r. This induces a parent-

child relation on the vertices of T , and so we refer to the subtree Tu rooted at an

arbitrary vertex u of T . We now recursively define for each subtree Tu a collection

of paths β(u) and demonstrate that in Figure 4.2.

If Tu consists only of vertex u then we put β(u) := ∅. Otherwise Tu has at

least one child. For each child v of u fix an arbitrary path πv of maximum length

in β(v). We define π′v as the path πv extended by edge {u, v}. If β(v) = ∅ then
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l1 l2

l3

l4

Figure 4.1: The red path π1 connects the first two leaves to be selected, the

green path π2 adds the third, and the blue path π3 adds the fourth leaves to the

selection.

we define π′v = π(u, v). Finally we define the collection of paths β(u) as the union

of (β(v) \ πv) ∪ π′v over all children v of u.

It can be checked that the resulting collection β(r) is a collection of paths that

is equivalent to βT , that is, although β(r) and βT might not contain exactly the

same paths, the decreasingly sorted sequence of the lengths of the paths is the

same. Using this fact the recursive definition of the collections β(u), u ∈ V (T ),

can be translated into an easy to implement recursive algorithm. Note that the

collections of paths can be organized as linked lists with a pointer to a longest

path in each list. With this structure, for every child vi of a vertex u, we can get

π′(vi), and thus β(u) in O(1) by linking the β(vi)’s altogether, then doing a slight

adjustment concerning the longest paths of the β(vi)’s to point to the longest

path in β(u). This results in an algorithm for computing β(r) in O(n) time:

Theorem 8. If the split system S is compatible and we are given the correspond-

ing edge weighted phylogenetic tree on the set of taxa X, then MPD can be solved

in O(n) time.
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π(v1)

β(v1) ⇐ v1

π(v2)

v2 ⇒ β(v2)

π(v3)

v3 ⇒ β(v3)

u ⇒ β(u) = ∪vi
{(β(vi) \ π(vi)) ∪ π′(vi)}

where π′(vi) = π(vi) ∪ {(u, vi)}

Figure 4.2: Computing β(u) recursively from β(v) for all v children of u.

Note that the collection of paths β(Tr) needs to be computed only once. After

that, it can be queried repeatedly with different values of k.

4.3 An efficient algorithm for MAD on treelike

distances

In this section, we present an algorithm based on the dynamic programming

technique to solve the AD optimisation problem when the distance on X comes

from an X-tree. We denote the MAD problem on tree as MADT .

4.3.1 Preliminaries

Given a weighted X-tree T = (T, φ) where T = (V,E) and a positive integer

k ∈ {1, . . . , n}, we have to find a subset Y ⊆ X such that |Y | = k and AD(Y )

is maximum among all k-element subset of X, where d is the phyletic distance

induced by T between x and y for any x, y ∈ X.

We will transform T into a phylogenetic tree by applying two operations.

Firstly, we push the labels of interior vertices out to the leaves: For every inner

vertex u ∈ V that is labelled by an element x ∈ X, we remove that label of v and

introduce a new edge {u, x} with weight 0. Secondly, for every leaf u ∈ V that is
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u

v1 v2 v3

w1 w2 w3

u

v1 v2 v3

w1

w2 w3

0

v23

Figure 4.3: Converting a three-child vertex u to two two-child vertices u and v23.

labelled by, say, two elements x, y ∈ X, we remove the labels of v and introduce

two new edges {u, x} and {u, y}, both with weight 0. Now a taxon in X can be

uniquely identified by the corresponding labelled vertex of T and vice versa.

Next, without loss of generality, we can assume that T is rooted and binary.

If T is unrooted, choose an arbitrary edge e ∈ E, insert an additional vertex

r to divide e into two new edges e1, e2, each of which is assigned a weight of

w(e)/2 where w(e) is the weight of edge e. If T is not binary, for example if ver-

tex u has three children v1, v2 and v3, see Figure 4.3(a), we can remove two edges

{u, v2}, {u, v3}, insert a vertex v23 and three edges {u, v23}, {v23, v2} and {v23, v3},
set w({u, v23}) = 0, w({v23, v2}) = w({u, v2}), w({v23, v3}) = w({u, v3}), see Fig-

ure 4.3(b). One can check that these modifications do not change the value of

AD(Y ) for any subset Y of X.

In the following we first describe an algorithm to compute the maximum AD

score among all k-element subsets of X. Next we augment this algorithm so that

also a k-element subset that yields the maximum AD score is constructed. Our

algorithm will be based on a dynamic programming approach. In the next section

we define the above mentioned subproblems used in our dynamic programming

approach for MAD on a weighted, rooted, binary phylogenetic tree T .
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4.3.2 Definition of subproblems

Let Y be an arbitrary subset of X with k elements. For every w ∈ V , we denote

by Tw the subtree rooted at w and Xw the set of leaves of Tw. Considering the

structure of the tree, it is natural to extend the distance function d on X to

the distance between every pair of vertices of V . Let u and v be the children

of the root r of T , Yu = Xu ∩ Y, Yv = Xv ∩ Y , see Figure 4.4. Note that in

the definition of the AD measure given in Section 3.3.5, the factor
2 |Y |
2

 is

unchanged among all subsets of size |Y |, therefore we will omit that factor in all

the following calculations. Let |Yu| = l, we have:

AD(Y ) =
∑

x,y∈Y

d(x, y)

=
∑

x,y∈Yu

d(x, y) +
∑

x,y∈Yv

d(x, y) +
∑

x∈Yu
y∈Yv

d(x, y)

= AD(Yu) + (k − l)
∑

x∈Yu

d(x, u) +

AD(Yv) + l
∑

y∈Yv

d(y, v) + l(k − l)d(u, v). (4.1)

In Equation (4.1), the quantity l(k− l)d(u, v) does not depend on Yu and Yv,

and maximising AD(Yu) + (k − l)∑x∈Yu d(x, u) is independent of and similar to

maximising AD(Yv) + l
∑

y∈Yv d(y, v). Therefore if an l-element subset of Xw on

the subtree rooted at w that maximises AD(Yw) + (k − l)∑x∈Yw d(x,w) can be

computed for every l ∈ [0, k] and every w ∈ V , then the maximum value of AD(Y )

can be computed from Equation (4.1) with the value of l that maximises the sum(
AD(Yu)+(k−l)∑x∈Yu d(x, u)

)
+
(
AD(Yv)+l

∑
y∈Yv d(y, v)

)
+
(
l(k−l)d(u, v)

)
.

This suggests the definition of subproblems in the dynamic programming algo-

rithm as follows.

For every l ∈ [0, k] and every u ∈ V , we define the score sc of any l-element

subset L of Xu as:

sc(u, l, L) :=
∑

x,y∈L

d(x, y) + (k − l)
∑

x∈L

d(x, u). (4.2)
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u

Yu

v

Yv

r

Figure 4.4: Analysing the subproblems of MADT .

It is obvious that if l = k then sc(u, l, L) = AD(L). Therefore if we define

sc(u, l) := max
{
sc(u, l, L)|L ∈

(
Xu

l

)}
, (4.3)

then the maximum value of AD(Y ) to be found is actually sc(r, k). The value

sc(u, l) is the fractional maximum contribution of the subtree rooted at u if l

leaves are to be taken from Xu to build up the k-element subset of X with

maximum AD. Our subproblems are to compute sc(u, l) for all u ∈ V and all

l ∈ [0, k].

4.3.3 Structural properties of subproblems

As outlined above, we will compute sc(u, l) for every u ∈ V and l ∈ [0, k]. The

value sc(u, 0) is assigned with 0 meaning that the AD score of an empty set is

0. We now describe how to decompose a subproblem with a given u and a given

l into smaller subproblems and when a subproblem is solvable. Examining the

subproblem, note that there are three cases to be handled: The first case is that

|Xu| < l. In this case, there is obviously no l-element subset of Xu, therefore

there is no solution to such a subproblem. To indicate this, it is convenient to

assign sc(u, l) = −∞ to point out that a subproblem decomposed of this type

need not be broken down any further. The second case is that |Xu| = l. Then
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there is a unique solution: Xu is taken and sc(u, l) = sc(u, l,Xu) which can

be computed using Equation (4.2). So again, no breaking down into smaller

subproblems is necessary here. In the case that |Xu| > l, basically we have to

consider all l-element subsets L of Xu and use Equations (4.2) and (4.3) to find

sc(u, l). However, this would be very time consuming if implemented directly.

Here we make use of the optimal substructure of the problem to perform the task

more efficiently: Computing sc(u, l) from its children’s scores as suggested by the

result in the following lemma.

Lemma 1. For every vertex u ∈ V such that |Xu| > 1, and every l ∈ [1, |Xu|−1],

the following holds:

sc(u, l) = max
{

sc(v, lv) + lv(k − lv)d(v, u) +

sc(w, lw) + lw(k − lw)d(w, u) |
lv ∈ [0, l], lw = l − lv

}
, (4.4)

where v, w are the children of u.

Proof. Assume that L is an l-element subset of Xu. Since |Xu| > 1, vertex u has

two children v and w. Let Lv = L ∩Xv, lv = |Lv|, Lw = Y ∩Xw, lw = |Lw|. We

show how sc(u, l, L) can be built up from the scores concerning v and w:

sc(u, l, L) =
∑

x,y∈L

d(x, y) + (k − l)
∑

x∈L

d(x, u)

=
∑

x,y∈Lv

d(x, y) +
∑

x,y∈Lw

d(x, y) +
∑

x∈Lv
y∈Lw

d(x, y) +

(k − l)
(∑

x∈Lv

d(x, v) + lvd(v, u) +
∑

y∈Lw

d(y, w) + lwd(w, u)

)

=
∑

x,y∈Lv

d(x, y) +
∑

x,y∈Lw

d(x, y) +

(k − l)
(∑

x∈Lv

d(x, v) + lvd(v, u) +
∑

y∈Lw

d(y, w) + lwd(w, u)

)
+

lw
∑

x∈Lv

d(x, v) + lv
∑

y∈Lw

d(y, w) + lvlwd(v, w)
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=
∑

x,y∈Lv

d(x, y) + (k − l + lw)
∑

x∈Lv

d(x, v) +

∑

x,y∈Lw

d(x, y) + (k − l + lv)
∑

y∈Lw

d(y, w) +

lv(k − l)d(v, u) + lw(k − l)d(w, u) + lvlw

(
d(v, u) + d(w, u)

)

= sc(u, lv, Lv) + lv(k − lv)d(v, u) +

sc(w, lw, Lw) + lw(k − lw)d(w, u). (4.5)

The last equality follows using the fact that lw = l−lv. Putting Equation (4.5)

into the definition of sc(u, l) in Equation (4.3), we have:

sc(u, l) = max
{

sc(u, lv, Lv) + lv(k − lv)d(v, u) +

sc(w, lw, Lw) + lw(k − lw)d(w, u) |

Lv ∪ Lw = L,L ∈
(
Xu

l

) }
. (4.6)

Note that each subset L ∈
(
Xu

l

)
corresponds to a pair of {lv, lw} (however

each pair of {lv, lw} may correspond to more than one subsets L); moreover,

sc(u, lv, Lv)+ lv(k− lv)d(v, u) can be maximised independently on sc(w, lw, Lw)+

lw(k− lw)d(w, u). Therefore, we can consider all pairs of {lv, lw} such that lv, lw ≥
0, lv + lw = l, and for each pair, replace sc(u, lv, Lv) and sc(w, lw, Lw) by sc(v, lv)

and sc(w, lw), respectively. Doing this directly yields Equation (4.4) in Lemma 1.

Lemma 1 is the key to a dynamic programming algorithm to solve MADT :

The score at u can be computed efficiently from the scores of its children. We

solve the problem in a bottom-up fashion: First compute the scores corresponding

to all the leaves, then those of the parents of the leaves and so on. We store the

values sc(u, l) in a table where we can then look-up later on.
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4.3.4 The algorithm

Based on the structural properties established in the previous section, we present

an algorithm to solve the MADT problem. The input of the algorithm consists

of a weighted, binary, phylogenetic X-tree T = (T, φ) with T = (V,E) rooted

at vertex r, and an arbitrary integer k ∈ {1, 2, . . . , n} where n = |X|. The

output is the maximum AD score among all k-element subset of X. Basically,

the algorithm constructs a 2-dimensional array sc with |V | rows corresponding to

the vertices of the tree and (k + 1) columns corresponding to the possible values

for l (from 0 to k). The pseudo-code for this algorithm can be found in Figure 4.5.

The entries of array sc are computed column by column as follows: For the

first column, sc(u, 0) is assigned value 0 for every vertex u ∈ V meaning that

the AD score of an empty subset is 0. Then, for each column l, l ∈ {1, 2, . . . , k},
the value sc(u, l) for every u ∈ V is determined according to one of three cases:

In Line 4, if the subtree rooted at u has less than l leaves, then the attempt to

take l leaves will always fail. The corresponding entry in sc is assigned −∞ to

indicate that any subproblem directly leading to requiring l leaves at the subtree

rooted at u will have no result. Lines 5, 6, 7 deal with the situation where the

subtree rooted at u has exactly l leaves in which case all the leaves form the

l-element subset. Using Equation (4.4) in Lemma 1, we obtain sc(u, l) in Line

7. The last case is examined in Line 8 when |Xu| > l. All possibilities of {lv, lw}
(lv = [0, l], lw = l − lv) are considered and Equation (4.4) is used to compute

sc(u, l). Line 9 returns the maximum score achieved. As the result, we have the

following theorem:

Theorem 9. Algorithm Solve MADT solves the MADT problem in O(nk2) time

and requires O(nk) memory.

Proof. The correctness of the algorithm follows directly from the structural prop-

erties of the subproblems established in Section 4.3.3, in particular from Lemma 1.

Next we show the bound on the run time. The loops in lines 2, 3 require O(k) and

O(n) iterations, respectively, using that |V | = 2n − 1 because T is binary (33).

Lines 1, 4, 5, 6, 7 all run in constant time. In Line 8, since l + 1 possibilities

of {lv, lw} need to be considered, assuming that for a given u and l, the value

sc(u, l) can be accessed in constant time, then computing sc(u, l) in this case takes
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Solve MADT

Input: a weighted, rooted, binary phylogenetic X-tree T = (T, φ)

where T = (V,E), |X| = n,

an integer k ∈ {1, 2, . . . , n}
Output: the maximum AD score among all k-element subsets of X

1. Let sc(u, 0) := 0 ∀u ∈ V // initialise sc

2. for all l ∈ {1, 2, . . . , k} do

3. for all u ∈ V (in the order that u is considered after its children) do

4. if |Xu| < l then sc(u, l) := −∞ // no l-element subset exists

5. else if |Xu| = l then // there is only one pair of values (lv, lw)

6. if u is a leaf then sc(u, l) = 0

7. else sc(u, l) := sc(v, lv) + lv(k − lv)d(v, u)+

sc(w, lw) + lw(k − lw)d(w, u)

// where v and w are the children of u

8. else // |Xu| > l, use sc as a lookup table

sc(u, l) = max
{
sc(v, lv) + lv(k − lv)d(v, u)+

sc(w, lw) + lw(k − lw)d(w, u)|lv + lw = l; lv, lw ≥ 0
}

// where v and w are the children of u

9. return sc(r, k)

Figure 4.5: The algorithm Solve MADT .
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O(k) × O(1) time. Returning the maximum AD value in line 9 takes constant

time. So the total run time of the algorithm is O(nk2).

Note that for Line 3, the vertices must have been sorted in an order such

that u is considered after its children. However, since T is binary, then |V | =

2n − 1, |E| = 2n − 2, and V can be sorted using a depth-first search (DFS)

procedure (33) which runs in O(|E|) = O(n) time. So even taking this into

account, the run time of the algorithm is still O(nk2).

We conclude the proof by showing the bound on the memory consumed by

Solve MADT . The algorithm stores the table sc which take O(nk) storage.

The tree T in the input can be stored in three lists: One containing the vertices

themselves, one containing the index of a vertex’s parent, and one containing the

weight of the edge connecting a vertex to its parent. Each of the list will take

O(n) storage. So the total memory requirement is O(nk).

We illustrate the algorithm by an example where the tree T is given in Fig-

ure 4.6 and the number of taxa to be chosen is k = 3. The scoring table sc of

T is built as indicated in Table 4.1. The first column corresponding to l = 0 is

filled with 0. The value sc(u, 1) = 0 for every leaf u as well. To illustrate how

an entry of the table is computed in general, consider u = v4, l = 2. There are

three possible values for lv, namely 0, 1 and 2. If lv = 0 then lw = 2 and we

obtain sc(v4, l) = sc(v7, 0) + 0 ∗ 3 ∗ 14 + sc(v8, 2) + 2 ∗ 1 ∗ 3 = 40. Similarly, we

obtain the scores 52 and −∞ with lv = lw = 1 and lv = 2, lw = 0, separately.

So sc(v4, 2) = 52 and lv, lw are both chosen to be 1. Finally, the algorithm will

return the maximum AD score of 118 .

4.3.5 Finding a subset of taxa having the maximum AD

score

Referring back to the original AD optimisation problem, we do not only want to

compute the maximum AD score but also a k-element subset of taxa that yields

the score. Note that there may be more than one such subset.

Examining algorithm Solve MADT , if at Line 8, the value of lv that max-

imises sc(u, l) is stored in a table l0, which has the same size and indexing strategy

as sc, we can use l0 to trace back and get a subset of taxa that gives rise to the
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Algorithm 1 Dynamic programming to solve GD3T

1: Sort V in an order so that every vertex stands after all its descendants.
2: Let sc(v, 0, ∅) := 0 ∀v ∈ V . // Initialise sc to help step 10
3: for all l ∈ {1, . . . ,K} do
4: for all v ∈ V do
5: if |Xv| < l then
6: sc(v, l) := −∞ // Unusable
7: else if |Xv| = l then // there is only one pair of values (lu, lw)
8: sc(v, l) := sc(u, lu) + sc(w, lw) + lu(K − lu)d(u, v) + lw(K − lw)d(w, v)
9: else // |Xv| > l, use sc as the lookup table

10: sc(v, l) = max
{
sc(u, lu) + sc(w, lw) + lu(K − lu)d(u, v) + lw(K − lw)d(w, v)|lu + lw = l

}

11: end if
12: end for
13: end for
14: Return sc(r,K) as the maximum genetic diversity score.

• At step 10, there are l + 1 possibilities for lu (from 0 to l) each of which produces a unique
value for lw = l − lu ⇒ This step takes O(K).

• All other steps require a constant computing time.

• The total complexity is O(n) + O(nK2) = O(nK2).

An example: Let’s work on the sampling tree Ts rooted at v0 below, the number of leaves
is |X| = 6, lengths of edges are provided, the number of leaves to choose is K = 3. The distance
matrix of Ts is calculated in table 1. The scoring table sc of Ts is built as in table 2.

v0

v1

2

v3

16

v4

4

v7

14

v8

3

v9

9

v10

8

v2

7

v5

16

v6

15

The format of table 2 is as the followings:

1. The first two rows are headers.

2. The first column is the list of vertices in the increasing order of |Xv|.

3. The second column is the list of |Xv | (for convenient perceptible comparisons with l).

4

Figure 4.6: The input weighted, binary phylogenetic X-tree T .

0 1 2 3

v10 0 0 −∞ −∞
v9 0 0 −∞ −∞
v7 0 0 −∞ −∞
v6 0 0 −∞ −∞
v5 0 0 −∞ −∞
v3 0 0 −∞ −∞
v8 0 18 34 −∞
v2 0 32 62 −∞
v4 0 28 52 68

v1 0 36 68 92

v0 0 46 86 118

Table 4.1: The scoring table for T with k = 3.
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maximum AD score following this procedure: Start from entry (r, k), at every

cell (u, l), we know that we need to take l0(u, l) leaves on the subtree rooted at

v and l − l0(u, l) leaves on the subtree rooted at w where v and w are the left

and right children of u, we then move to cells (v, l0(u, l)) and (w, l − l0(u, l)).

The process on each branch continues until the number of leaves to be selected

equals to the number of leaves on the subtree being considered, which means all

those leaves will be taken. By this process, a subset of leaves corresponding to a

subset of taxa with the maximum AD score can be constructed as the union of

the subsets of leaves corresponding to the cases where all leaves of a subtree will

be chosen.

We formally define the table l0 in Equation (4.7) and the algorithm to derive

a subset of taxa giving the maximum AD in Figure 4.7.

l0(u, l) =





−2 if |Xu| < l,

−1 if |Xu| = l,

argmax
lv

sc(u, l) if |Xv| > l.
(4.7)

The entries in table l0 show how to process with the backtracking: The value

l0(u, l) = −2 is just for the completion of the table because the backtracking

process never goes to such an entry. If l0(u, l) = −1, then all the leaves of the

subtree rooted at u are to be taken. Otherwise, l0(u, l) ∈ [0, l] indicates the

number of leaves to be taken from the left subtree of u; accordingly, l − sc(u, l)
indicates the number of leaves to be taken from the right subtree of u. Table l0

can be built up along with table sc and this does not change the complexity of

algorithm Solve MADT .

On complexity, algorithm FindSubset MADT uses the stack data struc-

ture (33) to implement the procedure described above: It starts at the root of

the tree and identifies the number of leaves to be collected from the left and right

subtrees. The process continues with every subtree involved. Therefore the run

time of the algorithm is linear to the maximum size of the stack, which is the

number of subtrees considered. Note that each internal vertex is pushed into the

stack at most once. Since T is a binary tree, the number of internal vertices does

not exceed the number of leaves (33); therefore, the size of the stack is bounded
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FindSubset MADT

Input: as in Algorithm Solve MADT and table l0 as defined above

Output: a k-element subset Y of X such that AD(Y ) is maximum

among all k-element subsets of X.

1. Let Y = ∅
2. Let Stack = ∅
3. push(Stack, (r,k))

4. while Stack 6= ∅
5. pop(Stack, (u, l))

6. if l0(u, l) = −1 // the case where l = |Xu|
then Y = Y ∪Xu

7. else // Note that the backtracking never drives to a −∞ cell in sc,

// thus never goes to a -2 cell in l0

8. if l0(u, l) > 0 then // Will collect some leaves on the left subtree

push(Stack, (v, l0(u, l))

9. if l0(u, l) < l then // Will collect some leaves on the right subtree

push(Stack, (w, l − l0(u, l))
10. return Y

Figure 4.7: The algorithm FindSubset MADT .

by n. Hence the run time of the algorithm is O(n). The table l0 requires O(nk)

memory.

4.4 Concluding remarks

We have studied the NP-hard problems MPD and MAD in the special case where

the input comes from phylogenetic trees, i.e. compatible split systems. The tree

structure has been utilised to derive a linear time algorithm for the MPD problem

on trees. Not only the running time has been improved compared to currently
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available methods, but our algorithm is also interesting in that it does not depend

on the number of taxa to be selected. For the MADT problem, the tree structure

has been exploited again, using a dynamic programming approach, to develop a

polynomial time algorithm. In the next chapter we will study the MPD problem

on split systems having a more complex structure.
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Chapter 5

Phylogenetic diversity on circular

and affine split systems

5.1 Summary

In Chapter 4, we studied several optimisation problems on split systems related

to phylogenetic trees. We now consider the MPD problem with respect to more

complicated split systems: Circular and affine split systems. We define and

investigate affine split systems first, then derive an algorithm for solving the

MPD problem for these systems. After that we apply this approach to give a

new, more efficient algorithm for the MPD problem on circular split systems.

This chapter is extracted and extended from parts of the paper (136).

5.2 Computing phylogenetic diversity for affine

split systems

In this section we consider the MPD on so-called affine split systems. As with

circular split systems, these split systems have the property that they can be

visualized by planar split networks (24) and, as we shall see, solving MPD for

such split systems is closely related to the problem of finding optimal convex

polygons (44).
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We first introduce some notation. Let L be a straight line in the plane with

equation ax+ by + c = 0. We refer to the two open half-planes bounded by L as

L+ = {(x, y) ∈ R2|ax+ by + c > 0}
and

L− = {(x, y) ∈ R2|ax+ by + c < 0}.

Let L denote the set of all straight lines in the plane. A split system S on X

is called affine if there exist injective mappings ϕ : X → R2 and θ : S→ L such

that for every split S ∈ S we have

S = {ϕ−1(θ(S)+ ∩ ϕ(X)), ϕ−1(θ(S)− ∩ ϕ(X))}.

The term “affine split systems” was first defined by Bryant and Dress in their

study about linearly independent split systems (22). We will show that if the

given split system S is affine and we are given corresponding mappings ϕ and

θ then we can solve MPD in O(kn3) time. To simplify the description we will

identify X with the set of points in the plane it is mapped to by ϕ. We also

assume that no three points in X are co-linear.

In order to describe the structure of optimal solutions for MPD we need to

introduce some more notation. Let P denote a finite set of points in the plane

containing no three collinear points. We let conv(P ) denote the convex hull of

P , and H(P ) denote the set of points in P lying on the boundary of conv(P ).

Note that the induced distance matrix d of a weighted affine split system can be

computed in O(n2) time using techniques presented in (41).

Lemma 2. (i) If |H(X)| = l ≤ k then, for any (k − l)-element subset Z of

X \H(X), the set Y = H(X) ∪ Z is an optimal solution for MPD.

(ii) If |H(X)| > k then there exists an optimal solution Y ⊆ X such that the

points in Y are in convex position.

(iii) Let Y ⊂ X be a set of points in convex positions and number the ver-

tices y1, y2, . . . , yl of conv(Y ) clockwise around conv(Y ). Then PDS(Y ) =
1
2
(d(y1, y2) + d(y2, y3) + · · ·+ d(yl, y1)).

60



5.2 Computing phylogenetic diversity for affine split systems

x1
x2

x3

x4

x5

Figure 5.1: When we assign weight 2 to each of the splits in {S1, . . . , S4} and

weight 1 to split S5, then PD({x1, x2, x4}) = 8 and every other 3-element subset

has phylogenetic diversity at most 7. But x4 does not lie on the boundary of the

convex hull of the whole point set.

Proof. Property (i) follows from the fact that PD(Y ) = PD(X), and, thus,

PD(Y ) is maximal, for any Y with H(X) ⊆ Y .

To show property (ii) let Y be an optimal solution and suppose there exists

some y ∈ Y with the property that y lies in the interior of conv(Y ). Since

|H(X)| > k there must exist some y′ ∈ H(X) \ Y . The situation is shown in

Figure 5.2(a), conv(Y ) is indicated by shading. We define Y ′ = (Y \ {y})∪ {y′}.
Then, since conv(Y ) ⊆ conv(Y ′), we have PD(Y ) ≤ PD(Y ′). Illustratively, in

Figure 5.2(a), since y lies inside conv(Y ), every split that separates y from any

of other taxon has its coressponding line intersect with two edges of conv(Y ),

i.e. that split bi-partites elements of H(Y ), or y does not contribute to PD(Y ).

Clearly, such split contributes to PD(Y ′). Meanwhile, y′ may yield splits that

contribute to PD(Y ′) but not PD(Y ), e.g. {y′}|(Y \{y}). Then Y ′ is an optimal

solution that has one more convex point comparing to Y . Iterating this argument

yields an optimal solution whose points are all in convex position.

Property (iii) follows from the fact that for a subset Y ⊆ X every straight line

L in θ(S) that intersects conv(Y ) intersects the boundary of conv(Y ) at exactly

two distinct points. An example is given in Figure 5.2(b), conv(Y ) is indicated

by shading.

In view of Lemma 2(i) an optimal solution for MPD can be found easily if
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y

y′

L

v1

v2

v3

v4

v5

v6

(a) (b) (c)

Figure 5.2: Observations on affine split systems.

|H(X)| ≤ k. Therefore in the following we will assume that |H(X)| > k. Then

by Lemma 2(ii) and (iii) solving MPD on affine split systems amounts to finding

a convex k-gon with vertices in X with maximum perimeter. The problem of

finding k-gons with maximum perimeter and vertices in a given set of n points

has been considered for the Euclidean distance between the points (20; 44). Here

we show that the ideas developed for this problem can be applied to the problem

MPD on affine splits.

Before proceeding, we note that there are some differences in the structure of

the problems. For example, it is shown in (20) that all the vertices of a convex

k-gon with maximum Euclidean perimeter coincide with vertices of the convex

hull of the given point set. In contrast, the example shown in Figure 5.1 indicates

that this is not always true when we measure the perimeter induced by weighted

affine splits. Fortunately, this property is not crucial for devising an efficient

algorithm.

Now, let f denote a function that assigns to every convex polygon with vertices

in X a non-negative real number. The function f is called decomposable (44) if

for any convex polygon C with vertices v1, v2, . . . , vl in clockwise order around C

and any i ∈ {3, . . . , l − 1} we have

f(C) = �(f(conv(v1, . . . , vi)), f(conv(v1, vi, . . . , vl)), v1, vi),

where � : R≥0 × R≥0 × X × X → R≥0 can be computed in constant time. In

addition, f is called monotone decomposable if � is a monotone function in its

first and second argument. In (44) the following is shown.
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Theorem 10 (Eppstein et al. (44)). Let f be a monotone decomposable function

on the convex polygons with vertices in X. Then a convex k-gon that maximizes

f among all convex k-gons can be computed in O(kn3 + τ(n)) time, where τ(n)

is the time needed to compute f on all the triangles with vertices in X.

Corollary 1. If S is an affine split system and we are given the distance matrix

d induced by S and ω, then MPD can be solved in O(kn3) time.

Proof. Using Lemma 2(iii) we first show that PDS is monotone decomposable

with �(ξ1, ξ2, p, q) = ξ1+ξ2−d(p, q). It is obvious that � is monotone in its first two

arguments. Let Y be a set of points in convex positions and number the vertices

y1, y2, . . . , yl of conv(Y ) clockwise around conv(Y ), for any i ∈ {3, . . . , l− 1}, we

have:

PDS({y1, y2, . . . , yi}) + PDS({y1, yi, . . . , yl})− d(y1, yi) =
1

2
(d(y1, y2) + d(y2, y3) + · · ·+ d(yi, y1)) +

1

2
(d(y1, yi) + d(yi, yi+1) + · · ·+ d(yl, y1))− d(y1, yi) =

1

2
(d(y1, y2) + d(y2, y3) + · · ·+ d(yl, y1)) = PDS(Y ),

or � is decomposable. An example is given in Figure 5.2(c) where Y = {v1, v2, . . . , v7}
and i = 5. For any of the O(n3) triangles ∆ with vertices in X we can compute

PDS(∆) in O(1) time. Hence, τ(n) ∈ O(n3). Thus, by Theorem 10, MPD can

be solved in O(kn3) time.

Note that in some applications one might wish to augment an affine split

system S on X by adding all the trivial splits, that is, the splits of the form

{{x}, X \ {x}}, x ∈ X, and giving them positive weights. Note that not every

augmented affine split system has the property that it can be visualized by a

planar split network. However, it is still possible to solve MPD in polynomial time

on augmented affine split systems by adapting the above algorithm that solves

MPD for affine split systems, although the bound on the run time increases to

O(k2n4). The key observation is the following. Let x1, x2 and x3 be three distinct

elements in X and l ≥ 3 some integer. Let ∆ denote a triangle in the plane with

vertices x1, x2 and x3 with |X ∩ ∆| ≥ l. Then we can compute in O(n) time

63



5.3 Computing phylogenetic diversity for circular split systems

an l-element subset Y of X with the property that PD(Y ) is maximum among

all l-element subsets Y ′ of X with {x1, x2, x3} ⊆ Y ′ ⊆ ∆. To see this, note that

for any Y ′ ⊆ X with {x1, x2, x3} ⊆ Y ′ ⊆ ∆ the contribution to PD(Y ′) of an

element y ∈ Y ′ that lies in the interior of ∆ equals the weight of the trivial split

{{y}, X \ {y}}. Therefore, we only need to select l − 3 elements of X in the

interior of ∆ such that the sum of the weights of the corresponding trivial splits

is maximized.

5.3 Computing phylogenetic diversity for circu-

lar split systems

In this section we use the analysis of affine split systems presented in the previous

section for solving MPD on circular split systems. As we shall see, every circular

split system corresponds to an affine split system where the points in X are in

convex position. Hence, by Corollary 1, MPD on circular split systems can be

solved in O(kn3), the same run time as the algorithm by Minh et. al. (107) which

is reviewed in Section 2.4.2. In this section we show how geometric considerations

can be used to improve this run time to O(kn+ n log n).

In the following we will consider X as a set of points in the plane in con-

vex position and we arrange them in the order x1, x2, . . . , xn clockwise around

conv(X). It is known that the distance matrix d induced by a weighted circular

split system satisfies the following four-point condition (31; 88):

d(xi1 , xi3) + d(xi2 , xi4) ≥ d(xi1 , xi2) + d(xi3 , xi4) and (5.1)

d(xi1 , xi3) + d(xi2 , xi4) ≥ d(xi1 , xi4) + d(xi2 , xi3)

for all i1, i2, i3, i4 ∈ {1, . . . , n}, i1 < i2 < i3 < i4. Clearly, (5.1) holds for the

Euclidean distance between points in X, and a careful check of the results in (20)

reveals that they rely essentially only on this property. As a consequence the

algorithm for finding a convex k-gon with maximum Euclidean perimeter pre-

sented in (20), along with the modifications suggested in (5), can also be used to

solve MPD on circular split systems. However, the correctness proof given in (20)

does not immediately carry over to MPD, since it makes use of the fact that for
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the Euclidean distance (5.1) holds with both inequalities being strict. For the

induced distance matrix d this cannot be guaranteed.

Before we describe the algorithm we require some more notation. In the

following, if not stated otherwise, the vertices of every polygon are a subset of

X and ordered clockwise around conv(X). For any u, v ∈ X, u 6= v, the interval

I = [u, v] is the set of elements of X we meet when we walk from u to v clockwise

along the boundary of conv(X). The vertices u and v are called the endpoints of

interval I. If u = v then we define [u, v] = {u}. A convex l-gon C is rooted at

r ∈ X if r is a vertex of C. A convex l-gon with maximum perimeter among all

l-gons (rooted at r) will be called an optimal l-gon (rooted at r).

The algorithm presented in (20) consists of two phases. In the first phase an

optimal k-gon rooted at x1 is computed. In the second phase the result from the

first phase is used to compute an optimal k-gon. We now describe our adaptation

of the first phase. It is based on the following lemma.

Lemma 3. Let C be an optimal l-gon rooted at r with vertices r = v1, . . . , vl,

l < n. Then there exists an optimal (l + 1)-gon C ′ rooted at r with vertices

r = u1, . . . , ul+1 such that ui ∈ [vi−1, vi] for all i ∈ {2, . . . , l + 1}, vl+1 = v1.

Proof. The proof uses the idea of the so called crossing transform introduced

in (20). We will assume that l ≥ 3. The case l = 2 can be dealt with similarly.

As a first step consider any optimal l-gon C rooted at some vertex r. We want

to show that there exists an optimal (l + 1)-gon C ′ rooted at r such that every

interval induced by C contains at least one vertex of C ′. To this end consider an

optimal (l+1)-gon C̃ rooted at r and suppose that there exists an interval induced

by C that does not contain a vertex of C̃. We number the vertices v1, . . . , vl of C

in such a way that interval [vl, v1] does not contain an element of C̃ but interval

[v1, v2] does. We number the vertices u1, . . . , ul+1 of C̃ such that u1 is the first

vertex of C̃ after v1. An example is given in Figure 5.3(a) where l = 5. Define µi

as the number of vertices of C̃ in [v1, vi]. Note that µ1 = 0 and µl = l + 1. Let

j be minimal with the property that j ≤ µj. Note also that such a j must exist

and that uj−1 ∈ [vj−1, vj] \ {vj−1, vj} and uj ∈ [vj−1, vj] \ {vj−1}. In the example

in Figure 5.3(a) we have j = 4.

We can now apply the crossing transform, that is, we construct a new l-gon C1

rooted at r with vertices u1, . . . , uj−1, vj, . . . , vl and a new (l+1)-gon C2 rooted at
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r with vertices v1, . . . , vj−1, uj, . . . , ul+1. By the four-point condition (5.1) the sum

of the perimeters of C1 and C2 is not smaller than the sum of the perimeters of

C and C̃. Thus, since both C and C̃ are optimal l- and (l+ 1)-gons, respectively,

rooted at r, the perimeter of C̃ and C2 is the same. Hence, C2 is an optimal

(l+1)-gon rooted at r and it can be checked that the number of intervals induced

by C that do not contain a vertex of C2 is strictly less than the number of these

intervals for C̃. Thus, by a repeated application of the crossing transform we can

construct an optimal (l + 1)-gon C ′ rooted at r such that every interval induced

by C contains at least one vertex of C ′. This finishes the first step of the proof.

Note that with a completely analogous argument we can show that there even

exists an optimal (l + 1)-gon C ′ rooted at r such that every interval I induced

by C contains a vertex of C ′ that is not an endpoint of I or both endpoints of

I are vertices of C ′. We will say that such a C ′ interleaves nicely with C. An

example of the situation we want to avoid is given in Figure 5.3(b): The interval

[v5, v1] contains only the vertex u6 = vl. In contrast, the 5-gon and the 6-gon in

Figure 5.3(c) interleave nicely.

In the second step of our proof we show that, given an optimal l-gon C rooted

at r with vertices r = v1, . . . , vl, if an optimal (l+1)-gon C ′ rooted at r interleaves

nicely with C then vertex ui must lie in [vi−1, vi]. To this end, first note that the

number of vertices of C ′ in [v1, vi] is at least i. This can shown by induction on i.

Similarly, the number of vertices of C ′ in [vi, v1] \ {v1} is at least l − i+ 1. Now

suppose for some i vertex ui does not lie in [vi−1, vi]. Since the number of vertices

of C ′ in [v1, vi] is at least i this can only happen if ui is in [v1, vi−1] \ {vi−1} and,

thus, at least i vertices of C ′ lie in [v1, vi−1]\{vi−1}. Since the remaining (l+1)−i
vertices of C ′ must all lie in [vi, v1] \ {v1}, this implies that C ′ does not interleave

nicely with C, a contradiction. Hence, vertex ui must lie in [vi−1, vi].

Lemma 3 suggests computing an optimal k-gon rooted at x1 = xi1 incremen-

tally. First we find an element xi2 ∈ X \ {xi1} such that d(xi1 , xi2) is maximal.

Then we repeat adding a new vertex by calling the procedure AddVertex in

Figure 5.5 until an optimal k-gon rooted at x1 is found. Starting with an optimal

l-gon rooted at x1, AddVertex computes an optimal (l + 1)-gon rooted at x1.

The process is illustrated in Figure 5.4. To do this it employs Lemma 3 to ensure

that when searching for the vertices of an optimal (l+ 1)-gon rooted at x1 it can
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Figure 5.3: Examples used in the proof of Lemma 3.

restrict to the intervals induced by the given optimal l-gon rooted at x1. To per-

form this search efficiently the dynamic programming technique is employed: In

the loop in Lines 1-2 of the procedure AddVertex the initial tables are built. In

general, table A[j, s] is used to store the length of the longest polygonal path from

vertex x1 to vertex xj under the constraint that this path has s − 1 additional

vertices besides x1 and xj, one in each of the intervals [xi1 , xi2 ], . . . , [xis−1 , xis ].

Table B[j, s] is used to store the index of the vertex, say u, that comes imme-

diately before xj in the longest path. The nested loops in Lines 3-6 fill in these

tables using entries which have already been computed. This can be done since

the sub-path from x1 to u of the longest path from x1 to xj must have maximum

length, too.

Before we continue to outline the second phase of the algorithm we briefly

sketch the analysis of the run time of the first phase. We call procedure Ad-

dVertex (k − 2) times. A straightforward implementation of procedure Ad-
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v1 = x1

v2

v3

vl−1

vl

(a) An optimal set of l elements C =

{v1, v2, . . . , vl}. The straight lines illus-

trate the splits.

v1

v2

v3

vl−1

vl

u1 =

u2

u3

u4

ul

ul+1

(b) An optimal set of l + 1 elements

C ′ = {u1, u2, . . . , ul+1} constructed from

C where u1 ≡ v1, ui lies between vi−1 and
vi for all 2 ≤ i ≤ (i+ 1), vl+1 ≡ v1.

Figure 5.4: Building an optimal set of (l + 1) elements from an optimal set of l

elements, both sets contain x1.

dVertex would yield a run time of O(n2) per call. However, it is possible to

apply the techniques presented in (5) to speed up the computations done in Lines

4-6 (Figure 5.5). To this end we define a matrix Mjt, is < j ≤ is+1, is−1 < t ≤ is,

by Mjt = d(xj, xt) + λ(xt, x1) where λ(xt, x1) is the length of the longest polygo-

nal path with vertices xt = us, us−1, . . . , u1 = x1, ua ∈ [xia−1 , xia ], 2 ≤ a ≤ s− 1.

We want to find for each row of matrix M the first entry that is larger than or

equal to every other entry in the same row. In (5) it is shown that this can be

done in O(]rows of M + ]columns of M) time if M is totally monotone, that is,

Mj1t1 < Mj1t2 implies Mj2t1 < Mj2t2 for every j1 < j2 and t1 < t2. But this follows

from the four-point condition (5.1). Note that we do not need to construct ma-

trix M explicitly as each of its entries can be computed in constant time. Thus,

procedure AddVertex can be implemented to run in O(n) time. Hence, the

first phase of the algorithm can be completed in O(kn) time.

The second phase of the algorithm relies on the result stated in the following

lemma which can be proved in a similar way we have shown Lemma 3.

Lemma 4. Let C be an optimal l-gon rooted at r with vertices r = v1, . . . , vl.
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AddVertex({xi1, xi2, . . . , xil})

Input: optimal l-gon {xi1 , xi2 , . . . , xil} rooted at xi1 ,

1 = i1 < · · · < il ≤ il+1 = n

Output: optimal (l + 1)-gon {xa1 , xa2 , . . . , xal+1
} rooted

at xa1 , 1 = a1 < · · · < al+1 ≤ n

1. for j := 2 to i2 do

2. A[j, 1] := d(xj, xi1), B[j, 1] := i1

3. for s := 2 to l do

4. for j = is to is+1 do

5. A[j, s] := max
max{2,is−1}≤t
min{is,j−1}≥t

d(xj, xt) + A[t, s− 1]

6. B[j, s] := argmax
max{2,is−1}≤t
min{is,j−1}≥t

d(xj, xt) + A[t, s− 1]

7. al+1 := argmax
il≤t≤n

d(xi1 , xt) + A[t, l]

8. for s := l downto 1 do

9. as = B[as+1, s]

10. return {xa1 , xa2 , . . . , xal+1
}

Figure 5.5: The procedure AddVertex. In lines 6 and 7 ties are broken arbi-

trarily.
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Then there exists an optimal l-gon C ′ with vertices u1, . . . , ul such that ui ∈
[vi, vi+1] for all i ∈ {1, . . . , l}, vl+1 = v1.

From the first phase of the algorithm we are given an optimal k-gon C rooted

at x1 with vertices {xi1 , xi2 , . . . , xik}, 1 = i1 < · · · < ik ≤ n. The vertices of C

induce k intervals, namely Ij = [xij , xij+1
], 1 ≤ j ≤ k, ik+1 = i1. Figure 5.6 shows

the idea employed in the second phase. By Lemma 4 there exists an optimal

k-gon where the jth vertex is located in interval Ij. Thus, if we fix some vertex

v ∈ I1, with a procedure that is analogous to the procedure AddVertex we can

find a k-gon Cv with maximum perimeter among all the k-gons that have its jth

vertex in interval Ij and the first vertex at v. Hence, by checking every vertex

v ∈ I1 we can find an optimal k-gon in O(n2) time.

v1 = x1

v2

v3

vk−1

vk

(a) An optimal set of k elements C =

{v1, v2, . . . , vk}. The straight lines illus-

trate the splits.

v1

v2

v3

vk−1

vk

u1

u2

uk−1

uk

(b) A globally optimal set of k elements

C ′ = {u1, u2, . . . , uk} constructed from C

where ui lies between vi and vi+1 for all

1 ≤ i ≤ k, vk+1 ≡ v1.

Figure 5.6: Building a globally optimal set of k taxa from an optimal set of k

taxa containing taxon x1.

However, in (20) a more efficient way is presented based on the result stated

in the following lemma, which can again be shown using a similar argument to

the one that we used to prove Lemma 3.

Lemma 5. Let I1, . . . , Il be a set of intervals with the property that any two

intervals have only elements in common that are endpoints of both intervals and
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there exists an optimal l-gon with vertices u1, . . . , ul such that ui ∈ Ii for all

i ∈ {1, . . . , l}. Let v be an arbitrary vertex in I1 and C be an l-gon with vertices

v = v1, . . . , vl that has maximum perimeter among all l-gons rooted at v and with

vi ∈ Ii for all i ∈ {1, . . . , l}. Vertex vi divides interval Ii into two subintervals

Li and Ri with common endpoint vi where the elements in Ri come after vi when

we walk from vi clockwise along the boundary of conv(X). Then there exists an

optimal l-gon with vertices u1, . . . , ul and either ui ∈ Li for all i ∈ {1, . . . , l} or

ui ∈ Ri for all i ∈ {1, . . . , l}.

Lemma 5 suggests choosing first a vertex v in the middle of interval I1 and

computing the corresponding k-gon Cv. The jth vertex of Cv divides interval Ij

into two subintervals. We then iterate this procedure, choosing vertices v1 and

v2 in each of the subintervals of I1, computing k-gons Cv1 and Cv2 and so on.

Although in the end we still check every vertex v ∈ I1, this yields a run time of

O(n log n) for the second phase of the algorithm. In conclusion we have shown

the following:

Theorem 11. If the split system S is circular and we are given the induced

distance matrix d the problem MPD can be solved in O(kn+ n log n) time.

5.4 Concluding remarks

We have shown again that, even though computing sets of maximum phylogenetic

diversity for weighted split systems is in general NP-hard, if the given split system

has a special structure, efficient algorithms do exist. In this case by extending

work by previous authors, we have developed a polynomial time algorithm for

affine split systems and a new polynomial algorithm for circular split systems.

The latter is more efficient than other available algorithms for circular split sys-

tems (106; 107).

Both circular and affine split systems are examples of something called Flat

Split Systems - the most general class of split systems who can be visualised by

planar split networks. We will define and study this new kind of split system in the

following chapters. In particular, we will investigate the problem of reconstructing
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a FSS to represent a distance matrix so as to provide a generalisation of the

NeighborNet algorithm.
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Chapter 6

Flat split systems

6.1 Summary

In the previous chapters, we have studied the problem of computing PD for

several types of split systems, in particular for compatible, circular and affine

split systems. A common characteristic of these split systems is that they can

be represented by split networks in the plane without crossing edges. In this

chapter, we introduce the most general class of split systems, called flat split

systems (FSSs), whose corresponding split networks can be drawn in such a way.

Note that the research direction is somewhat changed here. We have been

working on computational problems on a variety of split systems but the prac-

tical meaning of the algorithms also depends on how such split systems were

reconstructed. The overall aim of this chapter and the next one is to build up

the methodology around FSSs that can hopefully be used to represent the evolu-

tionary relationships in cases that are problematic for NeighborNet.

We first introduce some objects related to FSSs, namely sequences of permu-

tations, sequences of swapping points, wiring diagrams and p-sequences. Then

we define FSSs, briefly explain how an FSS can be visualised by a planar split

network, and show that the class of affine split systems are a subclass of the class

of FSSs. Finally we define several basic operations to manipulate FSSs. These

operations will be building blocks for searching through the FSSs, as described

in the next chapter.
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6.2 Preliminaries

In this section we introduce some concepts that will be later used to define FSSs.

6.2.1 Sequences of permutations

Definition 1 (Allowable sequence of permutations). Given a set X = {1, 2, . . . , n},
an allowable sequence of permutations on X is an ordered list of permutations

Π = (π0, π1, π2, . . . , πk) of X that has the following properties:

Property 1 (Reversal). The initial permutation is the identity permutation and

the last permutation is the reverse permutation of X, i.e. π0 = (1, 2, . . . , n), πk =

(n, n− 1, . . . , 1).

Property 2 (Consecutiveness). For any i ∈ {1, . . . , k}, permutation πi is ob-

tained from its predecessor, πi−1, by the reversal of the order of some consecutive

elements of πi−1.

Property 3 (Uniqueness). Any two elements x, y ∈ X are involved in precisely

one reversal.

The term allowable sequence of permutations, or allowable sequence for short,

and its derivatives, were introduced by Goodman and Pollack (69) and has been

an effective tool in discrete and computational geometry (15; 54; 68).

For Property 1, in general, the initial permutation π0 need not necessarily be

the identity permutation but can be any permutation of X provided that πk is

still the reverse of π0.

The consecutiveness property specifically states that if

πi−1 = (π1, π2, . . . , πpi−1, πpi , πpi+1, . . . , πpi+ti−1︸ ︷︷ ︸, πpi+ti , . . . , πk),

then

πi = (π1, π2, . . . , πpi−1,
︷ ︸︸ ︷
πpi+ti−1, . . . , πpi+1, πpi , πpi+ti , . . . , πk)

for some pi ∈ {1, . . . , k − 1}, ti ∈ {2, . . . , k − pi + 1}.
The uniqueness property means that, for every i ∈ {1, . . . , k}, if ∆i is the set of

elements involved in the reversal to get πi+1 from πi, i.e. ∆i = {πpi , πpi+1, . . . , πpi+ti−1}
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in the definition of the consecutiveness property, then for any x, y ∈ X, x 6= y,

there is one and only one i ∈ {1, . . . , k} such that x, y ∈ ∆i.

To illustrate these definitions, we give an example of an allowable sequence

together with elements involved in each reversal.

Example 1. An allowable sequence of permutations:

(1, 2, 3, 4, 5)
3,4−→ (1, 2, 4, 3, 5)

1,2,4−−→ (4, 2, 1, 3, 5)
1,3,5−−→ (4, 2, 5, 3, 1)

2,5−→
(4, 5, 2, 3, 1)

4,5−→ (5, 4, 2, 3, 1)
2,3−→ (5, 4, 3, 2, 1).

Here the numbers above the arrows indicate those that are involved in the reversal,

i.e. ∆1 = {3, 4},∆2 = {1, 2, 4},∆3 = {1, 3, 5},∆4 = {2, 5},∆5 = {4, 5},∆6 =

{2, 3}.

When each reversal in the allowable sequence involves only two elements, we

call it a simple allowable sequence (of permutations). More formally,

Definition 2 (Simple allowable sequences). Given a set X = {1, 2, . . . , n}, an

allowable sequence Π = (π0, π1, π2, . . . , πk) on X is called a simple allowable

sequence (on X) if each reversal from πi−1 to πi involves only two elements,

i.e. |∆i| = 2 for every i ∈ {1, . . . , k}, and the reversal is just the swap of two

consecutive elements (πpi , πpi+1).

We also call such a sequence a simple allowable sequence of size n. Given a

simple allowable sequence of size n, each value pi is called a swapping point. The

list P = (p1, p2, . . . , pk) is an example of a sequence of swapping points of size n.

We will formally define a sequence of swapping points after introducing the con-

struction of a list of permutations as follows: Let π0 be an arbitrary permutation

of the set {1, . . . , n}, P = (p1, p2, . . . , pk) be an ordered list of numbers where

pi ∈ {1, 2, . . . , n − 1} for all i ∈ {1, . . . , k}. We construct a list of permutations

Π = (π0, π1, . . . , πk) where permutation πi, i ∈ {1, . . . , k}, is derived from πi−1 by

putting:

πipi = πi−1pi+1,

πipi+1 = πi−1pi
, and

πij = πi−1j for all j ∈ {1, . . . , n} \ {pi, pi + 1}.
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Here πuv denotes the vth element of permutation πu. We call Π the list of

permutations constructed by applying P to π0 and denote it by Π(π0, P ).

Definition 3 (Sequence of swapping points). An ordered list P of numbers from

the set {1, 2, . . . , n−1} is called a sequence of swapping points of size n if Π(π0, P )

is a simple allowable sequence where π0 = (1, 2, . . . , n).

If there is no confusion concerning n, we simply call P a sequence of swapping

points. From the definitions, it can be seen that there is a one-to-one corre-

spondence between sequences of swapping points of size n and simple allowable

sequences of permutations of {1, 2, . . . , n}. Note also that the length of a sequence

of swapping points is the number of permutations in a simple allowable sequence

except the initial permutation and it is given by

(
n
2

)
(54, page 92).

We now give an example of a simple allowable sequence and its corresponding

full sequence of swapping points.

Example 2. A simple allowable sequence with the two elements involved in each

swap shown above the arrow:

(1, 2, 3, 4, 5)
3,4−→ (1, 2, 4, 3, 5)

1,2−→ (2, 1, 4, 3, 5)
1,4−→ (2, 4, 1, 3, 5)

2,4−→
(4, 2, 1, 3, 5)

3,5−→ (4, 2, 1, 5, 3)
1,5−→ (4, 2, 5, 1, 3)

1,3−→ (4, 2, 5, 3, 1)
2,5−→

(4, 5, 2, 3, 1)
4,5−→ (5, 4, 2, 3, 1)

2,3−→ (5, 4, 3, 2, 1)

The corresponding sequence of swapping points is (3, 1, 2, 1, 4, 3, 4, 2, 1, 3).

We conclude this session by noting the following consequence of the uniqueness

property.

Lemma 6 (Simple uniqueness property). Any two consecutive elements in a

sequence of swapping points must be different.

Proof. We prove the lemma by contradiction. Assume that there is a sequence

of swapping points of size n with the form P = (. . . , i, i, . . . ), i ∈ {1, . . . , n− 1}.
Apply P to the identity permutation π0. Let π = (π1, π2, . . . , πi, πi+1, . . . , πn)

be the permutations obtained just before applying the portion (i, i) of P . It

is obvious that the pair {πi, πi+1} will be swapped twice. This contradicts the

uniqueness property.
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6.2.2 Representing a sequence of permutations: The wiring

diagram

In this section we describe how to construct a wiring diagram (15; 54) to rep-

resent an allowable sequence of permutations. We start with a simple allowable

sequence of permutations: Consider a simple allowable sequence Π of size n and

its corresponding full sequence of swapping points P = (p1, p2, . . . , pk). Let n

horizontal “wires”, labelled from 1 to n from top to bottom, going from left to

right. For each element pi of the sequence of swapping points, let the wire at

position pi intersect with the wire at position pi + 1 (the positions are identified

top-down) once, then both continue to go right. Note that after the intersection,

the two wires swap their positions but keep their labels. Doing this with all swap-

ping points results in a diagram illustrating the given simple allowable sequence.

Figure 6.1 shows the wiring diagram representing the simple allowable sequence

given in Example 2.
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3

4

5 1

2

3

4

5

4

3

2

1

5

π2 π6

2

1

4

3

5

Figure 6.1: The wiring diagram that represents the simple allowable sequence in

Example 2.

Returning the simple allowable sequence of permutations from the wiring

diagram is straightforward: After the initial identity permutation, simply read

out the labels of the wires from top to bottom after the intersection concerning

swapping point pi to get permutation πi. For example, the two vertical lines
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in the diagram in Figure 6.1 give two the permutations: π2 = (2, 1, 4, 3, 5) and

π6 = (4, 2, 5, 1, 3).

A wiring diagram can also be employed to represent a general (not necessar-

ily simple) allowable sequence of permutations in the same fashion. The only

difference is that each intersection, instead of involving 2 wires, now involves

all the wires that correspond to the elements taking part in the reversal. The

permutations can be read out from the diagram in the same way as with the

simple allowable sequence. Figure 6.2 shows the wiring diagram of the allowable

sequence given in Example 1.

1

2

3

4

5 1

2

3

4

5

Figure 6.2: The wiring diagram for the (non-simple) allowable sequence given in

Example 1.

6.3 What is a FSS?

In this section we first combine the initial permutation and the sequence of swap-

ping points to define the so called p-sequence. We then use this concept to define

FSSs, and show how to use wiring diagrams to illustrate such split systems. After

that we will briefly explain why FSSs are called “flat” and indicate how to visu-

alise such split systems using planar split networks. Finally we show that affine

split systems are a subclass of the FSSs.

78



6.3 What is a FSS?

6.3.1 Definition of FSSs

FSSs are defined using the following concept.

Definition 4 (p−sequence). Given a set X = {1, 2, . . . , n, }, a p−sequence on

X is a pair P = (π0, P ) where π0 is an arbitrary permutation of X and P =

(p1, p2, . . . , pk) is a sequence of swapping points of size n.

From a p−sequence P, we derive a split system S(P) = {S1, S2, . . . , Sk} where

Si = {πi1, . . . , πipi}|{πipi+1, . . . , π
i
n} for all i ∈ {1, . . . , k}, and πi = (πi1, π

i
2, . . . , π

i
n) is

the ith permutation in the simple allowable sequence constructed by applying P

to π0.

Definition 5 (Flat split system). Given a set X = {1, 2, . . . , n}, a split system S

on X is called a Flat Split System (FSS) if and only if there exists a p−sequence

P on X such that S ⊆ S(P). If S = S(P) then it is called a full FSS.

The FSS was mentioned before under the name pseudo-affine split system in

Bryant and Dress’s study about so-called linearly independent split systems (22).

In that paper it was also remarked that the class of FSSs is a superclass of affine

split systems. We will prove this in more detail using another approach later

on. We will also show that FSSs can be visualised by planar split networks - the

fact that give them their name “Flat Split Systems”. We now study some basic

properties of the FSS. From the definition, we immediately have:

Theorem 12. A FSS on n taxa can have at most

(
n

2

)
splits. Furthermore, it

has

(
n

2

)
splits if and only if it is full.

Proof. An FSS can have no more splits than the full FSS containing it. The

number of splits in a full FSS is the length of the sequence of swapping points

in the corresponding p-sequence. As noted above, the length of a sequence of

swapping points is

(
n

2

)
.

Next we explain the relationship between a FSS and the wiring diagram. First,

getting a FSS from a wiring diagram is straightforward: For each swapping point,
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6.3 What is a FSS?

the labels of the wires above and below the after intersection, respectively, form

the two blocks of the corresponding split. For illustration, consider the wiring

diagram in Figure 6.1: After the first intersection (between wires 3 and 4), we

have split {1, 2, 4}|{3, 5}, after the second intersection (between wires 1 and 2)

we have split {2}|{1, 4, 3, 5}, after the third intersection (between wires 1 and 4)

we have split {2, 4}|{1, 3, 5}, and so on. Finally the full FSS with splits written

in the order corresponding to that in the sequence of swapping points is

{
{1, 2, 4}|{3, 5}, {2}|{1, 4, 3, 5}, {2, 4}|{1, 3, 5}, {4}|{2, 1, 3, 5}, {4, 2, 1, 5}|{3},

{4, 2, 5}|{1, 3}, {4, 2, 5, 3}|{1}, {4, 5}|{2, 3, 1}, {5}|{4, 2, 3, 1}, and {5, 4, 3}|{2, 1}.
}

If we keep the diagram and change the labels of the wires, we may obtain a

different full FSS using the same method of reading out the splits as above. For

example, re-labelling the wires in Figure 6.1 by (2, 5, 1, 4, 3) from top to bottom

results in the wiring diagram depicted in Figure 6.3 and a different corresponding

FSS:

{
{2, 5, 4}|{1, 3}, {5}|{2, 4, 1, 3}, {5, 4}|{2, 1, 3}, {4}|{5, 2, 1, 3}, {4, 5, 2, 3}|{1},
{4, 5, 3}|{2, 1}, {4, 5, 3, 1}|{2}, {4, 3}|{5, 1, 2}, {3}|{4, 5, 1, 2}, {3, 4, 1}|{5, 2}.

}

1

2

3

4

5

1

2

3

4

5

Figure 6.3: A wiring diagram with the same shape as in Figure 6.1 but a different

labelling of the wires.

The examples above also demonstrate how to create a labelled wiring diagram

to represent a FSS if the FSS is given in the form of a p-sequence P = (π0, P ).
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To do this, first construct a wiring diagram for the sequence of swapping points

P . Then re-label the wires from top to bottom by the elements of the initial

permutation π0. We call P the topology and π0 the labelling of the wiring diagram

and also of the p-sequence P. If π0 is the identity permutation, then we say the

wiring diagram/p-sequence has a standard labelling.

The analysis above is applied to full FSSs. However, from the definition, each

(non-full) FSS is always a subset of a full FSS, therefore there is always a wiring

diagram that “accommodates” the splits of the former. From a practical point of

view, every FSS can be considered full by adding some splits to make it full and

assigning weight 0 to these additional splits.

6.3.2 Visualising a FSS by a planar split network

In this section we indicate how a FSS can be visualised by a planar split sys-

tem, which in turn explains why the name “flat split system” is selected. Our

method is a combination of an algorithm for computing the dual of a so-called

arrangement of pseudolines (4; 54) and an algorithm for computing a so-called

zonotopal tiling to represent an allowable sequence (see e.g. (54, p. 100-105)).

The term pseudoline was coined by Levi (95) as a curve whose intersection be-

havior to some other pseudolines is similar to that between straight lines, i.e. two

pseudolines have at most one common point and if such point exists, the two

pseudolines cross each others at this point. An arrangement of pseudolines is a

family of pseudolines where each pseudoline intersects with every other one. Note

that a wiring diagram is a special case of an arrangement of pseudolines. The

explanation on how to represent a FSS using a planar split network will be done

through an example but this can be easily generalised.

Given a (not necessarily full) FSS S with weight vector ω. Let P = (π, P )

where π = (x1, x2, . . . , xn), P = (p1, p2, . . . , pk), k =

(
n
2

)
be a p−sequence such

that S ⊆ S(P). Figure 6.4 shows in form of a wiring diagram an example where

π = (x1, x2, x3, x4, x5), P = (1, 3, 2, 4, 3, 1, 2, 4, 1, 3), and the shaded faces in the

wiring diagram correspond to the splits of the system to be drawn. The splits

are read from left to right with taxa laying above the intersections written in the

left blocks. This results in the ordered splits shown in Figure 6.5(a). In general,
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6.3 What is a FSS?

let S1, S2, . . . , Sm be the splits in S sorted in order in which they are induced by

P. For each split Si, i = 1, . . . ,m, let Li be the set of taxa in the left block.

x1

x2

x3

x4

x5

Figure 6.4: A wiring diagram whose corresponding full FSS contains the splits

(shaded) of the FSS to be drawn.

S1 = {x2}|{x1, x3, x4, x5}
S2 = {x1, x2, x4}|{x3, x5}
S3 = {x2, x4, x5}|{x1, x3}
S4 = {x4, x5}|{x1, x2, x3}
S5 = {x3, x4, x5}|{x1, x2}

(a)

S1

S2

S3

S4

S5

(b)

Figure 6.5: Visualising a FSS - the starting point: (a) The (ordered) splits to be

drawn. (b) The initial split network.

The drawing always starts with the network as a simple path as shown in

Figure 6.5(b) where the edges, reading from top to bottom, correspond to the

ordered splits S1, S2, . . . , Sm. The lengths of the edges are set as the weights of

the corresponding splits. We now process the taxa in order in which they occur
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in π. For the ith taxon, 1 ≤ i ≤ n, we re-order the splits (if necessary) so that

the following property is held.

Property 4 (Separation). There exists a unique t ∈ {1, . . . ,m} such that for all

1 ≤ j < t, xi ∈ Lj and for all t ≤ j ≤ m,xi /∈ Lj.

The re-ordering is made by swapping the order of two consecutive splits. Af-

ter a finite number of swaps, Property 4 must hold. Every time two splits are

swapped, we adjust the network accordingly by making a parallelogram starting

with two rightmost edges corresponding to the two involving splits - the paral-

lelogram is uniquely identified. Once all the swaps are made and parallelograms

are added, look at the vertices on the right boundary of the network, label the

tth vertex (from top to bottom), where t is the unique index identified by the

separation property, by xi.

In our example, for x1, it is clear that we only need to swap S1 and S2. The

new order of the splits is shown in Figure 6.6(a) with t = 2. The updated network

with the parallelogram added and x1 placed is shown in Figure 6.6(b). For x2, the

current order of splits satisfies the separation property already with t = 4. We

place x2 at the fourth vertex on the right boundary and show the new network

in Figure 6.6(c).

When consider x3, we have a case where more than one swaps are necessary.

In particular S5 is to be swapped with four splits S4, S3, S1 and S2 in that order.

The new order of splits is shown in Figure 6.7(a) with t = 2. The four new

parallelograms and the position of x3 are updated in Figure 6.7(b). Continue with

x4 and x5 in the analogous way, we have the final network in Figure 6.7(c). A

more careful study will show that usually the resulting network can be simplified

in the sense of having less edges. Figure 6.7(d) illustrates a network that is

equivalent to that in Figure 6.7(c) but with less edges (11 comparing to 23). It is

easy to check that both the networks display all the required splits and nothing

else.

We note that the fact that by re-ordering we can always modify the order of

the splits so that the separation property holds relies on the uniqueness property,

i.e. any two taxa in a p-sequence swap their positions at most once. As a conse-

quence, any two splits swap their positions during the construction at most once,
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S1 = {x2}|{x1, x3, x4, x5}
S2 = {x1, x2, x4}|{x3, x5}

S3 = {x2, x4, x5}|{x1, x3}
S4 = {x4, x5}|{x1, x2, x3}
S5 = {x3, x4, x5}|{x1, x2}

(a)

x1

(b)

x1

x2

(c)

Figure 6.6: Visualising a FSS - the first steps: (a) The new order of the splits

after processing x1. (b) The network with x1 fixed. (c) The network with x2

fixed.

and therefore we can always add a suitable parallelogram without introducing

crossing edges to the network. There are still several issues to discuss on the vi-

sualisation work, namely how to compute the coordinates of the vertices and the

angles between pairs of consecutive edges on the initial path, how to simplify the

resulting network, and the complexity of the method. All these will be presented

in detail in (135). In the next section we will show that FSSs are a superclass of

affine split systems.

6.3.3 Affine split systems are a subclass of the FSSs

We have shown before that circular split systems are a subclass of the class of

affine split systems, see Section 5.3. Now we will prove that affine split systems

are a subclass of the class of FSSs. We will follow the basic idea behind the range-

counting algorithm presented in Section 15.7 of the book by Edelsbrunner (41).

A similar idea was also used by Welzl to compute the visibility graph of a set of

straight line segments on the plane (148).

Consider an arbitrary affine split system Σ on X. Let Q denote a set of n

points that represents the elements in X. We assume that no two points in Q

84



6.3 What is a FSS?

S1 = {x2}|{x1, x3, x4, x5}
S2 = {x1, x2, x4}|{x3, x5}

S3 = {x2, x4, x5}|{x1, x3}
S4 = {x4, x5}|{x1, x2, x3}

S5 = {x3, x4, x5}|{x1, x2}

(a)

x1

x2

x3

(b)

x1

x2

x3

x4

x5

S1

S2

S3

S4

S5

(c)

x1

x2

x3

x4

x5

S1

S2

S3

S4

S5

(d)

Figure 6.7: Visualising a FSS - the final steps: (a) The new order of the splits

after processing x3. (b) The updated network with x3 fixed. (c) The final split

network. (d) The final split network simplified.

85



6.3 What is a FSS?

have the same x-coordinate (otherwise we can rotate Q slightly). The points in

Q can also be chosen so that no three points are co-linear.

First we map the points in Q to straight lines on the “dual plane”, given by

q = (a, b) 7→ q∗ = {(x, y) ∈ R2 : y = ax− b}.

Let L = {q∗ : q ∈ Q}. The lines in L partition the dual plane into a family

C of convex regions whose leftmost points are the intersections of the lines. The

assumption that no two points have the same x-coordinate ensures that every

two lines intersect with each other. The assumption that no three points are

co-linear ensures that every point in the plane is contained in at most two lines in

L. These assumptions imply |C| =
(
n
2

)
. Note that the convex regions in C are

in one-to-one correspondence with the affine splits of the point set Q. Moreover,

the set of affine splits that separate two points q, r ∈ Q, q 6= r corresponds to the

set of convex regions in C that are contained in the double-wedge bounded by q∗

and r∗.

In Figure 6.8 we give an example: Figure 6.8(a) shows a set Q of five points

with split S as a line separating {q3, q4} from {q1, q2, q5}. Figure 6.8(b) shows

the set of lines transformed from the points in Q with the shaded convex re-

gion corresponding to split S. To get the split, starting at any point inside the

convex region, draw a vertical line l upward. Those points q ∈ Q whose cor-

responding lines q∗ ∈ L intersect with l belong to the same block of the split.

The remaining points form the other block. In Figure 6.8(b), the sparsely dotted

regions also show the double-wedge bounded by q∗3 and q∗4. It can be checked that

the convex regions in the double-wedge correspond to all splits that separate q3

and q4. They are: {q3}|{q1, q2, q4, q5}, {q2, q3}|{q1, q4, q5}, {q4}|{q1, q2, q3, q5}, and

{q4, q5}|{q1, q2, q3}.
Next we will form a p-sequence P = (π0, P ) corresponding to a FSS that

contains the given affine split systems. We first label the lines in L with the

indices of the corresponding elements in X, then record the lines’ labels at −∞
from top to bottom to form the initial permutation π0. After that we sweep a

vertical line l0 from −∞ to +∞. Every time l0 goes across an intersection between

q∗, r∗ ∈ L, record the position of q∗ or r∗ in the permutation, whichever is smaller,
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(b)

q1 q2

q3

q4

q5

q∗1

q∗2

q∗3

q∗4
q∗5

x

y

0

S

(a)

l

l0

Figure 6.8: From an affine split system to a FSS - The dual plane approach.
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to get a swapping point. This is followed by the interchange of positions of q∗

and r∗ in the permutation. Once l0 passes the right-most intersection, we have

the sequence of swapping points P .

For illustration, consider the example in Figure 6.8(b): Clearly the initial

permutation is π0 = (5, 4, 1, 3, 2). The first intersection that l0 goes through

is that between q∗1 and q∗3, the positions of q∗3 is 4 and that of q∗1 is 3, so we

record 3 as the first swapping point, the permutation becomes (5, 4, 3, 1, 2). Next

l0 goes across the intersection between q∗4 and q∗5 resulting in swapping point 1

and new permutation (4, 5, 3, 1, 2), and so on. At the end the sequence of swap-

ping points is P = (3, 1, 2, 3, 4, 3, 1, 2, 1, 3); the corresponding full FSS is S =

{{q5, q4, q3}|{q1, q2}, {q4}|{q5, q3, q1, q2}, {q4, q3}|{q5, q1, q2}, {q4, q3, q1}|{q5, q2}, {q4,
q3, q1, q2}|{q5}, {q4, q3, q2}|{q1, q5}, {q3}|{q4, q2, q1, q5}, {q3, q2}|{q4, q1, q5}, {q2}|{q3,
q4, q1, q5}, {q2, q3, q1}|{q4, q5}}. It can be checked that S contains all possible

splits in Figure 6.8(a). In the next section we are going to describe some opera-

tions that are used to manipulate the FSSs.

6.4 Operations on FSSs

We know that each p-sequence gives rise to a full FSS. We now define four basic

operations on the p-sequences, three of them change the topology and the last one

changes the labelling. These operations will be building blocks for manipulating

the corresponding FSSs, which will allow us to explore the space of FSSs in the

next chapter.

6.4.1 Swapping

Operation Swapping creates a new p-sequence by exchanging the values of two

consecutive swapping points subject to a validating condition.

Definition 6 (Swapping). Given P = (π0, (p1, . . . , pk)), for any i ∈ {1, . . . , k−1}
such that |pi− pi+1| ≥ 2, pi and pi+1 are swapped to make a new p-sequence P′ =

(π0, (p1, . . . , pi−1, pi+1, pi, pi+2, . . . , pk)). The operation is denoted as Sw(P, i).

We first show that this operation always yields a valid p-sequence. Clearly it

is sufficient to show the following.
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Lemma 7. A valid sequence of swapping points cannot have a portion of the form

(v, u, v) where |u− v| ≥ 2.

Proof. Assume that there is a sequence of swapping points P = (. . . , pi =

v, u, v, . . . ) where |u− v| ≥ 2. Assume that u < v, the proof for the case u > v is

similar. Apply P on an arbitrary permutation. Let (. . . , πu, πu+1, . . . , πv, πv+1, . . . )

be the permutation just before applying pi. Then the permutations obtained by

applying v, u, v are:

πi = (. . . , πu+1, πu, . . . , πv, πv+1, . . . )

πi+1 = (. . . , πu+1, πu, . . . , πv+1, πv, . . . )

πi+2 = (. . . , πu, πu+1, . . . , πv+1, πv, . . . ).

But then the pair {πu, πu+1} is swapped twice in πi and πi+2. This contradicts

the uniqueness property.

Having proved Lemma 7, we know that Swapping always produces a valid

p-sequence. We now prove that the operation does not alter the corresponding

FSS:

Lemma 8. Swapping operation does not change the corresponding FSSs.

Proof. Let S(P) = {S1, S2, . . . , Sk} and S(P′) = {S ′1, S ′2, . . . , S ′k}. We have to

prove that S(P) = S(P′). It is obvious that Sj = S ′j for all j ∈ {1, . . . , i − 1}.
Let u = pi, v = pi+1. We assume that u < v, the case where u > v can be checked

similarly.

Let π(i−1) = {. . . , πu, πu+1, . . . , πv, πv+1, . . . } be the (i − 1)th permutation in

the simple allowable sequence constructed by applying P to π0. It is the same as

the (i− 1)th permutation π′(i−1) in the simple allowable sequence constructed by

applying P ′ to π0. Then we have:

πi = (. . . , πu+1, πu, . . . , πv, πv+1, . . . )

π(i+1) = (. . . , πu+1, πu, . . . , πv+1, πv, . . . )

and

π′i = (. . . , πu, πu+1, . . . , πv+1, πv, . . . , )

π′(i+1) = (. . . , πu+1, πu, . . . , πv+1, πv, . . . ).
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Figure 6.9: Swapping operation: (a) A valid case. (b) An invalid case.
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The condition |u− v| ≥ 2 is needed to ensure that the swaps involving (πu, πu+1)

and (πv, πv+1) are independent of each other. As the result, we have:

Si = {. . . , πu+1}|{πu, . . . , πv, πv+1, . . . }
S(i+1) = {. . . , πu+1, πu, . . . , πv+1}|{πv, . . . }

and

S ′i = {. . . , πu, πu+1, . . . , πv+1}|{πv, . . . }
S ′(i+1) = {. . . , πu+1}|{πu, . . . , πv+1, πv, . . . }.

It can be seen that Si = S ′i+1 and Si+1 = S ′i. In addition, π(i+1) = π′(i+1) and

the rest of P and P ′ are identical. Therefore Sj = S ′j for all j ∈ {i + 2, . . . , k}.
Finally we have S(P′) ≡ S(P). Hence, S(P′) is just S(P) with splits i and i+ 1

interchanged.

Figure 6.9 illustrates the swapping operation. In Figure 6.9(a), the swapping

points involved are 1 and 3, the original splits are S1 = {2}|{1, 3, 4} and S2 =

{2, 1, 4}|{3}. When the swapping points are interchanged, the corresponding

splits are S ′1 = {1, 2, 4}|{3} and S ′2 = {2}|{1, 4, 3}. It is obvious that S1 =

S ′2, S2 = S ′1. In Figure 6.9(b), the swapping points are 1 and 2. The splits

before the interchange are {2}|{1, 3, 4} and {2, 3}|{1, 4}, and those after that are

{1, 3}|{2, 4} and {3}|{1, 2, 4}. It is evident that the two resulting split systems

are different. This is because the swapping points do not satisfy the condition

|pi − pi+1| ≥ 2.

6.4.2 Flipping

From Lemma 7 we know that if there is a portion of the form (u, v, u) in a

sequence of swapping points then |u − v| < 2. By Lemma 6 we also know that

there can’t be two consecutive swapping points with the same value. So if the

portion (u, v, u) exists then v can only be either u + 1 or u − 1. We call such a

triple viable. Flipping operation works on viable triples.

Definition 7 (Flipping). Given P = (π0, P ). If P = (. . . , u, u+1, u, . . . ) then a

new p-sequence can be formed as P′ = (π0, P ′) where P ′ = (. . . , u+1, u, u+1 . . . ).
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This is called positive flipping. Similarly, if P = (. . . , u, u− 1, u, . . . ) then P′ =

(π0, P ′) where P ′ = (. . . , u − 1, u, u − 1, . . . ). This is called negative flipping.

The operation is denoted as Fl(P, i) where i is the index of the first value in the

viable triple.

As with the swapping operation, we prove that changing the values of swap-

ping points in Flipping does not invalidate the resulting sequence of swapping

points.

Lemma 9. A valid sequence of swapping points P cannot have a portion of the

form (u+ 1, u, u+ 1, u) or (u, u+ 1, u, u+ 1).

Proof. We only need to show that P cannot contain (u+1, u, u+1, u). The other

case can be checked in an analogous way. Assume for a contradiction that there

exists a sequence of swapping points P = (. . . , pi = u+1, u, u+1, u, . . . ). Apply P

on an arbitrary permutation. Let (. . . , πu, πu+1, πu+2, . . . ) be the permutation just

before applying pi. Then the permutations obtained by applying u+ 1, u, u+ 1, u

are:

πi = (. . . , πu, πu+2, πu+1, . . . )

πi+1 = (. . . , πu+2, πu, πu+1, . . . )

πi+2 = (. . . , πu+2, πu+1, πu, . . . )

πi+3 = (. . . , πu+1, πu+2, πu, . . . ).

But the pair {πu+1, πu+2} is swapped twice (in πi and πi+3). This contradicts

the uniqueness property.

Having proved Lemma 9, we know that the flipping operation always yields a

valid p-sequence. We now prove the main characteristic of interest to us for this

operation.

Lemma 10. Flipping operation only changes one split in the corresponding

FSS.

Proof. We only consider the positive flipping case. The negative flipping case can

be done in a similar way.
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Let S(P) = {S1, S2, . . . , Sk} and S(P′) = {S ′1, S ′2, . . . , S ′k}. Let i, i + 1, i + 2

be the indices of the elements in the triple (u, u + 1, u). Then it is obvious that

Sj = S ′j for all j ∈ {1, . . . , i− 1}.
Let π(i−1) = {π1, . . . , πu−1, πu, πu+1, πu+2, πu+3, . . . , πn} be the (i − 1)th per-

mutation in the simple allowable sequence constructed by applying P on π0. It

is the same as the (i − 1)th permutation π′(i−1) in the simple allowable sequence

constructed by applying P ′ on π0. Then we have:

πi = {. . . , πu+1, πu, πu+2, . . . }
π(i+1) = {. . . , πu+1, πu+2, πu, . . . }
π(i+2) = {. . . , πu+2, πu+1, πu, . . . }

and

π′i = {. . . , πu, πu+2, πu+1, . . . }
π′(i+1) = {. . . , πu+2, πu, πu+1, . . . }
π′(i+2) = {. . . , πu+2, πu+1, πu, . . . }.

Therefore the corresponding splits are:

Si = {. . . , πu+1}|{πu, πu+2, . . . }
S(i+1) = {. . . , πu+1, πu+2}|{πu, . . . }
S(i+2) = {. . . , πu+2}|{πu+1, πu, . . . }

and

S ′i = {. . . , πu, πu+2}|{πu+1, . . . }
S ′(i+1) = {. . . , πu+2}|{πu, πu+1, . . . }
S ′(i+2) = {. . . , πu+2, πu+1}|{πu, . . . }.

It can be seen that S ′i 6= Si but S ′(i+1) = S(i+2) and S ′(i+2) = S(i+1). Moreover,

π′(i+2) = π(i+2) and the rest of P and P ′ are the same. Hence, Sj = S ′j for all

j ∈ {i + 2, . . . , k}. Therefore S(P′) only differs from S(P) by one split. In

more detail, the positive flipping replaces the ith split {. . . , πu+1}|{πu, πu+2, . . . }
by {. . . , πu, πu+2}|{πu+1, . . . } and swaps the order of the (i + 1)th and (i + 2)th

splits. The positive flipping is illustrated in Figure 6.10.
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πu+1

πu+2

πu

πu+1

πu+2

πu

Figure 6.10: An illustration of the positive Flipping operation.

It is noticeable that even though operation Swapping presented in the previous

section does not change the corresponding FSS, it does alter the sequence of

swapping points the way that makes Flipping applicable, which in turn creates

a new FSS. Inspired by the theorem, we combine Swapping and Flipping to

extended the latter as follows.

Definition 8 (Extended Flipping). Given P = (π0, P ). If P = (. . . , u, B, u +

1, C, u, . . . ) where B,C are (possibly empty) portions of P , neither B or C con-

tains any element of the set {u − 1, u, u + 1}, then a new p-sequence can be

constructed as P′ = (π0, P ′) where P ′ = (. . . , B, u + 1, u, u + 1, C . . . ). This is

called positive extended flipping. Similarly, if P = (. . . , u, B, u− 1, C, u, . . . )

with the same conditions on B and C, then P′ = (π0, P ′) where P ′ = (. . . , B, u−
1, u, u− 1, C, . . . ). This is called negative extended flipping. We denote this

operation as Fl(P, i, j, t) where , i, j, t are the indices of the involving elements.

Lemma 11. Extended flipping operation only changes one split in the corre-

sponding FSS.

Proof. On P we apply Swapping |B| times to move the first u to the right of

B, then |C| times to move the other u to the left of C, and finally apply the
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(positive/negative accordingly) standard Flipping once to get P′. The negative

Extended flipping is illustrated in Figure 6.11.

It is evident that the original flipping operation is a special case of Extended

flipping where B = C = ∅. For convenience, from now on, we call the original

Flipping standard whilst when referring to Flipping alone, we mean Extended

flipping. As a consequence, we extend the term viable triple to the three el-

ements (not necessarily consecutive) on which the (extended) flipping operation

can be applied.

6.4.3 Shifting

The two operations defined so far only change the sequence of swapping points

of the input p-sequence. Now we introduce Shifting - an operation that alters

both the p-sequence’s topology and labelling.

Definition 9 (Shifting). Given P = (π0, P = (p1, p2, . . . , pk)), a new p-sequence

can be constructed as P′ = (π1, P ′ = (p2, p3, . . . , pk, n−p1)) where π1 is the second

element of the list of permutations constructed by applying P to π0. The operation

is denoted by Sf(P).

Lemma 12. Shifting operation does not change the corresponding FSS.

Proof. Let S(P) = {S1, S2, . . . , Sk} and S(P′) = {S ′1, S ′2, . . . , S ′k}. We have to

prove that S(P) = S(P′).

Let Π = {π0, π1, π2, . . . , πk} be the list of permutations constructed by apply-

ing P to π0. By construction, it is clear that S ′j = Sj+1 for all j ∈ {1, . . . , k− 1}.
Since Π is a simple allowable sequence of permutations, πk is the reversal of π0.

Let π0 = (π1, π2, . . . , πp1 , πp1+1, . . . , πn), then πk = (πn, . . . , πp1+1, πp1 , . . . , π2, π1),

and:

S1 = {π1, π2, . . . , πp1+1}|{πp1 , . . . , πn}
S ′k = {πn, . . . , πp1}|{πp1+1, . . . , π2, π1}.

Obviously, S ′k = S1; their blocks just swap positions. So S(P) = S(P′).
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πu

πu+1

πu−1

B C

πu

πu+1

πu−1

B C

uu

u

u− 1

u− 1 u− 1

Figure 6.11: An illustration of the negative Extended flipping operation.
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Figure 6.12 demonstrates Shifting operation on a set X = {1, 2, 3, 4}. In the

figure, the diagram bordered by the two solid vertical lines is shifted one position

to the diagram bounded by the two dashed lines. The two split systems share all

splits represented by the diagram between the first dashed line and the second

solid line. It can be checked that the first split of the original FSS is the same as

the last split of the “shifted” FSS.

1

2

3

4

1

1

2

2

3

3

4

4

1

2

3

4

Figure 6.12: The Shifting operation.

As with Flipping, the shifting operation can be extended so that more than

one elements can be shifted at a time. We define the l-shifting operation by

P′ = (πl, P ′ = (pl+1, pl+2, . . . , pk, n − p1, . . . , n − pl)) where πl is the (l + 1)th

element of the list of permutations constructed by applying P to π0. Note that

l-shifting can clearly be done by continuously applying the shifting operation

l times. For convenience, from now on, by referring to the Shifting operation,

if not stated otherwise, we mean l-shifting" for some l ≥ 1.

The nicest and most important property of Swapping, Flipping and Shifting

is that when used together, they allow the exploration of all possible topologies

of the p-sequence. This property is made by the following theorem.

Theorem 13 (Ringel (121; 122)). A sequence of swapping points can be turned to

any other one by applying a finite number of Swapping, Flipping and Shifting

operations.

The theorem was introduced in the context of the so-called simple arrange-

ments of pseudolines (15; 121; 122) which can easily be converted into sequences
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of swapping points. The reader can refer to (15, Chapter 6) for an extensive

explanation for the transformation.

6.4.4 Permuting

In Section 6.3 it is pointed out that if we fix the topology of a wiring diagram

and change the labelling of the wires, we may obtain a different FSS. Permuting

is an operation that makes use of this observation: It changes the labelling of the

p-sequence.

Definition 10 (Permuting). A p-sequence P = (π, P ) can be changed to P′ =

(π′, P ) where π′ is a permutation derived from π.

There are several strategies to get a new permutation from a given one. How-

ever, with reference to Theorem 13, we will require one that allows us to get to

any permutation from a given one. In other words, the method must be able to

explore all permutations. The combination of such a method with Swapping and

standard Flipping makes it possible to explore the whole space of p-sequences,

and therefore FSSs. Let π = (π1, π2, . . . , πn), here we summarise some such

methods:

• Exchange: The positions of two consecutive elements are exchanged, i.e.

(. . . , πi, πi+1, . . . )⇒ (. . . , πi+1, πi, . . . ) for some i ∈ {1, . . . , n}. If i = n then

πn and π1 are exchanged. It is known that by a finite number of such inter-

changes, any permutation can be converted to the identity permutation (86,

Problem 5.8). This implies that the operation can get to any permutation

from a given one. We denote this type of operation by Ex(P, i) where i is

the index of the first element involved. The exchange strategy is illustrated

in Figure 6.13.

• Pair-Exchange: This is similar to Exchange but does not require the two

elements involved be consecutive. We denote this permuting by Ex(P, i, j)

where i, j are the indices of the elements involved, see e.g. Figure 6.14.

Being a generalisation of Exchange, it obviously allows the exploration of

all permutations.
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Figure 6.13: Exchange permuting strategy.
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Figure 6.14: Pair-Exchange permuting strategy.

• Reversal: Place the elements of π in order on a circle. Take a portion of π of

length at least 2 and at most l consecutive elements for some l ∈ {2, . . . , n},
then reverse the order of its elements. Denote this operation by Rev(P, l, i)

where l is the length and i is the index of the first element of the portion

to be taken. Note that if l = 2 then Rev(P, 2, i) is equivalent to Ex(P, i).

Therefore Reversal explores all permutations. An illustration of Reversal

is shown in Figure 6.15.

• Prune & Regraft: Place the elements of π in order on a circle. “Prune”

a portion of at most l successive elements for some l ∈ {1, n − 1}, then

“regraft” it to another place. We denote this strategy by PR(P, l, i, j)

where l is the length, i is the index of the first element of the portion and

j is the location where the portion to be attached to.

This operation is motivated by the Sub-tree Pruning and Regrafting (SPR)
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π1
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π3

π4

πn

π1
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π3

π4

πn

Figure 6.15: Reversal permuting strategy.

operation on phylogenetic trees (6; 142) where a subtree is cut off and then

regrafted to another position on the tree. It has been proved that a binary

phylogenetic tree T can be transformed to any other binary phylogenetic

tree T′ using a sequence of SPR operations (17; 140, Proposition 2.6.1). For

our Prune & Regraft, if l = 1 and j = i + 1, or j = 1 if i = n, then it is

equivalent to Exchange. Thus Prune & Regraft satisfies the requirement

of being able to explore the whole space of permutations. An illustration

of the strategy is presented Figure 6.16.

π1

π2

π3

π4

πn

π1

π2

π3

π4

πnπ5

π5

Figure 6.16: Prune & Regraft permuting strategy.

• 2-opt move: For some i ∈ {1, . . . , n − 2}, j ∈ {i + 2, . . . , n}, from permu-

tation π = (π1, π2, . . . , πi, πi+1, . . . , πj, πj+1, . . . , πn) we form the new one

100



6.4 Operations on FSSs

π′ = (π1, π2, . . . , πi, πj, πj−1, . . . , πi+1, πj+1, πj+2, . . . , πn) as illustrated in

Figure 6.17(a). In the case that j = n, we need an additional condition that

i > 1 and the new permutation is π′ = (π1, π2, . . . , πi, πn, πn−1, . . . , πi+1), see

Figure 6.17(b). We denote this strategy as 2-opt(P, i, j). It can be checked

that if j = i+2 then 2-opt(P, i, j) is Ex(P, i+1). As a consequence, 2-opt

move is valid.

Note that the 2-opt move is a special case of the k-opt move that is used

in the context of solving the Travelling Salesman Problem (TSP) heuris-

tically (29; 74). We won’t explore the k-opt move where k > 2 as it is

equivalent to a finite sequence of 2-opt moves (32; 99).

π1

π2

π3

π4

π9

π5
π6

π7

π8

π1

π2

π3

π4

π9

π5
π6

π7

π8

(a)

π1

π2

π3

π4

π9

π5
π6

π7

π8

π1

π2

π3

π4

π9

π5
π6

π7

π8

(b)

Figure 6.17: 2-opt move permuting strategy.
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6.5 Concluding remarks

We have given the definition of FSSs, shown how to construct a planar split

network to represent a FSS, and that FSSs are a generalisation of affine split

systems. We have explained how to use wiring diagrams as a tool to depict FSSs.

The wiring diagram presentation also gives rise to several operations that can be

used to search through the space of all FSSs. In the next chapter we will make

use of these operations to help find weighted FSSs to represent a given distance

matrix.

102



Chapter 7

Representing distance matrices

by planar split networks

7.1 Summary

In Chapter 2 we have briefly discussed how NeighborNet can be used to obtain a

planar split network from a distance matrix. However, there are cases for which

the design of NeighborNet can cause problems. For example, consider the split

system presented in Figure 7.1(a). If we input the associated distance matrix

(not shown) into NeighborNet then we get the split network presented in Figure

7.1(b).

It can be seen that the split system produced by NeighborNet is not as simple

as the original split system: There are 14 splits in the NeighborNet split system

versus only 4 in the input. Also, the weights of the NeighborNet splits vary

greatly in contrast to the constant weight of 1 over all 4 original splits. Moreover,

although the original split system seems to suggest a symmetrical representation,

there is no way to draw the NeighborNet network in such a balanced way.

It is not hard to see why NeighborNet has probably not done better in this

example: The algorithm essentially tries to find a circular order of the taxa, then

pushes them out to the perimeter of the network. However, in the example, taxon

4 lies right “inside” the other taxa, making it difficult for NeighborNet to cope

with this situation.
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taxon 0 taxon 1 taxon 2

taxon 3 taxon 4 taxon 5

taxon 6 taxon 7 taxon 8

(a)

taxon 0

taxon 3

taxon 6

taxon 4
taxon 7

taxon 8

taxon 5

taxon 2

taxon 1

0.1

(b)

Figure 7.1: (a) An affine split system; lines represent splits of the taxa, all splits

have weight 1. (b) The corresponding split network produced by NeighborNet

(using SplitsTree (84)).
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In Chapter 6 we have introduced FSSs as a generalisation of affine split systems

that can still be drawn on the plane. In this chapter we will make the first attempt

at trying to derive a weighted FSS (and the corresponding planar split network)

to represent a given distance matrix in the plane with the view to improving

on NeighborNet for examples like the one in Figure 7.1. We will employ a local

search approach which we will test on both random and “real life” data.

7.2 The MRF problem

A commonly used measure to quantify the difference between two distance ma-

trices is least squares : Given matrices A and B of the same size m× n, the least

square difference between A and B, denoted as ||A,B||2, is defined as

||A,B||2 =

√√√√
∑

i∈{1,...,m}
j∈{1,...,n}

(aij − bij)2,

where aij and bij are the elements in row i and column j of matrices A and B,

respectively. In this section we consider the following problem:

MatrixRepresentationWithFlatSplitSystems (MRF)

Input: a set X with n elements

a distance matrix d on X

Output: a full FSS S = {S1, S2, . . . , Sk} on X, k =

(
n
2

)

a weight vector ω = (ω1, . . . , ωk) of S so that ||dS,w, d||2 is minimised.

This problem is motivated by the fact that NeighborNet and its “predeces-

sor” Neighbor-Joining are known to optimise the Balanced Minimum Evolution

(BME) length, i.e. they minimise the sum of the weights of all splits in the

resulting split system (36; 96).

Note that since ||dS,w, d||2 ≥ 0, if there is a split system S and corresponding

weight vector ω such that ||dS,w, d||2 = 0 then it is immediately clear that the

pair (S, ω) is a best solution for MRF. Also note that requiring a full FSS as

output is reasonable because if there is a non-full weighted FSS that minimises

the least square difference between d and dS,ω, as discussed in Chapter 6, one
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can always add more splits to make it full and assign weight 0 to the additional

splits.

7.2.1 Computing the weights for a FSS to represent a dis-

tance matrix

To solve problem MRF, we propose searching through the “space” of FSSs using

the operations introduced in the previous chapter. For each FSS we will compute

the weights of the splits so that the least square difference is as small as possible,

until, finally, a weighted FSS with globally minimum least square difference is

be found. To break this process into pieces, we first consider the subproblem of

fitting a distance matrix onto a given FSS:

WeightsComputingForFlatSplitSystems (WCF)

Input: a set X with n elements

a distance matrix d on X

a full FSS S = {S1, S2, . . . , Sk} on X, k =

(
n
2

)

Output: a weight vector ω = (ω1, . . . , ωk) of S so that ||dS,w, d||2 is minimised

Following the approach used in NeighborNet, to solve this problem we con-

struct a matrix T of size k×k where the rows correspond to the pairs of elements

of X and the columns correspond to the splits of S as follows:

T ({x, y}, Si) =

{
1 if x, y are separated by Si,
0 otherwise,

for all x, y ∈ X, i ∈ {1, . . . , k}. Each column of matrix T is equivalent to a split

metric defined in (22). The matrix is illustrated as in Table 7.1.

Now if we multiply T by ω, we have [T × ω] being a k-element vector such

that for any pair {x, y} the entry [T × ω]({x, y}) gives the distance between x

and y for all x, y ∈ X, i.e. [T × w] = dS,ω. Therefore, weight vector ω is a best

solution, if there is any, of the following equation:

T × ω = d (7.1)
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S1 S2 . . . . . . . . . Sk

{x1, x2} 0/1 0/1 . . . . . . . . . 0/1

{x1, x3} 0/1 0/1 . . . . . . . . . 0/1
... . . . . . . . . . . . . . . . . . .

{x1, xn} . . . . . . . . . . . . . . . . . .

{x2, x3} . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . .

{xn−1, xn} 0/1 0/1 . . . . . . . . . 0/1

Table 7.1: An illustration for the matrix T .

Since T is a full rank matrix (22, Section 5.2), Equation (7.1) always has a

unique solution

ω = T−1d, (7.2)

where T−1 is the inverse matrix of T . We call such ω a matching, or corresponding

weight vector of S. Note that Equation (7.2) makes it quite possible for ω to

have negative elements whilst in general, one would want the weights of splits

to be non-negative to have biological meaning. Depending on whether negative

weights are accepted or not, we have different approaches to solve WCF.

If negative weights are acceptable, one can find the inverse matrix T−1 of T ,

then perform a matrix multiplication to get ω using Equation (7.2). However,

in that case it is more efficient to solve Equation (7.1) using Gaussian elimina-

tion (67). We call this the ordinary least squares (OLS) approach.

If the non-negativity requirement is strict, we need to solve WCF with an

additional constrain that ω ≥ 0. This extra condition makes WCF a non-negative

least square problem. Lawson and Hanson (94, Chapter 23) analyse the problem

intensively and propose an algorithm together with a FORTRAN implementation

to solve it. We call this the constrained least square (CLS) approach.
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7.2.2 Computing the error of a weighted FSS

Given a distance matrix d and a full FSS S, we have discussed how to derive a

weight vector ω to get distance matrix dS,ω. The following formula can be used

to quantify how far dS,ω is from d, while avoiding the bias caused by the number

of taxa:

φNNLS(d, dS,ω) :=

√∑
{x,y}∈

(
X

2

) (d(x, y)− dS,ω(x, y)
)2

(
n
2

) . (7.3)

We use this in case dS,ω is computed using the CLS approach. However, if

the OLS approach is employed, for every FSS, by Equation (7.2), there is always

a matching weight vector ω so that φNNLS(d, dS,ω) = 0. In other words, any full

FSS is a best solution. For this reason we also use the following error measures:

1. Sum of all the weights, or ME (Minimum Evolution):

φME(d, dS,ω) :=
∑

{x,y}∈X2

ω({x, y}). (7.4)

2. Sum of absolute values of all the weights, or SumAbs:

φSumAbs(d, dS,ω) :=
∑

{x,y}∈X2

|ω({x, y})|. (7.5)

3. Negative sum of positive weights, or NegSumPos:

φNegSumPos(d, dS,ω) := −
∑

{x,y}∈X2

ω({x,y})>0

ω({x, y}). (7.6)

The ME measure has been used to search through the space of phylogenetic

trees, i.e. for compatible split systems (61; 89; 126). Therefore it is natural

to use it for general split systems. SumAbs is a variation of ME that has been

mentioned in (77). For NegSumPos, we actually want to maximise the influence of

the positive weights by maximising their sum; with the definition of NegSumPos

we keep this intention by minimising the measure. This makes our theme more

consistent in that we try to minimise all error measures.
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7.2.3 Local search strategy

We are now ready to present an heuristic local search solution to the MRF prob-

lem. Here we want the weights of the final splits to be non-negative for convenient

biological interpretation.

1. Start with a weighted full FSS S0 = S(P) with corresponding p-sequence

P and weight vector ω0.

2. Let ε = φ(d, dS0,ω0) where φ is one of the error measures defined in Sec-

tion 7.2.2.

3. Use the operations presented in Chapter 6 to obtain the set of neighbors

(or a neighborhood) N of P.

4. For d and each R ∈ N solve problem WCF using one of the two approaches

presented in Section 7.2.1 to get FSS S(R) and corresponding weight vector

ωS(R). Note that the approach must match the error measure decided in

Step 2, as discussed above.

5. Let σ = min{φ(d, dS(R),ωS(R)
)|R ∈ N}.

6. If σ < ε then let ε = σ,P = arg min{φ(d, dS(R),ωS(R)
)} and go back to Step

3, otherwise go to Step 7.

7. If the OLS approach is employed, solve problem WCF with d and S(P) as

the input to compute the (non-negative) weights .

Note that if the OLS approach is employed, i.e. the error measure ε chosen

at Step 2 is either φME, φSumAbs, or φNegSumPos, then Step 4 may yield negative

weights in exchange for faster calculations. In that case Step 7 is performed to

ensure the non-negativity of the weights.

The efficiency of the search depends on several factors: The choice of the

initial split system, the use of the operations to generate the neighborhood at

Step 3, and, in case of the OLS approach, the error measure to be used. We

will discuss the first two factors in the beginning of the next section. Below we

propose several strategies to combine the operations presented in Chapter 6 to

generate a neighborhood of a given p-sequence.
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• Flipping and Shifting (FliShift) : For every viable triple, use Shifting to

shift to the position of the first element of the triple, then use Flipping to

get a new p-sequence. The size of the neighborhood created by FliShift

is O(n2) because operation Flipping can start at at most k =

(
n
2

)

positions of the sequence of swapping points.

• Permuted Flipping (PermFlip) : Use Flipping on the sequence of swapping

points to generate a pool of sequences of swapping points. Use Permuting

on the initial permutation to generate a pool of permutations. Match each

new sequence of swapping points with a new permutation to generate a

new p-sequence. Note that the neighborhood generated by this strategy is

generally big: Even if the simplest Permuting strategy, i.e. Exchange, is

used, the size of the neighborhood is O(n3) already.

• FliShift and Permuting (PermFliShift) : The neighborhood created by this

strategy is the union of two sets of p-sequences. The first set contains

those generated by strategy FliShift. The second set is obtained by using

Permuting on the initial permutation to generate a pool of permutations,

then matching each of such permutations with the original sequence of

swapping points. It can be observed that the PermFliShift neighborhood is

bigger than that of FliShift but is still much smaller than that of PermFlip.

For example if Pair-Exchange is employed as the permuting method, then

the neighborhood is still of size O(n2) comparing to O(n4) of PermFlip.

One can check that all three neighborhood-generating strategies above are able

to explore large portions of the space of FSSs. Moreover, referring to Theorem

13, it is evident that FliShift can explore all sequences of swapping points and

PermFliShift can explore the whole FSS space. In the next section we will describe

the implementation of the local search with all these strategies.

7.3 An initial evaluation of the new approach

We implemented the local search framework described in Section 7.2.3 for both the

CLS and OLS approaches using Java. The code for Lawson and Hanson’s NNLS
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algorithm is adapted from Spillner’s work, which in turn is an adaptation from

Bryant’s work (private communication). The code to do Gaussian elimination is

the work of Raphael (119).

Theoretically the CLS approach can always be used but the NNLS algorithm

takes a lot of running time whilst the Gaussian elimination is much faster. There-

fore in these tests we basically use the CLS approach to get a feeling for how much

improvement can be made, and the OLS approach to see how the approach might

work in practice.

In the implementation, for the initial FSS, we use the full circular split sys-

tem constructed by NeighborNet. In particular, we input distance matrix d into

NeighborNet and get permutation πNN corresponding to the circular order of the

taxa. Let P = (1, 2, . . . , n − 1, 1, 2, . . . , n − 2, . . . , 1, 2, 1). Then P = (πNN , P ) is

a p-sequence representing the input FSS. The NeighborNet split system is cho-

sen as the input because we would like to compare our approach to this popular

method. There are other ways to choose the starting split system but they are

for future work.

Of the permuting methods that could be used to generate the neighborhood

during the search, based on the analysis of the sizes of the neighborhood in

Section 7.2.3, we chose to use only Exchange for PermFlip in CLS approach, the

three strategies Exchange, Pair-Exchange, 2-opt move for PermFlip in OLS

approach, and PermFliShift in both CLS and OLS approaches. For the OLS

approach, we tried all three error measures φME, φSumAbs, and φNegSumPos.

All in all, there were 26 parameter sets to run the search with for each data set:

5 with the CLS and 21 with the OLS approaches. For brevity, we represent each

choice of parameters as a tuple, e.g. (CLS, PermFlip, Exchange) corresponds

to the CLS approach with PermFlip as the neighborhood generating strategy

and Exchange as the permuting method, and (OLS, PermFliShift, φME, 2-opt

move) corresponds to the OLS approach with PermFliShift as the neighborhood

generating strategy, φME as the error measure (refer to Step 4 in the strategy

represented in Section 7.2.3), and 2-opt move as the permuting method.

In this framework, for the example shown in Section 7.1, the local search finds

the original split system using (CLS, PermFlip, Exchange). The planar network

representing the resulting split system is represented in Figure 7.2 (this network
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taxon 8 taxon 7 taxon 6

taxon 3

taxon 0taxon 1taxon 2

taxon 5

taxon 4

0.1

Figure 7.2: The planar split network representing the best FSS found by the local

search for the distance matrix derived from the split system represented in Figure

7.1(a).

and all other planar networks to represent FSSs in this thesis are drawn using

a program developed by Spillner (private communication)). The NNLS error is

φNNLS ≈ 8.36E − 7 compared to 0.05 for the NeighborNet split system.

To further evaluate the new approach we made some systematic tests on ran-

dom data as well as trying it out two “real life” examples. For the random data,

we consider two sub-types: Tests on randomly generated distance matrices, which

we present next, and tests on so-called random flat distance matrices, i.e., ma-

trices induced from randomly generated FSSs, which we present in Section 7.3.2.

We present the real life examples in Sections 7.3.3 and 7.3.4.

7.3.1 Random distance matrices

We group the tests by the number of taxa. We will consider “small” data sets

of 5, 6, 7, 8, 9, 10 taxa and “bigger” data sets of 15, 20, 25 and 30 taxa. For

each number of taxa, we generate 20 random distance matrices using the built-in
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7.3 An initial evaluation of the new approach

pseudo random number generator in Java. These matrices are symmetrical with

values uniformly distributed between 0 and 1.

After all the tests are carried out, the final results are tabulated. Let m be

the number of data sets with a given number of taxa. Let S1 be the full circular

split system induced by NeighborNet when fed with distance matrix d, ω1 be the

weight vector found when solving WCF with d and S1 as the input. Let S2, ω2

be the weighted FSS found by the local search. We now define the terms that

appear in the columns heading the resulting tables:

• errNN : The average NNLS error of dS1,ω1 :

errNN =

∑
φNNLS(d, dS1,ω1)

m

• errFSS: The average NNLS error of dS2,ω2 :

errFSS =

∑
φNNLS(d, dS2,ω2)

m

• FSS/NN : The average percentage between the errors of S2 and S1. This

measure quantifies the significance of the improvement made by the FSS:

The smaller FSS/NN the more significant the improvement.

FSS/NN = 100×
∑(

φNNLS(d, dS2,ω2)/φNNLS(d, dS1,ω1)
)

m

• Steps: The average number of neighborhoods explored during the search.

• FSSs: The average number of unique FSSs considered during the search.

During the search there can be different p-sequences representing the same

FSS generated, we only count one of them.

• Ss: The average percentage of splits shared between S1 and S2:

Ss = 100×
∑(
|S1 ∩S2|/|S1 ∪S2|

)

m
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• Ws: The average percentage of the total weight of splits shared between S1

and S2:

Ws = 100×

∑ ∑
S∈S1∩S2

(
w1(S) + w2(S)

)
∑

S∈S1
w1(S) +

∑
S∈S2

w2(S)

m

Note that in the last formula, the bigger Σ indicates the sum over the m data

sets, the smaller Σ represents the sum over all splits in each of the split systems

corresponding to those data sets.

If the OLS approach is employed, we add column Wins to show the percentage

of times where the local search does find a FSS that has the NNLS error smaller

than or equal to that of the full circular split system constructed by NeighborNet.

In this case, all quantities defined above are computed only for the data sets on

which the improvements are made. We need the additional column Wins because

when using the OLS approach, we actually optimise some different measures

hoping that the output FSS also has a good NNLS error. However, since the

alternative measures are not necessarily 100% correlated to the NNLS error, the

FSS with the best alternative error, after having its split weights recalculated in

Step 7 for non-negativity, may still have a worse NNLS error than that of the

NeighborNet split system.

We now present the results. For each of the 26 sets of parameters for the local

search, we obtain a resulting table but our discussion only concentrates on the

results for the choices of parameters which gave the highest average FSS/NN

values. In particular, for CLS approach, the best results, shown in Table 7.2, are

achieved with (CLS, PermFliShift, 2-opt move).

It can be observed that the FSSs make some improvements over the Neighbor-

Net split systems but these are somewhat limited: The FSS errors are between

93.5-98% (with an average of 95.84%) of the NeighborNet error. As we can see in

columns “Steps” and “FSSs” of Table 7.2, the average number of neighborhoods

explored during the search process increases from 2 to nearly 10 with the size

of the data increasing, and consequently, the number of FSSs explored increases

fairly quickly. This is an indication that the search does work in a sensible way.

1We can get the results on only 9 data sets of 30 taxa due to running time.
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n errNN errFSS FSS/NN Steps FSSs Ss Ws

5 0.030594 0.029700 94.89 2.00 19.80 89.52 98.42

6 0.027754 0.026295 95.49 2.20 32.60 81.38 93.33

7 0.028372 0.027279 96.51 2.35 49.00 81.37 93.40

8 0.027216 0.025726 95.03 3.10 85.00 67.16 88.32

9 0.028582 0.026659 93.44 3.45 122.15 60.52 82.70

10 0.025267 0.023977 94.91 3.30 146.85 59.96 84.20

15 0.020117 0.019318 96.05 5.65 587.40 42.64 70.58

20 0.016071 0.015581 96.95 7.00 1321.80 32.79 63.55

25 0.013705 0.013300 97.05 9.75 2910.45 27.45 55.73

301 0.011633 0.011413 98.11 9.67 4191.89 29.40 59.45

Table 7.2: Results on randomly generated distance matrices with (CLS,

PermFliShift, 2-opt move).

Nevertheless, it should be noticed that the number of unique FSSs explored by

the search accounts for only a very small portion over all possible FSSs. Though

we haven’t been able to count the exact number of all unique FSSs, it has been

known (129; 140) that the number of all binary phylogenetic trees on a set of n

taxa is

b(n) = (2n− 5)!! = 1××5× · · · × 2n− 5) =
(2n− 4)!

(n− 2)!2(n−2) .

For example if n = 30, we have b(30) ≈ 9 × 1036 >> 4200. Also note that

the number of FSSs must be greater than that of the binary phylogenetic trees.

Therefore it is quite possible that the search got trapped in a local optimum:

Since we always start with the NeighborNet-produced split system, which might

be near a local optimum, the search could just have just got a bit better and then

got stuck at the local optimum without being able to find the global one which

lies in another region (see Figure 7.3). There are several strategies to cope with

this problem but we have been unable to investigate these further in this thesis

due to time constraints.

Something interesting can be concluded from columns “Ss” and “Ws”: We find

that the average percentage of splits shared between the original and the resulting

FSSs decreases fairly fast, and so does the contribution of the weights of those
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NeighborNet

Local search FSSGlobal optimum

Figure 7.3: The local search might get stuck at a local optimum near to the

position found by NeighborNet.

shared splits, though not quite as fast. This means that while both pretty well

accommodate the input distance matrices, the FSSs can be quite different from

the split systems found by NeighborNet. In other words there may be many FSSs

with good fitness given a distance matrix, and the one produced by NeighborNet

is only one of them. The lower decreasing rate of the percentage of total weights

of the shared splits is also noticeable. This means that the NeighborNet split

systems and the corresponding FSSs share splits of higher weights, which are

probably the more important splits. This could suggest that given a distance

matrix there may be a set of “core” splits that would appear in any “good” split

system.

When applying the OLS approach, we obtain more diverse results. In par-

ticular, on small data sets (no more than 10 taxa), best results are obtained

with (OLS, FliShift, φSumAbs), see Table 7.3, whilst on bigger data sets (from 15

to 30 taxa), they are obtained with (OLS, PermFliShift, φME, Exchange), see

Table 7.4.

A closer examination reveals some interesting facts. First, the set of param-

eters that work well on the smaller data sets do not work well on bigger data

sets and vice versa. More specifically, in Table 7.3, improvements are made on

30% to 70% of the small data sets and average 50% over all these data. How-

ever, on the 15-taxa data, only 15% of the time the search finds a FSS that has

the same error as the NeighborNet split system. It is even worse for data sets
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n Wins errNN errFSS FSS/NN Steps FSSs Ss Ws

5 50.00 0.023264 0.022132 92.00 1.88 10.00 92.22 98.62

6 70.00 0.030830 0.030199 98.36 1.85 11.85 89.75 94.66

7 55.00 0.028209 0.027933 99.20 2.25 16.12 92.42 97.53

8 55.00 0.028532 0.027897 98.19 2.71 22.29 84.55 93.82

9 30.00 0.031145 0.030501 98.13 2.33 21.67 81.63 91.60

10 40.00 0.025444 0.025170 98.87 2.33 23.83 88.95 95.08

15 15.00 0.018594 0.018594 100.00 2.00 31.00 97.71 99.95

20 0.00 - - - - - - -

25 0.00 - - - - - - -

30 5.00 0.012005 0.012004 100.00 2.00 61.00 92.98 99.64

Table 7.3: Best results on small random distance matrices obtained with (OLS,

FliShift, φSumAbs).

of 20 taxa and above: (OLS, FliShift, φSumAbs) almost always finds FSSs that

have bigger errors than those constructed by NeighborNet. In contrast, as shown

in Table 7.4, (OLS, PermFliShift, φME, Exchange) works very badly on small

data sets, making improvements between only 0% and 15% (average 7.5%), but

it performs quite well on big data sets with improvements between 20% and 50%

(average 37.5%).

Nevertheless we should probably not expect too much improvement on the

error in view of the humble error reduction made with the CLS approach. In

fact, on big data sets, the FSS errors are just under 99% to just under 100% of

the NeighborNet errors, and on small data sets, with the exception of those with

5 taxa, the FSS errors are between 94.5% and 99.2% of the NeighborNet errors.

These very limited improvements on the error are probably not surprising because

of the following reasons: (1) NeighborNet does well already as seen in Table 7.2,

(2) The search starts with the NeighborNet split system, and (3) In OLS-based

aproach, we use an alternative measure during the search in order to optimise

the NNLS measure. Though reasonable, these measures might not be the best

alternatives. In particular, the measure SumAbs is practically inapplicable: Of

the 4 sets of parameters involving SumAbs, none helps find a FSS that has a

smaller error than NeighborNet.
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n Wins errNN errFSS FSS/NN Steps FSSs Ss Ws

5 0.00 - - - - - - -

6 5.00 0.041778 0.039882 95.46 2.00 23.00 27.27 42.10

7 5.00 0.026446 0.023675 89.52 2.00 29.00 56.25 67.54

8 15.00 0.030857 0.029082 94.91 2.33 36.00 72.46 88.88

9 15.00 0.032997 0.032331 98.15 2.00 37.00 66.80 86.78

10 5.00 0.023709 0.021969 92.66 3.00 58.00 47.83 68.36

15 50.00 0.020205 0.019990 98.93 3.11 91.78 69.11 86.36

20 35.00 0.016411 0.016367 99.73 3.00 119.43 78.47 92.66

25 20.00 0.014007 0.013978 99.80 3.67 182.00 71.37 89.50

30 45.00 0.011531 0.011502 99.76 4.75 281.62 66.33 88.59

Table 7.4: Best results on small random distance matrices obtained with (OLS,

PermFliShift, φME, Exchange).

Table 7.4 reveals another interesting fact: The percentages of splits shared

between the NeighborNet split systems and the resulting FSSs does not really

decrease when the size of the data sets increases. What this might suggest is that

the local search with this specific set of parameters works more stably, indepen-

dently on the data size. With an average of 61.77% over all tested matrices, the

percentages of shared splits are small enough to support the previous hypothesis

that there may be many split systems that well accommodate an input distance

matrix. The last columns also still supports the idea of “core” splits.

When comparing Table 7.3 and 7.4 with Table 7.2, it can be seen that the

numbers of neighborhoods and FSSs explored during the OLS-based search are

smaller than those during the CLS-based search. One may argue that if more

neighborhoods, and, hence, more FSSs were considered, then the percentage of

cases with improvements would be higher. This is generally true but in our

current search framework, it is not really necessarily suitable. In Table 7.5 we

present the second best results which are achieved with (OLS, PermFlip, φSumAbs,

Exchange). It can be seen that more neighborhoods, and consequently more

FSSs, are explored but on small data sets, even though quite reasonable, the

results are not as good as those in Table 7.3, and on bigger data sets, they are

much worse than those in Table 7.4. Therefore, guiding the search to look into
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n Wins errNN errFSS FSS/NN Steps FSSs Ss Ws

5 70.00 0.026445 0.025430 94.15 2.25 20.88 83.62 96.78

6 65.00 0.027732 0.026216 95.69 2.27 25.91 74.41 89.58

7 30.00 0.023858 0.022578 95.88 3.20 41.60 81.21 90.22

8 30.00 0.024805 0.024124 97.43 2.80 43.20 63.71 82.56

9 15.00 0.027125 0.025221 92.88 3.75 63.25 48.17 77.91

10 25.00 0.026216 0.025560 97.35 2.50 50.00 48.82 73.93

15 5.00 0.023430 0.023178 98.92 6.00 172.00 43.59 76.09

20 5.00 0.018096 0.018027 99.62 5.00 195.00 45.45 76.30

25 5.00 0.013581 0.013553 99.79 14.00 39298.00 40.58 76.05

30 5.00 0.011795 0.011794 99.99 10.00 42610.00 28.12 47.18

Table 7.5: The second best results on random distance matrices obtained with

(OLS, PermFlip, φSumAbs, Exchange).

a more reasonable neighborhood is probably better than going to a big but not

much related one.

7.3.2 Random flat distance matrices

We perform a similar process to that in Section 7.3.1 but the input distance

matrices are induced from randomly FSSs. We did this as we hoped the local

search strategy would work better for input data that is more similar to the output

that we are generating. The random FSSs are generated with corresponding

random initial permutations and random sequences of swapping points as follows:

The random permutation is initialised as the identity permutation (1, 2, . . . n).

Repeating n times, at time i swap element i with a random element lying between

i+1 and n. The elements of the random sequence of swapping points are generated

one by one from 1 to k where k =

(
n
2

)
. For element j, 1 ≤ j ≤ k, on

permutation Π = (π1, π2, . . . , πn), starting as the initial permutation, we identify

a random position i such that πi and πi+1 have not been swapped with each

others, then we assign value i to swapping point j and adjust permutation Π by

swapping πi and πi+1. One can check that these always produce a valid pair of
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initial permutation and sequence of swapping points.

Since the input distance matrix comes from a FSS, we can ideally expect the

local search to find a FSS that perfectly fit the matrix. For this reason we will

introduce some more measures to help evaluate the results. Let S0, ω0 be the

random weighted FSS from which distance matrix d is induced, we define the

following additional values:

• SrNN : The average percentage of splits in S0 that are recovered in S1:

SrNN = 100×
∑(
|S0 ∩S1|/|S0|

)

m

• WrNN : The average contribution to S0 of the splits recovered by S1:

WrNN = 100×

∑∑
S∈S0∩S1

w0(S)∑
S∈S0

w0(S)

m

• SrFSS: The average percentage of splits in S0 that are recovered in S2:

SrFSS = 100×
∑(
|S0 ∩S2|/|S0|

)

m

• WrFSS: The average contribution to S0 of the splits recovered by S2:

WrFSS = 100×

∑∑
S∈S0∩S2

w0(S)∑
S∈S0

w0(S)

m

Again, in the formulas for WrNN and WrFSS, the bigger Σ indicates the sum

over the m data sets, the smaller Σ represents the sum over all splits in each of

the involved split systems.

As with the test on random distance matrices, for each approach, we only

present the results where the improvements are best in term of the NN/FSS

ratio. For the CLS-based approach, the best results, shown in Table 7.6, are

obtained with (CLS, PermFliShift, 2-opt move). The first and most important

observation is that the improvement on errors is quite reasonable: The FSS errors
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are mostly between 65-75%, go down to just 7.65% on 5-taxa, and average to

only 57.4% of the NeighborNet error. This fact suggests two important points:

(1) NeighborNet does not work as well on flat distance matrices as it does on

general ones, and (2) FSSs can be used to make significant improvements over

NeighborNet on flat distance matrices.

Table 7.6 also indicates that both the number of neighborhoods and the num-

ber of FSSs explored increases with the size of the tests. Thus it seems that

the search does survey a good range of the FSS space. However, these quantities

alone cannot prevent the possibility of the search getting stuck in a local optimum

as analysed in Section 7.3.1.

Columns “Ss” and “Ws” agree with the two hypotheses drawn in the tests

with random distance matrices, namely that there may be many split systems

that well represent one distance matrix, and there may be a group of “core” splits

given a matrix. However, comparing columns Ss in Table 7.6 and 7.2 one can

observe that on flat distance matrices, the FSSs and NeighborNet split systems

share more “core” splits than on random distance matrices.

Since we start with FSSs, it is natural to expect that the search recovers many

original splits. However, columns “SrNN” and “SrFSS” show that the percentages

of splits recovered by both NeighborNet and the local search on the small data

sets are reasonably high but they decrease fairly quickly on bigger data sets. At

first glance the reader may find this somewhat disappointing. However, a closer

examination reveals a possible explanation: All the input FSSs are generated in

full, i.e. the number of input splits increases in quadratic, whilst the number of

splits with non-zero weights found both NeighborNet and local search increases

much more slowly (data not shown). The finding suggests that both NeighborNet

and the local search tend to find split systems as compact as possible while trying

to maintain the optimization criteria. We think this feature is promising as we

have never seen any real taxa set where all splits possible are needed. Therefore

a similar test where only a portion of the generated FSSs has non-zero weights

will be useful in the future work.

Columns “WrNN” and “WrFSS” when compared with columns “SrNN” and

“SrFSS” respectively indicate that both NeighborNet and our search do recover

important splits of the original system. For example on the 25-taxa data sets, on
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average NeighborNet recovers 21.61% of the splits but those splits contribute to

54.82% the total weight of the input split system; the corresponding figures with

our local search are 25.5% and 59.6%. It can also be seen that our search recovers

about 4% more splits than NeighborNet does. These findings give further support

to the hypotheses about the group of “core” splits proposed before. If more time

were available, it would be interesting to do a further comparison between three

split systems: The original flat one, the one produced by NeighborNet and the

one found by our local search.
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7.3 An initial evaluation of the new approach

For the OLS approach, we found two sets of parameters that give interesting

results. First, in terms of the number of times improvements are made, the best

choice of parameters is (OLS, PermFlip, φME, Exchange) (Table 7.7). The search

makes improvements from 65% to 100% (average 89.5%). On data sets containing

up to 15 taxa the corresponding numbers are even better: 90%, 100% and 95.7%,

i.e. improvements are obtained most of the times. On data sets of 20, 25, and

30 taxa, the local search outperforms NeighborNet in less cases but it still does

quite well compared to working on random distance matrices, with improvements

made on 75%, 85% and 65% of the case, respectively.

On the significance of the improvements, the average NNLS errors of the FSSs

by test sizes are from 55% to 98% that of the NeighborNet split systems with

the exception of only 6.27% on 5-taxa data sets. The average FSS/NN measure

over all data sets is 73.85% and is very reasonable: It means on that average, on

all tested data, the NNLS error of the FSSs found by local search is under 3/4

that of the NeighborNet split systems.

However, it must be noted that the significance of the improvement decreases

when the test size increases, and there seems to be a clear cut between the smaller

and bigger data sets. The average FSS/NN ratio on the smaller data is 60.13%

while that on the bigger data is 94.43%. These numbers suggest that the current

parameter set may not be good enough to use on large data sets an thus is less

applicable. It may also be necessary to find better ways than NeighborNet for

choosing an initial split system.

The second set of parameters we would like to discuss is (OLS, PermFliShift,

φME, 2-opt move), see Table 7.8. This does better than or equal to NeighborNet

in 55% to 100% (average 85%). Although 85% is slightly less than 89.5% attained

with (OLS, PermFlip, φME, Exchange), this parameter set works more stably

when the data size increases. For example, on data sets of 30 taxa, the local

search with (OLS, PermFliShift, φME, 2-opt move) makes an improvement in

90% of the cases compared to just 65% obtained with the parameter set discussed

above. It does not make improvement on as many cases on 5-taxon data sets (55%

vs 95%) but we would still prefer it for the ability to perform better on bigger

data sets.
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7.3 An initial evaluation of the new approach

More importantly, the reduction of errors is more significant than that achieved

with the other parameter set for the OLS approach, especially on bigger data sets.

The NNLS errors of the FSSs found by the local search with (OLS, PermFliShift,

φME, 2-opt move) range from 9.11% to 87% (average 64.78%) those of the Neigh-

borNet split systems. The average FSS/NN measures of 64.78% over all data

sets and 85.94% on bigger data sets are significantly better than corresponding

figures of 73.85% and 94.43% obtained with (OLS, PermFlip, φME, Exchange).

Even though not as good as the results produced with the CLS approach, whose

corresponding numbers are 57.4% and 73.47%, (OLS, PermFliShift, φME, 2-opt

move) makes a good compromise between the quality of the results and the run-

ning time.

In Figure 7.4, we present a visual illustration for the significance analysis:

Compared to (OLS, PermFlip, φME, Exchange), (OLS, PermFliShift, φME, 2-opt

move) does worse on 5 taxa, slightly worse on 10 taxa, but better and significantly

better on all remaining data sizes. The latter performs slightly better than (CLS,

PermFliShift, 2-opt move) on two cases but worse on the remaining cases. In

general, it does significantly better than (OLS, PermFlip, φME, Exchange), and

worse than (CLS, PermFliShift, 2-opt move) whose cost is much higher.

Examining columns Ss and Ws in Tables 7.7 and 7.8, again we observe that

the NeighborNet and our local search both find splits of high weights. However,

the second parameter sets seem to find FSSs with less shared splits, i.e. it seems

to find more “core” splits than the first parameter set. The last four columns

in those tables also agree with what we proposed when analysing the results

obtained with the CLS approach: There can be many split systems that well

accommodate a distance matrix; both our local search and NeighborNet seem to

be able to recover “core” splits of the original FSS, but our search recovers about

3-4% more such splits.
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7.3 An initial evaluation of the new approach

Figure 7.4: The average improvements on “flat” distance matrices obtained by

the local search with different parameter sets. x-axis labelled by the data size,

y-axis labelled by the FSS/NN measure.
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7.3 An initial evaluation of the new approach

7.3.3 A geographic example

The tests on random distance matrices and random “flat” distance matrices have

indicated that our local search strategy has some potential. We now illustrate the

method on some “real life” data sets. Since the FSS can be represented by a planar

split network, it is quite natural to test the approach with geographic distances.

Here we pick ten European capital cities as shown in Figure 7.5 and check how well

the FSS found by the local search is compared to the NeighborNet split system.

Distances between the pairs of cities are computed from their longitudes and

latitudes using the free City Distance Calculator provided by Geobytes Inc. (1).

The distance matrix is shown in Table 7.9.

MoscowStockholm

WarsawBerlin
London

Paris

Geneva

Madrid Rome

Athens

Figure 7.5: The 10 European capital cities on the map.

The split system found by NeighborNet has the NNLS error φNNLS ≈ 21.84,

the network representing it is shown in Figure 7.6(a). The best FSS is found (OLS,
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7.3 An initial evaluation of the new approach

London 0

Paris 343 0

Madrid 1267 1054 0

Rome 1434 1106 1363 0

Geneva 748 411 1024 695 0

Berlin 930 878 1870 1183 876 0

Stockholm 1431 1545 2595 1978 1660 811 0

Moscow 2498 2487 3441 2376 2416 1608 1227 0

Warsaw 1447 1367 2292 1318 1267 516 809 1149 0

Athens 2393 2098 2370 1053 1709 1804 2410 2231 1602 0

Table 7.9: The distance matrix between the capital cities.

PermFlip, φSumAbs, two-opt move) and has φNNLS ≈ 7.53. The planar network

representing the best FSS is shown in Figure 7.6(b). For both the networks we

manually rearranged the vertices and edges so that the positions of the cities were

as similar to those on the map as possible.

It is noticeable that Madrid is placed in a strange position. The problem is

to get the city to the right point, the edge connecting the vertex to the rest of

the network will have to cross some other edges. Besides this issue however, the

NeighborNet network is not bad at all: The positions of the vertices pretty well

represent the locations of the corresponding cities on the map.

In Figure 7.6(b), a major difference on the FSS network is that Berlin and

Warsaw are placed “inside” the network and are separated from the boundary by

splits of quite high weights. These positions resemble the geographic locations

better than those in the NeighborNet network. Moreover, Madrid is well placed,

too. Thus, at least visually, the FSS network represents the cities more appropri-

ately than does the NeighborNet network. Quantitatively, the error of the FSS

is under 35% that of the NeighborNet split system. All in all, the new approach

appears to work better than NeighborNet in this example.
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7.3 An initial evaluation of the new approach

London

Madrid

Berlin

Stockholm

Moscow

Warsaw

Athens

Rome

Geneva

Paris

100.0

(a) The NeighborNet network, φNNLS ≈ 21.84.

Paris

Madrid

London

Geneva

Berlin

Rome

Stockholm

Warsaw

Athens

Moscow

100.0

(b) The best FSS network found by local search, φNNLS ≈ 7.53.

Figure 7.6: The “Capital 10” example, comparing the NeighborNet network to

the best FSS network.
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7.3 An initial evaluation of the new approach

7.3.4 A biogeographic example

We now test the FSS approach on a published biological data set. We use the

19 nrITS sequences collected from 19 locations for the three Ranunculus species:

R. pachyrhizus, R. sericophyllus, and R. viridus as mentioned in the paper by

Winkworth et. al. (151). There are 20 sequences in the paper but location

NE of Temple Basin of the first sequence (sericophyllus, CGTGGCCTAA) is not

marked on the map so we omit this sequence. For this data set it is expected that

the genetic data should be somewhat correlated with the geographical locations

where the samples were collected from.

From the sequence data we were able to reconstruct the Split Decomposition

network exactly as presented in Figure 1(e) in Winkworth et. al.’s paper. The

network is pictured in Figure 7.7. We also use that data to build the NeighborNet

network, shown in Figure 7.8(a); and from the distance matrix inferred from the

sequences by NeighborNet, we find the best FSS possible with our local search,

the network is shown in Figure 7.8(b).

Quantitatively, we see that both the NeighborNet split system and the FSS

have much smaller errors than the Split Decomposition split system. However,

the NeighborNet is slightly better than the FSS. The main difference between the

NeighborNet and the Split Decomposition split networks is that the former parses

the one node representing 8 taxa under Mt Cook and the one node representing

3 taxa above Mt Memphis in the latter into several nodes. Even though some of

the new nodes are quite close together, they have fine tuned the distances and

given better errors. A similar effect occurs when comparing the FSS and the Split

Decomposition split system even though the parsing by the FSS is not as refined

as the NeighborNet.

Split-wise (data not shown), both the NeighborNet split system and the FSS

contain all 6 splits of the Split Decomposition system, all with high weights.

NeighborNet and FSS share 9 splits, NeighborNet has 11 exclusive splits and

FSS has 8. These numbers seem to agree with the hypothesis of “core” splits

mention in Section 7.3.1.

With the same data set, we do a similar procedure on the distance matrix

built on the geographic locations where the sequences are collected. Since the
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Temple_Basin, Pudding_Rock, Sierra_Range, Mt_Brewster, Mt_Shrimpton, Beatham_Valley, Otira_Face, Mt_Fraklin

Mt_Cook

Mt_Allen

Remarkables, Old_Man_Range, Pisa_Range

Lake_Harris, Gertrude_Valley, Mt_Tukoko, Homer_Tunnel

Lake_Wapiti

Mt_Memphis

0.01

Figure 7.7: The Split Decomposition network, φNNLS ≈ 0.00381 , on the 19

Ranunculus sequences.

133



7.3 An initial evaluation of the new approach

Otira_Face
Temple_Basin

Mt_Memphis

Lake_Harris

Mt_Cook

Mt_Shrimpton, Mt_Brewster
Mt_Fraklin, Sierra_Range

Pudding_Rock

Mt_Allen

Pisa_Range

Mt_Tukoko, Homer_Tunnel

Old_Man_Range Lake_Wapiti
Remarkables

Gertrude_Valley

Beatham_Valley

0.1

(a)

Temple_Basin

Otira_Face, Beatham_Valley

Pudding_Rock, Sierra_Range, Mt_Brewster, Mt_Shrimpton, Mt_Fraklin

Mt_Allen

Mt_Cook

Lake_Wapiti
Remarkables, Old_Man_Range, Pisa_Range

Lake_Harris, Gertrude_Valley, Mt_Tukoko, Homer_Tunnel

Mt_Memphis

0.1

(b)

Figure 7.8: (a) The NeighborNet network, φNNLS ≈ 0.00094. (b) The best FSS

network, found with (OLS, PermFlip, SumAbs, 2-opt move), φNNLS ≈ 0.00102,

built on the Ranunculus sequence data.
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exact location data were not available, we approximated them by printing out a

magnification of the sampling map (Figure 1(a) in (151), reproduced in Figure

7.9(a)), and using a ruler to measure the distances. The matrix is shown in

Table 7.10; the Split Decomposition, NeighborNet and best FSS networks are

shown in Figures 7.9(b), 7.10(a) and 7.10(b), respectively.

Visually all three networks seem to resemble the locations on the map quite

well. However, when the errors are examined, NeighborNet and FSS are much

better than Split Decomposition again. It is different this time though, in that

the over all best is the FSS with an error of approximately 0.04975 compared to

0.05403 of NeighborNet and 0.78516 of Split Decomposition. The result should

not be surprising since we have seen FSS works better than NeighborNet on “flat”

distance matrices in Section 7.3.2. One can observe that on the FSS network,

Lake Harris is placed “inside”, which seems to be reasonable due to its geographic

location. By magnifying the network we can confirm that Siera Range is also “in-

side” even though the splits separating it with the boundary have much smaller

weights. The positions of these two taxa however result in the better error mea-

sure of the FSS.
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(a)

Temple_Basin
Mt_Fraklin

Mt_Allen

Mt_Memphis

Lake_Wapiti

Mt_Tukoko

Otira_Face

Beatham_Valley

Mt_Cook
Sierra_Range

Mt_Shrimpton
Mt_Brewster

Old_Man_Range
Lake_Harris

Pisa_Range
Homer_Tunnel, Gertrude_Valley Remarkables

Pudding_Rock

10.0

(b)

Figure 7.9: (a) The 19 sampling locations, except NE of Temple Basin, for

the New Zealand Ranunculus (151). Reused with license (No. 2458431432805)

from Oxford University Press. (b) The Split Decomposition network, φNNLS ≈
0.78516, on the “geographic” distances between 19 sampling locations.
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(a)

Temple_Basin
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Mt_Cook
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Pudding_Rock

Mt_Brewster
Mt_Shrimpton
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10.0

(b)

Figure 7.10: (a) The NeighborNet network, φNNLS ≈ 0.05403. (b) The best FSS

network, found with (CLS, PermFlip, Pair-Exchange), φNNLS ≈ 0.04957, built

on the “geographic” distances between 19 sampling locations.
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7.3 An initial evaluation of the new approach

Considering the splits in detail (data not shown), NeighborNet recovers 27

out of 28 splits produced by Split Decomposition and has 42 on its own. The

corresponding numbers when comparing FSS with Split Decomposition are 27 and

33 - the FSS has less splits than does the NeighborNet. Nonetheless, NeighborNet

and FSS share a significant number of 52 splits, leaving 17 for the former and 8

for the later. Again the idea of a group of “core” splits seems to be supported

with this result.

Finally we will make a comparison between the DNA sequence-based split sys-

tems and the corresponding geographic split systems. This is motivated by the

fact that to survive and develop, the species must adapt to the environment sur-

rounding it, and the latter partly depends on its geographic location. Therefore

the species’ DNA may display some geographic “signals” and vice versa, which

we hope might be detectable in terms of shared splits.

With Split Decomposition (data not shown), 3 out of 6 splits of the genetic

split system are shared by the geographic split system who has 28 splits. The

corresponding numbers with NeighborNet are 7, 20, 69; and those with the best

FSSs are 6, 17, 60. Over all three pairs of split systems, about 30% - 50% splits

of the genetic split system are “recovered” with geographic data. This is a good

indication that the species have adapted according to geography to some degree.

However, a closer examination reveals that with Split Decomposition (data

not shown), the shared splits contribute to 48.61% total weight of the genetic

but only 4.12% total weight of the geographic split systems. The corresponding

numbers with NeighborNet are 63.64% and 6.34%; and those with the best FSSs

are 66.06% and 5.67%. It seems that the splits which display important genetic

characteristics are not that highly valued geographically. A possible explanation

for the observation is that in this data set, the species’ genes might be more

influenced by some other environmental/biological factors rather than by the

geographic locations alone. A thorough study on all the other factors may help

clarify the hypothesis but it is not in the scope of this thesis.
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7.4 Concluding remarks

7.4 Concluding remarks

We have proposed a framework employing a number of parameters to search for

a weighted FSS to represent a given distance matrix. The framework is a simple

local search model but the parameters are independent and could be employed

in other search algorithms, hopefully to produce improved results.

We have tested the new approach on both random and real life data. Initial

results are positive: In many cases the split system found by the FSS approach ac-

commodates the distance matrix better than does NeighborNet. The new method

works particularly well when the input matrix came from a FSS. The test also

suggest that given a distance matrix, there can be more than one split system

that accommodates it well, and there seems to be a group of “core” splits that

appear in all or most such split systems. In the final chapter we will discuss some

possible future directions.
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Chapter 8

Conclusions and future work

8.1 Conclusions

Phylogenetic diversity is an important measure used to evaluate the evolutionary

diversity of a set of species. Depending on specific data and context, there can be

different ways to define PD and thus, different approaches to study the problems

concerning this measure. In this research, based on splits, we have developed

novel methods to solve the PD optimisation problems in various situations.

In Chapter 2, we gave a mathematical background to the thesis and introduced

MPD as a main problem to be considered. Chapter 3 dealt with the complexity

aspects of MPD: We proved that MPD itself and related optimisation problems,

namely WAPD, MED, and MO, for all of which the PD measure proposed by

Faith (47) is adopted, are NP-hard. We then considered similar optimisation

problems with alternative measures of diversity, namely the number of segregating

sites (in an alignment of gene sequences) and the AD measure, and proved that

they are NP-hard too.

Algorithmically, an NP-hard problem can have polynomial time solutions un-

der some special types of input data. In Chapter 4, we proposed efficient algo-

rithms for two situations. First, by exploiting the structure of phylogenetic trees

and incorporating the idea for computing tree cores, we developed an O(n) algo-

rithm for the MPD problem on trees. This solution is more efficient than those

that had been published before and is obviously optimal. The tree-like structure

141



8.2 Future work

was then used in a dynamic programming framework to derive a polynomial time

algorithm for the optimisation problem based on the AD measure on the tree.

Next, we studied the MPD problem for more general split systems, namely

affine split systems and circular split systems in Chapter 5. For affine split sys-

tems, by applying some geometric analyses we derived an O(kn3) algorithm. Up

to that time, O(kn3) was also the complexity of the best algorithm for the MPD

problem on circular split systems, which are a subset of affine split systems. By

making use of geometric considerations we developed an O(kn + n log n) algo-

rithm for this problem, which to our best knowledge is the one with the best

complexity to date.

In Chapters 6 and 7 we considered a new theme: Constructing FSSs from

distance matrices. The work is motivated by the fact that geographic locations

where biological data are collected may leave some signals in the species’ genetic

features, which we hope to detect.

In Chapter 6, we formally defined FSSs, shown that they are a generalisation

of the affine split systems, and indicated how to construct a planar split network

to represent a FSS. We also defined several operations to manipulate the FSSs.

These operations were used in Chapter 7 as the basis to search for a weighted FSS

to represent a distance matrix. This FSS-based approach proved to work better

than NeighborNet in many cases, especially if the matrices are induced from

geographic locations. It also suggested an interesting idea that a group of “core”

splits may appear in all, or most, FSSs that represent the same distance matrix.

Finally, the result on the biogeographical data seemed is in some agreement with

the hypothesis about the correlation between geographic and genetic data.

8.2 Future work

8.2.1 Counting the number of full FSSs

A basic, but maybe not so easy problem concerning FSSs is to count the number of

full FSSs of a fixed set of taxa. We know that each p-sequence gives a full FSS. The

number of p-sequences can be calculated through the number of permutations and

the number of sequences of swapping points. Given a set of n taxa, the number
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8.2 Future work

of permutations is n!. The number of sequences of swapping points, denoted as

An, can be computed using Stanley’s formula (137)

An =

(
n
2

)
!

(2n− 3)× (2n− 5)2 × (2n− 7)3 × · · · × 5n−3 × 3n−2
.

Let Bn be the number of p-sequences, we have Bn = n!An. This quantity

increases extremely quickly with n as illustrated in Table 8.1.

n n! An Bn

2 2 1 2

3 6 2 12

4 24 16 384

5 120 768 92,160

6 720 292,864 210,862,080

7 5,040 1,100,742,656 5,547,742,986,240

Table 8.1: How the number of p-sequences increases with the increase of the

number of taxa.

However, it is evident that more than one p-sequence may yield the same FSS.

Operations Swapping and Shifting are good examples illustrating this fact. As

a consequence, finding formal criteria to check if two p-sequences derive the same

FSS is important, at least mathematically. These criteria could then be used to

form a rule for counting the number of full FSSs. Work in this direction may also

be helpful to understand the space of FSSs and help drive the local search more

efficiently.

8.2.2 The MPD problem on FSSs

We have studied problem MPD in several special cases in Chapters 3, 4 and 5.

It is natural to extend the questions to FSSs. In particular we have the following

problem:

MaximumPhylogeneticDiversityOnFlatSplitSystems (F-MPD)

Input: a set X with n elements
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a full flat split system S = S(P)

where P = (π0, P ), π0 is a permutation of elements of X

and P is a sequence of swapping points

a split weight function ω : S→ R>0

an integer k ∈ {1, . . . , n}
Output: a subset Y ⊆ X with the property that |Y | = k and

PD(Y ) = max{PD(W )|W ⊆ X, |W | = k}

An obvious algorithmic question is “Is F-MPD NP-hard?” If the answer to

this question is “No”, it is natural to develop efficient algorithms for F-MPD. In

Chapter 5 by making use of the special structure of the split system and some

geometry we have given an O(kn3) algorithm for affine split systems, which are

very closely related to FSSs. The special structure of wiring diagram of the

FSS might be of use to develop an efficient algorithm for problem F-MPD: The

selection of a taxon is now a selection of a wire, and each combination of the

wires gives rise to a set of intersections which are splits with assigned weights. A

dynamic programming approach may therefore be a good starting to explore the

problem.

If the answer to the question is “Yes”, finding approximation methods for

F-MPD might be necessary. Remember that the greedy approach worked well

on trees for finding an optimal solution to the MPD problem, so it might be

sensible to explore further how well greedy might perform for FSSs. One could

start with two wires whose intersection has the biggest weight, then keep adding

wires so that the contribution of weights assigned to the additional intersections

is maximal. An extensive evaluation of the greedy approach would be useful even

in the case where a polynomial algorithm for F-MPD exists, since such algorithm

may bee too expensive to be applicable on very large data sets.

Besides, to be more applicable, the F-MPD problem could be studied with

additional constraints added. The extra condition may be geographical, biologi-

cal (110), economical (18) or ecological (51). It would be natural to study problem

F-MPD with such additional requirements.
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8.2.3 Improving the search approach for FSSs

There are several directions that could be followed to improve the search for a

weighted FSS to represent a given distance matrix. The local search that we

currently employed needs to be sped up further to be practical. At the moment

it can find results in a reasonable time for data sets of up to around 30 taxa with

the CLS approach and a bit more with the OLS approach. We have identified

that the most and second most expensive parts of the search process are to fit a

distance matrix to a FSS using the Lawson and Hanson’s NNLS algorithm and to

do the same job using the Gaussian elimination. We have also observed that (data

not shown) the improvements of the errors between consecutive neighborhoods

are usually limited. For this reason, instead of considering all split systems in

the neighborhood to choose the best one, we could maybe start with a new set

of neighbors every time a reduction on the error is made.

Another way to enhance the search might be to select another starting point

for the search instead of always starting with the NeighborNet split system. One

can easily start with a random or a number of random FSSs, then select the best

output. The initial split system could also be selected using the Multidimensional

Scaling (MDS) approach (34): Input the distance matrix into a MDS procedure

to get the corresponding set of points, generate an affine split system from these

points, and then use this split system as the input for the search. Varying the

input FSS would help explore the search space more extensively and avoid the

trap of local optima. In addition it could help testing the hypothesis for the

“core” splits that we mentioned above.

Due to the cost of the CLS approach, in practice the OLS approach is much

more likely to be useful. In that case choosing a suitable error measure for the

weight vector that may contain negative values is important. Our tests have

shown that among the three measures φME, φSumAbs and φSumPos, the last mea-

sure, even though seems to be quite correlated to the second one, which yields

good solutions for several cases, always gives worst solutions. Therefore trying

out other weight vector-based measures could be worth exploring.

Note that in our search we have employed only 3 out of 5 permuting strategies

presented in Section 6.4.4, leaving Reversal and Prune & Regraft untouch. In-
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corporating those strategies into the search could be reasonable and might help

improve the search.

Independently on the choice of starting FSS for the search, the weight vector-

based error measure for the OLS approach, and the permuting strategy, one could

design other search frameworks using other heuristic methods such as genetic al-

gorithm (65; 102) or simulated annealing (27; 70; 90). For genetic algorithms,

each FSS could be considered as a pair of “genes”, one for the initial permuta-

tion and one for the sequence of swapping points. Having them in the form of

sequences of numbers already, it would be convenient to define genetic operations

such as cross-over and mutation for these “genes”. The use of simulated anneal-

ing with the possibility of accepting a solution with a worse object function score

could help avoid getting trapped in local optima.

Last but not least, whichever search strategy is employed, it seems worthy

to find a way to incorporate the tabu search method (64) into the framework to

reduce the number of FSSs on which the input distance matrix is to be fitted.

Recall that different p-sequences may yeild the same FSS, and solving the WCF

problem is computationally expensive, we can maintain a list of FSSs that have

already been considered so that each unique FSS is fitted with the input distance

matrix only once.

8.3 Final remarks

Split systems are a popular tool to study the evolutionary history of species. They

are used to represent the evolutionary relationships of different complexity, with

or without conflicting signals. Consequently, they are the object for theoretical

and practical optimisation problems in phylogenetics. In the last two decades a

lot of work has been put into the field with the number of publications increasing

year by year.

Based on splits, this thesis has shed new light onto the field of phylogenetics by

studying several important optimisation problems. The systematic investigation

into FSSs has produced some interesting results and has much promise. It has

also laid the basis for and raised some open questions for further research, which

we look forward to seeing studied in the future.
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