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ABSTRACT. Quantum mechanics is not logically closed with respect to the classical world.
Its formalism unfolds as the quantization of a sub-set of classical Hamiltonians. The inter-
pretation of quantum theory in terms of the measurement process inevitably requires to deal
with systems composed by a mixture of both classical and quantum degrees of freedom.
Moreover, when energy can flow between the quantum and classical degrees of freedom
(i.e., in the case of nonadiabatic dynamics), there are more theoretical difficulties in order
to obtain a fully consistent quantum-classical formalism. In order to perform calculations,
one can renounce to the usual Lie algebraic structure of well-established physical theories,
adopt non-Hamiltonian brackets, and obtain a formalism for the dynamics and statistics
of quantum-classical systems that has an affordable computational complexity. Recent
progress in the algorithms for the sampling of nonadiabatic dynamics of quantum-classical
systems at long time is reviewed here.

1. Introduction

The relation between quantum mechanics and classical theory has remained controver-
sial since the birth of the quantum formalism [1]. It appears that the logical formulation of
quantum mechanics inevitably needs a classical theory to be quantized [2]. Interestingly,
recovering the classical limit from the quantized formalism is not at all trivial: the classi-
cal world seems to emerge from the quantized world through some complicated process,
which is akin to a phase transition with singularities [3, 4].

Theories attempting to describe in a unified way systems comprising both classical and
quantum degrees of freedom seem to be no less controversial or complicated [5]. For exam-
ple, such theories are needed in cosmology to describe quantum phenomena taking place
on the classical gravitational background [6, 7, 8]. Since fully quantum formalisms are in
general exponentially complex and cannot be simulated by brute force, quantum-classical
theories are widely used as approximate descriptions of systems where all coordinates are
quantized. To this end, the quantum-classical approximation is needed to perform com-
puter simulations of the dynamics of quantum systems in a condensed phase [5],

In this contribution, a particular approach to the formulation of quantum-classical dy-
namics is reviewed [9]. Such an approach is based on the partial Wigner representation
of the quantum formalism. By means of a series of controllable approximations, it leads
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to the formulation of the dynamics and statistical mechanics of systems comprising both
quantum and classical degrees of freedom [10]. For computational purposes, such a dy-
namics can be represented in terms of stochastic trajectories (hopping between different
energy surfaces). Such trajectories start from initial conditions that are sampled by means
of Monte Carlo schemes [11]. The stochastic sampling of the dynamical trajectories is af-
fected by numerical instabilities at long time, leading to big statistical errors. This imposes
significant limitations on the application of the method. Overcoming such a problem is one
of the fundamental goals of computational physics within this area. To this end, a general-
ized sampling algorithm has been recently shown to improve dramatically on the numerical
stability of quantum-classical dynamics at long time [12, 13]. This is also reviewed.

This contribution is organized as follows. Section 2 describes the unusual relation be-
tween the classical and quantum world by looking at quantum mechanics as a theory of
quantization. The importance of quantum-classical systems is discussed together with the
open issues that must be faced by quantum-classical theories. Section 3 introduces a par-
ticular approach to the theory of quantum-classical systems. This is derived by means
of controllable approximations from a rigorous theory where all coordinates are initially
quantized. Section 4 reviews the algorithms used to sample the nonadiabatic dynamics of
quantum-classical systems and shows their application to the spin-boson model. Finally,
Section 5 presents conclusions and perspectives.

2. Quantization theory for classical events

Since Schrödinger’s and Heisenberg’s formulations (unified by Dirac’s transformation
theory [14]), quantum mechanics has never ceased to puzzle the minds of physicists. Per-
haps, one of the reasons is that quantum mechanics is a logically open theory [2] that has
classical mechanics as both its starting and final point. Since quantum mechanics provides
results that can be experimentally tested, the final stage of a quantum process must be a
classical phenomenon: the experimenter invariably observes something (e.g., the instru-
ment’s readings) by means of his own senses. This means that there is nothing magical
or mystical in a quantum laboratory. One does not observe waves instead of particles, or
any form of smeared-out reality. There are only classical phenomena (i.e., taking place in
the classical world) that require a non-classical (quantum) explanation: we never observe
a cat half-alive and half-dead; but there are some phenomena that might be interpreted
in terms of a cat half-alive and half-dead. In other words, quantum mechanics provides
a hidden mechanism for well-defined classical events whose space-time correlations are
neither described nor explained by a classical theory. As usual, when using any language,
some words or concepts cannot be explained in terms of other words contained in the
same language and must be used with an intuitive meaning. In the same way, it is not at
all easy to explain what one really means by saying that a theory is classical. Here, we
just state that a theory is termed classical if it consists, at all its stages, of events that can
be associated with well-defined probabilities. Quantum mechanics also describes events
with well-defined probabilities at the end of a process. But its phenomena start from su-
perpositions of events (whatever this may physically mean) that admit complex probability
amplitudes. Hence, superpositions of events (and complex amplitudes) must be considered
more fundamental than events (and probabilities). On the other hand, one cannot think of
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Figure 1. This picture symbolizes the peculiar relation between the quantum
and the classical world. There is an overlap between the two worlds, but the
classical world admits many more possible Hamiltonians, coordinates and states
(N >> n) than the quantum world. Moreover, the processes leading from the
quantum to the classical world are fundamentally irreversible. Such processes
can be described by means of the integration over short wave-length degrees of
freedom, as in renormalization.

superpositions of events without having first in mind well-defined events. Perhaps, it is
simply this the origin of the logical openness of quantum theory.

This author has always thought of quantum mechanics as a theory of quantization. As
it happens in Dirac’s approach [14] (called canonical quantization), one has to start from
a classical Hamiltonian, written in terms of canonical coordinates: {q, p} = 1, where
{. . . , . . .} is the Poisson bracket. Hence, it is possible to quantize the coordinates in such
a way that [q̂, p̂] = i~ ˆ{q, p}, where [. . . , . . .] is the commutator. From a mathematical
point of view, this constitutes the fundamental openness of quantum theory: in the au-
thor’s knowledge, no method has been found so far to avoid the classical starting point
of the theory. This issue was acknowledged, among many others, by Landau [2]: quan-
tum mechanics needs a classical theory for its very formulation. Therefore, it is somewhat
controversial to regard it as a fundamental theory on logical grounds. Once the quantiza-
tion of the classical Hamiltonian has been performed, the Stone-von Neumann uniqueness
theorem [15] (for a finite number of degrees of freedom) ensures that all the different
representations can be connected through unitary transformations. This rules out (in the
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majority of cases) the quantization of curvilinear and non-canonical coordinates. I believe
this latter to be one of the mysteries of quantization, which still requires an understand-
ing at a fundamental level. Figure 1 illustrates the peculiar relation between the classical
and the quantum world. Classically, many more states and Hamiltonians are allowed. In
fact, there are restrictions on the type of Hamiltonians that can be quantized. For example,
chaotic dynamics seems to have no counterpart in the quantum realm. At the same time,
there are quantum states that do not admit a classical limit. It seems that the two worlds can
be connected only going through an interface region, showed in Fig. 1 as the dashed over-
lap of the two domains [16]. It also appears that the processes leading from the quantum to
the classical world require some kind of fundamental irreversibility that can be represented
in terms of the integration over short-wave length fluctuations [17], not unlike from what
happens in the renormalization approach to the theory of phase transitions [18].

There are important exceptions to quantization by means of canonical commutation re-
lations. The rigid rotor H = L2, with {Li, Lj} = ϵijkLk, is an important example that is
best quantized through non-canonical commutation relations: [L̂i, L̂j ] = i~ ˆ{Li, Lj} [2].
Spin degrees of freedom are also quantized in terms of non-canonical coordinates [2].
These types of non-canonical quantization procedures are studied by the approach of Geo-
metric Quantization [19]. I believe that the unitary symmetry of quantum mechanics plays
a fundamental role in permitting also non-canonical representations. In practice, to see
which coordinates can be quantized unambiguously, one has to find whether a simple di-
agonal expression of the kinetic energy is possible, and then apply Dirac’s correspondence
rule between Poisson brackets of phase space functions and commutators of self-adjoint
operators. Of course, it must be mentioned that non-local actions can be quantized through
a Lagrangian approach, which was first proposed by Dirac [20] and brought to its logical
completion by Feynman [21].

When dealing with systems with a continuous number of coordinates, qi → qx = Φ(x),
i.e., fields, some extra care is required in applying the quantization procedure. For exam-
ple, the Stone-von Neumann uniqueness theorem is more subtle for such systems [15]. In
practice, unitary symmetry and the form of the kinetic energy functional (together with
the form of interaction, which must be polynomial) restrain the type of quantizable the-
ories. When in doubt, one can physically discretize the field and go back to the usual
quantization procedure. From such a practical point of view, there is no major conceptual
difference between the quantization of particles and fields in quantum mechanics. Note
that, as Feynman and Stuckelberg have shown, the creation-destruction of particles is a
relativistic effect arising from the possibility of scattering backward-forward in time [22].

If one accepts the idea that classical events are generated by quantized processes and that
human beings (i.e., classical systems) can investigate the results of such processes, then (at
least in this author’s opinion) mere logic implies that classical events must also be included
in the initial conditions of quantum processes. In other words, the classical experimental
apparatus must be present at the beginning of a quantum event so that the investigation of
any quantized process is possible. Hence, the following question naturally arises: should
not the quantum formalism consider a mixture of classical and quantum coordinates from
the very beginning? In my opinion, the affirmative answer to the previous question is the
main logical motivation leading to the consideration of mixed quantum-classical theories.
In order to emphasizes this point, Fig. 2 represents metaphorically the general features of
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Figure 2. This picture symbolizes the general features of quantum processes. A
probe interacts with a microscopic system (depicted in terms of atomic orbitals
with accompanying waves) by means of the exchange of quanta (wavy lines with
arrows) of some field. The stairs are a symbol for the not-so-well understood
amplification (irreversible) process that must occur in order to reveal observable
features by means of some instrument. The latter is depicted in the picture as a
graded scale with a pointer. All this leaves the scientist puzzled.

a quantum process. Some instrument exchanges quanta (wavy lines with arrows) with a
microscopic system, depicted in terms of atomic orbitals with superimposed waves. The
effects of such an interaction must be amplified by a not-yet-understood process so that
they are registered by a macroscopic (classical) pointer [17]. All this leaves the physicist
in the picture puzzled. After a century from Planck and Einstein, the question remains:
What is the quantum?

On a less fundamental level, quantum-classical theories can also be introduced as an
approximation of descriptions where all coordinates are initially quantized. For example,
they can approximate the yet unknown theory of quantum gravity in order to describe
quantum effects on a classical gravitational background [6, 7].

Quantum-classical theories can also provide computable approximations of formalisms
with exponential complexity, such as the dynamics of interacting quantum many-body
systems in a condensed phase [5]. In the author’s knowledge there are two main viable
approaches to the calculation of quantum many-body phenomena in condensed matter sys-
tems. One is provided by time-dependent density functional theory [23] (which is so far
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limited to the linear response regime), while the other approach is provided by mixed
quantum-classical systems, e.g., systems where one has to study few quantum degrees of
freedom in a classical bath [5].

When studying quantum-classical systems there are two main situations that need to
be considered. The first occurs when there is no energy flux between the quantum and
the classical coordinates. Such theories are called adiabatic and they have been studied
since the beginning of quantum mechanics [2]. They pose no particular problem (if one
excludes the existence of so-called topological phases [24], which are, in fact, a form of
nonadiabatic correction). Many equivalent formalisms are available to formulate adiabatic
quantum-classical theories [25]. Perhaps, the simplest one adopts a Schrödinger’s picture
with a wave functional |Ψ(X, t)⟩, and operators Ĥ(X, t), χ̂(X, t), having a parametric
dependence on the classical coordinates X .

A second situation (which is much more complicated than the adiabatic one) occurs
when, instead, there is a flux of energy between the quantum and classical coordinates.
Such theories are called nonadiabatic. The classical X coordinates exchange energy di-
rectly with the quantum χ̂(X, t) operators. For such a reason, the Xs are dynamical
degrees of freedom on the same footing as the χ̂s. Accordingly, the X-dependence of
the quantum operator is no longer parametric. This leads to the so-called quantum back-
reaction problem: when energy flows to or from the χ̂s, the energy of the Xs must be
adjusted so that the total energy of the system is conserved. This turns out to be a diffi-
cult test for many formalisms. Typically, in the nonadiabatic case there are many different
non-equivalent approaches: probably the theory does not admit a unique expression.

3. Nonadiabatic dynamics of quantum-classical systems

As it is well-known, for a system where all coordinates are quantized one can introduce
an algebra in terms of the commutators of self-adjoint operators

[χ̂1, χ̂2] =

χ̂1 χ̂2


·B ·


χ̂1

χ̂2


(1)

where χi, i = 1, 2, are arbitrary self-adjoint operators and the commutator is written in
matrix form in terms of the co-symplectic matrix B:

B =


0 1
−1 0


. (2)

The commutator algebra is a Lie algebra where the Jacobi relation is satisfied identically:

[[χ̂1, χ̂2], χ̂3] + [[χ̂3, χ̂1], χ̂2] + [[χ̂2, χ̂3], χ̂1] = 0 . (3)

An important consequence of the Jacobi relation is that the commutator algebra is invariant
under time time translations:

Û(t− t0)[χ̂1(t0), χ̂2(t0)] = [χ̂1(t), χ̂2(t)] , (4)

where Û(t−t0) is the unitary operator realizing time-translations (i.e., the dynamics) of the
operators in the theory. In other words, relations established by means of the commutators,
which appear in the expression for observable quantities of the theory (such as correlation
functions), keep the same form regardless of the specific instant of time at which they are
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Figure 3. This drawing illustrates the so-called Eulerian picture of the quantum-
classical theory. For every point in phase space, (R,P ) or (R′, P ′), there is a
Hilbert space (symbolyzed by a cone) where dynamics with transitions between
energy levels takes place.

considered. This reflects the requirement that the expression of the laws (i.e., the form of
the equations) of physics should not depend on the instant of time considered.

It turns out that an algebra of quantum-classical operators [26] can be introduced along
lines which are very close to those followed in the case of the standard Hilbert space for-
malism of quantum mechanics. One can start by considering hybrid mathematical objects
such as χ̂(R,P, t) = χ̂(X, t). These entities describes self-adjoint operators defined for
every phase space coordinate X = (R,P ) of a classical-like manifold (see Fig. 3). For
each point in the manifold, there is a Hilbert space. A generalized commutator (which was
called non-Hamiltonian commutator in [26]) can be defined as

[χ̂1(X), χ̂2(X)]D =

χ̂1(X) χ̂2(X)


·D ·


χ̂1(X)
χ̂2(X)


, (5)

where

D =


0 1 + i~

2

←−
∂ ·B ·

−→
∂

−1− i~
2

←−
∂ ·B ·

−→
∂ 0


, (6)

with the derivative operator in phase space being defined by ∂ = ∂/∂X ≡ (∂/∂R, ∂/∂P )
(the arrows in Eq. (6) give the direction in which the operators act). The quantum-classical

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 89, No. 1, C1C8901002 (2011) [18 pages]



C1C8901002-8 A. SERGI

commutator defined in Eq. (5) introduces an algebra of quantum-classical operators that
has all the properties of a Lie algebra but one, i.e., the Jacobi relation fails:

[[χ̂1(X), χ̂2(X)]D, χ̂3(X)]D + [[χ̂3(X), χ̂1(X)]D, χ̂2(X)]D
+ [[χ̂2(X), χ̂3(X)]D, χ̂1(X)]D ̸= 0 . (7)

Since almost all the properties of a Lie algebra are satisfied (the Jacobi relation is not),
one might say that the quantum-classical commutator defines an almost-Lie algebra. One
important consequence of the failure of the Jacobi relation is that algebraic relations be-
tween quantum-classical operators, which are defined in terms of the quantum-classical
commutator in Eq. (5), are not time-translation invariant [26, 27]:

ÛD(t− t0)[χ̂1(t0), χ̂2(t0)]D ̸= [χ̂1(t), χ̂2(t)]D , (8)

where ÛD(t − t0) is the quantum-classical propagator. In practice, this means that some
relations obeyed by time dependent correlation functions within a Lie algebra are no longer
valid in the almost-Lie algebra defined by the quantum-classical commutator. It is very
important to note that the Heisenberg-like quantum-classical equation of motion

∂

∂t
χ̂(X, t) =

i

~


Ĥ, χ̂(X, t)


D

(9)

exactly conserves the energy. This constitutes a very nice feature of the quantum-classical
(almost-Lie) algebra since it solves (at least in principle) the back-reaction problem. It
must be noted that Eq. (9) is very naturally interpreted from an Eulerian point of view (see
Fig. 3): fixing the phase space point X , the matrix element of χ̂(X, t) can change in time.
This means that Eq. (9) must be solved in principle for every X , as one would do in a field
theory or, precisely, in the Eulerian picture of fluid dynamics.

The quantum-classical algebra, which has been introduced above as a postulate, can be
obtained by means of controlled approximations, starting from a partial Wigner represen-
tation of Heisenberg’s picture of quantum mechanics [9, 28]. One can start the derivation
from the quantum Heisenberg equation of motion

∂tχ̂ =
i

~
[Ĥ(r̂, R̂), χ̂(t)] . (10)

At this stage a partial Wigner transform can be defined as

ĤW (r̂, R, P ) =W

Ĥ(r̂, R̂)


=


dzeiP ·z/~⟨R− z

2
|Ĥ(r̂, R̂)|R+

z

2
⟩ . (11)

Equation (11) assumes that the integral transform is taken over a subset only of the degrees
of freedom of the system, e.g., only over those degrees describing the bath in which the
relevant quantum coordinates are embedded. The partial Wigner transform of the quantum
commutator gives exactly

W

[Ĥ(r̂, R̂), χ̂(t)]


= ĤW e

i~
2

←−
∂ ·B·

−→
∂ χ̂W − ĤW e

i~
2

←−
∂ ·B·

−→
∂ χ̂W , (12)

and, upon taking a linear approximation of the exponential operator in Eq. (12), one obtains

ĤW e
i~
2

←−
∂ ·B·

−→
∂ χ̂W ≈ ĤW χ̂W +

i~
2
ĤW
←−
∂ ·B ·

−→
∂ χ̂W . (13)
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This shows that the quantum-classical commutator in Eq. (5) is just a linear approximation
of the partial Wigner transform of the standard quantum commutator:

W

[Ĥ, χ̂]


≈ [ĤW , χ̂W ]D . (14)

Besides the exact energy-conservation property, another advantage of the quantum-
classical algebra is that it naturally leads to a systematic definition of the statistical mechan-
ics of quantum-classical systems [10]. To this end, one has to identify a quantum-classical
Liouville operator in terms of the non-Hamiltonian commutator:

iL =
i

~
[ĤW , ...]D . (15)

In turn, iL leads to the time evolution of a quantum-classical density matrix ρ̂W (X, t):

∂tρ̂W (t) = −iLρ̂W (t) . (16)

On this base, statistical averages of quantum-classical properties can be rigorously calcu-
lated as

⟨χ̂W (t)⟩ = Tr′


dXρ̂W (X)eiLtχ̂W (X) . (17)

The statistical mechanics of equilibrium ensembles can be naturally determined by solving
the equation

iLρ̂W,e(X) = 0 . (18)
As it happens in the complete Wigner representation of quantum mechanics [29, 30], a
solution for ρ̂W,e(X) can be found as a series expansion in powers of ~. Linear response
theory also follows from the quantum-classical Liouville equation, leading to a rigorous
definition of transport coefficients [31, 32].

Despite the controlled sequence of approximations leading from the partial Wigner rep-
resentation of Heisenberg quantum mechanics to the quantum-classical almost-Lie algebra,
there has been a lot of controversy in the literature about the mere possibility of defining a
consistent quantum-classical theory [33, 34, 35, 36, 37]. Here, the word “consistent” really
means “Lie algebra”. My opinion is that such a controversy is somewhat over-emphasized.
My first objection is that we do not know very much at the moment about almost-Lie al-
gebras, i.e., not all consequences of having an almost-Lie algebra in a quantum-classical
theory are known or fully understood. It might very well be that the almost-Lie algebra in
a quantum-classical theory hides some deeper physics that remains to be unveiled. In the
history of physics one can find plenty of concepts that were thought to be unsatisfying in
the beginning and that were later regarded as cornerstones: Renormalization in quantum
field theory [18] and entanglement-based non-locality [38, 39, 40] in quantum mechanics
seem to me prominent examples. In any case, one can look at the almost-Lie algebra in
quantum-classical theory as a theoretical sacrifice accepted in order to obtain a formalism
with which calculations are possible in practice. This is the idea of Approximate Compu-
tational Complexity applied to theory [27]. In Approximate Computational Complexity a
non-computable problemP characterized by a certain mathematical structure, described by
constraints σl = 0, with l = 1, . . . , nl, is mapped onto another problem P ′ characterized
by the relaxation of at least one constraint, for example σ1 ̸= 0. Typically, the mathemat-
ical structure of P ′ can be made to be dependent from some new numerical parameters
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kj , with j = 1, . . . , nj , controlling the violation of the constraint σ1. The mapping is
performed so that P ′ becomes computable. Moreover, for some specific choice of the nu-
merical parameters kj the solution of P ′ approximates that of P [27]. Almost-Lie algebras
(or non-Hamiltonian theories) implement the same strategy at the level of the theory itself:
by relaxing the Jacobi relation one is changing the structure of the theory. When the failure
of the Jacobi relation does not affect properties of interest within a specific investigation,
one has gained a computable theory (the almost-Lie algebra) in place of a non-computable
one (the Lie algebra) [26, 27]. This author believes that the above discussion provides a
logical (and practical) motivation for using quantum-classical approximations in the cal-
culation of interacting quantum many-body systems.

4. Sampling algorithms

In order to devise an algorithm for the computer simulation of quantum-classical dy-
namics, the abstract equations of the almost-Lie algebra (e.g, the quantum classical Liou-
ville equation) must be represented on some basis. The adiabatic basis is one possible con-
venient choice leading to a representation of nonadiabatic dynamics in quantum-classical
systems in terms of surface-hopping trajectories. Without too much loss of generality, one
can assume that the quantum-classical Hamiltonian is given by

HW =
P 2

2M
+ ĥW (r̂, R) , (19)

where P 2/2M is the kinetic energy of the classical degrees of freedom while their po-
tential energy, the energy of the quantum subsystem, and the coupling to the classical
coordinates are given by the operator ĥW (r̂, R). The adiabatic basis is simply defined by
the eigenstates of ĥW (r̂, R):

ĥW (r̂, R)|α;R⟩ = Eα(R)|α;R⟩ . (20)

The matrix elements of the quantum-classical Liouville operators are then given by [9]

iLαα′,ββ′ =
i

~
(ωαα′ + Lαα′) δαβδα′β′ + Jαα′,ββ′ (21)

= iL(0)
αα′,ββ′ + Jαα′,ββ′ , (22)

where a classical-like Liouville operator has been defined as

iLαα′ =
P

M
· ∇R +

1

2


Fα
W + Fα′

W


· ∇P , (23)

and Jαα′,ββ′ is a purely off-diagonal transition operator changing the quantum states and
the momenta of the classical degrees of freedom; it is defined by

Jαα′,ββ′ =
P

M
· dαβ(R)


1 +

1

2

∆Eαβdαβ(R)
P
M · dαβ(R)

∇P


δα′β′ (24)

+
P

M
· d∗α′β′(R)


1 +

1

2

∆Eα′β′d∗α′β′(R)
P
M · dα′β′(R)

∗

∇P


δαβ (25)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 89, No. 1, C1C8901002 (2011) [18 pages]



SAMPLING THE TIME EVOLUTION . . . C1C8901002-11

Figure 4. This drawing illustrates how the action of the quantum-classical Liou-
ville operator, iL, leads to a representation of the Eulerian picture of quantum-
classical dynamics in terms of Lagrangian trajectories: a change of probability
at (R,P ) can occur because a different configuration at (R′, P ′) is mapped onto
(R,P ) following a Lagrangian trajectory.

At this point, it is worth discussing one of the subtlest points of quantum-classical dy-
namics. In fact, in the previous section and in Fig. 3, such a dynamics has been interpreted
very naturally within an Eulerian point of view, according to which X is fixed and the
abstract equations of motion, Eq. (9), or their representation in the adiabatic basis, given in
terms of the Liouville operators in Eq. (22), must be solved for every X = (R,P ), which
is considered fixed. However, the total Liouville operator in the adiabatic basis is defined
in terms of the classical-like Liouville operator in Eq. (23). The action of this latter op-
erator is very naturally interpreted in terms of propagation of trajectories. As a result, the
time-dependence of matrix elements of arbitrary operators χ̂(X, t) in the Eulerian picture
of quantum-classical dynamics can be more conveniently calculated in the adiabatic basis
by using a Lagrangian point of view (see Fig. 4). According to this, for every fixed X ,
an ensemble of trajectories is propagated so that X will vary in time along each trajectory
of the ensemble. Very different phase space points can be reached at the end of each tra-
jectory. In any case, they all contribute to the time dependence of matrix elements at the
initial X (i.e., the Eulerian picture is more fundamental in quantum-classical dynamics).
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Figure 5. This picture represents the calculation of the nonadiabatic dynamics
of an observable in terms of a swarm of surface-hopping trajectories. The ob-
servable χ̂W (X, t) is represented at t = 0 by the set of values assumed at the
point X . Surface hopping trajectories are propagated so that final points X(t)
are obtained. The observable is evaluated at the new points and is also multi-
plied by the sampling weights (and phase factors) associated to its trajectory.
One must remember that all this is really implementing an Eulerian picture of
quantum-classical dynamics so that the final points X(t) and states (β, β′), at
the end of the Lagrangian trajectory, are just a means to calculate the time de-
pendence of the matrix elements (α, α′) at X . Once such a time dependence
has been found, weighted averages over X can be calculated in order to obtain
observable properties.

The action of the transition operator in Eq. (25) must be considered within a Lagrangian
implementation of the Eulerian quantum-classical dynamics discussed above. The defi-
nition in Eq. (25) is exact but would lead to a calculation with exponential complexity
because of the branching of trajectories caused by the action of the exact J operator (it
is worth remembering that J represents the quantum transitions caused by the interaction
with the classical coordinates). Hence, in order to obtain a computable algorithm one can
perform the so-called momentum-jump approximation of the transition operator [11]:

Jαα′,ββ′ ≈ JMJ
αα′,ββ′ (26)

=
P

M
· dαβ(R) exp


1

2

∆Eαβdαβ(R)
P
M · dαβ(R)

∇P


δα′β′ (27)

+
P

M
· d∗α′β′(R) exp


1

2

∆Eα′β′d∗α′β′(R)
P
M · d

∗
α′β′(R)

∇P


δαβ (28)

= Tα→β + Tα′→β′ . (29)
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In the momentum-jump approximation each of the two transition operators on the right
hand side of Eq. (29) change the quantum state and produce a shift of the classical mo-
menta:

Tα→βP = Pα→β = P +∆MJ
αβ P . (30)

Even if the momentum-jump approximation greatly simplifies the representation of
nonadiabatic dynamics, the calculation of

χαα′

W (X, t) =

ββ′


e

it
~ L

αα′,ββ′

χββ′

W (X) (31)

cannot be performed exactly since it is still of exponential computational complexity. What
one can do in order to obtain a computable algorithm is mapping the propagation onto a
stochastic process with an importance sampling of the occurrence of the quantum transi-
tions [11]. Figure 5 gives a pictorial representation of quantum-classical dynamics in terms
of hopping trajectories. For small coupling strengths between the quantum and the clas-
sical subsystems, one can use a linear approximation of the quantum-classical propagator
for a small time step τ :

eiLτ

αα′,ββ′ ≈ eiL

(0)

αα′τδαβδα′β′

1 + τJMJ

αα′,ββ′


, (32)

where at each time step one has to sample the occurrence of transitions (due to the action
of Jαα′,ββ′ ). A trajectory of finite length is obtained by a concatenation of many short
time steps. This leads to a representation of nonadiabatic dynamics in terms of piecewise
deterministic trajectories, connected by quantum transitions.

A primitive sampling scheme of the nonadiabatic transitions [41] can be defined upon
introducing the probability P(0)

α→β of realizing the transition α → β, together with the

probability of rejecting such a transition, Q(0)
α→β . Naturally, the normalization condition

P(0)
α→β +Q(0)

α→α = 1 (33)

must be obeyed. In the primitive scheme the transition probabilities are defined as

P(0)
α→β =

τ | PM · dαβ |
1 + τ | PM · dαβ |

=
τ |⟨α|β̇⟩|

1 + τ |⟨α|β̇⟩|
, (34)

Q(0)
α→β =

1

1 + τ |⟨α|β̇⟩|
. (35)

The definitions (34) and (35) naturally arise by considering the weighting factor (P/M) ·
dαβ appearing in the transition operator in Eq. (29). Because of the sampling scheme,
each trajectory entering in a stochastic realization of the propagation in Eq. (31) acquires a
multiplicative weighting factor at each time step τ equal to [P(0)

α→β ]
−1 when the transition

α→ β is accepted, and to [Q(0)
α→β ]

−1 when it is rejected. The total weight of the trajectory
grows in time and this leads to numerical instabilities, since after a certain time threshold
(which varies depending on the particular model and numerical parameters of the calcula-
tion) the statistical fluctuations of the observable are amplified excessively. This numerical
amplification of statistical fluctuations is an artifact of the primitive sampling scheme.

One can note that the spurious amplification of fluctuations due to the sampling weight
could be tamed if a rejected transition would have a weight equal to unity (as expected in
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an adiabatic scheme). In such a way the growth of the statistical weight could be limited.
Since the primitive transition probabilities in Eqs. (34) and (35) are to a certain extent
arbitrary, one could redefine them in terms of an additional weight w(cE) [12], depending
on the numerical parameter cE . This idea leads to the expressions

Pα→β =
τw (cE) |⟨α|β̇⟩|

1 + τw (cE) |⟨α|β̇⟩|
, (36)

Qα→α = 1− Pα→β . (37)

Many choices for w can be devised. At the time of writing we have (successfully) tested
the following recipe arising from considering the energy variation associated to a quantum
transition

Eαα′,ββ′ =
P ′2

2M
+

1

2
(Eα(R) + Eα′(R))− P 2

2M
− 1

2
(Eβ(R) + Eβ′(R)) , (38)

upon defining the generalized weight as

w (cE) =


1 if |Eαα′,ββ′ | ≤ cE
0 otherwise

. (39)

The effect of the generalized sampling weight defined in Eqs. (36), (37), (38), and (39)
is that of realizing a pruning of the allowed nonadiabatic transitions: out of the whole
ensemble, only those transitions with Eαα′,ββ′ = 0 are performed. In those regions the
variation of the momenta because of the quantum back-reaction is small. This controls
the numerical validity of the momentum-jump approximation and improves the numerical
stability of the sampling scheme.

This can be illustrated by performing some numerical calculations of the relaxation
dynamics of the spin-boson model [12]. The spin-boson model [42] is defined by the
following Hamiltonian:

ĤW = ĤS +HW,B + ĤW,SB , (40)

where the system Hamiltonian ĤS describes a tunnelling spin

ĤS = −Ωσ̂x , (41)

the bath Hamiltonian is given in terms of a number N of harmonic oscillators

HW,B =

N
J=1

P 2
J

2
+

1

2
ω2
JR

2
J , (42)

and the spin-oscillator coupling is linear

ĤW,SB = −σ̂z

N
J=1

cJRJ . (43)

In Eqs. (41) and (43), σ̂x and σ̂z are the Pauli spin matrices. One must note that adi-
mensional coordinates are used [11]. The phase space coordinates of the oscillators are
(RJ , PJ), while ωJ and cJ are oscillator frequencies and coupling constants of the spin,
respectively. Their values are chosen in order to provide an Ohmic spectral density of the
bath [42].
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Figure 6. Comparison of the population decay calculated by means of the gen-
eralized sampling (black bullet) and by means of the primitive sampling (white
triangles). The parameter values of the calculation are β = 0.3, Ω = 1/3, and
ξ = 0.007. The generalized sampling scheme remains stable, with small sta-
tistical errors, up to t = 30, while the primitive sampling experiences too large
numerical fluctuations already at t = 15.

The relaxation dynamics of this model has been investigated by considering an initial
density matrix (written in the subsystem basis) describing a bath in thermal equilibrium
with the spin in an excited state:

ρW (t = 0) =


1 0
0 0


ρ
(eq)
W,B(X;β) . (44)

Time-evolution and the coupling to the bath lead to a dissipation of the population of the
excited state of the spin. Figure 6 compares the decay of the population at long time calcu-
lated by means of the primitive sampling with that calculated by means of the generalized
sampling scheme for the set of parameter values β = 0.3, Ω = 1/3, and ξ = 0.007. The
generalized sampling scheme remains stable, with small statistical errors, up to t = 30,
while the primitive sampling experiences large numerical fluctuations already at t = 15.
A more dramatic improvement is obtained for the parameter values of β = 12.5, Ω = 0.4,
and ξ = 0.09. These results are shown in Fig. 7. In this case the generalized sampling
scheme remains stable up to t = 100 while the primitive recipe already fails at t = 12.
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Figure 7. Comparison of the population decay calculated by means of the gen-
eralized sampling (black bullets) and by means of the primitive sampling (white
triangles). The parameter values of the calculation are β = 12.5, Ω = 0.4, and
ξ = 0.09. The generalized sampling scheme remains stable, with small statis-
tical errors, up to t = 100, while the primitive sampling experiences too large
numerical fluctuations already at t = 12.

5. Conclusions and perspectives

Quantum-classical formalisms lie at the very heart of the conceptual structure of quan-
tum mechanics. From a practical perspective, they provide an approximate computational
theory of quantum dynamics. The statistical mechanics of quantum-classical systems
can be rigorously defined by means of non-Hamiltonian brackets, leading to a quantum-
classical Liouville equation for the density matrix. Systematic and computable approxima-
tions to the back-reaction problem can also be found. The momentum-jump approximation
is one of these and it has been proven to give good numerical results. The nonadiabatic
dynamics of quantum-classical systems is mapped for computational purposes onto a sto-
chastic process comprised of adiabatic trajectory pieces and quantum jumps. A generalized
mathematical structure for the long time sampling of quantum-classical dynamics has been
found and shown to provide exceptionally good numerical results in the case of the relax-
ation dynamics of the spin-boson model.

The generalized structure for the stochastic sampling of nonadiabatic dynamics opens
some interesting perspectives for future applications. One can think of applying the algo-
rithm to processes involving quantum transport in models of both solid state devises and
biological systems, where stability at long times is required. Moreover, the choice of w
is by no means unique and one can imagine alternative definitions of the sampling weight
specifically suited for the problem under investigation.
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