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Abstract 

 

Geochemical tracers have been exploited to achieve an improved 

understanding of hydrogeological processes in the Lower Rhine Embayment, 

Germany. Dissolved noble gas measurements have been supported by stable isotope 

and hydrochemical data to form a multi-tracer approach. Helium measurements have 

been used to provide insight into groundwater residence times and the role of fault 

zones on local and regional groundwater flow dynamics. 

The hydrogeology of the Lower Rhine Embayment is complex and dynamic. 

The geology consists of unconsolidated siliciclastic sedimentary deposits with a 

number of laterally continuous lignite seams. Large scale open cast lignite mining in 

the region has a significant impact on the groundwater system primarily due to water 

abstraction at a rate of 500 million m3 year-1 and subsequent lowering of the water 

table. Local groundwater monitoring suggests that groundwater levels are recovering 

in areas close to abandoned mines but the long-term implications of mine de-watering 

on this scale remain uncertain. The layered aquifer system is intersected by numerous 

NW-SE striking fault zones that have been shown to have the potential to act as both 

barriers to groundwater flow and as preferential flow paths that connect deep and 

shallow aquifers. 

Groundwater samples taken from observation boreholes in close proximity to 

fault zones have provided results that indicate depleted δ2H and δ18O values relative to 

modern groundwater recharge, and 4He concentrations in the shallow aquifers of up to 

1.7x10-4 cm3 STP g-1 H2O which is approximately 3-4 orders of magnitude higher than 

expected due to solubility equilibrium with the atmosphere. Groundwater exchange 

between the deep basal aquifers and the upper aquifer layers is impeded by confining 

clay layers and very low permeability lignite. This suggests that palaeo groundwater 

from depth is mixing with modern groundwater of meteoric origin in the shallow 

aquifers as a result of conduit flow from depth towards the upper aquifer layers within 

the fault zone, and so confirming the fault zone control model of Bense and Person 

(2006).  
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1. Introduction 

 

1.1. Overview 

The research presented within this thesis primarily describes a multi-tracer 

analysis of groundwater dynamics in the Lower Rhine Embayment, Germany.  

The dissolved noble gases of helium (He), neon (Ne), argon (Ar), krypton (Kr) 

and xenon (Xe) were utilised to gain an improved understanding of groundwater flow 

paths associated with fault zones and to estimate the subsurface residence time of 

deep circulating groundwater in the Lower Rhine Embayment. Dissolved noble gas 

concentrations were also used to calculate noble gas recharge temperatures and to 

determine excess air concentrations. The stable isotopes of hydrogen, oxygen and 

carbon were used in conjunction with routine hydrochemical data such as major and 

minor ion concentrations to provide additional evidence for determining groundwater 

origin, recharge conditions and hydrochemical evolution.   

The study area is morphologically expressed as the Lower Rhine Embayment 

(LRE) and forms part of the Roer Valley Rift System (RVRS) which is the southward 

extension of the North Sea Basin (see Figure 2.1) and part of a Cenozoic mega-rift 

system that crosses western and central Europe (Ziegler, 1994). The German region of 

the Lower Rhine Embayment contains approximately 1300 m of Oligocene to 

Pleistocene unconsolidated siliciclastic sediments that form a complex layered aquifer 

system. The layered aquifer system is intersected by numerous NW-SE striking fault 

zones that have been shown to have the potential to act as both barriers to 

groundwater flow and as preferential flow paths (Bense and Person, 2006). Fault 

zones play a fundamental role in understanding groundwater flow dynamics in the 

Lower Rhine Embayment and fault bounded tectonic blocks form key structural 

features that have a large influence on local and regional groundwater flow patterns. 
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The sedimentary basin also contains several commercially important lignite seams. 

The main lignite seam has a total thickness of up to 100 m (Hager, 1993) and is 

currently being exploited by RWE Power AG in three large open cast mines.  

The Erftverband is a public organisation that was established in the 1950s to 

provide comprehensive surface water and groundwater management for the German 

region of the Lower Rhine Embayment. The Erftverband core region is essentially the 

catchment of the river Erft and covers an area of 1,920 km2 but the wider Erftverband 

territory extends to cover an area of 4,220 km2 within the State of North Rhine 

Westphalia. The human population of the region is approximately 750,000 and land 

use varies from wetland habitats and agriculture to open cast lignite mining, lignite 

refining plants and other heavy industries such as chemical processing plants. This 

diversity often leads to a conflict of interests and as a result, management and 

conservation projects are often complex and difficult to implement efficiently and 

cost effectively. The Lower Rhine Embayment lignite mining industry was the focus 

of intense Greenpeace demonstrations in 2004. 

Groundwater monitoring programmes in the region have been given high 

priority status and the Erftverband in collaboration with RWE Power AG have 

established an extensive network of 15,000 observation boreholes and piezometer 

nests to monitor the effects of regional lignite mining activities, and in particular the 

impact of large scale groundwater abstraction and lignite mine de-watering (500 

million m3 of groundwater year-1) on local and regional groundwater flow dynamics. 

Groundwater monitoring has already provided strong evidence that lignite mine de-

watering is responsible for lowering the water table in some areas and for a noticeable 

decline in the baseflow of local rivers as well as endangering susceptible wetland 

habitats (Erftverband, 2006). To date, approximately 30,000 people have been re-
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settled as a result of open cast lignite mining. The current working depths of the mines 

are up to 350 m but it is anticipated that the entire lignite seam will be exploited in the 

future, so depths will increase to 500 m at some locations. 

 

 

1.1.1. Aims and objectives 

 

The aim of the research presented in this thesis is to develop an integrated 

assessment of groundwater flow dynamics in the Lower Rhine Embayment aquifer 

system using hydrochemical tracers (major and minor ions), stable isotopes (δ2H, 

δ
18O, δ13CDIC) and dissolved noble gases (He, Ne, Ar, Kr and Xe) interpreted in the 

context of examining geochemical evidence for the conduit-barrier fault zone model 

of Bense and Person (2006). 

  

Under this aim, a number of objectives have been fulfilled as follows: 

  

1. To investigate the relationship between noble gas determined excess air 

concentrations and temporal variations in water table fluctuations caused by lignite 

mine de-watering. 

  

2. To determine the influence of fault zones on groundwater flow paths, and identify 

fluid flow conditions and transport mechanisms associated with advective flow from 

depth. 

  

3. To calculate noble gas recharge temperatures to identify modern and palaeo 

groundwaters within the complex multi-layered aquifer systems of the Lower Rhine 

Embayment. 
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1.1.2. Thesis structure 
 
 

Chapter 1 provides a general overview of the research and states the 

fundamental aim and objectives of the investigation. Chapter 1 also includes a brief 

description of the study area and outlines the multi-tracer approach that has been 

applied.  

Chapter 2 provides a comprehensive account of the regional hydrogeology of 

the Lower Rhine Embayment and describes the open cast lignite mines and their 

impact on groundwater flow patterns. Chapter 2 defines the aquifer units and their 

distribution and illustrates the hydraulic head distribution and the influence of fault 

zones. Chapter 2 also provides general climatic information that relates to the study 

area and an overview of fault zone processes in sedimentary basins.  

Chapter 3 provides a critical review of the literature relevant to the application 

of dissolved noble gases in determining noble gas temperatures, and the numerical 

models that are available for calculating noble gas temperatures and noble gas 

determined excess air concentrations. Chapter 3 also provides a general overview of 

stable isotopes in groundwater and Rayleigh fractionation processes. The reader is 

referred to relevant review papers or texts where appropriate.  

Chapter 4 outlines all the methods used for sample collection and preparation 

as well as the analytical procedures used and the associated instruments and analysers. 

Chapter 4 describes the isotope dilution technique and the quadrupole mass 

spectrometer used for dissolved noble gas analysis as well as the isotope ratio mass 

spectrometry (IRMS) methodology.  

Chapter 5 presents the results of the stable isotope and dissolved noble gas 

analyses as well as the routine hydrochemical analyses that were conducted by the 



 5 

Erftverband in Bergheim, Germany. Where possible the results have been presented 

using spatial distribution plots to illustrate how the parameter varies with aquifer 

properties and recharge provenance.  

Chapter 6 consists of three key sections in which hydrochemical, stable 

isotope and dissolved noble gases are discussed and evaluated respectively. Chapter 6 

concludes by presenting a conceptual hydrochemical model for groundwater flow 

dynamics in the Brühl region of the Lower Rhine Embayment. 

Chapter 7 provides a concise concluding statement that summarises the most 

important findings and finishes with a number of suggestions for further work that 

would significantly enhance our understanding of groundwater dynamics in the Lower 

Rhine Embayment, Germany.  
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2. Hydrogeology of the Lower Rhine Embayment 

 

2.1. Geological Setting 

2.1.1. Geological formation – Oligocene to Pleistocene (33.7 to 0.01 Myr BP) 

The Lower Rhine Embayment (LRE), Germany, is part of the Roer Valley Rift 

System (RVRS), also referred to as the Lower Rhine Basin which is the southward 

extension of the North Sea Basin (Figure 2.1) and part of a Cenozoic mega-rift system 

that crosses western and central Europe (Ziegler, 1994). The SE region of the Lower 

Rhine Basin is morphologically expressed by the Lower Rhine Embayment.  

The formation of the Lower Rhine Embayment began during the Oligocene 

with the subsidence of the Lower Rhine Basin along NW-SE striking faults on the 

edge of the Rheinisches Schiefergebirge (Rhenish Slate Range) allowing the North 

Sea to create a marine rift basin that cut into the headlands of the Rhenish Massif to 

form the Lower Rhine Embayment. The German region of the Lower Rhine Basin 

contains approximately 1300 m of Oligocene to Pleistocene sediments with a main 

lignite seam that has a total thickness of up to 100 m and an upper seam that has a 

thickness of up to 40 m (Hager, 1993). The main seam occupies the central part of the 

basin and the upper seam is found towards the margins of the Basin (Hager, 1993).  

Sedimentation of the Lower Rhine Basin began during the late Oligocene as 

the North Sea breached the basin due to prior subsidence and resulting in the 

formation of shallow marine sediments (Schäfer et al., 1996). The Miocene marked 

the end of a cyclic sedimentation pattern caused by a number of North Sea 

transgressions and the marine habitat was succeeded by a coastal plain habitat 

dominated by swamp and forest ecosystems (Schäfer et al., 1996). The layers of peat 

that formed during this epoch created the lignite seams that are exploited today in the 

large scale open cast mining activities of RWE Power AG (see Figure 2.3). 
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Figure 2.1. The Roer Valley Rift System (RVRS) and Lower Rhine Embayment (LRE) in 

Germany and The Netherlands with spatial reference to the North Sea Basin and including 

the major faults (after Bense et al., 2003). 
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During the Pliocene the North Sea retreated further providing an opportunity for 

a number of fluvial systems to develop and as the Lower Rhine Basin stabilised, 

terrace gravels of the river Rhine spread to cover the lowland areas. Schäfer et al. 

(2005) state that the sediments of the Lower Rhine Basin primarily consists of 

Oligocene, Miocene and Pliocene marine sediments and that the more recent 

Pleistocene sediments are mainly fluvial deposits derived from the Rhenish Massif in 

the south. The sediments derived purely from the Rhenish Massif are comprised of 

gravels that are characterised by having >90% quartz material in the coarse gravel 

fraction and the remaining sediment is made up of quartzites (Boenigk, 2002). Highly 

porous loess soils have formed due to the accumulation of wind blown silts, sands and 

clays, and these overlay the Pleistocene deposits. The reader is referred to Boenigk 

(2002) for a detailed mineralogical analysis of the shallow fluvial deposits of 

Pleistocene age, and to Kemna (2008) for the Pliocene and Lower Pleistocene 

deposits.  

 

2.1.2. Deep sedimentary sequences and the crystalline basement 

The geological structures that underlie the sediment deposits that form the 

deepest sand aquifers of Oligocene age are less well known. The oldest sequences 

identified from borehole records are Palaeozoic. It is known that carboniferous strata 

with a total thickness of up to 2.5 km is underlain by approximately 2 km of clastic 

sedimentary rocks, limestone and evaporites, and a Devonian sequence of unknown 

thickness and composition; which is believed to represent the beginning of the 

basement (Geluk et al., 1994). The depth of the lower crust is given by the 

Mohorovičić Discontinuity which ranges from 27 km below the centre of the Roer 

Valley Graben to 30 km beneath the Peel Block (Figure 2.2) in the NW part of the 

Lower Rhine Embayment (Rijkers et al., 1993). Lower Jurassic sandstone and 
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claystone sequences with a total thickness of up to 1.5 km are found beneath the 

Cenozoic sand deposits, and they overlie Permian-Triassic sandstone and 

conglomerate material (Geluk et al. 1994). A Cretaceous sequence is limited to the 

Peel Block and in this region separates the Cenozoic and Lower Jurassic strata (Geluk 

et al., 1994).  

 

 

 

Figure 2.2. Overview map illustrating the tectonic structure of the Lower Rhine Embayment 

(shaded region in Figure 2.1) including the location of tectonic blocks and regionally 

significant faults. The shaded grey area represents the extent of the Schiefergebirge (Bense 

and van Balen, 2004). 
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2.1.3. Geological structures adjacent to the Lower Rhine Embayment 

The Lower Rhine Embayment cuts into the headlands of the Rhenish Massif 

(Schiefergebirge) to the south, southwest and east (see Figure 2.2). This geological 

Massif is an uplifted region where Palaeozoic (mainly Devonian) strata outcrop. The 

Rhenish Massif is made up of the Ardennes and Eifel mountain belts to the west of 

the river Rhine and the Saulerland and Siegerland regions to the east of the river 

Rhine. The Aachen hot springs emanate from the Devonian limestone at the Variscan 

thrust front of the Rhenish Massif in close proximity to the western flank of the Lower 

Rhine Embayment. The hot springs of the Aachen region contain Na-Cl type 

groundwater that is believed to originate from the leaching of evaporites (Herch, 

2000). Geochemical data suggests that the hot spring water has a meteoric origin but 

the exact recharge area is unknown (Herch, 2000). The occurrence of trace elements 

led Herch (2000) to conclude that the groundwater must have a long residence time 

and by using SiO2-geothermometry Herch (2000) was able to estimate a circulation 

depth of >3.5 km. The deep circulating groundwater that emanates from hot springs in 

the Aachen region could help to elucidate the origin of deep basinal fluids that are 

found at shallow depth within the Lower Rhine Embayment (see Chapter 6).  

To the west of the Ardennes lies the Paris Basin. The Paris Basin is a broad 

shallow bowl-like structure that consists of successive marine deposits of Triassic to 

Pliocene age and overlies a faulted basement. The Paris Basin has a diameter of 350 

km and a maximum total thickness of 3 km. The Dogger aquifer is a middle Jurassic 

formation of oolites, marls and limestone. It is 500 m deep, has a total thickness of up 

to 230 m and overlies a Trias sandstone formation which forms the base of the aquifer 

system (Lavastre et al., 2005). Overlying the Dogger aquifer is the Lusitanian 

limestone formation which contains marls that seal large parts of the system. 

Neocomian shales overlie the Lusitanian limestones, and the Albian formation which 
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consists of sandstones overlies the Neocomian shales (Marty et al., 1993). The entire 

system is confined by 500 m of clays, chalk, limestone and marls (Marty et al., 1993). 

The hydrogeology and geochemistry of the Paris Basin have been the focus of 

numerous studies and as a result is very well constrained (eg. Fontes and Matray, 

1993; Matray et al., 1994; Pinti and Marty, 1995; Pinti et al., 1997; Castro et al., 

1998; Marty et al., 2003; Lavastre et al., 2005; Lavastre et al., 2010).  

 

 

2.1.4. Lignite deposits 

Lignite is often referred to as brown coal. It is a brownish organic sedimentary 

material with characteristics that place it between peat and sub-bituminous coal: 

 

Peat → Lignite → Sub-Bituminous Coal → Bituminous Coal → Anthracite 

 

Lignite has a soft woody texture and is formed in swamp-like ecosystems. It is 

considered as the lowest grade of coal because of its low energy density and has a 

carbon content of 25-35%. The progression of peat through to anthracite represents 

organic metamorphism caused by exposure to heat, burial pressure and compaction 

over time. The burial and compaction of peat creates lignite – considered to be a low 

grade immature coal. As lignite matures and undergoes further organic 

metamorphism, the oxygen and hydrogen content decreases and the carbon content 

increases leading to a harder and darker material that is classified as sub-bituminous 

coal. Further organic metamorphism creates bituminous coal, whilst anthracite 

represents the highest rank of coal and ultimate maturation with a carbon content of 

over 87% (Tucker, 2003).  
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Figure 2.3. An overview map illustrating the location of the Garzweiler, Hambach and Inden 

lignite mines in the Lower Rhine Embayment. These are currently the only active mines but 

the orange outlines show the boundary of previous mines (Fortuna, Bergheim and Frechen) E 

and SE of Bergheim that have since been restored for recreational use and useable farmland. 
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The lignite deposits of the Lower Rhine region form one of the largest reserves 

in Europe. The region has an estimated reserve base of 55,000 Mt (Hager, 1993) and 

operations are scheduled to continue until 2045. Lignite deposit boundaries are 

established by the observed thinning of the seam and significant downward 

displacement by tectonic activity – lignite seams have been displaced by up to 500 m 

along fault planes in some areas (Hager, 1993). The Miocene lignite deposits of the 

Rhine Basin are characterised by a moisture content of 50-60%, an ash content of 1.5-

8.0%, a sulphur content of 0.15-0.50% and a heat value of 7.8-10.5 MJ kg-1 (RWE 

Power AG). The lignite reaches a depth of 500 m and is overlain by more recent clay, 

sand and gravel deposits (Figure 2.4). The overburden thickness can be up to 300 m 

(RWE Power AG). A large proportion of the lignite mined in the Lower Rhine 

Embayment is used as fuel at five large power stations in close proximity to the open 

cast mines. For a comprehensive analysis of the Lower Rhine Basin lignite deposits 

and their formation the reader is referred to Mosbrugger et al. (1994). 

 

 

 

Figure 2.4. Geological cross-section illustrating the position of the main lignite seams and the 

location of the open cast lignite mines; Hambach and Inden (after Bense et al., 2008). 
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The Hambach, Garzweiler and Inden mines (Figure 2.3) are currently the only 

active mines in the region. The Hambach mine exploits the main lignite seam within 

the Erft block (see Figure 2.4). The Garzweiler I and II mines (Figure 2.5) are located 

at the southern edge of the Venlo block whilst the Inden mine exploits a number of 

smaller seams that occur in the Rur block. Earlier mining activities were focused 

along the Lövenicher and Erft faults where the lignite seam was typically at shallow 

depth. The Fortuna, Bergheim, Frechen and Ville mines that were situated along the 

Erft fault from NW-SE respectively (Figure 2.3) are now redundant and have been 

filled with spoil from the currently active mines. It is stated by the Erftverband (2006) 

that the land has subsequently been restored to useable farmland and land used for 

recreational purposes.  

 

 
 
Figure 2.5. A view of the Garzweiler II open cast mine in 2009 and the lignite fuelled power 

stations in the distance. Note the large spoil deposit to the left of the power stations. 

 



 15 

2.2. Hydrogeology  

2.2.1. The multi-layered aquifer system 

The German region of the Lower Rhine Embayment consists of five tectonic 

blocks. The central Erft block is adjacent to the Köln block to the east and the Rur 

block to the west whilst the Krefeld and Venlo blocks are situated northeast and 

northwest respectively (see Figure 2.2). Each of these tectonic blocks contains 

unconsolidated siliciclastic sedimentary deposits of up to 1300 m thick that produce a 

complex multi-layered aquifer system consisting mainly of sands and gravels and 

intercalated with low permeability clays and two main lignite seams (Figure 2.6). 

RWE Power AG has produced a hydrogeological schematisation (RWE-

Reviermodell) of the multi-layered aquifer system for each tectonic block (Figure 

2.6). This schematisation forms the basis for deriving model layers that have 

subsequently been used to generate hydraulic head contour maps for each of the main 

aquifer sequences using observation borehole data from the 1970s to the present day. 

Examples of these model outputs are given in Figure 2.9 and include four aquifer 

sequences ranging from shallow to deep using borehole data from 2005. Borehole 

logs provided by the Erftverband illustrate that the stratigraphy is more complex than 

the hydrogeological schematisation first suggests (Figure 2.8). Aquifer media and 

thickness vary on a local scale to some extent in many areas and this can have an 

impact on local groundwater flow patterns, especially where low permeability clay 

layers are present. Figure 2.7 and Figure 2.8 represent observation boreholes that are 

just 2 km apart with no geological boundaries or features partitioning them. The 

lithology and stratigraphy both display a degree of disparity. However, the large 

regional discontinuous nature of the aquifers, primarily due to the juxtaposition of 

fault bounded tectonic blocks that create a horst-graben system, has a much larger 

impact on groundwater flow dynamics than small local variations. 
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Figure 2.6. The complexity of the multi-layered aquifer system is illustrated by the hydrogeological schematisation of each tectonic block in 

the Lower Rhine Embayment (RWE Power AG). 
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Figure 2.7. Borehole log for the Brühl 1 piezometer nest. Borehole identification numbers are 

27/957981 and 27/957982 for the shallow and deep piezometers respectively. Note the 3 m 

thick confining clay layer between 25 m and 28 m and a shallow sand sequence below the 

loess. 
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Figure 2.8. Borehole log for the Fischenich piezometer nest.  Borehole identification numbers 

are 27/957822, 27/957823 and 27/957824 for the shallow, intermediate and deep piezometers 

respectively. Note the absences of the 3 m thick clay layer and the shallow sand sequence, 

along with the additional silt and loess deposits. 

 



 19 

2.2.2. Regional flow patterns 

Regional groundwater flow patterns have been determined by examining the 

hydraulic head distribution within each tectonic block. This was first completed on a 

regional scale in the 1960s by the Erftverband, whilst Wallbraun (1992) looked at the 

impact of faults on hydraulic head distribution in the Lower Rhine Embayment as part 

of a PhD Thesis and the findings were also later reported by Bense (2004). This 

approach is made quite complicated by the large number of aquifer units that have 

been identified in the layered system (Figure 2.6). Each aquifer responds differently to 

the groundwater abstraction that occurs at each of the large open cast lignite mines 

(see Figure 2.9). Regional lowering of the water table can be observed to a greater 

extent in some of the deeper aquifer layers and is essentially dependent upon the 

depth at which groundwater is abstracted ie. the specific aquifer sequence and the 

connectivity of the aquifer layers. It can be seen from Figure 2.9 that hydraulic head 

distribution varies significantly between each fault bounded tectonic block. The 

largest influence on hydraulic head is clearly mine de-watering and the cone of 

depression that exists beneath each of the major lignite mines provides good evidence 

to support this (see Figure 2.11). However, it can also be seen that in some areas the 

major graben fault structures act as sealing mechanisms and support large hydraulic 

head gradients (eg. the Rurrand Fault) but in other areas fault zones appear to have 

little influence on horizontal groundwater flow and hydraulic head distribution. 

Therefore, spatial variability in fault zone permeability must exist as a result of the 

physical properties of a given fault and due to various deformation processes that 

commonly occur in sedimentary faulted basins such as cataclasis, diagenesis and clay 

smearing (see Section 2.4.2). In many cases the juxtaposition of an aquifer unit 

against sealing lithology as a result of faulting, and the relative thickness of each unit 
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is the most likely cause of the observed hydraulic head gradients across some of the 

fault zones in the Lower Rhine Embayment (Wallbraun, 1992). 

 

 

 

Figure 2.9(A-D). Model generated hydraulic head distribution of the Lower Rhine Embayment using 

RWE’s hydrogeological schematisation (Figure 2.6) of the aquifer layers and based on observation borehole 

data from 2005. The model outputs A to D represent increasing aquifer depth, with the deeper aquifers being 

impacted to a greater extent by lignite mine de-watering than the shallow aquifers (RWE-Reviermodell, 

Erftverband). 
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The observation boreholes situated in the Lower Rhine Embayment are 

generally not used for pumping test purposes but the hydraulic properties of the 

aquifer system have been modelled extensively in terms of hydraulic conductivity by 

RWE Power AB using their groundwater model (Figure 2.10). According to the 

model results, the sand and gravel aquifers have a typical hydraulic conductivity in 

the range of 10-6 m s-1 indicated by the blue shaded regions in Figure 2.10, but also 

increase to 10-3 m s-1 in some areas. Investigations made by the Ruhr-University 

Bochum found the total porosity to be 39% and the effective porosity to be between 

20 and 26% using model simulations (pers. comm. Nils Cremer, 2010). The typical 

range for total porosity and effective porosity values for unconsolidated sedimentary 

deposits are given in Table 2.1 and are in agreement with the modelled results. 

 

 
          Table 2.1. Typical values of porosity for unconsolidated sedimentary deposits. 

Total porosity Effective porosity 
Deposit 

(%) 

Gravel 
Sand 
Silt 
Clay 

25-40 
25-50 
35-50 
40-70 

13-44 
16-46 
1-39 
1-18 

                (Freeze and Cherry, 1979) 
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Figure 2.10. Hydraulic conductivity of the Lower Rhine Embayment based on RWE’s 

groundwater model for the entire lignite mining region (RWE-Reviermodell, Erftverband). 

 

 

2.2.3. Groundwater conditions and recharge zones 

The aquifer units of the Lower Rhine Embayment are intercalated with clay 

layers and several lignite seams of low permeability. Figure 2.9A provides evidence 

that large scale lignite mine de-watering has less impact on the shallow aquifer layers 

because the level of groundwater drawdown is lower than that observed in the deeper 

aquifers from which the groundwater abstraction occurs (Figure 2.9C and Figure 
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2.9D), suggesting that there is limited connectivity between aquifers in these areas 

and allowing perched water table conditions to develop in the upper part of the aquifer 

system. 

The direction of groundwater flow on a regional scale is generally from south 

to north. On a local scale, groundwater flow is influenced by topographic features and 

natural discharge areas include the Rhine and Maas rivers (Bense, 2004). However, 

large scale lignite mine de-watering has created enhanced groundwater flow 

conditions and combined with the sealing properties of the major graben faults, has 

significantly altered natural groundwater flow conditions as well as creating 

additional discharge areas. The large lignite mines of Hambach, Inden and Garzweiler 

are now essentially acting as artificial discharge zones. 

Recharge zones are typically indicated as topographically elevated areas where 

the water table reaches a maximum height (Freeze and Cherry, 1979). By analysing 

the hydraulic head distribution in the shallow unconfined aquifers (Figure 2.9A) one 

can deduce that the most important groundwater recharge zones are located in the 

south and along the south western flank of the Lower Rhine Embayment, in areas 

where the topographic elevation and potentiometric surface reach a maximum. The 

Erftverband has recently implemented an artificial recharge programme in an area 

northwest of the Garzweiler lignite mine in an attempt to resolve some of the 

problems associated with the regional lowering of the water table (pers. comm. Nils 

Cremer, 2008). Herrmann et al. (2009) conducted a groundwater recharge rate 

modelling study of the Lower Rhine Embayment which focussed specifically on 

direct recharge to the shallow Pleistocene deposits of the Rur Block. Herrmann et al. 

(2009) calculated a mean recharge rate of 170 mm year-1 for the Rur Block region 

which equates to approximately 25% of the precipitation received.  

 



 24 

 

Figure 2.11. Hydraulic head distribution within the deeper aquifer system of the Lower Rhine 

Embayment (Figure 2.9D) with spatial reference to the Hambach and Garzweiler lignite mines. 

Note the cone of depression below each mine created by de-watering (after Bense et al., 2008). 

 

 

2.2.4. Local groundwater usage and management 

The required water supply from the Erftverband territory is 642 million m3 per 

year for a human population of 2.7 million as well as for industrial purposes 

(Erftverband, 2006). Another 500 million m3 per year is pumped from lignite mines 

for de-watering purposes (Erftverband, 2006). Water abstraction on this scale causes a 

regional lowering of the water table with many wells drying out in recent years. The 
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baseflow of nearby rivers and streams has also decreased and this has led to a 

quantifiable change in habitat and a loss of biodiversity (Erftverband, 2006). In an 

attempt to reduce the impact of groundwater abstraction, about 10 million m3 of the 

‘mine’ groundwater is cleaned each year and pumped back into endangered wetland 

habitats and rivers and as part of an experimental artificial recharge programme (pers. 

comm. Nils Cremer, 2008). 

 

 

2.3. Hydrology and Meteorology  

2.3.1. Surface waters of the Erft catchment 

The river Erft is the primary river system in the central region of the study area 

and is a tributary of the river Rhine that flows from south to north in the eastern part 

of the Lower Rhine Embayment. The river Erft was naturally a small tributary of the 

Rhine but it is currently being used as a conduit for channelling large quantities of 

groundwater from nearby open cast lignite mines (Erftverband, 2006). The 

Erftverband state that in order to accommodate this volume of water the course of the 

river Erft has been altered and the discharge has increased significantly. In many areas 

the course of the river has been artificially straightened to form long sections of 

featureless habitat and fish stocks have failed to adapt to increased flow rates and 

temperatures and the general loss of biodiversity (Erftverband, 2006). The 

Erftverband continually monitor water quality parameters and has established 

numerous river gauging stations that provide essential flow data for the river Erft and 

its tributaries. The Erftverband intends to restore the natural meandering course of the 

river Erft at the end of mining operations in 2045.  
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2.3.2. Climate and precipitation 

 The prevailing climatic conditions are of great significance to hydrogeological 

studies, catchment management programmes and the assessment and monitoring of 

regional climate change. Both long-term and seasonal variations in temperature and 

precipitation affect the recharge regime of the regional aquifer system and influence 

the stable isotope composition of groundwater at the time of recharge as well as 

influencing the hydrochemistry of ground- and surface waters. Climate monitoring 

stations were established in the Lower Rhine Embayment at a number of locations 

during the 1950s to improve the resolution of existing data. The Erftverband 

undertake regular and routine data collection and monitoring of the regional climate 

system and have provided detailed temperature and precipitation data from four 

weather stations within the Lower Rhine Embayment for the purposes of this research. 

The precise locations of these weather stations can be seen in Figure 2.3.  
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Figure 2.12. A. The weather stations at Euskirchen and Elsdorf exhibit an identical trend in 

average monthly temperatures over the period from 1951-2009. B. Median monthly 

precipitation values for the period 1951-2009 from Euskirchen, Erkelenz and Neuss.  
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Average monthly temperatures have been calculated from temperature records 

obtained from the Euskirchen and Elsdorf weather stations for the period 1951-2009 

and displayed in Figure 2.12A.  The average monthly temperature recorded at the 

Euskirchen and Elsdorf monitoring stations both reach a peak during August at 

approximately 18 ºC and the lowest average monthly temperature occurs in February 

at 2.4 ºC. Precipitation gauging occurs at 73 locations within the Erftverband territory. 

For the purpose of this study data from three gauging stations (Erkelenz, Neuss and 

Euskirchen) have been used as they all provide detailed precipitation records dating 

from 1951-2009. Some small differences are evident between each of the gauging 

stations but the general trend is represented in Figure 2.13. The highest level of 

precipitation occurs during the summer months of July and August with 

approximately 65-75 mm of rainfall. 
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Figure 2.13. Climograph of data collected from the Euskirchen weather station located south 

of the lignite mining region of the Lower Rhine Embayment. The data represents median 

monthly values from 1951-2009.  
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The isotopic composition of precipitation is also of great interest, especially 

when utilising environmental isotope tracers in groundwater studies (Gat, 1996). The 

IAEA Global Network for Isotopes in Precipitation (GNIP) programme was 

established to determine the temporal and spatial variations of environmental isotopes 

in precipitation. Knowledge of the current regional isotopic composition of meteoric 

water such as the average annual δ
18O value can be particularly useful in providing 

evidence for recharge provenance and groundwater residence times. 

 

 

Figure 2.14. Long-term annual average δ18O values for precipitation. Precipitation has a 

value of -8 – -7‰ under current climatic conditions in the region of the Lower Rhine 

Embayment (Bowen and Revenaugh, 2003).  



 29 

 

 The isotopic composition of precipitation is strongly correlated to mean annual 

surface temperature (Dansgaard, 1964; Fricke and O’Neil, 1999), and has formed the 

basis of numerous palaeoclimate studies (eg. Vaikmäe et al., 2001; Rozanski, 1985). 

 

 

2.4. Fault Zones 

The faults that developed in the Lower Rhine Embayment are described as 

normal faults. Normal faults are characterised by having a fault plane that is vertical 

or dipping towards the downthrown side of the fault (Figure 2.15). Normal faults are a 

consequence of lithosphere stretching and form key structural features in many 

sedimentary rift basins such as the Lower Rhine Basin. The normal faults that develop 

in extensional basins are often segmented and consist of numerous overstepping 

segments (Bense and van Balen, 2004). As a consequence of overstepping segmented 

normal faults, fault relay structures often develop and typically form areas of 

hydraulic contact between otherwise isolated groundwater reservoirs (Bense and van 

Balen, 2004). The reader is referred to Bense and van Balen (2004) for an analysis of 

relay structures in the Lower Rhine Embayment.  

The fault zones of the Lower Rhine Embayment can also be described as 

synsedimentary (or growth faults) in that during sedimentation, the active fault 

significantly influences sediment deposition resulting in thicker and generally more 

sand dominated layers of strata forming on the downthrown side in comparison to the 

time-equivalent formation of strata on the upthrown side (Childs et al., 2003). The 

reader is referred to Childs et al. (2003) for a detailed account of synsedimentary 

faults.  
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Figure 2.15. An example of a cross section through strata displaced by a normal fault.  

 

 

Synsedimentary normal faults have been exposed in the open cast lignite 

mines of the Lower Rhine Embayment. The synsedimentary normal faults were 

observed in an exposed deltaic sequence within the open cast mine known as Frechen 

and field measurements indicated that the average angle of dip for these faults in this 

region was 70º and fault throws were measured up to 100 m (Lehner and Pilaar, 

1997).  
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2.4.1. Spatial distribution of faults 

 The Lower Rhine Embayment is a highly faulted region with a large number 

of NW-SE striking fault zones (Figure 2.16). Major block sealing graben faults such 

as the Erft, Rurrand and Peel Boundary faults have a fundamental impact on 

groundwater flow within the Lower Rhine Embayment. In combination with enhanced 

flow conditions caused by current large scale lignite mine de-watering, faults 

influence groundwater flow patterns in many areas. The most notable features are the 

large hydraulic head gradients that exist across faults that separate adjacent tectonic 

blocks (Figure 2.11). Figure 2.16 illustrates the spatial distribution and high density of 

fault zones in the Lower Rhine Embayment as well as showing the proximity of the 

lignite mines in relation to the major faults that bound each of the tectonic blocks. For 

an overview map of the tectonic blocks the reader is referred back to Figure 2.2. 

However, although regionally significant fault zones clearly have a large influence on 

groundwater flow dynamics, smaller faults have also been shown to influence 

groundwater flow patterns on a local scale (eg. Ernst and De Ridder, 1960).  
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Figure 2.16. Spatial distribution of faults in the Lower Rhine Embayment, Germany. 
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2.4.2. Deformation processes within fault zones 

The physical and chemical properties of a fault zone determine the distribution 

of porosity and permeability within the fault zone. Deformation processes play a key 

role in creating impermeable barriers, reducing porosity and permeability and/or 

creating preferential pathways. The main deformation processes that are important in 

understanding faults and their impact on groundwater flow in the Lower Rhine 

Embayment are cataclasis, diagenesis/cementation and clay smearing (Bense et al., 

2003).  

 

2.4.2.1. Sand 

 The deformation processes that involve sand require consideration based on 

the relative clay content of the sand material as this will have a strong influence on the 

significance of a given deformation mechanism and the resultant change in fault zone 

permeability and porosity. 

For sand media that contains less than 10% clay, the active deformation 

mechanism varies as a function of depth and porosity (Fulljames et al., 1997). At 

shallow depths (<1.5 km) there are essentially only two important mechanisms – 

cataclasis and particulate flow. Cataclasis describes the process of grain crushing and 

grinding along discrete shear faults and results in sand grains that are relatively fine in 

comparison to the initial grain size (Fulljames et al., 1997). Subsequent compaction 

and potential cementation can reduce fault porosity and permeability quite 

significantly (Fulljames et al., 1997). Cataclasis is the most dominant deformation 

process at a depth of greater than approximately 1 km according to Fulljames et al. 

(1997) and often leads to a reduction in fault permeability. At shallower depths (<1 

km), particulate flow becomes more common than cataclasis but during the transition 

from one process to the other it is possible that both processes occur simultaneously. 
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Particulate flow describes the displacement and sorting of sand grains with a 

corresponding increase in pore size which would lead to an increase in the hydraulic 

conductivity of the fault zone (Sperrevik et al., 2002) although data supporting this 

hypothesis is limited.  

 For sands with a clay content of greater than 10%, the compaction and mixing 

of sand will typically result in reduced bulk porosity and a more homogenous 

distribution of low permeability clay particles reducing the hydraulic conductivity of 

the fault zone.  

 

2.4.2.2. Clay smearing 

Clay smearing is a process where dragging or ductile flow of clay layers along 

the plane of a fault between blocks of strata on either side of the fault plane ie. the 

footwall and hanging wall; results in a clay smear along the fault plane (Caine et al., 

1996; Rawling et al., 2001). The smear forms a continuous band of low permeability 

clay and is an important fault sealing mechanism that affects groundwater systems 

(see Figure 2.17). In recent years there has been increasing interest in fault sealing 

mechanisms such as clay smearing. This has been due to a need for an improved 

understanding of the formation mechanics and the sealing potential of faults with 

regard to proposed Carbon Capture and Storage (CCS) programmes, as faults could 

provide leakage pathways for sequestrated CO2 in deep subsurface reservoirs (Bickle 

et al., 2007). However, the precise physical development of clay smears is still poorly 

understood. A number of authors have studied clay smearing at outcrop locations 

(Lehner and Pilaar, 1997; Van Der Zee and Urai, 2005; Bense et al., 2003) as well as 

creating laboratory experiments (eg. Schmatz et al., 2010; Cuisiat and Skurtveit, 

2010; Sperrevik et al., 2000).  
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Clay smears that occur in some major faults of the Lower Rhine Embayment 

have a thickness of up to 1m (Lehner and Pilaar, 1997). The emplacement of this 

quantity of clay within a fault zone is possible due to a slight fault offset in the 

direction of the downthrown block (Lehner and Pilaar, 1997). Clay smearing can 

significantly reduce the permeability of fault zones, typically forming a seal to lateral 

groundwater flow (Egholm et al., 2008). However, drag or injection of sand along the 

plane of the fault adjacent to the clay smear has also been observed in laboratory 

experiments using ring shear apparatus (Cuisiat and Skurtveit, 2010) and a number of 

field studies (eg. Bense and van Balen, 2004; Houtgast et al., 2002). If the fault core; 

which consists of gouge, cataclasite and mylonite components (Caine et al., 1996), 

contains both clay and sand material, fault permeability is likely to be strongly 

anisotropic in that fault permeability will increase along the fault plane whereas fault 

permeability perpendicular to the plane of the fault will be significantly reduced 

forming an effective barrier against lateral groundwater flow (Bense and Person, 

2006). Clay smears were observed in fault zone exposures during lignite extraction in 

the Frechen open cast mine by Lehner and Pilaar (1997). Clay smears in the Frechen 

mine ranged from a few centimetres in minor shear faults to 70 m in major graben 

faults and reached a thickness of 1 m in some places, although 10-20 cm was more 

typical (Lehner and Pilaar, 1997). The thickness and length of a clay smear is 

determined by the thickness and number of clay source beds within the throw window 

and the clay smear usually decreases in thickness with increasing distance from the 

source bed (Fulljames et al., 1997; Egholm et al., 2008). 
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Figure 2.17. Clay smearing and sand drag/injection in the Lower Rhine 

Embayment (reproduced from Bense and van Balen, 2004). 

 

 

2.4.2.3. Diagenesis 

Diagenesis describes any physical or chemical change that occurs to sediments 

subsequent to their deposition, either during or after lithification. Such changes occur 

at relatively low temperature and pressure. Porosity usually decreases during 
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diagenesis and processes such as the mineral precipitation of iron and manganese 

oxides can cement porous fault zones to the extent that fault porosity is significantly 

reduced or completely eliminated (Chan et al., 2000).  

 

 

2.4.3. Flow dynamics across and within fault zones 

Large hydraulic head gradients observed across fault zones in the Lower Rhine 

Embayment suggest that faults often form effective barriers to lateral groundwater 

flow. The most straight forward explanation involves the juxtaposition of permeable 

aquifer media such as sand or gravel against impermeable confining layers of clay as 

a result of fault throw. However, deformation mechanisms such as clay smearing and 

diagenesis suggest that faults have the physical properties to form effective barriers to 

the lateral component of groundwater flow. This supports the conceptual model 

developed by Rawling et al. (2001) that fault zones in unconsolidated sediments 

frequently form barriers to lateral groundwater flow as a result of reduced fault 

permeability. However, fault zones that act as barriers to groundwater flow are not 

necessarily permanent features, and the formation of structural permeability networks 

can lead to a discontinuous fault seal resulting in a degree of leakage across the fault 

over time (Dewhurst and Jones, 2003). On the other hand, a fault may act as a conduit 

during deformation and then as a barrier when the pore spaces become cemented by 

mineral precipitation (Caine et al., 1996). Bense and Person (2006) describe faults in 

unconsolidated sediments as conduit-barrier systems where fault zone permeability is 

strongly anisotropic and vertical permeability is often much greater than horizontal 

permeability. In this situation, a fault zone will form an effective barrier to lateral 

groundwater flow as described by Rawling et al. (2001) and supported by the 

presence of large hydraulic head gradients across the fault, but the fault can 



 38 

simultaneously act as a conduit for vertical groundwater flow connecting shallow and 

deep aquifer units that are typically isolated by an aquitard or aquiclude. Bense et al. 

(2008) present evidence for vertical conduit flow along faults in the form of thermal 

anomalies. Bense et al. (2008) conclude that numerical analysis of empirical 

geothermal data collected from observation boreholes in close proximity to the 

Rurrand fault in the Lower Rhine Embayment suggests that strong positive and 

negative thermal anomalies are transient features that result from upward and 

downward groundwater flow respectively within the fault zone. These features are 

believed to be the result of lignite mine de-watering and subsequent lateral flow into 

aquifer layers adjacent to the Rurrand fault and support the conduit-barrier model 

proposed by Bense and Person (2006). Stoessell and Prochaska (2005) studied the 

vertical movement of deep formation fluids along the Baton Rouge Fault in South 

Louisiana, USA. Hydrochemical and isotopic data such as Br/Cl, K/Cl and Na/Cl 

ratios, Mg2+ and SO4
2- concentrations as well as 87Sr/86Sr isotope ratios provided 

strong evidence that suggested vertical conduit flow of deep saline formation fluids 

from depth to shallow aquifers along sections of the Baton Rouge fault and that these 

formation fluids were responsible for the observed brackish water in the upper 

aquifer. Another example of groundwater flow along faults was published by Chan et 

al. (2000). Chan et al. (2000) used isotopic evidence (δ
18O, δ13C and δ87Sr) and 

physical observations to suggest that deep reducing fluids flow upward along the 

Moab fault in Utah, USA mobilising iron and precipitating iron oxide (hematite) and 

manganese oxide as the deep groundwater mixes with modern oxygenated recharge 

near the surface. Fluid flow along the Moab fault is believed to occur as a multi-

episode series of events due to the accumulation pattern of iron oxide mineralisation 

and the geometries of hematite concretions. 
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3. Dissolved Noble Gases and Stable Isotopes in Groundwater 

 

Numerous environmental tracers have been utilised during this research in 

order to achieve the aims and objectives defined in Chapter 1. The geochemical 

tracers used include the dissolved noble gases of helium, neon, argon, krypton and 

xenon, and the stable isotopes of hydrogen, oxygen, carbon and strontium, as well as 

more routine hydrochemical tracers such as the major ions. Chapter 3 provides a 

critical review of noble gas and stable isotope geochemistry relevant to this study and 

outlines the necessary background information required for interpreting dissolved 

noble gas concentrations and stable isotope data for groundwater samples collected 

during 2007/08 from the Lower Rhine Embayment, Germany. 

 

3.1. Dissolved noble gases in groundwater 

The noble gases are a chemically inert group of elements that occupy group 18 

of the periodic table. The noble gases that are typically applied in hydrogeological 

research include; helium (He), neon (Ne), argon (Ar), krypton (Kr) and xenon (Xe). 

The noble gas radon (Rn) has no stable isotopes and is rarely used in groundwater 

studies. However, radioactive 222Rn (half-life of 3.8 days) has been used as a 

groundwater tracer in laboratory studies (eg. Hoehn et al., 1992). Noble gases are 

incorporated into the meteoric phase of the hydrological cycle by gas partitioning 

during air/water exchange reactions with the atmosphere. Noble gases are generally 

considered as conservative tracers in groundwater due to their low chemical 

reactivity. It is possible for the atmospherically derived noble gas component to 

remain constant in confined aquifers for long periods of time (105+ years) subsequent 

to a recharge event (Heaton et al., 1986). However, gas phase CO2 present in the 

subsurface (such as a magmatic injection) in contact with the groundwater system can 
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‘strip’ dissolved atmosphere-derived and crustal/radiogenic noble gases by CO2/water 

phase partitioning in the saturated zone (Gilfillan et al., 2008). 

The concentration of atmospherically derived noble gases dissolved in 

groundwater can be used to determine the temperature at the water table during 

recharge. This recharge temperature is often referred to in the literature as a Noble 

Gas Temperature (NGT), and if combined with groundwater age-dating techniques 

applicable to groundwater with a long residence time (eg. 14C, 36Cl and 81Kr dating) it 

can be used as a tool for palaeoclimate reconstruction (eg. Andrews and Lee, 1979; 

Stute et al., 1995a; Stute et al., 1995b; Aeschbach-Hertig et al., 2002; Lehmann et al., 

2003). Noble gases have also been shown to have useful applications in lake sediment 

pore waters as palaeolimnological (Strassmann et al., 2005) and environmental 

change (Brennwald et al., 2004) proxies. 

 

3.1.1. Noble gases in meteoric and connate water  

Noble gases in meteoric water are generally considered to be in solubility 

equilibrium with the atmosphere following Henry’s Law for a dilute solution which is 

given by: 

( ),i i ip k T S x= ⋅     (3.1) 

 

Where, for a dissolved noble gas i,  pi is the partial pressure of the noble gas in the gas 

phase (fugacity), xi is the equilibrium concentration of the dissolved noble gas as a 

mole fraction and ki is a proportionality coefficient (Henry’s Law constant) which is 

dependent on temperature (T) and salinity (S).  

In many aquifer systems the groundwater consists entirely of meteoric water. 

However, in some deep circulating systems and in deep basement formations the 
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origin of groundwater is not always meteoric. Connate fluids describe water and 

dissolved minerals that were trapped within pore spaces during the formation of 

sedimentary aquifer systems. This groundwater is often referred to as juvenile water 

and its noble gas signature is largely unknown (Ozima and Podosek, 2002).  

 

 

3.2. Noble gas components in groundwater  

The origin of dissolved noble gas isotopes in groundwater typically has several 

components and these are illustrated in Figure 3.1. In addition to the atmospherically 

derived component, there are two other important non-atmospheric sources of noble 

gases in groundwater. These include the in situ radiogenic production of noble gases 

and terrigenic helium which describes an external flux from either the Earth’s crust or 

mantle. The anthropogenic isotopes of 3H and 85Kr are particularly important for age-

dating modern groundwater in the range of 0-60 years and are discussed in Section 

3.4.2. However, both anthropogenic and cosmogenic isotopes have a negligible effect 

on total noble gas concentrations in groundwater. In general, groundwater of meteoric 

origin can be considered as a mixture of atmospherically derived noble gases and 

varying quantities of radiogenic noble gases and/or terrigenic helium (Kipfer et al., 

2002). 
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Figure 3.1. The sources of stable and radioactive noble gas isotopes in groundwater (modified from 

Andrews, 1992). Atmosphere-derived and in situ radiogenic and/or nucleogenic production of noble 

gases along with terrigenic crustal and/or mantle fluxes of helium can contribute significantly to total 

noble gas concentrations in groundwater systems. Cosmogenic and anthropogenic sources have a 

negligible effect on total noble gas concentrations but specific isotopes have important significance 

for groundwater age-dating; for example 3H, 85Kr and 81Kr. 

 

 

 

3.2.1. Noble gases in the atmosphere 

 Atmosphere-derived noble gases make up the largest and most important 

contribution to total noble gas concentrations in groundwater of meteoric origin. The 

atmospheric composition and isotopic abundance of the noble gases and their stable 

isotopes are given in Table 3.1. The atmospheric contribution to total noble gas 

concentrations in groundwater typically has two components; atmospheric solubility 

equilibrium and excess air.  
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       Table 3.1. Noble gas composition of dry air and isotopic abundance. 

Noble Gas Volume Fraction Isotope Abundance (%) 

Helium 5.24x10-6 
3He 
4He 

0.00014 
~100 

 
Neon 

 
1.818x10-5 

20Ne 
21Ne 
22Ne 

90.5 
0.268 
9.23 

 
Argon 

 
9.34x10-3 

36Ar 
38Ar 
40Ar 

0.3364 
0.0632 
99.6 

Krypton 1.14x10-6 

78Kr 
80Kr 
82Kr 
83Kr 
84Kr 
86Kr 

0.347 
2.257 
11.52 
11.48 
57.00 
17.40 

 
 
 
 

Xenon 

 
 
 
 

8.7x10-8 

124Xe 
126Xe 
128Xe 
129Xe 
130Xe 
131Xe 
132Xe 
134Xe 
136Xe 

0.0951 
0.0887 
1.919 
26.44 
4.070 
21.22 
26.89 
10.430 
8.857 

 
            (Ozima and Podosek, 2002) 

 

 

 

3.2.1.1. Atmospheric solubility equilibrium 

The most important component of dissolved noble gases in groundwater is 

atmospheric solubility equilibrium as this provides a reference point for observed 

concentrations and enables the calculation of noble gas temperatures (NGTs). Noble 

gases exhibit a wide range of solubilities that demonstrate increasing solubility and 

temperature dependence with increasing atomic mass (see Figure 3.2). Noble gas 

solubility in groundwater is defined by Henry’s Law for dilute solution (Equation 
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3.1). Noble gas solubility is determined empirically from the relationship between 

measured Bunsen coefficients β in distilled water (defined as the quantity of gas (in 

cm3 STP) dissolved in a unit volume (1 cm3) under a partial pressure of 1 atm) and the 

antecedent temperature conditions. Due to the ‘salting out’ effect, (noble) gases are 

about 25 % less soluble in sea water than they are in fresh water (Ozima and Podosek, 

2002). The effect of salinity on solubility equilibrium can be described by the 

Setchenow equation: 

 

( )
( )

,0
ln

,
i

i NaCl
i

T
k c

T S

β
β

 
= ⋅  

 
  (3.2) 

 

Where ki is the Setchenow coefficient (or salting coefficient) of noble gas i and cNaCl 

is the NaCl molarity. Empirical salting coefficients for all of the noble gases in NaCl 

solutions are given by Smith and Kennedy (1983). 
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Figure 3.2. Noble gas solubility equilibrium temperature dependence. Solubility and 

temperature dependence increase with atomic mass.  

 

 

 

Noble gas concentrations in groundwater are typically reported in the units of 

cm³ STP ḡ¹ H2O. The solubility of noble gases in pure water are given by; Weiss 

(1970) for Ar, Weiss (1971) for He and Ne, Benson and Krause (1976) for He, Ne, 

Ar, Kr and Xe, Weiss and Kyser (1978) for Kr, Clever (1979a) for He and Ne, Clever 

(1979b) for Kr and Xe, and Clever (1980) for Ar. Three sets of noble gas solubility 

data have been calculated (Table 3.2) by Aeschbach-Hertig et al. (1999).   
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Table 3.2. Noble gas solubility expressed as Bunsen coefficients β, at 10 ºC, 1 atm, ∆Ne of 

27% and zero salinity. 

Helium 
(He) 

Neon 
(Ne) 

Argon 
(Ar) 

Krypton 
(Kr) 

Xenon 
(Xe) 

 
Solubility 

cm³ STP ḡ¹ 
Weiss 
Clever 
Benson 

6.217x10-08 
6.237x10-08 
6.271x10-08 

2.563x10-07 
2.576x10-07 
2.586x10-07 

4.141x10-04 
4.134x10-04 
4.123x10-04 

9.445x10-08 
9.440x10-08 
9.465x10-08 

1.344x10-08 
1.344x10-08 
1.343x10-08 

 

 

 

These solubility data were calculated by Aeschbach-Hertig et al. (1999) for 

the interpretation of dissolved atmospheric noble gases using an inverse fitting 

technique almost identical to the method developed by Ballentine and Hall (1999). 

The solubility data was incorporated into the MATLAB® routine NOBLE90 

(Aeschbach-Hertig et al., 2000; Peeters et al., 2002) which is discussed in Section 3.3. 

The three groups of solubility data in Table 3.2 agree very well for Kr and Xe but the 

Benson solubility is 0.44% less than the Weiss solubility for Ar, and the Benson 

solubilities are 0.86% and 0.89% more than the Weiss solubilities for He and Ne 

respectively. Clever solubilities have intermediate values between Benson and Weiss 

solubilities for He, Ne and Ar. According to Aeschbach-Hertig et al. (1999) the 

choice of solubility data does not significantly affect the calculated parameters of 

temperature and excess air because the largest difference between the three groups of 

solubility data (Benson-Weiss) is of the same order of magnitude as typical 

experimental errors (~1%), although inconsistency with solubility data selection 

would introduced small systematic errors. 
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3.2.1.2. Excess air  

Dissolved noble gases have been observed at concentrations that exceed their 

atmospheric solubility equilibrium concentration in many site investigations and 

groundwater research studies (Mazor, 1972; Andrews and Lee 1979; Heaton and 

Vogel, 1981; Wilson and McNeill, 1997; Ingram et al., 2007). It was suggested that 

the most likely cause of dissolved gas supersaturation occurs as a result of air bubble 

entrapment in quasi-saturated soils (Heaton and Vogel, 1981). It was initially 

propounded that air entrainment at the water table of porous media and subsequent 

dissolution occurs with increased hydrostatic pressure at depth, leading to noble gas 

supersaturation of groundwater relative to its solubility equilibrium concentration. 

This phenomenon is now routinely referred to in the literature as ‘excess air’. 

The excess air component of dissolved noble gas analyses in groundwater was 

typically seen as just a necessary correction and often limited the accuracy of 

calculated recharge temperatures (NGTs) due to a limited understanding of air 

entrapment and excess air formation in most aquifer systems. Heaton and Vogel 

(1981) first identified the potential for using excess air measurements to identify and 

distinguish between different areas of recharge, although few subsequent studies fully 

utilised the excess air parameter. However, interest in the noble gas excess air 

parameter has gained momentum in recent years (eg. Ingram et al., 2007; Klump et 

al., 2007; Aeschbach-Hertig et al., 2008; Sun et al., 2008; Osenbrück et al., 2009). 

A number of laboratory studies have been used to gain an improved 

understanding of air entrapment (Faybishenko, 1995) and the subsequent formation of 

excess air (Holocher et al., 2002; Klump et al., 2007). Holocher et al. (2002) 

investigated the formation of excess air using two series of column experiments. 

Quartz sand was packed into 1 m length columns and air saturated water (ASW) was 
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allowed to flow through the systems. A constant water level was maintained in one 

column whereas a fluctuating water level was induced in the other. The results 

showed that both columns produced enriched noble gas concentrations relative to 

ASW and that the amount of supersaturation ranged from 1.4% to 16.2% ∆Ne. 

Holocher et al. (2002) suggest that there are six parameters that control the formation 

of excess air in quasi-saturated porous media. These parameters are; hydrostatic and 

capillary pressure, flow regime, volume of initially entrapped air, entrapped air bubble 

size, initial composition of dissolved gases and the initial composition of entrapped 

air. Holocher et al. (2002) conclude that from their column experiments, the total 

volume of initially entrapped air and the sum of the hydrostatic and capillary pressure 

that acts upon the entrapped air bubbles are the most significant factors in the 

formation of excess air. 

A number of additional factors that can influence the accumulation of excess 

air in groundwater have been suggested. These include the physical structure of the 

unsaturated zone (particularly at the capillary fringe) and seasonal patterns of 

precipitation that affect water table fluctuations and recharge rates (Stute and 

Schlosser, 1993). The relative amplitude of these water table fluctuations will also 

have a significant influence on excess air values (Ingram et al., 2007). Human 

activities such as groundwater abstraction and water resource management schemes 

such as artificial recharge (Cey et al., 2008) or large scale industrial mining operations 

and mine de-watering can also have a significant impact on water table elevation and 

fluctuations and therefore excess air concentrations. Cey et al. (2008) observed excess 

air concentrations up to ~400% ∆Ne in areas of artificial recharge.  
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3.2.2. Terrestrial sources of noble gases   

3.2.2.1. In situ production in the sub-surface 

Noble gases are produced by radioactive decay or by subsequent nuclear 

reactions that are initiated by radioactive decay in the subsurface. The most significant 

radiogenic noble gases are 3He, 4He and 40Ar and they are produced from 3H, U-Th 

decay series elements and 40K respectively. Helium and argon isotopes are the only 

noble gases routinely used in groundwater studies that have the potential for 

significant radiogenic production in the subsurface, although 21Nerad is also potentially 

important in studies of deep circulating aquifer systems and palaeogroundwater.  

Uranium and thorium are elements that occur in three natural decay series that 

begin with 238U, 232Th and 235U respectively. The radionuclides of these elements 

generally exist in a state of secular equilibrium in which the abundance of the 

radioactive isotope remains constant because the production rate is equal to the decay 

rate. Alpha particle emissions consist of two protons and two neutrons and forms a 

particle that is identical to a helium nucleus and has a charge of +2 often expressed as 

+24
2He  or α4

2 . Alpha particles interact with the surrounding environment, stripping 

electrons from other atoms and creating positive ions and free electrons. Shortly after 

being emitted, alpha particles gain the two electrons that are required to create stable 

4He atoms. Radiogenic 4He can accumulate to concentrations several orders of 

magnitude higher than atmospheric solubility equilibrium in deep circulating 

groundwater that has a long residence time (Torgersen and Clark, 1985).  
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3.2.2.2. Terrigenic flux  

The terrigenic flux refers to noble gases (primarily helium isotopes) that 

emanate from geochemical reservoirs in the Earth’s mantle or crust. Helium will 

accumulate in deep circulating groundwater as it ascends from the mantle and crust, 

and this can be used to provide a qualitative indication of groundwater residence time 

(Zhou and Ballentine, 2006). Uranium and Thorium are often present at high 

concentrations within the Earth’s crust and nuclear reactions involving U-Th series 

elements produce significant quantities of nucleogenic noble gases. These reactions 

have far greater impact on the noble gas composition of deep groundwater than 

reactions that occur in the mantle. Crustal He and Ne contain large nucleogenic 

components and due to the very high diffusivity of these light noble gases they 

commonly migrate into aquifer systems (Ozima and Podosek, 2002). Crustal 

nucleogenic helium-3 is produced from the reaction described by Equation 3.8 which 

essentially involves a neutron capture reaction of Li: 

 

6 3 3
3 1 2( , )Li n H Heα →    (3.3) 

(Morrison and Pine, 1955) 

 

The spontaneous fission of 238U as well as reactions with light elements such as Na, 

Mg, Al and Si generates the necessary neutrons, and α-particles are emitted from the 

decay of U and Th (Ozima and Podosek, 2002). 21Ne and 22Ne have significant crustal 

sources from materials such as granite and also involve reactions involving α-particles 

and neutrons derived from the U-Th decay series. 

The mantle component of the terrigenic flux will consist purely of primordial 

helium because there are no radiogenic sources in the mantle. If the terrigenic flux 
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rate can be estimated accurately and radiogenic production within the Earth’s crust 

can be calculated from known uranium and thorium concentrations, then 

interpretation of groundwater He concentrations can be used in a semi-quantitative 

way for assessing groundwater residence times. 

    

3.2.3. Helium isotopes in groundwater  

Helium-4 has significant radiogenic and terrigenic sources in deep circulating 

groundwater (eg. Griesshaber et al., 1992; Stute et al., 1992; Castro et al., 1998; 

Bethke et al., 1999) as well as potential radiogenic inputs to shallow aquifers 

(Solomon et al., 1996). Helium-3 has additional nucleogenic and tritiogenic sources in 

shallow aquifers (Schlosser et al., 1988; 1989). 

 

The total 3He balance is given by:  

 
3HeTotal = 3HeTritiogenic + 3HeSol. Equilibrium + 3HeExcess Air + 3HeNucleogenic + 3HeTerrigenic (3.4) 

 

The corresponding 4He balance is given by: 

 
4HeTotal = 4HeSol. Equilibrium + 4HeExcess Air + 4HeRadiogenic + 4HeTerrigenic              (3.5) 

 

 

The helium isotope ratio 3He/4He is often used to identify gases of crustal or 

mantle origin, and 4He enrichment from the in situ α-decay of U-Th series elements 

and/or crustal and mantle fluxes (terrigenic He) is frequently reported in the literature 

at up to 5 or 6 orders of magnitude higher than its atmospheric solubility equilibrium 

concentration (eg. Andrews and Lee, 1979; Castro et al., 1998; Bethke et al., 1999).  
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    Table 3.3. Typical 3He/4He ratios in natural systems 

Geosphere Component 3He/4He Source 

Atmosphere 
Crust 

Enriched U, Th sediments 
Mantle 

Active tectonic zones 

1.384x10-6 
10-7 – 10-8 

> 10-10 
10-5 

10-5 – 10-7 

All 
Radiogenic 
Radiogenic 
Primordial 

Radiogenic and Primordial 
 
     (Clarke et al., 1976; Beyerle, 1999) 
 

 

As a result of subsurface in situ production of 4He, mass transfer occurs 

between the aquifer media and groundwater leading to a quantifiable relationship 

between groundwater residence time and 4He concentration (Stute et al., 1992; Castro 

et al., 2000). However, 4He groundwater age-dating is often only used as a tool for 

estimating groundwater age due to the complexity of groundwater containing helium 

from several sources and pathways such as crustal and mantle signatures in addition to 

the release of helium from previously trapped reservoirs of radiogenic origin 

(Solomon et al., 1996; Zhou and Ballentine, 2006). However, Torgersen (2010) 

suggests that it is now possible to determine uncertainty limits associated with crustal 

fluxes using the increased number of published data sets and thus improving 4He age 

estimates. Helium-4 is typically used to date groundwater in the range of 103–106 

years and is often supported by additional age-dating techniques such as 14C with a 

half-life of 5730 years, 81Kr with a half-life of 229,000 years and/or 36Cl with a half-

life of 301,000 years (Lehmann et al. 2003).  

 

3.2.4. Argon isotopes in groundwater 

 Argon isotopes in groundwater have significant atmospheric and terrestrial 

origins and combined with 4He their use as geochemical tracers was recognised as 

early as 1935 (Savchenko, 1935). The radioactive nuclide 39Ar is produced in the 
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atmosphere by neutrons of secondary cosmic radiation as well as in terrestrial 

environments by in situ reactions eg. 39K → (n, p)39Ar. Argon-39 has a half-life of 

269 years which gives it potential as a groundwater age-dating tool, however, it 

application is limited due to problems arising from determining source contributions.  

Groundwater with an age in the range of >1000 years will have an argon 

isotope ratio (40Ar/36Ar) that will usually show a variation from that of the 

atmospheric ratio due to the in situ production and accumulation of radiogenic 40Ar. 

The quantity of 40Ar that is derived from the in-situ decay of long lived 40K can be 

significant, and is proportional to the potassium content of the solid aquifer material 

and the diffusive flux from the crust. At the same time, 36Ar produced from the decay 

of 36Cl is usually very low and generally considered negligible. This implies that 40Ar 

is essentially the isotope that is solely responsible for altering the 40Ar/36Ar ratio in 

groundwater. The 40Ar/36Ar ratio of atmospheric argon is 295.5, but due to the 

production of 40Ar in the subsurface and the uniform concentration of 36Ar as 

previously discussed, the 40Ar/36Ar ratio in groundwater is always greater than or 

equal to 295.5. The 40Ar/36Ar ratio can therefore be used as a qualitative tool for the 

identification of very old groundwater.  

   

 

3.3. Mathematical modelling of recharge temperatures and excess air  

 In order to resolve the atmospheric solubility equilibrium and excess air 

component contributions to total noble gas concentrations in groundwater a range of 

techniques and models have been developed. The early studies such as Heaton and 

Vogel (1981) calculated recharge temperatures using solubility equations and 

graphical techniques. These methods typically achieved a precision of ± 1-2 ºC. 
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Graphical methods are based upon plotting a temperature sensitive heavy gas such as 

xenon against a temperature insensitive light noble gas such as neon to determine the 

excess air concentration (helium is not typically used due to numerous non-

atmospheric sources in the subsurface). These techniques are not as accurate as more 

recently developed mathematical solutions but they remain useful for initial 

assessments of the data and have been used in this study for that purpose (see Chapter 

5).  

Iterative techniques were developed that allowed, for the first time, 

simultaneous determinations of unknown parameters if the model equations were not 

underdetermined from the measured data. The levels of precision achieved using 

iterative methods improved over graphical techniques and were reported at ± 0.8 ºC 

(Stute et al., 1995). 

More recently, inverse modelling has been developed by Ballentine and Hall 

(1999) and Aeschbach-Hertig et al. (1999). The two papers reported an almost 

identical method which is based on a least-squares minimisation process. The 

technique back calculates noble gas concentrations from specific conditions and 

compares the results to measured concentrations using chi-squared statistical analysis 

for testing the goodness-of-fit between the modelled data and the measured data. The 

chi-squared (χ2) test weights the analysis so that the heavier temperature sensitive 

noble gases are used for determining the noble gas temperature (NGT) and the lighter 

noble gases are used to determine excess air concentrations. The level of precision for 

the inverse fitting method has been reported as ± 0.5 ºC (Aeschbach-Hertig et al., 

2002). 

Noble gas excess air is regularly reported as having a different isotopic 

composition to that of atmospheric air (Stute et al., 1995). Usually, this occurs as an 
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enrichment of the heavier noble gases and a corresponding depletion of the lighter 

noble gases. A number of studies have shown the potential for excess air fractionation 

to occur relative to an air equilibrated composition (eg. Stute et al., 1995; Aeschbach-

Hertig et al., 2000). Several models have been developed to describe the formation 

and fractionation of excess air in groundwater and they have been incorporated into 

the MATLAB® routine NOBLE90 which is a freely downloadable noble gas 

interpretation programme available from www.eawag.ch that utilises the inverse 

fitting method (Peeters et al., 2002).   

 

3.3.1. Total dissolution model (or Unfractionated excess air – UA Model) 

Andrews and Lee (1979) first suggested a model that described the total 

dissolution of entrapped air in porous media; the model was subsequently modified by 

Stute and Schlosser (1993). The total dissolution model (TD) was the first model to 

represent the formation of excess air. The TD model is characterized by excess air 

having quantities of dissolved noble gases in ratios equal to that of atmospheric air. 

The concentration of dissolved gases originating from the atmosphere in the TD 

model is given by: 

 

( ) ( )*, , , , ,i d i d iC T S P A C T S P A z= +     (3.6) 

 

where Ci
*(T,S,P) is the moist-air solubility equilibrium concentration as a function of 

temperature (T), salinity (S) and atmospheric pressure (P), Ad is the concentration of 

totally dissolved dry air and zi is the volume fractions of the individual gases in dry 

air.  
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This model implies that the excess air has the same composition as the 

entrapped gas (described by the volume fraction term zi) and is assumed to be 

atmospheric air. The excess air component is described by the parameter Ad. This 

equation represents the most basic mathematical explanation of noble gas excess air. 

 

3.3.2. Partial re-equilibrium model 

The total dissolution followed by partial re-equilibration with the atmosphere 

model (PR), was proposed by Stute et al. (1995). The PR model suggests that 

diffusivity-controlled fractionation of excess air occurs and leads to dissolved gases 

being present at ratios different to that of atmospheric air. The PR model is given by: 

 

( ) ( )*, , , , , ,
i

D

D
R

Ne
i d i d iC T S P A R C T S P A z e

−
= +   (3.7) 

 

Where R is the degree of re-equilibration and Di is the molecular diffusion coefficient.  

Entrapped air bubbles are initially completely dissolved as described by the TD model 

but is then followed by diffusive loss across the water table. Due to noble gases 

having a range of molecular diffusivities the result is a fractionated excess air 

component with respect to atmospheric air. The degree of re-equilibration is given by 

the remaining proportion of the initial neon excess. The model assumes that the gas 

exchange rate is proportional to molecular diffusivity. Molecular diffusivity decreases 

with increasing mass number therefore indicating that the PR model would suggest 

that the largest depletion of the initial excess air would exist for the lighter noble 

gases and especially helium because of its very high diffusivity coefficient; and that 

the heavier gases would appear enriched relative to atmospheric air in the remaining 

portion of excess air.  
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3.3.3. Multi-step partial re-equilibration model 

 The multi-step partial re-equilibration model (MR) was put forward by Kipfer 

et al. (2002) in an attempt to resolve the problem of unrealistically high initial excess 

air concentrations that are commonly predicted using the PR model of Stute et al. 

(1995). The fundamental concept of the MR model that differs from the PR model is 

that periodic water table fluctuations create a cycle of air bubble entrapment, 

dissolution and diffusive loss across the water table. The MR model is given by: 
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Where Ad and R are the same as in the PR model and n is the number of steps. 

 

3.3.4. Closed-system equilibrium model 

The final model was put forward by Aeschbach-Hertig et al. (2000) and 

describes the closed-system equilibration of groundwater with only partially dissolved 

entrapped air (CE) leading to solubility-controlled fractionation. The CE model is 

given by:  
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where Ci
*(T,S,P) is the moist air solubility equilibrium concentration of gas i as a 

function of temperature (T), salinity (S) and atmospheric pressure (P), Ae is the initial 

concentration of entrapped air per unit mass of water, zi is the atmospheric abundance 
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ratio of gas i, and F is the fractionation parameter (0 is equal to the total dissolution of 

Ae, and 1 represents no excess air).  

The hydrostatic pressure is generally not sufficient to completely dissolve all 

entrapped atmospheric air within a closed system, and therefore the CE model 

describes the solubility-controlled fractionation that occurs. 

 

3.3.5. Alternative numerical models  

Holocher et al. (2003) developed a kinetic model of gas bubble dissolution 

(KBD) which describes the dissolution of entrapped bubbles in quasi-saturated porous 

media using a physical approach. The model assumes that the composition of 

entrapped air bubbles is equal to that of the atmosphere – ie. the bubbles consist of N2, 

O2 and the noble gases. 

Mercury et al. (2004) introduced a negative pressure model (NP) which aimed 

to correct the TD Model for negative pressures within the capillary zone that have the 

potential to create changes in noble gas solubility values. 

The oxygen depletion model (OD) suggested by Hall et al. (2005) questioned 

the fundamental assumption that solubility equilibrium with the atmosphere occurs as 

a result of groundwater equilibration with air of atmospheric composition. Hall et al. 

(2005) state that low calculated noble gas temperatures (NGTs) could be the result of 

oxygen depletion in the unsaturated zone without equal accumulation of carbon 

dioxide. Further research based on the OD model but with an allowance for partial re-

equilibration of noble gases between groundwater and soil air via diffusion in the gas 

phase by Sun et al. (2008) and termed the gas diffusive relaxation model (GR) has 

also been successful in calculating NGTs. 

 



 59 

3.4. Applications of dissolved noble gases in groundwater  

3.4.1. The noble gas palaeothermometer  

One of the most promising uses of atmosphere-derived noble gases in 

groundwater is determining the noble gas temperature (NGT) and palaeoclimate 

reconstruction (Stute and Schlosser, 1993). This technique was first applied my Mazor 

(1972) and it enables the temperature to be calculated at which water was equilibrated 

with the atmosphere at the point of groundwater recharge. The noble gas 

palaeothermometer is based on the principle that the solubility of noble gases in water 

is temperature dependent according to Henry’s Law. Only a small number of 

assumptions are required to calculate NGTs and they include: noble gas partial 

pressures (determined from the altitude of recharge), 100% relative humidity at the 

capillary fringe, and temperature dependent noble gas solubility - determined from 

estimated surface temperature at the time of recharge (Sun et al., 2008). Since the 

early work of Mazor (1972) a large number of studies have applied the principles of 

noble gas solubility equilibrium in order to derive palaeoclimatic information such as 

Pleistocene recharge temperatures, to estimate groundwater residence times and 

identify recharge that occurred during the LGM (eg. Andrews and Lee, 1979; 

Andrews, 1992; Stute et al., 1992; Blavoux et al., 1993; Stute et al. 1995; Dennis et 

al., 1997; Aeschbach-Hertig et al., 2002; Beyerle et al., 2003; Zuber et al., 2004). 

Andrews and Lee (1979) indentified palaeo groundwater in a UK aquifer 

system that was estimated to have a subsurface residence time in the region of 104 

years and a recharge temperature calculated from dissolved noble gases that was 5–7 

ºC cooler than today, and consistent with palaeo recharge from the late Pleistocene. 

Dissolved noble gases were also used by Blavoux et al. (1993) to investigate 

groundwater from a deep Eocene aquifer in Aquitania, France. The palaeo 
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groundwater present in the deep Eocene aquifer displayed a shift of -2–-3‰ for δ18O 

values and noble gases analyses enabled Blavoux et al. (1993) to conclude that a 

temperature shift of 5–7 ºC had occurred since the Pleistocene. Osenbrück et al. 

(1993) made a similar observation in Poland where NGTs were 2–3.5 ºC lower for 

palaeo groundwater than for modern recharge. Osenbrück et al. (1993) also noted a 

shift in δ18O values with palaeo groundwater being more depleted than modern 

groundwater – the same trend was also noted by Bertleff et al., (1993) in southern 

Germany. 

Stute et al. (1995) applied the noble gas palaeothermometer to groundwater 

samples collected from a tropical region of Brazil. 14C dating was used to identify 

palaeo recharge with an age in the range of 10,000 – 30,000 years. Stute et al. (1995) 

used a graphical interpretation of dissolved noble gas data based on solubility 

equations to determine that a temperature shift of 5.4 ºC had occurred from the 

Pleistocene to the Holocene.  

     

3.4.2. Groundwater age-dating  

 Groundwater age-dating describes the process of determining mean residence 

times. Numerous tracers exist for determining the age of groundwater, and each tracer 

has a specific applicable timescale. Tritium is the only tracer that forms part of the 

water molecule so all other techniques rely on dissolved constituents (Clark and Fritz, 

1997). Groundwater age-dating of both modern and old groundwater requires 

consideration for this research. No direct dating methods were used to determine 

residence times for young groundwater within the Lower Rhine Embayment due to 

financial constraints. However, it was clear from stable isotope data that a large 

proportion of groundwater in the shallow aquifers had a modern meteoric signature. A 
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key element to any further work would involve constraining the modern component of 

groundwater by applying a suitable age-dating technique such as the 3H-3He method. 

 Determining the precise age of the ‘old’ groundwater component is also of 

great interest. Helium-4 measurements have provided preliminary data to suggest that 

deep groundwater with a very long residence time is present in the shallow aquifers 

near some fault zones. However, 4He only provides a qualitative tool and more 

accurate techniques such as 36Cl or 81Kr would provide a insight into the source and 

origin of the ‘old’ groundwater. For these reasons groundwater age-dating techniques 

for both modern and old groundwater are discussed below. 

 

3.4.2.1. Dating modern groundwater 

The use of dissolved noble gases as groundwater age-dating tools for modern 

recharge generally involves utilising anthropogenic inputs of 3H and 85Kr. 

 Tritium (³H or T) is a radioactive isotope of hydrogen with a half-life of 12.33 

years (Unterweger and Lucas, 2000) and decays to its daughter product; the noble gas 

³He, through β emission. Tritium is continuously produced naturally by cosmic ray 

spallation and fast neutron interactions with nitrogen in the upper atmosphere. The 

removal of tritium from the atmosphere is an efficient process in which the tritium 

atoms are incorporated into water molecules, either by direct oxidation or exchange 

with protium (¹H) and deuterium (²H or D) to form tritiated water molecules (HTO).  

The testing of high yield thermonuclear fusion and fission devices, mainly 

between 1953 and 1963 released large quantities of anthropogenic tritium into the 

atmosphere causing a spike-like input. Tolstikhin and Kamensky (1969) first 

suggested that combining measurements of both parent tritium and daughter helium-3 

could be used as a tool for dating young groundwater, and that such measurements 
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could provide an apparent age which would represent the length of time that had 

elapsed since the water had become isolated from the atmosphere. The ³H/³He age is 

defined by the equation: 

 

                                                        
3 *1

2
3

ln 1
ln 2

T He

H
τ  

= × + 
 

     (3.10) 

 

whereτ is the ³H/³He age in years, T½ is the half-life of tritium (12.33 years), ³He* is 

the tritiogenic helium-3 concentration and ³H is the tritium concentration. 

The first array of groundwater studies that used the tritium/helium-3 age-

dating technique included Takaoka and Mizutani (1987), Poreda et al. (1988), 

Schlosser et al. (1988; 1989), Solomon and Sudicky (1991) and Solomon et al. (1992; 

1993).  

Krypton-85 has a half-life of 10.76 years and was first released into the 

atmosphere from plutonium reprocessing plants in the early 1950s. Unlike tritium, 

85Kr does not have an ‘atmospheric injection spike’ because as the nuclear fuel 

reprocessing industry has continued to expand the concentration of 85Kr in the 

atmosphere has also been steadily increasing. Krypton-85 has proved useful as a 

groundwater age-dating tool for young groundwater in the range of <60 years. 

Krypton-85 measurements have typically required large sample volumes for analysis 

using Low Level Counting (LLC) techniques (Loosli, 1992) but more recently, Atom 

Trap Trace Analysis (ATTA) (Chen et al., 1999) and second generation ATTA (Du et 

al., 2003) have reduced the sample size required, partially due to improved 

purification techniques (Yokochi et al., 2008).  
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Radiogenic 4He from the α-decay of U-Th series elements in rocks and 

sediments is typically used to date groundwater in the range of 1,000 – 100,000 years 

and has some potential to extend to 1x106 years and beyond. However, Solomon et al. 

(1996) used radiogenic helium-4 to date modern groundwater as young as 10 years 

old at the well documented Sturgeon Falls study site in Ontario, Canada due to a high 

release flux from a previously trapped reservoir of helium.  

 

3.4.2.2. Dating old groundwater 

 The naturally occurring radionuclide krypton-81 has a half-life of 229,000 

years. Krypton-81 is produced in the upper atmosphere by cosmic ray spallation 

involving stable krypton isotopes. Krypton-81 provides the most robust age 

interpretation for very old groundwater because there are fewer uncertainties relating 

to the initial input value at recharge and subsequent subsurface processes and sources. 

The atmospheric 81Kr/Kr ratio is assumed to be constant and well constrained over the 

past 1,000,000 years and subsurface production is negligible. However, field sampling 

and laboratory analysis of 81Kr is complex and challenging; primarily due to the low 

concentration of krypton-81 in groundwater – typically less than 1,000 atoms L-1 H2O. 

Krypton-81 measurements have been made using Resonance Ionization Mass 

Spectrometry RIMS (Thonnard et al., 1987) and Accelerator Mass Spectrometry 

AMS (Collon et al., 2000). Although these techniques proved successful there were a 

number of issues preventing routine analysis. More recently, a second generation 

Atom Trap Trace Analysis ATTA technique (Du et al., 2003) has significantly 

reduced the volume of groundwater required for on-site de-gassing and by using 

‘table-top’ laboratory equipment, has provided a much more promising tool for 

potential routine analysis. 
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Krypton-81 measurements using the ATTA technology requires the de-gassing 

of approximately 2 m3 of groundwater in the field using a vacuum stripping method 

such as that described by Collon et al. (2000). The krypton is then separated and 

purified from the collected gases in the laboratory (Yokochi et al., 2008) and then 

analysed using ATTA (Du et al., 2003). 

 The radiogenic component of helium-4 in groundwater has been used as a 

direct estimate of groundwater age (Andrews et al., 1982). The principle of using 

helium-4 as a groundwater age-dating tool is rather simple and assumes that helium-4 

accumulation is groundwater is the result of in situ α-decay of U-Th series elements 

within the aquifer media, and therefore the higher the helium-4 concentration, the 

longer the groundwater residence time. To estimate the age of the groundwater, the 

method requires knowledge of U-Th content of aquifer material and transfer fluxes. 

However, many studies have shown that groundwater ages calculated in this way 

provide erroneously long residence times (Andrews et al., 1982; Torgersen 1985) and 

that the excess concentration of helium-4 could not simply be explained by in situ 

production from the aquifer media. A number of authors have attributed the additional 

helium to a deep upward flux from the crust or the release of a previously trapped 

‘inherited’ reservoir of helium-4 (eg. Solomon et al. 1996; Castro et al., 1998; Bethke 

et al., 1999; Mahara and Igarashi, 2003). The external fluxes of helium-4 that are 

reported in these studies imply that the principle of helium-4 dating is invalid in most 

hydrogeological settings unless crustal fluxes can be estimated with a high degree of 

accuracy. Zhou and Ballentine (2006) state that estimates of crustal fluxes are 

typically the most unconstrained value when calculating 4He groundwater ages but 

Torgersen (2010) suggests that with an increasing number of external flux estimates 

reported in the literature, the accuracy of 4He groundwater age-dating is improving.  
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3.4.3. Indicators of recharge rates and conditions  

Ingram et al. (2007) investigated the relationship between seasonal water table 

fluctuation and excess air determined using neon measurements by comparing 

borehole water level records over a 10 year period for a layered sandstone aquifer 

system in west Norfolk, UK, obtained from the UK Environment Agency. Water table 

fluctuation data was selected from boreholes to reflect modern groundwater recharge 

which was not affected by groundwater abstraction for municipal water supply 

purposes and therefore the artificial influence was minimal. Ingram et al. (2007) also 

explored the possibility that excess air could be used as a direct indicator of long-term 

average net annual groundwater recharge (Rav) given that:    

 

Rav = Dw Sy    (3.11) 

 

Where, Dw is the depth of water above entrapped air and Sy is the specific yield. 

Ingram et al. (2007) successfully used dissolved noble gases to distinguish between 

groundwater bodies with different recharge histories, and demonstrated that noble gas 

determined excess air correlated well with annual water table fluctuations and could 

therefore be used as a direct indicator of long-term average net annual groundwater 

recharge.  

   

3.4.4. Carbon capture and storage (CCS) and nuclear waste disposal.  

Geochemical tracers are powerful tools for assessing the potential for carbon 

sequestration and nuclear waste storage in deep sedimentary basins over geological 

time scales. Specifically, dissolved gas such as CO2 and/or noble gases can be applied 

to determine aquifer isolation (Marty et al., 2003) or to identify possibly leakage 
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pathways such as fault zones (Shipton et al., 2004; Vrolijk et al., 2005; Gilfillan et al., 

2008). This is particularly relevant to this study because it is hypothesised that faults 

act as preferential flow paths between deep and shallow aquifers within the Lower 

Rhine Embayment, Germany.  

Carbon Capture and Storage (CCS) is a strategy that has the potential to 

significantly reduce anthropogenic CO2 emissions and stabilise the concentration of 

atmospheric CO2. The CCS approach involves the capture, transport and long term 

storage of CO2 from the combustion of fossil fuels and other carbon emitting 

industrial processes. The CO2 is captured from flue gas emissions using a number of 

collection and separation techniques. Comprehensive and detailed information on all 

aspects of CCS theory and technology can be found in the IPCC Special Report on 

Carbon Dioxide Capture and Storage by Metz et al. (2005).  

The oil and gas fields of the North Sea have potential as large capacity carbon 

storage sites for CO2 emissions generated in the UK and northern Europe and have 

attracted much attention in recent years. However, it is estimated that deep saline 

aquifers in the same region could hold up to 135 times more carbon than the North 

Sea oil and gas fields (Metz et al., 2005). CCS technology using deep saline aquifer 

systems is generally more uncertain as little is often known about the hydrogeology 

and how groundwater dynamics could affect the rate of dispersion and overall 

residence times of the injected CO2. The IPCC Special Report (2005) clearly states 

that there is “a need for better understanding of long-term storage, migration and 

leakage pathways” and Gilfillan et al. (2009) conclude that geological mineral 

fixation of sequestrated CO2 is likely to form only a minor carbon sink in deep aquifer 

systems and that most of the injected CO2 will be dissolved in groundwater and 

therefore potential fluid flow pathways would require detailed investigation. 
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3.5. Stable Isotopes 

3.5.1. Overview 

Stable isotopes are now frequently used in many hydrogeological 

investigations and they often form the foundation of a multi-tracer approach when it is 

necessary to determine the origin of groundwater, recharge processes, flow paths and 

to identify palaeogroundwater (eg. Edmunds, 2001; Vaikmäe et al., 2001; Zuber et 

al., 2004; Yuce, 2007; Von Rohden et al., 2010). Typically, isotopes of hydrogen, 

oxygen and carbon will be used together with hydrochemical and field parameter data 

and if necessary more exotic tracers such as noble gases or various radionuclides. 

These stable isotopes have the advantage of low atomic mass and therefore the 

relative mass difference between their isotopes is large, thus having the additional 

benefit of enabling small fractionations to be measured relatively easily and very 

precisely in the laboratory.  

Isotopic fractionation processes are fundamental to stable isotope 

geochemistry. Isotopes of any given element will have slightly different physical and 

chemical properties because of differences in their mass and the strength of chemical 

bonds. Typically this results in mass-dependent isotopic fractionations. The two key 

processes that control mass-dependent fractionation are kinetic effects and isotope 

exchange reactions. This is because physical and chemical reaction processes are 

considered as either unidirectional kinetic reactions or reversible equilibrium 

reactions, ie. isotope exchange reactions; and the rate at which bonds are broken in 

chemical reactions describes these kinetic effects.  
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3.5.2. Notation and standards 

The delta notation expresses the abundance of a given isotope of a particular 

element in a sample relative to the same isotope in a reference material of known 

isotopic composition. The delta value is expressed as: 

 

  ( )‰ -1 1000sample

standard

R

R
δ

 
= × 
 

   (3.12) 

 

Where R is the heavy to light isotope abundance ratio of the sample and standard. 

Delta values are reported in per mil (‰) or parts per thousand with positive δ-values 

indicating that the heavy to light isotope ratio is higher in the sample than in the 

reference material and negative δ-values indicating that the heavy to light isotope ratio 

is higher in the standard than in the sample. The current reference standard for oxygen 

and hydrogen isotope measurements is Vienna Standard Mean Ocean Water 

(VSMOW) and the current standard for carbon isotope analyses is Vienna PeeDee 

Belemnite (VPDB).  

 

 

3.5.3. Stable isotopes of the water molecule 

The principal stable isotopes of hydrogen and oxygen have been used 

extensively in hydrogeological studies (eg. Rozanski, 1985; Gat, 1996; Zuber et al., 

2004; Von Rohden et al., 2010). These isotopes of the water molecule provide 

evidence for determining the origin of groundwater due to a variation in isotopic 

composition that occurs as a result of isotopic fractionation processes. For example, 

meteoric waters tend to be enriched in the lighter isotopes whereas waters subject to 
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high rates of evaporation are often enriched in the heavier isotopes of hydrogen and 

oxygen (Gat, 1996). This can be explained by open system (Rayleigh) isotopic 

fractionation. The vapour pressures of lighter molecules are higher than those of 

heavier molecules of the same compound so the lighter isotopes of water 

preferentially escape into the vapour phase during evaporation with the opposite 

occurring during condensation leading to a vapour phase enriched in isotopically light 

water (Sharp, 2007). Under Rayleigh conditions condensate is continuously removed 

from the system so the δ value of the remaining vapour becomes increasingly more 

negative. This results in very large depletions of the heavy isotopes in precipitation. 

The reader is referred to Criss (1999) and Gat (2010) for a comprehensive account of 

the Rayleigh fractionation model.  

Meteoric waters display a near-linear relationship between deuterium (2H) and 

oxygen-18. Craig (1961) conducted accurate analyses on both 2H/1H and 18O/16O 

isotope ratios and as a result defined a global meteoric water line (GMWL) that can be 

represented by the following equation: 

 

     δ
2H = 8δ18O + 10  (3.13) 

 

Dansgaard (1964) suggested that the GMWL could be represented in a more general 

way using the following equation:  

δ
2H = 8δ18O + d  (3.14) 

 

This equation shows that the gradient of the GMWL remains constant at a value of 8 

but the intercept, given by ‘d’ is now variable. The term ‘d’ was defined by Dansgaard 

(1964) as the deuterium excess parameter, and a value of 10 as stated by Craig (1961) 
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represents modern waters very well. Deuterium excess is governed primarily by the 

kinetic effects of the evaporation process.   

 

 

3.5.4. Fractionation in the hydrological cycle  

Changes in the isotopic composition of water (δ
2H and δ18O) during the 

hydrological cycle are caused by mass-dependent fractionation processes. Evaporation 

from the oceans and subsequent movement of vapour over land masses forms the 

continental phase of the hydrological cycle where precipitated water is recycled many 

times through evapo-transpiration and can become stored in glaciers and deep 

groundwater systems for long periods of time. The continental phase of the 

hydrological cycle only accounts for about 10%. Ninety percent is simply returned 

directly to the oceans by return flux precipitation (Gat, 1996).  

The continentality effect describes precipitation as becoming isotopically 

lighter as a given air mass containing water vapour travels farther inland or from its 

source because of the increasing number of precipitation events that have occurred as 

described by the Rayleigh fractionation model. Latitude, altitude and seasonal effects 

are all strongly linked to temperature because temperature controls the amount of 

water a given air mass can hold (Sharp, 2007). Temperature decreases with increasing 

latitude and altitude, leading to a decrease in δ
18O and δ2H values. Seasonal changes 

in ocean temperature also change the isotopic composition of precipitation and air-sea 

interaction conditions primarily affect the deuterium excess value (Gat, 1996). The 

isotopic composition of meteoric water is therefore strongly correlated to temperature 

(Dansgaard, 1964; Fricke and O’Neil, 1999) and due to this correlation it has been 

possible to use δ18O values to identify palaeo groundwater and groundwater recharged 
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during the last glacial maximum (LGM) (eg. Fontes et al., 1991; Deák and Coplen, 

1996; Vaikmäe et al., 2001). Vaikmäe et al. (2001) identified periglacial or possibly 

subglacial recharge of meltwater from the Fennoscandian ice sheet during the late 

Devensian ice age in the Cambrian-Vendian system, Estonia using δ18O 

measurements and 14C dating. The δ18O values of the glacial recharge were in the 

range of -20 – -22‰ and significantly lower than that of modern recharge which has a 

δ
18O value of -11‰. 

 

 

3.5.5. Carbon isotopes 

Carbon isotopes have many applications in hydrogeology. The radioactive 

isotope; carbon-14 (half-life of 5730 years) is well known as an archaeological dating 

tool, and is also often used in hydrogeology to date older groundwater in the range of 

1,000 to 25,000 years (Plummer et al., 1993). Stable isotopes of carbon include 12C 

and 13C, with abundances of 98.89% and 1.11% respectively (Wang et al., 1998). 

Even though natural variations in the ¹³C/¹²C ratio are small, they are sufficient to 

detect various physical, chemical and biological processes. Typical analytical 

precision for bulk δ¹³C measurements is usually better than ±0.15‰ (Clark and Fritz, 

1997), and measurements are generally based on the production of carbon dioxide gas 

– numerous preparation methods for producing carbon dioxide exist. For the 

successful application of carbon isotopes as tracers of groundwater flow, rock-water 

interactions along a given flow path must create a distinctive isotopic signature and 

produce distinguishable changes in the hydrochemistry and/or residence time. If these 

interactions are favourable then carbon isotopes can be used to provide information on 

the origin of carbonate alkalinity as well as giving an indication of the relative 
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importance of processes such as the oxidation of organic matter, silicate hydrolysis, 

carbonate mineral dissolution and methanogenesis. Carbon solutes are not 

conservative environmental tracers and therefore it must be noted that they do not 

always accurately represent the movement of groundwater.  

Deines et al. (1974) described carbonate evolution in groundwater in terms of 

open and closed system models. According to Deines et al. (1974) open system 

evolution involves the reaction of carbonate minerals with water that is in contact with 

a gas phase of fixed PCO2 and continuous isotopic exchange exists between the CO2 

reservoir and the solution, whereas in closed system evolution water is isolated from 

the CO2 reservoir before carbonate dissolution occurs. However, in reality most 

carbonate system evolution falls somewhere in between these two models. It is also 

possible that during the course of groundwater evolution along a flow path from 

recharge to discharge, carbonate dissolution will occur under both sets of conditions 

typically moving from open system to closed system evolution with increasing aquifer 

confinement. 

 

 

3.5.5.1 Atmospheric and soil CO2 

The atmospheric concentration of carbon dioxide is currently 389.7 ppmv 

(Tans and Keeling, 2010). The δ13C of atmospheric carbon dioxide was -6.4‰ 

(Friedli et al., 1986) but has been steadily decreasing as a result of the increasing 

global consumption and combustion of fossil fuels and is now -7‰ (Appelo and 

Postma, 2005).  

During infiltration of the soil zone, water equilibrates with soil CO2. Soil CO2 

concentrations are generally in the range of 103 to 106 ppmv (PCO2 ~10-3 to 10-1) due 
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to bacterial oxidation of organic matter and CO2 respiration in the root zone (Clark 

and Fritz, 1997). The dissolution of CO2 in water produces carbonic acid with 

subsequent dissociation reactions that produce bicarbonate and carbonate and 

ultimately lower the pH value. The dissolution of CO2 is controlled by several factors 

including temperature, initial pH value and soil PCO2.  

The dissolution of soil CO2 and the subsequent 1st and 2nd dissociations of 

carbonic acid are given by the following net reaction equation: 

   

  2
2 2 2 3 3 32CO H O H CO H HCO H CO+ − + −+ + +⇌ ⇌ ⇌  (3.15) 

 

It can generally be assumed that carbonate alkalinity is given by the concentration of 

HCO3
- and CO3

2-, as other species do not contribute significantly to alkalinity.  

 The reader is referred to Clark and Fritz (1997) and Wang et al. (1998) for a 

comprehensive overview of the principles and applications of carbon isotopes in 

groundwater.  
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4. Methods 

4.1. Field sampling          

  The Lower Rhine Embayment has an exceptionally high density of 

observation boreholes and piezometer nests (see Figure 4.1). 
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Figure 4.1. High density distribution of observation boreholes and piezometer nests in the 

Lower Rhine Embayment, Germany. 
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4.1.1. Borehole selection 

The Lower Rhine Embayment is an excellent and unique region for studying 

groundwater flow dynamics due to an exceptionally high density of observation 

boreholes and piezometer nests and enhanced groundwater flow rates induced by 

regional-scale groundwater abstraction from three large open cast lignite mines. With 

such a vast number of observation boreholes available for groundwater monitoring 

purposes and sample collection it was essential that boreholes were selected based on 

a number of important criteria. Observation boreholes were selected at locations in 

close proximity to faults, and where good historical monitoring records detailing well 

head parameters and hydrochemistry were available; and in locations that 

demonstrated certain trends in temporal hydraulic head variations such as long-term 

drawdown, rebound subsequent to drawdown and natural seasonal/annual 

fluctuations. Physical limitations of the pumping equipment used also restricted 

borehole selection and generally only shallow aquifers were sampled (< 100 m).  

 
Figure 4.2. Erftverband custom built groundwater sampling vehicle; including 

submersible pumps, petrol generator and wet laboratory. 
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Grundfos MP1 submersible pumps were provided by the Erftverband and used for 

sampling. The maximum depth that the submersible MP1 pumps could operate at was 

approximately 80 m below the ground surface. 

Groundwater sampling was conducted during three field visits to the Lower 

Rhine Embayment, Germany that occurred during October 2007, April 2008 and 

October 2008. The field sampling campaigns were fully supported by the Erftverband 

and facilitated using their purpose built sampling vehicles (Figure 4.2), complete with 

mobile wet laboratory, dippers, submersible pumps and petrol generators. The vast 

majority of observation boreholes and piezometers (Figure 4.3) were pumped using a 

Grundfos MP1 submersible pump. Water level dippers fitted with an audible 

electronic alarm were used to determine potentiometric surface before pumping, and 

combined with filter depth records to determine the volume of water in the borehole.  

 

 

Figure 4.3. A typical piezometer nest installed by the Erftverband and RWE Power AG. 
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Each borehole/piezometer was pumped for a time that represented three 

volumes of groundwater standing in the borehole. pH and Eh were continually 

monitored using a flow through cell until a steady state had been reached before any 

measurements were taken and/or groundwater samples collected.  
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Figure 4.4. The spatial distribution of observation boreholes selected for sampling. The 

identification name of each observation borehole is provided in Appendix 1.   
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4.1.2. Sample collection techniques      

4.1.2.1. δ2H and δ18O 

Collecting groundwater samples for δ2H and δ18O analysis follows a simple 

protocol. Samples were collected in the field using 150 mL HDPE bottles. Once the 

borehole had been pumped for a sufficient length of time based on the volume of 

groundwater within the borehole, raw unfiltered groundwater was used to rinse the 

bottles and caps three times after which the 150 mL HDPE bottles were completely 

filled using raw unfiltered groundwater so that no head space remained and the cap 

was tightened securely.  

 

4.1.2.2. δ13CDIC 

Groundwater samples used for δ
13CDIC analysis were collected in 150 mL glass 

bottles. Raw unfiltered groundwater was used to rinse the bottles and caps three times. 

The bottles were partially filled with raw groundwater before the addition of a SrCl2–

NH4OH solution that had been prepared shortly before the sampling campaign and 

stored in an airtight 1 L vessel. The ratio of SrCl2–NH4OH to groundwater was 1:9 as 

described by Bishop (1990). The glass bottles were sealed using NESCOFILM tape 

and care was taken that no headspace remained. 

 

4.1.2.3. Strontium isotopes 

Groundwater samples collected for total strontium and strontium isotope ratio 

analyses were collected in 30 mL HDPE bottles. The bottles were rinsed with filtered 

groundwater three times before sample collection. Raw groundwater was filtered 

using Minisart® 0.45 µm syringe filters and then acidified using 70% HNO3 to pH <2 
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as described by Bullen et al. (1996). These samples were stored in a refrigerator at 3-5 

ºC until analysis.  

 

4.1.2.4. Dissolved noble gases 

Groundwater samples for noble gas analyses were collected using the copper 

tube method as frequently described in the literature (eg. Weiss, 1968). The key points 

to note about this method are that air bubbles must be purged or prevented from 

forming inside the copper tube prior to clamping and that the stainless steel ‘pinch-

off’ clamps must be fully tightened so that the contact areas of the clamps meet 

completely and no gaps remain. Clear Portex® tubing was used to facilitate visual 

inspection of bubble formation within the connecting tubes near each end of the 

copper sampling tube and near the ball valve fittings and jubilee clips. A simple ball 

valve was used to apply sufficient back pressure to maintain or exceed the original 

level of hydrostatic pressure during sampling. The stainless steel clamps were 

designed and manufactured so that when the hex bolts are fully tightened and the 

clamp contact areas meet, a precisely engineered aperture exists in the centre of the 

clamp to form an excellent seal. It is impossible to over tighten these clamps except 

for the possibility of shearing-off the bolt head. However, if insufficient torque is 

applied then there is the possibility of a poor seal and subsequent partial de-gassing of 

the sample. A long handled wrench was used to enable the bolts to be tightened with 

sufficient torque.  

The copper tubes and stainless steel clamps were held in the desired position 

by a length of aluminium channel that had been custom designed and milled at the 

UEA mechanical workshop and included locating holes for two clamps at a fixed 

distance apart ensuring that the sample size was relatively constant.  
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Special care is required when transporting and storing the samples subsequent 

to collection because the ends of the copper tubes become very susceptible to damage 

once the clamps have been tightened. A purpose built storage rack was used to 

transport the samples in the field which provided adequate protection against tube 

damage.  

 

 

 

4.2. Analytical techniques 

4.2.1. Field parameter data and hydrochemistry 

All field parameter data and hydrochemistry including ionic and trace element 

analysis were conducted by the Erftverband technicians in the field and at the 

Erftverband laboratories in Bergheim, Germany using a range of analytical 

instruments such as Ion Chromatography and Inductively Coupled Plasma - Mass 

Spectrometry (ICP-MS). The reader is referred to Skoog (2004) for a good overview 

of analytical chemistry and the relevant techniques and instruments.     

 

    

4.2.2. Stable isotope analysis     

4.2.2.1. Oxygen Isotopes  

 δ
18O analysis was conducted using a modification of the CO2-H2O technique 

based on the oxygen isotope equilibration of an aliquot of CO2 with the groundwater 

sample under closed conditions as first described by Epstein and Mayeda (1953).  

Glass reaction vessels were evacuated prior to an aliquot of CO2 being 

admitted. 2.4 mL of raw groundwater was then injected into each reaction vessel. The 
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vessels were gently agitated for six hours in order for complete oxygen isotope 

equilibration to be achieved. The CO2 is extracted and passed through a cold trap to 

remove water vapour before being analysed using a Europa SIRA II Isotope Ratio 

Mass Spectrometer (IRMS). The UEA laboratory reference standard is North Sea 

Water (δ18O = -0.20‰ VSMOW). The standard is incorporated into the batch of 

groundwater samples with a total of 48 water samples being analysed per day. The 

analytical precision for δ18O analysis is 0.04‰ VSMOW (± 2σ). 

      

4.2.2.2. Hydrogen Isotopes 

 δ
2H analysis was conducted using the continuous flow technique where 0.1 µL 

of raw groundwater sample was manually injected using a 0.5 µL syringe into a 

stream of helium carrier gas. The 0.1 µL groundwater sample is carried though an 

oven where it is vaporised at 140 ºC and then reacted with activated carbon at 1422 ºC 

which evolves H2 and CO2 gas. Hydrogen is ionised in the source of a Europa GEO 

MS and the (H2H+H3)/H2 ratio is measured using a special collector assembly 

designed for the widely separated H2
+, H2H+ ion beams. Norwich Tap Water (NTW) 

was used as a standard for calibration (δ
2H = -44.9 ± 2‰ VSMOW). The analytical 

precision is considerably lower than δ
18O at ± 1.4‰ VSMOW (± 2σ). 

      

4.2.2.3. δ13CDIC sample preparation and analysis 

In the laboratory, the strontium carbonate precipitate (SrCO3) that had formed 

in the groundwater sample from the addition and subsequent reaction of SrCl2–

NH4OH in the field, was filtered using Whatman #1, Ø 55 mm filters under an 

atmosphere of nitrogen and using a vacuum pump. The SrCO3 precipitate was then 

rinsed with polished deionised water for a further three minutes. The filter papers 
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containing the SrCO3 precipitate were quickly transferred to individual clean Petri 

dishes and placed in a vacuum oven to dry at 70 ºC for approximately six hours. Once 

dried, the strontium carbonate precipitate was carefully scraped off the filter paper 

using a sharp blade and placed in small glass vials with airtight caps and stored in a 

vacuum desiccator until analysis. Approximately 150–200 µg of the strontium 

carbonate precipitate and 100–150 µg Carrera Marble (UEA-CMST, δ13C = 2.01 ± 

0.08 ‰ PDB) was used for analysis and calibration respectively. 

The δ13CDIC analysis was conducted using a Europa SIRA II dual inlet mass 

spectrometer. The SrCO3 is reacted with phosphoric acid (HP3O4) to produce carbon 

dioxide (CO2(g)). The analytical precision for this method is ± 0.1‰ VPDB. 

        

4.2.2.4. Strontium sample preparation and analysis 

 Strontium isotope analyses were conducted by Henriette Ueckermann and 

Jurian Hoogewerff within the School of Chemistry at the University of East Anglia 

(UEA). 12-14 mL of the prepared groundwater sample was decanted into 15 mL 

vessels to avoid contaminating the original sample and therefore preserving it for 

future use. 1 mL of the sample was then mixed with 9 mL of an internal standard to 

produce a tenfold dilution. The internal standard consisted of 2% HNO3 with 10 ppb 

GeRhPt. The analysis was done using an Isoprobe Multiple Collector Inductively 

Coupled Plasma Mass Spectrometer (MC-ICP-MS) fitted with an array of faraday 

cups to measure an atomic mass range from 83 to 88. The analytical precision for this 

technique is 0.00007 (± 3σ). 
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4.2.3. Dissolved noble gases       

4.2.3.1. Quadrupole mass spectrometry 

Quadrupole mass spectrometry provides a cost effective analytical technique 

to determine noble gas abundances in groundwater (eg. Poole et al., 1997; Kulongoski 

and Hilton, 2002), whereas magnetic sector mass spectrometry provides increased 

resolution and enables the quantification of noble gas isotopes with very low natural 

abundances such as 3He, 21Ne and 36Ar (eg. Beyerle et al., 2000). Quadrupole mass 

spectrometers consist of four parallel circular metal rods (see Figure 4.5), an ion 

source, ion optics for accelerating and focussing the ions through the aperture into the 

quadrupole filter, an exit aperture, a faraday cup and/or a secondary electron 

multiplier (SEM) detector, and a high vacuum (HV) system.  

 

 

 

Figure 4.5. Schematic diagram of a typical quadrupole analyser (image produced by P. 

Gates, University of Bristol).  
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An opposing rod pair has an applied potential of +(U+Vcos(ωt)) and the 

remaining two rods have an applied potential of –(U+Vcos(ωt)). Where, U is a fixed 

DC voltage and Vcos(ωt) is an applied RF potential that has an amplitude V and 

frequency ω.  

For mass separation, quadrupole mass spectrometers use a high radio frequency 

(RF) oscillating potential that affects the trajectory of ions along the flight path that is 

centred between the four parallel metal rods. For any given DC and AC voltage, only 

ions with a particular mass:charge ratio (m/z) will pass through the quadrupole filter 

to the detector. Quadrupole mass analysers including ion trajectories are discussed in 

detail by Batey (1987). Quadrupole mass spectrometers are widely used because of 

their robust performance, compact size and relatively low cost. Quadrupole mass 

spectrometers also offer rapid measurements and a high dynamic range in comparison 

to magnetic sector instruments.  

Groundwater samples collected from the Lower Rhine Embayment during 

2007/08 for this research were analysed for dissolved noble gases at the Stable Isotope 

Laboratory, UEA using a purpose built high vacuum preparation line and AN-5T 

quadrupole mass analyser operated in static mode. The instrument used and the 

principles of the analytical procedure have been described in depth by Poole et al. 

(1997) and Ingram (2005). 

 

4.2.3.2. Isotope dilution mass spectrometry  

 Isotope dilution mass spectrometry (IDMS) is based on the principle that a 

known quantity of a spike isotope is added to the sample before analysis. The spike 

isotope is usually a stable isotope with low natural abundance, such as 3He, 22Ne, 36Ar 

or 78Kr in the case of noble gas analyses. The spike isotope(s) and sample are mixed 
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and the isotope ratio R of the spike isotope and the most naturally abundant isotope in 

the sample is measured using isotope ratio mass spectrometry (IRMS) typically for 

example, with a quadrupole mass analyser as described in Section 4.3.1. The isotope 

dilution equation is expressed as: 

 

   
( )

sample
h

isample
l

ii

spike
l

iispike
h

ispikei
samplei AAR

ARAN
N

−⋅
⋅−

=   (4.1) 

 

Where:  N = number of atoms  

A = isotope abundance (%)  

R = isotope ratio 

 

 

 Uncertainty in IDMS measurements arise from errors in determining the spike 

concentration accurately and from isotope fractionation effects in the source of the 

mass spectrometer during analysis (Faure and Mensing, 2005).  

 

4.2.3.3. Calibration  

 It is essential to calibrate instrument response to sample concentration. The 

calibration process for the noble gas analyses conducted during this research using the 

high vacuum (HV) preparation line and quadrupole mass spectrometer described by 

Poole et al. (1997) and Ingram (2005) involved calculating the tracer spike 

concentration by admitting an aliquot of the tracer spike with a known volume of 

analyte (atmospheric air). The tracer spike concentration will decrease with each 

subsequent analysis because it is not possible to maintain a constant pressure within 
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the tracer cylinder. Therefore, both the initial tracer spike concentration and the tracer 

depletion rate need to be calibrated.       

The noble gas analysis system described by Poole et al. (1997) was designed 

to be calibrated using a simple atmospheric air spike of known volume (0.2176 cm3) 

which is collected in a small inlet valve attached to the HV preparation line. The 

atmospheric abundance of each noble gas is well known and taken from the literature 

(eg. Ozima and Podosek, 2002) and the temperature, atmospheric pressure and 

relative humidity are recorded at the time the air spike was prepared. The tracer 

volume depletion rate is simply calculated from the tracer cylinder volume (309.5 

cm3) and the tracer aliquot volume (0.855 cm3) respectively, and can be assumed to be 

constant at 0.002755. 

This calibration procedure is quick and simple and only requires one initial 

determination and then re-calibration every 15-20 sample analyses. However, the 

calibration does not consider the linearity of the response of the mass spectrometer to 

noble gas concentrations that vary by several orders of magnitude, which is observed 

between the concentration of noble gases in the air spike and the noble gas 

concentrations present in a groundwater sample. This however, appears to have a 

negligible effect on the results obtained from previous use of the instrument by Poole 

et al. (1997). Ingram (2005) recognised that the design of the standard calibration 

technique made no attempt to check the linearity of the MS response and that previous 

use of the instrument had assumed that the response of the MS was linear over the 

range of concentrations measured. Ingram (2005) presents data that confirms the 

linearity of the mass spectrometer over a small range of ‘typical’ concentrations 

reasonably well but the calibration does not extend to the high helium concentrations 

that have been measured during this research. Unfortunately, the current design of the 
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instrument does not allow for the empirical calibration of linearity to be determined 

up to 3-4 orders of magnitude above atmospheric solubility equilibrium 

concentrations for helium. Therefore, for the purpose of this study it has been 

assumed that the response of the MS is linear over the range of concentrations 

measured. To support this assumption, groundwater samples containing high 4He 

concentrations were analysed at both the Stable Isotope Laboratory at UEA and at the 

USGS Reston Laboratory, with the results comparing very well and thus providing 

additional confidence in the analytical procedure. 

 

 

 

4.2.3.4. Experimental errors and propagation 

 Errors are incurred during sample analysis and propagated through the 

calculation process that is necessary to determine dissolved noble gas concentrations 

in a groundwater sample. Standard error propagation mathematics was applied to 

calculate the experimental uncertainty associated with noble gas concentrations.  

 

Standard error propagation laws state that for summation or subtraction, the 

square of the error in the sum or difference of two numbers (A and B) is equal to the 

sum of the squares of individual absolute error estimated for values A and B. This can 

be expressed as: 

 
 

2 2 2 2( { }) ( { }) ( { }) ( { })error A B error A B error A error B+ = − = +   
 

2 2( ) ( { }) ( { })error A B error A error B+ = +    (4.2) 
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Where:  A = value A 

B = value B 
error{A} = absolute error of A 
error{B} = absolute error of B 

 
 
 

For multiplication or division, the relative error in a product or quotient is 

equal to the square root of the sum of the squares of the relative errors in the 

individual factors. Absolute errors are calculated by multiplying both sides by the 

denominator. This can be expressed as: 

 

For relative errors: 
 

2 2
{ } { } { }

A
error

error AB error A error BB
AAB A B
B

  
         = = +     

       
  
  

   (4.3) 

 
 
For absolute errors: 
 
 

( )
2 2

{ } { }
{ }

error A error B
error AB AB

A B
   = +   
   

   (4.4) 

 
 

2 2
{ } { }A A error A error B

error
B B A B

       = +       
       

    (4.5) 

 
 
 
Where:  A = value A 

B = value B 
error{A} = absolute error of A 
error{B} = absolute error of B 
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4.2.3.5. Preparation of the tracer spike 

 The tracer spike was prepared in the Stable Isotope Laboratory at UEA using 

the rare noble gas isotopes of 3He, 22Ne, 36Ar, 78Kr and 129Xe. These high purity gases 

were sourced from CHEMGAS of Boulogne, France and valve adaptors were 

manufactured by Chell Instruments in North Walsham, Norfolk, UK.  

 The tracer spike was prepared by taking the five rare isotopes (of 

approximately known concentrations) and expanding each gas into a glass vacuum 

line. By using multiple expansions and calibrated volumes along with a sensitive 

pressure gauge it was possible to calculate and isolate the desired concentration of 

each gas within the vacuum line. The rare noble gas isotopes were isolated in 

evacuated glass vessels attached to the vacuum line until the final stage of the process 

which involved mixing the five noble gas isotopes together and expanding them into a 

stainless still cylinder of known volume which would later be attached to the noble 

gas preparation line and used to admit the tracer spike into the noble gas preparation 

line with the sample gases before analysis. The quantity of each gas was calculated so 

that the abundance of the rare isotope would be approximately equal to the abundance 

of the most naturally occurring isotope in a 5-6 g groundwater sample size when 

analysed using IRMS. 

 

 

4.2.3.6. Noble gas analysis  

 A detailed account of the analytical procedure is provided by Poole et al. 

(1997) and comprehensive step-by-step instructions are given by Ingram (2005). The 

following information provides additional content and includes recent operational 
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modifications and improvements that have been made to the analytical system during 

this research. 

 

4.2.3.7. Sample preparation  

 The only preparation that the groundwater samples collected for noble gas 

analysis required was the splitting of copper tubes so that a suitable sample size was 

available for analysis. The sample size was calculated based on the capacity of the 

sample inlet cup and the estimated quantity of dissolved noble gases in a sample of a 

given size. A sample size of 5-6 g of groundwater was used and the copper tubes were 

split accordingly. This was done by tightening an additional swage clamp 10 cm 

inwards from one of the original clamps, and another additional swage clamp 14 cm 

inwards from the other recently attached clamp. Once the two additional clamps had 

been fully tightened the copper tube was cut using a copper pipe cutter at the mid-

point between the two additional clamps. This produced both a 5-6 g sample with 7 

cm of copper tube on each end necessary for attaching it to the preparation line, and a 

spare sample that could be divided into two more samples if duplicate or triplicate 

analysis was required. Note that due to the relative incompressibility of water only 

three samples could be made from one original cooper tube sample as the volume 

decreases slightly each time it is clamped.   

 

4.2.3.8. Preparation Line and Quadrupole MS 

Prior to attaching the sample inlet cup and copper tube containing the 

groundwater sample, and subsequent to each sample analysis, both cold traps were 

baked at 500 ºC for 60 minutes, and all component parts of the preparation line (see 

Figure 4.6) such as the argon trap, sample metering volumes, getter pumps, air spike 
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volume and tracer aliquot volume were pumped using the turbo molecular pump to a 

vacuum of <10̄³ mbar.  

 

Figure 4.6. Schematic of the noble gas preparation line (after Ingram, 2005). 

 

To achieve optimal operating conditions a current of approximately 1.5 A was 

applied continually to the preparation line and quadrupole heating tapes to warm the 

stainless steel and minimise out-gassing from the metal surfaces during analyses. If 

the preparation line or quadrupole MS were exposed to the atmosphere as a result of 

pump failure for example, it was necessary to increase the current applied to the 

quadrupole heating tape for several days, until the 40Ar ion current intensity remained 

stable during analysis and a error of ≤1% is achieved for argon isotope ratio analysis.  
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Figure 4.7. Photograph of the noble gas preparation line and the SXP Elite control system at 

the Stable Isotope Laboratory, UEA. 

 

 

4.2.3.9. Getter pump activation  

The noble gas preparation line and quadrupole MS has two SAES GP50 Zr-Al 

alloy getter pumps with St101 cartridges that need to be activated before the first 

sample analysis and again after two or three subsequent analyses. However, it was 

clear that getter pump activation was usually necessary after each analysis but this did 

depend on the volume of dissolved gas in the sample and the amount of water vapour 

that entered the preparation line during sample admission. The getter pumps are used 

to remove all reactive gas species from the sample. Hydrogen is adsorbed reversibly 
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and other active gases such as carbon monoxide, carbon dioxide, oxygen and nitrogen 

are adsorbed irreversibly onto the Zr-Al surface of the cartridge. Water vapour and 

hydrocarbons are adsorbed both reversibly and irreversibly (SAES Getter Pump 

Manual). Activation of the getter pumps occurs at ~600 ºC (3.5 A) for 45 minutes 

under a vacuum of 10-3 mbar achieved using the turbo pump. It was important to 

isolate the quadrupole getter pump from the quadrupole mass spectrometer before 

initiating the activation process. After 45 minutes, the temperature of the getter pumps 

is reduced to 400 ºC (2.25 A) and the quadrupole getter pump is isolated from the 

turbo pump. The preparation line getter pump must also be isolated from the 

preparation line at this stage. It is essential not to expose the getter pumps to water 

vapour or other reactive gas species once they have been activated; if that occurs, re-

activation is necessary. Further technical information can be found at 

http://www.saesgetters.com. 

                            

                                                                                                                                                                                                                                                                                                                             

4.2.3.10. Sample inlet cup attachment   

Attaching the sample inlet cup correctly is essential to prevent the loss of 

sample gases or the addition of gas from the atmosphere as well as achieving a 

sufficient vacuum. All valves must be closed including the valve to the turbo pump 

before attaching the sample inlet cup. Each time the sample inlet cup is attached to the 

preparation line, a new VCR copper or nickel gasket is required. Special attention is 

needed to ensure that the sample inlet cup is thoroughly dry before attachment to the 

preparation line. Access to the internal surfaces of the inlet cup is particularly limited 

and therefore oven drying at 80 ºC for at least eight hours is recommended. Note that 

correct orientation of the inlet cup is essential for successfully attaching the sample 
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later. Once the inlet cup has been attached to the preparation line, the stainless steel 

blanking plug is inserted into the open end of the sample inlet cup. It is necessary to 

apply a small amount of vacuum grease to the rubber o-ring and finger-tighten the 

Cajon fitting. The turbo pump is isolated from the preparation line before opening the 

valve between the inlet cup and preparation line, and the roughing pump must be used 

to evacuate the inlet cup. If the pressure remains greater than 1 mbar for more than a 

few minutes, it is likely that the copper gasket has failed to produce an adequate seal 

or a small quantity of water is present in the sample inlet cup. Once a vacuum of <1 

mbar has been achieved, the valve to the roughing pump can be closed and the valve 

to the turbo pump opened. It is necessary to continue pumping the sample inlet cup 

until a vacuum of 10-3 mbar has been reached. 

 

 

4.2.3.11. Sample attachment  

To correctly attach a copper tube containing a groundwater sample, the sample 

inlet cup must first be isolated from the preparation line. The stainless steel blanking 

plug is replaced with a pre-weighed copper tube containing approximately 5 mL of 

groundwater sample (see Section 4.3.6.1). The upper clamp of the sample should fit 

easily into the aluminium sample holder mounted below the inlet cup (Figure 4.6). If 

the inlet cup has not been aligned correctly it is difficult to locate the upper clamp in 

the aluminium sample holder and insert the copper tube into the sample inlet cup via 

the Cajon fitting. The aluminium sample holder must be adjusted to ensure that the 

correct height is achieved and it is secured using a 13 mm spanner to provide 

additional support for the copper tube. Once the sample is secure, and the turbo pump 

has been isolated from the preparation line, the sample inlet cup and upper end of the 



 95 

copper tube are evacuated using the roughing pump until a vacuum of <1 mbar is 

achieved. The valve to the roughing pump can then be closed and the valve to the 

turbo pump is opened. It is very important to continue to pump the sample until a 

vacuum of 10-3 mbar has been reached and that this level of vacuum can be 

maintained if the turbo pump is isolated. An increase in pressure subsequent to the 

turbo pump being isolated indicates degassing of the sample across the cooper tube 

seal or an inadequate seal between sample and inlet cup. 

 

 

4.2.3.12. Degassing the sample 

Degassing the groundwater sample is a critical part of the analytical procedure 

and great care is required to ensure that it is done correctly. The valve to the sample 

inlet cup must be closed and the turbo pump should be isolated from the preparation 

line. The sample inlet cup is filled with ethanol and dry ice pellets. It is necessary to 

introduce the dry ice pellets individually until the ethanol has cooled sufficiently and 

sublimation has ceased. Ensuring that the sample is securely mounted in the 

aluminium holding device, the two 13 mm hex nuts of the clamp are slowly 

unscrewed using a ring spanner or long barrelled socket wrench. Note: the nuts are 

often very tight depending on storage time/conditions; however, they must not be 

loosened at any stage prior to this point as this will compromise the seal and could 

result in partial degassing of the sample. The clamp is completely removed and 

retained for weighing. A modified clamp is used to reform the copper tube. The 

modified clamp is placed over the cold weld perpendicular to the position of the 

original clamp and slowly tightened to open the seal. The sample degasses at this 

stage and the ethanol/dry ice mixture usually boils over. It is not necessary to fully 
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open the cold weld and doing so often results in the copper tube splitting and the 

sample being no longer useable. Any uncertainty regarding the copper tube is easily 

determined by monitoring the pressure as the sample gas is admitted to the 

preparation line. To ensure that the sample has been fully degassed, the copper tube is 

heated with a hot air gun to a temperature sufficient to vaporise the sample. It was 

noted that ice often formed where the cold weld had been opened and inside the lower 

section of the sample inlet cup. This prevented the remaining part of the groundwater 

sample from reaching the internal surface of the inlet cup where it is intended to 

freeze as a result of the dry ice pellets and ethanol mixture – these areas are given 

particular attention with the heat gun. The copper tube is heated for approximately 15 

minutes in total until complete transfer of the groundwater sample from the copper 

tube to the inlet cup has occurred. The sample inlet cup requires refilling with dry ice 

pellets and ethanol during the heating process. 

 

 

4.2.3.13. Expanding the sample gas into the Preparation Line 

During the sample heating process, the valve to the turbo pump is closed and 

the valve to the tracer spike gas cylinder is opened and the tracer gases are expanded 

into the small tracer spike metering volume. It is very important that the second valve 

is closed to prevent the tracer gas mixture entering the preparation line. After two 

minutes the valve to the tracer cylinder must be closed and the valve to the 

preparation line is opened, expanding the aliquot of tracer gases into the preparation 

line. After a further two minutes the valve is closed and the tracer aliquot volume is 

isolated from the preparation line – this will reduce the possibility of contaminating 

the tracer gas mixture in the cylinder as the metering volume will only contain the 
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tracer spike gases. Using the current tracer gas mixture the pressure in the line will 

increase to approximately 4x10¯² mbar; but this will decrease with each subsequent 

analysis according to the tracer depletion factor. The valve to the sample inlet cup is 

then opened and the sample gas is expanded into the preparation line. The pressure in 

the line typically increases to approximately 1 mbar but this depends on the quantity 

of dissolved gas in the groundwater sample. However, a pressure of >2 mbar indicates 

that air has entered the system, usually during the cold weld opening and reforming 

procedure. If a pressure of >2 mbar is observed the analysis is abandoned. 

The valve to the sample inlet cup must be open for five minutes and it is 

essential to ensure that the inlet cup remains full with dry ice pellets and ethanol – this 

removes any remaining water vapour that might have entered the preparation line. 

After 5 minutes the valve to the inlet cup is closed and the valve to the preparation 

line getter pump is opened. The getter pump removes all reactive gases from the 

sample. This is monitored by observing the Pirani gauge and pressure decrease with 

time. Depending on the operating condition of the getter pump the duration of this 

process ranges from thirty seconds to approximately ten minutes. If the getter pump 

fails to remove the reactive gases then re-activation is necessary and the run must be 

abandoned although increasing the current to the getter pump and therefore increasing 

the temperature has had positive results on some occasions (see Section 4.3.6.3).   

 

 

4.2.3.14. Partitioning the noble gases for analysis 

At this stage of the analytical procedure, the preparation line only contains the 

noble gases of helium, neon, argon, krypton and xenon. To facilitate accurate and 

precise isotope ratio measurements, the gases undergo cryogenic separation. Argon is 
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significantly more abundant than the other noble gases and it is therefore not 

necessary to isolate it from the other gases as they will not interfere with the 

measurements. The valve to the argon trap is opened for two minutes to collect an 

aliquot of gas for argon analysis later in the procedure. Ensuring that the valve to Cold 

Trap 1 is closed, a dewar of ethanol/dry ice slush is placed around the cold trap. Once 

Cold Trap 1 has reached the desired temperature (a thermocouple is used to check the 

temperature) the valve to Cold Trap 1 is opened for ten minutes – krypton and xenon 

are adsorbed onto the activated charcoal within the cold trap. A Pirani gauge is used 

to monitor the progress of this process. Initially, the pressure decreases steadily and 

then remains constant once all the krypton and xenon has been adsorbed onto the 

activated charcoal. After ten minutes the valve to Cold Trap 1 is closed but the dewar 

containing the ethanol/dry ice slush must remain as this is required later. Using a 

second dewar, liquid nitrogen is placed around Cold Trap 2 and then the valve is 

opened for ten minutes to remove argon from the remaining gas mixture in the 

preparation line. After ten minutes has elapsed the valve to Cold Trap 2 is closed – 

helium and neon are the only remaining gases in the preparation line at this stage and 

the pressure in the preparation line is usually just below the detection limit of the 

Pirani gauge. 

 

 

4.2.3.15. Noble gas analysis using the SXP Elite system. 

Ingram (2005) describes in detail the systematic procedure for admitting the 

noble gases from the preparation line to the quadrupole mass spectrometer for isotope 

ratio measurements. During this research it was determined by a number of 

investigative experiments that the system performed better if the quadrupole getter 
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pump remained isolated from the quadrupole mass spectrometer during the analysis of 

the noble gases. The SXP Elite settings are critical for accurate noble gas isotope ratio 

analysis and extensive testing was conducted during this research to determine the 

optimal settings. These control settings are presented in Appendix 2. 

 

      

4.2.3.16. Air saturated water standards and solubility equations 

 To verify the overall analytical procedure, air saturated water (ASW) samples 

were analysed at a range of different temperatures. Open HDPE vessels (2.5 L) were 

used to equilibrate water with the atmosphere. The water containers were stored at 

known constant temperatures which were recorded at least twice daily and the 

ambient atmospheric pressure was also monitored and recorded over a 7-10 day 

period. The water was continually aerated gently during the equilibration period to 

facilitate gas exchange. Samples were collected in glass vessels and analysed in the 

same way as the groundwater samples in copper tubes. 

 

Table 4.1. Air saturated water equilibration temperature and the 

corresponding equilibration temperature determined using NOBLE90.  

ASW NOBLE90 NGT  Error (±) 
(ºC) 

3 
3 

2.5 
0.2 

8.4 
5.3 

13 
13 

9.1 
9.9 

8.8 
9.1 

15 
15 

14.7 
16.3 

0.5 
1.1 

21 
21 

20.1 
9.5 

2.1 
5.0 
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Figure 4.8. Cross plot of argon against neon for air saturated water (ASW) samples in 

relation to atmospheric solubility equilibrium concentrations and the presence of excess air. 

 
 

The ASW water samples equilibrated at 3, 13 and 21 ºC (Table 4.1) were 

analysed before the quadrupole mass spectrometer was operating optimally which 

would explain the very poor accuracy and low precision of these results. It should be 

noted that all groundwater samples analysed during this period have not been 

presented in this thesis due to large analytical uncertainties. The quadrupole mass 

spectrometer and preparation line were vigorously tested and adjusted/tuned using air 

spikes to ensure that the final set of results were robust and as accurate as possible. 

All the data presented in this thesis were obtained subsequent to this point and that 

also includes the ASW 15 ºC samples which can be seen in Figure 4.8 and in Table 

4.1. The analytical precision of determining noble gas isotope ratios using the 
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quadrupole mass spectrometer is between 0.2 and 1% but combined with the 

propagated error associated with the calculations required for determining noble gas 

concentrations in groundwater, the overall precision is 1.6% for helium, 1.4% for 

neon, 1.2% for argon, 2.5% for krypton and 6.0% for xenon. Replicate sample 

analysis (Table 4.2) shows that modelled NGTs using NOBLE90 have a larger 

uncertainty than suggested from the isotope ratio measurements and the additional 

error propagation due to the calculations required for determining noble gas 

concentrations from the raw isotope ratios but reproducibility is generally good.   

 

 

Table 4.2. Replicate groundwater samples modelled for NGTs using NOBLE90. 

1st  2nd  
NGT Error NGT Error Observation Borehole ID 

(ºC) 
Pulheim III (937491) 
Myllendonk (907641) 

SW Brühl 22 R1 (352721) 

10.0 
13.6 
12.0 

0.9 
0.8 
0.9 

12.7 
10.7 
12.7 

0.8 
0.8 
0.4 

 

 

Noble gas solubility data and model equations were used for the initial 

graphical interpretation of the dissolved noble gas results including the ASW samples 

(Figure 4.8). The data in Table 4.3 and Table 4.4 were determined empirically by 

Weiss (1970; 1971) and Benson and Krause (1976) respectively, and has subsequently 

been presented concisely by Ozima and Podosek (2002). Equation 4.6 and Equation 

4.7 were used to determine the equilibrium solubility relationships at S = 0. 
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Table 4.3. Solubility of gases in water and sea water for use in Equation 4.6. 

Gas A1 A2 A3 B1 B2 B3 
He 
Ne 
Ar  

-34.6261 
-39.1971 
-55.6578 

43.0285 
51.8013 
82.0262 

14.1391 
15.7699 
22.5929 

-0.042340 
-0.124695 
-0.036267 

0.022624 
0.078374 
0.016241 

-0.0033120 
-0.0127972 
-0.0020114 

(Weiss, 1970; 1971) 
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         

  (4.6) 

        
(Weiss, 1970) 

 
 
 
 
Table 4.4. Solubility of gases in pure water for use in Equation 4.7.  

Gas A0 A1 A2 
Kr 
Xe 

3.6326 
2.0917 

5664.0 
6693.5 

-1122400 
-1341700 

(Benson and Krause, 1976) 
 

 

1 2
0 2

ln
A A

k A
T T

= + +    (4.7) 

 
(Benson and Krause, 1976) 

 
 

1244.142kβ = ×    (4.8) 

 
The Henry constant k (atm) is related to the Bunsen coefficient β (cm3 STP g-1 

H2O atm-1) by Equation 4.8 and both of these solubility parameters were used to 

calculate the solubility equilibrium concentrations that provided a simple graphical 

interpretation (see Figure 4.8, Figure 5.10, Figure 5.11 and Figure 5.12) of the 

measured noble gas concentrations in groundwater samples collected from the Lower 

Rhine Embayment. 
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5. Results 

 
5.1. Hydrochemistry 

The chemical interactions that occur between groundwater and the solid 

phases that make up the aquifer matrix create a large array of dissolved inorganic 

chemical constituents in groundwater and most of the solutes are present in ionic form 

(Freeze and Cherry, 1979). However, the distinctive chemical composition of 

groundwater is largely established in the unsaturated zone, and the hydrochemical 

evolution that occurs in the saturated zone follows a steady progressive path towards 

increasing aquifer confinement and/or discharge (Herczeg and Edmunds, 1999). The 

unconsolidated siliciclastic sedimentary deposits of the Lower Rhine Embayment 

consist of layered and mixed assemblages of minerals that are likely to cause large 

differences in hydrochemistry on both a local and regional scale. Silicate aquifers 

typically exhibit a wide range of hydrochemical facies because of variations in 

mineral content and the results of weathering reactions (Appelo and Postma, 2005). 

The hydrochemical analyses of groundwater samples collected from the Lower 

Rhine Embayment during 2007/08 were kindly conducted by the Erftverband at their 

laboratories in Bergheim, Germany. 

 

 

5.1.1. Hydrochemical facies  

The concept of hydrochemical facies was first introduced by Chebotarev 

(1955). A hydrochemical facies is defined as a groundwater type that has a specific 

ionic composition set within well defined limits. Hydrochemical facies are 

particularly useful for identifying the hydrochemical evolution of groundwater as well 

as for investigating the spatial variability of groundwater chemistry in complex multi-
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component systems such as the Lower Rhine Embayment. However, it must be noted 

that the use of hydrochemical facies does not yield definitive information regarding 

the geochemical processes that cause the observed changes in hydrochemistry and that 

groundwater residence times can only be inferred in a qualitative way. Table 5.1 

shows a summary of major ion concentrations for groundwater samples collected 

from observation boreholes within the Lower Rhine Embayment during 2007/08. The 

complete data set for major ion concentrations for each groundwater sample is 

included in Appendix 3 and the interpretation and discussion of the results are given 

in Chapter 6.  

The Durov diagram (Figure 5.1) was used to help define hydrochemical facies 

based on major ion composition. Figure 5.1 indicates that groundwater samples from 

the Lower Rhine Embayment can be divided into two groups based on the dominant 

cation which is either Ca2+ or Na+. The dominant cation for the main cluster of 

groundwater samples is Ca2+, and these sample points can be subdivided into five 

hydrochemical facies based on ionic composition and their relative concentrations. A 

small number of groundwater samples are dominated by Na+ ions and these can also 

be subdivided into two separate groups. It can be seen from Figure 5.1 that ionic 

composition varies more for anions than it does for cations but although HCO3
- and 

SO4
2- dominate in a large number of groundwater samples, there are a significant 

number a samples that have no clear dominant anion. Cl- is the dominant anion in 

groundwater that originated from just one observation borehole in the Brühl region of 

the Lower Rhine Embayment.  
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Figure 5.1. The Durov plot provides a graphical representation of the hydrochemical facies 

present in the Lower Rhine Embayment, Germany. The majority of groundwaters are of a Ca-

HCO3 or Ca-HCO3-SO4 hydrochemical type whilst a small number of samples are dominated 

by Na-Cl and are easily distinguishable from the main cluster of samples. 
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The most frequently occurring groundwater type is Ca-HCO3-SO4. It was 

possible to define seven different hydrochemical facies using the AquaChem® 3.7 

software package and each hydrochemical facies has been assigned a specific symbol 

(see Figure 5.1). AquaChem® 3.7 determines groundwater type by converting 

measured ionic concentration data from mg L-1 to meq L-1 and then transforming the 

units to meq %. All parameters with values of less than 10% are removed and the 

remaining ions are used to define the groundwater type and create a string name. The 

ions are ordered by % with cations stated first followed by anions. Ca2+ is the 

dominant cation for Groups 1-5 which includes all of the points in the main cluster of 

samples. These groups are primarily composed of Ca-HCO3 and Ca-HCO3-SO4 type 

groundwaters, with just a small number of samples displaying increased Mg2+, NO3
- 

or Na+. It is evident from Figure 5.1 that a small number of groundwater samples 

show Na+ as the dominant cation. These groundwaters include the most 

hydrochemically distinct groundwater type of Na-Cl-(HCO3) as well as Na-Ca-HCO3 

type groundwater.  

Figure 5.2 illustrates the spatial distribution of hydrochemical facies within the 

Lower Rhine Embayment, whereas Figure 5.3 and Figure 5.4 display the spatial 

distribution of Na+ and Cl- respectively. Geographically, it is difficult to discern clear 

regional patterns perhaps with the exception of higher Na+ concentrations near the 

Viersen fault. However, a full interpretation and discussion of the hydrochemical data 

summarised in Table 5.1 and presented in full in Appendix 3 is given in Chapter 6. 
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Figure 5.2. Spatial distribution of hydrochemical facies within the Lower Rhine Embayment. 
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Figure 5.3. Spatial distribution of Na+ concentration within the Lower Rhine Embayment. 
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Figure 5.4. Spatial distribution of Cl- concentration within the Lower Rhine Embayment. 
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5.2. Stable Isotopes 

Naturally occurring stable isotopes are now frequently used in many 

hydrogeological investigations and they often form the foundation of a multi-tracer 

approach when it is necessary to determine the origin of groundwater, recharge 

processes, flow paths and to identify palaeo groundwater (see Chapter 3). Stable 

isotopes of hydrogen (δ2H), oxygen (δ18O), carbon (δ13CDIC) and strontium (87Sr/86Sr) 

have been analysed for the purpose of this research to supplement the hydrochemical 

data described in Section 5.1 and to provide additional evidence to support dissolved 

noble gas data to form a multi-tracer approach. Table 5.2 contains all stable isotope 

data for groundwater samples that were analysed following the field sampling 

campaigns that occurred during 2007/08. The analytical precision quoted for each 

measurement is based on standard runs and it is assumed that due to groundwater 

samples having a very high degree of homogeneity, the precision of sample 

measurements is equal to that of the standard. Repeat analysis of groundwater samples 

to determine the precision of sample measurements was therefore not conducted.  

 

5.2.1. Oxygen Isotopes 

A large proportion of the observation boreholes that were sampled in the 

Lower Rhine Embayment during 2007/08 provided groundwater with a δ18O value 

between -7.1 and -7.7‰. The long-term annual average δ18O value for precipitation in 

the region of the Lower Rhine Embayment is -6 – -8‰ (IAEA, 2006) which is 

comparable to the δ18O value of modern groundwater recharge. The vast majority of 

the groundwater samples that have δ
18O values in the range of -7.1 – -7.7‰ also plot 

on or very close to the Global Meteoric Water Line (GMWL) as defined by Craig 

(1961) confirming a modern meteoric origin (see Figure 5.5). 
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Figure 5.5. Isotopic composition of groundwater samples from the Lower Rhine Embayment 

in relation to the Global Meteoric Water Line (GMWL) defined by Craig (1961). 

 

 

Interestingly, groundwater samples taken from observation boreholes in the 

Brühl region of the Lower Rhine Embayment yield both isotopically depleted and 

isotopically enriched δ18O values relative to modern recharge of meteoric origin and 

current δ18O values for local precipitation. The samples with relatively low δ18O 

values range from -8.5 – -9.1‰ and plot on the GMWL which suggests a meteoric 

origin but perhaps under different climatic conditions to those that prevail today in 

this region. However, the samples that have high δ
18O values in the range of -5.1 – -

6.4‰ plot to the right hand side of the GMWL. This suggests a typical evaporation 

trend from modern meteoric water to high δ
18O values and a change in the deuterium 
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excess value. This isotopic signature was only found in one shallow piezometer and 

the intermediate value of -6.4‰ from the same observation borehole but at slightly 

greater depth is likely to be a result of simple conservative mixing between the ‘end-

member’ evaporite and modern meteoric water. The most plausible origin of the 18O 

enriched groundwater is percolation from a local disused gravel/sand pit that is in very 

close proximity to the observation borehole. The spatial extent of this particular 

groundwater type is thought to be extremely localised and dispersion appears minimal 

suggesting recent recharge and/or a low hydraulic gradient; the latter being supported 

by potentiometric surface data.  

Figure 5.6 shows the spatial distribution of δ18O values across the Lower 

Rhine Embayment. It has been established from Table 5.2 and Figure 5.5 that the vast 

majority of the observation boreholes that were sampled contain modern recharge of 

meteoric origin. It therefore follows that one would expect to see a fairly uniform 

spatial distribution of δ18O values between -7.1 and -7.7‰. From Figure 5.6 it is 

evident that this is indeed the case. The areas to note are in the southeast near the 

town of Brühl where both 18O enriched (black circle) and 18O depleted (pink circle) 

groundwaters are present and one additional area adjacent to the Viersen Fault and the 

village of Korschenbroich (Borehole 28/907271) where relatively low δ18O values (-

8.4‰) were also sampled and are given by the Na-Ca-HCO3 groundwater type (see 

Figure 5.5). A full discussion of the oxygen isotope data is given in Chapter 6. 
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Figure 5.6. Spatial distribution of δ18O values within the Lower Rhine Embayment. 
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5.2.2. Carbon Isotopes 

Soil CO2 has strong negative values typically in the range of -24 – -25‰ 

VPDB whereas marine carbonates have a δ
13CDIC value of 0‰ VPDB. It therefore 

follows that the δ13CDIC value of dissolved carbonates will have an intermediate value 

in hydrochemically evolved groundwater whereas a relatively low δ13CDIC value 

indicates either very modern recharge or a limited carbonate source within the aquifer 

matrix. The concentration of CO2 in the soil zone is significantly higher than the 

concentration of CO2 in the atmosphere due to bacterial oxidation of organic matter 

and CO2 respiration in the root zone (Clark and Fritz, 1997). During infiltration 

through the unsaturated zone, water equilibrates with soil CO2 which leads to modern 

groundwater recharge having lower δ
13CDIC values than atmospheric CO2. 

Table 5.2 contains the results of the δ
13CDIC analyses. The results show that 

there is a wide range of δ13CDIC values within the sampled observation boreholes and 

piezometer nests. Low δ13CDIC values are typically observed to the west and northwest 

of the Garzweiler lignite mine with the lowest value of -30.44‰ at borehole 908301 

(Brüggen). Figure 5.7 illustrates the δ13CDIC spatial variability from the observation 

boreholes sampled during 2007/08. From Figure 5.7 it can be seen that δ13CDIC values 

are higher (-13.5 – -20.8‰) along the eastern flank of the abandoned lignite mines of 

Fortuna, Bergheim, Frechen and Ville and this trend continues north towards 

Mönchengladbach and is also evident adjacent to the Viersen fault and to the west of 

the Kalk fault. Groundwater taken from shallow perched aquifers in close proximity 

to the Hambach and Inden mines also contain groundwater with a relatively high 

δ
13CDIC signature in the range of -15 – -20‰. 
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Relatively low δ13CDIC values are typically found in the region northwest of 

the Garzweiler lignite mine where the natural groundwater regime is less impacted by 

mine de-watering than in other parts of the Lower Rhine Embayment. This indicates 

that the shallow boreholes that were sampled in this area contain very modern 

recharge and that the hydrochemical evolution of the groundwater with respect to the 

carbonate system is slow. Chapter 6 provides a detailed discussion of the carbon 

isotope data and carbonate evolution.  
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Figure 5.7. The spatial distribution of δ13CDIC values within the Lower Rhine Embayment. 
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5.2.3. Strontium  

Strontium is a soluble trace element (alkali earth element) that is present in 

groundwater at concentrations that range from 0.01 – 10 mg L-1 (Freeze and Cheery, 

1979). The naturally occurring isotopic composition of strontium in groundwater is 

unaffected by the removal of Sr2+ from groundwater through hydrochemical processes 

such a cation exchange or mineral precipitation making it an ideal geochemical tracer 

of solute provenance (eg. Neumann and Dreiss, 1995; Bullen et al., 1996) and 

groundwater mixing (eg. Lyons et al., 1995; Frost and Toner, 2004). 

Figure 5.8 shows the 87Sr/86Sr ratio as a function of the reciprocal of the total 

Sr2+ concentration. Strontium isotope mixing lines between two end-member 

groundwater types theoretically have a linear relationship on Figure 5.8 and 

groundwater that results from such mixing would plot along a strontium isotope 

mixing line. It can be seen from Figure 5.8 that the main group of samples display a 

large range of 87Sr/86Sr values and the total strontium concentration range is between 

95 – 424 ppb. It is therefore difficult to identify potential mixing lines. The maximum 

Sr2+ concentration measured during the research was 1522 ppb which is significantly 

higher than the other samples and occurred at just one location. This concentration 

was recorded from borehole 28/907271 Korschenbroich which is in close proximity to 

the Viersener fault and has depleted δ
18O values as described in Section 5.2.1. The 

two sample points that can be clearly distinguished from the main cluster of samples 

in Figure 5.8 have the lowest Sr2+ concentrations at 46 and 18 ppb and 87Sr/86Sr ratios 

of 0.7099 and 0.7095 respectively. These two groundwater samples were collected 

from observation boreholes close to the town of Mönchengladbach (observation 

boreholes; Mühlrather Mü and WW. Niederkr. B6 respectively) but from different 

aquifer horizons.  
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   Figure 5.8. Cross plot of 87Sr/86Sr against 1/Sr2+.  

 

 

Figure 5.9 displays the spatial distribution of 87Sr/86Sr using a colour ramp to 

illustrate the 87Sr/86Sr value. Although the data set is rather small, it is evident that the 

points show a large degree of scattering in the area west of Mönchengladbach in the 

relatively unperturbed multi-layered aquifer system. The small number of 

groundwater samples collected from the perched shallow aquifers slightly north of the 

Inden and Hambach open-cast lignite mines display a very consistent 87Sr/86Sr ratio 

suggesting similar recharge history and aquifer lithology at this location. Due to the 

data set being rather small and incomplete, and significantly, not including the Brühl 

area samples, the strontium results are not discussed further in Chapter 6. 
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Figure 5.9. Spatial distribution of 87Sr/86Sr ratios within the Lower Rhine Embayment. 
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5.3. Noble Gases 

All aspects of noble gas geochemistry relevant to this research including 

the hydrogeological applications of dissolved noble gases in groundwater have 

been discussed in Chapter 3 and an interpretation and discussion of the results 

presented here are given in Chapter 6.  

 

5.3.1. Graphical interpretation of the data  

The dissolved noble gas concentrations of groundwater samples collected 

from the Lower Rhine Embayment during 2007/08 are presented in Table 5.3. 

The data from Table 5.3 has been used to construct noble gas cross-plots of 

argon against neon (Figure 5.10), krypton against neon (Figure 5.11) and xenon 

against neon (Figure 5.12) which provide a simple but valuable graphical 

interpretation of the data. The solubility equilibrium relationships were 

determined using the solubility equations of Weiss (1970; 1971) and Benson and 

Krause (1976) as described in Chapter 5. Imposed graticules based on solubility 

equilibrium and excess air additions were used to facilitate the initial 

interpretation of NGTs and excess air concentrations assuming a constant 

pressure of 1 atm and a salinity of zero.  

 

It can be seen from Figure 5.10, Figure 5.11 and Figure 5.12 that all 

groundwater samples plot within the theoretical range of expected values based 

on solubility equilibrium and that all of the samples contain at least a small 

amount of excess air. Figure 5.11 and Figure 5.12 both show slightly high mean 

NGTs based on the known mean annual surface temperature for the region (10.1 

ºC). Estimated recharge temperatures using this graphical method are usually 

based on a mean value taken for each noble gas perhaps with the exception of 
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helium to give an overall recharge temperature usually with no weighting of the 

more temperature sensitive heavier gases such as krypton and xenon (eg. Stute et 

al., 1995). Figure 5.13 enables one to infer a NGT in the range of 9–13 ºC for 

most groundwater samples which is in better agreement with the annual average 

surface temperature although precipitation records clearly show that rainfall in 

significantly higher during the warmer summer months which could explain the 

higher than expected NGTs. Xenon is the most temperature sensitive noble gas 

due to it having the largest atomic mass so it is usually favoured for determining 

NGTs. These noble gas cross-plots based on solubility equations provide a good 

first interpretation of the noble data but they do have limitations.  
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Figure 5.10. Noble gas cross-plot of argon against neon with imposed graticules that 

indicate excess air concentration and the NGT based on solubility equilibrium. 
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Typically a more sophisticated and accurate interpretation of noble gas 

concentrations is desirable. To facilitate this, a freely available non-linear, error 

weighted least squares inversion of five model parameters; temperature (T), 

salinity (S), pressure (P), excess air (A), and fractionation (F) is undertaken. The 

least squares fitting is conducted using the MATLAB routine NOBLE90 

(Aeschbach-Hertig et al., 1999; Peeters et al., 2002). The results of the model 

fitting using NOBLE90 are illustrated in Figure 5.13 and calculate NGTs and 

excess air concentrations using all the measured noble gas concentrations 

simultaneously, although not always using helium due to additional subsurface 

sources. Chapter 6 provides a full discussion of the noble gas data and 

interpretation of NGTs and excess air concentrations. 
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Figure 5.11. Noble gas cross-plot of krypton against neon with imposed graticules 

indicating the excess air concentration and the NGT based on solubility equilibrium. 
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Figure 5.12. Noble gas cross-plot of xenon against neon with imposed graticules 

indicating the excess air concentration and the NGT based on solubility equilibrium. 
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5.3.2. NGTs and excess air modelled using NOBLE90 

 

Figure 5.13 shows the modelled NGTs and excess air concentration that were 

interpreted using the MATLAB routine NOBLE90 (Aeschbach-Hertig et al., 1999; 

Peeters et al., 2002). The theory related to NOBLE90 is discussed in Chapter 3. The 

main cluster of samples contain between 5 and 37% excess air and have calculated 

recharge temperatures in the range of 10–16 ºC and a mean value of 12.5 ±1.3 ºC 

which is 1.7 ºC higher than the weighted mean annual surface temperature of 10.8 ºC. 

It is possible to identify three samples that appear to have a lower NGT but assuming 

that only the Na-Ca-HCO3 and Na-Cl-(HCO3) type groundwaters were recharged 

under cooler climatic conditions the mean NGT is 5.6 ±1.7 ºC and the Na-Cl- (HCO3) 

groundwater has significantly higher excess air at 74% ∆Ne. 
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Figure 5.13. NOBLE90 modelled Noble Gas Temperatures plotted against excess 

air reported as ∆Ne (%). 
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5.3.3. Radiogenic helium 

 Helium concentrations in most of the observation boreholes that were sampled 

during 2007/08 were in the range expected due to solubility equilibrium (3.50x10-8 – 

6.01x10-8 cm3 STP g-1 H2O). Helium was measured in groundwater samples from six 

observation boreholes at concentrations that were higher than solubility equilibrium. 

These concentrations ranged from slightly elevated (1.14x10-7 cm3 STP g-1) to >3 

orders of magnitude above atmospheric solubility equilibrium (1.691x10-4 cm3 STP g-

1). Four of the observation boreholes were situated in the Brühl region, with the Brühl 

9 piezometer containing groundwater with the highest concentrations of helium at 

1.691x10-4 and 1.281x10-4 cm3 STP g-1 H2O from the multi-depth piezometer nest. 

Chapter 6 provides an in-depth discussion and interpretation of these results.  
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Figure 5.14. Cross-plot of helium concentration against δ
18O. The dashed line indicates the 

theoretical concentration of helium based on solubility equilibrium at 10 ºC. 
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6. Discussion 

6.1. Hydrochemistry 

The unconsolidated siliciclastic sedimentary deposits of the Lower Rhine 

Embayment (LRE) consist of layered and mixed assemblages of minerals derived 

from a number of sources. Boenigk (2002) provides a detailed account of the sources 

and mineral compositions of the shallow Pleistocene sediments and determined that 

some of the assemblages have mineral compositions linking them to the Rhenish 

Massif and the East Eifel volcanic field. More commonly observed silicate based 

mineral deposits within the upper layers of the Lower Rhine Embayment include 

kyanite, staurolite, sillimanite, andalusite, green hornblende, epidote and garnet. 

These minerals are believed to have Tertiary marine and/or fluvial origins from the 

river Rhine (Boenigk, 2002). The work of Boenigk (2002) was developed further by 

Kemna (2008) to include a lithostratigraphical conceptual model for the Pliocene 

sediments that are overlain by the Pleistocene deposits. The mixed mineralogical 

assemblages are shown to vary significantly from bed to bed and this is likely to cause 

large differences in hydrochemistry on both a local and regional scale. Indeed, Appelo 

and Postma (2005) state that silicate aquifers often exhibit a wide range of 

hydrochemical facies because no single mineral dominates the weathering reactions. 

The mineralogy of the main aquifer system that occurs in the Miocene and Oligocene 

deposits is not well described in the literature. However, it is clear that the Lower 

Rhine Embayment presents a very complex hydrochemical system and that silicate 

weathering reactions are important processes that strongly influence groundwater 

hydrochemistry.  

Silicate weathering reactions are controlled by carbon dioxide and organic 

acids present in the soil zone. The organic acids are produced from bacterial 

metabolism and root respiration within the unsaturated soil zone. These sources of soil 
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water acidity control the release of ions via the dissolution of silicate minerals 

(Herczeg and Edmunds, 2000). The following hydrolysis reactions in which carbonic 

acid is consumed resulting in a change of pH explain the release and uptake of solutes 

from silicate based minerals. 

 

The weathering of silicate minerals to form clays and silicic acid in solution: 

2 3 8 2 2 2 5 4 3 4 42 2 11 2 2 4CO NaAlSi O H O Al Si O (OH) Na HCO H SiO+ −+ + + + +⇌  

          (6.1) 

 

The weathering of cation enriched clays to form cation depleted clays: 

0.33 2.33 3.67 10 2 2 2 2 5 4 4 43 ( ) 11.5 3.5 ( ) 4Na Al Si O OH H H O Al Si O OH Na H SiO+ ++ + + +⇌  

          (6.2) 

 

The chemical reactions that involve silicate minerals occur at a much slower 

rate than those that involve carbonate minerals and are sometimes irreversible as 

opposed to carbonates that can readily dissolve and re-precipitate (Herczeg and 

Edmunds, 2000). The primary source of silica in groundwater originates from 

chemical reactions including and similar to those described by Equation 6.1 and 

Equation 6.2, rather than originating from quartz material present in the aquifer 

system.  

To develop an accurate and detailed interpretation of hydrochemical data 

taken from such a complex system that consists of layered and mixed assemblages 

such as the Lower Rhine Embayment, it would be necessary to consider the ‘order of 

encounter’ as described by Freeze and Cherry (1979). The ‘order of encounter’ 

involves establishing the order in which minerals are encountered as groundwater 

moves from recharge areas along defined flow paths. The order in which groundwater 
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encounters aquifer strata of different mineralogical composition significantly 

influences the hydrochemistry, and the chemical composition of groundwater 

continually evolves from the imposition of new, mineralogically controlled 

thermodynamic constraints (Freeze and Cherry, 1979). Although equilibrium with 

mineral phases can be reached on a local scale where the aquifer media is relatively 

homogeneous and flow rates are low, in most areas of the Lower Rhine Embayment 

discontinuous and layered heterogeneity are predominant and groundwater flow is 

significantly enhanced due to lignite mine de-watering. These features almost 

certainly cause disequilibrium to develop in most cases leading to complex spatial 

patterns in hydrochemistry. A typical hydrochemical study applying the ‘order of 

encounter’ approach essentially requires detailed knowledge of the mineralogy, 

lithology, stratigraphy and hydraulic head distribution. Considering the complex 

nature of the hydrogeological system in the Lower Rhine Embayment, such an 

approach would be both beyond the scope of this thesis and would deviate away from 

achieving the research aims and objectives set out in Chapter 1.  

The hydrochemical data collected during this study has been used to establish 

hydrochemical trends on a regional scale and to indentify the key hydrochemical 

processes and reactions that provide an insight into regional flow mechanisms, as well 

as to provide additional evidence and strengthen the conceptual model that is based 

primarily on stable isotope data and dissolved noble gas concentrations. The 

discussion of Lower Rhine Embayment hydrochemistry that follows describes the 

important processes and reactions that are essential for understanding groundwater 

dynamics on both a local and regional scale. 
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6.1.1. Sodium and chloride 

Sodium (Na+) and chloride (Cl-) ions are ubiquitous in groundwater. The 

chloride anion is highly soluble, highly mobile and is generally not involved in 

geochemical reactions within the aquifer. The chloride ion does not participate in any 

important subsurface redox reactions and does not easily adsorb onto clay minerals 

(Clark and Fritz, 1997). It is therefore an accurate assumption that chloride acts as a 

conservative tracer and follows the flow path of water molecules. Sodium cations tend 

to be more reactive and move less readily through the hydrological cycle, and the flow 

rate of sodium in groundwater largely depends on the cation exchange capacity (CEC) 

of the aquifer. A simple cross plot of sodium against chloride (Figure 6.1) with a 1:1 

molar ratio halite dissolution line is useful to establish whether Na+ enrichment or 

depletion is dominant.  
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Figure 6.1. A simple cross plot of sodium against chloride ion data for groundwater samples 

collected during 2007/08 from the Lower Rhine Embayment. The 1:1 molar ratio halite 

dissolution line describes mixing between groundwater samples that plot close to the line and 

illustrates processes such as cation exchange for groundwater samples that plot above the line. 
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Sodium enrichment can indicate the occurrence of cation exchange reactions 

that often become significant during the hydrochemical evolution of groundwater. 

Chloride enrichment in sedimentary basins usually originates from trapped seawater, 

connate fluids and/or evaporite formations (Lavastre et al., 2005; Clark and Fritz, 

1997) although these sources would not typically lead to an enrichment of chloride 

relative to sodium. Anthropogenic sources of chloride such as the wet deposition of 

the acid gas HCl from lignite fuelled power station emissions can have a small 

enrichment effect in this region but reverse ion exchange reactions leading to sodium 

depletion are the most likely cause. However, it is possible that sodium depleted 

groundwater such as the Ca-HCO3-SO4 hydrochemical facies, is simply the result of 

low Na+ concentrations within the aquifer matrix rather than reverse ion exchange 

reactions. 

Figure 6.1 shows that only a small number of samples have enriched sodium 

concentrations relative to chloride, suggesting that cation exchange reactions are not a 

common feature of the shallow aquifer systems which follows the standard model that 

cation exchange is typically a feature of groundwater at depth and with a well 

developed level of hydrochemical evolution (Chebotarev, 1955). Cation exchange 

reactions mainly involve colloidal (10-3–10-6 mm) particles because they have a high 

electrical charge to surface area ratio. Colloidal-sized clay particles such as alumino-

silicate minerals (Al2SiO5) are common in the shallow Pleistocene deposits (Boenigk, 

2002) and could form important ion exchange sites. However, the modern shallow 

groundwater samples show little evidence to suggest that such reactions are of 

significance in the upper aquifer layers of the Lower Rhine Embayment.  

From Figure 6.1 the Na-Ca-HCO3 hydrochemical facies displays a definite 

trend of Na+ enrichment. These groundwater samples were collected from observation 
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borehole 907271 in the Korschenbroich area of the Lower Rhine Embayment, and the 

mean Cl- concentration of the two samples is 0.95 mM. The Na-Ca-HCO3 

groundwater type sampled from observation borehole 907271 is believed to originate 

from greater depth within the aquifer system which would explain the Na+ enrichment 

as a result of cation exchange reactions under increasing confinement and long 

residence time. The transport mechanisms responsible for the upward flow of 

groundwater from depth in this area are related to the Viersen Fault. The stable 

isotope and noble gas data associated with the Na-Ca-HCO3 type groundwater are 

discussed in Section 6.2 and Section 6.3 respectively.  

Figure 6.1 also shows a Na-Cl-(HCO3) dominated hydrochemical facies. The 

concentrations of helium in the Na-Cl-(HCO3) type groundwater samples are very 

high suggesting a long residence times. Deep circulating groundwaters with long 

residence times are often reported to have high salinity. Such increases in salinity over 

time can result from an addition of NaCl from evaporite formations, weathering 

reactions or from seawater intrusion (in coastal areas), formation brines or connate 

waters. The precise mechanism of salinisation is often difficult to identify with any 

degree of certainty and this is certainly the case with the Na-Cl-(HCO3) groundwater 

sampled from observation boreholes in the Brühl region of the Lower Rhine 

Embayment. However, NaCl salinity is characteristic of a marine influence or a deep 

aquifer system that contains remnant seawater (Clark and Fritz, 1997). 

 

6.1.2. Hydrochemical facies 

Durov diagrams are very useful for establishing and defining hydrochemical 

facies and determining the hydrochemical evolution of groundwater and indentifying 

processes such as cation exchange. The hydrochemical facies illustrated in Figure 6.2 

were defined using AquaChem® and are described in Chapter 5. The key feature of 
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the data plotted in Figure 6.2 is the ionic composition of the Na-Ca-HCO3 and Na-Cl-

(HCO3) groundwater types relative to the main cluster of samples. The Na-Ca-HCO3 

groundwater type occupies a region of the ternary plot that is often associated with 

cation exchange reactions whereas the Na-Cl-(HCO3) groundwater type is 

characteristic of a palaeo groundwater. Stable isotope data and dissolved helium 

concentrations discussed in Section 6.2 and Section 6.3 respectively suggest that the 

Na-Cl-(HCO3) groundwater type represents a distinct end member groundwater.  

The main cluster of groundwater samples in Figure 6.2 display a wide range of 

hydrochemical facies, characteristic of silicate aquifers in which no single mineral 

dominates the weathering reactions (Appelo and Postma, 2005). It is difficult to 

identify an evolutionary trend in hydrochemistry because of the large spatial 

distribution of the sampled observation boreholes and the complex nature of the 

layered aquifer system. Groundwater samples were typically collected from several 

different aquifers units in any given area and from adjacent aquifers that are 

effectively isolated by low permeability fault zones and/or the juxtaposition of 

contrasting lithology. However, it is suggested that the Ca-Mg-NO3-SO4 and Ca-SO4-

(NO3) hydrochemical facies represent the most recent and hydrochemically immature 

groundwater recharge because of the dominant ions associated with anthropogenic 

inputs and soil zone processes. 
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Figure 6.2. Durov diagram displaying the major ion composition of groundwater samples 

collected during 2007/08 from the Lower Rhine Embayment, Germany. The Durov plot clearly 

identifies dominant ions and processes such as cation exchange as well as graphically 

illustrates small differences in hydrochemistry.   

 

 

6.1.3. Redox reactions 

The redox potential expressed as Eh tends to follow a natural evolution 

towards lower values with increased residence time. Initially, precipitation has a high 

redox potential due to the influence of atmospheric oxygen and specifically the 
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relatively high concentration of dissolved oxygen present. Typically, precipitation at 

pH 7 will have an Eh of 750 mV (Freeze and Cherry, 1979). However, the redox 

potential quickly decreases within the soil zone due to the oxidation of organic matter 

which can potentially remove a large proportion of the dissolved oxygen, but this is 

largely dependent on the quantity of organic matter present in the soil zone. 

 

0

50

100

150

200

250

300

350

400

450

5.0 5.5 6.0 6.5 7.0 7.5 8.0

pH

E
h

 (
m

V
)

Ca-HCO3

Ca-HCO3-SO4

Ca-Mg-NO3-SO4

Ca-SO4-(NO3)

Ca-Na-(HCO3-SO4)

Na-Ca-HCO3

Na-Cl-(HCO3)

Figure 6.3. Electrochemical evolution of groundwater describes a decline in redox potential 

with increasing aquifer confinement. The most recent groundwater recharge is identified by a 

hydrochemical facies that contain Mg2+ and NO3
- as dominant ions. These groundwater types 

generally show the lowest pH values and highest redox potentials, as expected. 

 

The hydrochemical data in Table 5.4 suggests that redox reactions are only of 

significance in one area of the Lower Rhine Embayment that has been sampled during 

this research. Nitrate and ammonium concentrations in the Brühl region suggest that 

the Na-Cl-(HCO3) type groundwater found in observation borehole Brühl 9 (958061, 

957062 and 958063), Fischenich (957824) and Brühl SW 22 R1 (352722) creates a 
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reducing environment. The Na-Cl-(HCO3) groundwater present in the deepest Brühl 9 

piezometer (958063) contains nitrate and ammonium both at concentrations that are 

below the analytical detection limit of 0.05 and 0.2 mg L-1 respectively. The two other 

piezometers at the Brühl 9 location (958062 and 958061) are at shallower depths and 

show elevated ammonium concentrations of 2.95 and 2.77 mg L-1 but nitrate levels 

remain below the limit of detection. This suggests that the Na-Cl-(HCO3) type 

groundwater is mixing with modern recharge of meteoric origin (which is 

characterised as having nitrate concentrations in the range of ~90 mg L-1) in the upper 

layers of this aquifer and the process of dissimilatory nitrate reduction to ammonium 

(DNRA) can be inferred to account for the high ammonium concentrations. Smith and 

Duff (1988) suggest that nitrate reduction in carbon limited aquifers favours the 

process of denitrification over DNRA implying that there must be a source of organic 

carbon in the shallow aquifer.  

The piezometer nest at Fischenich (957822, 957823 and 957824) displays an 

interesting vertical nitrate gradient with the highest concentration (92.1 mg L-1) at 

shallow depth (957822) suggesting modern recharge and decreasing with depth until 

the nitrate concentration falls below the limit of detection at the greatest depth 

sampled at this location (76 m; 957824). The remaining two observation boreholes in 

this locality also provide insight into the source and subsequent mixing of the Na-Cl-

(HCO3) groundwater as these boreholes have been identified as containing both Na-

Cl-(HCO3) and Ca-HCO3-SO4 groundwater types. The borehole at Brühl SW 22 R1 

(352722) contains the Na-Cl-(HCO3) groundwater type and shows an elevated NH4
+ 

concentration but a very low NO3
- concentration, whereas the shallow piezometer 

within the same nest contains Ca-Na-(HCO3-SO4) type groundwater that has a 

relatively high nitrate concentration of 55.3 mg L-1 and low NH4
+ concentration. This 

suggests that a degree of mixing is occurring and that dissimilatory nitrate reduction 
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to ammonium is evident as the nitrate concentration is less than expected from the 

surrounding areas that are known to contain modern groundwater (Schenk, 1982). The 

Brühl 1 observation borehole also contains two hydrochemical facies and a range of 

ammonium and nitrate concentrations.  

 

6.1.4. Carbonate system evolution 

Carbonate minerals such as calcite dissolve in groundwater due to the 

dissolution of CO2 in water to form H2CO3 and the subsequent two-step dissociation 

of H2CO3 described by Equation 6.3, Equation 6.4 and Equation 6.5, as well as from 

the production of organic acids from root respiration and bacterial metabolism in the 

soil zone (Herczeg and Edmunds, 2000). The reader is referred to Appelo and Postma 

(2005) for a detailed account of the processes involved in carbonate mineral 

dissolution. 

 

     2( ) 2 2 3gCO H O H CO+ ⇌    (6.3) 

2 3 3H CO H HCO+ −+⇌    (6.4) 

2
3 3HCO H CO− + −+⇌     (6.5) 

 

Deines et al. (1974) described carbonate evolution in groundwater in terms of 

open and closed system models. According to Deines et al. (1974) open system 

evolution involves the reaction of carbonate minerals with water that is in contact with 

a gas phase of fixed PCO2 and continuous isotopic exchange exists between the CO2 

reservoir and the solution, whereas in closed system evolution water is isolated from 

the CO2 reservoir before carbonate dissolution occurs. However, in reality most 

carbonate system evolution falls somewhere in between these two models. It is also 
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possible that during the course of groundwater evolution along a flow path from 

recharge area to discharge zone, carbonate dissolution will occur under both sets of 

conditions typically moving from open system to closed system evolution with 

increasing aquifer confinement (Deines et al., 1974). 

The first observation to note from Figure 6.4 is that the PCO2 values calculated 

using PHREEQC for groundwater samples collected from all observation boreholes 

are above the PCO2 value of atmospheric air (10-3.4 atm). This suggests that the 

groundwater present in the sampled aquifers attained excess CO2 relative to 

atmospheric equilibrium solubility during infiltration through the soil zones where 

PCO2 values are typically higher than atmospheric levels. It can also be seen from 

Figure 6.4 that a large number of samples have not reached calcite saturation. The 

most recent recharge indicated by higher concentrations of Mg2+ and NO3
- such as the 

Ca-Mg-NO3-SO4 and Ca-SO4-NO3 groundwater types are immature with respect to 

carbonate evolution suggesting either very recent recharge or more likely that the 

aquifer is carbonate limited and carbonate evolution is a slow process. Considering 

that the upper aquifer system primarily consists of silicate based material it is not 

particularly unusual that calcite saturation has not been reached in aquifers that 

contain the most recent recharge.   
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Figure 6.4. Open and closed system models of carbonate system evolution (after Deines et 

al., 1974).  

 

 

The pH values of the groundwater samples are between 5.4 and 7.8 suggesting 

that dissolved inorganic carbon exists primarily as HCO3
-. The groundwater samples 

defined as having a Na-Cl-(HCO3) hydrochemical facies appear to have evolved 

under the highest PCO2 conditions and therefore also have the highest HCO3
- 

concentrations of up to 1312 mg L-1
.  The Na-Cl-(HCO3) groundwater type clearly 

evolved under different conditions to the other groundwater samples. From Figure 6.4 

it is difficult to determine whether carbonate evolution occurred under open or closed 

conditions however, it is likely that excess CO2 in these samples did not originate 

from the soil zone during recharge but was generated within the subsurface or deeper 

in the crust. According to Vrolijk et al. (2005) the most likely processes that generate 

CO2 in the crust are mantle or magmatic emanations, degradation of organic matter, 

diagenetic reactions involving clay and carbonate rocks and/or thermal de-carbonation 
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of carbonate rocks by metamorphic processes. The exact origin of the Na-Cl-(HCO3) 

groundwater is unknown but stable isotope data and dissolved noble gas 

concentrations suggest a deep basinal origin which would explain the high 

concentrations of dissolved CO2.  
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- and δ13C. 

 

 

The δ13CDIC of groundwater evolves to less negative values during weathering 

reactions within the aquifer. The evolution is controlled by aquifer composition (eg. 

silicate or carbonate) and whether evolution occurs under open or closed system 

conditions as described by Deines et al. (1974). In silicate dominated systems such as 

the shallow sand aquifers of the Lower Rhine Embayment, dissolved inorganic carbon 

typically does not evolve much further than the initial conditions established in the 

soil zone. However, in areas with carbonate material present, the dissolution of calcite 
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and dolomite provide an additional source of 13C enriched carbon that can have a 

large effect on δ13CDIC values (Clark and Fritz, 1997). Figure 6.5 shows the 

distribution of δ13CDIC values for a number of groundwater samples collected from the 

Lower Rhine Embayment. It is important to note that unfortunately groundwater 

samples collected from the Brühl region were not analysed for δ13CDIC because the 

field sampling technique for δ13CDIC analysis described by Bishop (1990) and stated in 

Chapter 4 was not available during the sampling campaign that included the Brühl 

region. The hydrochemistry and stable isotope data (δ
2H and δ18O values) indicates 

that all the groundwater samples presented in Figure 6.5 represent modern 

groundwater of meteoric origin with just one exception – the Na-Ca-HCO3 

groundwater type. The Ca-Mg-NO3-SO4 and Ca-SO4-(NO3) dominated groundwater 

types display the lowest δ13CDIC values suggesting a short residence time. Relatively 

low δ13CDIC values are characteristic of soil zone conditions and groundwater tends to 

evolve towards more positive δ13CDIC values with the dissolution of calcite, dolomite 

and silicate minerals. The Ca-HCO3 and Na-Ca-HCO3 dominated groundwater types 

shown in Figure 6.5 have more positive δ
13CDIC values and therefore are likely to 

represent the most hydrochemically evolved groundwater. Groundwater in 

equilibrium with calcite and evolved under closed conditions generally maintains a 

stable isotopic composition within the aquifer medium although δ13C values often 

become slightly more positive with increased residence time even when equilibrium 

with calcite has been reached – perhaps due to a loss of Ca2+ from solution (Clark and 

Fritz, 1997). This could explain why the Na-Ca-HCO3 groundwater samples have the 

highest δ13CDIC values of -13.4 and -13.8‰ (see Figure 6.5). Figure 6.4 shows that the 

Na-Ca-HCO3 groundwater has reached calcite saturation and 4He data (presented in 

Section 6.3.1) suggests a significantly longer residence time than modern recharge. 

The Ca-HCO3 dominated groundwater samples are all in equilibrium with calcite and 
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originate to the east and southeast of Mönchengladbach possibly suggesting that this 

region is not carbonate limited or that the residence time of groundwater in this region 

is longer than it is in areas to the west and northwest of Mönchengladbach. The 

aquifer systems of the Lower Rhine Embayment consist primarily of silicate based 

sands and gravels. The weathering of silicate minerals is a slow process in comparison 

to carbonate systems but forms an important sink for CO2. 

 

 Figure 6.6 shows that the Na-Cl-(HCO3) groundwater has evolved 

hydrochemically in a hydrogeological setting that is significantly different to the 

shallow layered aquifer system of the LRE that consists primarily of modern 

groundwater of meteoric origin. An interesting observation illustrated by Figure 6.6 is 

that the Na-Cl-(HCO3) type groundwater and the Na-Ca-HCO3 type groundwater 

appear to plot on a mixing line even though the Na-Ca-HCO3 groundwater is not 

present in the same location as the Na-Cl-(HCO3) groundwater. However, stable 

isotope data and dissolved noble gas concentrations suggest that the Na-Ca-HCO3 -

dominated groundwater could be linked to the Na-Cl-(HCO3) dominated groundwater 

because of similar depleted δ18O values and 4He concentrations that exceed those 

expected due to atmospheric solubility equilibrium. Hydrochemical data support this 

hypothesis and provides evidence that the Na-Cl-(HCO3) type groundwater could be 

widely distributed at depth within the deep basement system but is only observed at 

shallow depth in areas of deep faulting and intense lignite mine de-watering. It is 

perhaps possible that small point-source-like emanations of 4He enriched, Na-Cl-

(HCO3) dominated palaeo groundwater occur in such areas throughout the Lower 

Rhine Embayment. 
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samples that plot close to the 1:1 ratio line. Processes such as sulphate reduction would cause 

deviations from the 1:1 ratio mixing line. 

 

 

 

Figure 6.6 shows that the Na-Cl-(HCO3) dominated groundwater has evolved 

under conditions that have led to low Ca2+ but relatively high HCO3
- concentrations. 

For groundwater to follow this evolutionary path it would be necessary for a high 

production rate of H+ ions in the subsurface. It is possible that a mechanism such as 

the oxidation of pyrite (FeS2) could provide the source of the H+ ions but it is perhaps 

more likely that the source of H+ ions originates from the production of CO2 in the 

subsurface. In the Lower Rhine Embayment the coalification (diagenesis) of lignite is 

a possible source of CO2 which would in turn generate the necessary concentration of 

H+ ions to account for the observed trend of low Ca2+ and high HCO3
- displayed by 

the Na-Cl-(HCO3) groundwater. The chemical reaction involving the diagenesis of 

lignite that produces CO2 is given by the following equation: 
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Under anaerobic groundwater conditions, the oxidation of organic matter is 

achieved via SO4
2- reduction. Groundwater in which dissolved CO2 has been 

generated by sulphate reduction usually exhibits a low sulphate concentration.  

The Na-Cl-(HCO3) dominated groundwater is clearly an old, mineralized and 

highly evolved groundwater that has a high concentration of dissolved CO2 that 

originates from one or more of the processes discussed previously, and this would 

account for the hydrochemical trends that the Na-Cl-(HCO3) type groundwater 

displays.  

 

 

6.2. Stable Isotopes 

6.2.1. Hydrogen and Oxygen 

The principal stable isotopes of hydrogen and oxygen (δ2H and δ18O) have 

been used extensively in hydrogeological studies (eg. Rozanski, 1985; Zuber et al., 

2004; Von Rohden et al., 2010). These isotopes of the water molecule provide 

evidence for determining the origin of groundwater due to a variation in isotopic 

composition that occurs as a result of isotopic fractionation processes. The reader is 

referred to Chapter 3 and Gat (1996; 2010) for a comprehensive overview. 

Stable isotopes (δ2H and δ18O) have been successfully applied to infer the 

presence of palaeo groundwater in many aquifer systems (eg. Rozanski, 1985; Fontes 

et al., 1991; Deák and Coplen, 1996; Vaikmäe et al., 2001) due to the lower 

evaporation rates and increased recharge rates that occur under cooler climatic 
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conditions (Gat, 2010). However, when considering groundwater recharge during the 

last glacial maximum (LGM) it is important to note that changes in vegetation cover 

probably had a large influence on recharge rates, and that precipitation is typically 

lower during glacial periods (Coplen et al., 2000).  

The term ‘palaeo groundwater’ is used in the literature to generally refer to 

groundwater that displays a depleted isotopic signature suggesting groundwater 

recharge occurred under cooler climatic conditions, usually during the late Pleistocene 

epoch. However, many deep aquifer systems contain much older groundwater that 

probably originated as connate waters of marine origin or as formation brines and 

these are also referred to as palaeo groundwaters in the literature (Coplen et al., 2000). 

Modern groundwater recharge of Holocene age is usually categorised as either pre- or 

post industrial, but they often display a similar isotopic signature. Distinguishing 

between pre- and post industrial recharge is useful when interpreting groundwater 

hydrochemistry due to the occurrence of industrial and agricultural pollution over the 

last ~200 years and the resultant changes in hydrochemical composition. 

The stable isotope data presented in Figure 6.7 shows that the majority of the 

observation boreholes sampled within the Lower Rhine Embayment during 2007/08 

contain modern groundwater recharge of meteoric origin. The main cluster of sample 

points in Figure 6.7 exhibit a wide range of hydrochemical compositions (see Figure 

6.2) but display a limited range of δ2H and δ18O values suggesting modern recharge of 

Holocene age. The isotopic signatures of the groundwater samples collected from the 

shallow aquifers of the Lower Rhine Embayment are characteristic of present day 

precipitation in this region of Germany (IAEA, 2006) with δ18O values in the range of 

-7 – -8‰ and falling on or very close to the Global Meteoric Water Line (GMWL). 

This evidence is consistent with a modern meteoric origin and explains the limited 

range of observed isotopic compositions.  
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Figure 6.7. Isotopic composition of groundwater in the Lower Rhine Embayment, Germany 

with reference to the Global Meteoric Water Line (GMWL) after Craig (1961). 

 

Although it has been established that the majority of the observation boreholes 

sampled in the Lower Rhine Embayment contain modern groundwater of meteoric 

origin there are however, two exceptions to note from Figure 6.7. The first exception 

is the seven groundwater samples that have relatively low δ18O values, and the second 

exception being the two groundwater samples with high δ18O values that plot to the 

right hand side of the GMWL. The groundwater samples that have low δ18O values all 

plot on the GMWL suggesting a meteoric origin as opposed to a geothermal source or 

evaporation trend. The small cluster of three sample points between -9.0 and -9.2‰ 

originate from a single observation borehole but from piezometers reaching different 

depths. Based on the stable isotope data presented in Figure 6.7 as well as 

hydrochemical and dissolved noble gas concentrations that are discussed in Section 

6.1 and Section 6.3 respectively, it can be inferred that the Na-Cl dominated 



 156 

groundwater has a significantly different recharge history, evolutionary path and 

residence time in comparison to the main cluster of groundwater samples that 

represent modern recharge of meteoric origin. The Na-Cl-(HCO3) hydrochemical 

facies appears to be of meteoric origin as it plots on the GMWL suggesting that 

recharge probably occurred under cooler climatic conditions than those that 

predominate today and therefore leading to the conclusion that this is indeed a palaeo 

groundwater.  

The groundwater samples that plot between the Na-Cl palaeo groundwater and 

the main cluster of samples that represent modern recharge are thought to be a result 

of mixing between the two groundwater types. The presence of the Na-Cl-(HCO3) 

groundwater and the subsequent mixing with modern recharge has only been observed 

in a localised area within the town of Brühl in the south western region of the Lower 

Rhine Embayment. However, groundwater collected from a single observation 

borehole in the village of Korschenbroich (ID number 907271) north of the Brühl area 

and in close proximity to the Viersen Fault has an isotopic composition that plots very 

close to the GMWL and has a mean δ
18O value of -8.2‰. The groundwater sample 

taken from borehole 907271 appears to have an isotopic and noble gas signature that 

is consistent with mixing between the Na-Cl palaeo groundwater and modern recharge 

in the shallow aquifers. However, this groundwater type (Na-Ca-HCO3) was only 

observed at one location in the Korschenbroich area despite additional targeted 

sampling of neighbouring boreholes, suggesting that the origin of this groundwater 

could be deep within the aquifer system and linked to the Viersen Fault. 

Although it is possible to infer the presence of palaeo groundwater using the 

stable isotopes of oxygen and hydrogen, it is not possible to determine precise 

temperature changes. A number of studies successfully combined the use of stable 

isotopes with 14C age-dating to provide an estimate of residence time and therefore 
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determining the climatic conditions at the time of recharge based on other palaeo 

climate proxies (eg. Fontes et al., 1991; Deák and Coplen, 1996; Vaikmäe et al., 

2001).  

Deák and Coplen (1996) successfully applied δ
18O measurements and 14C 

dating techniques to distinguish between Holocene and Pleistocene recharge in the 

Great Hungarian Plain in central Europe. Based on the results of the 14C groundwater 

dating, modern recharge was simply defined as having a δ18O value more positive 

than -10‰ whereas palaeo groundwater (groundwater recharged during the 

Pleistocene) was defined as having a δ
18O value more negative than -10‰ (Deák and 

Coplen, 1996). Rozanski (1985) presented a large range of stable isotope data from a 

number of authors for European palaeo groundwaters. Rudolph et al. (1984) presented 

stable isotope data from southern Germany (Nürnberg region) with δ18O values in the 

region of -10 to -11‰ for palaeo groundwater. These values are slightly more 

negative than the δ18O value of -9‰ that was determined for palaeo groundwater from 

the Lower Rhine Embayment. 

More recently it has become common to combine stable isotope measurements 

not only with groundwater age-dating techniques such as 14C, but also with dissolved 

noble gas measurements to form a multi-tracer approach which allows groundwater 

residence times to be accurately determined as well as enabling the precise mean 

annual surface temperature at the time of recharge to be calculated (eg. Andrews and 

Lee, 1979; Stute and Deák, 1989; Stute et al., 1995; Beyerle et al., 1998; Aeschbach-

Hertig et al., 2002; Lehmann et al., 2003; Zuber et al., 2004). The calculated noble 

gas temperatures (NGTs) for modern and palaeo groundwater from the Lower Rhine 

Embayment are discussed in Section 6.3. 
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6.3. Dissolved noble gases 

6.3.1. Helium in groundwater 

Helium isotopes are typically used in groundwater studies as a semi-quantitative 

measure of groundwater residence time (Andrews and Lee, 1979; Zhou and 

Ballentine, 2006), to identify deep crustal or mantle fluxes (Marty et al., 1993) or to 

investigate the sealing properties of aquitards (Marty et al., 2003). A full review of 

dissolved noble gases in groundwater including helium isotopes is given in Chapter 3. 

Groundwater samples collected during 2007/08 from the Lower Rhine Embayment 

were analysed for dissolved helium and the results are presented in Figure 6.8. 
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Figure 6.8. Cross plot of helium concentration against δ
18O value for groundwater samples 

collected during 2007/08 from the Lower Rhine Embayment, Germany. The solid lines 

represent a simple binary mixing model envelope between end member groundwater types 

and the dashed line indicated the expected helium concentration due to atmospheric solubility 

equilibrium at 10 ºC. 
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The first observation to note from Figure 6.8 is that the main cluster of sample 

points represents modern groundwater recharge of meteoric origin due to their 

isotopic composition and proximity to the GMWL as discussed in Section 6.2. These 

groundwater samples have helium concentrations in the range expected from 

atmospheric solubility equilibrium and the addition of excess air. The dashed line in 

Figure 6.8 represents atmospheric solubility equilibrium at 10 ºC which approximates 

the mean annual surface temperature of the region.  

The Na-Cl dominated groundwater has helium concentrations of 1.28x10-4 and 

1.69x10-4 cm3 STP g-1 H2O in groundwater samples collected from the Brühl 9 

observation borehole (piezometers of 958062 and 958063 respectively). These helium 

concentrations exceed that expected for groundwater in solubility equilibrium with the 

atmosphere by more than three orders of magnitude and are the highest helium 

concentrations measured in groundwater samples collected from the Lower Rhine 

Embayment during this research. Excess helium of this magnitude probably results 

from the in situ production of radiogenic 4He within the subsurface due to the decay 

of U and Th series elements, and subsequent accumulation in groundwater over time, 

in addition to a large helium flux to the aquifer system from an external and perhaps 

previously trapped reservoir. Much smaller helium excesses could be explained by an 

excess air component of 3He and 4He from the dissolution of entrained air of 

atmospheric origin during water table fluctuations (Ingram et al., 2007), the β-decay 

of bomb tritium to tritiogenic 3He, 6Li(n,α)3H reactions that produce nucleogenic 3He, 

as well as mantle contributions of both 3He and 4He (Castro, 2004).  

In deep circulating groundwater from sedimentary basins it is typically 

assumed that a crustal component is primarily responsible for large excesses of 

helium that originate from in situ production or a crystalline basement (Castro, 2004).  
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2007/08 from the Lower Rhine Embayment. The solid lines represent a simple binary mixing 

model envelope between end member groundwater types. 

 

 

Accurate 3He measurements provide a quantitative way to distinguish between 

the various sources of excess 3He and 4He in groundwater due to well known 3He/4He 

ratios (Clark et al., 1976). Unfortunately, it was not possible to include 3He 

measurements as a component of this research even though such measurements would 

have provided great insight into the origin of excess helium present in a number of 

observation boreholes in the Brühl region of the Lower Rhine Embayment.  

Helium-4 has been used in a number of studies as a semi-quantitative tool for 

determining groundwater age (Zhou and Ballentine, 2006). Calculations based on in 

situ accumulation of radiogenic 4He using estimates of U and Th concentrations in 

Lower Rhine Embayment sediments and 4He groundwater age equations given by 

Mahara and Igarashi (2003) and Zhou and Ballentine (2006) appear to yield 
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unrealistically long aquifer residence times in the range of 108 years. A number of 

studies have reported 4He concentrations to be higher than those that can be explained 

by in situ radiogenic production (eg. Torgersen and Clark, 1985; Takahata and Sano, 

2000). Marty et al. (2003) reported that the in situ production of 4He in the Trias 

aquifer of the Paris Basin accounted for <1% of the observed 4He present in 

groundwater based on 14C dating to determine groundwater residence times. An 

explanation of the high helium content in the shallow aquifer layers of the Lower 

Rhine Embayment requires a significant contribution from an external source outside 

the aquifer system. A number of studies have suggested that generally, it is likely that 

excess helium in sedimentary aquifers originates from deep in the continental crust 

(Torgersen and Clark, 1985; Castro et al., 1998) or that it originates from deep 

circulating basinal fluids (Pinti and Marty, 1998). Solomon et al. (1996) suggested 

that a high external flux of helium to shallow groundwater could originate from a 

previously trapped reservoir of helium. Unfortunately, the precise origin of the 

dissolved helium present in groundwater samples collected from the shallow aquifers 

in the Brühl region of the Lower Rhine Embayment remains uncertain, and without 

accurate 3He measurements the potential sources are difficult to resolve. However, 

potential sources of helium can be identified by considering the mechanisms by which 

helium has migrated to the shallow aquifer system. The primary mechanisms 

responsible for the transport of helium from deep in the continental crust to shallow 

groundwater systems include fluid advection and/or bulk diffusion. Zhou and 

Ballentine (2006) state that these processes are unlikely to account for the necessary 

rate of helium mass transport from the crust to shallow groundwater. Therefore, 

external helium fluxes to near-surface groundwater aquifers of the magnitude 

necessary to produce observed helium concentrations several orders of magnitude in 

excess of those expected from atmospheric solubility equilibrium must be the result of 
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large scale tectonics such as crustal extension (Ballentine and Burnard, 2002). Indeed, 

the high helium concentrations measured from groundwater samples taken from the 

Brühl region have led to the inference that deep crustal fluids have migrated from 

depth to the shallow aquifers via conduit flow within the Bornheim fault zone that 

connects deep and shallow aquifer layers that are otherwise isolated by confining clay 

layers and lignite seams of very low permeability. These findings provide 

geochemical evidence to validate the conduit-barrier model proposed by Bense and 

Person (2006) that describes faults as barriers to lateral groundwater flow but as 

conduits or preferential flow paths for vertical displacement of groundwater in the 

Lower Rhine Embayment. 

To improve the groundwater residence time estimate based on 4He 

concentration it is necessary to consider all sources of 4He which include an 

atmospheric component, in situ radiogenic production as well as an external flux of 

4He given by the following equations: 
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        (Zhou and Ballentine, 2006) 

φ = aquifer porosity 
η = transfer rate from stratum to groundwater (usually 1) 
ρ = stratum density (g cm-3) 
t = residence time (year) 
h = aquifer thickness (cm) 
F = average crustal flux (cm3 STP [4He] cm-2 year-1) 
S = source function given by: 0.2355x10-12[U]{1+0.123([Th]/[U]-4)} 
 [U] and [Th] in ppm 
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The residence time (4He age) in years is therefore given by the equation: 
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    (6.10) 

 

The values used to estimate residence time using Equation 6.10 were very under 

constrained. However, an external average crustal flux value F = 4x109 atoms 4He m-2 

s-1 (Torgersen, 2010) and U and Th concentrations of 3 and 8 ppm respectively were 

used to calculate t. The estimated 4He age of the palaeo groundwater end member 

using this method is in the range of 2x107 years. 

 

6.3.2. Groundwater end member characterisation 

The Na-Cl-(HCO3) dominated groundwater has been characterised by 

numerous hydrochemical, isotopic and noble gas tracers and labelled as a pre-

Holocene palaeo groundwater. This groundwater body can be considered to be an end 

member groundwater with a true geochemical composition similar to that of the 

groundwater sampled from the deepest piezometer within the Brühl 9 observation 

borehole. Ionic constituents are dominated by Na and Cl, and the hydrochemical 

composition creates a reducing environment. The relatively low δ18O value of -9.1‰ 

suggests that recharge occurred under cooler climatic conditions than those that 

predominate today because of the -1.3 – -2.0‰ shift, but stable isotope data also 

suggests a meteoric origin. Significantly, 4He concentrations are over three orders of 

magnitude higher than those expected due to atmospheric solubility equilibrium.  
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Modern groundwater of meteoric origin is considered to be a second end 

member groundwater. In terms of stable isotope and noble gas data the modern 

groundwater displays little variation (Figure 6.7 and Figure 6.8) but hydrochemical 

compositions display a wide range of values due to variations in mineralogy and 

aquifer composition (see Figure 6.2). The δ
18O values of modern groundwater 

generally fall in the region of -7.1 to -7.8‰ and are in good agreement with the 

isotopic composition of precipitation for the region (IAEA, 2006). Noble gas 

concentrations are close to solubility equilibrium with small additions of excess air 

but no identified crustal or mantle sources.  

Noble gases, oxygen isotopes (δ
18O) and chloride ions are all considered as 

conservative tracers so it is therefore appropriate to formulate a simple binary mixing 

model to describe the conservative mixing of the two end member groundwaters 

(Figure 6.8 and Figure 6.9). 

 

6.3.3. Groundwater mixing 

 Mixing between two distinct groundwater end members can be quantified 

using simple linear algebra: 

 

    δsample = χ.
δmodern + (1 – χ).

δpalaeo   (6.11) 

 

This simple binary mixing relationship can be applied to noble gases, oxygen isotopes 

(δ18O) and chloride ions because they are all considered as conservative geochemical 

or hydrochemical tracers. Such a simple mixing model appears to fit the helium and 

δ
18O data rather well (Figure 6.8 and Figure 6.9). The small number of data points that 

fall outside of the mixing model envelope can be explained by perhaps a different end 

member composition in terms of slightly lower δ
18O values for modern groundwater 
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of meteoric origin that simply have not been sampled yet, or for samples that fall to 

the right hand side of the model, mixing with a third groundwater type. Ternary 

mixing is clearly a feature of the Brühl region where the two regional end member 

groundwaters are also mixing with localised evaporated water that is believed to have 

percolated into the shallow aquifer from a disused sand/gravel pit. This local signature 

is characterised by a hydrochemical composition dominated by Ca-SO4-NO3 and a 

high δ18O value of -5.2‰. The two sample points that exhibit enriched δ18O values 

and plot on an evaporation trend line (see Figure 6.7) originate from a single 

observation borehole in the Brühl area and are believed to have a very limited spatial 

occurrence.  

It remains uncertain whether the helium and δ
18O values of the palaeo 

groundwater end member represent the true end member composition or if the 

groundwater sampled from observation borehole 958063 has already been exposed to 

mixing with modern groundwater in the shallow aquifer prior to the point of 

sampling. However, it is certain that the palaeo groundwater originates from a well 

constrained location associated with the Bornheim fault and mixes with modern 

recharge in the upper layers of the shallow aquifer system. This suggests that the fault 

acts as a preferential flow path for deep circulating palaeo groundwater with a very 

long residence time to bypass the intermediate depths of the aquifer system and 

therefore directly connecting the deep basement system with the shallow aquifer 

layers that contain the most modern recharge. 

 

6.3.4. Noble gas palaeothermometer  

 Dissolved noble gases in groundwater have been used in numerous studies to 

provide palaeoclimate information (eg. Mazor, 1972; Andrews and Lee, 1979; 

Rudolph et al., 1984; Stute and Deák, 1989; Andrews, 1992; Stute et al., 1992; 
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Blavoux et al., 1993; Osenbrück et al., 1993; Stute et al., 1995a; Stute et al., 1995b; 

Dennis et al., 1997; Beyerle et al., 1998; Aeschbach Hertig et al., 2002; Beyerle et al., 

2002; Zuber et al., 2004) as discussed in Chapter 3.   
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The measured concentrations of the noble gases Ne, Ar, Kr and Xe were 

interpreted using NOBLE90 (Aeschbach-Hertig et al., 2000; Peeters et al., 2002) in 

terms of temperature (T) and excess air (A). As discussed in Chapter 3, there are five 

model parameters (temperature (T), salinity (S), pressure (P) excess air (A) and 

fractionation (F)) but it was assumed that S ~ 0 for recharge of meteoric origin and P 

was determined from the mean altitude of the study area within the Lower Rhine 

Embayment. If fractionation (F) is set to zero the closed system equilibration (CE) 
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model reduces to the unfractionated excess air (UA) model and produces the same 

results for temperature (T) and excess air (A). The noble gas concentrations for all the 

groundwater samples that were successfully analysed for dissolved noble gases were 

interpreted using the three model equations used in NOBLE90. However, the 

assessment of χ2 and probability (%) values indicated that the unfractionated excess 

air (UA) model produced the best fit for all the samples and no samples were rejected 

due to a poor model fit. Figure 6.10 shows the calculated NGTs plotted against excess 

air using the UA model. The uncertainty of T was scaled to account for the goodness-

of-fit by NOBLE90 and the UA model consistently yielded the smallest degree of 

uncertainly for calculated NGTs. 

Figure 6.10 shows that there are potentially three trends in recharge 

temperature but it was assumed from hydrochemical and stable isotope data that the 

main cluster of samples all represent modern groundwater recharge (with the 

exception of the Na-Cl-(HCO3) groundwater) and that the mean temperature of 12.5 

±1.3 ºC calculated using these points would therefore represent the average recharge 

temperature of modern groundwater accurately. However, the weighted mean annual 

surface temperature is 10.8 ºC which is 1.7 ºC lower than the calculated NGT. 

Although the uncertainty limits of the calculated NGT (1.3 ºC) could explain most of 

this offset, it is possible that the UA model does not adequately describe all the 

mechanisms that control noble gas concentrations at the water table. 
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Noble gas temperatures have been used as a climate proxy for determining the 

surface temperature during the last glacial maximum (LGM) (eg. Stute et al., 1995). A 

number of palaeo groundwaters that have been identified by groundwater age-dating 

techniques such as 14C, display a temperature decrease of 5–7 ºC (eg. Andrews and 

Lee, 1979; Blavoux et al., 1993; Stute et al., 1995) whilst some studies report a 

smaller temperature decrease in the range of 2–3 ºC for LGM groundwaters (eg. 

Osenbrück et al., 1993).  

The data presented in Figure 6.10 is not inconsistent with these findings 

although the evidence is limited. The palaeo groundwater identified in the Brühl 

region displays relatively low δ18O values and a shift of -1.3 – -2.0‰ from modern 

recharge. The mean NGT calculated for the Na-Cl-(HCO3) and Na-Ca-HCO3 is 5.6 

±1.7 ºC which is 6.9 ºC cooler than the mean NGT determined for modern 

groundwater (12.5 ±1.3 ºC) within the Lower Rhine Embayment aquifer system. The 
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remaining Na-Cl-(HCO3) type groundwater sample points do not agree with this trend 

but this could be because of the difficulties experienced during sampling due to the 

high dissolved gas content of the groundwater in the Brühl 9 observation borehole and 

could also explain the large error bars that are associated with several of the Na-Cl-

(HCO3) dominated groundwater samples.  

It is not possible to state precisely with any degree of certainty the exact 

climatic conditions under which the Na-Cl-(HCO3) type groundwater was recharged, 

or even the origin of the Na-Cl-(HCO3) type groundwater. Carbon-14 age-dating of 

groundwater samples collected from the Brühl 9 observation borehole during 2007 

was conducted by the USGS but the results suggested that the samples were 14C free. 

This was interpreted as groundwater with a residence time that exceeded 30,000 

years. However, Maloszewski and Zuber (1991) initially came to the same conclusion 

when using 14C to date groundwater samples from a carbonate aquifer in Poland as the 

samples were found to be 14C free. It was later determined using tritium that the 

groundwaters were in fact of Holocene age and the loss of 14C was explained by 

matrix diffusion and matrix exchange factors (Maloszewski and Zuber, 1991). 

Obtaining a reliable groundwater age estimate for the palaeo groundwaters from the 

Brühl region would certainly form an important component of any further work and 

could possibly be achieved by applying either 36Cl or 81Kr dating techniques.  

 

6.3.5. Noble gas determined excess air 

The relationship between ∆Ne and seasonal water table fluctuations has been 

considered by a number of authors (eg. Stute and Schlosser, 1993; Wilson and 

McNeill, 1997; Ingram et al., 2007). Ingram et al. (2007) state that a good correlation 

between excess air (∆Ne) and mean annual water table fluctuation (∆hav) suggests that 

air entrainment is directly linked to water table fluctuations and not aquifer lithology 
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as suggested by Wilson and McNeill (1997). However, the laboratory column 

experiments designed by Holocher et al. (2002) specifically to investigate the link 

between excess air and water table fluctuations did not provide conclusive evidence. 

Ingram et al. (2007) used the closed system equilibration model (CE Model) 

described by Aeschbach-Hertig et al. (1999) to determine excess air values. However, 

the ‘best fit’ of the data occurred when the fractionation factor F, was set to zero in 

which case the CE Model reduces to the basic unfractionated excess air (UA) Model 

described by Andrews and Lee, (1979) and Stute and Schlosser (1993). The CE 

Model has the ability to describe the theoretical relationship between excess air and 

water table fluctuations. The derivation of this relationship is described by 

Aeschbach-Hertig et al. (2002) and is also reported by Ingram et al. (2007). 

Noble gas determined excess air values for groundwater samples collected 

from the Lower Rhine Embayment were plotted against mean annual water table 

fluctuation data for all observation boreholes that displayed a regular annual water 

table fluctuation. The ∆hav values were calculated using water table elevation data 

records dating back to the 1970s and provided by the Erftverband. Up to six readings 

were taken each year so it was possible to determine the maximum annual amplitude 

which was then used to calculate a mean value for the time period of the records if the 

magnitude of the amplitude remained fairly consistent over time. Figure 6.12A shows 

that there is a good correlation between ∆Ne and ∆hav and that the results are 

consistent with both the data published by Ingram et al. (2007) and with the 

theoretical relationship predicted by the CE model described by Aeschbach-Hertig et 

al. (2002). It is evident that the samples from the Lower Rhine Embayment have 

relatively low ∆Ne values and a corresponding low mean annual water table 

fluctuation (see Figure 6.12B).  
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Figure 6.12A. Excess air expressed as ∆Ne (%) plotted against mean annual water table 

fluctuation. The data can be seen to be consistent with the results presented by Ingram et al. 

(2007) for values at the lower range of the scale. Figure 6.12B shows an expanded view of the 

grey area. 

 

 

An important point to note is that the vast majority of the aquifers in the 

Lower Rhine Embayment do not display a consistent seasonal water table fluctuation, 

primarily due to groundwater abstraction for lignite mine dewatering purposes. All of 

the sampled boreholes that are in close proximity to active or abandoned lignite mines 

are, or have in the recent past, been significantly affected by mine dewatering (as 

discussed in Chapter 2). Time series data provided by the Erftverband was used to 

assess the behaviour of the water table from the 1970s to the present day. These data 

were available for each of the sampled boreholes as this was one of the criteria used 

during the initial borehole selection process. The records show that most aquifers in 

the Lower Rhine Embayment are affected by lignite mining to some extent. Typically, 
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the water table in many areas displays a trend of either constant drawdown, or 

drawdown followed by subsequent rebound in areas where mining has now ceased or 

moved further away. However, recovery of the water table subsequent to significant 

drawdown appears to be a slow process. An analysis of excess air concentration was 

not conducted on samples that were collected from boreholes that had corresponding 

water table records that displayed trends other than regular annual water table 

fluctuations because without applying accurate groundwater age-dating techniques 

such as 3H-3He or 85Kr it would be impossible to state with any degree of certainty, at 

which point along a time series of hydraulic head values groundwater recharge had 

occurred and therefore making it difficult to correlate a particular trend in water table 

behaviour with excess air concentration.  
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6.3.6. The conceptual hydrochemical model  

The analysis of dissolved noble gases, stable isotopes of hydrogen, oxygen, 

carbon and strontium, and hydrochemical composition has provided strong evidence 

to suggest that groundwater flow dynamics in the Brühl region of the Lower Rhine 

Embayment, and particularly in close proximity to the Bornheim fault, are of great 

interest in terms of European palaeo groundwaters and fluid flow processes associated 

with fault zones in sedimentary basins. The multiple tracer approach has allowed a 

conceptual model to be developed that elucidates the mechanisms involved, and helps 

explain the observed occurrence of palaeo groundwater at very shallow depth in the 

Brühl region. The conceptual model describes a deep circulating groundwater that has 

a residence time sufficient for the accumulation of significant concentrations of 

helium (more than three orders of magnitude higher than atmospheric solubility 

equilibrium) from in situ production derived from the decay of U and Th series 

elements in the subsurface. It is also very likely that an external flux of helium also 

contributes significantly to the total helium concentration of the palaeo groundwater. 

Hydrochemical analysis of the palaeo groundwater indicates that Na+ and Cl- are the 

dominate ions and that the hydrochemical evolutionary history of the groundwater 

involved very high PCO2 conditions and a significant subsurface source of H+.  

The occurrence of palaeo groundwater in shallow aquifers is strongly linked to 

the Bornheim fault. Geochemical and temporal hydraulic head data suggest that the 

groundwater originates from depth and flows almost upwards within the Bornheim 

fault core material and/or the adjacent footwall material and is driven by de-watering 

of nearby open cast lignite mines. Due to the complex nature of the layered sand and 

gravel aquifer system and the intercalated clay and lignite layers of low permeability 

it is possible that the precise flow path is more complex than simple conduit flow. 
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However, the conduit-like flow associated with the Bornheim fault is probably 

directly linked to nearby lignite mining activities and specifically to large scale mine 

de-watering that has a large impact on hydraulic head distribution throughout most of 

the region. The lignite mines that are within a few kilometres of the Bornheim fault 

have been abandoned and subsequently restored to recreational and agricultural land.  

The palaeo groundwater emanates from the Bornheim fault like a ‘point 

source’ injection and forms a plume of groundwater that is easily distinguishable from 

the modern meteoric recharge that is typically found in the shallow aquifers of this 

region due to its hydrochemical composition (see Figure 6.13). 
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Figure 6.13. Spatial distribution of the palaeo groundwater plume that emanates from the 

Bornheim fault based on Cl- concentration measurements taken from 1979 to 1981 (reproduced 

from Schenk, 1982). 
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It is hypothesised that the emplacement of the palaeo groundwater at shallow 

depth occurred during the active de-watering of the nearby lignite mines and that 

conduit flow from depth is not occurring at the present time. The plume-like 

emanation also appears to be slow to disperse perhaps due to the shallow hydraulic 

head gradients that currently exist in this region. Schenk (1982) first identified the 

plume of palaeo groundwater near the Bornheim fault in the early 1980s and 

accurately mapped its distribution based on Cl- measurements (Figure 6.13). Schenk 

(1982) recognised that the groundwater was linked to the Bornheim fault but without 

the application of geochemical and isotopic tracers was unable to establish the flow 

path or origin of the groundwater.  

The locations of the four observation boreholes situated in the Brühl region are 

mapped in Figure 6.14. It can be seen that observation boreholes 352722 and 957982 

are within just a few metres of the Bornheim fault. Figure 6.14 also shows that the 

Brühl 9 observation borehole (958063) is located to the west of the Bornheim fault 

and that groundwater flow is from west to east as indicated by the hydraulic head 

gradient. The 3-dimensional diagram in Figure 6.14 illustrates the relative positions of 

the observation boreholes and their depths in relation to the Bornheim fault and the 

sediment deposits of varying geological age. The Brühl 9 observation borehole yields 

the highest concentration of dissolved helium, Cl- and the most depleted δ18O values.  
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Figure 6.14. Plan view of the Brühl region and 3-dimensional cross section show the locations and relative depths of the observation boreholes as well as the 

proximity to the Bornheim fault.                             
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As discussed in Section 6.3.2 the groundwater at the Brühl 9 location is 

thought to accurately represent the end member composition. It is unclear why the end 

member composition is found slightly up-gradient from the Bornheim fault if the fault 

plane represents the point source origin of the palaeo groundwater. The most likely 

explanation is that during periods of intense lignite mine de-watering that acted as the 

driving force of fluid flow along the fault the direction of groundwater flow would 

have been reversed as a cone of depression developed below the lignite mine. As 

mining began to decline in the area and finally ceased entirely, the natural direction of 

groundwater flow slowly restored itself and the plume of palaeo groundwater could be 

identified to the east of the Bornheim fault.  

 

 

Figure 6.15. Cross section of the Bornheim fault indicating the upward flow of palaeo 

groundwater from depth (blue arrows), the general ‘west to east’ flow direction in the shallow 

aquifers and the percolation of evaporated water from a surface gravel/sand pit (red arrow). 
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An alternative and perhaps more simple hypothesis is that the palaeo 

groundwater flows through the fault core and within the adjacent footwall material 

creating a more complex flow path and the plume emanates from the shallow aquifers 

to the west of the Bornheim fault in a more diffuse way. The stable isotopes of 

hydrogen and oxygen and dissolved helium data indicate that the Bornheim fault is 

acting as a barrier to horizontal groundwater flow at shallow depth near observation 

borehole 352722 (see Figure 6.15) which could explain the slow rate of advective 

dispersion and dilution.  
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7. Conclusions and Further Work 

 

7.1. Conclusions 

 

Hydrochemical, stable isotope and noble gas tracer techniques have provided 

valuable insight into basin scale groundwater flow dynamics in the Lower Rhine 

Embayment aquifer system. The large variation in hydrochemical composition of 

groundwater samples collected during 2007/08 is a result of the mixed mineralogical 

assemblages that exist in the shallow Pleistocene and Pliocene deposits. Stable 

isotopes of hydrogen and oxygen were used to identify palaeo groundwater in the 

shallow aquifers of the Brühl region. The hydrochemical composition of the palaeo 

groundwater indicates that it is dominated by Na+ and Cl- ions and suggests that 

hydrochemical evolution occurred under higher PCO2 conditions than more recent 

groundwater recharge and is easily distinguishable from the modern groundwater 

component that is dominant throughout the Lower Rhine Embayment. 

Groundwater samples were analysed for dissolved noble gas concentrations 

and numerical modelling using the NOBLE90 geochemical model was employed to 

interpret dissolved gas concentrations in terms of excess air, water table fluctuations 

and noble gas temperatures (NGTs). Noble gas determined excess air concentrations 

correlated well with groundwater level fluctuations and the results were consistent 

with the values predicted by the closed system equilibration (CE) model proposed by 

Aeschbach-Hertig et al. (2002) and agreed well with the data reported by Ingram et 

al. (2007). The mean NGT of modern groundwater recharge was 12.5 ±1.3 ºC which 

is consistent with the regional weighted mean annual surface temperature of 10.8 ºC. 

Determining accurate noble gas temperatures for palaeo groundwater samples was 

problematic due to the high dissolved gas concentrations of the groundwater and gas 
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exsolution during the sampling procedure. However, the results obtained do provide 

some evidence to suggest that the mean recharge temperature of the palaeo 

groundwater is 5.6 ºC which is not inconsistent with the 5–7 ºC decrease in recharge 

temperatures from the Pleistocene to the Holocene that has been reported by other 

authors (eg. Andrews and Lee, 1979; Blavoux et al., 1993; Stute et al., 1995), 

although with only a small number of palaeo groundwater samples being successfully 

analysed there is a degree of uncertainty surrounding this conclusion. 

Dissolved helium concentrations in groundwater samples collected from the 

Brühl region have provided additional evidence to confirm the presence of palaeo 

groundwater in shallow aquifers. Helium concentrations were observed at a maximum 

of 1.7x10-4 cm3 STP g-1 H2O which is 3-4 orders of magnitude higher than the 

concentration expected due to solubility equilibrium with the atmosphere and suggests 

a very long residence time. The source of helium is uncertain but in situ radiogenic 

production and a terrigenic flux probably account for a large proportion of the 

observed helium. The precise origin of the palaeo groundwater is unknown but due to 

the close proximity of the Bornheim fault, it is hypothesised that the fault creates a 

preferential flow path. Groundwater exchange between the deep basinal aquifers and 

the upper aquifer layers is frequently impeded by confining clay layers and very low 

permeability lignite. This suggests that palaeo groundwater from depth is mixing with 

modern water of meteoric origin in the upper aquifers as a result of advective flow 

from depth towards the upper aquifer layer within the Bornheim fault, or that flow is 

occurring in the adjacent footwall of the fault and follows a more complex flow path 

towards the surface. There is no evidence of thermal anomalies from observation 

boreholes in close proximity to the Bornheim fault implying that the flow rates along 

the fault are either too low to generate a temperature anomaly, or that conduit flow 
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within the fault zone is not occurring at present. It is therefore hypothesised that the 

plume of deep basinal palaeo groundwater, characterised by its high helium content 

and relatively low δ18O value, was emplaced during a period of enhanced flow caused 

by large scale groundwater abstraction from a nearby lignite mine. The mine has now 

been abandoned and natural flow conditions have been restored reversing the 

direction of groundwater flow. Hydraulic head gradients are low in this area so 

advective dispersion and dilution appear to occur at a slow rate. Today, exploitation of 

lignite occurs at the Inden, Garzweiler and Hambach mines. Upward fluid flow 

associated with fault zones could be widespread in areas adjacent to the large open 

cast lignite mines due to the large hydraulic head gradients that have been created 

across some faults and the enhanced transient flow rates that are the result of large 

scale mine de-watering. Unfortunately, the observation boreholes in these regions are 

particularly deep and so sampling for dissolved gases is problematic. However, this 

research has provided strong geochemical evidence to support the conduit-barrier 

fault zone model proposed by Bense and Person (2006). 

More broadly, this research has contributed to the understanding and ability to 

predict fluid flow patterns in unconsolidated sedimentary basins and has relevance for 

some of the largest groundwater aquifer systems and hydrocarbon reservoirs in the 

world, such as those in the Gulf of Mexico and the North Sea Basin that are largely 

analogous to the Lower Rhine Embayment. Understanding the flow dynamics of deep 

basinal groundwater and the complex hydraulic behaviour of fault zones in 

unconsolidated sedimentary basins is critical for successfully and safely implementing 

schemes such as carbon capture and storage (CCS) and nuclear waste disposal as well 

as for more general water resources management purposes. 

 



 183 

7.2. Further work 

 

It is clear that the Lower Rhine Embayment is a complex hydrogeological 

system, and that the application of additional environmental tracers and groundwater 

age-dating techniques would significantly improve our understanding of the origin, 

residence time and flow paths of the palaeo groundwater identified in the shallow 

aquifers of the Brühl region. Further work would primarily seek to elucidate the origin 

of deep circulating groundwater found in shallow aquifers. There are a number of new 

research questions that need to be addressed to enhance our understanding of 

groundwater dynamics in the Lower Rhine Embayment and provide further insight 

into the role of fault zones such as: What is the origin and age of the deep basinal 

fluids found within shallow aquifers of the LRE? Is there an exchange between deep 

basinal fluids and modern groundwater at shallow depth along fault zones that behave 

as conduit-barrier systems and what is the spatial and temporal variability of this 

process? Are these basinal fluids emplaced in shallow aquifers during periods of 

intense mining activity and subsequent lowering of the water table or is it a natural 

phenomenon that is enhanced by groundwater abstraction? In regions where current 

groundwater abstraction is significant, is the flux of groundwater along faults large 

enough to result in transient thermal anomalies within aquifers flanking those faults? 

Do geochemical and thermal anomalies occur simultaneously? Does the absence of 

thermal anomalies but the presence of geochemical anomalies indicate historical fluid 

migration along fault zones or low flow velocities? What are the implications of deep 

basinal fluid flow along faults for nuclear waste storage, CCS programmes and water 

resource management? A full range of helium, neon and argon isotope ratios could be 

used to identify and quantify the various sources of 3He and 4He and their contribution 

to the total helium content of groundwater samples. Chlorine-36 would be the most 
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appropriate groundwater age-dating tool for determining the age of LRE palaeo 

groundwater and the application of 36Cl has been successful in age-dating very old 

groundwater in numerous deep circulating systems (eg. Love et al., 2000; Lehmann et 

al., 2003; Sturchio et al., 2004). Although the interpretation of 36Cl ages is not routine 

due to a number of parameters that are difficult to constrain, such as atmospheric 

residence time (Balderer et al., 2004) and additional sources of 36Cl in groundwater; 

for example, anthropogenic inputs from nuclear weapons testing in the South Pacific 

Ocean between 1952 and 1959, and radiogenic production of 36Cl deep in the 

subsurface; it could be argued that in the Lower Rhine Embayment the difficulties 

with 36Cl age-dating are minimised because of the absence of groundwater with very 

high salinity such as deep basement brines or other sources of Cl such as evaporite 

deposits that are found further north in the North Sea Basin. Krypton-81 has the 

potential to provide an alternative to 36Cl age-dating, but currently no laboratories 

worldwide are offering 81Kr measurements for dating very old groundwater, and it 

would also be significantly more expensive than 36Cl dating. 

It has been established that geochemical anomalies indicate the presence of 

deep circulating groundwater in shallow aquifers, but it is uncertain whether these 

basinal fluids are emplaced in shallow aquifers during periods of intense mining 

activity and subsequent lowering of the water table or whether it is a natural 

phenomenon that is enhanced by groundwater abstraction. Tritium/helium-3 (3H-3He) 

groundwater age-dating could be used to determine whether the plume of palaeo 

groundwater is a relic of historical mining practices or whether fluid movement along 

the plane of the Bornheim fault is still an active process today. By dating the modern 

component of groundwater it would be possible to build a comprehensive conceptual 

model of flow dynamics in a given area which in turn could lead to the development 
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of more generic models with relevance to similar sedimentary basins worldwide. 3H-

3He dating would form a key part of any further research and would allow the 

determination of recharge rates, flow velocities and residence times for the modern 

groundwater component that is believed to dominate in many shallow aquifer 

systems. 

In regions where current groundwater abstraction is significant, it would be 

insightful to determine whether the flux of groundwater along faults is large enough to 

result in transient thermal anomalies within aquifers flanking such faults. This could 

also indicate whether thermal anomalies and geochemical anomalies occur 

simultaneously and whether the absence of thermal anomalies but the presence of 

geochemical anomalies indicates historical fluid migration along fault zones or if it is 

the result of low flow velocities. 

The Lower Rhine Embayment is a well instrumented study area (~15,000 

observation boreholes in an area of 4,220 km2) that provides a unique opportunity to 

constrain fluid flow mechanisms and processes associated with fault zones in 

unconsolidated sedimentary basins, and therefore provides an unrivalled opportunity 

to improve our understanding of fault hydraulics and so further the development of 

generic models for fault zone hydrogeology in similar settings worldwide. A 

comprehensive understanding of deep basinal fluid flow along fault zones in 

sedimentary basins is an essential prerequisite for safe nuclear waste storage, CCS 

programmes and more general water resources management. 
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Figure 1. Sampled observation borehole identification names. 
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Appendix 2. 

 

Table 1. SXP Elite operational settings for helium isotopes. 

Helium 
Emission ON 
Filament 1(Th) 
Emission Current 0.50 mA 
Electron Current 70 eV 
Source Volts 4.0 V 
Focus -110 V 

 
 
 

Source 

Lens 4 -110 V 
Pole Bias 0.0 V 
High Mass Resolution 32% 
Low Mass Resolution 50% 
Ion Energy Ramp 0.0 eV 
Total Ion OFF 

Filter 

Zero Ion OFF 
Faraday/SEM SEM 
SEM Bias 2000 V 
Gain Range 1 9 – 10  
Range 2 Extra Gain X 1E0 
Amplifier Response 30 ms 
Amplifier Zero 0.0 

 
 
 

Detector 

Pulse Counting OFF 
Polarity + 
Internal/External INT 
Lens 1 0 V 
Lens 2 0 V 

 
 

Ions 

External Mass OFF 
First Mass 2.0 amu 
Mass Span 3 amu 
Scan Rate 1.000 amu/s 
Single/Rep Composition R 
Scale 1 
Scan Two Regions N 

 
 
 

Spectrum 

First Mass Region 2 20.0 amu 
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Table 2. SXP Elite operational settings for neon isotopes. 

Neon 
Emission ON 
Filament 1(Th) 
Emission Current 0.50 mA 
Electron Current 40 eV 
Source Volts 4.0 V 
Focus -110 V 

 
 
 

Source 

Lens 4 -110 V 
Pole Bias 0.0 V 
High Mass Resolution 32 % 
Low Mass Resolution 50 % 
Ion Energy Ramp 0.0 eV 
Total Ion OFF 

Filter 

Zero Ion OFF 
Faraday/SEM SEM 
SEM Bias 2000 V 
Gain Range 1 9-10 
Range 2 Extra Gain X 1E0 
Amplifier Response 30 ms 
Amplifier Zero 0.0 

 
 
 

Detector 

Pulse Counting OFF 
Polarity + 
Internal/External INT 
Lens 1 0 V 
Lens 2 0 V 

 
 

Ions 

External Mass OFF 
First Mass 18.0 amu 
Mass Span 5 amu 
Scan Rate 1.000 amu/s 
Single/Rep Composition R 
Scale 1 
Scan Two Regions N 

 
 
 

Spectrum 

First Mass Region 2 20.0 amu 
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Table 3. SXP Elite operational settings for argon isotopes. 

Argon 
Emission ON 
Filament 1(Th) 
Emission Current 0.50 mA 
Electron Current 70 eV 
Source Volts 4.0 V 
Focus -110 V 

 
 
 

Source 

Lens 4 -110 V 
Pole Bias 0.0 V 
High Mass Resolution 32 % 
Low Mass Resolution 50 % 
Ion Energy Ramp 0.0 eV 
Total Ion OFF 

Filter 

Zero Ion OFF 
Faraday/SEM SEM 
SEM Bias 1650 V 
Gain Range 1 9 – 10  
Range 2 Extra Gain X 1E0 
Amplifier Response 30 ms 
Amplifier Zero 0.0 

 
 
 

Detector 

Pulse Counting OFF 
Polarity + 
Internal/External INT 
Lens 1 0 V 
Lens 2 0 V 

 
 

Ions 

External Mass OFF 
First Mass 35.0 amu 
Mass Span 6 amu 
Scan Rate 1.000 amu/s 
Single/Rep Composition R 
Scale 1 
Scan Two Regions N 

 
 
 

Spectrum 

First Mass Region 2 20.0 amu 
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Table 4. SXP Elite operational settings for krypton isotopes. 

Krypton 
Emission ON 
Filament 1(Th) 
Emission Current 0.50 mA 
Electron Current 70 eV 
Source Volts 4.0 V 
Focus -110 V 

 
 
 

Source 

Lens 4 -110 V 
Pole Bias 0.0 V 
High Mass Resolution 32 % 
Low Mass Resolution 50 % 
Ion Energy Ramp 0.0 eV 
Total Ion OFF 

Filter 

Zero Ion OFF 
Faraday/SEM SEM 
SEM Bias 2000 V 
Gain Range 1 10 – 11  
Range 2 Extra Gain X 1E0 
Amplifier Response 100 ms 
Amplifier Zero 0.0 

 
 
 

Detector 

Pulse Counting OFF 
Polarity + 
Internal/External INT 
Lens 1 0 V 
Lens 2 0 V 

 
 

Ions 

External Mass OFF 
First Mass 76.0 amu 
Mass Span 12 amu 
Scan Rate 2.000 amu/s 
Single/Rep Composition R 
Scale 1 
Scan Two Regions N 

 
 
 

Spectrum 

First Mass Region 2 20.0 amu 
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Table 5. SXP Elite operational settings for xenon isotopes. 

Xenon 
Emission ON 
Filament 1(Th) 
Emission Current 0.50 mA 
Electron Current 70 eV 
Source Volts 4.0 V 
Focus -110 V 

 
 
 

Source 

Lens 4 -110 V 
Pole Bias 0.0 V 
High Mass Resolution 32 % 
Low Mass Resolution 50 % 
Ion Energy Ramp 0.0 eV 
Total Ion OFF 

Filter 

Zero Ion OFF 
Faraday/SEM SEM 
SEM Bias 2000 V 
Gain Range 1 10-11 
Range 2 Extra Gain X 1E0 
Amplifier Response 100 ms 
Amplifier Zero 0.0 

 
 
 

Detector 

Pulse Counting OFF 
Polarity + 
Internal/External INT 
Lens 1 0 V 
Lens 2 0 V 

 
 

Ions 

External Mass OFF 
First Mass 128.0 amu 
Mass Span 9 amu 
Scan Rate 2.000 amu/s 
Single/Rep Composition R 
Scale 1 
Scan Two Regions N 

 
 
 

Spectrum 

First Mass Region 2 20.0 amu 
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