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Abstract

We show that superconductors with inhomogeneous order parameters can show similar features as anisotropic
ones. In this paper we study the low temperature specific heat dependence in such a system and we show that
the disorder associated with randomly distributed attractive centers convert the BCS temperature exponential
behaviour into a power law formula. To describe superconductivity we used a random version of the negative U
Hubbard model, while the disorder was treated by means of the Coherent Potential Approximation (CPA).

Key words: superconductivity, doping, fluctuations, specific heat
PACS: 74.62.Dh, 74.40.+k, 74.25.Bt

According to the Anderson theorem the effect
of non-magnetic disorder on s-wave superconduc-
tors can be neglected unless spatial fluctuations of
the order parameter are negligible [1,2]. This theo-
rem for conventional superconductors can also be
applied to other superconductors with a long co-
herence length where the fluctuations of the order
parameter induced by disorder [2,3] are small and
the quasiparticle density of states shows a clear
gap. As a consequence, superconducting proper-
ties, such as the specific heat and the magnetic
penetration depth, feature the typical exponential
BCS dependences. The situation is quite different
for exotic superconductors. There the order pa-
rameter is modulated by a wave vector k and even
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disappears (for d-wave symmetry of the order pa-
rameter) at Fermi surface line nodes.
In the case of the recently discovered MgB2 [4]

with a high critical temperature TC ≈ 40 K and
a relatively short coherence length ξ (from 25 to
120Å , depending on the sample [5]) the Anderson
assumption of a uniform order parameter is also
not satisfied. In fact, there is a lot of evidence [5]
that in this compound the multi-gap scenario with
a spatially fluctuating s-wave order parameter is re-
alized. Moreover Sharma et al. [6] found a percola-
tive transition of superconductivity in Mg1−xB2.
Prompted by these findings we examine the ef-

fects of a low temperature specific heat dependence
using the random negative U Hubbard model pro-
posed to describe percolation in superconductors
[7]. We study the case where Ui is −|U | and 0 with
probability c and 1 − c, respectively on a square
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lattice whose sites are labelled i using the Gorkov
decoupling [8] and the Coherent Potential Approx-
imation (CPA) [7].
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Fig. 1. Temperature dependence of ∆A for various concen-
trations of negative centers c in a binary alloy AcB1−c (a).
Quasiparticle density of states for c = 0.5 and three dif-
ferent temperatures (b). Specific heat for superconductors
with various concentration of negative centers (c). In Figs.
1(a) and (c) lines denoted by ’1–4’ correspond to c = 0,
0.7, 0.5, 0.3, respectively.

For the above assumptions we have done calcu-
lations of the order parameter ∆A for various con-
centrations of negative centers c in a binary alloy
AcB1−c [7]. Here, for simplicity, we neglected the
Hartree term Un/2. This term may be important
in some other contexts, as it is known to lead to
a band splitting phenomenon and consequently to
the appearance of the critical concentration of a
superconducting phase c0 [7].
The temperature dependences of ∆A for UA =

−8t are presented in Fig. 1a, while examples of qua-
siparticle densities of states (QDOS) for different
temperatures are depicted in Fig. 1b. Note that the

pairing potential ∆A for c 6= 1 differs slightly from
the uniform case (c=1), however the QDOS with
states inside the gap is fundamentally different.
Now the low temperature specific heat can be

easily evaluated using the following formula [5,9]:

C = 2T

∞
∫

−∞

D(ω)
ω

T

d

dT

(

1

eω/T + 1

)

, (1)

where D(ω) denotes QDOS.
Fig. 1c shows the results for the specific heat for

c = 1.0, 0.7, 0.5 and 0.3. Note that, in contrast
to a clean case (’1’) where the corresponding plot
can be associated with exponential formulaC/T ∼
exp(−α/T ) for constant α, the next curves (’2-4’)
mimic a distinct power law behaviour (excluding
some lowest temperatures).
Thus, the behaviour of superconductors with

randomly distributed negative centers show-
ing fluctuations of the pairing potential in real
space resembles, in some sense, the behaviour of
anisotropic but clean systems with a pairing po-
tential varying in k space. Namely, a wave vector
modulation of the superconducting order param-
eter in the case of s-wave and most of all line
nodes in the case of d-wave superconductors lead
to similar effects with a low temperature unusual
dependence of the specific heat.
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