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Summary 

From the simple act of picking up a glass of water while talking to someone at a 

party, to remembering to swing by the bike shop to pick up an inner tube while riding 

through traffic on our way home from the office, intentions guide and alter our behavior—

often while we are busily engaged in other ongoing tasks. Particularly, performing delayed 

intentions, like stopping at the bike shop on our way home, relies on a set of cognitive 

processes summarized as prospective memory (PM) that enable us to postpone intended 

actions until a later point in time (time-based PM) or until specific reminders or PM cues 

signal the appropriate opportunity to retrieve and perform an intended action (event-based 

PM). Interestingly, over the past decades a growing number of studies showed that 

successfully completing an event-based intention does not necessarily lead to its immediate 

deactivation. Instead, no-longer-relevant PM cues can incur so-called aftereffects that 

impair task performance and sometimes even trigger erroneous repetitions of the intended 

action (i.e., commission errors). Although in our everyday lifes we frequently rely on both 

PM and intention deactivation, still relatively little is known about how our cognitive 

system actually manages to deactivate completed intentions, under which conditions this 

may fail, and how well PM and intention deactivation function under extreme conditions, 

like acute stress. 

In order to answer these questions, I first conducted a comprehensive review of the 

published literature on aftereffects of completed intentions. Here, I found that although 

intentions can incur aftereffects in terms of commission errors and performance costs that 

most likely result from continued intention retrieval, they generally seem to be deactivated 

or even inhibited at some point. Most importantly, this deactivation process does not 

operate like a light switch but dynamically moves along a continuum from complete 

reactivation to complete deactivation of intentions, and is substantially modulated by 

factors that also affect retrieval of intentions prior to their completion. Specifically, 

intention deactivation is most likely to fail when we remain within the same context in 

which we originally completed the intention and encounter no-longer-relevant PM cues 

that are extremely salient and were strongly linked to the intended action. 

Subsequently, in Study 1 I directly tested a dual-mechanisms account of aftereffects 

of completed intentions. Building on findings of impaired intention deactivation in older 

adults who often show deficits in cognitive-control abilities, this account posits that 
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aftereffects and commission errors in particular stem from a failure to exert cognitive 

control when no-longer-relevant PM cues trigger retrieval of an intention. Accordingly, 

intention deactivation should hinge on the availability of cognitive-control resources at the 

moment we encounter no-longer-relevant PM cues. In order to test this, I assessed 

aftereffects of completed intentions in younger and older adults while manipulating 

transient demands on information processing during encounters of no-longer-relevant PM 

cues on a trial-by-trial basis. In Experiment 1, nominally more older adults than younger 

adults made a commission error. Additionally, medium demands on cognitive control 

substantially reduced aftereffects compared to low and high demands (i.e., u-shaped 

relation). In Experiment 2, which extended this manipulation but only tested younger 

adults, however, this control-demand effect did not replicate. Instead, aftereffects occurred 

regardless of cognitive-control demands. The lack of a consistent control-demand effect on 

aftereffects across two experiments, suggested that cognitive control either only plays a 

minor role for the occurrence of aftereffects or that, more likely, intention deactivation 

hinges on other specific cognitive-control abilities, like response inhibition. 

In two subsequent studies, I extended this research and tested the effects of acute 

stress—a potent modulator of cognitive-control functioning—on PM and intention 

deactivation. Previous studies showed that, under moderate demands, acute stress had no 

effect on PM-cue detection, intention deactivation or performance costs that presumably 

arise from monitoring for PM cues. Importantly, however, based on these studies it 

remained unclear if acute stress affects PM and intention deactivation under high demands, 

as has been observed, for instance, with working-memory performance. To test such a 

potential demand-dependence of acute stress effects on PM, I first assessed the effects of 

psychosocial stress induction with the Trier Social Stress Test on PM and intention 

deactivation when detecting PM cues and intention deactivation were either low or high 

demanding (Study 2). Building on this work, I then tested the effects of combined 

physiological and psychosocial stress induction with the Maastricht Acute Stress Test on 

PM and the ability to track one’s own performance (i.e., output monitoring), when PM-cue 

detection was difficult and ongoing tasks additionally posed either low or high demands on 

working memory (Study 3). Despite successful stress induction (e.g., increased levels of 

salivary cortisol and impaired subjective mood), both studies showed that PM-cue detection 

and intention retrieval were not affected by acute stress under any of these conditions. 

Study 2 revealed a tendency for a higher risk of making commission errors under stress 
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when no-longer-relevant PM cues were salient and difficult to ignore. Study 3 additionally 

showed that acute stress had no effect on output monitoring. Most importantly, however, 

across the different PM tasks and stress-induction protocols in these studies, acute stress 

substantially reduced performance costs from monitoring for PM cues, but did so only when 

PM-cue detection was difficult. This effect suggested that, depending on task demands, 

acute stress might shift retrieval processes in PM away from costly monitoring-based 

retrieval towards a more economic spontaneous retrieval of intended actions. 

In summary, the present thesis suggests that the processes underlying prospective 

remembering and intention deactivation are tightly woven together and are only selectively 

affected by cognitive-control availability and effects of acute stress. With this, it 

contributed substantially to our understanding of these essential cognitive capacities and 

their reliability. My research showed that PM is remarkably resilient against effects of acute 

stress experiences when remembering intended actions is supported by external reminders. 

Acute stress may actually make monitoring for such reminders more efficient when they are 

hard to detect. Additionally, it showed that, in most circumstances, we seem to be able to 

successfully and quickly deactivate intentions once they are completed. It is only under 

some conditions that intention deactivation may be slow, sporadic or fail, which can lead to 

continued retrieval of completed intentions. While this seems not to be affected by 

transient demands on information processing during encounters of no-longer-relevant PM 

cues, intention deactivation might become difficult for older adults and stressed individuals 

when no-longer-relevant reminders of intentions easily trigger the associated action and 

are hard to ignore. 
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1. Introduction 

Like Odysseus, who continued his journey to Ithaca despite facing many perils and 

temptations that often required costly detours on his way (e.g., Homer & Stein, 2008), in 

everyday life, we often pursue goals in the face of distractions but are also able to change 

plans and adapt to environmental changes when goal pursuit becomes irrelevant. The 

cognitive capacity that enables such goal-directed yet flexible behavior is often referred to 

as volition or cognitive control (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Kuhl, 

1996). Its building blocks are intentions: they guide and shape our attention, thoughts and 

actions (Bratman, 1987; Goschke & Bolte, 2018; Lewin, 1926; Meiran, Cole, & Braver, 2012). 

In many cases, intentions alter our immediate actions. For instance, when we grasp a glass 

of water to have a drink, our intention to do so prompted us to align our gaze towards where 

we want to grasp the glass and align our hand orientation and movement in a way that— at 

least in most cases—enables us to have a drink without pouring water over ourselves 

(Herbort, Kirsch, & Kunde, 2019; Rosenbaum, 2009; for a brief introduction, see 

Rosenbaum, Herbort, van der Wei, & Weiss, 2014). In other cases, intentions are more 

future-directed. They cannot or should not be performed immediately, but need to be 

postponed and remembered until later, while we pursue different ongoing activities or 

tasks. For instance, when we intend to call a friend after a meeting at the office, we need to 

postpone and maintain that intention until after the meeting and then remember to make 

the phone call. Such prospective intentions may not necessarily change our immediate 

actions, but affect us in other ways. We might recognize intention-related information more 

quickly (Badets, Blandin, Bouquet, & Shea, 2006; Goschke & Kuhl, 1993) or might 

experience costs in ongoing tasks that we perform while maintaining and pursuing an 

intention (Heathcote, Loft, & Remington, 2015; McDaniel & Einstein, 2000; Meier & Rey-

Mermet, 2018). Importantly, over the last two decades, a growing body of research 

suggested that intentions are not necessarily deactivated as soon as they have been 

completed or become irrelevant in other ways. Rather, they can continue to affect behavior 

through aftereffects, which are often detrimental to task performance and may even incur 

erroneous repetitions of intended actions (i.e., commission errors) (e.g., Marsh, Hicks, & 

Bink, 1998; Scullin, Bugg, & McDaniel, 2012; Walser, Fischer, & Goschke, 2012). These two 

cognitive functions—remembering and deactivating intentions—and particularly their 

underlying mechanisms and modulators are the main subjects of my dissertation. 
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The cognitive processes that enable us to postpone, remember and retrieve 

intentions have been investigated extensively under the term prospective memory (PM) (for 

overviews, see Brandimonte, Einstein, & McDaniel, 2014; A.-L. Cohen & Hicks, 2017a; 

Kliegel, McDaniel, & Einstein, 2008; McDaniel & Einstein, 2007). Diary- and questionnaire 

studies of PM have estimated that it is involved in up to 50–80% of everyday memory 

failures (Crovitz & Daniel, 1984; Kliegel & Martin, 2003; Terry, 1988) and recent advances 

in experience sampling suggest that throughout a day we think about postponed intentions 

approx. 13–15% of the time (Anderson & McDaniel, 2019; Gardner & Ascoli, 2015). 

Additionally, reports of participants with damage to the prefrontal cortex frequently failing 

to complete intended actions (e.g., Shallice & Burgess, 1991) or being are unable to resume 

tasks after interruptions (Uretzky & Gilboa, 2010), further illustrate the importance of PM 

for our day-to-day lifes. 

Since its rekindling in the late-1980s (Kvavilashvili, 1987), research on PM has made 

enormous progress identifying underlying processes and modulating factors of successful 

and unsuccessful prospective remembering (e.g., A.-L. Cohen & Hicks, 2017a; Kliegel, 

McDaniel, et al., 2008; McDaniel, Umanath, Einstein, & Waldum, 2015). Moreover, since 

then, research on intention deactivation has found that although intentions often seem to 

be deactivated or even inhibited rather quickly after completion (Badets et al., 2006; 

Förster, Liberman, & Higgins, 2005; Marsh et al., 1998), this intention deactivation may fail 

and intentions can continue to affect behavior, as indicated by aftereffects even after 

completion (Anderson & Einstein, 2017; Scullin et al., 2012; Walser et al., 2012)—a finding 

that has recently been linked to deficits in cognitive-control functions, particularly in older 

adults (e.g., Bugg & Scullin, 2013). Interestingly, despite the relevance of both PM and 

intention deactivation in everyday life, little is known about how (well) these capacities and 

their sub-processes function in highly demanding conditions—for instance, under acute 

stress. While stress research has brought about a wealth of studies that investigated acute 

stress effects on a number of higher-order cognitive functions (for an overview, see Shields, 

Sazma, & Yonelinas, 2016), at the beginning of my dissertation, only a handful had assessed 

its effects on PM (Nater et al., 2006; Piefke & Glienke, 2017; Walser, Fischer, Goschke, 

Kirschbaum, & Plessow, 2013). 

Against the backdrop of this research, the main aim of my dissertation was 

answering the following questions: What are potential mechanisms trough which our 

cognitive system manages to deactivate completed intentions? Under which circumstances 
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can intention deactivation fail? Which role does the availability of cognitive-control 

resources play for the occurrence of aftereffects of completed intentions? In what ways and 

under which conditions does acute stress affect prospective remembering, its associated 

processes and intention deactivation? 

In the following sections I will first give a brief introduction into the cognitive 

processes involved in PM, the paradigms used to assess them and the currently dominant 

theoretical view of intention retrieval. Subsequently, I will sketch out the general idea and 

procedures to assess intention deactivation, point out a central disparity between findings 

from different research lines on aftereffects of completed intentions, and introduce a 

recently developed theory about the nature of aftereffects of completed intentions that both 

motivated the first part of my dissertation. I will then introduce two important 

physiological changes following experiences of acute stress and their neurological effects, 

discuss why these could affect prospective remembering and intention deactivation and 

point out why it would be too early to conclude that acute stress does not affect PM, even 

though the extant studies suggested this. Finally, in the last part of this introduction, I will 

lay out the series of experiments and theoretical analyses I conducted during my 

dissertation in order to answer the questions I posed here. 

1.1. Prospective Memory 

Remembering and postponing intentions for later performance is a multi-phasic 

process that entails remembering several elements of an intention and involves multiple 

processes that enable actual retrieval of an intended action. It requires remembering that 

one wanted to do something (prospective component or memory for intent), what one 

intended to do and when this should be performed (the semantic content or retrospective 

component of PM) (e.g., Ellis & Freeman, 2008). According to the phase-or process model of 

PM (e.g., Ellis, 1996; Kliegel, Martin, McDaniel, & Einstein, 2002) after forming an 

intention, these elements are maintained either actively in working memory or over longer 

delays presumably in long-term memory while engaging in (an) unrelated ongoing task(s). 

When the right circumstances are met to perform the intention, we either need to inhibit 

ongoing-task performance and switch directly to intention execution or delay intention 

execution until after ongoing-task performance, depending on the nature of the intention 

(e.g., Bisiacchi, Schiff, Ciccola, & Kliegel, 2009). This intention execution is then followed 

by an evaluation of whether the intended action was completed successfully, which for 
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complex multi-step intentions includes evaluating which step was performed—sometimes 

referred to as output monitoring (e.g., A.-L. Cohen & Hicks, 2017b; Koriat, Ben-Zur, & 

Sheffer, 1988). 

Historically, PM research started out using naturalistic tasks, like instructing 

participants to mail postcards to a researcher on a specific date (e.g., Meacham & Singer, 

1977; but see, Kvavilashvili, 1987; Kliegel, McDaniel, et al., 2008). While to date some 

studies also simulate such real-life intentions (Craik & Bialystok, 2006; Glienke & Piefke, 

2016; Rendell & Craik, 2000), the majority of PM research adopted a laboratory PM 

paradigm that was introduced by Einstein and McDaniel (1990). Mimicking real-life 

circumstances, in these paradigms participants typically engage in an attention-demanding 

ongoing task while they delay performing a specific action until a certain point in time is 

reached (time-based PM task) or a pre-specified PM cue signals the appropriate retrieval 

opportunity (event-based PM task; for additional classifications, see Dismukes, 2012). For 

instance, participants might be instructed to perform a rather simple intention (e.g., a 

button press) whenever a certain amount of time has passed (e.g., 5 min) or a rare PM cue 

(about 1–15% of trials) signals a retrieval opportunity (Figure 3). The central measure of 

interest in these tasks often is PM performance, that is, the percentage of correctly detected 

PM cues, which is sometimes supplemented with response times (RTs) for performing the 

intended action. 

According to the influential multiprocess view of PM, retrieving postponed 

intentions in such PM paradigms is enabled by two distinct processes: A bottom-up 

triggered spontaneous intention retrieval and a more top-down controlled process of 

monitoring the environment for retrieval opportunities (McDaniel & Einstein, 2000). While 

spontaneous retrieval is thought to be almost automatic, PM monitoring is thought to be a 

resource-demanding process that incurs measurable performance costs due to resource 

sharing with ongoing-task processing (Anderson, Rummel, & McDaniel, 2018; Rummel, 

Smeekens, & Kane, 2017; McDaniel et al., 2015; cf. Heathcote et al., 2015; Strickland, 

Heathcote, Remington, & Loft, 2017). Importantly, and in contrast to other views that 

suggest intention retrieval always relies on preparatory-attentional monitoring processes 

(PAM theory; e.g., R. E. Smith, 2010; R. E. Smith, Hunt, McVay, & McConnell, 2007) or the 

engagement of a resource-consuming retrieval mode and checking processes (e.g., Guynn, 

2003), the multiprocess view proposes that PM monitoring and spontaneous retrieval are 

engaged dynamically. Specifically, the engagement of either process moves along a 
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continuum from heavily monitoring-based intention retrieval to spontaneous intention 

retrieval without necessarily engaging any monitoring. Intention retrieval can be 

completely spontaneous when PM cues are rare and salient events with a high processing 

overlap with the ongoing-task at hand—that is, PM-cue detection requires the same 

processes needed to perform the ongoing task (focal PM cue; e.g., detecting the word orange 

in a lexical-decision task). Intention retrieval moves more towards engagement of 

monitoring processes when PM cues become more frequent and salience and processing 

overlap decreases—that is, PM-cue detection requires additional processing beyond the 

ongoing task (nonfocal PM cue; e.g., detecting words with the syllable tor in a lexical-

decision task). Engagement of PM monitoring is further modulated by meta-control beliefs 

or expectations about PM-cue encounters, task demands or one’s own performance (Ball, 

Brewer, Loft, & Bowden, 2014; Rummel, Kuhlmann, & Touron, 2013; Rummel et al., 2013; 

Scullin, McDaniel, & Shelton, 2013; Shelton & Scullin, 2017; R. E. Smith, Hunt, & Murray, 

2017) and can also be adjusted flexibly according to context features of a task (A.-L. Cohen, 

Gordon, Jaudas, Hefer, & Dreisbach, 2017; Hefer, Cohen, Jaudas, & Dreisbach, 2017; 

Kuhlmann & Rummel, 2014; Lourenço & Maylor, 2014). 

Beyond research on the specifics of intention retrieval processes and their 

neurological underpinnings (Burgess, Gonen-Yaacovi, & Volle, 2011; Cona, Scarpazza, 

Sartori, Moscovitch, & Bisiacchi, 2015; Gilbert, Hadjipavlou, & Raoelison, 2013; Horn, 

Bayen, Smith, & Boywitt, 2011), two topics have only rather recently gained interest in PM 

research: How does our cognitive system manage to deactivate intentions once they become 

irrelevant or are completed? How well do PM and intention deactivation function in 

extreme situations, like after acute stress experiences? In the following sections I will 

introduce the basic concepts and procedures to assess intention deactivation and describe a 

challenge this research currently faces. Then I will discuss the potential relevance of 

cognitive-control abilities for the occurrence of aftereffects, describe how acute stress could 

affect both PM and intention deactivation, summarize what we know about these issues so 

far and which open questions previous research on them poses. 

1.2. Intention Deactivation 

While PM research is concerned with the processes that enable and modulate 

retrieval of postponed intentions, research on intention deactivation is concerned with the 

questions whether and to what extent the processes triggered by intention-related stimuli 
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or PM cues before or during active pursuit of intentions can be observed or change after an 

intention was completed successfully. Consequently, it often employs the same paradigms 

as research on PM. From a historic perspective, this research can be categorized into script-

based studies that assess memory accessibility of complex action scripts (e.g., “setting a 

dinner table” or “clearing a desk”; Figure 1) and event-based PM studies that assess to what 

extent no-longer-relevant PM cues (i.e., PMREPEATED cues) can trigger intention retrieval after 

completion (Figure 2). Rather than detailing the specifics of these research lines (see 

Chapter 2 for this), I will use the following section to illustrate a disparity between their 

findings that motivated the first part of research in my dissertation. 

Early research by Zeigarnik (1938; see also Holton, 2009) and subsequent findings of 

a heightened memory accessibility of intention-related semantic concepts (i.e., intention-

superiority effect; Goschke & Kuhl, 1993) suggested that the activation status of an 

intention might change with its completion. Building on this idea, Marsh et al. (1998; see 

also Marsh, Hicks, & Bryan, 1999) found that while intention-related memory contents were 

easily accessibility before intention completion, they seemed to actually become inhibited 

upon intention completion. That is, in a script-based paradigm, words from an action script 

that had recently been performed (e.g., napkins or tablecloth) incurred slower lexical 

decisions than words from an action script that had only been memorized but was never 

performed (e.g., folder or pencil). Although some follow-up studies also found that the 

heightened accessibility of uncompleted intention representations could persist residually 

after completion (A.-L. Cohen, Dixon, & Lindsay, 2005; Penningroth, 2011), other studies 

for the most part suggested that such cognitive intention representations (Badets et al., 

2006; Meilán, 2008) and even semantic networks associated with a PM cue (Förster et al., 

2005) are deactivated or even inhibited after intention completion. 

In contrast to research in script-based paradigms, research in event-based PM 

paradigms rather consistently showed that intentions are not necessarily deactivated or 

inhibited after completion, but that they seem to continue to be retrieved. That is, 

PMREPEATED cues that signaled a retrieval opportunity while an intention was actively 

pursued, produced substantial performance costs in terms of slowed ongoing-task 

responses and sometimes even lead to commission errors after successful completion of an 

intention (Pink & Dodson, 2013; Scullin et al., 2012; Walser et al., 2012; cf. Scullin et al., 

2012; Scullin, Einstein, & McDaniel, 2009). However, even within this line of research, 

aftereffects were only reported under some but not all conditions. 
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Importantly, on the surface, the findings from script-based and event-based PM 

studies seem highly contradictory: How can intentions be inhibited in one type of task but 

continue to be retrieved in another task? What are the reasons for this disparity, and is it 

possible to reconcile these findings? Moreover, if completed intentions produce aftereffects, 

what are the mechanisms behind them and, why do aftereffects only occur sometimes but 

not all the time? When I started working on this topic, it seemed incredibly difficult to 

answer these questions. This field had produced a considerable number of studies that 

assessed intention deactivation in a variety of tasks and dependent measures and came up 

with several diverse suggestions for mechanisms underlying aftereffects of completed 

intentions. Importantly, however, while it had started to bring together some of its findings, 

there seemed to be no comprehensive explanation for their heterogeneity between and even 

within different research lines. In an attempt to alleviate this theoretically unsatisfying 

situation, in Chapter 2, I will provide a first systematic overview, integration and interim 

conclusion about the mechanisms and modulators of intention deactivation and aftereffects 

of completed intentions. 

1.3. Cognitive Control and Intention Deactivation 

In addition to the general question whether completed intentions are deactivated or 

not, research on intention deactivation in event-based PM paradigms recently posed a more 

specific question regarding the involvement of cognitive-control capabilities and resources 

in the genesis of aftereffects. A recently formulated dual-mechanisms account suggests that 

commission errors in particular result from a failure to exert cognitive control after retrieval 

of a completed intention (Bugg & Scullin, 2013; Bugg, Scullin, & Rauvola, 2016). The idea is 

that encountering a PMREPEATED cue triggers spontaneous retrieval of the no-longer relevant 

intended action, which then needs to be controlled or inhibited in order to give an ongoing-

task response. According to the dual-mechanisms account, commission errors emerge when 

control over intention execution fails. So far, this account receives support from correlative 

findings of a higher commission error risk and sometimes more frequent commission errors 

in older adults who showed deficits in inhibitory control functions (Bugg et al., 2016; Scullin 

et al., 2012; Scullin, Bugg, McDaniel, & Einstein, 2011) or in participants who were fatigued 

after an extended period of experimental testing, which is thought to have temporarily 

impaired inhibitory control (Scullin & Bugg, 2013). Importantly, if this dual-mechanisms 

explanation of aftereffects was correct, then their occurrence and size should hinge on the 
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availability of cognitive-control resources—most critically—during encounters of PMREPEATED 

cues that trigger intention retrieval. In Study 1 (Chapter 3) I will provide a first direct test of 

the involvement of cognitive-control resources in intention deactivation. 

1.4. Acute Stress, PM and Intention Deactivation 

Acute stress is a powerful influence on cognitive functioning in everyday life that 

has even been deemed to be “ubiquitous and universally pervasive” (Chrousos, 2009, p. 

379). Given the strong involvement of PM in everyday memory (Kliegel & Martin, 2003), 

reports of rising stress levels in the work place (e.g., S. Cohen, Janicki-Deverts, & Miller, 

2007; Lohmann-Haislah, 2012), and our own experiences, it is almost certain that we rely on 

PM and intention deactivation also under stress. Astonishingly, compared to the wealth of 

studies about stress effects on cognitive-control functions, to date relatively little is known 

about whether acute stress affects PM in any way. 

The complex pattern of physiological and neuronal changes following experiences of 

acute stress has been detailed comprehensively by Joëls and Baram (2009). For the sake of 

brevity, here I will focus on two major physiological stress effects: The immediate fast-

paced activation of the sympathetic nervous system that is associated with the release of 

noradrenaline, dopamine and other catecholamines; and the slightly delayed and slow-

paced increase of hypothalamus-pituitary-adrenal axis activity that is associated with the 

release of cortisol and other glucocorticoids into the bloodstream, mediated by the release 

of neuropeptides like corticotropin-releasing hormone (Charmandari, Tsigos, & Chrousos, 

2005; Chrousos, 2009; Dickerson & Kemeny, 2004; Joëls & Baram, 2009). Depending, for 

instance, on the type and duration of a stressor, these physiological responses decrease 

neural activity and connectivity in the prefrontal cortex (Arnsten, 2009, 2015; van Oort et 

al., 2017), alter neural connectivity and long-term potentiation in the hippocampus (Kruse, 

Tapia León, Stalder, Stark, & Klucken, 2018; Schwabe, Joëls, Roozendaal, Wolf, & Oitzl, 

2012), and increase sensitivity of the visual cortex (Shackman, Maxwell, McMenamin, 

Greischar, & Davidson, 2011; van Marle, Hermans, Qin, & Fernández, 2009). These changes 

in turn alter and often impair working memory, declarative learning and selective attention 

(for recent meta-analyses, see Shields, Bonner, & Moons, 2015; Shields, Sazma, 

McCullough, & Yonelinas, 2017; Shields et al., 2016). 

Prospective memory could be susceptible to acute stress effects not only because 

theoretical models assume that it relies on stress-sensitive working memory and selective 
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attention (e.g., Cona et al., 2015; Kliegel et al., 2002), but also because it relies on stress-

sensitive brain structures: This has been demonstrated compellingly by reports of 

prefrontal-cortex lesions that lead to impaired event-based (or activity-based) PM 

performance (Carlesimo, di Paola, Fadda, Caltagirone, & Costa, 2014; Neulinger, Oram, 

Tinson, O’Gorman, & Shum, 2016; Shallice & Burgess, 1991; Umeda, Kurosaki, Terasawa, 

Kato, & Miyahara, 2011; Uretzky & Gilboa, 2010; but see Volle et al., 2011; Kinch & 

McDonald, 2001; Cockburn, 1996 for preserved event-based but impaired time-based PM 

after brain injury). Similarly, it is feasible that acute stress affects intention deactivation, 

since it is associated with stress-sensitive anterior cingulate and rostrolateral prefrontal 

cortex functioning (Beck, Ruge, Walser, & Goschke, 2014) and involves memory for 

stimulus–response associations that is sensitive to acute stress effects (Guenzel, Wolf, & 

Schwabe, 2013; Schwabe & Wolf, 2013). 

Surprisingly, when I started my dissertation, only three experimental studies had 

assessed the effects of an acute-stress experience on PM (Glienke & Piefke, 2016; Nater et 

al., 2006; Walser et al., 2013). Even more surprising were their findings: In contrast to my 

own experiences and despite the putative pathways for acute stress effects on PM that I 

outlined above, these studies reported either no effects or seemingly positive effects of 

acute stress on PM. Nater et al. (2006) found that acute stress had no effect on event-based 

PM performance, but increased participants’ clock-checking frequency in a time-based PM 

task, which coincided with more accurate PM performance. Walser et al. (2013) showed that 

acute stress had neither an effect on event-based PM performance, nor on PM monitoring 

or intention deactivation. Lastly, in contrast to both studies, Glienke and Piefke (2016), who 

used a complex real-life simulation of PM, found that about 50+ min after stress induction, 

acute stress had no effect on time-based PM performance, but stressed participants 

consistently showed accurate event-based PM performance over the course of testing, while 

PM performance declined in non-stressed participants. In parts, the divergence between 

findings from these studies can be attributed to substantial differences between PM 

paradigms or the time-sensitivity of acute stress effects on cognition (e.g., Plessow, Fischer, 

Kirschbaum, & Goschke, 2011; see also Schwabe & Wolf, 2013, 2014) and/or stress effects at 

different stages of memory encoding and retrieval (e.g., Schwabe, Joëls, et al., 2012). 

Nevertheless, regarding stress effects in standard PM paradigms, it would be too early to 

conclude that stress does not affect event-based PM based on the studies by Nater et al. 

(2006) and Walser et al. (2013). 
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Instead, the occurrence of acute stress effects on PM might depend on task 

demands. This has been demonstrated, for instance, in stress research on working memory 

(Oei, Everaerd, Elzinga, van Well, & Bermond, 2006; Schoofs, Preuß, & Wolf, 2008; Schoofs, 

Wolf, & Smeets, 2009) and fits with the observation that stress so far has been shown to 

affect time-based PM that is presumably associated with high demands on self-initiated 

intention retrieval (Nater et al., 2006). Also consistent with this idea, acute stress affected 

event-based PM in a demanding complex real-life simulation that required concurrent 

maintenance and coordination of multiple different event- and time-based PM tasks 

(Glienke & Piefke, 2016). 

Potentially relevant factors could be the demands on PM-cue detection, as they have 

been shown to reliably affect event-based PM performance and PM-monitoring costs 

(Einstein & McDaniel, 2005; McDaniel et al., 2015), as well as intention deactivation (e.g., 

Scullin et al., 2012): Typically, PM performance and aftereffects decrease and PM-

monitoring costs increase with nonsalient and nonfocal PM cues that are difficult to detect 

and easily overlooked or ignored, like the syllable tor in a word-categorization task. 

Conversely, PM performance and aftereffects increase with salient and focal PM cues that 

are easy to detect and difficult to ignore, like the word fish presented against a bright red 

background during a word categorization task (e.g., Anderson & Einstein, 2017). 

Additionally, PM performance is affected by ongoing-task demands and has, for instance, 

been reported to be lower during 2-back than during 1-back working-memory tasks for 

younger but not for older adults (West & Bowry, 2005). Importantly, the event-based PM 

tasks in the Nater et al. (2006) and Walser et al. (2013) studies employed simple ongoing 

tasks (i.e., word categorizations) with single nonsalient focal PM cues (i.e., specific words) 

which presumably posed moderate demands on PM-cue detection, PM monitoring (e.g., 

McDaniel et al., 2015) and intention deactivation (e.g., Scullin et al., 2012). 

Hence, based on the previous studies, it remains unclear, whether acute stress would 

affect PM and intention deactivation under higher demands on PM-cue detection or 

ongoing-task performance. Additionally, so far no study assessed acute stress effects on 

output monitoring in PM. This refers to the ability to remember one’s past responses, which 

becomes particularly relevant when postponed intentions contain multiple sequential steps 

and require keeping track of performed actions (e.g., A.-L. Cohen & Hicks, 2017b; Kliegel, 

Mackinlay, & Jäger, 2008). Therefore, I will test this assumption in different tasks and 

different stress-induction protocols in Study 2 (Chapter 4) and Study 3 (Chapter 5).  
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1.5. Research Agenda 

In order to target the main aim and the specific questions of my dissertation 

outlined in the previous chapters, I conducted the following series of theoretical analyses 

and experiments. 

First, in Chapter 2, I review the extant literature on aftereffects of completed 

intentions and discuss the validity and propensity of procedures to measure aftereffects, 

their findings and the underlying mechanisms they convey. With this, I aim to establish a 

clear picture of where research on intention deactivation and aftereffects of completed 

intentions currently stands and attempt a theoretical advance towards understanding the 

set of mechanisms and processes underlying intention deactivation and aftereffects of 

completed intentions in order to provide a unifying perspective on these phenomena. 

Second, in Study 1 (Chapter 3), I investigated the recent suggestion that aftereffects 

result from failures of cognitive control after a completed intention has been retrieved 

spontaneously. This idea is based on several correlative findings of impaired intention 

deactivation in older adults who showed intact retrieval of active intentions but deficits in 

cognitive-control functions like response inhibition or selective attention (e.g., Bugg et al., 

2016). Study 1 provides a direct test of this dual-mechanisms account: Here I assessed both 

older and younger adults’ capacity for intention deactivation under varying degrees of 

available cognitive-control resources during encounters of no-longer-relevant PM cues—

that is, when cognitive-control availability is presumably most critical for successful 

intention deactivation. 

Third, in Study 2 and Study 3 (Chapters 4 & 5), I assessed the modulation of PM and 

intention deactivation by experiences of acute stress and the conditions under which such a 

modulation may occur. To this end, in Study 2, I tested the effects of acute psychosocial 

stress on several sub-processes of PM under varying demands on PM-cue detection, PM-cue 

maintenance (prospective load) and PM monitoring as well as under high demands on 

intention deactivation. Study 2 suggested that acute stress effects on PM depend upon 

specific task demands. Therefore, in Study 3, I extended this research and tested the effects 

of acute physiological and psychosocial stress on PM and output monitoring—the ability to 

keep track of and monitor one’s own performance—under varying ongoing-task demands. 
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2. Aftereffects and Deactivation of Completed 

Prospective Memory Intentions: A Review 

2.1. Abstract 

Prospective memory, the ability to perform an intended action in the future, is an 

essential aspect of goal-directed behavior. Intentions guide our behavior and shape the way 

we process and interact with our environment. One important question for research on 

prospective memory and goal-directed behavior is whether this influence stops after the 

intention has been successfully completed. That is, are intention representations 

deactivated from memory after their completion, and if so, how? Here we review twenty 

years of research on intention deactivation and so-called aftereffects of completed 

intentions across different research fields. First, we present different paradigms assessing 

aftereffects of completed intentions and their corresponding findings as to whether 

completed intentions are inhibited, directly deactivated, continue to be retrieved or remain 

residually activated. While early studies that assessed memory accessibility of intention-

related semantic networks proposed a deactivation or even inhibition of completed 

intentions, more recent event-based prospective memory studies that assessed task 

interference from no-more-relevant prospective memory cues, mostly proposed continued 

retrieval or residual activation of completed intentions. Second, we discuss potential 

mechanisms underlying aftereffects of completed intentions as well as intention 

deactivation. Lastly, we propose some new directions and novel experimental procedures 

for future research on mechanisms and modulators of intention deactivation. 

2.2. Statement of public significance 

This review shows that intended actions can persistently affect performance even 

after they have been completed and become no longer relevant. Importantly, the 

deactivation of completed intentions does not work on an all-or-nothing basis but instead 

operates on a continuum from full intention retrieval to a complete deactivation or even 

inhibition, depending on a variety of factors. 
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2.3. Introduction 

Adaptive goal-directed behavior not only requires adjusting to stimuli and needs of 

current situations but also requires disengaging from goals or experiences that become 

irrelevant. Disengagement failures or impairments can otherwise drastically impair 

subsequent performance and hinder pursuit of novel goals (Allport, Styles, & Hsieh, 1994; 

Mayr & Keele, 2000). This has been demonstrated in terms of impaired performance due to 

ruminations about failures (Beckmann, 1994) or previous tasks (in individuals with major 

depression; Whitmer & Gotlib, 2012), and, more prominently, in terms of massive 

impairments in everyday life due to intrusions of traumatic events into memory (in 

individuals with posttraumatic stress disorder; Ehlers & Clark, 2000). Similarly, failing to 

deactivate completed and thus no-longer relevant prospective memory (PM) intentions can 

incur so-called aftereffects that impair focus on subsequent tasks and, more importantly, 

might also lead to performance of the intention when it is no longer relevant such as 

accidental overmedication (Gray, Mahoney, & Blough, 2001; Kimmel et al., 2007). At least 

in part, such deactivation failures might also account for perseverative behaviors as have 

been observed after prefrontal-cortex lesions (Milner, 1963; Owen, Roberts, Hodges, & 

Robbins, 1993) or in individuals with obsessive-compulsive disorder (e.g., Menzies et al., 

2008). 

The aim of the present chapter is to review the rapidly expanding literature on 

intention deactivation in order to provide a much-needed progress report on studies that 

investigated aftereffects of completed intentions and the mechanisms behind them. To this 

aim, we will first detail basic paradigms that were used to assess aftereffects as well as their 

corresponding findings. Second, we will discuss potential mechanisms of aftereffects and 

potential underlying mechanisms of successful and unsuccessful intention deactivation. 

Finally, we will conclude by proposing an integrative perspective on aftereffects findings 

and identify future avenues within this research area. 

2.3.1. Study Selection and Inclusion Criteria 

For this review we conducted a search of the databases PubMED, PsycARTICLES, 

PsycINFO and Web of Science for articles published until November 5, 2018, with the 

following search string: (("prospective memory" OR "intention*") AND ("completed 

intention*" OR "intention completion" OR "finished intention*" OR "fulfilled intention*" OR 

"intention fulfillment" OR "completed goal*" OR "goal completion" OR "finished goal*" OR 
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"fulfilled goal*" OR "goal fulfillment" OR "completed task*" OR "task completion" OR 

"finished task*" OR "fulfilled task*" OR "task fulfillment" OR "intention interference" OR 

"intention deactivation" OR "intention inhibition" OR "goal inhibition" OR "goal 

deactivation" OR "persisting activation" OR "residual activation" OR "commission error*" 

OR "aftereffect*" OR "negative prospective memory" OR "deactivation process*")). This 

search resulted in 33 findings in PubMED (using the qualifier [Title/Abstract] after each 

quoted search term), 18 in PsycARTICLES, 135 in PsycINFO (using the NOFT prefix before 

the entire search string), and 176 in Web of Science (using the "Topics" search). 

We used the following inclusion criteria to select relevant articles: Peer-reviewed 

articles that used (a) laboratory paradigms, in which participants had to perform a 

prospective memory task and after intention completion were engaged in a finished PM 

phase in which activation of the completed intention representation was assessed; (b) 

naturalistic studies in which recognition or recall of performed versus to-be-performed 

intentions were assessed. Additionally, we examined references from relevant papers to 

detect potentially relevant articles that were not retrieved by the databases. Further, we set 

Google scholar alerts until November 20, 2018, to detect new articles citing our pre-selected 

articles. This search strategy led to the inclusion of 34 studies. 

2.4. Paradigms to Assess Aftereffects of Completed Intentions 

Since early days of research on voluntary action and “the will”, philosophers and 

psychologists assumed that intentions or goals are characterized by special properties. For 

instance, researchers argued that intentions are stable and controlling (Bratman, 1987; see 

also Holton, 2009) or that they induce a tension system or quasi-need for pursuing a goal 

(Lewin, 1926). Building on these ideas and early findings of higher recall rates for 

interrupted than for completed tasks (Zeigarnik, 1938) that supported the notion of 

intentions as special, Goschke and Kuhl (1993) initiated laboratory-based investigations of 

memory activation of uncompleted intentions. In their postponed intention paradigm, 

participants memorized two scripts of short action phrases before being informed which 

script they had to perform later (i.e., prospective script) and which script did not need to be 

performed (i.e., neutral script). Before script performance, participants recognized words of 

the to-be-performed prospective script faster than words of the neutral script. The authors 

concluded that intentions are stored in a heightened sub-threshold activation; an effect 

they referred to as the intention-superiority effect (for replications see A.-L. Cohen et al., 
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2005; A.-L. Cohen, Kantner, Dixon, & Lindsay, 2011; Marsh et al., 1998; Maylor, Darby, & 

Sala, 2000; Meilán, 2008; Schult & Steffens, 2017). This finding subsequently raised 

questions about what happens to the activation level of intentions once they are completed: 

Would intention representations be deactivated or continue to remain active? 

To date, a number of different experimental procedures have been developed that 

use a variety of dependent measures to investigate aftereffects of completed intentions and 

the mechanisms supporting intention deactivation1. Some studies investigated aftereffects 

of completed intentions in terms of altered performance during encounters of intention-

related stimuli. These studies were either script based (e.g., Marsh et al., 1998) or they used 

event-based PM tasks (e.g., Förster et al., 2005) and applied the same accessibility logic as 

in the postponed intention paradigm. However, in most studies experimenters have 

employed event-based PM paradigms that repeatedly presented the exact cue that was 

previously used to signal an opportunity to perform the intended action (e.g., Walser, 

Fischer, & Goschke, 2012; Scullin, Bugg, McDaniel, & Einstein, 2011). We will refer to such 

cues throughout this paper as PMREPEATED cues. Some studies of PMREPEATED cues focus on 

response times (RTs), whereas others assess erroneous repetitions of intended actions—that 

is, commission errors—in response to PMREPEATED cues (e.g., Bugg & Scullin, 2013; Pink & 

Dodson, 2013). Additionally, some researchers have assessed thoughts about the intention 

after encountering PMREPEATED cues (Anderson & Einstein, 2017). 

One central difference between these procedures to assess aftereffects of completed 

intentions is the interpretation of their findings. Script-based paradigms usually present 

words that refer to an intended action or to the objects of the action (e.g., “Spread the table 

cloth”). Increased activation of a completed intention will thus show up either in 

facilitation or interference effects, depending on the nature of the ongoing task: In 

facilitation tasks like lexical-decision or recognition tasks, high activation of intention-

related concepts will speed up lexical access or retrieval. By contrast, in Stroop-like 

paradigms, in which intention-related words serve as distractors, high activation will 

produce increased interference and thus increased RTs. Predictions are qualitatively 

different for event-based PM paradigms in which PMREPEATED cues are presented. Here, 

increased activation of a completed intention will increase the likelihood that the 

                                                 
1 Note that the term aftereffects is also used in the PM literature when referring to performance on trials directly 

following retrieval of the PM intention in response to a target during phases of the task when the PM response is 

supposed to be performed (Meier & Rey-Mermet, 2012). 
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completed intention and/or the no-longer-relevant PM response is retrieved. This in turn 

should interfere with the ongoing task response and therefore produce increased RTs or 

commission errors. In the following section we will introduce some prototypical examples 

of procedures to assess aftereffects and review the findings and data interpretations 

prevalent in these studies (for an overview of the reviewed studies see Table 1). 

2.4.1. Script Paradigms 

Early studies on aftereffects of completed intentions were based on the 

aforementioned postponed-intention paradigm (Goschke & Kuhl, 1993) to assess memory 

activation or accessibility of the content (i.e., the specific actions) of intention 

representations. For instance, Marsh et al. (1998) instructed participants to memorize two 

scripts (e.g., setting a table) comprising short action phrases (e.g., spread the table cloth, 

distribute the cutlery) before they were informed which script they had to perform later 

(prospective script) and which not (neutral script) (Figure 1). In an uncompleted-intention 

condition, participants performed a lexical decision task before they performed the 

prospective script in which they responded faster to prospective-script words (e.g., spread, 

cutlery) than to neutral-script words. Because RTs and accessibility in memory are assumed 

to be inversely related (Ratcliff & McKoon, 1978), Marsh et al. (1998) interpreted this 

finding as an intention-superiority effect—that is, heightened sub-threshold activation of 

intention-related memory contents. In a completed-intention condition, in which 

participants performed a lexical decision task after performing the prospective script, they 

responded slower to prospective-script words than to neutral-script words. This was 

interpreted as a decrease in accessibility of intention-related memory contents and thought 

to be the result of an inhibition of semantic networks related to a completed intention. The 

latter finding was replicated and extended to unrelated action phrases that were not part of 

an overarching script (e.g., distribute the cutlery, sharpen the pencil), suggesting that 

unrelated intentions are subject to the same activation dynamics as related intentions that 

are part of an overarching script, as well as for intentions that were canceled before they 

could be performed (Marsh et al., 1999). Moreover, Badets, Blandin, Bouquet and Shea 

(2006) found similar results when assessing the accessibility of learned motor sequences. 

Participants in their study learned to trace line patterns by pressing and holding keys that 

moved a cursor. Participants who were instructed that they would perform the learned 

motor sequences at about 10 minutes after learning, recognized the corresponding line 
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patterns faster prior to performance and slower afterwards than participants who only 

performed a recognition test immediately after learning. Similar to Marsh et al. (1998), 

Badets et al. (2006) interpreted their results in terms of increased accessibility of intended 

actions prior to completion and reduced accessibility or inhibition after completion (see 

also Badets, Albinet, & Blandin, 2012; for an overview of research on delayed motor 

intentions see Badets & Osiurak, 2015). 

While these findings suggest that after completion, the content of related or 

unrelated verbal or motor intentions becomes inhibited, the notion of a post-completion 

intention inhibition is—even within this line of research—not undisputed. That is, other 

variations of the postponed-intention paradigm found either no RT differences between 

prospective- and neutral-script words (Meilán, 2008) or faster responses to prospective-

script words relative to neutral-script words after intention completion (Penningroth, 

2011), suggesting either a direct deactivation or persisting activation of completed 

intentions, respectively (Table 1). In line with the latter finding of persisting activation, 

Cohen et al. (2005) found that words from a previously performed prospective script 

increased RTs in a color-naming Stroop task more than unrelated control words that were 

not memorized beforehand. This enhanced “intention interference effect” also suggests 

that completed intentions exhibited heightened activation compared to novel stimuli and 

thus provides evidence for a residual activation of completed intentions. 

Lastly, studies that investigated the accessibility of everyday life intentions found 

that participants recalled activities that were completed less frequently than activities they 

wanted to complete over the course of a certain time period (e.g., one week) (Freeman & 

Ellis, 2003; Maylor, Chater, & Brown, 2001; Maylor et al., 2000). While the use of 

naturalistic intentions provides high external validity, it is difficult to infer the mechanisms 

underlying the observations in these studies: An increased recall of to-be-completed over 

completed tasks may result from a deactivation or (partial) inhibition of completed tasks, 

but also from a facilitation of to-be-completed tasks, or both. Nevertheless, these studies 

provide further support for the notion that the activation levels of intention-related 

concepts are subject to change depending on the completion status of an intention. 

On the surface, script-based studies of intention deactivation appear to produce 

divergent results. Part of this is due to the use of different paradigms and the way 

researchers interpreted slowed versus speeded responses to intention-related stimuli in 

facilitation or interference tasks. However, taken together, these studies suggest that after 
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completion the activation of the content of an intention often but not always goes back to 

or even below baseline activation. These findings seem to fit well with everyday experiences 

of being able to focus on ongoing tasks and future tasks—most of the time without being 

(overly) distracted by recollecting tasks that we have already performed. Nevertheless, as 

foreshadowed in the preceding paragraphs, and as elaborated in the sections below, this 

general deactivation or inhibition process may be slow, sporadic, or faulty, leading to 

observations of heightened intention activation even after completion. 

 

Figure 1. Procedure of a script paradigm adapted from the Marsh et al. (1998) study. A schematic illustration of 

the completed intention condition is shown. Participants first learned two scripts, each with five action phrases 

until they were able to reproduce them once completely in a written free recall test. Subsequently, participants 

were instructed which script they should perform later (i.e., prospective script) and which not (i.e., neutral 

script). Materials for script performance were set up at a table behind the computer. After prospective-script 

performance, aftereffects were assessed in a lexical decision task that contained words from the performed 

prospective script and the not-performed neutral script. In an uncompleted-intention condition, the lexical 

decision task preceded prospective-script performance. 

 

2.4.2. Event-Based PM Paradigms 

Apart from script paradigms, researchers often used event-based PM paradigms 

(Einstein & McDaniel, 1990) to assess aftereffects of completed intentions. In typical event-

based PM paradigms participants are instructed to perform a simple intended action (e.g., 

pressing a specific key, such as F1) upon encountering specific, rarely occurring events (i.e., 

PM cues such as a specific word, picture, or symbol). Mirroring the real-world circumstances 

of being busily engaged in ongoing activities (e.g., driving a car) when needing to remember 

to complete an intention (e.g., return a phone call), in laboratory settings the PM task is 

embedded within an ongoing task (e.g., lexical decision, image rating). One key difference 

between event-based PM paradigms and script-based paradigms is that intended actions in 

event-based PM tasks are designed to be simple so that the prospective component of PM 

(needing to remember to do something) can be studied without minimal conflation with the 
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retrospective component (what needs to be remembered; e.g., Ellis, Kvavilashvili, & Milne, 

1999). 

In one early line of research, Förster, Liberman and Higgins (2005) combined the 

accessibility logic of script paradigms (Goschke & Kuhl, 1993; Marsh et al., 1998) and event-

based PM tasks to assess the accessibility of memory contents that were semantically 

related to PM cues from either uncompleted or completed PM tasks. In their study, 

participants performed four blocks of an image-rating task, each one followed by a lexical 

decision task. The PM task instructed participants to inform the experimenter whenever 

they saw a picture of glasses that was followed by a picture of scissors during the image-

rating tasks. This PM-target combination was presented only once (during the third image-

rating block). The lexical decision tasks in between the image ratings served to assess the 

accessibility of intention-related words. Before intention completion, that is, before the 

PM-target combination appeared, participants made faster lexical-decisions on words that 

were semantically related to the PM cue glasses (e.g., the words professor, read, and sun) 

than on unrelated control words. Applying the accessibility logic of script paradigms, the 

authors interpreted this finding as an intention-superiority effect. Most importantly, the 

relative advantage of PM-cue-related over unrelated words in the lexical-decision tasks was 

reduced after compared to before intention completion. Moreover, this effect was larger for 

participants in an intention group who were instructed to perform the PM task than for 

participants in a no-intention group who were not instructed to perform the PM task. 

Förster and colleagues (2005) also observed similar results, when substituting the lexical 

decision task for a Stroop color-naming task. That is, response slowing on PM-cue-related 

words compared to control words decreased after intention completion in an intention 

relative to a no-intention group. In line with previous script studies (Marsh et al., 1998, 

1999), Förster et al. (2005) interpreted these findings as evidence for the inhibition of 

completed intention representations (see also Denzler, Förster, & Liberman, 2009; Denzler, 

Häfner, & Förster, 2011). 
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Figure 2. Main components of a laboratory event-based prospective memory (PM) paradigm to assess aftereffects 

of completed intentions. 

 

In a second, more recent, line of research, several authors adopted event-based PM 

paradigms to assess accessibility or retrieval of intention representations, PM-cue–action 

links or intended actions by testing performance in trials that present PMREPEATED cues 

(Figure 2, Table 1). This shifts the focus of the paradigm away from assessing accessibility of 

intention-related memory contents towards assessing accessibility or retrieval of PM-cue 

representations and episodic bindings (stimulus–response links) between PM cues and 

intended actions. As in a standard event-based PM task (e.g., Einstein & McDaniel, 1990), in 

these paradigms participants were instructed to perform an ongoing task (e.g., lexical 

decisions or digit categorization) and an additional PM task that requires performing a 

specific action (e.g., press the “Q” key) whenever a pre-specified event (i.e., PM cue; e.g., 

the words corn or dancer, or a specific symbol such as a square) occurs within the ongoing 

task (Scullin et al., 2009; Walser, Goschke, & Fischer, 2014). After this “active PM phase” was 

finished, participants were explicitly instructed that the PM task was completed. In a 

subsequent “finished PM phase”2, participants then performed another ongoing-task block, 

during which PMREPEATED cues appeared. 

The specific measures of aftereffects depend on the implemented study design. In 

one type of study design, aftereffects were measured primarily in terms of commission 

errors that are defined as erroneous PM responses in PMREPEATED trials occurring up to two 

(Scullin & Bugg, 2013; Scullin et al., 2012) or three subsequent trials (Anderson & Einstein, 

2017). Based on the reasoning that participants might change the way they approached the 

task after making a single commission error (e.g., participants might reconceptualize the 

finished PM phase as an active PM phase), these studies typically examine whether 

                                                 
2 Note that this phase of the experimental procedure has been referred to in many different ways such as “test 

block” (Walser, Fischer, & Goschke, 2012), “phase 2” (Pink & Dodson, 2013; Scullin, Bugg, & McDaniel, 2012), 

“completed phase” (Anderson & Einstein, 2017), “finished PM phase” (Bugg, Scullin, & Rauvola, 2016) and 

“block 2” (A.-L. Cohen, Gordon, Jaudas, Hefer, & Dreisbach, 2017). Here we decided to use an active/finished 

terminology to more clearly delineate phases of the experiment in which an PM task is “active” and should be 

performed compared to phases in which the PM task is “finished” and should not be performed. 
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experimental conditions affected the risk for making a commission error. That is, the 

number of participants that made at least one commission error was compared to the 

number that did not make a commission error (e.g., Scullin et al., 2012). Early studies 

suggested that commission errors were rare/absent when the PM cue was nonsalient and 

when the ongoing task differed across active and finished PM phases (Scullin et al., 2011). 

In subsequent studies, to avoid floor effects when measuring commission errors, the 

PM/PMREPEATED cues were presented in a salient background color (red or navy) and during 

the same ongoing task type across active and finished PM phases. Based on the 

multiprocess theory of prospective memory, these conditions were expected to promote 

spontaneous retrieval of the completed intention (e.g., McDaniel et al., 2015). Note that in 

this design participants usually performed a single active PM phase followed by a single 

finished PM phase. 

A second type of study design extended the first approach and assessed ongoing-

task RTs, error rates and/or commission-error rates in PMREPEATED trials compared to 

performance in unrelated control trials3 as their main measures of aftereffects (e.g., Walser 

et al., 2012; see also Scullin et al., 2009) (Figure 3). Using these control trials as a baseline 

made it possible to distinguish intention interference from orienting responses to novel or 

salient stimuli, which never served as PM cues. Commission errors in these studies were 

often defined as erroneous PM responses in PMREPEATED trials (Walser et al., 2012), and 

compared to commission-error rates in control trials to assess commission-error 

aftereffects (Walser, Goschke, Möschl, & Fischer, 2017; Walser, Plessow, Goschke, & 

Fischer, 2014). Deviating from the first approach, in this study design participants alternate 

between active and finished PM phases over the course of several experimental cycles and 

experimental sessions (e.g., Walser et al., 2012). In order to reduce carry-over effects 

between cycles, here PM/PMREPEATED cues change from cycle to cycle. In some studies 

participants performed another PM task during the finished PM phase (e.g., Walser et al., 

2017), but more often, they only performed the ongoing task during the finished PM phase. 

                                                 
3 Note that control trials have also been referred to as “oddball trials” (e.g., Walser et al., 2012). Despite the 

difference in terminology, the key feature of these trials is that they are matched to PM cues in salience and 

frequency of appearance but were never used as PM cues within the same experiment. 
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Figure 3. Schematic illustration of an event-based PM task applying an interference logic to assess aftereffects of 

completed intentions (Walser et al., 2012). Example trials are given for the active PM phase and the finished PM 

phase. As ongoing task, participants categorized digits as odd or even on all trials expect for PM trials in the 

active PM phase, which presented a specific symbol among a digit. In these PM trials participants had to perform 

a specific PM response (e.g., press the spacebar) instead of performing the ongoing task. At the end of the active 

PM phase, participants were instructed that the PM task had been completed and that they had to perform parity 

judgments on all subsequent trials in the finished PM phase. Aftereffects were assessed as performance 

differences (i.e., RTs, ongoing-task errors, commission errors) between PMREPEATED and control trials that 

presented a different symbol than PM trials among a digit (i.e., oddball trials). Standard trials were trials that 

required an ongoing-task response and did not contain a symbol. Note that framing was not present in the 

experiments but exclusively serves to illustrate different trial types. 

 

The two main findings from event-based PM studies with PMREPEATED cues were 

slowed and sometimes more erroneous ongoing-task responses in PMREPEATED compared to 

control trials and/or commission errors in PMREPEATED trials or shortly thereafter. In some 

studies, however, commission errors did not occur or were very rare (for modulating 

variables see Section 2.5). More recently, Anderson and Einstein (2017) reported that 

aftereffects of completed intentions can manifest in terms of thoughts about the finished 

PM task or as slowed ongoing-task performance in the first trial following a no-longer-

relevant PM cue. Note that in these tasks, in contrast to studies implementing an 

accessibility logic (Förster et al., 2005; Marsh et al., 1998), slower or more erroneous 

responses in PMREPEATED compared to control trials were interpreted as intention interference 

that is thought to result from residual activation, re-activation of the completed intention 

representation or from continued retrieval of the intended action. 

These findings—commission errors and/or intention interference—have been 

repeatedly replicated in laboratory PM tasks (Anderson & Einstein, 2017; Bugg & Scullin, 

2013; Pink & Dodson, 2013; Schaper & Grundgeiger, 2017; Scullin & Bugg, 2013; Scullin et 

al., 2012; Walser et al., 2012), neuroimaging (Beck et al., 2014) and modeling studies 

(Gilbert et al., 2013). Only a few studies with event-based PM tasks suggest a full, 

immediate deactivation of completed intentions (A.-L. Cohen et al., 2017; Scullin et al., 
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2011, 2009). Importantly, in these studies PM and PMREPEATED cues were non salient and did 

not pop out from ongoing-task stimuli, which presumably decreased the likelihood of 

spontaneous intention retrieval (McDaniel et al., 2015). For instance, Cohen et al. (2017) 

observed no aftereffects with nonfocal PMREPEATED cues (i.e., double-sided arrows in a display 

of single-headed arrows). Similarly, Scullin et al. (2011, 2009) found no RT aftereffects or 

commission errors when PM cues were nonsalient words in an image rating task and 

aftereffects were measured during a subsequent lexical-decision task. 

In contrast to most script-based paradigms, studies using PMREPEATED cues suggest 

that intentions are not always completely deactivated or inhibited after completion. 

However, intentions also do not seem to remain completely activated after completion. 

Instead, findings suggest that some deactivation can occur, which allows us to flexibly 

adapt to novel situations and goals, but also parts of a completed intention seem to remain 

active. 

2.4.3. Intermediate Conclusion 

Overall, findings are quite heterogeneous across paradigms and research lines: 

Script-based paradigms mostly produced findings in favor of a rapid inhibition of completed 

intentions that may even go below a neutral baseline. Event-based PM paradigms with 

PMREPEATED cues mostly produced findings in favor of a continued retrieval of completed 

intentions. This apparent contradiction may seem quite problematic when assuming that 

both types of paradigms assess the same underlying concept—the deactivation of completed 

intentions. However, as we will elaborate more in later sections, script-based paradigms and 

event-based PM paradigms focus on different components of intention representations. 

Specifically, script-based paradigms typically assess activation of the content of an 

intention; event-based PM paradigms that apply an accessibility logic, assess activation of 

semantic networks related to the PM cue; event-based PM paradigms with PMREPEATED cues 

assess activation of PM cues, intended actions and/or the link between PM cues and 

intended actions. In theory, these components of intention representations might be 

affected by intention deactivation to different extents and/or become deactivated on 

different time scales—thus explaining divergent findings across paradigms. In the following 

sections we will review different putative mechanisms behind aftereffects of completed 

intentions and the conditions or mechanisms that dictate how much an intention is 

deactivated after completion.
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Table 1 

Overview of the Reviewed Studies on the Deactivation of Completed Intentions. 

Study Ongoing task / Retrieval cue Main aftereffect results Interpretation of 

aftereffects 

Additional findings 

Script paradigms and related procedures 

Badets, Blandin, 

Bouquet, and Shea 

(2006) 

Recognition of learned line patterns 

(motor sequences) / computer 

instruction (delayed motor 

intentions) 

- Slower recognition of performed line patterns 

than of control patterns 

Inhibition  

Cohen, Dixon, and 

Lindsay (2005) 

Stroop-color naming / computer 

instruction 

- Higher Stroop interference from words that 

described a performed than a not-performed 

action 

Continued retrieval - Similar aftereffects in younger and older adults 

- Aftereffects increased from the first to the second encounter of 

intention-related items 

Marsh, Hicks, and Bink 

(1998) 

Lexical decision task / computer 

instruction 

- Slower lexical decisions on words from a 

performed than a not-performed action script 

Inhibition or 

deactivation 

- Intention-superiority effect for interrupted action scripts: 

Completed and interrupted portions of an action script showed 

similar accessibility 

Marsh, Hicks, and Bryan 

(1999) 

Lexical decision task / computer 

instruction 

- Slower lexical decisions on words from a 

performed than a not-performed action script  

Inhibition or 

deactivation 

- Inhibition finding also for unrelated completed and cancelled 

intentions 

Meilán (2008) Recognition of learned verbal 

scripts / signal  

- No difference in recognition RTs on words from 

a performed and a not-performed action script 

Deactivation  

Penningroth (2011) Lexical decision task / self-initiated 

time-based cued vs. experimenter 

cued  

- Faster lexical decisions on words from a 

performed than a not-performed action script 

Continued retrieval - Only state-oriented participants showed a higher sustained 

intention-superiority effect after intention completion. Action-

oriented participants showed comparable accessibility of 

intention-related and neutral words 

- Post-completion intention-superiority effect did not differ 

between self-cued and experimenter-cued tasks 

Event-based PM paradigms applying the accessibility logic from script paradigms 

Badets, Albinet, and 

Blandin (2012) 

Verbal-manual task / salient 

nonfocal PM cues (delayed motor 

intentions) 

- Slower responses for the verbal-manual task in 

the intention-based than in the stimulus-based 

group 

Inhibition  

Denzler, Förster, and 

Lieberman (2009) 

Lexical decision task / nonsalient 

focal PM cue 

- Stabbing a voodoo doll (intention condition) 

decreased memory accessibility of aggression-

related words more than watching a voodoo doll 

(no-intention condition)–the decrease of 

memory accessibility from pre to post 

measurement was larger after stabbing than 

after watching 

Inhibition - Completing an aggressive intention reduced memory 

accessibility of aggression-related words compared to 

completing a non-aggressive intention, but also led 

participants to choose pictures with more aggressive content in 

a picture selection task 

- Aggressive acts that did not lead to intention completion 

increased accessibility of aggression-related words 
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Study Ongoing task / Retrieval cue Main aftereffect results Interpretation of 

aftereffects 

Additional findings 

Denzler, Häfner, and 

Förster (2011) 

Lexical decision task / nonsalient 

focal PM cue 

- Watching a violent computer game with the goal 

to vent anger (intention condition) produced a 

stronger decrease in memory accessibility of 

aggression-related words from pre to post 

measurement than watching a violent computer 

game without a goal (no-intention condition) 

Inhibition - Similar findings when participants played a violent computer 

game to vent anger 

- Participants who reported a high general tendency to vent their 

anger, showed reduced relative accessibility of aggression after 

playing a violent computer game  

Förster, Liberman, and 

Higgins (2005) 

Lexical decision task or Stroop-

color naming / nonsalient focal 

PM cue 

- Completing a PM task (intention condition) 

produced a stronger decrease in accessibility of 

PM-cue related compared to unrelated words (i.e., 

faster lexical decisions or increased Stroop 

interference) from pre to post measurement than 

not performing a PM task (no-intention condition)  

Inhibition - Initial inhibition of completed goals that returns to baseline 

levels over time 

- No inhibition effect for unfulfilled goals 

- Post-completion inhibition increased with increasing 

expectations to fulfill a goal, increasing goal value or both 

Hedberg and Higgins 

(2011) 

Lexical decision task / nonsalient 

focal PM cue 

- Promotion-focused individuals showed a negative 

correlation between accessibility of PM-cue related 

words and delay length after intention completion 

- Prevention-focused individuals showed a positive 

correlation between accessibility of PM-cue related 

words and delay length after intention completion  

Promotion-focused 

individuals showed 

decreased 

accessibility 

Prevention-focused 

individuals showed 

increased accessibility 

 

Event-based PM paradigms assessing commission errors and/or interference on PMREPEATED cues 

Anderson and Einstein 

(2017) 

Lexical decision task / nonsalient 

focal PM cues 

- Slower lexical decisions in PMREPEATED than in 

control trials  

- More frequent thoughts about the finished PM task 

after PMREPEATED than after control trials 

- Commission errors in PMREPEATED trials 

- Slower lexical decisions in the first trial after a 

PMREPEATED trial than in the first trial after a control 

trial 

Continued retrieval  - Conditions hypothesized to facilitate intention deactivation 

(clarity, one-off, new PM task) still produced aftereffects: Mainly 

in slower lexical decisions during or after PMREPEATED trials and 

thoughts about the finished PM task after PMREPEATED trials 

- Thought probe measures indicated that PMREPEATED cues often 

elicit conscious retrieval of an intention 

Beck, Ruge, Walser, and 

Goschke (2014) 

Spatial compatibility task / 

salient focal PM cues 

- Slower ongoing-task responses in PMREPEATED than 

in ongoing-task trials 

- Commission errors not analyzed 

Continued retrieval - Similar event-related brain activation in PMREPEATED and PM 

trials 

- Event-related brain activation in PMREPEATED trials likely reflected 

processing of PM cues and not merely processing of response 

conflicts between PM and ongoing-task response 

- Monitoring related sustained rostro-lateral prefrontal cortex 

activation stopped after intention completion 
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Study Ongoing task / Retrieval cue Main aftereffect results Interpretation of 

aftereffects 

Additional findings 

Bugg and Scullin 

(2013) 

Lexical decision task / salient 

focal PM cues 

- Commission errors in PMREPEATED trials 

- RT aftereffects not analyzed 

Continued retrieval 

 

- Lower commission-error risk after performing a PM task to 4 

PM cues vs. 0 PM cues or cancelling performance of a PM task 

- Lower commission-error risk with PMREPEATED cues that were 

presented (and responded to most times) during active PM 

phases than with PMREPEATED cues that were not presented 

during active PM phases 

Bugg, Scullin, and 

McDaniel (2013) 

Lexical decision task / salient 

focal PM cues 

- Commission errors in PMREPEATED trials 

- RT aftereffects not analyzed 

Continued retrieval 

 

- Commission-error risk was modulated by the strength of PM-

cue–action associations: Higher commission-error risk after 

encoding PM tasks as an implementation intention than after 

standard encoding 

- Commission error risk did not differ between younger and older 

adults 

Bugg, Scullin, and 

Rauvola (2016) 

Lexical decision task / salient 

focal PM cues 

- Commission errors in PMREPEATED trials 

- RT aftereffects not analyzed 

Continued retrieval 

 

- Less commission errors and lower commission-error risk after 

performing a PM task to 4 PM cues than 0 PM cues  

- More commission errors and higher commission-error risk in 

older than in younger adults after performing a PM task to 4 PM 

cues, but no age differences with 0 PM cues 

- Preparing participants for the occurrence of PMREPEATED trials 

(preparatory instructional strategy) did not affect commission 

errors 

- Reduced commission-error risk for older adults after practicing 

to give ongoing-task responses in PMREPEATED trials (forgetting 

practice) compared to standard finished instructions  

- Forgetting practice eliminated age differences in commission-

error rates and commission-error risk after performing a PM 

task to 4 PM cues 

Cohen, Gordon, Jaudas, 

Hefer, and Dreisbach 

(2017) 

Flanker task / nonsalient nonfocal 

PM cues 

- No commission errors in PMREPEATED trials 

- No RT difference between PMREPEATED and control 

trials 

Deactivation - Absence of monitoring costs after intention completion 

El Haj, Coello, 

Kapogiannis, Gallouj, & 

Antoine (2018) 

Text reading task / nonsalient 

focal PM cues 

- Commission errors in PMREPEATED trials 

- No RT aftereffects analyzed 

Continued retrieval - Higher commission-error rates in older adults with Alzheimer’s 

disease than in healthy older adults 

- Positive correlation between commission-error rates and Stroop 

interference and between commission-error and PM omission 

rates in older adults with and without Alzheimer’s disease 

Gilbert, Hadjipavlou, 

and Raoelison (2013) 

 

Letter size discrimination / 

nonsalient nonfocal PM cues 

(computational model and 

simulation) 

- Simulating persistence of a PM-task memory trace 

after intention completion produced slower 

ongoing-task responses in PMREPEATED than control 

trials and commission errors in PMREPEATED trials 

Continued retrieval  - Reducing the strength of PM-cue–action associations reduced 

commission-error rates but continued to produce slower 

ongoing-task RTs in PMREPEATED than in control trials 
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Study Ongoing task / Retrieval cue Main aftereffect results Interpretation of 

aftereffects 

Additional findings 

Pink and Dodson (2013) Lexical decision task / salient focal 

PM cues 

- Commission errors in PMREPEATED trials 

- RT aftereffects not analyzed 

Continued retrieval  

 

- Increased commission-error rates in PMREPEATED trials under 

divided attention after completing a habitual PM task 

Schaper and 

Grundgeiger (2017) 

Parity judgments / salient focal PM 

cues 

- Commission errors after PMREPEATED trials: 

Retrieval and execution opportunity of the PM 

task were separated by a delay (i.e., delay-

execute paradigm)  

Continued retrieval 

 

- More commission errors in cancelled than in finished-intention 

condition 

- No commission errors in the finished PM phase under divided 

attention  

- Commission errors occurred even when PM responses were 

only possible 45 s after occurrence of a PMREPEATED cue 

- RT slowing in first trial after vs. first trial prior to or second trial 

after a PMREPEATED trial was similar in cancelled-intention and 

active-intention group and larger than in completed intention 

and no-intention group 

- Interruptions during the delay between PM cue and response 

opportunity reduced commission-error rates 

Scullin and Bugg 

(2013) 

Lexical decision task / salient focal 

PM cues 

- Commission errors in PMREPEATED trials 

- No RT aftereffects analyzed 

Continued retrieval  

 

- Commission-error risk increased with higher levels of fatigue 

(Modulation by cognitive-control availability) 

- No monitoring costs during finished PM phase 

- No effects of delay after intention completion on commission 

errors 

- Most participants thought that the PM task was finished after 

finished instruction 

Scullin, Bugg, and 

McDaniel (2012) 

Lexical decision task / salient or 

nonsalient focal PM cues 

- Commission errors in PMREPEATED trials 

- No RT aftereffects analyzed 

-  

Continued retrieval 

 

- Higher commission-error risk in older than in younger adults  

- Commission-error risk in older adults correlated with deficits in 

inhibitory functioning 

- Higher commission-error risk with salient than with nonsalient 

PMREPEATED cues and when ongoing tasks matched between 

active and finished PM phases 

Scullin, Bugg, 

McDaniel, and Einstein 

(2011) 

Lexical decision task / salient focal 

PM cues 

- Slower ongoing-task RTs in PMREPEATED than in 

control trials in older adults but not in younger 

adults 

- No commission errors in PMREPEATED trials 

Younger adults: 

Deactivation 

Older adults: 

Continued retrieval 

- Stronger response slowing in PMREPEATED trials in older adults 

with deficits in inhibitory functioning 

Scullin, Einstein, and 

McDaniel (2009) 

Lexical decision task / salient focal 

PM cues 

- Slower ongoing-task RTs in PMREPEATED than in 

control trials only with suspended but not with 

completed intentions 

- Commission errors not analyzed 

Deactivation - No effects of delay after intention completion on RT 

aftereffects 
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Study Ongoing task / Retrieval cue Main aftereffect results Interpretation of 

aftereffects 

Additional findings 

Walser, Fischer, and 

Goschke (2012) 

Parity judgments / salient nonfocal 

PM cues 

- Slower ongoing-task RTs in PMREPEATED than in 

oddball or oddballREPEATED trials 

- Commission errors in PMREPEATED trials 

Continued retrieval 

 

- Similar response slowing in PMREPEATED cues were verbally 

described but not shown during encoding and from exemplars 

of categorical PMREPEATED cues that were not presented 

during active PM phases 

- Larger RT aftereffects in finished PM phases with a new PM 

task than in ongoing-task-only phases 

- RT aftereffects declined from early to late PMREPEATED 

encounters 

Walser, Fischer, 

Goschke, Kirschbaum, 

and Plessow (2013) 

Word categorization / nonsalient 

focal PM cues 

- Slower ongoing-task RTs in PMREPEATED than in 

ongoing-task trials 

- Very low number of commission errors (not 

analyzed) 

Continued retrieval 

 

- No effect of acute stress on response slowing in PMREPEATED 

trials 

Walser, Goschke, and 

Fischer (2014) 

Parity judgments / salient nonfocal 

PM cues 

- Slower ongoing-task RTs in PMREPEATED than in 

oddball trials 

- Very low number of commission errors (not 

analyzed) 

Continued retrieval 

 

- RT aftereffects increased after participants described the PM 

cue compared to after participants read neutral material after 

intention completion 

- RT aftereffects decreased after participants performed a 

demanding backwards-letter span task compared to after they 

read neutral material 

- Increased aftereffects for participants low in self-reported 

action control 

Walser, Goschke, 

Möschl, and Fischer 

(2017) 

Parity judgments or word 

categorizations / salient/nonsalient 

and focal/nonfocal PM cues 

- Slower ongoing-task RTs in PMREPEATED than in 

oddball trials 

- Higher commission error rates in PMREPEATED than 

in control trials 

Continued retrieval 

Deactivation 

- When ongoing tasks differed between active and finished PM 

phases, commission errors and ongoing-task slowing in 

PMREPEATED versus oddball trials only occurred when a PM 

task was performed during finished PM phases  

- RT aftereffects decreased more when new PM tasks required 

shifting spatial attention to different locations than the finished 

PM task (different PM-cue categories) than when both PM tasks 

required attending similar locations (same PM-cue category) 

- When PM tasks in finished PM phases required a novel PM 

response, participants gave false-alarm responses with the 

novel PM response in PMREPEATED trials. They did not make 

commission errors with the old PM response 

- Forming a novel dissimilar intention did not lead to overwriting 

of the completed intention representation 

Walser, Plessow, 

Goschke, and Fischer 

(2014) 

Parity judgments / salient nonfocal 

PM cues 

- Slower ongoing-task RTs in PMREPEATED than in 

oddball trials 

- Very low number of commission errors (not 

analyzed) 

Continued retrieval - Aftereffects declined over repeated encounters of PMREPEATED 

trials 

- Performance differences between PMREPEATED and oddball 

trials were not related to the delay after intention completion 
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Study Ongoing task / Retrieval cue Main aftereffect results Interpretation of 

aftereffects 

Additional findings 

Free recall of naturalistic intentions 

Freeman and Ellis 

(2003) 

- / free recall in speeded written 

fluency task 

- Younger adults recalled more to-be-completed 

activities that they intended to perform in the 

following week than activities they completed 

one week ago 

- Older adults recalled a similar amount of to-be-

completed and completed activities 

Relative 

inaccessibility / 

inhibition 

- No difference between younger and older adults in the relative 

inaccessibility (inhibition) of completed intentions 

Maylor, Chater, and 

Brown (2001) 

- / free recall in speeded written 

fluency task 

- Less recall of activities that were completed the 

day/week/year before testing than of to-be-

completed activities that were intended to be 

performed the day/week/year after testing  

No interpretation 

given 

 

Maylor, Darby, and 

Della Sala (2000) 

- / free recall in speeded written or 

verbal fluency task 

- More recall of completed than to-be-completed 

activities (intention-inferiority effect) in older 

adults, no differences in middle aged adults in 

speeded written fluency task 

- Only younger adults recalled less completed 

than to-be-completed activities (intention-

superiority effect), but not older adults or 

dementia patients  

Older adults: Reduced 

facilitation of to-be-

completed tasks 

and/or reduced 

inhibition of 

completed tasks 

 

Note. Many studies postulated both spontaneous retrieval and/or residual activation processes underlying aftereffects of completed intentions or did not exactly separate between those two accounts. 

Hence, within this table we used the term continued retrieval to refer to both mechanisms. 
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2.5. Mechanisms Behind Aftereffects of Completed Intentions 

As we have shown in the previous sections, research on the fate of completed 

intentions shows that intention representations seem to be at least partly deactivated after 

intention completion. However, given the repeated observation of aftereffects, an 

immediate complete deactivation of intentions seems highly unlikely. This raises the 

question about the mechanisms behind aftereffects and how intention deactivation occurs. 

Regarding aftereffects, so-called retrieval accounts propose that they result from 

processes that are similar to processes mediating retrieval of to-be-performed intentions. 

That is, aftereffects might result from spontaneous intention retrieval processes and/or a 

subsequent failure to control intention execution or from top-down controlled processes of 

monitoring ongoing-task stimuli for PM cues. By contrast, inhibition accounts propose that 

aftereffects reflect a below-baseline inhibition of completed intentions that is released over 

time or through other mechanisms to achieve a return to baseline activation of intention 

representations. In the following section we will first elaborate these accounts in more 

detail, then review evidence for each account and lastly discuss if and how these two 

perspectives can be reconciled. 

2.5.1. Retrieval Accounts 

Retrieval accounts of aftereffects assume that processes that support intention 

retrieval during active PM phases continue after intention completion and can incur 

aftereffects of completed intentions. These retrieval accounts originate primarily from 

aftereffects research in event-based PM paradigms with PMREPEATED cues. Building on 

prominent theories of PM functioning, at least two different retrieval accounts can be 

distinguished that offer slightly different explanations for the occurrence of certain types of 

aftereffects. 

First, according to the multiprocess view of PM (e.g., Einstein & McDaniel, 2005; 

McDaniel et al., 2015), delayed intentions can be retrieved spontaneously without 

preparatory engagement of resource demanding top-down processes prior to processing the 

retrieval cue. In other words, intentions can “pop” into mind in the presence of a strong 

retrieval cue. Spontaneous intention retrieval is a probabilistic process that can operate via 

discrepancy-plus-search processes (Breneiser & McDaniel, 2006; Lee & McDaniel, 2013) or 

via reflexive-associative-processes (McDaniel, Guynn, Einstein, & Breneiser, 2004; 
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McDaniel et al., 2015). Therefore, depending on the type of retrieval process, aftereffects 

may arise through different routes. 

According to the discrepancy-plus-search view, individuals are constantly 

evaluating the fluency of their processing quality (whether they have a PM intention or 

not). During PM encoding, a cue is changed from a neutral stimulus into one that is 

associated with an intention, thereby altering its activation level (see intention superiority 

effect). Therefore, when later processing the PM cue, individuals experience a discrepancy 

in the quality of their processing (relative to neutral filler stimuli), which subsequently 

elicits a search in memory for the significance of the stimulus. During this 

search/attribution process, participants either remember that the stimulus is an active PM 

cue, remember that the stimulus is an old/finished PM cue, or misattribute their feeling of 

discrepancy to some other source. Concerning aftereffects, recognizing that PMREPEATED cues 

are no longer task relevant and require an ongoing-task response instead of a PM response 

would yield slowed responses without making a commission error (i.e., RT aftereffects). If 

the search process is solved wrongly, however, a PM response might be activated, leading to 

a commission error in PMREPEATED trials. 

According to the reflexive-associative view of spontaneous retrieval (McDaniel et al., 

2004, 2015), during encoding, individuals form an association between their intention and 

possible retrieval cues. In some cases, this association is naturally strong (e.g., 

remembering to say “thread” when seeing the word “needle”) and in some cases this 

association is naturally weak (e.g., remembering to say “thread” when seeing the word 

“sauce”). Even when the association is naturally weak, however, encoding strategies can be 

used to strengthen the cue–intention link (Bugg, Scullin, & McDaniel, 2013; Scullin, 

Kurinec, & Nguyen, 2017). The reflexive-associative view is that if the association between 

a PM cue and an intention is very strong, then later attending to that PM cue will reflexively 

bring to mind the associated intended action. From this view’s perspective, whether there 

will be aftereffects depends on the strength of the cue–intention association during the 

finished PM phase. A reflexive-associative retrieval on PMREPEATED trials would cause 

intention interference (Rummel, Einstein, & Rampey, 2012) and might increase risk for 

commission errors (Bugg et al., 2013). 

According to the dual-mechanisms account of PM commission errors (Bugg et al., 

2016; Scullin & Bugg, 2013), PMREPEATED cues are thought to initially trigger spontaneous 

retrieval via discrepancy-plus-search or reflexive-associative processes. These retrieval 
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processes are likely the source of at least some of the RT aftereffects observed. 

Subsequently, cognitive control is mobilized to reduce or inhibit execution of the completed 

intention. When cognitive control over intention execution is successful, participants may 

still show RT aftereffects (intention interference), but avoid making a commission error. By 

contrast, if the intention is spontaneously retrieved and this cognitive-control mechanism 

fails, then a commission error will occur. 

Second, in terms of monitoring accounts of PM performance, intention retrieval is 

thought to either always (preparatory attentional monitoring theory, e.g., R. E. Smith, 2003) 

or only under certain conditions (multiprocess view of PM performance, e.g., McDaniel et 

al., 2015) require the allocation of attention and cognitive resources towards preparatory 

monitoring for PM cues. From this perspective, aftereffects of completed intentions can 

result from retrieval of a completed intention, but their occurrence hinges on the presence 

of top-down controlled monitoring processes during finished PM phases. 

In general, besides findings of RT aftereffects and commission errors, retrieval 

accounts of aftereffects of completed intentions are corroborated by findings of repeated 

thoughts about the finished PM task after PMREPEATED-cue encounters (Anderson & Einstein, 

2017) and activation in brain areas that are triggered also by PM cues during active PM 

phases (Beck et al., 2014). Critically, retrieval accounts of aftereffects also make strong 

predictions about the relation between aftereffects of completed intentions and factors that 

are known to affect intention retrieval. In the following section, we will review evidence for 

the specific predictions of each retrieval account. 

Likelihood or ease of spontaneous retrieval. First, if aftereffects of completed 

intentions were the result of continued spontaneous retrieval, their occurrence should be 

influenced by task features that also foster or attenuate spontaneous intention retrieval 

during active PM phases. Supporting this assumption, Scullin et al. (2012) found that focal 

and perceptually salient PMREPEATED cues (e.g., the word fish on a red background screen 

within a word-categorization task) that are processed rather spontaneously during ongoing-

task performance increased commission-error rates and the risk of making a commission 

error compared to nonsalient PMREPEATED cues (black background screen) when ongoing tasks 

matched between active and finished PM phase. Conversely, only few commission errors 

were reported when spontaneous retrieval was attenuated by using nonfocal PM cues that 

required additional processing of ongoing-task stimuli to identify PM cues: For instance, 

when PM tasks required participants to identify words that contain the syllable TRA in a 
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lexical decision task (Beck et al., 2014; A.-L. Cohen et al., 2017; Walser et al., 2012; Walser, 

Goschke, et al., 2014; Walser, Plessow, et al., 2014; cf. Pink & Dodson, 2013). 

Additionally, the occurrence of aftereffects should depend on the integrity or 

strength of associations between a PM cue, an intended action and the context information 

that was stored along with stimulus information as part of the PM-task set (Landeira-

Fernandez, 1996; Waszak, Hommel, & Allport, 2003). Supporting this assumption, 

aftereffects were found to be reduced when the ongoing task (i.e., the PM-task context) 

mismatched between active and finished PM phases (e.g., image-rating task and lexical 

decision task) compared to when the ongoing task matched in active and finished PM 

phases (e.g., both lexical decision tasks) (Scullin et al., 2012). In fact, aftereffects were 

mostly reported in studies using ongoing-task match conditions (Anderson & Einstein, 

2017; Beck et al., 2014; Bugg & Scullin, 2013; Bugg et al., 2016; Pink & Dodson, 2013; 

Scullin & Bugg, 2013; Scullin et al., 2011, 2009; Walser et al., 2012, 2013; Walser, Goschke, 

et al., 2014; Walser, Plessow, et al., 2014) but not in studies using ongoing-task mismatch 

conditions (A.-L. Cohen et al., 2017; Walser et al., 2017). 

Similarly, aftereffects should be increased by strengthening the PM-cue–intended-

action association. This has been demonstrated via implementation-intention encoding 

(i.e., as an “if–then” plan; Bugg et al., 2013) or by repeatedly performing an intended action 

(i.e., habit formation; Pink & Dodson, 2013; but see Bugg & Scullin, 2013; Bugg et al., 2016 

for different findings in a Zeigarnik-like context). Conversely, aftereffects should be 

reduced when PMREPEATED cues become associated with ongoing-task responses after 

intention completion (i.e., doing so is predicted to weaken the cue–intention association). 

This has been demonstrated after practicing to perform the ongoing task in PMREPEATED trials 

(i.e., forgetting practice, Bugg et al., 2016) or after repeated encounters of PMREPEATED cues 

during ongoing-task performance (Walser, Plessow, et al., 2014; cf. A.-L. Cohen et al., 

2005), which presumably led to a reconfiguration of the PM-task set. Similarly, in a 

simulation study, commission errors declined after reducing the strength of PM-cue–action 

associations within a computational model of PM (Gilbert et al., 2013). 

Availability of cognitive control over intention execution. Second, according to 

the dual-mechanisms account of PM commission errors (Bugg et al., 2016; Scullin & Bugg, 

2013), commission errors should be affected by variables that affect cognitive control over 

the execution of a completed intention. For one, aftereffects should be especially likely 

when cognitive control after intention completion is impaired or cognitive-control demands 
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are high. In support of this assumption, several studies found increased commission errors 

in conditions of limited resources (i.e., divided attention) in the finished PM phase (Pink & 

Dodson, 2013; cf. Schaper & Grundgeiger, 2017), with fatigued participants (Scullin & Bugg, 

2013), or when tasks specifically facilitate attention allocation to PMREPEATED cues (Walser et 

al., 2017). Moreover, older adults who have intact spontaneous retrieval (Mullet et al., 2013) 

but show impaired inhibitory functioning (e.g., Hasher, Quig, & May, 1997; Lustig, Hasher, 

& Zacks, 2007; cf. Verhaeghen, 2011; Bugg, 2014 for evidence of spared control with age) 

were reported to be more at risk of making a commission error to no-longer-relevant PM 

cues than younger adults—either when PM tasks were active but needed to be suspended 

briefly (Boywitt, Rummel, & Meiser, 2015) or after PM tasks were finished (Bugg et al., 

2016; Scullin & Bugg, 2013; Scullin et al., 2012; cf. Bugg et al., 2013; A.-L. Cohen et al., 

2005). Similarly, El Haj, Coello, Kapogiannis, Gallouj, & Antoine (2018) observed that older 

adults with Alzheimer’s disease made more commission errors than healthy older adults 

and that commission-error rates in both groups were positively correlated with Stroop 

interference. 

Extending the dual mechanisms account of commission errors, aftereffects in 

general should be affected by variables that affect cognitive control over response selection; 

particularly over the response conflict between a to-be-performed ongoing-task response 

and a no-longer-relevant PM response that arises from intention retrieval in PMREPEATED 

trials. Supporting this idea, Beck et al. (2014) found that during finished PM phases 

PMREPEATED trials incurred transient activation of the rostro-lateral prefrontal cortex that is 

argued to reflect a mobilization of reactive cognitive control in order to solve response 

conflicts (Braver, 2012). 

Consequently, poor control of response selection would likely not only increase the 

likelihood for a commission error in a PMREPEATED trial, but would also at least increase the 

amount of time that is needed for correct response selection in a PMREPEATED trial. 

Accordingly, aftereffects should be affected, for instance, by personal dispositions or 

motivational orientations that affect the mobilization of cognitive control to disengage 

from a finished intention, which likely alters response selection. Corroborating this notion, 

prevention-focused individuals who often try to maintain a successfully attained goal state 

(e.g., Higgins, 1997) showed increased memory accessibility of intention-related semantic 

networks after intention completion. Conversely, promotion-focused participants who 

often try to attain a new goal after finishing one (Hedberg & Higgins, 2011) showed 
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decreased memory accessibility after intention completion. In a similar investigation, 

Walser, Goschke, et al. (2014) found that participants with low self-reported action control 

(i.e., state orientation; Kuhl, 1992), which had previously been associated with an 

heightened intention-superiority effect before intention completion (Goschke & Kuhl, 

1993), showed increased RT aftereffects of completed intentions as compared to 

participants with high self-reported action control (i.e., action orientation). Similarly, 

Penningroth (2011) found a sustained intention-superiority effect after intention 

completion in participants with low self-reported action control but not in participants with 

high self-reported action control. 

Following the idea that intention deactivation is modulated by cognitive control, 

aftereffects should be reduced when individuals can mobilize control or prepare for the 

potential occurrence of PMREPEATED cues after intention completion. Regarding effects of 

preparing for PMREPEATED-cue encounters, results vary. In one study, Bugg et al. (2016) found 

that using a preparatory instructional strategy at the end of the active PM phase (“Please 

note that the target words will appear in the next phase and you may feel the urge to press 

the ‘Q’ key in the presence of the target words. That task is finished, however, so we would 

like you to prepare to avoid pressing ‘Q’ during the next phase.”), did not reduce older 

adults’ susceptibility to making a commission error as compared to a standard finished 

instruction, and nominally more younger adults made an error with this strategy. Providing 

participants with opportunities to practice not pressing the Q key in response to target 

words (i.e., forgetting practice), however, was highly effective in reducing commission 

errors in older adults, but had no effect in younger adults (because commission-error rates 

were already on floor). By contrast, Anderson and Einstein (2017) found a nominal decrease 

in aftereffects when participants verbalized and wrote down the finished PM task 

instructions or were informed at the beginning of the PM task that the task would be 

completed as soon as a single PM cue appeared compared to standard finished instructions 

(“You have now completed the lexical decision task and the pressing the Q key task. Those 

tasks should not be performed again.”). Consequently, Anderson and Einstein (2017) 

suggested that using some kind of preparatory strategy to elaborate on the completion of a 

PM task might foster intention deactivation by supporting formation of a stop tag for 

intention completion (e.g., Bugg & Scullin, 2013). 
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Monitoring as a prerequisite for intention retrieval. Lastly, when considering 

the involvement of monitoring processes as a precondition for intention retrieval (e.g., R. E. 

Smith, 2003), aftereffects of completed intentions should only occur in the presence of 

continued monitoring for PM cues after intention completion. In contrast to this continued-

monitoring account of aftereffects, Scullin and Bugg (2013) found commission errors 

although ongoing-task RTs in the finished PM phase did not differ between an intention 

and a no-intention condition, suggesting that participants did not continue monitoring for 

PM cues. Similarly, several studies reported aftereffects despite a decrease of ongoing task 

RTs (Schaper & Grundgeiger, 2017; Walser et al., 2012, 2013), suggesting that participants 

disengaged from monitoring after intention completion. In addition, results from a 

neuroimaging study by Beck et al. (2014) indicate that it is highly unlikely that aftereffects 

require strategic monitoring for PM cues. The PM task in this study incurred reliable 

behavioral monitoring costs and elicited activation in the rostro-lateral prefrontal cortex 

that is assumed to be involved in monitoring (for overviews of neural correlates of PM see 

Cona et al., 2015; McDaniel et al., 2015). Importantly, however, both the behavioral 

monitoring costs and activation of the rostro-lateral prefrontal cortex vanished rapidly after 

the intention had been completed, which indicated that participants ceased to monitor for 

PM cues. Yet, PMREPEATED cues nevertheless produced reliable RT slowing and were 

associated with event-related activation in brain areas involved in stimulus-driven 

attention and episodic memory retrieval (ventral parietal cortex, precuneus, posterior 

cingulate cortex; e.g., Cabeza, Ciaramelli, & Moscovitch, 2012; Summerfield & Egner, 

2009). Taken together, this indicates that aftereffects in their study were due to attention 

capture by PMREPEATED cues, which presumably triggered retrieval of the completed intention, 

in the absence of continued strategic monitoring. 

Interestingly, however, recent studies found that performing a novel PM task during 

finished PM phases increased RT aftereffects and commission error rates (Walser et al., 

2012, 2017) or increased intention interference after PMREPEATED trials (Anderson & Einstein, 

2017). Aftereffects increased even after changing the ongoing task, PM-cue type, PM-cue 

focality and PM response between novel and finished PM tasks which should have 

attenuated retrieval of the completed intention (Walser et al., 2017). 

In summary, previous findings suggest that the occurrence of aftereffects cannot be 

explained solely by continued monitoring for PM cues. Yet, in select paradigms, monitoring 

for novel PM cues during finished PM phases might foster the occurrence of aftereffects. 
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One potential mechanism behind this might be that forming a PM intention establishes 

attentional search sets at different levels of abstraction. These search sets bias attention, 

not only towards features of a specific PM cue and also, on a more abstract level, would 

establish an unspecific sensitivity to “anything that deviates from the ongoing-task 

stimuli”. While a PM-cue specific search set would likely be deactivated or altered with a 

novel PM task, such a general deviant search set would be active, as long as participants 

perform any kind of PM task. Consequently, when finished PM phases require monitoring 

for novel PM cues, this general search set would increase the likelihood that PMREPEATED cues 

are automatically categorized as deviations from ongoing task stimuli, which causes at least 

a temporary interruption of processing even when the ongoing task or stimuli etc. have 

changed. Additionally, increased sensitivity towards deviant stimuli would increase 

orienting responses or task interference in deviant control trials when performing a novel 

PM task during finished PM phases. By contrast, when no PM task has to be performed 

during finished PM phases, even the very general deviant search set would be deactivated, 

explaining why aftereffects are significantly reduced under these conditions (Walser et al., 

2012, 2017). 

Taken together, many findings of aftereffects of completed intentions, particularly 

in event-based PM paradigms with PMREPEATED cues, can be explained by retrieval accounts. 

That is, the reviewed findings suggest that aftereffects likely result from spontaneous 

retrieval of a completed intention and its associated task context that is triggered by 

encounters of PMREPEATED
 cues. The size of aftereffects can be reduced, for instance, by 

disintegrating or reconfiguring episodic bindings between representations of PM cues, 

intended actions and their task context as well as by formation of episodic traces or stop 

tags for having finished a PM task. This seems to require cognitive control over intention 

execution or more generally over response selection either in a preparatory (before 

intention reactivation) or a reactive way (after intention reactivation) in order to enable 

adequate responding to the current task set and to prevent commission errors. Moreover, 

findings of a modulation of aftereffects by monitoring demands of subsequent activities 

(i.e., increased aftereffects with novel PM tasks) suggest that establishing an unspecific 

general deviant search set that biases attention towards discrepant stimuli even after 

intention completion might be an important factor exacerbating the occurrence of 

aftereffects—at least when the context information (i.e., ongoing tasks) changes after 

intention completion.  
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2.5.2. Alternatives and Extensions of Retrieval Accounts 

While the notion of continued intention retrieval is a dominant explanation for 

aftereffects of completed intentions, some extensions and alternatives of retrieval accounts 

have been discussed in the literature. 

Residual heightened activation of completed intentions. An alternative but not 

mutually exclusive account of aftereffects of completed intentions builds on Goschke and 

Kuhl’s (1993) intention-superiority hypothesis that intention representations are 

maintained at a heightened level of sub-threshold activation in long-term memory (see also 

Marsh & Hicks, 1998). This heightened activation allows a PM cue to stimulate retrieval 

(perhaps spontaneously; e.g., Einstein & McDaniel, 1996), but a central question has been 

whether there is persisting or residual activation of the intention representation following 

intention completion (Walser et al., 2012; Walser, Goschke, et al., 2014). Here residual 

activation means that intention representations exhibit heightened sub-threshold 

activation and increased accessibility compared to unrelated memory contents also after 

intention completion (Penningroth, 2011; see also Cohen et al., 2005 for preliminary 

support of the residual-activation view). Similar to retrieval accounts of aftereffects, the 

residual-activation view assumes that intentions continue to be retrieved after their 

completion, but that this retrieval is also accompanied by heightened activation of 

intention-related memory contents. Heightened intention activation may be a precondition 

for reflexive-associative, discrepancy, or other processes that spontaneously trigger 

intention retrieval both prior to (Goschke & Kuhl, 1993) and after intention completion 

(Walser et al., 2012; Walser, Goschke, et al., 2014). 

Although so far no direct link between intention activation and aftereffects of 

completed intentions has been shown, several studies on uncompleted or cancelled 

intentions provide preliminary evidence for such a relationship. Early research by Zeigarnik 

(1938) showed that participants recalled intended actions that were interrupted more 

frequently than intended actions that were completed. This finding could be explained by 

heightened activation of uncompleted intentions (see also Goschke & Kuhl, 1993) that 

fostered intention retrieval. Similarly, Schult and Steffens (2017) found that increased 

activation levels of uncompleted intentions were related to increased PM performance, that 

is, more frequent intention retrieval. These findings suggest a relation between activation 

levels and the frequency or ease of intention retrieval, at least for uncompleted intentions. 
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Regarding the relation between intention activation and aftereffects, it has been shown that 

uncompleted intentions produce stronger aftereffects than completed intentions. For 

instance, RT slowing in PMREPEATED trials and commission errors increased after suspending 

(Scullin et al., 2009) or cancelling an intention compared to finishing an intention (Marsh et 

al., 1999; Schaper & Grundgeiger, 2017; West, McNerney, & Travers, 2007). Similarly, two 

recent studies found that both commission-error risk and commission-error rates were 

increased when PM performance had unexpectedly not been possible during an active PM 

phase (Bugg & Scullin, 2013; Bugg et al., 2016). 

Although these findings can be explained by heightened residual intention 

activation of uncompleted intentions fostering intention retrieval, they could also be 

explained by a lack of episodic traces for PM performance with suspended, cancelled or 

uncompleted intentions (i.e., stop-tag account; e.g., Bugg & Scullin, 2013; Giesen & 

Rothermund, 2014). Future research is necessary, to determine the potential relationship 

between intention activation and aftereffects of completed intentions, determine whether 

aftereffects can arise in the absence of residually heightened intention activation and to 

discriminate effects of residual activation from effects of lacking stop-tag establishing. For 

this, future studies could, for instance, use action scripts that are performed in response to 

a PM cue and assess intention activation of script words or semantic associates of a PM cue 

and at the same time test aftereffects in PMREPEATED trials. Additionally, this might benefit 

from using neuroimaging or electroencephalography to assess in what ways activation of 

brain areas related to the content of the intended action and/or the PM cue changes with 

intention completion. 

Output monitoring errors. Recently, commission errors were conceptualized as 

errors of output monitoring (A.-L. Cohen & Hicks, 2017b)—a person’s ability to remember 

his/her past responses in order to not repeat them (e.g., Koriat et al., 1988). Typically, 

output-monitoring errors are measured by having participants perform different actions in 

response to multiple encounters of a PM cue in event-based PM tasks. For instance, Marsh 

et al. (2007) instructed participants to press one key in response to the first encounter of a 

PM cue (first key) and another key in response to subsequent encounters if they 

remembered that they already responded to a PM cue (repeat key). They found that 

participants correctly pressed the first key during 55–64% of first PM-cue encounters but 

repeated their first response instead of pressing the repeat key in 8-14% of second PM-cue 
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encounters, which suggested that participants sometimes failed to remember their past 

response (see also Marsh, Hicks, Hancock, & Munsayac, 2002). 

Although such findings suggest that commission errors are similar to output-

monitoring errors, there are some important differences between output-monitoring 

paradigms and aftereffect assessments in event-based PM paradigms. That is, although in 

both paradigms PM responses become irrelevant at a certain point, in paradigms that assess 

aftereffects of completed intentions participants are explicitly instructed that the PM task 

has been completed and that both PM cues and PM responses are no longer task relevant. In 

contrast, in typical output-monitoring paradigms it is up to the participants to recognize 

that they have responded to a PM cue and they have to mark the PM response as irrelevant 

themselves. Moreover, Scullin and Bugg (2013) showed that 94.3% of participants reported 

that they believed that the PM task was finished after the finished instructions and also 

found commission errors after excluding participants with the slightest doubts about the 

task procedure (see also Scullin et al., 2012). These findings suggest that output-monitoring 

errors might only account for a small portion of commission errors and other aftereffects in 

event-based PM paradigms. Future research is necessary to determine in what ways output-

monitoring errors contribute to aftereffects of completed intentions. 

Confusion about task instructions. Another extension of retrieval accounts can be 

derived from the question why participants in previous studies sometimes failed to 

successfully deactivate an intention following its completion. It is conceivable that 

participants were merely confused about the finished instructions, which might lead them 

to continue performing the PM task during the finished PM phase. Although plausible, 

empirical evidence does not support this reasoning. Anderson and Einstein (2017), for 

example, recently showed that no participants reported thoughts about a finished PM task 

at the beginning of the finished PM phase. Similarly, Scullin et al. (2012) still observed 

commission errors when they excluded participants who indicated confusion about the PM 

task, showed poor recall of the PM task or gave false-alarm PM responses during the active 

PM phase from their analyses. Moreover, commission errors are likely not simply slip-ups 

made possible by the experimental apparatus. That is, commission errors were reported 

even when participants were prepared that PMREPEATED cues would appear during the finished 

PM phase (e.g., Bugg et al., 2016) or when participants needed to overtly move one hand 

from the lap to the keyboard in order to make a commission error (Scullin et al., 2012). 

Therefore, although confusion about finished instructions, the proximity or similarity of 
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response buttons for ongoing-task and PM-task responses might contribute to the 

occurrence of aftereffects, they likely are not the sole reason for aftereffects to occur. 

Stimulus-triggered retrieval of specific stimulus–response links. Aftereffects of 

completed intentions might be the result of direct stimulus–response links that are 

acquired during task performance (Walser et al., 2012). That is, during the active PM phase 

participants are often required to respond to multiple occurrences of PM cues with a simple 

key press. Each response results in sensorimotor learning and the development of a shared 

episode or stimulus–response link between the specific PM cue and the corresponding 

response (Abrams & Greenwald, 2000; Hommel, 1998; Logan, 1988; Neumann & Klotz, 

1994). Similarly, this link may be established already at encoding of a PM task as a 

temporarily instructed binding between PM cue and intended action (Cohen-Kdoshay & 

Meiran, 2007; Gollwitzer, 1999; Meiran, Pereg, Kessler, Cole, & Braver, 2015). 

Consequently, encountering PMREPEATED cues may trigger retrieval of the stimulus–response 

episode and thus prime the acquired associated response resulting in response slowing or 

commission errors. 

In contrast to this assumption, it was shown that the occurrence of aftereffects does 

not seem to require having performed the intended action in response to a specific PM cue 

or being instructed to respond to a specific PM cue. That is, RT aftereffects could also be 

observed for novel exemplars of categorical PM cues that were not presented during the PM 

task (Walser et al., 2012; Walser, Plessow, et al., 2014) and commission errors and RT 

aftereffects did not differ between PM cues that were only presented during PM-task 

encoding and those that were presented at encoding and during the PM task where they 

were responded to on most occasions (Anderson & Einstein, 2017; cf. Bugg & Scullin, 2013; 

Bugg et al., 2016). These findings suggest that aftereffects can stem from instructed PM-

cue–action links that seem to generalize beyond specific PM-cue exemplars towards more 

abstract stimulus representations (i.e., concepts representing a stimulus category), as has 

also been observed in active PM phases (Cook, Marsh, Hicks, & Martin, 2006; Ellis & Milne, 

1996; cf. Mullet et al., 2013). 

Lack of episodic traces for intention completion. According to a stop-tag theory 

of intention deactivation (Bugg & Scullin, 2013; Bugg et al., 2016), aftereffects might arise 

from a lack of episodic traces for having performed an intended action (e.g., Hommel, 2009; 

Hommel, Müsseler, Aschersleben, & Prinz, 2001). The idea is that performing an intended 

action establishes episodic traces about PM-task completion and binds a stop-tag to the 
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representation of a PMREPEATED cue that should aid in successful intention deactivation. 

Consequently, aftereffects should be reduced when active PM phases offer opportunities to 

perform the intended action compared to when intention completion is not possible. 

Supporting this notion, aftereffects were found to be increased when PM-tasks were 

cancelled before they could be performed (e.g., Bugg et al., 2016) and commission errors 

occurred more frequently when PM cues were only presented at PM-task encoding but not 

in the active PM phase, compared to when PM cues were presented during encoding and in 

the active PM phase (Bugg & Scullin, 2013; Bugg et al., 2016; cf. Anderson & Einstein, 

2017). 

Lack of time or cognitive resources for complete intention deactivation. One 

could argue that a complete intention deactivation might require time or the availability of 

cognitive resources after intention completion. Initial evidence suggested that time is a 

crucial factor for successful intention deactivation. Hedberg and Higgins (2011), for 

example, found that aftereffects decreased with increasing delays after intention 

completion. This effect, however, was restricted to participants who were trying to 

disengage from successfully attained goal states (promotion-focused participants; e.g., 

Higgins, 1997). Along the same lines, Förster and colleagues (2005) found that lexical-

decision slowing or Stroop-interference reduction on PM-cue related versus control words 

decreased over time in intention compared to no-intention groups, which suggested that 

intention inhibition was released over time. Crucially, however, this effect may have been 

confounded with repeated encounters of intention-related stimuli that has been shown to 

reduce aftereffects in event-based PM tasks. For example, contrasting the temporal delay 

after intention completion and the frequency of PMREPEATED -cue encounters showed that 

only the frequency of PMREPEATED-cue encounters, but not the temporal manipulation 

reduced the size of aftereffects of completed intentions (Walser, Plessow, et al., 2014). 

Several additional studies reported no effects of introducing a delay between active and 

finished PM phases on aftereffects (Scullin & Bugg, 2013; Scullin et al., 2011). 

Regarding the interplay of available time and cognitive resources for intention 

deactivation, Penningroth (2011) speculated that successful intention deactivation might 

require postactional processing to actively disengage from a completed intention. This idea 

is built on suggestions by Beckmann (1994), who found that ruminations about performance 

failures could effectively be reduced when participants were provided with ample time and 

resources to engage in a postactional evaluation of their performance and were presented 
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with cues for a novel activity. According to this account, aftereffects should increase when 

participants perform an unrelated attention-demanding task immediately after intention 

completion that attenuates postactional processing. Interestingly, however, Walser, 

Goschke, et al. (2014) found that aftereffects actually decreased when participants 

performed a highly demanding working memory task compared to when they performed an 

undemanding letter-reading control task. Their findings suggest that postactional 

processing alone is likely not enough to deactivate successfully completed intentions. 

Instead, aftereffects seem to be sensitive to working memory demands or novel memory 

contents. 

Lack of novel memoranda to overwrite completed intention representations. 

Aftereffects might arise due to a lack of novel information that could overwrite the finished 

intention representation. According to this view, the encoding of novel memory 

representations after intention completion might foster intention deactivation and reduce 

aftereffects by destabilizing and overwriting parts of the intention representation (e.g., 

Walser, Goschke, et al., 2014). Interestingly, research suggests that completed intentions 

cannot be overwritten by forming a novel PM intention. Specifically, three studies showed 

that simply performing a novel PM task after intention completion compared to performing 

an ongoing task alone did not reduce aftereffects; each time, the new task exacerbated 

aftereffects (Walser et al., 2012, 2017; see also Anderson & Einstein, 2017). Yet, it might be 

possible to partially overwrite intention representations by forming novel unrelated 

memoranda, given that performing a demanding working-memory task after intention 

completion has been shown to reduce aftereffects (Walser, Goschke, et al., 2014; see also 

Schaper & Grundgeiger, 2017, for reduced commission errors after filling the response delay 

during a delay-execute PM task with an unrelated task). However, this overwriting might 

not be utilized as a deactivation strategy. That is, when explicitly asking participants if they 

tried to deactivate the intention by thinking of a new task almost every participant 

indicated that they did not use that strategy at all (Bugg et al., 2016). 

2.5.3. Inhibition Account 

The inhibition account of aftereffects assumes that the activity level of an intention 

representation is actively reduced upon intention completion. This account originates 

primarily from research with script-based paradigms and event-based PM paradigms 

applying an accessibility logic. An extreme interpretation of this account is that the 
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activation level of intention-related memory contents might even drop below a baseline of 

unrelated memory contents that were recently acquired. Within this interpretation, 

inhibition represents an active suppression of intention-related memory contents. As a 

consequence, aftereffects show up in response slowing in facilitation paradigms (e.g., 

slowed lexical-decision performance) or decreased interference in interference paradigms 

(e.g., less Stroop-color naming interference) in intention-related trials compared to control 

trials. A less extreme interpretation of the inhibition account is that inhibition reduces the 

activation level of a completed intention towards a neutral baseline but not necessarily 

below it. This interpretation fits with findings of reduced intention activation after 

completion compared to before intention completion (e.g., Förster et al., 2005) and could 

also account for findings of a return to baseline activation of completed intentions (Meilán, 

2008). In this sense inhibition is seen less as an active suppression but more as an (active) 

deactivation process that after intention completion might gradually decrease the 

activation level of intention representation. 

The inhibition account has received much attention in the literature as it contains a 

plausible functionality: Inhibition of completed intentions may facilitate establishing novel 

intention representations (Förster, Liberman, & Friedman, 2007; Förster et al., 2005; Marsh 

et al., 1998; see also Allport et al., 1994; Mayr & Keele, 2000). When participants were asked 

to report the strategy, they used to deactivate intentions, mentally suppressing the finished 

task was the second most frequent strategy reported (following compartmentalized by 

considering the finished block as a new context; Bugg et al., 2016). Furthermore, inhibition 

was regarded as one of several central features that could distinguish memory-activation of 

goal representations from effects of semantic priming (Förster et al., 2007). 

Although post-completion intention inhibition is a plausible mechanism that seems 

to be supported reasonably well, some findings stand in stark contrast with assumptions of 

a complete inhibition of all components of completed intentions. First, if completed 

intentions became inhibited, accessibility of intention-related stimuli should be smaller 

than accessibility of familiar or primed stimuli (Förster et al., 2007). In contrast to this 

assumption, RTs in PMREPEATED trials were actually found to be larger than RTs in control 

trials that were made familiar through repeated presentation to participants during active 

PM phases (i.e., oddballREPEATED trials in Walser et al., 2012, Exp. 2). Second, across different 

paradigms, similar findings were regarded as evidence either for or against an inhibition of 

completed intentions: Performance costs in trials that presented intention-related stimuli 
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(i.e., words describing intended actions; words semantically related to PM cues; PMREPEATED 

cues) were interpreted as evidence for intention inhibition (Förster et al., 2005; Marsh et al., 

1998), but were also taken as evidence for intention interference due to continued retrieval 

(Anderson & Einstein, 2017; Beck et al., 2014; Scullin et al., 2011; Walser et al., 2012). 

Third, and perhaps most critically, when assuming a complete inhibition of all components 

of a completed intention, it would not be possible to make commission errors in response to 

PMREPEATED cues, since the cognitive intention representation and the intended action would 

not be retrievable. 

2.5.4. Inhibition and Intention Retrieval: Dichotomy or Continuum? 

In light of the divergent findings between script-based and event-based PM 

paradigms two questions arise: What are the reasons for the disparity between the 

inhibition account and its alternatives? Can the notions of intention inhibition and 

continued retrieval fit together? In our opinion, some explanations for this are conceivable.  

First, the direction and mechanism of aftereffects might depend on which 

component of a cognitive intention representation each experimental approach focuses on. 

More specifically, testing aftereffects of memory contents that are semantically related to a 

completed intention (like in studies that suggest intention inhibition) presumably captures 

the accessibility or retrieval of the semantic content of an intention. Testing aftereffects of 

no-longer-relevant PM cues (like in studies suggesting continued intention retrieval), on 

the other hand, presumably captures accessibility or retrieval of PM-cue representations, 

intended actions or PM-cue–action links. Recent studies provide evidence for a dissociation 

of multiple components of intention representations (e.g., Burgess et al., 2011; A.-L. Cohen, 

West, & Craik, 2001; Momennejad & Haynes, 2012). Hence, it is feasible that intention 

deactivation or inhibition may have diverging effects on these components and act on 

different time scales for each component. That is, PM-cue representations, intended actions 

and their association might be deactivated or inhibited slowly and cause intention 

interference due to continued intention retrieval. Semantic networks that are associated 

with the PM cue or the content of an intended action, however, might become inhibited 

more rapidly after intention completion. 

Second, findings that suggest an inhibition of completed intentions (Förster et al., 

2005; Marsh et al., 1998) may be re-interpreted as evidence for continued intention retrieval 

after completion. Most studies on the accessibility of intention-related memory contents 
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that favored an inhibition account employed lexical decision tasks (e.g., Marsh et al., 1998). 

In these tasks both intention inhibition and spontaneous retrieval of completed intentions 

could lead to prolonged RTs to intention-related stimuli: Spontaneous retrieval of a 

completed intention would interfere with and impair lexical decision performance, whereas 

intention inhibition would reduce accessibility of intention-related memory contents and 

also impair lexical decision performance. Some preliminary support for this idea can be 

derived from findings that increasing the expectancy or motivation to detect a PM cue 

produced an increase of “intention inhibition” (Förster et al., 2005 Exp. 4–6) that seems to 

be similar to findings of increased aftereffects with stronger PM-cue–action associations 

due to implementation-intention encoding (Bugg et al., 2013) or habit creation (Pink & 

Dodson, 2013). Similarly, aftereffects in response to stimuli that are semantically related to 

a PM cue might actually reflect spontaneous intention retrieval instead of inhibition, given 

that previous studies showed that intention retrieval may also occur in response to 

semantic associates of a specific PM cue (Cook et al., 2006; Ellis & Milne, 1996; cf. Mullet et 

al., 2013). Note, however, that this reinterpretation is not unproblematic as it conflicts with 

observations of decreased accessibility of intention-related memory contents after 

compared to before intention completion in a Stroop task (Förster et al., 2005)4 and with a 

finding of increased accessibility of intention-related memory contents after intention 

completion in a lexical-decision task (Penningroth, 2011). Moreover, this re-interpretation 

implies that the notion of an inverse relation between RT and activation in memory (Ratcliff 

& McKoon, 1978) should hold prior to intention completion, but should be reversed after 

intention completion. This means the notion that increased RTs on intention-related 

stimuli in facilitation paradigms reflect decreased activation might only hold for 

stimuli/concepts that are relevant for current task performance. When stimuli become 

irrelevant or are associated with an action or a stop-tag due to intention completion (Bugg 

& Scullin, 2013), the RT–activation relation might change so that increased RTs on 

intention-related stimuli in facilitation paradigms reflect increased activation. 

Third, it is conceivable that our cognitive system generally inhibits intention 

representations after completion of a PM task but that this inhibition might sometimes 

                                                 
4 In this study (Förster et al., 2005, Exp. 2), Stroop interference on PM-cue-related words relative to control 

words decreased from before to after intention completion, which was interpreted as evidence for post-

completion inhibition. Note, however, that after intention completion, interference was still stronger from PM-

cue-related words compared to control words, which could also be interpreted as evidence for continued 

intention retrieval or residual intention activation. 
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completely or partially fail, which would result in effects of residual activation or continued 

intention retrieval (e.g., commission errors) due to incomplete intention inhibition. Thus, it 

is conceivable that findings of residual activation or continued retrieval might only stand in 

contrast with findings of intention inhibition when assuming a perfect inhibition 

mechanism. Preliminary support for this idea stems from findings that suggest that 

aftereffects or activation of successfully completed intentions is often lower than activation 

of suspended intentions that are yet-to-be-completed (Scullin et al., 2009) and lower than 

activation of intentions that were cancelled before performance had started (Bugg & 

Scullin, 2013; Marsh et al., 1999; Schaper & Grundgeiger, 2017; West et al., 2007). 

2.5.5. Conclusion 

In this chapter, we reviewed empirical studies on aftereffects of completed 

intentions. Our motivation for this was to provide an up-to-date overview of experimental 

procedures and main results of aftereffect research, a synopsis of current theories about the 

source of aftereffects as well as to highlight commonalities and differences between 

different lines of research in this field. Our review shows that intention deactivation does 

not operate like a light switch. That is, we neither experience massive interference from 

finished tasks all the time nor do we experience no aftereffects at all. Instead, intention 

deactivation is better conceptualized as a continuum of decreasing activation levels below 

that present before the intention has been completed, and ultimately reaching baseline 

levels akin to neutral stimuli. This general process might not be linear, it may sometimes be 

faulty and its time course may be accelerated or decelerated by a diversity of factors. 

Importantly, understanding how intention deactivation occurs requires 

understanding the cognitive factors that underlie encoding, maintenance, retrieval and 

execution of intended actions as well as their interplay and cognitive control over them. 

Here, for instance, specific features of retrieval cues (e.g., salience), task instructions and 

the PM-task context play an important role for the way these factors affect intention 

retrieval before and after completion. A firm understanding of these factors allows us to 

predict the time course of deactivation as well as conditions in which intention deactivation 

will be maximal or minimal. So far, the reviewed literature begins to illuminate a profile of 

when intention deactivation is most difficult and people are likely most at risk to experience 

interference from completed intentions or to make commission errors: (a) When there is a 

strong link between the PM cue and intended action, an increased readiness for intention 
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retrieval and possibly a high activation level of the intention representation; (b) when 

encoding of finished instructions, episodic memory for intention completion and control 

over response selection and/or intention execution are impaired; (c) when PM/PMREPEATED 

cues are extremely salient and we remain in a PM-task context, or when there is a high 

overlap between subsequent tasks and the original PM-task context. However, although 

each of these factors likely exacerbates the occurrence of aftereffects and commission errors 

in particular, whether or not commission errors occur at all might nevertheless depend on a 

combination of multiple factors. For instance, Walser et al. (2012) observed nearly no 

commission errors when using salient nonfocal PM cues. Similarly, even with a high context 

overlap between active and finished PM phase and focal PM cues, Scullin et al. (2012) found 

more commission errors when PM-cues were salient than when they were nonsalient. 

Future research is required to identify conditions under which commission errors reliably 

occur in most participants and also to determine how tasks should be designed to support 

rapid intention deactivation. 

As we showed in this review, the deactivation of completed intentions is an essential 

aspect of successful goal-directed behavior. Failures of intention deactivation likely 

contribute to failures of goal directedness in everyday life, like overmedication, and also 

show parallels to phenomena like intrusions and ruminations (Ehlers & Clark, 2000; 

Whitmer & Gotlib, 2012). Surprisingly, despite the importance of this topic, only relatively 

few studies have been conducted in this field. Nevertheless, the overall picture across 

several research approaches suggests that completed intentions neither persist completely 

nor are deactivated immediately. Instead, intention deactivation could be considered as a 

dynamic process, depending on a variety of modulating factors. Identifying and specifying 

these factors could help us gain a better understanding of intention deactivation and could 

also help improve predictions about the conditions under which aftereffects are particularly 

likely or unlikely. As a next step in this direction, the following study tested the effects of 

transient cognitive-control demands during encounters of PMREPEATED cues on intention 

deactivation in younger and older adults. 
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3. Study 1 – Effects of Age and Cognitive-Control 

Availability on the Deactivation of Completed 

Intentions 

3.1. Abstract 

In everyday life, we frequently postpone intended actions (prospective memory; 

PM), but also need to deactivate completed intentions in order to flexibly adapt to 

subsequent activities. Recent findings of an increased risk to erroneously repeat completed 

actions (i.e., commission errors) in older adults with cognitive-control deficits suggest that 

successful intention deactivation hinges on the availability of cognitive control. It is 

unclear, however, whether transient availability of cognitive control during encounters of 

no-longer-relevant PM retrieval cues (PMREPEATED cues) is critical for intention deactivation. 

Here we investigated this with varying levels of cognitive-control availability during 

PMREPEATED-cue encounters in older and younger adults. Replicating previous findings, in 

Experiment 1 we found that older adults exhibited a tendency for impaired intention 

deactivation in terms of nominally higher performance costs in PMREPEATED trials and a 

higher commission-error risk than younger adults. While performance costs and 

commission-error rates in PMREPEATED trials did not differ between extremes of cognitive-

control availability, slightly loading cognitive-control resources drastically reduced 

performance costs. Importantly, this effect was not replicated with a more fine-grained 

variation of cognitive-control availability in Experiment 2, in which we exclusively tested 

younger adults. These findings suggested that intention deactivation is not modulated by 

transient cognitive-control availability. Surprisingly, however, we also found that the rather 

low number of commission errors in Experiment 2 even dropped with decreasing cognitive-

control availability. We discuss conditions under which transient cognitive-control 

availability may affect intention deactivation and review alternative sources of age effects 

on intention deactivation besides global cognitive-control impairments.  
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3.2. Introduction 

Several times throughout a day, we form intentions that are postponed until the 

right circumstances are met to perform them (Kliegel & Martin, 2003). This ability, known 

as prospective memory (PM), comes into play, for instance, when we plan to give a friend a 

call at 6 p.m. (time-based PM) or when coming home (event-based PM). While PM enables 

us to perform everyday tasks like these, deactivating intentions after their completion 

makes it possible to flexibly re-adjust behavior according to novel intentions or current 

situational demands (Goschke, 2003; Goschke & Bolte, 2018; Mayr & Keele, 2000). 

Surprisingly, completing an intention does not necessarily lead to a direct deactivation of 

the intention representation, but can impair subsequent task performance and even trigger 

erroneous repetitions of completed intentions (commission errors) when encountering no-

longer-relevant PM cues (PMREPEATED cues) that previously signaled the opportunity to 

retrieve an intention (Anderson & Einstein, 2017; Pink & Dodson, 2013; Scullin et al., 2012; 

Walser et al., 2012; cf. A.-L. Cohen et al., 2017; Scullin et al., 2009). Previous findings 

suggest that especially older adults exhibit difficulties in disengaging from no-longer-

relevant tasks (e.g., Boywitt et al., 2015; Scullin et al., 2011), which in some cases might 

translate to commission errors like accidental overmedication (Gray et al., 2001; Kimmel et 

al., 2007). Importantly, the mechanisms behind these so-called aftereffects of completed 

intentions and successful intention deactivation are still not well understood. 

In the present study, we aimed at elucidating the role of cognitive-control 

availability during encounters of PMREPEATED cues for intention deactivation. To this aim, we 

investigated aftereffects of completed intentions under varying degrees of cognitive-control 

demands for ongoing-task processing during PMREPEATED -cue encounters. Additionally, to 

further clarify under which conditions aging may affect intention deactivation we 

investigated the potential interplay between cognitive-control availability and aging effects 

on the deactivation of completed intentions. 

While intention deactivation does not seem to simply rely on availability of time 

(Scullin & Bugg, 2013; Walser, Plessow, et al., 2014) or cognitive resources after intention 

completion (Walser, Goschke, et al., 2014), as was suggested by earlier work (Beckmann, 

1994; Penningroth, 2011), more recent findings suggest that successful intention 

deactivation hinges on cognitive-control availability during encounters of PMREPEATED cues. 

More specifically, according to a dual mechanisms account, commission errors are the result 
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of an initial spontaneous and almost automatic retrieval of an intention in response to 

PMREPEATED cues that is followed by a failure to deactivate or inhibit retrieval of the no-

longer-relevant intention via cognitive-control mechanisms (Bugg et al., 2016; Scullin & 

Bugg, 2013; see also Meiser & Rummel, 2012). 

Importantly, even in the absence of a commission error, failures of complete 

intention deactivation frequently lead to slowed or more erroneous ongoing-task 

performance in PMREPEATED trials compared to neutral control trials (Scullin et al., 2011; 

Walser et al., 2012). One source of these aftereffects is that encountering PMREPEATED cues 

triggers a conflict between the to-be-performed ongoing-task response and the no-longer-

relevant PM response. This, for instance, was demonstrated by a neuroimaging study (Beck, 

Ruge, Walser, & Goschke, 2014): PMREPEATED cues triggered increased activation of the 

anterior cingulate cortex and transient activation of rostrolateral prefrontal cortex. The 

authors argued that this pattern reflects mobilization of reactive control by a response 

conflict (Braver, 2012). Since resolving this conflict takes time and cognitive resources, Beck 

et al. (2014) observed response slowing in PMREPEATED trials. 

The notion of a cognitive-control dependent intention deactivation is corroborated 

by several additional findings: First, commission errors were observed more frequently 

under conditions that tax cognitive control after intention completion, like divided 

attention (Boywitt et al., 2015; Pink & Dodson, 2013; cf. Schaper & Grundgeiger, 2017) and 

fatigue (Scullin & Bugg, 2013) or under increased intention-deactivation demands due to 

implementation-intention encoding of PM tasks (Bugg et al., 2013) or a lack of retrieval 

opportunities for intended actions (Bugg & Scullin, 2013; Bugg et al., 2016). Second, 

increased RT aftereffects were also linked to impaired cognitive flexibility, as has been 

observed in state-oriented individuals (Walser, Goschke, et al., 2014; see also Penningroth, 

2011). Third and most prominently, the notion of a control-dependent intention 

deactivation is corroborated by findings of older adults being more prone to making a 

commission error after intention completion than younger adults (Bugg et al., 2016; Scullin 

& Bugg, 2013; Scullin et al., 2012, 2011; cf. Bugg et al., 2013; A.-L. Cohen et al., 2005) or 

older adults showing RT aftereffects under certain conditions where younger adults did not 

(Scullin et al., 2011). The increased frequency and magnitude of aftereffects of completed 

intentions in older adults has mostly been attributed to a supposed age-related decline in 

inhibitory cognitive-control functions (e.g., Hasher et al., 1997; Lustig et al., 2007; cf. 

Verhaeghen, 2011; Bugg, 2014). In some studies it was also linked to impaired performance 



 

 

52 

in Stroop color naming, Trail Making Test B and Wisconsin Card Sorting Test in older but 

not younger adults (Scullin & Bugg, 2013; Scullin et al., 2012). 

Although the above findings seem to corroborate the dual-mechanisms account of 

commission errors they do not provide unambiguous support for a general cognitive-control 

dependence of intention deactivation, given the diversity of variables that seem to affect 

intention deactivation. First, the effects of aging, divided attention, implementation-

intention encoding, fatigue and state orientation can be considered relatively long lasting 

and may thus not only affect intention deactivation, but also PM performance and task 

performance after intention completion. This in turn might influence aftereffects of 

completed intentions. Second, it is debatable whether the observed modulators of intention 

deactivation primarily target cognitive-control availability: At least with active intentions, 

divided attention manipulations, for instance, have been shown to affect spontaneous 

intention retrieval but not cognitive control over executing intended actions (Harrison, 

Mullet, Whiffen, Ousterhout, & Einstein, 2014). That is, demanding divided attention task 

(random number generation) only impaired PM performance when intention retrieval was 

presumably not fully automatic—specifically, with nonsalient PM cues. With salient PM 

cues, however, divided attention manipulations had no effect on PM performance. Hence, 

increased aftereffects under divided attention might not reflect impaired inhibition of no-

longer-relevant intended actions but rather impaired intention retrieval. Most importantly, 

so far there is no direct test of a potential cognitive-control dependency of intention 

deactivation and little is known about the effects of cognitive-control availability during 

encounters of PMREPEATED cues and intention deactivation. Hence, based on previous studies 

it is not only difficult to pinpoint the mechanism(s) responsible for successful intention 

deactivation. It is also unclear whether intention deactivation is simply affected by general 

task demands prior to or after intention completion or whether it is particularly susceptible 

to cognitive-control availability during encounters of PMREPEATED cues, as suggested by the 

dual mechanisms account of PM commission errors (Bugg et al., 2016). 

3.3. The Present Study 

Here, we directly tested the effects of transient cognitive-control availability during 

PMREPEATED-cue encounters on the deactivation of completed intentions. For this, in two 

experiments we parametrically varied trial-by-trial cognitive-control demands during task 

performance and presented PMREPEATED cues in trials that induced varying degrees of conflict 
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in stimulus processing (e.g., Fan, 2014) (Figure 4). This allowed us to elucidate the 

relationship between the transient availability of cognitive control after intention 

completion and intention deactivation beyond the two-step manipulations of cognitive-

control demands in previous studies (e.g., Bugg & Scullin, 2013; Bugg et al., 2013, 2016). 

Additionally, we aimed at separating potential effects of transient versus enduring 

cognitive-control demands on intention deactivation to further investigate under which 

conditions aging might affect intention deactivation. To this aim, in Experiment 1, we 

compared the effects of trial-by-trial cognitive-control demands on aftereffects of 

completed intentions between younger and older adults. In Experiment 2, we assessed only 

younger adults and extended the control-demand manipulation to allow for a more fine-

grained analysis of cognitive-control-availability effects on aftereffects of completed 

intentions. 

To reduce the risk of confounding potential effects of age or cognitive-control 

availability with effects of PM performance differences on aftereffects of completed 

intentions (Bugg & Scullin, 2013; Bugg et al., 2016), we used a design that should reliably 

produce both high PM performance and strong aftereffects of completed intentions: First, 

we used salient PM cues (i.e., red symbols) that have been shown to result in high PM 

performance (Beck et al., 2014; Scullin et al., 2012), reduce age differences in event-based 

PM performance (Kretschmer-Trendowicz & Altgassen, 2016; Rendell, McDaniel, Forbes, & 

Einstein, 2007) and seem to reliably produce strong aftereffects of completed intentions 

(Beck et al., 2014; Scullin et al., 2012). Second, our task instructions strongly emphasized 

the importance of the PM task during task instructions to foster PM performance (Walter & 

Meier, 2014). Third, to increase the size of aftereffects of completed intentions, we used the 

same ongoing task during PM-task performance and aftereffects measurement (Scullin et 

al., 2012). 

Both experiments employed a paradigm during which participants performed 

multiple cycles of a PM block and a subsequent test block (see also Walser et al., 2012). 

Participants’ ongoing task was to judge the direction of the majority of horizontal arrows 

that were presented in a circular display (majority function task; Fan, Guise, Liu, & Wang, 

2008; Wu, Dufford, Mackie, Egan, & Fan, 2016) (Figure 4). In PM blocks, participants 

received additional instructions to press the spacebar instead of making directional 

judgments in response to a pre-specified PM cue. In subsequent test blocks that served to 

measure aftereffects of completed intentions, no-longer-relevant PM cues from the 



 

 

54 

completed PM task (PMREPEATED cues) were presented as irrelevant distractors (e.g., Anderson 

& Einstein, 2017; Pink & Dodson, 2013; Scullin et al., 2012; Walser et al., 2012). The 

primary measures of interest were aftereffects of completed intentions during test blocks in 

terms of commission errors and ongoing-task performance costs (i.e., response slowing and 

increased error rates) during PMREPEATED compared to control (i.e., oddball) trials that served 

as a baseline to assess orientation reactions to novel stimuli (Walser et al., 2012). 

To induce different degrees of cognitive-control availability during processing of 

PMREPEATED cues, we manipulated the ratio of arrows pointing to the same or opposite 

direction during the ongoing majority-function task (e.g., trials in ratio 3:2 comprised 3 left 

and 2 right arrows; Figure 4B). This manipulation of arrow ratio goes beyond the qualitative 

manipulation of cognitive-control demands (conflict vs. no-conflict) in typical conflict tasks 

like Stroop color naming (Stroop, 1935) or Flanker tasks (Eriksen & Eriksen, 1974) in that it 

allows to induce different degrees of conflict and cognitive-control demands (i.e., 

computational load, Fan et al., 2008). We reasoned that inducing this kind of computational 

load in PMREPEATED trials should mobilize and bind cognitive-control resources for ongoing-

task performance (Goschke & Dreisbach, 2008; Scherbaum, Fischer, Dshemuchadse, & 

Goschke, 2011) and draw resources away from processes required for intention deactivation. 

In line with previous findings of conflict-strength dependent adjustments of cognitive-

control functions (e.g., Wendt, Kiesel, Geringswald, Purmann, & Fischer, 2014), this control 

mobilization should be proportionate to the degree of conflict induced by ongoing-task 

stimuli. Accordingly, we hypothesized that if intention deactivation requires available 

cognitive control during PMREPEATED cue encounters, aftereffects of completed intentions in 

terms of commission errors and/or performance costs in PMREPEATED compared to oddball 

trials should rise with increasing cognitive-control demands on ongoing-task performance 

(i.e., conflict strength) in PMREPEATED trials. 

Additionally, based on previous findings of impaired intention deactivation in older 

adults (Bugg et al., 2016), in Experiment 1, we expected a main effect of age with increased 

aftereffects of completed intentions in older compared to younger adults. Furthermore, 

since age effects on commission errors have been shown to increase under high demands on 

cognitive control (Bugg et al., 2016) and were linked to impaired cognitive-control 

functioning in older adults (Scullin et al., 2012, 2011), we assumed that aging would 

exacerbate effects of cognitive-control demands on aftereffects of completed intentions. 
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Figure 4. Procedure. (A) Illustration of trial sequences during PM and test blocks in the majority function task. 

Participants had to determine the direction of the majority of arrows in all ongoing-task trials except for 

prospective memory (PM) trials, in which they were required to press the spacebar instead. PM and PMREPEATED 

cues were red symbols that were presented in the center of the screen. Aftereffects of completed intentions were 

assessed during test blocks by comparing ongoing-task performance between PMREPEATED and oddball trials. (B) 

Illustration of possible arrow locations and arrow ratios in Experiment 1. In Experiment 2, arrows could appear 

at 12 possible locations and arrow ratios were 7:0, 6:1, 5:2, and 4:3. 

 

3.4. Experiment 1 

To assess the effects of cognitive-control availability and aging on intention 

deactivation, we compared aftereffects of completed intentions in PMREPEATED trials between 

arrow ratios 5:0 (no control demand), 4:1 (low demand), and 3:2 (high demand) in younger 

and older adults.  

3.4.1. Methods 

Ethics statement. The study was approved by the Institutional Review Board of the 

Technische Universität Dresden. All participants provided informed consent prior to 

performing any study procedures. 

Participants. Twenty-four younger (18 female, 19–28 years, Mage = 24.1, SDage = 2.2 

years) and 24 older adults (13 female, 57–75 years, Mage = 68.3, SDage = 5.7 years) took part in 

two sessions of the experiment lasting approximately 1.5 h each, in exchange for partial 

course credit or 15 €. Sum scores of the German Mehrfachwortschatz Intelligenztest MWT-A 

(English version: Multiple Choice Word Test-A; Lehrl, Merz, Burkhard, & Fischer, 1991) did 

not differ significantly between younger (M = 31.5, SD = 3.1) and older adults (M = 32.1, SD = 

1.9), t(37.94) = –0.84, p = .407, d = –0.24, suggesting that age groups did not differ in 

premorbid intelligence. 
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Apparatus and Stimuli. The experiment was performed on a Windows XP SP2 

personal computer running Presentation® software (Version 16.3, www.neurobs.com). A 

standard German (QWERTZ) keyboard was used to record participants’ responses. Stimuli 

were presented in Wingdings font against a light gray background on a 19-inch monitor at a 

resolution of 1280 ×1024 pixels (viewing distance approx. 60 cm). For ongoing-tasks, 

participants were instructed to press the X key with their left index finger if the majority of 

arrows pointed towards the left and to press the period (.) key with their right index finger if 

the majority of arrows pointed to the right. For PM tasks, participants were instructed to 

interrupt the majority judgments and instead press the spacebar in response to a pre-

specified symbol (PM cue; e.g., ). Trials were composed of either three or five black arrows 

(font size 17 pt, visual angle ≈ 5.7°) that could appear at eight equidistant positions along 

the outline of an imaginary circle (radius ≈ 1.4 cm, vertical visual angle ≈ 32.8°; Figure 4B). 

The position of arrows was determined randomly for each trial. PM cues, PMREPEATED cues and 

oddballs comprised 30 symbols (e.g., , ; font size 53 pt, vertical visual angle ≈ 17.7°, see 

Appendix A for all stimuli) that were presented in red at the center of the screen. 

Procedure. At the beginning of each session, participants gave their informed 

consent and briefly practiced the ongoing task. Participants then performed eight cycles of a 

PM block that included an event-based PM task, and a subsequent ongoing-task-only test 

block. This design—two sessions with several PM-block–test-block cycles—allowed us to 

increase the number of aftereffect measurements while avoiding the individual session from 

being too long (Walser, Plessow, et al., 2014). 

In order to facilitate PM performance and avoid a potential confound of aftereffect 

differences with differences in PM performance, instructions emphasized PM-task 

importance at the beginning of the experiment and at the start of each PM block (i.e., “It is 

important that you concentrate on detecting the symbol [PM cue].”) (Walter & Meier, 2014). 

Instructions were displayed for 14 s at the beginning of a block. At the end of PM blocks, 

participants were informed that the current task was finished (i.e., “Thank you. The current 

task is finished now.”, 3 s) and subsequently moved on to an ongoing-task-only test block. 

Each PM and test block consisted of 72 trials (66 standard, 3 PM/PMREPEATED, 3 oddball 

trials). Standard trials were 54 trials with five arrows (set size 5; 18 trials per arrow ratios 

5:0, 4:1 and 3:2), and 12 trials with three arrows (set size 3; 6 trials per arrow ratios 3:0 and 

2:1). We reasoned that including trials in set size 3 would reduce monotony during the 

experiment and could potentially increase general task-difficulty due to unexpected 

http://www.neurobs.com/
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changes in arrow quantity in ongoing-task trials. PM or PMREPEATED and oddball cues were 

presented randomly after the first four trials of a block (standard trials only) and appeared 

only once during a block in each arrow ratio of set size 5 (5:0, 4:1, 3:2). 

Trials started with the presentation of a black fixation cross (plus sign, Arial font, 

size 20 pt, vertical visual angle ≈ 6.7°) for 1000 ms, followed by the presentation of the 

imperative stimulus for a maximum of 5000 ms or until a response was given, followed by a 

blank screen for 400 ms. Errors and response omissions prompted a feedback tone (784 Hz) 

that was delivered through headphones for the first 200 ms of the blank screen. Deviant 

symbols for PM, PMREPEATED and oddball trials were drawn randomly from a pool of 30 

symbols and were presented simultaneously with onset of ongoing-task stimuli. 

3.4.2. Results 

We conducted separate analyses for response times (RTs), commission errors and 

other error types (i.e., erroneous ongoing-task responses or response omissions) in trials of 

set-size 5 only, since only these contained PM and PMREPEATED stimuli. For RT analyses, 

errors (8.1% response failure or miss) and trials with RTs ± 2.5 SDs of a participant’s mean 

RT for a given arrow ratio and trial type within each block were excluded (2.3%). The 

relevant data is set forth in Figure 5 and Table 2. 

Manipulation checks. In order to test whether increasing cognitive-control 

demands decreased cognitive-control availability during task performance and how this was 

affected by aging, we conducted repeated-measures ANOVAs involving the factors age 

(younger vs. older adults) and arrow ratio (5:0, 4:1, 3:2) on ongoing-task standard-trial RTs 

and error rates (excluding erroneous PM responses5) that were averaged across PM and test 

blocks. Subsequently, to determine whether potential effects of cognitive-control demand 

and/or age on aftereffects of completed intentions could be the result of differences in PM 

performance, we conducted similar ANOVAs on PM-trial RTs and error rates. 

Ongoing-task performance. Older adults responded slower in standard trials (1280 

ms) than younger adults (803 ms), F(1, 46) = 44.01, p < .001, ηp
2 = .49. As indicated by a 

significant main effect of arrow ratio, F(2, 92) = 251.06, p < .001, ηp
2 = .85, increasing the 

arrow ratio resulted in longer ongoing-task RTs (5:0: 653 ms, 4:1: 1000 ms, 3:2: 1472 ms). A 

significant Arrow ratio × Age interaction, F(2, 92) = 10.88, p = .002, ηp
2= .19, with a 

                                                 
5 We excluded erroneous PM responses from this manipulation check, since we conducted a separate analysis of 

commission-errors for the main analyses. 
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significant linear contrast, F(1, 46) = 11.31, p = .002, ηp
2 = .20, revealed that increasing the 

arrow ratio produced a stronger increase in ongoing-task RTs in older than in younger 

adults. 

Error rates were not affected by age (younger adults: 8.3%, older adults: 7.2%), F(1, 

46) = 0.76, p = .387, ηp
2 = .02. Similar to RT data, increasing the arrow ratio increased error 

rates, F(2, 92) = 190.37, p < .001, ηp
2 = .81 (5:0: 0.8%, 4:1: 3.6%, 3:2: 18.9%). Arrow ratio did 

not interact with age, F(2, 92) = 0.73, p = .483, ηp
2 = .02. 

PM performance. Younger adults responded faster to PM cues (755 ms) than older-

adults (1084 ms), F(1, 46) = 41.46, p < .001, ηp
2 = .47. We found a small effect of arrow ratio, 

F(2, 92) = 5.65, p = .005, ηp
2 = .11. Repeated contrasts revealed slower PM responses in 5:0 

(940 ms) compared to 4:1 PM trials (896 ms), F(1, 46) = 10.93, p = .002, ηp
2 = .19, which were 

faster than PM responses in 3:2 PM trials (921 ms), F(1, 46) = 4.10, p = .049, ηp
2 = .08. This 

effect did not differ between age groups, F(2, 92) = 0.56, p = .570, ηp
2 = .01. 

We found no effect of age on PM-error rates (younger adults: 12.3%; older adults: 

14.0%), F(1, 46) = .40, p = .530, ηp
2 = .01. Surprisingly, PM-error rates declined with 

increasing arrow ratio, F(2, 92) = 24.63, p < .001, ηp
2 = .35. Repeated contrasts revealed that 

this effect was most likely driven by a strong decrease in error rates from 5:0 (19.7%) to 4:1 

trials (9.1%), F(1, 46) = 44.03, p < .001, ηp
2 = .49, since arrow ratio did not affect error rates in 

4:1 compared to 3:2 trials (10.7%), F(1, 46) = 1.18, p = .283, ηp
2 = .03. As indicated by a 

significant Arrow ratio × Age interaction, F(2, 92) = 5.26, p = .008, ηp
2 = .10, and planned 

contrasts, increasing the arrow ratio from 5:0 to 4:1 produced a stronger decrease in PM 

errors in the younger (14.2%) than in older adults (5.9%), F(1, 46) = 8.22, p = .006 ηp
2 = .15. 

The difference between 4:1 and 3:2 trials did not differ between groups (younger adults: 

−1.5%, older adults: −1.5%), F(1, 46) = 0.00, p = 1.000, ηp
2 = .00. 

Aftereffects of completed intentions. In order to investigate the effects of age and 

cognitive-control demand on intention deactivation, we conducted Arrow ratio (5:0, 4:1, 

3:2) × Age (younger vs. older adults) repeated-measures ANOVAs on aftereffects of 

completed intentions in terms of performance differences between PMREPEATED and oddball 

trials in RTs, error rates (erroneous ongoing-task responses and response omissions) and 

commission-error rates during test blocks (see Walser et al., 2017, for a similar analysis). 

Additionally, in line with previous research on commission errors (Anderson & Einstein, 

2017; Bugg et al., 2016), we also analyzed the proportion of participants who made at least 

one commission error during test blocks. To determine statistical significance of the 
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hypotheses-relevant effects, age effects on intention deactivation were tested at a 

Bonferroni-corrected alpha level of .0125 (.05/4), whereas cognitive-control demand effects 

and Arrow ratio × Age interactions were tested at an alpha level of .0167 (.05/3), 

respectively. Note that p values for tests at the Bonferroni-corrected alpha levels are 

denoted as p*. Effect sizes for aftereffects of completed intentions and paired-samples t-

tests refer to standardized within-subject mean differences (drm; Lakens, 2013). 

RTs. Due to missing RT data in 43 out of 48 PMREPEATED trials, one older adult was 

excluded from RT analysis. We found that, while older adults exhibited nominally larger 

aftereffects (98 ms, drm = 0.21) than younger adults (54 ms, drm = 0.14), this difference did 

not reach significance at the Bonferroni-corrected alpha level, F(1, 45) = 4.15, p* = .048, ηp
2 

= .09. Aftereffects were affected by arrow ratio, F(2, 90) = 4.99, p* = .014, ηp
2 = .10. Planned 

comparisons showed that aftereffects in 5:0 trials (110 ms, drm = 0.26) were larger than in 4:1 

trials (21 ms, drm = 0.05), F(1, 45) = 11.72, p = .001, ηp
2 = .21, which were smaller than 

aftereffects in 3:2 trials (95 ms, drm = 0.18), F(1, 45) = 6.79, p = .012, ηp
2 = .004. Since visual 

inspection of the data suggested that aftereffects might differ between the extreme poles of 

cognitive-control availability, we also conducted a post-hoc t test that revealed no 

difference in aftereffects between 5:0 and 3:2 trials, t(46) = −0.37, p = .714, drm = −0.07. The 

effect of arrow ratio on aftereffects did not differ between groups, F(2, 90) = 0.38, p* = .646, 

ηp
2 = .01. 

Errors. We found no significant effects on aftereffects in error rates, all Fs ≤ 1.20, 

p*s ≥ .29, ηp
2s ≤ .01. 

Commission errors. Erroneous PM responses in test blocks occurred mostly in 

PMREPEATED trials (younger adults: 4, older adults: 80), with few commission errors in oddball 

trials (younger adults: 1, older adults: 17) and four commission errors by older adults in 

standard trials (Table 3). The majority of commission errors in PMREPEATED trials was made by 

two older adults in either the first (67% [16 out of 24 PMREPEATED trials]) or both experimental 

sessions (90% [36 out of 48 PMREPEATED trials]). While on a descriptive level, older adults 

produced larger commission-error aftereffects (5.47%, drm = 0.31) than younger adults 

(0.3%, drm = 0.23), this difference failed to reach significance at the Bonferroni-corrected 

alpha level, F(1, 46) = 3.47, p* = .069, ηp
2 = .07. Commission-error aftereffects did not differ 

statistically between arrow ratios, F(2, 92) = 1.52, p* = .227, ηp
2 = .03 (3.4%, drm = 0.25; 2.3%, 

drm = 0.14; 2.9%, drm = 0.24, in arrow rations 5:0, 4:1 and 3:2, respectively). Arrow ratio did 

not interact with age, F(2, 92) = 1.14, p* = .309, ηp
2 = .02. 
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In line with previous studies (Anderson & Einstein, 2017; Scullin et al., 2012), we 

also analyzed the proportion of participants who made at least one commission error in 

PMREPEATED or oddball trials during test blocks. The analysis revealed that, on a descriptive 

level, more older adults (n = 12) than younger adults (n = 4) made a commission error. This 

age effect, however, did not reach significance at the Bonferroni-corrected alpha level, χ2(1) 

= 6.00, p* = .014, OR = 5.00. 

 

Figure 5. Results from Experiment 1. (A) Mean response times (RT), error rates (erroneous ongoing-task 

responses and response omissions) for performance in PM blocks and test blocks as a function of trial type 

(standard, PM, PMREPEATED, oddball), arrow ratio (5:0, 4:1, 3:2) and age (younger adults, older adults). (B) 

Proportion of younger and older adults who made at least one commission error and mean commission-error 

(CE) rates during test blocks as a function of trial type, arrow ratio and age group. Error bars represent standard 

errors of the mean. 
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Table 2 

Mean (SD) Performance during PM- and Test blocks in Experiment 1. 

 Arrow ratio (cognitive-control demand) 

 5:0  4:1  3:2 

Trial type RT (ms) Errors (%)  RT (ms) Errors (%)  RT (ms) Errors (%) 

Younger adults 

PM blocks         
Standard 503 (57) 0.6 (0.7)  768 (170) 4.2 (4.4)  1152 (368) 20.8 (11.6) 

PM 769 (115) 21.9 (14.4)  739 (109) 6.8 (6.1)  756 (114) 8.3 (7.7) 

Oddball 728 (92) 1.0 (4.0)  953 (211) 3.6 (5.5)  1266 (399) 22.4 (16.6) 

Test blocks         

Standard 496 (58) 0.9 (1.4)  757 (172) 4.2 (4.6)  1142 (385) 19.3 (10.6) 

PMREPEATED 715 (155) 1.0 (2.4)  838 (180) 4.7 (6.5)  1323 (447) 19.8 (14.7) 

Oddball 633 (106) 0.8 (2.1)  835 (227) 5.2 (6.3)  1246 (446) 19.3 (16.7) 

Aftereffectsa 82 (72) 0.3 (2.2)  4 (117) −0.5 (5.2)  77 (228) 0.5 (12.8) 

Older adults 

PM blocks         
Standard 811 (151) 1.0 (2.2)  1246 (273) 3.1 (3.0)  1787 (487) 18.1 (8.5) 

PM 1111 (238) 17.4 (14.0)  1054 (236) 11.5 (11.3)  1086 (231) 13.0 (10.6) 

Oddball 1295 (204) 2.3 (4.0)  1539 (361) 3.4 (4.1)  2020 (591) 16.7 (11.5) 

Test blocks         

Standard 802 (151) 0.7 (1.5)  1230 (282) 2.8 (2.5)  1805 (474) 17.3 (8.2) 

PMREPEATED 1245 (324) 1.3 (4.1)  1409 (332) 4.9 (5.8)  1864 (518) 16.4 (11.0) 

Oddball 1108 (236) 0.8 (2.8)  1392 (310) 4.4 (5.4)  1750 (459) 19.8 (13.8) 

Aftereffectsa 137 (137) 0.5 (4.8)  40 (134) 0.5 (7.1)  114 (405) −3.4 (13.5) 

Note. Error rates represent erroneous ongoing-task responses and response omissions. 
aAftereffects represent performance differences between PMREPEATED and oddball trials. 

 

 

 

Table 3 

Mean (SD) Commission-error (CE) rates during Test Blocks in Experiment 1. 

 

 

 
 

Arrow ratio 

(cognitive-control demand) 

 5:0  4:1  3:2 

Trial type CE (%)  CE (%)  CE (%) 

Younger adults 

Test block      

Standard -  -  - 

PMREPEATED 0.8 (2.1)  0.3 (1.3)  - 

Oddball 0.3 (1.3)  -  - 

Aftereffectsa 0.5 (2.6)  0.3 (1.3)  - 

Older adults 

Test block      

Standard -  0.0 (0.1)  0.0 (0.1) 

PMREPEATED 7.8 (15.0)  6.2 (16.8)  6.8 (18.0) 

Oddball 1.6 (4.6)  1.8 (4.7)  1.0 (3.0) 

Aftereffectsa 6.2 (11.5)  4.4 (13.1)  5.7 (16.9) 
aAftereffects represent performance differences between PMREPEATED and 

oddball trials. 
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3.4.3. Discussion 

In Experiment 1, we compared effects of trial-by-trial cognitive-control availability 

on intention deactivation between younger and older adults. Regarding our manipulation of 

cognitive-control demands, results were straight-forward: Increasing the arrow ratio in 

ongoing-task trials produced the expected decline in ongoing-task performance (see also 

Fan, 2014; Fan et al., 2008), indicating that increasing cognitive-control demands seems to 

have decreased cognitive-control availability during task performance. This demand-

dependent response slowing in standard trials was more pronounced in older adults, which 

was not mirrored by error data. Such results might be indicative of a greater susceptibility of 

older adults for transient cognitive-control-demand effects on response initiation and/or a 

compensatory performance slowing of elderly to maintain high quality of ongoing-task 

performance (e.g., Kopp, Lange, Howe, & Wessel, 2014). 

As expected, PM performance with salient PM cues was high and PM error rates did 

not increase as a function of cognitive-control demand. By contrast, we even found an 

unexpected decrease in PM error rates with increasing cognitive-control demand. As our 

analysis of ongoing-task performance suggests, however, this was likely the result of overall 

faster responses during trials in arrow ratio 5:0 leading participants to miss PM cues more 

often than in other arrow ratios. This overlooking of PM cues in 5:0 trials seems to have 

been exacerbated by overall faster ongoing-task and PM responses in younger adults, which 

led to a slightly more pronounced PM-error decrease with increasing arrow ratio in younger 

compared to older adults. 

Older adults exhibited slowed PM performance while PM accuracy was not affected 

by age. This mirrors findings of comparable accuracy but slowed performance in older 

compared to younger adults in task switching (Kopp et al., 2014) and provides further 

evidence for spontaneous PM-retrieval processes with salient PM cues being spared with 

aging (Bugg et al., 2016; Kretschmer-Trendowicz & Altgassen, 2016; Scullin et al., 2011). 

The latter finding also renders it unlikely that potential age effects on intention 

deactivation could be confounded by age-related PM-performance differences. 

Regarding age effects on intention deactivation, we replicated previous findings of 

nominally increased aftereffects of completed intentions in terms of performance costs in 

PMREPEATED compared to oddball trials as well as nominally increased commission-error 

aftereffects and a tendency for an increased number of participants who made a commission 
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error in the older-adults compared to the younger-adults group (Scullin & Bugg, 2013; 

Scullin et al., 2012). Moreover, contrary to our hypothesis, effects of cognitive-control 

demand on intention deactivation did not differ between younger and older adults. This was 

especially surprising, given that we found stronger cognitive-control-demand effects on 

ongoing-task performance in older compared to younger adults. We will discuss potential 

mechanisms of this age effect on intention deactivation in the general discussion. 

Most importantly, regarding the modulation of intention deactivation by transient 

cognitive-control availability, results were ambiguous. We found no modulation of 

aftereffects in error or commission-error rates by cognitive-control demands. Similarly, RT 

aftereffects did not differ between extreme poles of control demands (5:0 vs. 3:2 trials), 

suggesting that intention deactivation does not depend on trial-by-trial cognitive-control 

availability. This interpretation is challenged strongly, however, by the absence of 

aftereffects during low-conflict trials (4:1). As an alternative, one could argue that due to 

increased processing demands of conflict compared to no-conflict trials (e.g., Botvinick et 

al., 2001; Braver, 2012), our manipulation of cognitive-control availability might affect 

intention deactivation only during conflict trials. That is, while low-conflict trials might 

have attenuated processing of PMREPEATED cues via increased shielding of the ongoing task 

(Goschke & Dreisbach, 2008), high-conflict trials might have impaired focusing attention 

on ongoing-task stimuli (e.g., Lavie, 2005) and consequently exacerbated interference from 

PMREPEATED cues. 

3.5. Experiment 2 

We conducted Experiment 2 to test if we could replicate the absence of aftereffects 

during low-conflict trials from Experiment 1, and to allow a more fine-grained investigation 

(no conflict vs. low conflict vs. medium conflict vs. high conflict) of the potential 

modulation of intention deactivation by transient cognitive-control demands during 

conflict trials. We reasoned that if intention deactivation was modulated by cognitive-

control availability only during conflict trials, then aftereffects should be decreased in low-, 

compared to no-conflict trials, but should increase linearly with increasing conflict strength 

across medium- and high-conflict trials. Since cognitive-control-demand effects on 

intention deactivation did not differ between younger and older adults in Experiment 1, we 

only investigated younger adults in Experiment 2. 

  



 

 

64 

3.5.1. Methods 

Participants. Forty-eight participants (35 female, 19–29 years, Mage = 23.8, SDage = 

2.9 years) took part in two sessions lasting approximately 1.5 h each, in exchange for partial 

course credit or 15 €. 

Stimuli and Procedure. Stimuli and procedure for Experiment 2 were similar to 

Experiment 1, with the following changes: Ongoing-task trials comprised five or seven 

arrows that could appear at 12 possible locations on the screen. PM and test blocks 

consisted of 98 trials (90 standard, 4 PM/PMREPEATED, 4 oddball trials), with 80 trials in set 

size 7 (20 trials per arrow ratios 7:0, 6:1, 5:2 and 4:3) and 18 trials in set size 5 (6 trials per 

arrow ratios 5:0, 4:1 and 3:2). Deviant symbols for PM, PMREPEATED and oddball trials were 

drawn randomly from a pool of 32 symbols. Note that PM or PMREPEATED symbols were 

presented pseudo-randomly throughout a block, with the restriction, that at least five trials 

were in between PM or PMREPEATED trial presentations. 

3.5.2. Results 

Analyses were conducted on trials of set-size 7 only, since only these contained PM 

and PMREPEATED stimuli. For RT analyses, errors (10.8% response failure or miss) and trials 

with RTs ± 2.5 SDs of a participant’s mean RT for a given arrow ratio and trial type within 

each block were excluded (2.5%). The relevant data is set forth in Figure 6 and Table 4 

Manipulation checks. Similar to Experiment 1, we first examined the effects of 

cognitive-control demands on ongoing-task performance to assess whether increasing 

control demands decreased cognitive-control availability. To this aim, we conducted 

repeated-measures ANOVAs on standard-trial RTs and error rates (excluding erroneous PM 

responses5) averaged across PM and test blocks as a function of arrow ratio (7:0, 6:1, 5:2, 

4:3). Subsequently, we analyzed PM performance (RTs, error rates) in similar ANOVAS to 

determine whether potential cognitive-control-demand effects on aftereffects of completed 

intentions could be the result of PM-performance differences between cognitive-control 

demands. 

Ongoing-task performance. Standard-trial RTs increased with increasing arrow 

ratio, F(3, 141) = 93.82, p < .001, ηp
2 = .67, (7:0: 530 ms, 6:1: 670 ms, 5:2: 878 ms, 4:3: 1177 

ms). This effect was mirrored by error data, F(3, 141) = 565.02, p < .001, ηp
2 = .92, (7:0: 1.2%, 

6:1: 3.1%, 5:2: 9.9%, 4:3: 28.1%). 
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PM performance. Arrow ratio did not affect RTs in PM trials (Table 4), F(3, 141) = 

1.69, p = .173, ηp
2 = .04. PM-error rates decreased with increasing arrow ratio, F(3, 141) = 

16.11, p < .001, ηp
2 = .26, in a linear fashion from 7:0 PM trials (22.3%) to 6:1 (14.7%) and 5:2 

trials (10.8%), with a nominal increase to 4:3 PM trials (12.6%), F(1, 47) = 33.56, p < .001, ηp
2 

= .42 (linear contrast). 

Aftereffects of completed intentions. To examine cognitive-control-demand 

effects on intention deactivation, we conducted repeated-measures ANOVAs involving the 

factor arrow ratio (7:0, 6:1, 5:2, 4:3) on aftereffects of completed intentions (i.e., 

performance differences between PMREPEATED and oddball trials) in RTs, commission errors 

and other error types (i.e., erroneous ongoing-task responses or response omissions). To 

determine statistical significance of the hypotheses-relevant effects of cognitive-control 

demands on intention deactivation, we used a Bonferroni-corrected alpha level of .0167 

(.05/3). Note that p values for tests at Bonferroni-corrected alpha levels are denoted as p*. 

RTs. Aftereffects of completed intentions did not differ statistically between arrow 

ratios, F(3, 141) = 0.62, p* = .549, ηp
2 = .01 (69 ms, drm = 0.35; 73 ms, drm = 0.30; 98 ms, drm = 

0.26; 49 ms, drm = 0.08 in arrow ratios 7:0, 6:1, 5:2, 4:3, respectively). Testing whether 

aftereffects differed between extreme poles of cognitive-control availability, as was 

suggested by visual inspection of the data, revealed no statistically significant difference 

between arrow ratio 7:0 and 4:3, t(47) = 0.52, p = .608, drm = 0.09. 

Errors. Similar to RT data, we found no effect of arrow ratio on aftereffects of 

completed intentions in error rates, F(3, 141) = 0.14, p* = .839, ηp
2 = .003. 

Commission errors. Commission errors were rare and occurred almost exclusively in 

PMREPEATED trials (0.9% [27 trials]); only two commission errors occurred in standard trials 

(Table 5). Commission-error aftereffects were affected by arrow ratio, F(3, 141) = 4.50, p* = 

.010, ηp
2 = .09 (1.8%, drm = 0.82; 0.9%, drm = 0.58; 0.3%, drm = 0.29; 0.5%, drm = 0.42 in arrow 

ratios 7:0, 6:1, 5:2, 4:3, respectively). Repeated contrasts revealed only nominally decreased 

commission-error aftereffects from 7:0 to 6:1 trials, F(1, 47) = 3.00, p = .090, ηp
2 = .06, and 

from 6:1 to 5:2 trials, F(1, 47) = 3.78, p = .058, ηp
2 = .07. Commission-error aftereffects also 

did not differ significantly between 5:2 and 4:3 trials, F(1, 47) = 0.66, p = .420, ηp
2 = .01. 

Additionally, testing the difference in commission-error aftereffects between the extreme 

poles of cognitive-control availability in this study (7:0 vs. 4:3), revealed larger aftereffects 

in 7:0 than in 4:3 trials, t(47) = 2.34, p = .024, drm = 0.52.  
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3.5.3. Discussion 

In Experiment 2, we investigated effects of trial-by-trial cognitive-control demands 

on intention deactivation in younger adults. Results were straightforward: First, similar to 

Experiment 1, increasing the arrow ratio decreased speed and accuracy of ongoing-task 

performance; possibly reflecting a demand-dependent decrease in cognitive-control 

availability. Second, we again found decreasing PM-error rates with increasing cognitive-

control demands, which may result from participants missing PM cues more often during 

trials in arrow ratios 7:0 and 6:1 due to their overall faster ongoing-task performance in 

these trials. Most importantly and in contrast to Experiment 1, we found no evidence for a 

modulation of aftereffects of completed intentions in terms of performance costs in 

PMREPEATED compared to oddball trials by cognitive-control availability. That is, RT and error 

aftereffects were not modulated by transient cognitive-control demands in PMREPEATED trials. 

Interestingly, however, we found that commission-error aftereffects decreased with 

increasing cognitive-control demands. We will discuss these effects in more detail in the 

general discussion. 

 
Table 4 

Mean (SD) Performance during PM- and Test Blocks in Experiment 2. 

 Arrow ratio (cognitive-control demand) 

 7:0  6:1  5:2  4:3 

Trial type RT (ms) Errors (%)  RT (ms) Errors (%)  RT (ms) Errors (%)  RT (ms) Errors (%) 

PM blocks            

Standard 532 (132) 1.1 (2.2)  676 (211) 2.9 (3.9)  883 (322) 9.7 (7.6)  1190 (542) 28.1 (8.3) 

PM 797 (150) 22.3 (14.3)  795 (162) 14.7 (11.6)  810 (155) 10.8 (12)  787 (138) 12.6 (12.7) 

Oddball 730 (186) 2.5 (5.1)  840 (262) 4.4 (6.7)  1053 (373) 12.4 (9.9)  1370 (602) 28.8 (12.3) 

Test blocks            

Standard 527 (122) 1.4 (2.9)  663 (189) 3.3 (4.2)  874 (297) 10.2 (7.8)  1165 (515) 28.1 (8.0) 

PMREPEATED 721 (200) 1.6 (3.8)  806 (253) 4.4 (6.9)  1033 (368) 9.2 (11)  1336 (622) 30.2 (14) 

Oddball 652 (179) 2.3 (6)  733 (222) 4.3 (6.6)  935 (377) 10.3 (9.5)  1287 (561) 31.1 (13.1) 

Aftereffectsa 69 (72) −0.8 (4.8)  73 (118) 0.1 (5.1)  98 (210) −1.0 (8.3)  49 (273) −0.9 (16.5) 

Note. Error rates represent erroneous ongoing-task responses and response omissions. 
aAftereffects represent performance differences between PMREPEATED and oddball trials. 

 
Table 5 

Mean (SD) Commission-error (CE) Rates during Test Blocks in Experiment 2. 

 Arrow ratio (cognitive-control demand) 

 7:0  6:1  5:2  4:3 

Trial type CE (%)  CE (%)  CE (%)  CE (%) 

Test blocks        

Standard -  -  0.0 (0.1)  0.0 (0.1) 

PMREPEATED 1.8 (3.1)  0.9 (2.2)  0.3 (1.3)  0.5 (1.7) 

Oddball -  -  -  - 

Aftereffectsa 1.8 (3.1)  0.9 (2.2)  0.3 (1.3)  0.5 (1.7) 
aAftereffects represent performance differences between PMREPEATED and 

oddball trials. 
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Figure 6. Results from Experiment 2. (A) Mean response times (RT) and error rates (erroneous ongoing-task 

responses and response omissions) for performance in PM blocks and test blocks in Experiment 2 as a function 

of trial type (standard, PM, PMREPEATED, oddball) and arrow ratio (7:0, 6:1, 5:2, 4:3). (B) Mean commission-error 

(CE) rates during test blocks as a function of trial type and arrow ratio. Error bars represent standard errors of 

the mean. 

 

3.6. General Discussion 

The aim of the present study was to investigate the effects of aging and transient 

availability of cognitive-control resources during encounters of no-longer-relevant PM cues 

on intention deactivation. We assessed aftereffects of completed intentions under varying 

degrees of cognitive-control demands in younger and older adults (Experiment 1) and with 

a more fine-grained parametric variation of cognitive-control demands during PMREPEATED 

trials (Experiment 2). In line with the dual mechanisms account of PM commission errors 

(Bugg et al., 2016; Scullin & Bugg, 2013; see also Meiser & Rummel, 2012), we expected 

that if transient cognitive-control availability during encounters of PMREPEATED cues was 

crucial for intention deactivation, aftereffects of completed intentions should increase with 

increasing cognitive-control demands on ongoing-task processing in PMREPEATED trials. 
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Moreover, based on previous findings (e.g., Scullin et al., 2012), we expected that aging 

should increase aftereffects of completed intentions and exacerbate potential effects of 

cognitive-control demands on aftereffects of completed intentions. 

First, we found evidence for a successful reduction of cognitive-control availability 

by increasing demands on cognitive control. That is, in both experiments we observed the 

characteristic increase in ongoing-task RTs and error rates with increasing trial-by-trial 

cognitive-control demands in a majority-function task (Fan, 2014; Fan et al., 2008). Second, 

in line with previous findings (e.g., Scullin & Bugg, 2013; Scullin et al., 2012), older adults 

exhibited a nominally higher risk of making a commission error after intention completion 

than younger adults. Note that these age effects could not be explained by impaired PM 

performance in older adults, as both groups did not differ in that regard. 

Third and most importantly, transient cognitive-control availability did not 

consistently modulate intention deactivation: In Experiment 1, RT and error aftereffects of 

completed intentions did not differ between extreme-poles of cognitive-control availability 

(i.e., between no-conflict and high-conflict trials) in both younger and older adults. 

Surprisingly, taxing cognitive control only a little (during low-conflict trials), led to an 

almost complete absence of RT aftereffects. These initial findings suggested that intention 

deactivation is either not modulated by transient cognitive-control availability during 

PMREPEATED-cue encounters or only modulated by cognitive-control availability during trials 

that place an additional burden on cognitive control, for instance, by inducing additional 

conflicts in stimulus processing. Astonishingly, however, even with an extended 

manipulation of cognitive-control demands in Experiment 2 (i.e., no conflict vs. low conflict 

vs. medium conflict vs. high conflict), RT and error aftereffects of completed intentions 

were not affected by transient cognitive-control demands. Surprisingly, we found that 

commission-error rates in Experiment 2 decreased with increasing cognitive-control 

demands. While it may be tempting to explain this effect with an attenuated processing of 

distractor stimuli during conflict trials, as has been observed in conflict-adaptation studies 

(e.g., Wendt et al., 2014), note that the overall number of commission errors in Experiment 

2 was very low and that we did not observe this effect in Experiment 1. It is also important 

to note that commission errors in PM are notoriously difficult to assess. Even under optimal 

conditions that foster spontaneous intention retrieval—i.e., using salient focal PM cues, 

matching ongoing tasks, few PM cue representations (McDaniel et al., 2015)—commission 

errors after intention completion can be quite rare (Anderson & Einstein, 2017). Although 
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there are task conditions that seemingly produce higher rates of erroneous PM responses 

than using completed intentions, for instance, using active intentions (Boywitt et al., 2015), 

instructions to suppress PM responses (Meiser & Rummel, 2012), cancelling PM-task 

performance or providing no opportunities to perform the PM task (Bugg & Scullin, 2013), 

these manipulations necessarily also shift the topic of investigation away from aftereffects 

of completed intentions. Thus, additional research is required to determine if and under 

which conditions transient cognitive-control demands affect commission-error rates or 

other measures of intention deactivation after intention completion. 

Based on the present findings, we suggest that while aging may increase aftereffects 

of completed intentions, intention deactivation might not be affected by transient 

cognitive-control availability during encounters of no-longer-relevant PM cues. Although 

our findings dovetail with previous reports of age-related declines in intention deactivation 

(e.g., Bugg et al., 2016) and corroborate the notion that intention deactivation does not rely 

on available cognitive resources after intention completion (Walser, Goschke, et al., 2014), 

it remains an open question how age effects on intention deactivation arise and through 

which mechanisms completed intentions are deactivated. 

3.6.1. Effects of Age on Intention Deactivation 

Previous reports of increased aftereffects of completed intentions or more frequent 

commission errors in older adults with completed (Scullin et al., 2012) or suspended 

intentions (Boywitt et al., 2015) have been attributed to a supposed decline in cognitive-

control abilities with cognitive aging (Hasher, Stoltzfus, Zacks, & Rypma, 1991). However, 

the notion of a general age-related cognitive-control impairment is not undisputed (e.g., 

Cona, Arcara, Amodio, Schiff, & Bisiacchi, 2013; Lustig & Jantz, 2015; Verhaeghen, 2011). 

Importantly, given that in the present study aging only modulated cognitive-control-

demand effects on ongoing-task performance but not on aftereffects of completed 

intentions. In light of these selective effects of aging, older adults’ impaired intention 

deactivation cannot be accounted for by an overall impairment of cognitive-control 

processes. Rather, our findings highlight the necessity to determine which specific 

cognitive-control functions are affected by aging to elucidate the mechanisms for age 

effects in PM and intention deactivation. Although, based on the present study, we cannot 

rule out that age effects on intention deactivation arise due to deficits in response 
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inhibition, there are several alternative mechanisms through which impaired intention 

deactivation in older adults could arise, that we believe would be useful for future research. 

First, deficits in cognitive flexibility or shifting abilities could account for increased 

aftereffects in older adults. That is, several studies reported that older adults show impaired 

shifting abilities in terms of attenuated associations between a cue and a context (e.g., PM 

cue and PM block) (Lustig & Jantz, 2015), difficulties in activating and updating context 

information (Braver, Satpute, Rush, Racine, & Barch, 2005) or in disengaging from no-

longer-relevant task sets when performing a single task after a period of task switching (i.e., 

fade-out costs; Mayr & Liebscher, 2001). Applying this logic to the present paradigm, we 

speculate that the lack of a strong association between the PM cue and the PM block in 

older adults could have led to increased interference from PMREPEATED cues in test blocks. 

Second, increased aftereffects could also stem from older adults’ difficulty in 

ignoring distracting information (Weeks & Hasher, 2014) that seems to increase with age 

(Giesen, Eberhard, & Rothermund, 2015). More specifically, difficulties in ignoring 

PMREPEATED cues could increase the risk of accidentally retrieving the completed PM-task set 

and/or the intended action, which would exacerbate aftereffects of completed intentions. 

Lastly, age effects on cognitive control abilities dissociate between a proactive and a 

reactive mode of control (Manard, François, Phillips, Salmon, & Collette, 2017). 

Specifically, while older adults exhibit deficits in proactive control in terms of utilizing task 

information to anticipate conflicts during task performance (Braver et al., 2005; Manard, 

Carabin, Jaspar, & Collette, 2014), reactive control in terms of the ability to establish, 

maintain and quickly adapt to novel cue–attention associations is preserved (e.g., Bugg, 

2014; Manard et al., 2017). Interestingly, older adults’ deficit in proactive control in some 

cases is compensated by stronger mobilization of reactive control to uphold performance 

(Kopp et al., 2014). In the present study, high demands on proactive-control (i.e., due to 

mostly incongruent ongoing-task trials) might have led to a compensatory recruitment of 

reactive control in older adults. Consequently, reactive control processes required for 

intention deactivation would have been reduced and thereby led to an increase in 

aftereffects. It is unclear, however, whether this logic could also apply to previous studies 

on intention deactivation in older adults in which ongoing-task items were balanced for 

congruency (Bugg et al., 2016; Scullin & Bugg, 2013; Scullin et al., 2012, 2011). It seems at 

least feasible that older adults’ compensatory recruitment of reactive control for ongoing-
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task performance could explain impairments in reactive control over intention deactivation 

that may ultimately lead to increased aftereffects of completed intentions. 

3.6.2. Effects of Cognitive-Control Availability on Intention Deactivation 

Our findings raise a number of questions regarding the mechanisms of intention 

deactivation: First, the surprising robustness of RT aftereffects of completed intentions 

even under extreme cognitive-control demands raises the question whether RT aftereffects 

can at all be modulated by top-down adjustments of cognitive control. The extent to which 

this might be possible could likely depend on the degree to which task features foster 

spontaneous intention retrieval. That is, when reliance on spontaneous retrieval is high 

(e.g., with salient PM cues), spontaneous intention retrieval might overshadow potential 

effects of cognitive-control demands on intention deactivation. Testing this, however, is 

difficult since reducing the likelihood of spontaneous retrieval also reduces the likelihood of 

observing aftereffects of completed intentions. 

Second, the lack of demand-dependent effects on RT aftereffects and our 

observation of decreasing commission-error rates with increasing cognitive-control 

demands in the present study seems to be at odds with the dual mechanisms account of PM 

commission errors and previous reports of control-dependent modulations of aftereffects of 

completed intentions (Bugg et al., 2016; Scullin & Bugg, 2013; see also Meiser & Rummel, 

2012). Note, however, that in the present study we focused on cognitive control in terms of 

uncertainty reduction. That is, our control-demand manipulation targeted the number of 

computations that are required for response selection in a trial (Fan, 2014; Wang, Liu, & 

Fan, 2011). Although shared-capacity models of cognitive control (e.g., Fan, 2014) propose 

that any type of cognitive load or mental operation should usurp cognitive resources that, 

according the dual-mechanisms account of PM commission errors, might be needed for 

successful intention deactivation, we found no evidence for this here. Hence, it remains an 

open question whether intention deactivation and ongoing-task performance after 

intention completion do rely on shared capacities and/or parallel processing of ongoing 

tasks and intention-related information. This seems at least feasible, given that the effects 

of cognitive-control demands in ongoing-task trials and effects of deviant stimuli on task 

performance in the present study seem to be additive. 

Lastly, we would like to point out that a reduction of cognitive-control resources for 

intention deactivation due to increased ongoing-task shielding during conflict trials 
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(Goschke & Dreisbach, 2008) may not be the only mechanism through which transient 

cognitive-control demands could affect intention deactivation. Research on conflict-

adaptation effects showed that prior experience of conflict can lead to more controlled task 

processing in terms of increased attention allocation towards target stimuli and decreased 

interference from distractor stimuli (e.g., Notebaert & Verguts, 2006; Wendt et al., 2014). If 

this cognitive-control adjustment happened online within a trial, increasing conflict 

strength in PMREPEATED trials should actually reduce aftereffects of completed intentions. 

While we did not find conclusive evidence for this here, it is important to note that both 

mechanisms—(a) reduced cognitive-control resources for intention deactivation and (b) 

increased attention allocation towards ongoing-task stimuli—might not necessarily be 

mutually exclusive. It is feasible that, if both processes were affected by manipulations of 

cognitive-control demands in equal amounts, their effects on task performance would 

counteract each other, which could also explain the lack of cognitive-control-demand 

effects on intention deactivation in the present study. Importantly, however, future studies 

are required to determine if and under which conditions this is true and what the individual 

contribution of each process to a cognitive-control dependence of intention deactivation 

might be. 

3.6.3. Conclusion 

The present study was the first to investigate the effects of transient availability of 

cognitive control on intention deactivation in a task that required cognitive control in terms 

of perceptual grouping attempts for response selection during encounters of PMREPEATED 

cues. Although this is arguably a critical time-point for intention deactivation, we did not 

find evidence for a cognitive-control dependence of intention deactivation in terms of RT 

and error aftereffects of completed intentions. However, we found that older adults tended 

to be at a higher risk to make a commission error after intention completion. Additionally, 

we found preliminary evidence for a cognitive-control dependence of commission-error 

occurrences. Clearly, future research is needed to ascertain (a) whether intention 

deactivation is modulated by other transient cognitive-control demands, (b) which markers 

of intention deactivation are affected by these demands, (c) during which phases after 

intention completion cognitive-control availability is most critical, and relatedly, (d) which 

factors differentiate situations or persons that show aftereffects of completed intentions 

and commission errors from those who do not? 
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Answering these questions would, for instance, require to test whether and how 

aftereffects as well as the processes underlying prospective remembering are modulated by 

factors that are known to alter cognitive-control functioning. One of these factors is acute 

stress. In brief, experiences of acute stress have been theorized to impair higher-order 

cognitive functioning related to the prefrontal cortex or the hippocampus (e.g., Arnsten, 

2015) and have repeatedly been shown to modulate cognitive-control functions like 

response inhibition, working memory and selective attention (for an overview, see Shields 

et al., 2016). At the same time, associations of PM and intention deactivation to these 

cognitive-control functions (e.g., Bugg et al., 2016; Cona et al., 2015) and to stress-sensitive 

brain areas (e.g., Beck et al., 2014; Carlesimo et al., 2014) provide potential pathways 

through which acute stress could modulate these capacities. Therefore, the following two 

studies tested the effects of acute stress experiences after exposure to standardized stress-

induction protocols on PM and intention deactivation. Additionally, in order to elucidate 

potential boundary conditions of such effects, these studies employed conditions that 

additionally posed varying demands on PM-cue detection, PM monitoring and intention 

deactivation (Study 2) as well as on ongoing-task performance (Study 3) that themselves 

have been shown to modulate PM (e.g., McDaniel et al., 2015; West & Bowry, 2005) and 

intention deactivation (e.g., Scullin et al., 2012). 
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4. Study 2 – Acute Stress Shifts the Balance Between 

Controlled and Automatic Processes in Prospective 

Memory 

4.1. Abstract  

In everyday life we frequently rely on our abilities to postpone intentions until later 

occasions (prospective memory; PM) and to deactivate completed intentions even in 

stressful situations. Yet, little is known about the effects of acute stress on these abilities. In 

the present work we investigated the impact of acute stress on PM functioning under high 

task demands. 1) Different from previous studies, in which intention deactivation required 

mostly low processing demands, we used salient focal PM cues to induce high processing 

demands during intention-deactivation phases. 2) We systematically manipulated PM-

monitoring demands in a nonfocal PM task that required participants to monitor for either 

one or six specific syllables that could occur in ongoing-task words. Eighty participants 

underwent the Trier Social Stress Test, a standardized stress induction protocol, or a 

standardized control situation, before performing a computerized PM task. My primary 

interests were whether PM performance, PM-monitoring costs, aftereffects of completed 

intentions and/or commission-error risk would differ between stressed and non-stressed 

individuals and whether these effects would differ under varying task demands. 

Results revealed that PM performance and aftereffects of completed intentions 

during subsequent performance were not affected by acute stress induction, replicating 

previous findings. Under high demands on intention deactivation (focal condition), 

however, acute stress produced a nominal increase in erroneous PM responses after 

intention completion (commission errors). Most importantly, under high demands on PM 

monitoring (nonfocal condition), acute stress led to a substantial reduction in PM-

monitoring costs. These findings support ideas of selective and demand-dependent effects 

of acute stress on cognitive functioning. Under high task demands, acute stress might 

induce a shift in processing strategy towards resource-saving behavior, which seems to 

increase the efficiency of PM performance (reduced monitoring costs), but might increase 

initial susceptibility to automatic response activation after intention completion. 
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4.2. Introduction 

Prospective memory (PM) is an essential human capacity that enables goal-directed 

behavior. It describes the ability to form and maintain an intention in memory and to 

postpone its execution until the encounter of a certain occasion (event-based PM) or time 

point (time-based PM) in the future (e.g., McDaniel & Einstein, 2007). This ability to 

disengage intended actions from the immediate present for future execution is related to 

higher-order cognitive functions that form the basis of complex behavior, planning, and 

anticipation of future action consequences (e.g., Goschke, 2013; Miyake et al., 2000). 

Everyday examples include taking medication at a pre-specified time schedule or 

congratulating a colleague to her birthday upon encounter of the colleague during a day at 

the office. These examples demonstrate that we often need to maintain intentions while 

engaging in other activities (i.e., ongoing tasks). They also illustrate that PM entails a 

number of dissociable components such as the active monitoring for events (PM cues) that 

indicate the retrieval of the intention (e.g., McDaniel & Einstein, 2000; R. E. Smith, 2003), 

the actual retrieval and execution of the intention (e.g., Ellis, 1996), and the deactivation of 

the intention representation after intention execution (e.g., A.-L. Cohen et al., 2017; 

Scullin et al., 2012; Walser et al., 2012, 2017). 

Given the importance of PM functioning in everyday life (Kliegel & Martin, 2003), it 

is essential to understand the reliability and potential limits of successful PM functioning in 

extreme everyday situations, such as being exposed to an acute stressor. In the present 

study, we aimed at testing the reliability of different PM components following an acute 

psychosocial stress experience. 

Stress is an important influence on modern private and work life (e.g., Kalia, 2002). 

Increasing work intensity and complexity that are related to multiple task performance and 

increased numbers of task interruptions (European Foundation for the Improvement of 

Living and Working Conditions, 2015; Lohmann-Haislah, 2012) not only place high 

demands on PM (Dodhia & Dismukes, 2009) and can lead to severe PM failures (Dismukes & 

Nowinski, 2007; Loft, 2014) but have also been associated with elevated levels of 

experienced stress (S. Cohen et al., 2007). The link between an acute stress experience and 

PM performance, however, is not well understood to date. 

The experience of acute stress not only affects subjective well-being but also 

impacts several essential aspects of biological and psychological functioning. While acute 
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stress induces several biological effects that act on different time scales, a two-wave stress 

response is discussed most prominently. First, during an initial first-wave response of the 

body to a stressful experience, increased activation of the sympathetic nervous system 

(SNS) amplifies the release of catecholamines (i.e., noradrenaline, dopamine). During a later 

second-wave response, stress increases a slower and prolonged activity of the 

hypothalamus pituitary adrenal (HPA) axis, which increases the release of glucocorticoids 

(i.e., cortisol) into the bloodstream. 

The biological link between acute stress and PM functioning may be found in the 

shared involvement of the hippocampus and the prefrontal cortex (PFC). PM functioning 

has been shown to depend in parts on the hippocampus (e.g., Adda, Castro, Além-Mar e 

Silva, de Manreza, & Kashiara, 2008; McDaniel & Einstein, 2011; but see Cona, Bisiacchi, 

Sartori, & Scarpazza, 2016, for a meta-analysis of neural correlates of PM), which is highly 

sensitive to effects of acute stress (e.g., Schwabe, Joëls, et al., 2012). Furthermore, both, the 

fast SNS and the slow HPA-axis stress response are linked closely to the PFC. The fast 

release of catecholamines reduces the firing of PFC neurons (Arnsten, 2009), whereas the 

slow HPA activity changes PFC activity via glucocorticoid receptors and alters neural 

connectivity (Arnsten, 2015). Consequently, stress can affect cognitive processing that has 

been linked to the PFC, such as working memory (Oei et al., 2006; Schoofs et al., 2009), 

attention (Chajut & Algom, 2003; Sänger, Bechtold, Schoofs, Blaszkewicz, & Wascher, 

2014), and higher-order cognitive control functions like inhibition or cognitive flexibility 

(e.g., Plessow, Fischer, et al., 2011; for meta-analyses, see Shields et al., 2015, 2016) that are 

also involved in PM (e.g., Kliegel et al., 2002; Schnitzspahn, Stahl, Zeintl, Kaller, & Kliegel, 

2013). 

At the same time, recent neuroimaging studies found PM performance and 

monitoring for PM cues to be associated with neural activity predominantly in anterior PFC 

(e.g., Cona et al., 2015; McDaniel, LaMontagne, Beck, Scullin, & Braver, 2013; McDaniel et 

al., 2015; Underwood, Guynn, & Cohen, 2015), and also linked intention deactivation to 

PFC functioning (Beck et al., 2014). Furthermore, patients with lesions especially in the 

rostral PFC have been documented to suffer from severe PM deficits, such as detecting PM 

cues or resuming task performance after interruptions (Uretzky & Gilboa, 2010). 

While the biological link between PM and PFC functioning provides a potential 

pathway through which acute stress might affect PM and intention deactivation, the 

direction of the potential effects of acute stress on PM (as well as other higher-order 
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cognitive functions) is not clear. On the one hand, stress-related changes in PFC 

functioning have been argued to impair higher-order cognitive functions (Arnsten, 2015; 

Liston, McEwen, & Casey, 2009). On the other hand, increases in cortisol levels have 

occasionally been reported to benefit certain cognitive-control functions like response 

inhibition (Schwabe, Höffken, Tegenthoff, & Wolf, 2013; Shields et al., 2016) or goal 

shielding (Plessow, Fischer, Kirschbaum, & Goschke, 2011). Given the frequently reported 

effects of stress on cognitive functions and the strong reliance of PM on cognitive control, it 

is surprising that to our knowledge PM performance in simple, event-based PM tasks (e.g., 

correct identification and response to a pre-specified PM cue) seems rather robust and 

mostly unaffected by acute stress (Nater et al., 2006; Walser et al., 2013) as well as chronic 

stress (McLennan, Ihle, Steudte-Schmiedgen, Kirschbaum, & Kliegel, 2016). For instance, 

Walser et al. (2013) found preserved PM performance under acute stress, when participants 

were required to interrupt an ongoing word-categorization task in response to certain pre-

specified PM words. Moreover, in their study, acute stress did not affect performance costs 

when searching for a PM cue (i.e., PM-monitoring costs; Einstein & McDaniel, 2010; R. E. 

Smith et al., 2007), or interference from no-longer-relevant PM cues (i.e., PMREPEATED cues) 

compared to control stimuli after intention completion (i.e., aftereffects of completed 

intentions). Yet, concluding invulnerability of PM to acute stress might be premature. It is 

important to note that previous studies on the effects of acute stress on PM featured only a 

limited section of PM components and low PM demands that might have concealed or 

overlooked stress effects on other processes that are involved in PM performance and 

intention deactivation. Both, Nater et al. (2006) and Walser et al. (2013), for example, 

employed so-called focal PM cues in which identifying the PM cue (e.g., the word CANDLE) 

required similar processing to performing the ongoing task (e.g., an animate–inanimate 

decision on the word CANDLE, see Walser et al., 2013). The choice of focal PM cues most 

likely fostered spontaneous intention retrieval (Einstein et al., 2005; Harrison & Einstein, 

2010) and placed rather little demands on PM monitoring (Cona et al., 2016; Scullin, 

McDaniel, Shelton, & Lee, 2010) or cognitive control (Cona et al., 2015). Since acute stress 

has been shown to affect cognitive functions under high demands in particular (Oei et al., 

2006; Plessow, Schade, Kirschbaum, & Fischer, 2012; Schoofs et al., 2009), it is feasible that 

PM-task demands in previous studies were simply too low to make potential stress effects 

visible. 
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Therefore, in the present study we tested whether an acute stress experience affects 

PM performance and intention deactivation after intention completion when demands on 

PM, monitoring, and intention deactivation are increased. The present study was modeled 

after the approach of Walser et al. (2013) but included two separate conditions: 

First, to induce high demands on PM performance and PM monitoring, we 

specifically used nonfocal PM cues in an event-based PM task in which identifying the PM 

cue (e.g., the letter sequence TRA in the word WELTRAUM) required different stimulus 

processing than performing the ongoing task (i.e., categorize words as nouns or verbs) (e.g., 

Einstein et al., 2005). Nonfocal, compared to focal PM cues have repeatedly been shown to 

increase difficulty of PM-cue detection (i.e., reduced PM accuracy, e.g., Einstein et al., 2005) 

and strongly engage cognitive-control processes (Cona et al., 2015). Within this nonfocal 

condition we included a two-step parametric manipulation of prospective load (low vs. high) 

to additionally target different degrees of PM monitoring (A.-L. Cohen, Jaudas, & 

Gollwitzer, 2008; Meier & Zimmermann, 2015) under already high demands. In the low-

load nonfocal condition, participants were instructed to monitor for PM-cue words that 

contained one specific three-letter sequence (e.g., TRA: WELTRAUM). In the high-load 

nonfocal condition, however, participants were instructed to monitor for PM-cue words that 

contained any permutation of three specific letters (e.g., A, C, and K: JACKE). 

In the second condition, we induced high demands on intention deactivation by 

using focal but salient PM cues (and PMREPEATED cues), i.e., words that were presented in a 

distinctive color. we termed this the focal condition. This reasoning was based on previous 

studies on aftereffects of completed intentions showing that the heightened salience of 

PMREPEATED cues can increase the difficulty of intention deactivation (Scullin et al., 2012, 

2011). Additionally, we increased PM-monitoring demands compared to earlier studies, by 

having participants maintain four focal PM cue words instead one (Nater et al., 2006) or two 

(Walser et al., 2013)6. 

Three hypotheses can be formulated regarding how acute stress may affect PM 

performance: 1) Acute stress impairs PM functioning (Arnsten, 2015). 2) Acute stress causes 

shifts in processing strategies to compensate for stress-induced processing challenges 

(Robert & Hockey, 1997; Steinhauser, Maier, & Hübner, 2007). 3) Acute stress does not 

impact on PM functioning (Nater et al., 2006; Walser et al., 2013). 

                                                 
6 Note that increasing the number of focal PM cues to be maintained still requires considerably less monitoring 

than the implementation of nonfocal PM cues. 
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With respect to Hypothesis 1, PM processes that require cognitive control and thus 

rely on intact PFC functioning should become less efficient. From this perspective, an acute 

stress experience should reveal negative effects on PM monitoring and performance. PM-

cue detection should be impaired, and monitoring costs should be high due to the difficulty 

to recruit sufficient resources for control-dependent monitoring processes. In addition, less 

efficient cognitive control mechanisms should impair cognitive control over intention 

retrieval after intention completion (Bugg et al., 2016). As a consequence, impaired 

intention deactivation after intention completion should exacerbate interference of 

PMREPEATED cues with ongoing-task processing and/or increase the probability that PMREPEATED 

cues interfere with ongoing-task processing. 

Regarding Hypothesis 2, acute stress does not necessarily impair cognitive control 

functions but may be responsible for shifts in processing strategy, that reflect compensatory 

effects of resource re-allocation, to optimize performance under the stress-imposed 

resource constraints (Robert & Hockey, 1997; Steinhauser et al., 2007). In dual-task studies, 

acute stress resulted in the adoption of resource-saving processing strategies (Plessow et 

al., 2012) and more efficient processing of both tasks as indicated by increased response 

speed (Beste, Yildiz, Meissner, & Wolf, 2013). Therefore, under the assumption of a 

compensatory shift in task processing strategy it is conceivable to assume an apparent 

optimization strategy. This could be evident in either priority shifts between ongoing task 

and PM performance and/or in an attempt to adopt a resource-saving task-processing 

strategy (e.g., to reduce resource-demanding PM monitoring). 

Importantly, for both hypotheses—impairment and strategy shifts—the impact of an 

acute stressor on PM monitoring and PM performance should be more pronounced with 

higher demands of PM-related processing, e.g., rather under nonfocal than under focal 

conditions and under high prospective load than under low prospective load. Hypothesis 3 

holds that despite the substantial increases of PM-performance demands in the present 

paradigm the targeted processes involved in PM performance are not susceptible to an 

acute stressor. 

To test these hypotheses, we adopted a research design that targets three important 

components of PM functioning: PM performance, monitoring, and intention deactivation. 

For this, participants performed several cycles of a PM block and a test block. PM blocks 

served to assess PM performance. Participants categorized words during an ongoing word-

categorization task and were instructed to press a specific button in response to PM cues 
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instead of performing word categorizations (PM task; see Figure 7). Test blocks did not 

contain a PM task and served as a no-intention (i.e., ongoing-task-only) baseline for 

investigating PM-monitoring costs and intention deactivation after PM-task completion. 

Following random group assignment, half of the participants were exposed to the Trier 

Social Stress Test (TSST) (Kirschbaum, Pirke, & Hellhammer, 1993), while the remaining 

half were exposed to a standardized no-stress control procedure (Het, Rohleder, Schoofs, 

Kirschbaum, & Wolf, 2009). During the TSST, participants first sat through an anticipatory 

period (5 min) and subsequently engaged in a simulated job interview (5 min), followed by 

performing mental arithmetic (5 min) in front of a two-person committee and a video 

camera. During the no-stress control treatment, participants sat through an anticipatory 

period (5 min) as well, but in contrast to the TSST subsequently engaged in loud speaking (5 

min) and mental arithmetic (5 min) without the presence of a committee or a video camera. 

Figure 7. Cognitive task. Illustration of trial sequences during PM and test blocks in the (A) nonfocal and (B) 

focal condition. Participants categorized German words as nouns versus verbs (ongoing task). In PM trials, they 

were to press the spacebar instead of performing the ongoing task. In the nonfocal condition, PM cues were 

words that contained one specific three-letter sequence (e.g., TRA; low prospective load) or any permutation of 

three specific letters (e.g., T, R, & A; high prospective load). In the focal condition, PM cues were words that 

were presented in a distinctive color, e.g., HANDELN, printed in orange. Monitoring costs were assessed by 

comparing performance in ongoing-task trials during PM and test blocks. Aftereffects of completed intentions 

were assessed by comparing performance in PMREPEATED trials to performance in ongoing-task (nonfocal 

condition) or oddball trials (focal condition) during test blocks. The colored framing was absent during the 

experiment and is for illustration purposes only. 
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4.3. Methods 

4.3.1. Participants 

Eighty participants (40 female, Mage = 22.69, SDage = 3.24 years) were tested during a 

single session, lasting approximately 2 h in exchange for €16. For pragmatic considerations, 

sample size was based on a previous study using a similar paradigm (Walser et al., 2013). 

Sample size allowed us to detect medium–large effects of group (f = 0.32, e.g., Faul, 

Erdfelder, Lang, & Buchner, 2007) at α = 0.05 (two-sided) with a power of 0.8. 

To reduce individual variability of cortisol levels and stress responses, we only 

included healthy participants, who were nonsmokers (Rohleder & Kirschbaum, 2006), did 

not take hormonal contraception (Kirschbaum, Kudielka, Gaab, Schommer, & Hellhammer, 

1999), were medication free and of normal weight (BMI: M = 22, SD = 2.55 kg/m2) and 

scheduled all visits with a session start between 11.45 am and 5.30 pm (Kudielka, 

Hellhammer, & Wüst, 2009). Since distribution of testing time did not differ significantly 

between groups (stress: Mdn = 3.38 pm, no-stress: Mdn = 2.22 pm), Mann–Whitney U = 

661.00, p = .180, it seems unlikely that potential stress effects could be masked by group-

differences in circadian variability of PM performance (e.g., Rothen & Meier, 2017). 

4.3.2. Ethics Statement 

The study was approved by the Institutional Review Board of the Technische 

Universität Dresden and conducted in accordance to ethical standards of the 1964 

Declaration of Helsinki. Informed consent was obtained from all participants prior to 

performing any study procedures. 

4.3.3. Stress Induction and Stress Validation 

Half of the participants (20 female, 20 male) were randomly assigned to a stress 

treatment during which they were exposed to the TSST, a standardized stress-induction 

protocol administering an experience of uncontrollability and social-evaluative threat 

(Kirschbaum et al., 1993). The remaining half of the participants was assigned to a no-stress 

treatment during which they performed a control situation without stress-inducing features 

(Het et al., 2009). 

In order to validate successful stress induction, we analyzed levels of salivary α-

amylase (sAA) as a marker of SNS activity (e.g., Granger, Kivlighan, El-Sheikh, Gordis, & 

Stroud, 2007; Thoma, Kirschbaum, Wolf, & Rohleder, 2012; but see Bosch, Veerman, de 



 

 

82 

Geus, & Proctor, 2011; Nater & Rohleder, 2009, for discussions about sAA’s reflection of 

SNS activity) and assessed salivary free cortisol as a marker of HPA-axis activity (e.g., 

Hellhammer, Wüst, & Kudielka, 2009; Kirschbaum & Hellhammer, 1994). Saliva samples 

were collected 10 min and 1 min prior to treatment, as well as 1, 10, 20, 30, 40, and 50 min 

after treatment using Salivette® sampling devices (Sarstedt, Nümbrecht, Germany; see 

Figure 8 A). SAA and cortisol levels were analyzed with quantitative enzyme-kinetic 

methods (reagents nr. 11876473316 & 10759350-190, Roche Diagnostics Deutschland 

GmbH; sensitivity: 2 U/ml) (Rohleder & Nater, 2009) and chemiluminescence 

immunoassays (CLIA, IBL International, Hamburg, Germany; sensitivity: 0.2 nmol/l) with 

intra- and interassay variabilities ≤ 6%, respectively. 

To ensure that potential treatment effects are truly related to acute stress and not to 

variations in the participants’ mood, arousal or fatigue, we also collected subjective ratings 

of the participants’ good mood, calmness, and alertness over the course of testing via the 

German Mehrdimensionaler Befindlichkeitsfragebogen (MDBF; English version: 

Multidimensional mental-state questionnaire; Steyer, Schwenkmezger, Notz, & Eid, 1997). 

Subjective mood data was collected during saliva sampling 10 min prior to treatment, 

approximately 3 min into treatment (MDBF after saliva sampling) as well as 1, 10, 30, and 

50 min after treatment. 

4.3.4. Cognitive Task 

Apparatus and stimuli. The experiment was performed on a personal computer 

running Presentation® software (Version 16.3, www.neurobs.com). Stimuli (Arial font, 

size: 24 pt, vertical visual angle ≈ 0.72°) were presented centrally, in white against a black 

background on a 19-inch monitor at a resolution of 1280 × 1024 pixels (viewing distance ca. 

60 cm). A QWERTZ keyboard was used to record the participants’ responses. Participants 

were instructed to press the X key with their left index finger to indicate verbs, and the 

period key with their right index finger to indicate nouns. 

Target stimuli were 744 German nouns and verbs (50% each; mean word length: 8 

letters, range: 5–12 letters; word frequency7: M = 15, SD = 3, range: 6–22; see Appendix B) 

that were drawn from a pool of German infinitives in written language and did not contain 

immediate letter repetitions (DeReWo, 2012). 

                                                 
7 Word frequency is measured relative to the most frequent word. That is, words with a frequency N are 2N times 

less frequent than the most frequent word (i.e., German articles “der, die, das” [the] in the DeReWo [2012] word 

list). 

http://www.neurobs.com/
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In the nonfocal condition, words with one of six pre-specified target syllables (e.g., 

TRA in WELTRAUM) served as PM cues. Ongoing-task stimuli consisted of 180 standard 

words that did not contain any two- or three-letter combinations of either target syllables 

that were used throughout the experiment (e.g., PASTETE). In addition, in order to increase 

monitoring demands, we included 180 so-called distractor words that contained the first 

two letters of a given target syllable (e.g., TR in BISTRO; see Appendix B, Table B1). 

In the focal condition, PM-cues and oddballs were 40 words (20 each) that did not 

contain letter combinations of either nonfocal target syllables (see Appendix B, Table B2). 

Each oddball word was matched to a corresponding PM-cue word in regard to word type, 

frequency, and length. Focal PM cues and their corresponding oddballs were made salient 

by presenting them in complementary colors (e.g., light blue–light orange; see Appendix B, 

Table B5). We included salient oddball cues to disentangle aftereffects of completed 

intentions in PMREPEATED trials from orientation reactions to deviant stimuli (see also, Walser 

et al., 2012). Ongoing-task stimuli were 280 non-colored standard words. 

Task procedure. At the beginning of the experiment, participants practiced the 

word-categorization task for 40 trials (32 standard, 8 oddball; see Appendix B, Table B3 for 

the words used). During this initial practice, 8 words were selected randomly to serve as 

oddball trials and were presented in two complementary colors. Prior to treatment (i.e., 

stress/no-stress), participants trained the cognitive task for three cycles, each consisting of 

a PM block and a test block. After treatment and a subsequent 10 min waiting period, 

participants performed eight cycles of PM block and test block (see Figure 8 B). we included 

this post-treatment waiting period in order to account for the delayed release of cortisol in 

response to an acute stress experience with peak cortisol levels between 10–30 min after 

treatment (e.g., Engert et al., 2011; Kirschbaum & Hellhammer, 2007) and to capture effects 

of increased HPA-activity on PM functioning after SNS activity and subjective mood should 

have returned to the level of non-stressed individuals. 
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Figure 8. Procedure. (A) Schematic outline of the procedure, starting with a practice of the cognitive task, 

followed by treatment (i.e., either Trier Social Stress Test [TSST], or a standardized no-stress control treatment) 

and cognitive testing. Time points for the measurement of salivary α-amylase (sAA), cortisol, and the German 

MDBF questionnaire (Mehrdimensionaler Befindlichkeitsfragebogen; English version: Steyer et al., 1997) are 

illustrated. Note that the saliva sample at time point -1 min was taken prior to treatment, while the MDBF was 

completed after treatment instructions in order to assess participants’ anticipation of the upcoming treatment. 

(B) Example outline of the procedure in the cognitive task. PM block and test block formed a cycle. Cycles are 

illustrated in grey (nonfocal condition) and white (focal condition) squares. For the training phase, participants 

in each group were assigned one of two cycle sequences: 1) a low-load nonfocal cycle, followed by a focal and a 

high-load nonfocal cycle, or 2) a high-load nonfocal cycle, followed by a focal and a low-load nonfocal cycle. 

During cognitive testing, participants alternated between focal and nonfocal cycles. One half of the participants 

in either group started with a nonfocal condition and the other half with a focal condition. Low and high 

prospective loads were assigned randomly to nonfocal cycles. To avoid overestimating the size of monitoring 

costs in the nonfocal condition, half of the cycles (1 low-load, 1 high-load) started with a PM block, while the 

remaining half started with a test block. In the focal condition, however, all cycles started with the PM block to 

maximize statistical power for the assessment of aftereffects of completed intentions. 

 

In PM blocks, participants categorized words as either verb or noun (ongoing task). 

Participants were instructed to press the spacebar with either thumb instead of performing 

the word categorization whenever they encountered a PM cue. PM cues differed for the 

focal, the low-load and high-load nonfocal conditions. In particular, participants were 

instructed to press the space bar in response to (a) any one of four pre-specified words that 

additionally differed from ongoing-task words in their color, e.g., HANDELN printed in 

orange (focal PM task); (b) any word that contained a pre-specified sequence of three 

letters, such as TRA in the word WELTRAUM (low-load nonfocal PM task); or (c) any word 

that contained a random permutation of three pre-specified, subsequent letters, such as A, 

C, and K in JACKE (high-load nonfocal PM task). 

Low-load and high-load nonfocal conditions differed only in regard to the PM-task 

instructions but not in PM cues. That is, although high-load nonfocal PM tasks instructed to 

monitor for permutations of a letter string (e.g., permutations of A, C, & K), only one 
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permutation was presented within a cycle (e.g., ACK in the word JACKE). In order to support 

understanding of the task instructions, prior to testing, instructions for each PM-task type 

were recalled verbally by the participants once and were subsequently reiterated by the 

experimenter, who also provided examples for PM tasks in the nonfocal condition. 

Task instructions were displayed for either 20 s (PM block) or 8 s (test block) at the 

beginning of each block. At the end of the first block of each cycle, participants were 

informed that the current task was finished (i.e., “Thank you! This task is now finished”.; 4 s). 

After treatment, in addition to breaks due to collection of saliva samples, further breaks of 6 

s were provided between cycles. 

Each PM and test block contained 64 trials of the word-categorization task (50% 

nouns; focal condition: 56 ongoing-task, 4 PM, 4 oddball; nonfocal condition: 60 ongoing-

task, 4 PM). Trials started with the presentation of a fixation cross (plus sign, font size = 18 

points) for 400 ms. Imperative stimuli were displayed until a response was given or for a 

maximum of 3000 ms, followed by a blank screen for 140 ms. Errors and response omissions 

prompted a feedback tone (785 Hz, 140 ms) through headphones during the blank screen. 

Trials were presented in a random fashion, with PM or PMREPEATED cues being randomly 

interspersed after the first four trials of each PM block or test block, respectively (focal 

condition: 4 standard words; nonfocal condition: 2 standard, 2 distractor words). In order to 

control for variability in both speed and difficulty of reading and categorizing target words, 

the same words were presented during PM and test block of a given cycle (see Walser et al., 

2013 for a similar design). 

Standard words were selected randomly without replacement for each cycle from a 

pool of 460 words (see Appendix B, Table B4). Focal PM cues and oddballs were selected 

randomly without replacement from a pool of 20 PM-cue–oddball word pairs and were 

assigned randomly to focal cycles for each participant. Colors for PM cues and oddballs in 

the focal condition were randomly drawn from a pool of 6 complementary-color pairs and 

randomly assigned to the initial task practice and subsequent focal cycles for each 

participant. PM-cue and oddball colors remained constant throughout a cycle but changed 

between cycles in the focal condition. For nonfocal PM tasks, PM cues together with their 

corresponding set of distractor words were assigned randomly to nonfocal cycles for each 

participant. 
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4.3.5. Procedure 

At the beginning of the session, participants supplied basic demographic 

information and trained the cognitive task. After treatment (approximately 40 min after 

session start), participants performed the experimental cognitive task (from 10 min to 50 

min after treatment completion). In order to reduce variability in participants’ blood-

glucose levels that can affect the size of stress-induced increases in HPA activity, 

participants were instructed to refrain from drinking sweetened beverages and eating for at 

least 1.5 hours prior to testing and were given 200 ml grape juice in an attempt to 

standardize blood-glucose levels at the beginning of the session (Kirschbaum et al., 1997). 

4.3.6. Data Trimming 

For RT analyses of PM performance and aftereffects of completed intentions, we 

excluded errors (4.4%) and trials with RTs above or below 2.5 SDs of a participants mean in 

a given focality condition (focal, nonfocal), prospective load (low, high), block (PM block, 

test block), and trial type8 (ongoing-task [separate for standard and distractor words], 

oddball, PM, PMREPEATED; 3.0%). For the analysis of PM monitoring costs, we first excluded 

two post-PM trials (5.9%) (Brewer, 2011) to reduce variance from aftereffects of responding 

to PM cues on task performance (Meier & Rey-Mermet, 2012) and subsequently applied the 

same data trimming procedure as above for RT analyses, resulting in the exclusion of 4.4% 

errors and 2.9% outlier trials. Error analyses were conducted separately for erroneous PM 

responses during PM blocks (i.e., false alarms) and during test blocks (i.e., commission 

errors) as well as for the remaining errors, including response omissions. 

4.4. Results 

4.4.1. Stress Response 

In order to validate the physiological and subjective consequences of treatment, we 

examined the time course of sAA and cortisol levels as well as the participants’ mental state 

in repeated measures ANOVAs involving the factors group (stress vs. no-stress) and time on 

sAA and cortisol data (see Figure 9). To determine at which time points treatment effects 

differed between groups, we additionally conducted Bonferroni-corrected post-hoc t tests 

for group differences at each time point. Note, that p-values for which the Bonferroni-

corrected alpha level applies are denoted as p*. 

                                                 
8 Note that results did not change when refraining from outlier correction. 
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sAA. Stress and no-stress group differed in sAA time course, F(7, 518) = 8.36, p < 

.001, ηp
2 = .10. Post-hoc t tests at a Bonferroni-corrected alpha level of .006 (.05/8) revealed 

no effect of treatment on sAA levels at −10 min, t(78) = .563, p* = .575, ds = 0.13, or at −1 min 

prior to treatment, t(79) = 1.94, p* = .055, ds
9 = 0.44. Most importantly, the stress group 

showed significantly higher sAA levels only immediately after treatment (1 min), t(79) = 

3.29, p* = .002, ds = 0.74. Amylase levels were nominally increased at time points +10 min, 

t(79) = 1.90, p* = .061, ds = 0.43, and +40 min after treatment, t(79) = 2.00, p* = .049, ds = 

0.45. Throughout the remainder of the session, sAA levels did not differ between groups, 

p*s ≥ .144, −0.01 ≤ dss ≤ 0.33. 

Cortisol. Time course of cortisol levels differed between groups, as indicated by a 

significant Time × Group interaction, F(7, 546) = 24.37, p < .001, ηp
2 = .24. Post-hoc t tests 

(Bonferroni-corrected α = .006 [.05/8]) revealed that prior to treatment cortisol levels did 

not differ between groups, p*s ≥ .467, −0.16 ≤ dss ≤ −0.06. We also found a descriptive but 

not statistically significant treatment effect on cortisol levels at time point +1 min after 

treatment, t(78) = 2.24, p* = .028, ds = 0.50. For all other time points following treatment, 

cortisol levels were higher in the stress group than the no-stress group, p*s ≤ .001, 1.00 ≤ dss 

≤ 1.17. 

Mental state. Post-hoc t tests were conducted at a Bonferroni-corrected alpha level 

of .008 (.05/6). Group affected the time courses of good mood, F(5, 385) = 11.17, p < .001, ηp
2 

= .13. The stress group reported worse mood after having received instructions for the 

upcoming treatment (−1 min), t(78) = −2.77, p* = .007, ds = −0.62, as well as immediately 

after, t(78) = −4.25, p* < .001, ds = −0.95, and +10 min after treatment, t(78) = −3.03, p = .003, 

ds = −0.68. The other time points (including baseline at −10 min prior to treatment) did not 

differ between groups, p*s ≥ .184, −0.30 ≤ dss ≤ −0.12. Time courses of calmness were also 

affected by group, F(5, 385) = 18.59, p < .001, ηp
2 = .19. The stress group reported decreased 

calmness after having received instructions for the upcoming treatment (3 min into 

treatment), t(78) = −3.33, p* = .001, ds = −0.74, and immediately after treatment, t(78) = 

−4.69, p* < .001, ds = −1.05. At time point +10 min after treatment, calmness was only 

nominally reduced in the stress group, t(78) = −2.56, p* = .012, ds = −0.57. At all other time 

points, calmness did not differ between groups, p*s ≥ .354, −0.02 ≤ dss ≤ 0.21. Lastly, we 

                                                 
9 Effect sizes for mean differences were computed according to Lakens (2013) and refer to the standardized 

between-subject (ds) or within-subject (drm) mean differences. 



 

 

88 

found similar time courses of alertness between groups, F(5, 385) = 1.18, p = .319, ηp
2 = .01, 

−0.29 ≤ dss ≤ 0.03. 

Figure 9. Stress response. Time courses of (A) mean salivary α-amylase (sAA) and cortisol levels as well as of (B) 

mean mental-state scores on the three subscales good mood vs. bad mood, calmness vs. restlessness, and 

alertness vs. fatigue of the German Mehrdimensionaler Befindlichkeitsfragebogen (MDBF; English version: 

Multidimensional mental-state questionnaire; Steyer et al., 1997) during the experimental session (minutes 

before or after Trier Social Stress Test [TSST] or control treatment, respectively) for the stress and the no-stress 

group. Error bars represent standard errors of the mean. *p < .05, **p < .01, ***p < .001, for Bonferroni-adjusted p 

values. 

 

4.4.2. Prospective Memory Functioning  

In order to determine statistical significance of the hypotheses-relevant effects—

stress effects and a potential demand dependence of stress effects on PM performance, PM-

monitoring costs, aftereffects of completed intentions and commission-error risk—we used 

a Bonferroni-corrected alpha level of .002 per test (.05/24). Specifically, we corrected for 

overall 24 tests of group differences in the hypotheses-relevant dependent variables. Note, 

that p values for tests at the Bonferroni-corrected alpha level are denoted as p*. 

Nonfocal condition. For PM performance, we conducted mixed ANOVAs involving 

the factors group (stress vs. no-stress) and prospective load (low vs. high) on RTs and error 

rates on PM trials and false-alarm PM responses during ongoing-task performance. The 

effects of interest were a main effect of group and a Group × Prospective load interaction. 

To examine monitoring costs, we conducted 2 Block (PM vs. test block) × 2 Prospective load 

(low vs. high) × 2 Group (stress vs. no-stress) ANOVAs on ongoing-task RTs and error rates. 

Here our main focus lied on the potential interactions of Group × Block and Group × Block × 
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Prospective load. For the analysis of aftereffects of completed intentions, we compared 

performance in PMREPEATED and ongoing-task trials during test blocks in 2 Prospective load 

(low vs. high) × 2 Trial type (PMREPEATED vs. ongoing task) × 2 Group (stress vs. no-stress) 

ANOVAs (see Figure 10). Note that aftereffect analyses in the nonfocal condition were 

conducted exclusively for test blocks following nonfocal PM blocks, since only these 

contained PMREPEATED trials. In the aftereffect analyses, the effects of interest were a Group × 

Trial type and a Group × Trial type × load interaction. 

PM performance. RTs on nonfocal PM cues did not differ between stress (1197 ms) 

and no-stress group (1240 ms), F(1, 78) = .845, p* = .361, ηp
2 = .01. PM responses were slower 

under high (1256 ms) compared to low prospective load (1181 ms), F(1, 78) = 8.64, p = .004, 

ηp
2 = .10. Although this PM-response slowing under high compared to low prospective load 

was less pronounced in the stress group (43 ms, drm = 0.19) compared to the no-stress group 

(108 ms, drm = 0.42), this difference failed statistical significance, F(1, 78) = 1.62, p* = .207, 

ηp
2 = .02. Treatment had no statistically significant effect on PM errors (stress: 25.8%; no-

stress: 20.8%), F(1, 78) =1.75, p* = .190, ηp
2 = .02, or false-alarm rates (stress: 0.5%; no-

stress: 0.4%), F(1, 78) = .58, p* = .449, ηp
2 = .01. No further effects were significant, all Fs ≤ 

2.71, ps ≥ .104, ηp
2s ≤ .03. 

Monitoring costs. Monitoring costs were reflected in substantially slower ongoing-

task performance during PM blocks (1023 ms) compared to test blocks (704 ms), F(1, 78) = 

419.96, p < .001, ηp
2 = .84. Most importantly, these monitoring costs were markedly lower in 

the stress group (269 ms, drm = 1.42) than in the no-stress group (371 ms, drm = 1.80), F(1, 78) 

= 10.66, p* = .002, ηp
2 = .12 (see Table 6). Further, monitoring costs were more pronounced 

under high (342 ms, drm = 1.59) compared to low prospective load (297 ms, drm = 1.43), F(1, 

78) = 13.26, p < .001, ηp
2 = .15. This effect, however, was only numerically smaller in the 

stress (27 ms, drm = 0.19) than in the no-stress group (64 ms, drm = 0.37), F(1, 78) = 2.30, p* = 

.134, ηp
2 = .03. Finally, ongoing-task responses were faster in the stress (818 ms) compared 

to the no-stress group (909 ms), F(1, 78) = 7.31, p = .008, ηp
2 = .09, and participants 

responded slower under high (874 ms) than under low prospective load (853 ms), F(1, 78) = 

10.17, p = .002, ηp
2 = .12. This load-dependent slowing did not differ between stress (16 ms, 

drm = 0.11) and no-stress group (27 ms, drm = 0.17), F(1, 78) = .64, p = .427, ηp
2 = .01. 

Error rates mirrored the RT data and were increased during PM blocks (4.7%) 

compared to test blocks (3.8%), indicating the presence of monitoring costs during PM task 

performance, F(1, 78) = 17.26, p < .001, ηp
2 = .18. While these costs were again nominally 
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smaller in the stress (0.3%, drm = 0.09) than in the no-stress group (1.6%, drm = 0.54), this 

difference did not reach significance at the Bonferroni-corrected alpha level, F(1, 78) = 8.61, 

p* = .004, ηp
2 = .10. Monitoring costs were increased during high (1.6%, drm = 0.48) compared 

to low prospective load (0.3%, drm = 0.09), F(1, 78) = 10.68, p = .002, ηp
2 = .12. This increase in 

monitoring costs, however, was similar in the stress (1.2%, drm = 0.42) and in the no-stress 

group (1.5%, drm = 0.57), F(1, 78) = .12, p* = .726, ηp
2 = .00. No further hypotheses-relevant 

effects were significant, all Fs ≤ 1.20, ps ≥ .277, ηp
2s ≤ .02. 

Aftereffects of completed intention. Participants’ responses were slower in PMREPEATED 

(757 ms) compared to ongoing-task trials (695 ms), F(1, 78) = 29.10, p < .001, ηp
2 = .27, which 

indicated the presence of aftereffects of completed intentions (see Table 7). Most 

importantly, aftereffects did not differ between groups (stress: 50 ms, drm = 0.35; no-stress: 

73 ms, drm = 0.38), F(1, 78) = .997, p* = .321, ηp
2 = .01. We found no further statistically 

significant effects on RTs, all Fs ≤ 3.10, ps ≥ .082, ηp
2s ≤ .04, or any effects in error rates, all 

Fs ≤ 1.97, ps ≥ .164, ηp
2s ≤ .03. Since only one participant made a single commission error in 

the nonfocal condition (stress group, low prospective load) we did not conduct a 

commission-error analysis. 

Figure 10. Results of the nonfocal condition. Mean response times (RT) and error rates for (A) PM performance, 

(B) monitoring costs, and (C) aftereffects of completed intentions as a function of prospective load (low vs. 

high), group (stress vs. no-stress), block (only for monitoring costs: PM vs. test block), and trial type (only for 

aftereffects of completed intentions: PMREPEATED vs. oddball). For aftereffects of completed intentions, data were 

obtained only from test blocks that followed PM blocks, since only these contained PMREPEATED trials. Error bars 

represent standard errors of the mean. 
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Focal condition. Analyses of the focal condition were similar to the nonfocal 

condition but did not include the within-subject factor prospective load. For aftereffect 

analyses, we contrasted performance on PMREPEATED and oddball trials (see Figure 11). As in 

the analyses for the nonfocal condition, we determined statistical significance for the 

effects of interest at a Bonferroni-corrected alpha level of .002 per test (.05/24). 

PM performance. Analyses did not reveal a significant effect of stress on PM 

performance, as RTs were similar in the stress (786 ms) and the no-stress group (786 ms), 

F(1, 78) < .001, p* = .990, ηp
2 < .001, and error rates did not differ between groups (stress: 

11.0%; no-stress: 8.3%), F(1, 78) =1.16, p* = .285, ηp
2 = .02. Participants committed more 

false alarms during oddball (2.7%) than during standard trials (0.1%), F(1, 78) = 29.23, p < 

.001, ηp
2 = .27. All further effects were not significant, Fs ≤ 1.42, ps ≥ .238, ηp

2s ≤ .02. 

Monitoring costs. Performance decrements during PM blocks (760 ms) compared to 

test blocks (668 ms) indicated monitoring costs, F(1, 78) = 181.75, p < .001, ηp
2 = .70. 

However, in contrast to the nonfocal condition, monitoring costs did not differ statistically 

between stress (87 ms, drm = 0.65) and no-stress group (98 ms, drm = 0.66), F(1, 78) = .67, p* = 

.415, ηp
2 = .01. Analyses also revealed a small to moderate, but nonsignificant, trend for 

faster ongoing-task responses in the stress (690 ms) compared to the no-stress group (739 

ms), F(1, 78) = 3.64, p = .060, ηp
2 = .05 (see Table 6). Error rates did not differ between groups 

(stress: 3.7%; no-stress: 2.8%), F(1, 78) = 3.03, p = .086, ηp
2 = .04, but were lower during PM 

blocks (3.0%) than during test blocks (3.5%), F(1, 78) = 7.78, p = .007, ηp
2 = .10. This block 

effect, however, did not differ between stress (−0.7%, drm = −0.24) and no-stress group 

(−0.5%, drm = −0.21), F(1, 78) = .19, p* = .667, ηp
2 = .002. 

Aftereffects of completed intentions. Slower responses towards PMREPEATED (821 ms) 

than towards oddball trials (732 ms) indicated the presence of aftereffects of completed 

intentions, F(1, 78) = 69.94, p < .001, ηp
2 = .47 (see Table 7). Aftereffects did not differ 

between stress (72 ms, drm = 0.51) and no-stress group10 (106 ms, drm = 0.65), F(1, 78) = 2.44, 

p* = .122, ηp
2 = .03. Again, the stress group responded numerically faster (754 ms) than the 

no stress group (800 ms), which did not reach significance, F(1, 78) = 2.34, p = .130, ηp
2 = .03. 

There were no significant effects on error rates, all Fs ≤ 1.42, ps ≥ .238, ηp
2s ≤ .02. 

Similar to previous research on commission errors (e.g., Anderson & Einstein, 2017; 

Scullin et al., 2012), we analyzed the proportion of participants who made at least one 

                                                 
10 This result remained unchanged when excluding participants who made commission errors. 
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commission error on standard, PMREPEATED, or oddball trials in test blocks after treatment11. 

While on a descriptive level, commission errors were more frequently made by participants 

in the stress (11 participants) than in the no-stress group (3 participants), this difference 

did not reach the Bonferroni-corrected alpha level of significance, χ2(1) = 5.54, p* = .019, 

odds ratio = 4.63. 

Figure 11. Results of the focal condition. Mean response times (RT) and error rates for (A) PM performance, (B) 

monitoring costs, and (C) aftereffects of completed intentions as a function of group (stress vs. no-stress), block 

(only for monitoring costs: PM block vs. test block), and trial type (only for aftereffects of completed intentions: 

PMREPEATED vs. oddball). Error bars represent standard errors of the mean. 

 

Comparison of focal and nonfocal condition. In order to determine whether 

stress differentially affected monitoring costs in the focal compared to the nonfocal 

condition, we conducted mixed ANOVAs involving the factors group (stress vs. no-stress) 

and PM condition (focal vs. nonfocal) on monitoring costs in RTs and error rates (averaged 

across low and high prospective load in the nonfocal condition). For RTs, monitoring costs 

were increased in the nonfocal (320 ms) compared to the focal condition (92 ms), F(1, 78) = 

280.94, p < .001, ηp
2 = .78. Most importantly, a significant Group × PM condition interaction, 

F(1, 78) = 11.15, p* = .001, ηp
2 = .13, revealed a more pronounced reduction of monitoring 

costs under stress in the nonfocal (102 ms) than in the focal condition (11 ms). For error 

rates, we also found larger monitoring costs in the nonfocal (0.9%) compared to the focal 

condition (−0.6%), F(1, 78) = 22.28, p < .001, ηp
2 = .13. However, the Block × Group × PM 

condition interaction did not reach significance, F(1, 78) = 3.15, p* = .080, ηp
2 = .04 

(nonfocal: 1.3%, focal: 0.2%). 

                                                 
11Commission errors occurred across all focal cycles after treatment and almost exclusively during the first 

encounter of a PMREPEATED cue within a block, except for one participant who made a commission error on the 

first deviant trial that was presented in the block (i.e., oddball trial). 
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Table 7 

Assessment of aftereffects of completed intentions. Mean RTs, error rates and false-alarm PM responses during test blocks by trial type 

(ongoing task, PMREPEATED, oddball) (standard deviations in parentheses). 

  Stress group  No-stress group 

Trial type RT (ms) Errors (%) False PM (%)  RT (ms) Errors (%) False PM (%) 

Nonfocal condition, low prospective loada 

Test block Ongoing task 673 (182) 4.5 (3.6) 0  723 (141) 3.1 (2.7) 0 

 

PMREPEATED 726 (182) 3.1 (8.4) 0 

 

793 (244) 2.5 (7.6) 0 

Aftereffectsb 

 

53 (120) −1.4 (8.6) - 

 

63 (140) −0.6 (7.0) - 

Nonfocal condition, high prospective loada 

Test block Ongoing task 674 (100) 4.2 (4.2) 0 

 

709 (118) 3.0 (3.5) 0 

 

PMREPEATED 723 (161) 3.1 (8.4) 0.3 (4.0) 

 

793 (196) 2.5 (7.6) 0 

Aftereffectsb 

 

48 (116) −1.0 (8.3) - 

 

84 (180) −0.5 (8.4) - 

Focal condition 

Test block Oddball 717 (130) 5.6 (6.1) 0 

 

747 (120) 4.2 (5.2) 0 

 

PMREPEATED 790 (150) 4.2 (5.4) 1.6 (2.7) 

 

852 (166) 3.9 (8.0 0.5 (1.7) 

Aftereffectsb 

 

72 (98) −1.4 (6.6) - 

 

106 (92) −0.3 (7.6) - 
aData for the nonfocal condition was obtained from test blocks that followed PM blocks only. Since only these contained 

PMREPEATED trials. 
bAftereffects represent performance differences between PMREPEATED and ongoing-task (nonfocal condition) or oddball trials (focal 

condition). 

 

  

Table 6 

Assessment of monitoring costs. PM and ongoing-task performance in mean RTs, error rates, and false-alarm PM responses during PM 

and test blocks by trial type (ongoing task, PM, oddball) (standard deviations in parentheses). 

  Stress group  No-stress group 

Trial type RT (ms) Errors (%) False PM (%)  RT (ms) Errors (%) False PM (%) 

Nonfocal condition, low prospective load 

PM block PM 1175 (233) 27.2 (20.8) - 

 

1186 (219) 20.0 (16.9) - 

 

Ongoing task 937 (191) 4.3 (2.7) 0.4(0.6) 

 

1065 (211) 4.3 (3.2) 0.4 (0.7) 

Test block Ongoing task 682 (117) 4.7 (3.2) 0 

 

726 (127) 3.4 (2.2) 0 

Monitoring costsa 256 (119) −0.3 (2.9) - 

 

338 (141) 0.9 (2.4) - 

Nonfocal condition, high prospective load 

PM block PM 1218 (228) 24.4 (21.0) - 

 

1294 (276) 21.6 (20.8) - 

 

Ongoing task 967 (200) 4.9 (2.7) 0.7 (0.9) 

 

1124 (238) 5.4 (3.7) 0.5 (0.8) 

Test block Ongoing task 685 (110) 4.1 (3.6) 0 

 

721 (125) 3.1 (3.2) 0 

Monitoring costsa 282 (141) 0.9 (2.7) - 

 

403 (191) 2.3 (2.7) - 

Focal condition 

PM block PM 786 (142) 10.6 (10.0) - 

 

786 (113) 8.3 (9.4) - 

  Oddball 1054 (204) 8.0 (6.3) 3.3 (5.1) 

 

1104 (191) 7.5 (7.00) 2.2 (3.6) 

 

Ongoing task 733 (122) 3.4 (2.2) 0.0 (0.1) 

 

787 (146) 2.6 (2.3) 0.1 (0.22) 

Test block Ongoing task 647 (86) 4.0 (2.9) 0 

 

690 (113) 3.0 (2.4) 0 

Monitoring costsa 86 (55) −0.7 (1.8) -  97 (66) −0.5 (1.9) - 
aMonitoring costs represent differences in ongoing-task performance between PM blocks and test blocks. 
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4.5. Discussion 

In the present study, we investigated the effects of acute stress on PM performance 

and intention deactivation. In two conditions, we parametrically varied the demands on PM 

monitoring (nonfocal condition) or increased the demands on successful intention 

deactivation (focal condition). With this, we tested the following hypotheses: 1) Acute 

stress impairs PM and intention deactivation. 2) Acute stress induces a shift in performance 

strategies that could either manifest itself in terms of task-priority changes or in terms of a 

shift towards less resource-consuming strategies to uphold PM performance and intention 

deactivation. 3) Acute stress does not affect PM and intention deactivation. 

First of all, our results yielded evidence for a successful stress induction. An 

immediate short-lived increase in SNS activity (i.e., increased sAA levels), a slower, long-

lasting increase in HPA-axis activity (increased cortisol levels), as well as immediate 

subjective consequences (i.e., worse mood, increased restlessness) in the stress compared to 

the no-stress group after treatment indicated valid biological and subjective stress 

responses. Increased SNS activity and subjective treatment consequences dissipated almost 

completely within 10 min after stressor cessation and treatment had no effect on 

participants’ alertness or fatigue. Therefore, it is unlikely that the observed stress effects on 

PM functioning could be explained by differences in these variables (see also, Plessow, 

Fischer, et al., 2011; Plessow, Kiesel, & Kirschbaum, 2011; Plessow et al., 2012). 

Second, the present paradigm revealed the expected PM effects. That is, PM error 

rates were within the expected range for PM studies (i.e., no ceiling effect occurred), we 

found evidence for PM-monitoring costs in focal and nonfocal PM tasks, and replicated 

earlier findings of increased monitoring costs under high, compared to low prospective load 

in a nonfocal PM task, while prospective load had no effect on PM performance (A.-L. 

Cohen et al., 2008; Meier & Zimmermann, 2015). 

Consistent with PM literature, PM error rates and monitoring costs were smaller in 

the focal compared to the nonfocal condition (e.g., Einstein et al., 2005). Aftereffects of 

completed intentions occurred in terms of increased performance costs on PMREPEATED 

compared to ongoing-task (nonfocal condition) or oddball trials (focal condition). 

Commission errors were rare and predominantly occurred in the focal condition. 

Most important are the effects of acute stress on PM functioning and intention 

deactivation, which can be summarized in three main findings: First, PM performance in 
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either task was not affected by stress. Second, stress had no effect on PM-monitoring costs 

in the focal condition but led to a substantial reduction of monitoring costs in the nonfocal 

condition. Third, while aftereffects of completed intentions in terms of performance costs 

were not affected by stress in both focal and nonfocal conditions, we found more 

commission errors in the stress group under focal conditions. 

Note that this pattern of acute-stress effects on PM and intention deactivation was 

not predicted by either of our hypotheses. We will now elaborate these findings in more 

detail. 

4.5.1. Effects of Acute Stress on PM Performance 

Neither increasing monitoring costs via prospective load, nor decreasing monitoring 

costs via acute stress affected speed or accuracy of PM performance, which is in line with 

previous findings (Scullin, McDaniel, & Einstein, 2010; but see R. E. Smith, 2003). 

Furthermore, similar to previous studies, we did not observe any substantial effect of stress 

on event-based PM performance when demands on PM-cue detection were low (focal 

condition) (Nater et al., 2006; Walser et al., 2013). Going beyond previous reports, even 

under high demands on PM-cue detection (nonfocal condition, high prospective load), 

acute stress did not lead to changes in PM performance in this study. Furthermore, no 

ceiling effects were observed in PM performance. Thus, it seems unlikely that potential 

stress effects on PM were masked by high PM performance. 

Note that, although PM performance in the focal condition most likely relied to a 

great extent on spontaneous intention retrieval rather than on monitoring for PM cues, we 

nevertheless found evidence for PM monitoring in the focal condition. Therefore, based on 

the present findings, we cannot rule out that acute stress might affect PM performance that 

relies solely on spontaneous intention retrieval in the absence of monitoring costs, for 

instance, when PM cues are extremely rare and salient (e.g., a single appearance of one PM 

cue) and ongoing-task performance is emphasized (McDaniel et al., 2015). The growing 

body of evidence that acute stress does not impair memory for stimulus–response links, 

however, renders this unlikely (Schwabe, Tegenthoff, Höffken, & Wolf, 2012; Schwabe & 

Wolf, 2009). That is, acute stress has repeatedly been shown to have no negative effect on 

the encoding and retrieval of stimulus–response links (Schwabe, Tegenthoff, et al., 2012; 

Schwabe & Wolf, 2009). At the same time, focal PM and, to a lesser extent, also nonfocal 

PM performance relies on the retrieval of PM-cue–action links that are established during 
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the encoding of PM tasks (Cohen-Kdoshay & Meiran, 2007; Momennejad & Haynes, 2013). 

Accordingly, taken together with previous reports (Nater et al., 2006; Walser et al., 2013), 

our findings strongly suggest that intention retrieval is preserved under acute stress. 

Moreover, since in the present and previous studies (Nater et al., 2006; Walser et al., 2013) 

both retrieval and encoding of event-based PM tasks took place after stress induction, 

intention encoding likely is also preserved under acute stress. A recent study by Glienke and 

Piefke (2016) observed preserved PM performance more than 55 min after acute stress 

induction, while PM performance of the control group deteriorated. While conceptually and 

methodologically different to the present study, such findings underscore the importance of 

future research on the effects of acute stress on PM under different task demands and across 

longer time frames. 

4.5.2. Effects of Acute Stress on PM Monitoring 

Effects of acute stress on PM monitoring appeared only in high-demanding 

monitoring conditions (nonfocal condition). Here, monitoring costs were substantially 

reduced under acute stress compared to those of non-stressed controls. This finding 

suggests that under high demands on PM monitoring stress results in an overall more 

efficient task performance, which might be interpreted as a shift towards performance 

strategies that reduced the resources or effort needed to uphold successful PM performance 

(Robert & Hockey, 1997). 

These effects of acute stress on PM-monitoring costs were not observed under less 

demanding focal PM-cue conditions, which is in line with previous studies (Nater et al., 

2006; Walser et al., 2013). Although we did observe monitoring costs in the focal condition, 

we presume that PM performance relied mostly on spontaneous retrieval and placed little 

overall demand on monitoring (Cona et al., 2016; Einstein et al., 2005). This was also 

corroborated by the observation of relatively small monitoring costs during focal PM tasks 

in comparison to large monitoring costs in nonfocal PM tasks. 

Interestingly, even though stress effects on monitoring seemed to be contingent 

upon monitoring demands, they were not affected by our manipulation of prospective load. 

Two potential explanations are conceivable. First, exploratory analyses of monitoring costs 

on standard trials (50% of ongoing-task trials) in the nonfocal condition revealed a more 

pronounced reduction in monitoring costs under stress in the high-load compared to low-

load condition. Hence, it might be possible that the use of distractor words in the nonfocal 
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condition (50% of ongoing-task trials contained the first two letters of a given PM-cue 

syllable) attenuated stress effects on monitoring. Alternatively, manipulations of PM-cue 

focality and prospective load might affect monitoring costs via different mechanisms. More 

specifically, nonfocal compared to focal PM cues target different retrieval processes in PM 

(i.e., top-down controlled vs. bottom-up triggered intention retrieval, McDaniel et al., 2015) 

and modulate difficulty of PM-cue detection via cue-distinctiveness or perceptual demands 

on visual search (e.g., McDaniel & Einstein, 2000). Increasing prospective load (i.e., the 

number of PM cues), on the other hand, increases difficulty of PM-cue retention and 

possibly requires participants to cycle through all PM cues in order to identify a PM target 

(A.-L. Cohen et al., 2008). Consequently, stress might primarily affect processing strategies 

in PM, but not PM maintenance and controlled search for PM cues in memory. This, 

however, remains speculative and future studies are required to further disentangle the 

effects of stress on different sub-components of PM. 

While our findings suggest that stress targets monitoring processes under high 

demands, we can only speculate about the mechanisms through which these effects arise. 

First, a stress-induced improvement of selective attention (Chajut & Algom, 2003; Sänger et 

al., 2014) or an up-regulation of the salience network promoting cue-detection processes 

(Hermans, Henckens, Joëls, & Fernández, 2014) could have increased the efficiency of 

scanning stimuli for relevant and defining PM-cue features. While improvements in 

selective attention could explain reduced PM-monitoring costs, they also would have 

predicted both increased PM performance in focal and nonfocal conditions as well as 

reduced or no monitoring costs in the focal condition. 

Second, under the assumption of spontaneous intention retrieval (at least to some 

small degree) in the nonfocal condition (McDaniel et al., 2015), increased engagement of 

habitual memory systems under stress (Schwabe, Joëls, et al., 2012; Schwabe & Wolf, 2009) 

could have shifted the participants’ processing strategy towards a greater reliance on 

spontaneous retrieval. As a consequence, less PM monitoring would be needed to detect PM 

cues. At the first glance, a shift towards spontaneous-retrieval-based PM performance 

might have also predicted increased PM performance in focal and nonfocal conditions as 

well as reduced or no monitoring costs in the focal condition, given that focal PM 

performance to a greater extend relies on spontaneous intention retrieval than more 

monitoring-based nonfocal PM performance (McDaniel et al., 2015; Scullin, McDaniel, 

Shelton, et al., 2010). However, research on instrumental learning of stimulus–response–
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outcome associations showed that acute stress does not necessarily change encoding, 

acquisition and retrieval of stimulus–response links or stimulus–response–outcome 

associations, but alters strategies through which response selection occurs. For instance, 

while non-stressed individuals flexibly adjust response selection to a devaluation of 

previously learned outcomes, stressed individuals rigidly stick to previously learned 

stimulus–response associations and show no signs of adjustments to outcome devaluation 

(Schwabe & Wolf, 2009; for a demonstration of decreased cognitive flexibility in a selective 

attention task under acute stress, see also Plessow, Fischer, et al., 2011). Similarly, in the 

present study, acute stress might have affected participants’ strategy of PM-cue detection, 

without affecting PM-cue-detection rates or intention retrieval prior to intention 

completion. 

Interestingly, our finding of decreased monitoring costs in an event-based PM task 

suggest that it may be necessary to differentiate between acute stress effects on event-

based and time-based PM. For instance, even though clock checking is considered an 

indicator of monitoring in time-based PM (e.g., Einstein & McDaniel, 1995), more frequent 

clock-checking under acute stress (Nater et al., 2006) might not necessarily reflect increased 

resource allocation towards the PM task (e.g., Hicks, Marsh, & Cook, 2005). Instead, this 

may be interpreted as a resource-saving strategy shift through which stressed individuals 

might have favored a conservative time-checking strategy over a presumably more resource 

demanding subjective time monitoring strategy. 

4.5.3. Effects of Acute Stress on Intention Deactivation 

The present study extended earlier findings of preserved intention deactivation 

(Walser et al., 2013) by showing that even under high demands on intention deactivation 

(i.e., with salient PMREPEATED cues in the focal condition) aftereffects of completed intentions 

in terms of performance costs on PMREPEATED compared to oddball trials were not affected by 

stress. This was true also for the nonfocal condition. At the same time, however, on a 

descriptive level commission errors were more prevalent in the focal condition for stressed 

than non-stressed participants. It should be noted though, that most participants did not 

make any commission errors at all. Those who did, however, only made a single one upon 

the first encounter of a PMREPEATED cue within a block. Still, 11 out of 40 stressed individuals 

compared to 3 out of 40 non-stressed individuals who committed a single commission error, 

suggest an initial susceptibility to habitual response activation under acute stress. While it 
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seems surprising that stress did not affect RT aftereffects, this is most likely a result of 

participants utilizing feedback on erroneous PM responses. As a consequence, they rapidly 

adjusted to habitual response activation in PMREPEATED trials, which could have attenuated 

stress effects on RTs and error rates in PMREPEATED compared to control trials. Importantly, 

however, given the lack of acute-stress effects on the inhibition of false-alarm PM 

responses prior to intention completion and the nominally reduced aftereffects of 

completed intentions for stressed compared to non-stressed individuals in the present 

study, it seems unlikely that commission errors increased due to generally impaired 

response inhibition resulting from a stress-induced PFC down regulation (Arnsten, 2015). 

Therefore, we assume that increased commission errors under acute stress reflect increased 

reliance on habitual memory systems (Schwabe, Joëls, et al., 2012; Schwabe & Wolf, 2009). 

The effects of acute stress on PM and intention deactivation observed in this study 

were by no means global. Rather, under high task demands, acute stress produced isolated 

effects on monitoring costs and commission errors, while leaving PM performance 

unchanged. This suggests that acute stress effects on PM and intention deactivation are 

limited to specific processes in PM functioning and seem to depend on the resource 

requirements during PM-task performance and intention deactivation. Moreover, this 

presumed selectivity and demand dependence of acute-stress effects on PM can also explain 

null findings in previous studies with less challenging PM tasks (Nater et al., 2006; Walser 

et al., 2013; McLennan et al., 2016). Importantly, our findings corroborate assumptions of 

demand-dependent effects of stress on cognitive functions (e.g., Plessow et al., 2012; 

Shields et al., 2016) and support the notion that acute stress shifts processing strategies 

rather than generally impairs higher-order cognitive functions such as cognitive control. 

4.5.4. Conclusion 

When PM requirements are easy, acute stress experience does not change effort 

and/or resource allocation to the PM and other tasks at hand. However, when PM becomes 

demanding, acute stress results in changes of PM-monitoring processes that allow the 

individual to free up cognitive resources while maintaining a high PM performance level. 

Future studies are required to further disentangle the cognitive mechanisms underlying this 

shift in task performance toward higher efficiency and also address potential costs resulting 

from it (e.g., the increased likelihood of erroneously repeating completed actions, as 

observed in the present study).  
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5. Study 3 – Prospective Memory under Acute Stress: 

The Role of (Output) Monitoring and Ongoing-Task 

Demands 

5.1. Abstract 

Prospective memory (PM) refers to the ability to postpone retrieval and execution of 

intended actions until the appropriate situation (PM cue) has come, while engaging in other 

ongoing activities or tasks. In everyday life, we often perform PM tasks in stressful 

situations. While it has been shown that acute stress does not impair PM-cue identification 

and intention retrieval, little is known about acute stress effects on PM performance and 

memory for having performed an action (output monitoring) under varying ongoing-task 

demands. Here we investigated this in eighty healthy participants who performed event-

based PM tasks during low- and high-demanding ongoing working memory tasks after 

having undergone either a standardized stress induction (Maastricht Acute Stress Test) or a 

standardized control protocol. Successful stress induction in the stress group compared to 

the no-stress group was confirmed by increased salivary cortisol, an indicator of stress-

related hypothalamus-pituitary-adrenal axis activity, throughout the event-based PM tasks. 

Nevertheless, not-only PM-cue identification but also output monitoring remained fully 

intact after stress induction. The absence of these effects was independent of ongoing-task 

demands. Nonetheless, we replicated recent findings of a stress-induced reduction in 

performance cost of monitoring for PM-cue occurrences. Taken together, our findings 

suggest that acute stress alters PM monitoring by enhancing selective attention, decreasing 

PM response thresholds or by shifting performance towards more automatic processes in 

PM, while not affecting PM-cue identification and output monitoring. 

  



 

 

101 

5.2. Introduction 

Our ability to postpone and remember actions for performance in the future is 

enabled by several cognitive functions that are tied together by the term prospective 

memory (PM; e.g., Kliegel, McDaniel, et al., 2008). PM enables us to perform simple tasks 

like passing a message to a colleague when we meet her in the office or picking up bread at a 

bakery on our way home. Simple PM tasks like these require us to delay intended actions 

while we perform other activities (ongoing tasks) and monitor the environment for 

opportunities to retrieve and perform these actions (PM cues). Additionally, more complex 

PM tasks can also require keeping track of whether (and when) we already performed an 

action—so-called output monitoring (A.-L. Cohen & Hicks, 2017b; Kliegel, Mackinlay, et al., 

2008; Marsh, Hicks, et al., 2002; Meier & Zimmermann, 2015). For instance, when adhering 

to a medication schedule, we might need to monitor and remember whether we already took 

gastric protection before taking strong pain medication. Reports of rising levels of 

subjective stress in everyday life (e.g., S. Cohen et al., 2007; Lohmann-Haislah, 2012) 

suggest that we rely on PM and output monitoring increasingly under demanding 

conditions like acute stress. Yet, research on acute stress effects on PM is rare and its 

findings are ambiguous (Piefke & Glienke, 2017). Moreover, the effects of acute stress on 

output monitoring are unknown and it is also unclear in what ways ongoing-task demands 

affect PM functioning and output monitoring under stress. Therefore, in the present study 

we aimed at testing acute stress effects on PM with a focus on output monitoring in 

differently demanding ongoing tasks. 

Acute stress that is often induced by experiences of uncontrollability and ego threat 

elicits a complex pattern of physiological responses (e.g., Charmandari et al., 2005; 

Dickerson & Kemeny, 2004; Joëls & Baram, 2009). Amongst the most prominently 

discussed physiological stress responses are the immediate release of catecholamines (i.e., 

noradrenaline, dopamine), often associated with a fast-paced activation of the sympathetic 

nervous system, the release of neuropeptides (e.g., corticotropin-releasing hormone), and 

the release of glucocorticoids (e.g., cortisol) into the bloodstream which is associated with a 

slower-paced increase of hypothalamus-pituitary-adrenal axis activity. Depending, for 

instance, on the type and duration of a stressor, these physiological stress responses act on 

different time scales and elicit a multitude of direct and interactive effects that have short 

and longer lasting effects (e.g., milliseconds to days; Joëls & Baram, 2009) on both the 
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central and peripheral nervous system. Importantly, they alter neural activity and 

connectivity, for instance, in the prefrontal cortex (e.g., Arnsten, 2009, 2015; van Oort et 

al., 2017), the hippocampus (e.g., Kruse et al., 2018; Schwabe, Joëls, et al., 2012) and the 

visual cortex (e.g., Shackman et al., 2011; van Marle et al., 2009). 

We argue that PM should be susceptible to acute stress effects for several reasons: 

(A) PM is associated with stress-sensitive prefrontal-cortex and hippocampus functioning, 

as evidenced by impaired event-based PM performance following frontal (and/or medial) 

brain injury or lesions (Carlesimo et al., 2014; Neulinger et al., 2016; Umeda et al., 2011; 

Uretzky & Gilboa, 2010; but see Volle et al., 2011; Kinch & McDonald, 2001; Cockburn, 

1996 for preserved event-based but impaired time-based PM after brain injury). This is 

further corroborated by findings of impaired PM performance after repeated transcranial 

magnetic stimulation to dorsolateral prefrontal cortex (Bisiacchi, Cona, Schiff, & Basso, 

2011) and suggested by neuroimaging studies (Beck et al., 2014; McDaniel et al., 2013; for 

an overview see Cona et al., 2016). 

(B) Following theoretical models of PM (Kliegel, Altgassen, Hering, & Rose, 2011; 

Kliegel et al., 2002) as well as findings of impaired PM performance under high working-

memory load (Kidder, Park, Hertzog, & Morrell, 1997; Marsh & Hicks, 1998; West & Bowry, 

2005) and high demands on selective attention (e.g., during manipulations regarding 

divided attention; Clune-Ryberg et al., 2011; Harrison et al., 2014; Otani et al., 1997), we 

assume that PM requires working memory and selective attention that are known to be 

affected by acute stress (Shields et al., 2016; Weckesser, Alexander, Kirschbaum, Mennigen, 

& Miller, 2016). 

Surprisingly, despite these putative pathways for stress effects on PM, several 

studies reported no effects of acute stress on PM performance in terms of our abilities to 

identify PM-cues and to retrieve intended actions. Particularly, in event-based PM tasks 

that required performing a simple action in response to a pre-specified PM cue, PM 

performance was not affected by acute stress (Möschl, Walser, Plessow, Goschke, & Fischer, 

2017; Nater et al., 2006; Walser et al., 2013). PM performance in these tasks often relies on 

the encoding and retrieval of stimulus–response associations between a PM cue and an 

intended action (Cona et al., 2016; Einstein et al., 2005) that seem to be mostly preserved 

under stress (Schwabe, Tegenthoff, et al., 2012; Schwabe & Wolf, 2009). Hence one might 

assume that acute stress does not affect event-based PM performance at all. Importantly, 

however, PM consists of several sub-processes that enable actual performance of postponed 
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actions. So far, it is mostly unclear how these sub processes are influenced by acute stress 

and under which conditions this influence occurs. For instance, the occurrence and extent 

of acute stress effects on PM might critically depend on specific task demands and might 

only affect certain sub-processes of PM. 

Specifically, acute stress has been shown to seemingly improve PM functioning in 

rather demanding tasks that require self-initiated intention retrieval or high levels of PM 

monitoring. Glienke and Piefke (2016), for instance, observed that acute stress enabled 

stable event- and time-based PM performance in complex real-life simulations, while 

performance of non-stressed participants declined over testing. While they explained this 

finding by acute stress reducing or eliminating a primacy effect in PM (see also Glienke & 

Piefke, 2017), this effect might not be PM specific as acute stress-induced changes in 

primacy effects have also been observed, for instance, in retrospective memory (e.g., 

Vedhara, Hyde, Gilchrist, Tytherleigh, & Plummer, 2000). Similarly, Szőllősi et al. (2018) 

reported faster PM responses after acute stress induction in a demanding nonfocal event-

based PM task, in which identifying PM cues (e.g., two even digits) required different 

processing than the ongoing task (e.g., comparing digits by size). Moreover, two studies 

found that acute stress might also alter stimulus processing or PM-monitoring strategies in 

demanding PM tasks. Nater et al. (2006) found that in a time-based PM task acute stress 

increased participants’ monitoring behavior in terms of more frequent clock checks and led 

to increased PM accuracy. Möschl et al. (2017) found that in a demanding nonfocal event-

based PM task acute stress reduced costs in ongoing-task performance that are attributed to 

monitoring for PM cues (McDaniel et al., 2015; R. E. Smith, 2003; cf. Heathcote et al., 2015). 

More specifically, in their study stressed compared to non-stressed individuals showed a 

smaller difference between ongoing-task performance with as compared to without an 

additional PM task. 

In summary, previous studies suggest that (a) acute stress effects on PM seem to 

mostly occur under high task demands and (b) acute stress does not always affect accuracy 

of PM-cue identification but may also have isolated effects on PM-response speed and PM 

monitoring. Importantly, however, the effects of acute stress on at least two additional 

components of PM-task performance have been neglected, namely output monitoring and 

the demands of ongoing tasks that are performed concurrently with a PM task. 

First, since event-based PM tasks in previous stress studies only required a single 

response to rare PM cues, they provide no information about acute stress effects on output 
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monitoring in PM. In PM research, output monitoring is typically assessed by having 

participants use different PM responses to indicate whether they remembered having 

already responded to a PM cue. Here, failures of output monitoring manifest, for instance, 

when participants repeat the same response as during their first encounter of a PM cue 

(Einstein, McDaniel, Smith, & Shaw, 1998; Marsh et al., 2007; Marsh, Hicks, et al., 2002; 

Meier & Zimmermann, 2015; Skladzien, 2010). Repetition errors like these have been 

attributed to errors of source- or reality monitoring in that participants classify performed 

actions as planned or imagined actions (Johnson, Hashtroudi, & Lindsay, 1993; Lindsay & 

Johnson, 1991; McDaniel, Lyle, Butler, & Dornburg, 2008) or to participants not 

remembering their previous action (Arnold & Lindsay, 2005; Koriat et al., 1988; Marsh, 

Hicks, et al., 2002; Meeks, Hicks, & Marsh, 2007). The latter in particular may be viewed as a 

failure of episodic memory (for an overview, see Tulving, 2002; Wheeler, Stuss, & Tulving, 

1997) in that repetition errors occur due to difficulties in retrieving or a lack of episodic 

traces of past performance. While to our knowledge there is only correlational evidence for 

a connection between output monitoring in PM and episodic memory (Ball, Pitães, & 

Brewer, 2018), we think it is feasible that this connection to stress-sensitive episodic 

memory (Shields et al., 2017) provides a potential pathway through which acute stress could 

affect output monitoring. 

Second, previous studies that reported acute stress effects on PM mostly induced 

high demands on PM-cue identification, intention retrieval or PM monitoring (Piefke & 

Glienke, 2017). However, little is known about the role of ongoing-task demands for PM 

functioning under stress. PM and ongoing-task performance are thought to rely on shared 

resources (Einstein & McDaniel, 2005; Scullin et al., 2013; R. E. Smith, 2003) that are 

distributed according to their respective demands or meta-control beliefs (e.g., Rummel et 

al., 2017). Accordingly, ongoing tasks have been shown to impair PM performance when 

they require high demands on working memory (Bisiacchi, Tarantino, & Ciccola, 2008; 

Kidder et al., 1997; R. E. Smith & Bayen, 2005), spatial attention (Marsh, Hancock, & Hicks, 

2002) or response selection (Meier & Zimmermann, 2015). Given the demand dependence 

of acute stress effects on PM, it is feasible that acute stress may affect PM when resources 

for PM performance are limited due to a demanding ongoing task. 
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5.3. The Present Study 

In light of the apparent robustness of event-based PM performance under stress, one 

might assume that acute stress has no (negative) effects on event-based PM performance. 

This conclusion, however, would be premature, given our limited understanding of acute 

stress effects on the conglomerate of subprocesses that make up PM. Therefore, our main 

aims in the present study were to test the effects of an acute stress experience on PM-cue 

identification, output monitoring, and PM monitoring under varying ongoing-task demands 

in order to help identify conditions under which PM may be susceptible to acute-stress 

effects. Regarding the direction of stress effects on PM, we formulated two hypotheses. 

Hypothesis 1 builds on the notion that acute stress impairs prefrontal-cortex related 

higher-order cognitive functions (Arnsten, 2009, 2015; Shields et al., 2016) and 

hippocampus related episodic-memory encoding and retrieval (Shields et al., 2017). 

Accordingly, acute stress should impair PM components that rely on or are associated with 

these brain areas and cognitive functions, such as PM-cue identification, intention 

retrieval, output monitoring, and PM monitoring (Cona et al., 2015). Specifically, acute 

stress induction should lead to slower and more erroneous PM-cue identification and 

output monitoring (more repetition and counting errors) as well as higher PM-monitoring 

costs. 

Hypothesis 2 builds on the notion that acute stress has diverging effects on different 

memory systems and cognitive processes. On the one hand, acute stress has been shown to 

enhance encoding and retrieval of stimulus–response links (Schwabe, Joëls, et al., 2012; 

Schwabe & Wolf, 2009), which should increase speed and accuracy of PM-cue identification 

and may reduce PM monitoring costs through shifting PM performance more towards 

spontaneous-retrieval based processes (Möschl et al., 2017). On the other hand, acute stress 

has been shown to impair encoding and retrieval of working memory (Schoofs et al., 2008, 

2009) and episodic memory (Shields et al., 2017) that can be related to output monitoring. 

Accordingly, acute stress induction should lead to slower output-monitoring responses as 

well as more repetition- and counting errors. Note that acute stress could also affect PM via 

alterations of selective attention. However, here predictions are less clear. While several 

studies showed that acute stress impairs selective attention for neutral stimuli compared to 

stressor-related or negatively valenced stimuli (e.g., Herten, Otto, & Wolf, 2017; Schwabe & 

Wolf, 2010) or in stressor-related tasks (Chajut & Algom, 2003), others showed improved 



 

 

106 

selective attention for task-relevant neutral stimuli under acute stress (Sato, Takenaka, & 

Kawahara, 2012; Tiferet-Dweck et al., 2016; c.f. Braunstein-bercovitz, 2003; Sänger et al., 

2014) and yet others showed the opposite. Assuming that the stimuli in the present study 

are neutral (i.e., not stress related), enhanced selective attention for task-relevant stimuli 

should increase speed and accuracy of PM-cue identification and reduce PM-monitoring 

costs, while impaired selective attention should impair PM-cue identification and increase 

PM-monitoring costs. 

Regarding the effects of ongoing-task demands on PM functioning under acute 

stress, we reasoned that high ongoing working-memory demands would reduce cognitive 

resources for PM performance and increase sensitivity of PM towards acute stress effects. 

Consequently, we expected that stress-induced performance benefits should be attenuated, 

while stress-induced performance costs should be increased under high compared to low 

ongoing-task demands. To test these hypotheses, we assessed PM-cue identification, 

output-monitoring and PM monitoring in an event-based PM task that instructed 

participants to also monitor for the number of PM-cue encounters during either low-

demanding 1-back and high demanding 2-back working-memory tasks (Figure 12). 

Additionally, since only few studies investigated acute stress effects on the 

deactivation of completed intentions (Möschl et al., 2017; Walser et al., 2013), we also 

aimed to explore this in the present study. For this we presented no-more-relevant PM cues 

from finished PM tasks as PMREPEATED cues during subsequent ongoing-task blocks and 

assessed whether participants continued to give PM responses (so-called commission 

errors)(Scullin et al., 2012; Walser et al., 2012, 2017). Note that in previous studies, acute 

stress only affected intention deactivation when PMREPEATED cues were difficult to ignore. 

Specifically, acute stress nominally increased participants risk of making a commission 

error when PMREPEATED cues were salient and focal, but not when PM cues were nonfocal 

(Möschl et al., 2017). Similarly, Walser et al. (2013) observed overall only few commission 

errors when PM cues were focal but nonsalient and no effects of acute stress on ongoing-

task interference in PMREPEATED trials. In the present study, we also chose nonfocal and 

nonsalient PM cues in order to induce high demands on PM-cue identification and PM 

monitoring. Consequently, we did not expect many commission errors (Scullin et al., 2012) 

and cannot make clear predictions about acute stress effects on intention deactivation. 

Hence, we assessed commission errors purely for exploratory reasons. This is nonetheless 

important, as previous studies might have underestimated acute stress effects on the 
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commission error risk: Erroneous PM responses always triggered auditory error feedback 

which likely fostered rapid response reconfiguration after PM-task completion (Möschl et 

al., 2017). To avoid this, in the present study we did not provide any error feedback. 

After baseline performance of the event-based PM task, participants were randomly 

assigned to either a stress or a no-stress treatment (Figure 13). Participants in the stress 

treatment performed the Maastricht Acute Stress Test (MAST; Smeets et al., 2012), which 

combines elements of physiological and psychological stress induction by having 

participants repeatedly immerse their hand into ice-cold water and perform mental 

arithmetic in the presence of an experimenter while being filmed. Participants in the no-

stress treatment performed hand immersions in warm water and simple mental arithmetic 

without videotaping. 

5.4. Methods 

5.4.1. Participants 

Eighty students of the Technische Universität Dresden (40 male; 18 – 30 years, M = 

21.79 years, SD = 3.16 years; 72 right-handed, 2 without preference) participated in a single 

2-hour long experimental session in exchange for 16 € or course credits. Experimental 

sessions took place between 10:00 am and 8:00 pm. The distributions of testing time did not 

differ significantly between stress (Mdn = 2:19 pm) and no-stress groups12 (Mdn = 2:00 pm), 

Mann–Whitney U = 693.00, p = .303. Hence, we assume that potential stress effects cannot 

be explained solely by group-differences in circadian variability of PM performance (Rothen 

& Meier, 2017). In order to reduce inter-individual variability of stress reactivity, we only 

tested participants who were healthy, medication free and of normal weight (body mass 

index between 18 and 27, M = 22.40, SD = 2.30 kg/m2) (Kudielka et al., 2009). Given that 

reduced physiological stress responses were reported for habitual smokers (Rohleder & 

Kirschbaum, 2006) and oral-contraceptive intake (Kirschbaum et al., 1999), participants 

were non-smokers (i.e., less than 5 cigarettes per week) and all female participants reported 

                                                 
12 Following suggestions from an anonymous reviewer, we conducted t-tests and Levene tests of group 

differences in testing time (time of day converted to hours) on the whole sample and separate for male and 

female participants. Whole-sample tests did not suggest substantial differences in mean testing time between 

treatment groups (stress: 13.74 h, no-stress: 14.29 h): t(78) = –1.08, p = .281, d = 0.24, but slightly larger variance 

of testing time in the no-stress group (6.04 h) than in the stress group (4.16 h), F(1, 78) = 3.69, p = .061. 

Separated tests did not suggest substantial differences in testing-time distributions between the stress and no-

stress group for either female participants, t(38) = –1.54, p = .131, d = 0.49, F(1, 38) = 1.37, p = .250; or male 

participants, t(38) = 0.007, p = .995, d = 0.002, F(1, 38) = 1.56, p = .220. 
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to refrain from using hormone-based birth control. All participants had normal or 

corrected-to-normal vision. 

5.4.2. Ethics Statement 

All procedures were in accordance with the ethical standards of the institutional 

review board for performing studies involving human participants at the TU Dresden 

(OHRP-numbers: IRB00001473, IORG0001076; case number: EK415092015) and with the 

1964 Helsinki declaration and its later amendments or comparable ethical standards. 

Informed consent was obtained from all individual participants before performing any study 

protocols. 

5.4.3. Stress Induction and Stress Validation 

Participants were randomly assigned to a stress (20 male, 20 female) or a no-stress 

control treatment (20 male, 20 female). The stress treatment was the MAST (Smeets et al., 

2012), which started with a 5 min instruction and anticipation phase, followed by a 10 min 

stress-induction phase. During stress induction, participants alternated several times 

between immersing their dominant hand up to the wrist in ice-cold water for 60–90 s (water 

temperature in the present study: M = 2.04, SD = 0.25 °C) and performing mental arithmetic 

tasks for 45–90 s. While performing these tasks, participants received video feedback of 

their facial expressions on a monitor in front of them. Additionally, an experimenter sitting 

behind the participant supervised the participant’s performance. The no-stress control 

treatment matched the procedure of the MAST, but included warm water (water 

temperature in the present study: M = 36.99, SD = 0.10 °C), only simple mental arithmetic 

and lacked videotaping and -feedback (Smeets et al., 2012). 

We assessed biological treatment consequences via levels of salivary α-amylase 

(sAA) and salivary cortisol as markers of sympathetic-nervous-system activity (Thoma et 

al., 2012; cf. Bosch et al., 2011) and hypothalamic-pituitary-adrenal-axis activity 

(Hellhammer et al., 2009; Kirschbaum & Hellhammer, 1994), respectively. For this, we 

collected saliva samples via Salivette® sampling devices (blue cap; Sarstedt, Nümbrecht, 

Germany) 1 min before treatment start and 1, 10, 30 and 50 min after treatment, 

respectively (Figure 13). Concentrations of sAA and cortisol were analyzed with quantitative 

enzyme-kinetic methods (reagents nr. 11876473316 & 10759350-190, Roche Diagnostics 

Deutschland GmbH; sensitivity: 2 U/ml) (Rohleder & Nater, 2009) and chemiluminescence 

immunoassays (CLIA, IBL International, Hamburg, Germany; sensitivity: 0.2 nmol/l). Intra- 
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and inter-assay variabilities were less than 8%. In order to reduce the risk of a systematic 

bias in the analyses, participants from the stress and no-stress treatments were distributed 

randomly across plates13. To assess subjective treatment consequences, participants 

completed the German Mehrdimensionaler Befindlichkeitsfragebogen (MDBF; English 

version: Multidimensional mental-state questionnaire; Steyer et al., 1997) simultaneously 

to the saliva samples. 

Figure 12. Cognitive task. Example trial sequences during PM and test blocks. As ongoing task, participants 

decided whether the target letter matched (press comma key with right index finger) or mismatched (press 

period key with right middle finger) the letter in the trial before (1-back task) or two trials before (2-back task). 

Additionally, they had to press and hold the STRG (CTRL) key in order to keep the experiment running. In trials 

with PM cues (e.g., green circle), participants had to release the STRG key (PM-cue identification measure) 

instead of performing the ongoing n-back task and subsequently indicate the number of PM-cue encounters 

within the PM block (output-monitoring measure). In test blocks, participants exclusively had to perform the 

ongoing n-back task. Nevertheless, in some trials colored circles, which served as PM cues in the PM block, were 

shown as no-more-relevant PM cues (i.e., PMREPEATED) to measure participants’ risk of making commission errors 

after intention completion. PM-monitoring costs were assessed as ongoing-task performance differences 

between the PM and test blocks. 

 

                                                 
13To achieve randomized distribution of participants across analysis plates, each participant was assigned a 

random number between 1 and 80 and was assigned randomly to the stress or no-stress treatment. After 

completion of data collection, saliva samples for all participants were numbered consecutively in an ascending 

order and distributed to plates accordingly. 
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Figure 13. Procedure. Illustration of the procedure with baseline assessment of the cognitive task, treatment (i.e., 

Maastricht Acute Stress Test [MAST; Smeets et al., 2012] vs. control), cognitive testing and measurement time 

points of saliva samples (salivary α-amylase [sAA], cortisol) and the German MDBF questionnaire 

(Mehrdimensionaler Befindlichkeitsfragebogen; English version: Steyer et al., 1997). White and grey squares 

illustrate experimental cycles that consisted of a PM block and test block. At the beginning of the experimental 

session, participants briefly practiced the ongoing 1-back and 2-back tasks (not depicted). During subsequent 

baseline assessment, they completed one 1-back and one 2-back cycle of the cognitive task. After treatment, the 

cognitive task comprised eight cycles. The 1-back and 2-back cycles alternated throughout the experiment. Half 

of the participants started with a 1-back task (as depicted here), whereas the other half started with a 2-back 

task. 

 

5.4.4. Cognitive Task 

To test our hypotheses, we assessed PM-cue identification, output-monitoring and 

PM monitoring in an event-based PM task with features that in previous studies proved 

suitable to detect potential acute stress effects on PM (Figure 12). First, we induced high 

demands on PM-cue identification and PM monitoring by using nonsalient nonfocal PM 

cues (see also Möschl et al., 2017; Szőllősi et al., 2018) in an ongoing n-back working-

memory task. Second, we manipulated ongoing-task demands by alternating low-

demanding 1-back and high demanding 2-back tasks (Figure 13). This choice was based on 

findings of impaired PM performance under additional working-memory demands 

(Bisiacchi et al., 2008; Kidder et al., 1997; Marsh, Hancock, et al., 2002; R. E. Smith & Bayen, 

2005) and the shared association of anterior prefrontal cortex functioning to PM-

performance in nonfocal PM tasks (Cona et al., 2016) and n-back performance (Schmidt et 

al., 2009). This provides a potential pathway through which ongoing n-back demands might 

affect acute stress effects on PM. Third, to assess PM-cue identification and output 

monitoring, participants were instructed to release a specific button in response to PM cues 

and subsequently indicate how many PM cues they had encountered during the task block 

(for similar approaches, see Marsh et al., 2007; Marsh, Hicks, et al., 2002; Meier & 

Zimmermann, 2015). This design allowed us to assess the quality of output monitoring via 

the number of repetition errors and the number of errors in participants’ subjective 

counting of PM-cue encounters (i.e., subjective counting errors). 

Target stimuli for the cognitive task were capital letters (B, C, F, G, H, J, L, M, R, V, 

X, Z, Arial font, size: 20 points; visual angle ≈ 1.3° in a viewing distance of 60 cm) 
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surrounded by circles in 10 different colors (inner diameter: 202 pixels, outer diameter: 212 

pixels, visual angle ≈ 6.0°; see Appendix C, Table C1 for color values). Stimuli were 

centrally displayed on a 19-inch TFT monitor (resolution 1280 × 1024 pixels), using a 

Windows XP SP3 personal computer with a QWERTZ keyboard running Presentation® 

software (Version 16.3; www.neurobs.com). 

In the ongoing n-back tasks, participants were instructed to indicate whether the 

current letter matched the letter in the preceding trial (1-back task) or the letter that was 

presented two trials before (2-back task). Participants pressed the comma key with right 

index finger to indicate an n-back match and the period key with right middle finger to 

indicate an n-back mismatch. For both n-back tasks, 1/3 of trials were match trials and 2/3 

were mismatch trials. 

With the exception of short breaks and PM trials, participants were required to press 

and hold the STRG (CTRL) key with their left index finger in order to keep the experiment 

running. In PM trials, participants were instructed to release their left index finger from the 

STRG key and subsequently indicate the number of PM cues that they had encountered 

within a block by pressing the corresponding number key on the upper row of the keyboard 

in an input dialog. To this end, after releasing the STRG key, an input dialog appeared that 

displayed the instruction “Please make your input.” above a white square (height: 100 pixels, 

visual angle ≈ 2.8°) in the center of the screen. Upon participants’ first response on the 

number keys 1 to 9 the corresponding digit was presented in black on the square (Arial font, 

size: 48 points, visual angle ≈ 3.1°) and remained until participants continued the 

experiment by holding STRG. 

Each trial had a fixed duration of 2500 ms and comprised a target letter surrounded 

by a colored circle that appeared simultaneously with the letter. While the target letter 

disappeared after 500 ms, circles remained on the screen for the entire duration of the trial. 

The target letter and the circle color changed from trial to trial. No fixation cross, no inter-

trial interval and no error feedback at the end of a trial were presented. Consequently, 

participants constantly saw a circle on the screen that changed color from trial to trial. 

Target letters and circle colors in the n-back tasks were assigned randomly to trials with the 

constraint that the same color did not occur on two subsequent trials. 

The experimental session started with a brief practice of the 1-back task followed by 

the 2-back task for 40 trials each (all 10 circle colors were presented 4 times in random 

order). During practice, participants were instructed that they needed to press and hold the 

http://www.neurobs.com/
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STRG key throughout the experiment in order to keep it running. Releasing the STRG key 

interrupted the ongoing task and prompted the instructions “Attention: You took your finger 

off the STRG button.” at the top and “Hold STRG to continue.” at the bottom of the screen. 

After task practice, participants performed ten experimental cycles each consisting 

of a PM block and a test block. While PM blocks served to assess PM performance and 

output monitoring, test blocks served as a no-intention control condition to assess 

monitoring costs and to measure commission errors after PM-task completion. In order to 

assess participants baseline performance in the cognitive task, they performed two PM-

block–test-block cycles prior to the stress/no-stress treatment (see Möschl et al., 2017; 

Walser et al., 2013 for a similar design). The cognitive testing after treatment consisted of 

eight PM-block–test-block cycles. In order to aid collection of saliva samples, participants 

were prompted to notify the experimenter (“Please notify the experimenter.”) after cycles 2, 

6, and 10. Additionally, we included short breaks (“Short break. Please wait until the 

experiment continues by itself.”, 20 s) after cycles 4 and 8. 

In PM blocks, participants were instructed to perform an n-back task and a PM task 

that required giving a different response than performing the ongoing task. More 

specifically, whenever they encountered circles of a specific color (e.g., green), they were to 

release the STRG key and type in how often the PM cue had already appeared within the 

current PM block (e.g., first appearance press the “1” key, second appearance press the “2” 

key). Participants were also presented with an exemplar of the PM cue during instructions. 

These instructions were displayed in written form on the screen at the beginning of the 

block and remained until participants started the block by pressing the STRG key. Releases 

of the STRG key served to measure the correct identification of a PM cue, whereas the 

indication of the number of PM cue appearances served to assess output monitoring. To 

continue with the ongoing task, participants had to press and hold the STRG key again. 

In test blocks, participants were instructed to exclusively perform the ongoing task, 

but were still required to hold the STRG key during task performance. No-more-relevant PM 

cues from the PM block were re-presented as PMREPEATED trials to assess commission errors 

after intention completion (i.e., STRG-key releases). Each block ended with the information 

“Thank you. This task is finished now.” together with feedback concerning mean response 

times (RT) and the number of errors made in the block (8 s). 

Each PM block consisted of 64 trials. During baseline assessment, PM blocks 

contained 4 PM trials. In order to reduce predictability of the number of PM-cue 
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encounters, after treatment the quantity of PM trials varied between cycles: Both the first 

(cycles 3–6) and the second half of the experiment after treatment (cycles 7–10) consisted 

of two cycles with 4 PM trials, one cycle with 3 PM trials and one cycle with 5 PM trials. It 

was determined randomly which cycles would contain 3, 4, or 5 PM trials within the 

experiment halves. In order to keep the length of PM blocks constant between cycles, the 

number and color of standard trials were adjusted according to the PM-trial quantity in a 

block. That is, PM blocks with 4 PM trials contained 60 ongoing-task trials (i.e., non-PM 

trials) in 6 different colors (10 trials per color). In blocks with 3 PM trials, one of the 6 

ongoing-task-trial colors was randomly chosen and presented 11 times. In blocks with 5 PM 

trials, one of the 6 ongoing-task-trial colors was randomly chosen and presented 9 times. 

Each test block consisted of 32 trials. Trials comprised 2 PMREPEATED trials with the same 

colored circle as PM trials in the preceding PM block and 30 ongoing-task trials of the 6 

colors used in the PM block, each presented 5 times. 

Each color served as a PM/PMREPEATED cue in only one cycle of the experiment. To 

prevent carry-over effects from finished PM tasks to novel PM tasks, the color that served as 

a PM/PMREPEATED cue in a given cycle did not appear in any of the subsequent three cycles but 

was substituted with one of the remaining colors. Distribution of PM/PMREPEATED trials 

throughout blocks was random with at least one ongoing-task trial in between two 

subsequent PM/PMREPEATED trials. PM and PMREPEATED cues were assigned randomly to appear 

in n-back match or mismatch ongoing-task trials. 

5.4.5. Procedure 

In order to reduce variations in blood-glucose levels, participants were instructed to 

refrain from eating and drinking sugar-based drinks for two hours before the experimental 

session. At session start, written informed consent was obtained and basic demographic 

information was assessed. After that, all participants received 200 ml grape juice to attempt 

to standardize inter-individual blood-glucose levels, the availability of which is a 

prerequisite for the stress-induced increase of hypothalamic-pituitary-adrenal-axis activity 

(Kirschbaum et al., 1997). Participants subsequently performed the baseline assessment in 

the cognitive task before they underwent the stress or no-stress treatment at 45 min after 

the beginning of the experimental session. From 10 min to 50 min after treatment 

cessation, the cognitive task was administered. Delaying the cognitive testing for 10 min 

allowed us to capture performance under peak-cortisol levels between 10–30 min after 
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treatment (e.g., Engert et al., 2011; Kirschbaum et al., 1997), while stressed and non-

stressed individuals should show comparable sympathetic nervous system activity and 

subjective mood levels. 

5.4.6. Data Preparation and Trimming 

Due to technical errors with the response logging, we excluded 4.3% of trials from 

the analysis14. Except for a nominally smaller stress-induced reduction of PM-monitoring 

costs in ongoing-task RTs under high compared to low ongoing-task demands, results did 

not change when using the complete dataset (Appendix C, Table C3). 

Analyses of PM-cue identification, output monitoring and PM-monitoring costs 

were performed on (natural) log-transformed RTs for correct responses and on error rates 

(Table 10, Figure 15). PM-cue identification was classified as correct, if participants released 

the STRG key in a PM trial. Output monitoring was classified as correct if participants 

correctly identified a PM cue and indicated either the objectively correct number of PM-cue 

encounters (i.e., objective accuracy) or the number of PM-cue encounters in the present PM 

block according to their subjective counting. Hence, correct output-monitoring responses 

also include instances in which participants missed one or several PM cues or might have 

made false-alarm PM responses in standard trials before encountering a PM cue. For 

instance, if participants missed the first PM cue in a block and counted the following PM-

cue encounters as 1, 2, and 3 or if they responded with 1, 3, and 5 to PM-cue encounters. 

Output-monitoring errors were trials in which participants gave the same PM-cue counting 

response as in the preceding PM trial (repetition error) and trials in which participants gave 

a PM-cue counting response lower than their counting response in the preceding PM trial 

(i.e., subjective counting errors). Rare cases, in which repetition errors or subjective 

counting errors indicated an objectively correct counting response, were classified as 

output-monitoring errors (5 repetition errors, 2 subjective counting errors). 

                                                 
14Initial visual inspection of the data revealed that some participants unexpectedly produced missing data in PM 

and PMREPEATED trials. Although response data in these trials suggests that they gave a PM response, due to a 

technical error response data for the output-monitoring response is missing (i.e., no counting response and no 

counting RT). Overall this type of missing response data occurred in 93 trials (standard: 17, PM: 41, PMREPEATED: 

35 trials), with one participant in the stress group producing 40 missing data points. We reasoned that including 

this missing response data in our analyses would artificially deflate output-monitoring errors and inflate the 

commission-error risk after intention completion. Consequently, we excluded data from cycles with at least one 

missing data point in a PM or PMREPEATED trial. This amounted to excluding one subject in the stress group, who 

had missing data in each cycle of the experiment, 8 cycles (across 7 participants) in the control group and 16 

cycles (across 7 participants) in the stress group. Overall, excluding 1 participant and 24 cycles left 40 

participants (37632 trials) in the control group and 39 participants (35904 trials) in the stress group. 
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For the RT analyses of PM performance, we excluded errors (PM-cue detection: 

28.2% of PM trials, output monitoring: 5.2% of detected PM trials). We then excluded trials 

with log-transformed RTs above or below 2.5 SDs from the mean log-transformed RT for 

correct PM-cue identification (1.1%) and correct output-monitoring responses (2.1%). 

In accordance with data-preparation recommendations for the analysis of PM-

monitoring costs in ongoing-task performance (Brewer, 2011), we excluded PM and 

PMREPEATED trials (6.3%) as well as two trials following a PM trial (5.9%) to avoid 

overestimating monitoring costs due to aftereffects of PM cues (Meier & Rey-Mermet, 

2012). For the RT analysis of monitoring costs, we subsequently excluded error trials (0.8%), 

response omissions (0.01 %) and outlier trials with log-transformed RTs above or below 2.5 

SDs from the mean log-transformed RT for correct ongoing-task performance (2.0%). 

5.4.7. Statistical Analyses 

The conventional two-stage analyses of between-subject designs in cognitive 

psychology entail a substantial loss of statistical power because all trial-specific 

information is lost due to data aggregation at the individual level (Raudenbush, 1997). 

Therefore, we analyzed the collected data within a mixed-effects generalized linear 

modeling framework that allowed us to estimate the effects of interest while accounting for 

trial-level and residual individual variability in task performance. 

Model specifications. We analyzed RTs with a log-normal regression model (see 

also Ulrich & Miller, 1993) of the form: 

𝑙𝑜𝑔(𝑅𝑇𝑖,𝑛) =  𝑋 + 𝜉𝑖 + 𝜀𝑖,𝑛 

Here 𝑅𝑇𝑖,𝑛 denotes the conditional geometric mean RT of the ith individual in the nth 

trial and 𝑋 represents the fixed linear predictor (i.e., the intercept, baseline covariates, and 

treatment contrasts) for an individual given his/her response characteristics (e.g., variability 

in RT) and other contrasts of interest (e.g., assignment to the stress group). Since we only 

analyzed RTs trials with correct responses, we included 𝜉𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜃) to account for the 

random deviation of the ith individual from the mean RT. We also added 𝜀𝑖,𝑛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎) 

to account for the residual deviation of the log-transformed RTs from their conditional 

mean. In accordance with this model specification, 𝑒 can be interpreted as the relative 

change of the mean RT given the characteristics of the individual (i.e., the intercept for a 

subject) and other contrasts of interest. For instance, this could represent the relative 
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change of the mean RT in the control group when participants were exposed to the stress 

treatment. 

For the analysis of error probabilities (ERR), we used a binomial regression model of 

the following form: 

𝑙𝑜𝑔𝑖𝑡(𝐸𝑅𝑅𝑖,𝑛) =  𝑋 + 𝜉𝑖 

Here 𝐸𝑅𝑅𝑖,𝑛 denotes the probability of the ith individual to commit an error in the nth 

trial, 𝑋 represents the fixed linear predictor of the conditional error probability, and 

𝜉𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜃) represents the random deviation of the ith individual from the mean error 

probability. Using this model specification, 𝑒 can be interpreted as the odds ratio (OR) for 

committing an error given the characteristics of the individual and other contrasts of 

interest, e.g., the odds ratio to make an error when participants were exposed to the stress 

compared to the control treatment. 

Baseline covariates and predictors. In order to reduce unspecific variance in the 

performance estimates, we included factors that may affect task performance or stress 

effects on cognition as baseline covariates with additive terms in all models: First, we 

included the covariate cycle (1–10) to account for time-dependent effects of stress on 

cognitive functions (Hermans et al., 2014; Plessow, Fischer, et al., 2011; Schwabe, Joëls, et 

al., 2012). Second, we included the variable n-back-target type (match vs. mismatch) to 

account for a potential performance bias. Specifically, due to the low number of n-back-

match compared to n-back-mismatch trials in our experiment, ongoing-task and PM 

performance in n-back-match trials might be impaired. Third, we included the number of 

PM cues per block (3–5) to account for its potential effects on PM performance, output 

monitoring and ongoing-task performance, as have been observed, for instance, in PM-

monitoring costs (A.-L. Cohen et al., 2008). 

Furthermore, to foster interpretability of the baseline condition in each model (i.e., 

the intercept), we centered the baseline covariates to meaningful data points after data 

preparation but prior to model fitting. Consequently, estimates based on the intercept 

represent performance by the no-stress group in PM blocks at averaged levels of n-back-

target type and ongoing-task demand with 4 PM cues per block at approximately 30 min 

after treatment. 

Lastly, to account for individual variability in (baseline) task performance, we 

conducted all analyses on data from cycles both prior to and after treatment. Additionally, 

to account for individual variability in baseline stress levels and individual stress responses, 
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all participants were coded as belonging to the control condition in cycles 1–2 prior to 

treatment, so that the factor treatment differed only during cycles 3–10 after treatment. 

All models were fitted using the lme4 package (version 1.1-15; Bates, Mächler, 

Bolker, & Walker, 2015) with R 3.4.3 statistical software (R Core Team, 2017). For RT 

analyses, p-values, 95% confidence intervals for fixed-effect coefficients and model 

predictions were approximated based on Satterthwaite-corrected degrees of freedom 

(Satterthwaite, 1941) with the lmerTest package (version 2.0-36; Luke, 2017), stats (version 

3.4.3) and emmeans packages (version 1.1; Lenth, Lenth, & Matrix, 2015), respectively. For 

error analyses, these parameters were approximated using infinite denominator degrees of 

freedom and asymptotic Wald statistics. The Bayes factor for the alternative hypothesis 

(BF10) of performed hypothesis tests (odds of H1 to H0) for which p < 1/e (p < .368) was 

estimated from p-value estimates by calculating the inverse of the BF01, as was outlined by 

Sellke, Bayarri and Berger (2001, Formula 2). The R script and the data used for the reported 

analyses can be downloaded from https://osf.io/pcnfg. 

5.5. Results 

5.5.1. Preliminary Analysis of the Cognitive Task 

Before examining acute stress effects on PM functioning, we assessed whether 

performing a PM task with nonfocal PM cues produced PM-monitoring costs in ongoing-

task performance (e.g., McDaniel et al., 2015) and whether increasing ongoing-task demand 

(1-back vs. 2-back) impaired PM-cue identification and output monitoring, and increased 

PM-monitoring costs in RTs and error rates (e.g., Meier & Zimmermann, 2015). Note that 

since these tests are not part of our main analyses, we cannot ensure appropriate control for 

type-I-error inflation in these tests. Therefore, here p-values are reported solely to allow 

estimating the degree of evidence for the H0, given the data. 

Slowing of ongoing-task RTs by 14% during PM blocks compared to test blocks, eB = 

1.14, 95% CI [0.38, 1.45], p < .001, BF10 > 150, and an increase in error risk by 101% in 

ongoing-task performance during PM blocks compared to test blocks, OR = 2.01, 95% CI 

[1.77, 2.29], p < .001, BF10 > 150, suggested the presence of PM-monitoring costs in ongoing-

task performance. As expected, ongoing-task demand affected PM-cue identification, 

producing slowed PM responses under high demands by 11%, eB = 1.11, 95% CI [1.07, 1.16], 

p < .001, BF10 > 150, and an increase in error odds by 113%, OR = 2.13, 95% CI [1.71, 2.65], p 

< .001, BF10 > 150. By contrast, high ongoing-task demands only slightly slowed output-

https://osf.io/pcnfg
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monitoring responses by 5%, eB = 1.05, 95% CI [1.00, 1.10], p = .050, BF10 = 2.460, and did not 

affect odds for repetition and subjective-counting errors in output monitoring, OR = 0.84, 

95% CI [0.48, 1.46], p = .536. Surprisingly, increasing ongoing-task demands reduced 

monitoring costs by 21% in RTs, eB = 0.96, 95% CI [0.95, 0.97], p < .001, BF10 > 150, and by 3% 

in error odds OR = 0.70, 95% CI [0.60, 0.83], p < .001, BF10 > 150. 

5.5.2. Main Analysis 

To account for multiple testing in our main analysis of acute stress effects on PM 

functioning, we used a combination of gatekeeping hypotheses and Bonferroni-adjusted p-

value thresholds (Dmitrienko, Tamhane, & Wiens, 2008). More specifically, using this 

gatekeeping procedure we conducted analyses on three levels, starting with a p-value 

threshold of α = .05. On the first level of analysis, we conducted treatment checks to assess 

if treatment induced physiological and psychological stress responses. This entailed testing 

for treatment effects on salivary cortisol, salivary α-amylase, and the MDBF scales good 

mood vs. bad mood, calmness vs. restlessness, and alertness vs. fatigue at a Bonferroni-

corrected p-value threshold of α = .01 [.05/5] for each test. On the second level of analysis, 

we assessed treatment effects on PM-cue identification, output monitoring, and PM-

monitoring costs in RTs and error rates, resulting in six different tests. The p-value 

threshold for each of these tests was constructed by dividing the sum of the p-value 

thresholds from significant first-level tests by six. On the third level of analysis, we tested 

whether any significant second-level treatment effect was modulated by ongoing-task 

demands. The p-value thresholds for these tests were recycled from significant second-level 

tests. The point estimates and standard errors of the untransformed regression coefficients 

from the main analyses are listed in Table 9. Information about the random effects 

characteristics for the main analyses is listed in Appendix C, Table C2. 

Treatment checks. We conducted all analyses of physiological and psychological 

treatment effects at a Bonferroni-corrected p-value threshold of α = .01 [.05/5]. 

Physiological treatment effects. To determine the physiological effects of the stress 

and control treatments, we analyzed the effects of participants’ assignment to the stress or 

no-stress treatment on the time-course of log-transformed levels of sAA and salivary 

cortisol throughout testing in mixed ANOVAS involving the factors treatment (stress vs. 

no-stress) and cycle (1–10). ANOVA results are listed in Table 8. Due to incomplete salivary 

data, one subject from the stress treatment was excluded from the analysis of sAA and one 
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subject in the no-stress treatment was excluded from the analysis of salivary cortisol and 

sAA. 

We found no statistically significant differences in the time course of sAA levels 

between groups: Time × Treatment interaction, F(4, 304) = 1.58, p = .179, ηp
2 = .02. Visual 

inspection suggested no substantial differences in sAA levels between the stress and no-

stress groups over the course of testing: −1 min: d = 0.25; +1 min: d = 0.29; +10 min: d = 

0.45; +30 min: d = 0.41; +50 min: d = 0.28 (Figure 14 A). 

Time courses of cortisol levels differed between groups: Time × Group interaction, 

F(4, 308) = 21.06, p < .001, ηp
2 = .21. Visual inspection suggested a small difference in 

cortisol levels between the stress and no-stress groups at time point −1 min: d = 0.37. At the 

remaining measurement time points, cortisol levels were substantially higher in the stress 

than in the no-stress group: +1 min: d = 0.98; +10 min: d = 1.88; +30 min: d = 1.65; +50 min: 

d = 1.80. 

Psychological treatment effects. To determine the psychological effects of our 

treatments, we conducted mixed-design repeated-measures ANOVAs including the factors 

treatment (stress vs. no-stress) and time on participants’ scores for the MDBF scales good 

mood vs. bad mood, calmness vs. restlessness, and alertness vs. fatigue. Due to incomplete 

questionnaire data, we excluded one subject in the no-stress group from the analyses of all 

MDBF scales, one subject in the stress group from the analyses of good mood and alertness, 

two additional participants in the stress group from the analysis of calmness and another 

subject in the stress group from the analysis of alertness. 

We found a statistically significant treatment effect in the time course of good 

mood, F(4, 304) = 25.48, p < .001, ηp
2 = .25. Visual inspection revealed worse mood in the 

stress group at time points +1 min: d = 1.78, and +10 min: d = 0.92, and no difference at 

other measurement time points: −1 min: d = 0.39; +30 min: d = 0.31; +50 min: d = 0.36 

(Figure 14 B). Similarly, acute stress affected the time course of subjective calmness, F(4, 

300) = 22.40, p < .001, ηp
2 = .23, with lower calmness in the stress group at time points +1 

min: d = −1.70, and +10 min: d = −0.88. Groups did not differ in calmness levels at other time 

points: −1 min: d = −0.24; +30 min: d = −0.13; +50 min: d = −0.14. Treatment did not affect 

the time course of alertness, F(4, 300) = 0.72, p = .550, ηp
2 = .01. 
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Bonferroni-corrected this for multiple testing, which resulted in a p-value threshold of α = 

.005 [.03/6] for each test of acute stress effects on PM. For each statistically significant acute 

stress effect, we conducted an additional analysis at the same p-value threshold to test 

whether this effect was modulated by ongoing-task demands. 

PM-cue identification. Overall, participants correctly identified 71.8% of PM trials. 

In the remaining PM trials, participants gave either ongoing-task responses (27.8%) or no 

response (0.4%). Treatment did not affect the estimated mean RT for PM-cue detection, eB = 

1.03, 95% CI [0.97, 1.10], p = .277, BF10 = 1.034 (stress: 607 ms, 95% CI [568 ms, 647 ms], no-

stress: 587 ms, 95% CI [551 ms, 623 ms]). There was no interaction between treatment and 

ongoing-task demand in RT data, eB = 0.95, 95% CI [0.90, 1.01]. Similarly, treatment did not 

affect the estimated odds for PM-cue identification errors, OR = 0.89, 95% CI [0.63, 1.26], p 

= .525 (error probabilities, stress: 18.0%, 95% CI [13.6, 22.3], no-stress: 20.0%, 95% CI [15.6, 

23.7]). There was no interaction between treatment and ongoing-task demand, OR = 1.28, 

95% CI [0.90, 1.82]. 

Output monitoring. Participants gave an output-monitoring response in 98.9% of 

correctly detected PM trials (objective hits: 70.7%, subjective hits: 24.1%) and rarely made 

repetition errors (4.6%) or subjective counting errors (0.6%). Treatment did not affect RTs 

for output-monitoring responses, eB = 0.98, 95% CI [0.91, 1.06], p = .631 (stress: 1046 ms, 

95% CI [972 ms, 1119 ms], no-stress: 1064 ms, 95% CI [995 ms, 1134 ms]). Ongoing-task 

demands did not interact with treatment, eB = 0.97, 95% CI [0.90, 1.04]. Mirroring RT data, 

treatment did not affect the odds of making repetition or subjective counting errors, OR = 

0.90, 95% CI [0.39, 2.08], p = .800, and there was no Treatment × Ongoing-task demand 

interaction, OR = 0.65, 95% CI [0.23, 1.84]. 

Ongoing-task performance. Accuracy of ongoing-task performance was high: 

Participants gave a wrong response in 8.4% and omitted a response in 1.0% of ongoing-task 

trials. As revealed by a significant Treatment × Block interaction in the RT analysis, eB = 

0.96, 95% CI [0.95, 0.98], p < .001, BF10 > 150, PM-monitoring costs were reduced by 29% in 

the stress group (45 ms) compared to the no-stress group (64 ms). This effect was not 

qualified by ongoing-task demands, eB = 1.02, 95% CI [1.00, 1.04], p = .106, BF10 = 1.503. 

Monitoring costs in error probabilities did not differ significantly between groups (stress: 

2.0%, no-stress: 3.0%), Treatment × Block interaction, OR = 0.94, 95% CI [0.75, 1.17], p = 

.560. There was no Treatment × Block × Ongoing-task demands interaction, OR = 1.03, 95% 

CI [0.78, 1.35]. 
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5.5.3. Exploratory Analysis 

Commission errors. Additionally, we performed an exploratory analysis of acute 

stress effects on the risk of making a commission error after intention completion. 

Commission errors were rare: During test blocks, participants erroneously released the 

STRG key in 17 trials and in 5 trials also gave an output-monitoring response. Surprisingly, 

these commission errors occurred exclusively in ongoing-task trials. To determine acute 

stress effects on the risk of making a commission error, we compared the proportion of 

participants who made at least one commission error after treatment between the stress 

and the no-stress group (see also Möschl et al., 2017). we found that the commission-error 

risk did not differ between the stress group (5 participants) and the no-stress group (6 

participants), χ2(1) = 0.14, p = .710, OR = 0.78, 95% CI [0.22, 2.82]. 

Time-dependent stress effects. Finally, we performed an exploratory analysis of 

time-dependent acute stress effects on PM. For this, we repeated our main analysis but 

included interactions of our main factors of interest with the factor cycle (1–10). Note that 

since we coded all participants as belonging to the control group in cycles 1–2, the 

exploratory models estimate pre-treatment performance of the stress group on the basis of 

post-treatment performance (cycles 3–10). Due to the low number of ongoing-task errors 

(9.4%), there were too few data points within each cell of the analysis model to obtain 

estimates and tests of the model parameters. Hence, we do not report an analysis of error 

rates in ongoing-task performance here. The point estimates and standard errors of the 

untransformed regression coefficients for these exploratory analyses are listed in Appendix 

C, Table C4. The analyses revealed small changes (1–2 %) over time in treatment effects on 

PM-cue identification and ongoing-task performance. That is, we found stable RTs for PM-

cue identification over time after the stress treatment whereas PM responses in the control 

group became slightly faster over time, eB = 1.02, 95% CI [1.00, 1.03], p = .045, BF10 = 2.636. 

As suggested by a Cycle × Treatment × Block interaction on ongoing-task 

performance RTs, monitoring costs in the stress group remained stable over the course of 

testing, while monitoring costs in the control group became smaller over time, eB = 1.01, 

95% CI [1.00, 1.02], p = .001, BF10 = 53.256. A Cycle × Treatment × Block × Ongoing-task 

demand interaction suggested that this effect occurred mainly under low ongoing-task 

demands, as under high ongoing-task demands monitoring costs in both groups seemed 

stable over time, eB = 0.99, 95% CI [0.98, 1.00], p = .033, BF10 = 3.268. 
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Table 9 

Regression of the primary performance measures on various baseline covariates and treatment contrasts. 

 Correct response time (RT)  Error probability (ERR) 

Performance measure M() SE() t-value p-value  M() SE() z-value p-value 

PM-cue identification  

Intercept 6.375 0.031 206.551   −1.407 0.132 −10.692  

Cycle (1–10) −0.025 0.003 −8.441   0.035 0.017 2.151  

PM cues per cycle (3–5) 0.009 0.012 0.759   −0.241 0.069 −3.493  

N-back match trial (yes/no) −0.110 0.016 −6.946   0.010 0.092 0.110  

Ongoing-task demand:  

low vs. high (0/1) 
0.108 0.019 5.695   0.755 0.112 6.753  

Treatment:  

no-stress vs. stress (0/1) 
0.034 0.031 1.087 .277  −0.112 0.176 −0.636 .525 

Treatment × Ongoing-task demand −0.050 0.031 −1.607   0.246 0.179 1.372  

Output monitoring 

Intercept 6.97 0.033 211.641   −3.995 0.363 −11.018  

Cycle (1–10) −0.054 0.004 −15.070   −0.036 0.046 −0.777  

PM cues per cycle (3–5) −0.022 0.014 −1.543   0.368 0.195 1.888  

N-back match trial (yes/no) 0.001 0.019 0.034   −0.135 0.248 −0.545  

Ongoing-task demand:  

low vs. high (0/1) 
0.046 0.023 1.962   −0.175 0.283 −0.619  

Treatment:  

no-stress vs. stress (0/1) 
−0.018 0.036 −0.481 .630  −0.109 0.430 −0.253 .800 

Treatment × Ongoing-task demand −0.034 0.037 −0.919   −0.428 0.530 −0.808  

Ongoing-task performance (PM monitoring) 

Intercept 6.155 0.023 265.015   −3.413 0.088 −38.691  

Cycle (1–10) −0.022 0.001 −41.463   −0.034 0.006 −5.886  

PM cues per cycle (3–5) −0.002 0.002 −0.820   −0.095 0.023 −4.136  

N-back match trial (yes/no) 0.016 0.003 5.540   1.552 0.029 52.778  

Ongoing-task demand:  

low vs. high (0/1) 
0.183 0.006 32.935   0.930 0.071 13.139  

Block:  

test block vs. PM block (0/1)  
0.133 0.005 27.491   0.699 0.066 10.563  

Treatment:  

no-stress vs. stress (0/1) 
−0.035 0.008 −4.544   −0.286 0.108 −2.637  

Ongoing-task demand × Block −0.041 0.007 −5.874   −0.352 0.083 −4.241  

Treatment × Ongoing-task demand 0.010 0.009 1.076   0.177 0.120 1.478  

Treatment × Block −0.037 0.008 −4.802 < .001  −0.067 0.115 −0.583 .560 

Treatment × Ongoing-task demand × Block 0.018 0.011 1.591 .112  0.029 0.140 0.208  

Note. In this table, p-values are reported only for a-priori defined hypothesis tests that were conducted in the main analysis. 

Statistically significant treatment effects are printed in bold font (p < .005 [.03/6]; see second-level analyses). 

 

Table 10 

Estimates for primary performance measures (standard errors in parentheses). 

 Stress  No-stress 

 RT(ms)  Errors (%)  RT(ms)  Errors (%) 

Performance measure 1-back 2-back  1-back 2-back  1-back 2-back  1-back 2-back 

PM-cue identification  607 (20) 644 (22)  18.0 (0.2) 37.3 (3.2)  587 (18) 654 (21)  19.7 (2.1) 34.3 (2.8) 

Output monitoring  1046 (37) 1058 (39)  1.6 (0.6) 0.9 (0.4)  1064 (35) 1114 (38)  1.8 (0.6) 1.5 (0.6) 

Ongoing-task performance (PM monitoring)          

PM block 504 (10) 586 (12)  4.4 (0.4) 9.3 (0.6)  537 (11) 609 (12)  6.2 (0.4) 10.6 (0.7) 

Test block 459 (9) 548 (11)  2.4 (0.2) 7.0 (0.6)  473 (10) 560 (11)  3.2 (0.3) 7.7 (0.6) 
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Figure 15. Cognitive-task performance. Estimated mean response times (RT, bar plots) and error probabilities 

(dot plots) for different performance measures as a function of ongoing-task demands (low vs. high) and 

treatment (stress vs. no stress). Data was estimated for averaged levels of n-back-target type with 4 PM cues per 

block at approximately 30 min after treatment. (A) PM-cue identification performance (i.e., STRG key releases in 

PM trials). Errors represent the probability of response omissions or ongoing-task responses in PM trials. (B) 

Output-monitoring performance for correctly identified PM cues (i.e., indicating the number of PM-cue 

encounters within a block). Errors represent the probability of repeating a PM-cue counting response from the 

preceding PM trial (repetition errors) or giving a lower PM-cue counting response than in the preceding PM trial. 

(C) Ongoing-task performance (PM monitoring) in ongoing-task trials during PM blocks and test blocks. Errors 

represent the probability of response-omissions, erroneous ongoing-task responses and erroneous PM 

responses. Error bars represent standard errors of the estimated marginal means. 

 

5.6. Discussion 

Our aim was to test the effects of acute stress on different components of PM under 

varying ongoing-task demands. For this, we assessed PM-cue identification, output 

monitoring and PM monitoring during low-demanding and high-demanding ongoing tasks 

in individuals that were exposed to a standardized stress-induction protocol (MAST) or a 

standardized control condition. We hypothesized that acute stress induction would either 

impair PM-cue identification, output monitoring and PM monitoring (Hypothesis 1) or 

enhance PM-cue identification and PM monitoring but at the same time impair output 

monitoring (Hypothesis 2). We assumed that under high ongoing-task demands, 

performance impairments should be exacerbated while performance benefits should be 

attenuated. Additionally, we explored stress effects on the risk of making a commission 

error after PM-task completion and a potential time-dependence of acute stress effects on 

PM. 

Results were straightforward and the effects of acute stress on PM were largely 

consistent with previous findings: Stress did not affect PM-cue identification. In addition, 

we showed for the first time that acute stress had no effect on output-monitoring responses 
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in an event-based PM task. Most importantly, we replicated our earlier result of smaller PM-

monitoring costs in stressed than in non-stressed individuals (Möschl et al., 2017). 

Moreover, this effect was not modulated by ongoing-task demands. Our exploratory 

analyses revealed no hints for an effect of acute stress on the risk of making a commission 

error after intention completion with the nonsalient and nonfocal PM cues in the present 

experiment, and small effects that suggested that in stressed individuals RTs for PM-cue 

identification and PM-monitoring costs remained stable, while these measures decreased 

over time in non-stressed individuals. 

While this pattern of results was not predicted by either of our hypotheses, it speaks 

against a general stress-induced impairment of higher-order cognitive functioning. Instead, 

it provides support for the notion of selective stress effects on distinct sub-processes of PM 

functioning. We will discuss our main findings and their implications in more detail below. 

As indicated by our treatment checks these findings did likely not result from a lack 

of acute stress responses after MAST exposure. That is, increased levels of salivary cortisol 

as well as short-lived decreases in subjective good mood and increases in restlessness after 

the stress compared to no-stress treatment indicated successful stress induction. Acute 

stress did not affect subjective alertness, suggesting that stress effects on PM were not due 

to differences in this variable (e.g., Plessow et al., 2012; Weckesser et al., 2016). In contrast 

to reports of short-lived increases in sAA levels after stress induction (Engert et al., 2011; 

Plessow et al., 2012; Walser et al., 2013), we did not observe an effect of the stress 

treatment on sAA levels. This was most likely due to high variance in baseline sAA levels 

and sAA reactivity (Schoofs et al., 2008). 

Additionally, our analyses of the cognitive task revealed medium to high PM-cue 

identification rates, evidence for PM-monitoring costs and a low number of output 

monitoring errors. High compared to low ongoing-task demands produced substantial 

impairments in PM-cue identification, which dovetails with previous findings (e.g., Meier & 

Zimmermann, 2015). By contrast, high ongoing-task demands produced only a slight 

slowing of correct output-monitoring responses. Lastly, high ongoing-task demands 

decreased PM-monitoring costs in both RTs and error rates. Although we do not have a 

strong explanation for this, one could speculate that this effect was due to substantially 

increased RTs and error rates in PM and test blocks under high ongoing-task demands. 
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5.6.1. Acute Stress Effects on PM-Cue Identification 

While our finding of preserved PM-cue identification under acute stress mirrors 

results from previous studies with event-based PM tasks (Möschl et al., 2017; Nater et al., 

2006; Walser et al., 2013), they conflict with recent reports of altered PM-cue identification 

under acute stress (Glienke & Piefke, 2016; Szőllősi et al., 2018). 

First, our finding stands in contrast to a study by Glienke and Piefke (2016) who 

found that stressed compared to non-stressed individuals exhibited higher PM accuracy in a 

real-life simulation. It is important to note that they assessed PM performance starting at 

about 60 min after stress induction, while we assessed PM performance 15–55 min after 

stress induction. This difference in methodology might be critical since acute stress effects 

on PM may depend on the time-frames of investigation, as has been observed, for instance, 

in research on working memory and cognitive flexibility (e.g., Hermans et al., 2014; 

Plessow, Fischer, et al., 2011). 

Additionally, participants in the Glienke and Piefke (2016) study had to maintain 

several PM tasks over a long period of time (50 min) and did not perform an ongoing task, 

but had to coordinate performance of event- and time-based tasks while reminders for both 

were present. While the duration of PM-task maintenance is known to affect PM 

performance (e.g., McBride, Beckner, & Abney, 2011), future research might determine in 

what ways other variables like the need to coordinate multiple PM tasks at once, performing 

an ongoing task or being in the constant presence of PM cues might affect the 

manifestation of acute stress effects on PM. 

Second, our finding stands in contrast to a study by Szőllősi et al. (2018) who 

observed faster PM responses in a nonfocal event-based PM task after stress induction with 

the Socially Evaluated Cold Pressor Test (SECPT; e.g., Schwabe & Schächinger, 2018). This 

discrepancy was quite surprising, considering that we also used a nonfocal PM task and a 

stress induction protocol that, similar to the SECPT, combines both physiological and 

psychosocial stressors (Smeets et al., 2012). Szőllősi et al. (2018) argued that the use of 

different stress-induction protocols might account for the differences in acute stress effects 

on PM performance across studies. Indeed, to our knowledge, acute stress effects on event-

based PM performance were observed only in two studies that used the SECPT (Glienke & 

Piefke, 2016; Szőllősi et al., 2018). By contrast studies that used the Trier Social Stress Test 

(Kirschbaum et al., 1993) did not observe any acute stress effects on event-based PM 
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performance (Möschl et al., 2017; Nater et al., 2006; Walser et al., 2013). Although these 

stress induction protocols produce similar residual stress effects—i.e., worse mood and 

increased activity of the sympathetic nervous system—the SECPT typically elicits a smaller 

cortisol response than the Trier Social Stress Test or the MAST (Schwabe & Schächinger, 

2018; Smeets et al., 2012). This difference might be crucial, as cortisol and residual stress 

effects not only have different effects on cognitive functions (Shields et al., 2016), but 

cortisol is thought to counteract residual effects of acute stress (Hermans et al., 2014; 

Weckesser et al., 2016). So far, however, there is only preliminary support for this idea: A 

reanalysis of data by Glienke and Piefke (2017), revealed that participants with low cortisol 

responses showed stable and ultimately more accurate PM performance over time than 

participants in the control group. By contrast, participants with high cortisol responses 

showed fluctuating PM performance over time compared to the control group. Under the 

assumption that decreased cortisol responses translate into a heightened influence of 

residual stress effects, their finding suggests that acute stress effects on PM performance 

might primarily result from residual stress effects on cognition. Unfortunately, the present 

study does not allow drawing a clear conclusion regarding the impact of different stress 

responses on PM. On the one hand, the lack of acute stress effects on PM-cue identification 

in the present study might be due to the lack of a systematic increase of sympathetic 

nervous system activity as measured by sAA levels after stress induction. On the other 

hand, it might be the result of different intensities of cortisol responses and residual stress 

effects following from different methods of stress induction in other studies. 

It should be pointed out that at the moment there are simply too few studies on this 

topic to evaluate effects of different stress responses and stress-induction protocols on PM. 

To address this question, future research would need to systematically assess the effects of 

different stress responses on PM. This could be achieved, for instance, by assessing in what 

ways different stress-induction protocols or medically induced increases of sympathetic 

nervous system and hypothalamus-pituitary-adrenal axis activity affect performance in 

comparable PM tasks (see Weckesser et al., 2016, for such an approach). This would also 

allow to more clearly isolate the source or mechanisms of stress effects on PM. For instance, 

a mediation of acute stress effects on PM by residual stress effects, would likely reflect 

stress-induced alterations of cognitive-control functions, whereas a mediation by cortisol 

would likely reflect stress-induced improvements of visual attention (e.g., Putman, 

Hermans, & van Honk, 2010). 
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5.6.2. Acute Stress Effects on Output Monitoring 

Given the potential link between output-monitoring and stress-sensitive episodic 

memory (Ball et al., 2018), we assumed that acute stress would impair output monitoring in 

PM. In contrast to our hypotheses, we did not find any effects of acute stress on output 

monitoring in PM. This was especially surprising given that we induced stress prior to 

memory encoding, which in research on episodic memory has been shown to produce 

impairments (for an overview, see Shields et al., 2017). When interpreting this finding, it is 

important to keep in mind that, compared to previous research, hit rates in output-

monitoring responses were exceptionally high (94.8%). Hence, based on the present study, 

we cannot determine whether the lack of a stress effect on output monitoring was simply 

due to a ceiling effect or whether it represents a genuine invulnerability of output 

monitoring towards effects of acute stress. Note, that this is a theoretically important 

question related to the underlying processes of output monitoring in PM. Specifically, if 

acute stress had no effect on output monitoring, but did affect episodic memory, then this 

dissociation would suggest that output monitoring most likely does not or only to a small 

extent rely on episodic memory. To test this, future studies could investigate stress effects 

on both output monitoring and episodic memory under certain conditions or in certain 

groups (e.g., older adults) that produce considerable variability in output-monitoring 

responses or episodic memory abilities, respectively (Koriat et al., 1988; Marsh et al., 2007; 

Skladzien, 2010). 

5.6.3. Acute Stress Effects on Ongoing-task Performance (PM Monitoring) 

To our knowledge, the present study is the second demonstration of a stress-induced 

reduction of PM-monitoring costs in a nonfocal event-based PM task (Möschl et al., 2017), 

while one study did not find such an effect in a nonfocal event-based PM task (Szőllősi et 

al., 2018). On speculative terms, this discrepancy could be attributed to a more pronounced 

cortisol secretion in the TSST or MAST than in the SECPT (Schwabe & Schächinger, 2018) 

that was used by Szőllősi et al. (2018). Importantly, however, as with acute stress effects on 

PM-cue identification, future research would be necessary to determine the individual 

contributions of sympathetic nervous system and hypothalamus-pituitary-adrenal axis 

activity to acute-stress effects on PM-monitoring costs. Note also that our study does not 

allow to clearly determine isolated effect of physiological or psychosocial stress effects on 

ongoing-task performance, given that the MAST included both types of stressors. However, 
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in light of similar findings after TSST treatments that only includes psychosocial stressors 

(Möschl et al., 2017), it at least seems that this effect does not primarily arise from residual 

stress effects or physiological stress induction. 

Alternatively, the discrepancy between studies might result from differences in 

monitoring demands. That is, previous studies only observed acute stress effects on PM-

monitoring costs in demanding nonfocal but not in focal PM tasks (Möschl et al., 2017; 

Nater et al., 2006; Walser et al., 2013), which suggests that this stress effect on PM 

monitoring depends on the difficulty to monitor for PM cues. Hence, one might ask whether 

monitoring demands in the study by Szőllősi et al. (2018) were lower than in the present 

study even though they also used nonfocal PM tasks. Relatedly, it is feasible that Szőllősi et 

al. (2018) did not observe a statistically significant stress effect on PM-monitoring costs, 

since power was too low to detect such a small effect (ηp
2 = .01, p. 87) after losing all trial-

specific information due to data aggregation in ANOVA. By contrast, the present study 

likely provided sufficient power to also detect small stress effects on PM-monitoring costs, 

given that our analyses were based on substantially more trial-specific information. 

Similarly, Möschl et al. (2017) likely observed a statistically significant stress effect on PM 

monitoring besides losing trial-specific information due to data aggregation in  ANOVA 

since the effect was quite large (ηp
2 = .12, p. 59). 

In the present study, several mechanisms for the stress-induced reduction of PM-

monitoring costs are feasible. In a previous report of a similar finding, Möschl et al. (2017) 

argued that (a) acute stress might increase the efficiency of scanning stimuli for PM-cue 

defining features due to improved selective attention or an up-regulation of the salience 

network (Hermans et al., 2014) or (b) acute stress might shift processing strategies in PM 

towards relying more on automatic spontaneous intention retrieval (Schwabe & Wolf, 2013; 

Szőllősi et al., 2018), which would have reduced the mobilization of top-down controlled 

monitoring for PM cues. Alternatively, it is also possible that acute stress reduced the 

response threshold for ongoing-task performance (Heathcote et al., 2015; Strickland et al., 

2017). That is, under acute stress participants might allot less time towards scanning 

stimuli for the presence of PM-cue defining features, which would also reduce PM-

monitoring costs. 

It is important to note that each of these mechanisms would have predicted 

corresponding changes in PM performance under acute stress: Improved selective 

attention, increased efficiency of cue scanning or a shift towards spontaneous retrieval 
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should have produced faster or more accurate PM-cue identification; a decreased PM-

response threshold should have also produced more false alarm responses. Based on the 

present study it is not possible to determine which of these processes accounts for the 

reduction in PM-monitoring costs under stress. To our knowledge, at the moment no study 

tested these processes in PM directly and there is only preliminary support for a stress-

induced shift towards spontaneous retrieval in PM (Szőllősi et al., 2018). One way to tackle 

this important question in future studies could be to assess parameter changes in cognitive 

models of ongoing-task performance (e.g., Horn & Bayen, 2015; Strickland et al., 2017) 

after acute stress induction. This could at least provide information about in what ways 

acute stress changes response thresholds in ongoing-task performance and/or the resource 

allocation or attention distribution between PM and ongoing task. Alternatively, to test this 

in a more direct way, one could assess neurophysiological effects of acute stress during PM 

performance. Here, for instance, a stress-related increase of activation in hippocampal 

areas during ongoing-task performance with a PM task would likely reflect an increased 

reliance on spontaneous-retrieval based processing under stress (Cona et al., 2016; 

McDaniel et al., 2015). 

5.6.4. The Role of Ongoing-Task Demands 

Under the assumption that PM and ongoing-task performance rely on shared 

resources (Einstein & McDaniel, 2005; Scullin et al., 2013; R. E. Smith, 2003), we expected 

stronger effects of acute stress on PM when resources for PM performance are limited by a 

demanding ongoing task. In contrast to this hypothesis, even under high ongoing-task 

demands acute stress did not affect PM-cue identification or output monitoring. Similarly, 

stress effects on PM-monitoring costs in RTs were not modulated by ongoing-task demands. 

This might indicate that PM and ongoing-task performance do not rely on shared 

resources. Specifically, recently the delay theory of PM proposed that adding a PM task to 

an ongoing task merely increases response thresholds for ongoing-task performance but 

does not usurp shared resources from it (Heathcote et al., 2015; Strickland et al., 2017). 

While recent modeling studies support this assumption (Strickland et al., 2017; cf. 

Anderson et al., 2018), at least in the present study processing resources for PM and 

ongoing-task performance seemed to have overlapped, given that high ongoing-task 

demands impaired PM performance. 
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Alternatively, one might speculate that the demanding ongoing-task in the present 

study might also have induced acute stress. This could in turn have overshadowed any 

effects of MAST exposure on PM. While manipulations of task difficulty or time pressure to 

perform a task have previously been employed to induce subjective stress (Chajut & Algom, 

2003), it is unclear to which extent demanding cognitive tasks produce physiological stress 

responses. Hence, we cannot rule out this explanation. 

As a third alternative, acute stress effects on PM might not be mediated primarily by 

changes in prefrontal-cortex functioning but rather by changes to occipital-cortex 

functioning. Specifically, by a stress-induced increase in the maintenance and perceptual 

amplification of stimulus information that is relevant for a (PM) task at hand (Weckesser et 

al., 2016; Weckesser, Enge, Riedel, Kirschbaum, & Miller, 2017). Consequently, ongoing-

task demands or demands on prospective remembering (i.e., prospective load; Möschl et al., 

2017) that are presumably associated with prefrontal cortex activation, would not affect the 

expression of acute stress effects on PM. This idea is somewhat corroborated by the fact 

that acute stress effects on PM have been mostly observed in nonfocal PM tasks that heavily 

rely on visual checking of stimuli for PM-cue features, but not in focal PM tasks in which 

PM-cue identification can occur rather spontaneously with a low need for such visual 

checking processes (Cona et al., 2016; McDaniel et al., 2015). So far, a few studies 

investigated this alternative route of acute stress effects on cognitive performance in partial 

report and dual tasks (e.g., Miller, Weckesser, Smolka, Kirschbaum, & Plessow, 2015; 

Weckesser et al., 2016) or visual discrimination tasks (e.g., Shackman et al., 2011). 

Importantly, however, to our knowledge there is no study of acute stress effects on visual 

processing in the PM literature. Future studies could test whether acute stress effects on PM 

are mediated by changes in visual-sensory processing, for instance, by investigating acute 

stress effects on PM performance under different degrees of stimulus degradation. 

5.6.5. Explorative Analysis of Commission Errors 

Previous research suggested that commission errors would be particularly rare when 

PMREPEATED cues are nonsalient and nonfocal (Scullin et al., 2012)—like in the present study. 

However, in contrast to previous studies (Möschl et al., 2017; Walser et al., 2013) and in 

order to not foster intention deactivation we did not provide error feedback for commission 

errors in the present study. Despite this, commission errors were rare and acute stress did 

not affect participants’ commission error risk. It is most likely that acute stress only has an 
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effect on intention deactivation and commission errors when task features foster a rather 

automatic or spontaneous reactivation of completed intentions—for instance, with salient 

PM cues (McDaniel et al., 2015). Therefore, when trying to assess acute stress effects on 

both commission errors and PM functioning, one should be aware of the trade-off between 

testing one or the other (Walser et al., 2013). Specifically, conditions under which acute 

stress might affect commission errors—i.e., salient and focal PM cues—seem to be 

unsuitable to assess acute stress effects on PM (Möschl et al., 2017). 

5.6.6. Explorative Analysis of Time-dependent Stress Effects 

Previous studies reported that acute stress effects on cognitive functions change 

with increasing time distance to a stressor (e.g., Plessow, Fischer, et al., 2011). Here we 

found that stressed individuals showed slightly more stable PM response speed and PM-

monitoring costs in ongoing-task RTs over time than non-stressed individuals. By contrast, 

the absence of stress effects on other performance measures did not change over time (see 

also Walser et al., 2013). While these findings dovetail with previous reports of stable PM 

performance over time after stress induction (Glienke & Piefke, 2016), in light of their 

almost negligible size, they should be interpreted with caution. Unfortunately, we could not 

estimate time effects on PM-monitoring costs in ongoing-task error rates. However, it 

seems likely that we would not have found a time effect here, given that several previous 

studies reported an absence of PM monitoring costs in ongoing-task error rates (e.g., Loft, 

Kearney, & Remington, 2008; Moyes, Sari-Sarraf, & Gilbert, 2019; Rummel et al., 2017).  

5.6.7. Conclusion  

The present study was the first to investigate the effects of acute stress on output 

monitoring in PM and the role of ongoing-task demands for PM functioning under stress. In 

line with recent meta analyses (Shields et al., 2015, 2016), our findings support the notion, 

that although stress impairs most cognitive-control functions, it does not universally impair 

all of them. Additionally, our findings corroborate ideas that acute stress only acts on 

specific sub-processes of higher-order cognitive functions and does so mostly under high 

demands on these sub-processes. 

Our findings are partially in line with theories of acute stress effects on cognition. 

Specifically, reduced PM-monitoring costs under stress (Möschl et al., 2017) and a stress-

related increase in PM-response speed (Szőllősi et al., 2018) can be explained by a stress-

induced shift towards automatic and habitual processing (Schwabe & Wolf, 2013; Vogel, 
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Fernández, Joëls, & Schwabe, 2016). Albeit, these effects could also be explained by stress-

induced changes in visual-sensory processing (Weckesser et al., 2016, 2017). Most 

importantly, however, so far no theoretical account of acute stress effects on cognition is 

able to explain the complex pattern of effects and non-effects in different sub-components 

of PM without expansion. That is, while each model predicts changes in more than one sub-

component of PM, in extant research on this topic, stress only affected one sub-component 

in each task—either PM response speed, PM accuracy or PM monitoring—while the 

remaining components remained unaffected (Glienke & Piefke, 2016; Möschl et al., 2017; 

Szőllősi et al., 2018). 

In summary, the previous two chapters showed that, while acute stress may have no 

effect on our abilities to retrieve postponed intentions and to remember past actions, it 

might make us more susceptible to making commission errors when intention deactivation 

becomes demanding. More importantly, acute stress seems to increase the efficiency with 

which we monitor our environment for retrieval opportunities. Future studies are needed to 

determine (a) the mechanisms behind this improvement in monitoring efficiency, (b) in 

what way the type and extent of physiological stress responses affect the direction and 

extent of acute stress effects on PM and (c) to identify the route of action through which 

these effects arise. 
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6. General Discussion 

The overarching aim of my dissertation was to advance our understanding and 

knowledge about mechanisms and modulators of both prospective memory and intention 

deactivation. Specifically, I aimed to identify potential mechanisms underlying the 

deactivation of completed intentions, test the relevance of cognitive control for this and 

assess the reliability of PM and intention deactivation under acute stress. To these aims, I 

conducted a comprehensive review of the studies on intention deactivation that had been 

published since its arrival in the PM literature in 1998 (Marsh et al., 1998) and, based on 

these studies, evaluated the validity of the documented accounts for aftereffects of 

completed intentions and mechanisms underlying intention deactivation. Subsequently, in 

Study 1, I assessed the relevance of cognitive-control availability for intention deactivation 

by manipulating transient cognitive-control demands during encounters of PMREPEATED cues 

in both younger and older adults. Lastly, to further elucidate the reliability of PM and 

intention deactivation under conditions that are known to affect cognitive-control 

functioning, in Study 2 and Study 3 I assessed the effects of acute stress experiences in 

different stress-induction protocols on several components of PM as well as on aftereffects 

of completed intentions in differently demanding situations. In the following chapters, I 

will first summarize and discuss the outcomes of these individual projects, then discuss 

implications of my findings for PM research as well as their limitations and lastly will 

provide a comprehensive outlook of where this research could or should be headed next. 

6.1. Mechanisms of Intention Deactivation 

The central aims of my review in Chapter 2 were to provide an up-to-date overview 

of research on intention deactivation and identify mechanisms and modulators of intention 

deactivation and aftereffects of completed intentions. Regarding the underlying 

mechanisms of aftereffects, I found that aftereffects are likely not merely the result of 

poorly understood or miscommunicated task instructions or a lack of time or resources for 

postactional processing and they cannot be explained by continued monitoring for PM cues 

alone. Although these factors play a role in determining the extent of intention-

deactivation failures, it seems to be minor. The overall picture of the reviewed studies 

suggests that, at least in event-based PM tasks, aftereffects of completed intentions can at 

the moment best be explained by continued retrieval of completed intentions that is 
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triggered by PMREPEATED cues. I based this conclusion on the observations that (a) in event-

based PM tasks, aftereffects have repeatedly been observed in terms of commission errors 

that directly indicate full intention retrieval; and that (b) previous studies consistently 

found that the same factors that modulate retrieval of active intentions also modulate 

aftereffects of completed intentions. In fact, aftereffects seem to be most likely under 

conditions that foster spontaneous intention retrieval during active PM phases. Here, key 

factors for the occurrence of aftereffects are a strong association between PM cues and 

intended actions, a high salience of PM cues, a high overlap between operations required to 

detect a PM cue and operations required to perform the ongoing task (i.e., with focal PM 

cues) and a strong context match between the tasks during which an intention is actively 

pursued and the tasks during which its deactivation is measured. Variations in these factors 

can also account for a large portion of the divergence between findings in aftereffects 

research with event-based PM tasks. 

Regarding the mechanisms underlying aftereffects in script-based paradigms or 

event-based paradigms that assess memory accessibility of semantic associates of PM cues, 

the reviewed studies showed that the accessibility of intention representations often goes to 

or below a neutral baseline after intention completion—that is, a deactivation or inhibition 

of completed intentions. Here, I discussed a selection of possible explanations for the 

seeming discrepancy between these findings and findings of continued intention retrieval 

in event-based PM tasks. At the moment, the most viable explanation for this is that 

intentions are in principle deactivated or inhibited after completion, but that this process 

can sometimes be incomplete. Consequently, findings of continued retrieval of completed 

intentions in event-based PM tasks occur because this general deactivation or inhibition 

process did not (yet?) target PM-cue–action associations and/or it only fully worked in 

some, but not all participants. 

To summarize, across the 34 studies I reviewed in Chapter 2, I found that although 

aftereffects of completed intentions can occur in terms of decreased memory accessibility of 

intention-related semantic concepts, impaired ongoing-task performance in PMREPEATED 

trials or commission errors, they seem to occur at a rate or to an extent that does not 

completely shut down subsequent task performance and pursuit of novel goals. This mirrors 

experiences of flexibly switching to different intentions or goals in everyday life and 

suggests that completed intentions are in fact deactivated (or inhibited) at some point in 

time. This process, however, can be faulty, incomplete or take a long time. That is, instead 
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of assuming a dichotomy of either inhibition or continued intention retrieval, I argue that 

intention deactivation moves along a continuum between a full re-activation and a full de-

activation or inhibition. Critically, this continuum is shifted by a multitude of factors that 

affect retrieval of intentions and perhaps also cognitive control over it. Consequently, the 

central question guiding research on intention deactivation should not be whether 

completed intentions are inhibited or continue to be retrieved, but when and under what 

circumstances? 

6.2. The Relevance of Cognitive Control for Intention 

Deactivation 

As I showed in Chapter 2, one open question regarding the mechanisms of intention 

deactivation is the involvement of cognitive-control processes. Building on correlative 

findings of increased commission errors in older adults with deficits in cognitive-control 

capabilities, a dual-mechanisms account of commission errors proposed that commission 

errors stem from failures of cognitive control over intention execution (Bugg & Scullin, 

2013). Importantly, an association of intention deactivation with cognitive-control 

functioning should not only be visible in long-lasting cognitive-control deficits in older 

adults (Bugg et al., 2016) or during periods of fatigue (Scullin & Bugg, 2013), but also during 

transient demands on cognitive control during encounters of PMREPEATED cues. To test this 

assumption, in two experiments (Study 1), I parametrically manipulated cognitive-control 

demands in terms of transient demands on information processing and uncertainty 

reduction during a majority-function task. I reasoned that these cognitive-control demands 

would usurp or bind resources to “control” intention retrieval and/or intention execution 

particularly in PMREPEATED trials. Additionally, to further elucidate under which conditions 

older adults may show deficits in intention deactivation, in Experiment 1, I assessed the 

effects of this manipulation in interaction with effects of age in a group of younger and 

older adults. 

Similar to previous studies, in both experiments, trial-by-trial cognitive-control 

demands affected ongoing-task performance (e.g., Fan et al., 2008) and nominally more 

older adults made a commission error than younger adults in Experiment 1 (e.g., Scullin et 

al., 2011). Most importantly, however, the manipulation of cognitive-control demands did 

not reliably affect aftereffects of completed intentions: In Experiment 1, aftereffects were 

smaller under medium cognitive-control demands than under low and high demands, 
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suggesting a u-shaped modulation of intention deactivation. By contrast, in an extension of 

this manipulation in Experiment 2 aftereffects did not differ between demand levels. 

Under the assumption that any demand on cognitive-control capabilities would 

interfere with or alter cognitive control over retrieval or execution of completed intentions, 

the findings from Study 1 suggest that the transient availability of cognitive control in 

PMREPEATED trials plays a much smaller role for intention deactivation than suggested by 

previous research (Bugg et al., 2016). Yet, concluding that intention-deactivation does not 

involve cognitive-control processes during PMREPEATED trials would be premature, given that 

Study 1 assessed only a single type of cognitive-control demand. Maybe preventing 

commission errors hinges specifically on response inhibition rather than on more general 

capabilities for information processing and uncertainty reduction tested here. Most 

recently, Schaper and Grundgeiger (2019) argued that this might not necessarily be the case, 

given that introducing time for response inhibition in between presentation of a PMREPEATED 

cue and the opportunity to give an ongoing-task response (i.e., 1–2 s response lags), did not 

reduce commission errors after PM-task performance had been cancelled. However, while 

they observed no commission errors when introducing a 1 s response lag after a PM tasks 

had been finished successfully, their study lacked a control group to assess commission 

errors after finished PM tasks without a response lag. Hence, future studies would be 

required to determine the involvement of response inhibition in the deactivation of 

completed intentions. 

Alternatively, it could be that demands on information processing and uncertainty 

reduction affect inhibition of intention execution but, contrary to my expectations, not 

retrieval of the completed intention. If this was the case, the cognitive-control demands I 

manipulated in Study 1 should have increased commission error rates but not aftereffects in 

ongoing-task RTs. While the absence of control-demand effects on commission errors in 

Experiment 1 and a slight reduction of commission errors with increasing control demands 

in Experiment 2, speak against this, I cannot rule out this option based on these 

experiments, simply due to the very low number of commission errors in this study. Here 

future research would need to test the effects of this control demand under conditions that 

make commission errors more likely. 
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6.3. Acute Stress Effects on PM and Intention Deactivation 

Surprisingly, despite the importance of PM for everyday life and the susceptibility of 

higher-order cognitive functioning to acute stress effects (e.g., Shields et al., 2016), at the 

time I started working on my dissertation, there were only three published studies that 

assessed acute stress effects on a small selection of PM sub-processes under presumably 

moderate demands (Nater et al., 2006; Piefke & Glienke, 2017; Walser et al., 2013), and only 

one study had also assessed intention deactivation (Walser et al., 2013). In order to extend 

our knowledge on this topic and in order to overcome some of the limitations of this 

research, in Study 2 I first tested the effects of acute psychosocial stress in the Trier social 

stress test (TSST; Kirschbaum et al., 1993) on PM-cue detection and intention retrieval as 

well as on PM monitoring and intention deactivation under varying task demands. In Study 

3, I extended this approach and tested the effects of acute physiological and psychosocial 

stress in the Maastricht acute stress test (MAST; Smeets et al., 2012) on PM and output 

monitoring in PM under varying demands on concurrently performed ongoing tasks that 

themselves have been shown to affect PM functioning (e.g., R. E. Smith, Horn, & Bayen, 

2012). 

In line with previous research, Studies 2 and 3 showed that acute stress did not 

affect PM-cue detection and intention retrieval in event-based PM tasks (Nater et al., 2006; 

Walser et al., 2013). Extending this research, my studies showed that this was independent 

of demands on PM-cue detection and PM monitoring (Study 2) and independent of 

ongoing-task demands (Study 3). By contrast, depending upon demands on intention 

deactivation, acute stress seemed to exacerbate aftereffects of completed intentions. That 

is, in Study 2, acute stress nominally increased the likelihood of erroneous intention 

retrieval in terms of commission errors, when PMREPEATED cues were salient and focal and 

thus, difficult to ignore. Most importantly, however, both Study 2 and Study 3 showed that 

when PM-cue detection was difficult (nonsalient nonfocal PM cues), acute stress actually 

reduced costs in ongoing-task performance that are often attributed to the engagement of 

PM-monitoring processes (e.g., McDaniel et al., 2015; cf. Strickland et al., 2017). Study 2 

suggested that acute stress effects on these PM monitoring costs occur only in nonfocal PM 

tasks in which PM-cue detection is visually demanding and in which PM performance is 

presumably associated with strong engagement of top-down control processes (e.g., Cona et 

al., 2015). The fact that I found a similar stress-related effect with substantially smaller PM-
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monitoring costs in Study 3 also suggests that the occurrence of stress effects on PM 

monitoring in nonfocal PM tasks is not a function of the size of costs. As I will discuss in 

more detail in Chapter 6.6.2, the specifics of the stress-induction protocols used in these 

studies might be an important factor for the occurrence of this effect, as recently Szőllősi et 

al. (2018) did not observe reduced PM-monitoring costs under stress despite also using a 

nonfocal PM task. 

Taken together, Studies 2 and 3 made a substantial contribution to our 

understanding of the reliability of PM and intention deactivation under acute stress. They 

extend previous research by testing stress effects on multiple components of PM and 

assessing the relevance of PM-cue detection demands (i.e., prospective load, PM-cue 

salience, PM-cue focality), ongoing-tasks demands and demands on intention deactivation 

for the occurrence of acute stress effects on PM. The profile of stress effects on PM that I 

observed here—preserved intention retrieval but altered PM monitoring—fits the overall 

picture of stress effects on cognition conveyed by the literature to date: Acute stress effects 

selectively target specific cognitive functions and processes (e.g., Shields et al., 2016) and 

for some of them does so mainly under high task demands (e.g., Schoofs et al., 2008, 2009). 

For PM, my findings additionally suggest that acute stress might not necessarily target 

memory-dependent processes in PM, but might alter retrieval strategies or attentional 

processes. This dovetails with some of our everyday experiences that, rather than making us 

forget what we intended to do, stress changes the way we deal with PM demands: We may 

proactively set up easily identifiable external reminders when remembering postponed 

intentions under stress would otherwise be hard. 

6.4. Implications for Views of PM Functioning 

The research presented in this thesis provided an integrative and unifying 

perspective for research on aftereffects of completed intentions and substantially extended 

our knowledge about mechanisms and boundary conditions of successfully remembering 

and deactivating intentions. Beyond that, while several of my findings support popular 

views of PM functioning, they also give reason to question or fine-tune some of the 

assumptions they make. Therefore, in the following section, I will outline central 

implications of my research for currently dominant views of PM functioning. 
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6.4.1. Retrieval Processes in PM 

One central claim of the multiprocess view of PM is that prospective remembering in 

event-based PM tasks can be supported by both a resource-saving, almost automatic 

process of spontaneous intention retrieval as well as a resource-demanding, top-down 

controlled process of monitoring for retrieval opportunities (e.g., McDaniel et al., 2015). 

This PM monitoring process in particular is thought to produce measurable costs in 

ongoing-task performance, due to capacity sharing with the ongoing task (e.g., Scullin et 

al., 2013; Shelton & Scullin, 2017; cf. Heathcote et al., 2015). Additionally, the relative 

engagement of both processes is thought to be modulated by the processing demands of a 

PM task—specifically, by the difficulty to maintain and detect PM cues. Consequently, 

variations in the engagement of PM monitoring and spontaneous retrieval coincide with 

variations in the accuracy of PM-cue detection (McDaniel et al., 2015). Across the three 

experiments reported here, I consistently found evidence for both (spontaneous) retrieval of 

intended actions as well as costs in ongoing-task performance when intentions were 

actively pursued. Consistent with the multiprocess view and previous findings, in Study 2 

ongoing-task costs were higher in nonfocal PM tasks that placed additional processing 

demands on PM-cue detection than in focal PM tasks in which processing and detection of a 

PM cue can take place rather automatically (Einstein & McDaniel, 2005). This again 

coincided with descriptively higher accuracy of PM-cue detection in the focal PM tasks in 

Study 2 (approx. 90%) compared to the nonfocal PM tasks in Studies 2 and 3 (approx. 72–

80%). Both findings support the notion that intention retrieval comprises a continuum from 

almost automatic spontaneous intention retrieval to mostly top-down controlled PM 

monitoring, depending on the features of a PM task. 

Additionally, Study 2 provides further support for the notion of a flexible 

engagement of PM monitoring according to demands on PM-cue detection: PM monitoring 

costs in ongoing-task performance were larger under a high prospective load that required 

detecting PM-cues according to a complex rule (e.g., find words that contain any 

permutation of the letters T, R, & A) than under a low prospective load that required 

detecting PM cues according to a simple rule (e.g., find words that contain the syllable 

TRA). 

Similar to the multiprocess view of PM, retrieval accounts of aftereffects of 

completed intentions that I outlined in Chapter 2 posit that the occurrence of aftereffects is 
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more likely under conditions that foster spontaneous intention retrieval than under 

conditions that foster PM monitoring (e.g., Scullin et al., 2012). Corroborating these 

accounts, RT aftereffects and commission-error rates were largest with salient focal 

PMREPEATED cues in Study 2 than with non-salient nonfocal PMREPEATED cues in Studies 2 and 3. 

6.4.2. Sources of Ongoing-Task Costs in PM Tasks 

One central assumption of the multiprocess view of PM is that the occurrence and 

magnitude of ongoing-task costs in event-based PM paradigms critically depends on 

features of a PM task. Specifically, such costs are thought to mostly occur under conditions 

in which PM tasks pose high demands on PM-cue processing or cognitive control, for 

instance, when PM cues are nonsalient and nonfocal (McDaniel et al., 2015). Interestingly, 

however, I observed ongoing-task costs also in PM tasks in which PM cues were salient and 

focal (Study 2) and PM monitoring is typically considered to be minimal or absent. Meier 

and Rey-Mermet (2012, 2018) showed that ongoing-task costs in focal PM tasks can also 

arise from aftereffects of responding to PM cues—particularly in the first trial after a PM 

cue. In Study 2, however, conflation of ongoing-task costs with this type of aftereffects 

should be minimal, since the analyses excluded two trials after each PM cue (Brewer, 2011). 

Alternatively, in line with the multiprocess view, the presence of ongoing-task costs in the 

focal PM task in Study 2 could again be attributed to the features of the experimental setup. 

I assessed PM performance across multiple PM trials and during multiple cycles; I did not 

raise importance of the ongoing-task performance; and participants in this study were likely 

aware that they would be performing multiple PM tasks over the course of the experiment. 

Additionally, although PM cues in the focal condition of Study 2 were presented in the same 

salient color, which should have minimized the need for PM monitoring, participants had a 

heightened prospective load that required them to detect four PM cues instead of one. 

Compared to single PM tasks with a single PM cue and emphasis on ongoing-task 

performance, according to the multiprocess view, the features of my experiment in Study 2 

presumably shifted the balance between monitoring and spontaneous retrieval more 

towards engagement of monitoring processes. Consequently, here participants might have 

adopted a strategy of monitoring for PM cues throughout the whole experiment, even 

though the remaining features of the PM tasks rendered this unlikely. 

An alternative, not mutually exclusive, explanation of this observation builds on the 

notion of a more abstract general deviant search set that was outlined in Study 2 and a 
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previous study (Walser et al., 2017). In brief, the idea is that forming an intention that 

requires detecting a particular stimulus establishes an attentional search set for that 

specific stimulus or a particular class of stimuli. Additionally, it also establishes a more 

generalized sensitivity towards deviance or a search set for any stimuli that deviate from the 

majority of stimuli presented in a task. Following this notion, ongoing-task costs in the 

focal condition in Study 2 would then not be the result of monitoring for specific PM cues, 

but stem from a more general bias to scan stimuli for deviance. If indeed forming an event-

based intention established a general sensitivity towards deviance, then ongoing-task 

performance in deviant oddball trials that never served as a PM cue should also differ 

between conditions in which participants are instructed to perform a PM task and in 

ongoing-task only conditions in which participants had not performed a PM task 

beforehand. Although Walser et al. (2017) reported preliminary evidence for this, future 

research would be required to determine the validity of this notion. 

Lastly, several views of PM functioning implicitly or explicitly assume that ongoing-

task costs in PM paradigms arise due to the sharing of limited resources or capacities 

between a PM task and an ongoing task at hand (e.g., Guynn, 2003; McDaniel & Einstein, 

2000; R. E. Smith, 2010). While the present line of studies does not allow to discern the 

source of ongoing-task costs, at least in parts, my findings seem to support the notion of a 

capacity sharing between PM and ongoing-task performance. Specifically, Study 3 showed 

that a high demanding ongoing 2-back working memory task impaired PM performance 

(lower accuracy and slower PM responses) compared to a low-demanding 1-back task, which 

could be explained by ongoing-task processes usurping resources away from PM 

performance. While such an explanation may seem plausible, note that capacity- or 

resource-sharing accounts of performance costs in general have been criticized for their 

potential circularity and limited explanatory value (e.g., Navon, 1984). Similarly, the 

capacity-sharing account of ongoing-task costs in PM is not undisputed either. While some 

recent studies suggest that capacity sharing might occur under particularly high task 

demands (Boag, Strickland, Heathcote, Neal, & Loft, 2019; Strickland et al., 2019), several 

others argue that many findings of ongoing-task costs in PM can instead be explained by 

altered response thresholds in lieu of capacity sharing (e.g., Ball & Aschenbrenner, 2018; 

Strickland, Loft, Remington, & Heathcote, 2018; cf. Anderson et al., 2018). These studies 

demonstrate that PM research is aware of the limitations of capacity-sharing accounts and 

is actively testing alternatives. At the same time, they also show that there is still a lot to do 
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in order to elucidate the validity of the capacity-sharing notion. Most importantly for this, 

future research would be required that determines the specific type(s) of resource(s) shared 

between PM and ongoing-task performance, the conditions under which these are shared 

and the mechanisms through which such capacity sharing may occur. 

6.4.3. Does PM Rely on Working Memory? 

One provocative reading of the lack of acute stress effects on event-based PM 

performance that I observed in Studies 2 and 3 concerns the relation between PM and 

working memory that is assumed by a popular process model of PM (e.g., Kliegel et al., 

2002; Kliegel, McDaniel, et al., 2008). The argument is that if acute stress impairs working 

memory (e.g., Schoofs et al., 2009), but not PM performance, then PM performance cannot 

rely on working memory. Indeed, this notion is supported by findings of impaired PM 

performance but preserved working memory in participants with neurological impairments 

(e.g., Carlesimo et al., 2011, 2014; Kamminga, O’Callaghan, Hodges, & Irish, 2014) or after 

transcranial magnetic stimulation to the dorsolateral prefrontal cortex (Basso, Ferrari, & 

Palladino, 2010). It is at odds, however, with findings of impaired PM performance under 

high working memory demands (e.g., Kidder et al., 1997; Logie, Maylor, Sala, & Smith, 

2004; Marsh & Hicks, 1998; Meier & Zimmermann, 2015, see also Study 3 [Chapter 5] in this 

thesis) and associations between working-memory capacity and PM performance (e.g., 

Cherry & LeCompte, 1999; Reese & Cherry, 2002; Rose, Rendell, McDaniel, Aberle, & 

Kliegel, 2010; Schnitzspahn et al., 2013; cf. Brandimonte & Passolunghi, 1994; Breneiser & 

McDaniel, 2006). 

Importantly, based on the present research, it is not possible to determine the 

relation between working memory and PM. For this, future research would be necessary to 

determine (a) whether the relationship between working memory and PM is mediated by 

one or more cognitive function(s) that themselves are not affected by acute stress and (b) 

whether the observed effects of stress on PM—reduced monitoring costs (Studies 2 & 3), 

increased time monitoring (Nater et al., 2006), faster intention retrieval (Szőllősi et al., 

2018), impaired activity-based PM performance (Cuttler et al., 2019) and stable event-based 

PM performance 50+ min after stress induction (Glienke & Piefke, 2016)—can be explained 

by acute stress effects that do not primarily affect prefrontal-cortex functioning. 
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6.5. Limitations 

Given the complexity of volitional action in general and PM and intention 

deactivation in particular, aiming to identify mechanisms and modulators of these 

functions through experimental investigations naturally requires limiting the scope of 

research questions and methodology on the one hand and limiting the applicability and 

generalizability of their findings and conclusions on the other hand. Consequently, the 

research reported in this thesis represents a snapshot of research questions, experimental 

designs and methods, rather than the complete picture; it is subject to limitations that I will 

summarize in the following. 

First, besides a small sample of older adults in Study 1 (N = 24, age: 57–75 years), 

participants in the studies presented here were mostly younger university students (N = 

232, age: 18–30 years) who volunteered in exchange for course credit or financial 

compensation. Hence, based on this research alone, it is not possible to assert to what 

extent my findings apply to the general population.  

Second, while the simplified PM tasks in my experiments allowed to minimize the 

influence of confounding variables, like task-unrelated distractions (e.g., Harrison et al., 

2014), they differ from PM tasks in everyday life in which we might, for instance, pursue 

multiple intentions at the same time and set external reminders for them ourselves. 

Consequently, although this approach provided good experimental control, limited the 

ecological validity of my research and its findings. As a compromise, future studies could, 

for instance, use paradigms that more realistically simulate the concurrent maintenance of 

multiple PM tasks over the course of a day (e.g., Glienke & Piefke, 2016) or the step-by-step 

nature of everyday errands (e.g., Rendell & Craik, 2000) and incorporate the option to self-

set reminders for them (e.g., Gilbert, 2015). At least on the surface these procedures convey 

a higher ecological validity. Such research could then also be supplemented with data about 

everyday prospective remembering and the processes involved in it from experience 

sampling (e.g., Anderson & McDaniel, 2019). 

Third, since my experiments exclusively used event-based PM tasks, they provide no 

information about the deactivation of time-based intentions or acute stress effects on time-

based PM. This would be an interesting avenue for future research, since dissociations of 

brain-lesion effects on time-based but not event-based PM (e.g., Carlesimo et al., 2014; 

Volle et al., 2011) suggest that acute stress might indeed affect these types of PM tasks 
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differently. Assessing the deactivation of time-based intentions, however, might prove 

rather difficult, since time-based PM strongly relies on self-initiated intention retrieval and 

PMREPEATED cues may not be particularly salient (e.g., the passing of another 5 min). This 

renders the occurrence of RT aftereffects and commission errors rather unlikely. 

Nevertheless, time-based PM tasks might incur aftereffects in terms of continued clock 

checking or rather subtle modulations of task performance following intention completion. 

Fourth, the PM tasks in this thesis differ in important ways from typical PM 

paradigms (e.g., Einstein & McDaniel, 1990) and other approaches to assess intention 

deactivation. The paradigms in Studies 1 and 2 presented error feedback throughout the 

whole task—even for PM-response omissions or commission errors. While this was done to 

avoid artificially inflating aftereffects due to a lack of PM performance (Bugg & Scullin, 

2013; Bugg et al., 2016), it deviates from the typical modus operandi of PM research 

(Brandimonte et al., 2014; Kliegel, McDaniel, et al., 2008; McDaniel & Einstein, 2007). As I 

discussed in Study 2, error feedback for commission errors in particular might foster a quick 

task-set reconfiguration through trial-and-error learning (e.g., Jueptner, Frith, Brooks, 

Frackowiak, & Passingham, 1997). Consequently, it might prompt participants who made a 

commission error to quickly avoid doing so in subsequent PMREPEATED trials. Also deviating 

from other aftereffect research (e.g., Scullin et al., 2012), participants in my experiments 

always performed multiple cycles of a PM task and a subsequent aftereffect measurement 

and were made aware of this prior to testing. It is therefore unclear to what extent my 

findings would be replicable in single cycle experiments. Previous studies that used this 

approach, however, suggested that effects on PM and aftereffects averaged across all cycles 

of an experimental session are also present during and after the first cycle (Walser et al., 

2012; Walser, Plessow, et al., 2014). 

Lastly, the studies I presented here, mostly provide information about a less drastic 

form of aftereffects—slowed ongoing-task responding. This response slowing presumably 

occurs due to altered decision-making or response-selection processes when completed 

intentions are retrieved during encounters of no-longer-relevant PM cues. The low number 

of commission errors across studies and, similarly, the almost absent output-monitoring 

errors in Study 3 suggest that I might have captured these functions at a rather low bound 

of demands. Hence, future research would be required to determine the effects of potential 

modulators of intention deactivation under higher demands. That is, when commission and 

output-monitoring errors might be more likely. Note, that this limitation in the past has 
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proven rather difficult to circumvent, as one cannot build these errors into an experiment. 

What one can do, for instance, is design conditions that increase the likelihood for the 

occurrence of these types of errors, and hope. However, even this does not guarantee that 

commission errors occur in sufficient numbers (Anderson & Einstein, 2017). 

Although these limitations do not undermine the validity of the research presented 

in this thesis, one should be aware that they limit the generalizability of its conclusions. At 

the same time, however, some of these limitations also point towards potential avenues for 

future research that I will outline in the following section. 

6.6. Outlook 

The present research raises a number of questions and open issues. Tackling these 

could not only further our understanding of prospective remembering and intention 

deactivation, but also in a broader sense might inform mechanisms and modulators of goal-

directed, yet flexible behavior. 

6.6.1. Mechanisms Behind Aftereffects of Completed Intentions15 

First, one of the most pressing issues for future research on aftereffects of completed 

intentions is to reconcile the seemingly incompatible results from different strands of 

research. Specifically, it is vital to determine whether findings of intention inhibition in 

studies that assessed memory accessibility of the semantic content of intention 

representations (e.g., Marsh et al., 1998) or of semantic associates of PM cues (e.g., Förster 

et al., 2005) indeed reflect reduced accessibility of intention-related semantic memory 

contents or whether they rather reflect interference from continued intention retrieval. 

Such research would benefit strongly from the development of methods that allow testing 

the activation dynamics of different components of intention representations. Future 

experiments could, for instance, incorporate task features of both script-based paradigms 

and event-based PM paradigms to assess memory accessibility and retrieval of both the 

content of completed intentions and PM-cue–action associations. Additionally, while 

neuroimaging research on aftereffects is rare (Beck et al., 2014), neuroimaging studies of 

completed action representations might help to dissociate between inhibition and 

continued retrieval or residual memory activation of the content of completed intentions. 

For instance, sustained PM-task-related brain activation or the continued possibility to 

                                                 
15 Parts of this section (except for paragraph five) were adapted from the manuscript Chapter 2 is based on. 



 

 

147 

decode the PM-task set after intention completion would suggest a residual activation of a 

completed intention (see e.g., Momennejad & Haynes, 2013). Relatedly, determining 

whether and to what extent activation levels of intention representations after intention 

completion are related to the occurrence and size of aftereffects would enable us to 

determine whether a residual activation of completed intentions is a precondition or a 

mediator of RT aftereffects and commission errors, as proposed by the residual activation 

view I outlined in Chapter 2 (see also, Walser et al., 2012). If so, residual activation might 

increase the likelihood or readiness of spontaneous intention retrieval, as has been reported 

for uncompleted intentions (Schult & Steffens, 2017; see also Sugimori & Kusumi, 2008), 

which in turn could increase the risk of making a commission error after intention 

completion. 

Second, with respect to findings of intention inhibition, it seems necessary to clarify 

under which conditions intention-related memory activation may drop below a baseline 

activation level, when this inhibition may be released and under which conditions 

activation levels simply decrease after compared to before intention completion. This would 

help to specify whether and when intention inhibition works like “intention suppression” 

and when it may work more like an active deactivation process that reduces intention 

activation towards a neutral baseline. 

Third, regarding the involvement of cognitive control in intention deactivation, 

future research would be necessary to determine (a) the type of cognitive control functions 

that modulate intention deactivation (e.g., response inhibition vs. selective attention), (b) 

the relative involvement of cognitive control over intention execution or response selection 

in intention deactivation, (c) whether it is possible to control spontaneous intention 

retrieval itself and (d) to what extent we can proactively mobilize control over these 

processes after intention completion. This would help to identify conditions in which 

aftereffects might become particularly problematic and also help to develop strategies to 

aid rapid intention deactivation. 

Fourth, research on aftereffects in event-based PM paradigms yielded aftereffects in 

several different dependent variables, like RTs, commission-error risk, commission-error 

rates and thoughts about the completed intention. To date it is unclear in what ways these 

measures relate to each other and whether aftereffects in different dependent variables 

result from the same or from different underlying processes. For instance, Anderson and 

Einstein (2017) argued that the absence of commission errors does not necessarily reflect a 
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direct deactivation of an intention representation. Instead, residual intention activation in 

combination with good task understanding or intact cognitive control might also lead to the 

absence of commission errors. Hence, future research might benefit from adding thought 

probes and/or RT measures of aftereffects in PMREPEATED trials as dependent variables since 

these measures might be more sensitive to capture aftereffects in the absence of 

commission errors. 

Fifth, in Chapter 2 I suggested that the seemingly contradictory findings from 

different lines of aftereffects research could be explained by the fact they focus on different 

elements of intention representations that might exhibit different deactivation dynamics 

(i.e., the semantic content vs. PM-cue–action associations). While this seems plausible, the 

divergence of findings could also be an artifact or side effect of the experimental 

procedures. Specifically, the occurrence of intention inhibition or continued intention 

retrieval might depend upon whether or not it is possible to perform a no-longer-relevant 

intention within the confines of the aftereffects measurement or whether this possibility is 

particularly salient. To test this, future studies could, for instance, have participants 

postpone performance of (parts of) a complex action script or a series of actions within the 

context of an ongoing task in response to a PM cue. Then, after intention completion, script 

words, semantic PM-cue associates and PMREPEATED cues should incur RT aftereffects or 

produce commission errors. Conversely, moving performance of a simple PM response into 

another context outside of a PM task or ongoing task should produce intention inhibition or 

should cease to produce aftereffects when PMREPEATED cues are presented after intention 

completion. Unfortunately, the one study in which semantic associates of a PM cue could 

have prompted participants to perform (parts of) a completed intention (i.e., stopping the 

experiment and notifying the experimenter) and which could thus have provided 

preliminary information about this, did not report data on commission errors (Förster et al., 

2005). However, it seems at least feasible that the semantic content of an intention could 

trigger intention retrieval, since semantic associates of PM cues have been shown to trigger 

actual intention retrieval in event-based PM tasks (Cook et al., 2006; cf. Mullet et al., 2013). 

Last but not least, although there are some reports of commission errors in everyday 

life, such as accidental overmedication (e.g., Kimmel et al., 2007), the prevalence of 

commission errors and their potentially negative consequences in real life are widely 

unknown—especially for potential high risk groups such as older adults. Future studies 

could answer these questions, for instance, by using experience sampling of real-life 
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prospective memory failures and aftereffects of completed intentions (e.g., Anderson & 

McDaniel, 2019; Krönke et al., 2018) or extend existing self-report measures of PM to 

include intention-deactivation failures (e.g., the Prospective and Retrospective Memory 

Questionnaire; G. Smith et al., 2000). Based on intuition, commission errors seem to be 

(way) less common than forgetting to perform an intended action (omission errors). How 

and why did the cognitive system evolve to minimize commission errors even if this may 

increase the likelihood of omission errors? Or put slightly differently, did the cognitive 

system adapt over time to avoid some omission errors by allowing for some commission 

errors? One might also ask whether this relation may change dynamically, for instance, 

depending on situational demands or meta-control parameters that modulate the dynamic 

interplay between PM performance and intention deactivation. 

6.6.2. Routes of Action for Acute Stress Effects on PM 

In a recent meta-analytic integration of three studies that tested effects of acute 

stress on PM, Piefke and Glienke (2017) showed that, on average, acute stress produced a 

small improvement of PM-cue detection in event-based PM tasks. However, they also 

showed that there is considerable heterogeneity across studies. The authors speculated that 

this heterogeneity could be attributed to differences between PM tasks and the use of 

different stress-induction protocols in these studies. Although I found that the presence of 

acute stress effects on PM monitoring and intention deactivation can be affected by PM-task 

features (Study 2 focal vs. nonfocal condition), it seems unlikely that differences in PM-task 

features in typical laboratory PM tasks alone can account for the heterogeneity of stress 

effects on PM performance in previous studies. This appears particularly unlikely, since PM-

task features did not influence the occurrence of acute stress effects in the present studies. 

For instance, I found that the absence of acute stress effects on PM performance did not 

depend on prospective load and PM-cue focality (Study 2) or on ongoing-task demands 

(Study 3). Moreover, Szőllősi et al. (2018) recently found that acute stress induction speeded 

up PM responses in a task that—similar to Studies 2 and 3 in this thesis—used nonsalient 

and nonfocal PM cues. 

By contrast, different stress-induction protocols indeed seem to have different 

effects on PM. While exposure to the Socially evaluated cold pressor test (SECPT) led to 

stable accuracy of PM performance over time (Glienke & Piefke, 2016) and increased the 

speed of PM responses (Szőllősi et al., 2018), exposure to the MAST (Study 3) or the TSST 
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did not (Möschl et al., 2017 [Study 2 in this thesis]; Nater et al., 2006; Walser et al., 2013). 

However, a recent study also showed that MAST exposure impaired PM performance in an 

activity-based task that required participants to rate their pain levels after each of the five 

hand immersions into ice-cold water during the MAST (Cuttler et al., 2019). As I suggested 

in Chapter 5, a critical difference between these studies lies in the strength and types of 

physiological stress responses that are associated with the stress-induction protocols they 

used. Specifically, both the TSST and the MAST are associated with a larger cortisol 

response than the SECPT (Schwabe & Schächinger, 2018; Smeets et al., 2012). Hence, stress 

effects on PM performance might primarily be mediated by cortisol responses that 

counteract residual stress effects (e.g., Hermans et al., 2014) which are themselves 

differentially related to stress effects on cognition (Schönfeld, Ackermann, & Schwabe, 

2014). On speculative terms, cortisol levels and PM functioning might even exhibit a dose–

response relation as has been observed for example in declarative memory (Schilling et al., 

2013) and working memory (Lupien, Gillin, & Hauger, 1999). Although a first reanalysis of 

data points towards a modulation of acute-stress effects on PM by cortisol in high versus 

low responders (Glienke & Piefke, 2017), the correlative nature of such findings so far only 

allows speculations about the relative roles of cortisol secretion and other residual stress 

effects in the genesis of acute stress effects on PM. 

To determine the causal roles of cortisol and residual stress responses for acute 

stress effects on PM, one could systematically test the effects of cortisol responses with 

minimal conflation from residual stress effects through direct administration of 

hydrocortisone (e.g., Miller et al., 2015; Weckesser et al., 2016). Conversely, one could test 

the effects of residual stress effects with minimal conflation from cortisol responses by 

applying different stress-induction protocols in conjunction with administration of 

dexamethasone or prednisolone that have been shown to considerably reduce cortisol 

secretion (Ali, Nitschke, Cooperman, & Pruessner, 2017; Pariante et al., 2004; Rimmele, 

Meier, Lange, & Born, 2010; cf. Kirschbaum & Hellhammer, 1994). Interestingly, while 

Ballhausen, Kliegel, and Rimmele (2019) most recently, found no effects of hydrocortisone 

administration on PM, their exploratory analyses showed that PM performance accuracy 

and task-demand effects on PM monitoring (focal vs. nonfocal PM cues) seemed to be 

greater when hydrocortisone or placebo pills were administered at 3 p.m. than at 1 p.m. 

Consequently, future studies on this should also take into account the circadian variability 

of PM functioning (Rothen & Meier, 2017). In order to more clearly elucidate the relative 
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roles of stress-related neurochemical changes in the genesis of stress effects on cognitive 

functioning, such an approach could also be extended towards testing effects of selective 

blockage of mineralocorticoid receptors (Cornelisse, Joëls, & Smeets, 2011; Otte et al., 

2007; Schwabe et al., 2013) or glucocorticoid receptors (Furay, Bruestle, & Herman, 2008; 

Mailliet et al., 2008; Yuen et al., 2011). On a broader scope, this may ultimately also help 

inform potential routes of action to alleviate symptoms of stress-related disorders like 

Depression (e.g., Iwata, Ota, & Duman, 2013) or post-traumatic stress disorder (e.g., Pitman 

et al., 2012). 

6.6.3.  “…isn’t this the same?” Aftereffects Outside of PM16 

An issue that goes beyond the scope of the present thesis, but is interesting from a 

theoretical perspective, is the relation of aftereffects of completed intentions to other 

research areas such as task switching (e.g., Kiesel et al., 2010) or instruction-based learning 

(e.g., Meiran et al., 2012). Here, some task-switching studies reported so-called N-2 

repetition costs that may be viewed as similar to aftereffects of completed intentions. This 

so-called backward-inhibition effect refers to the finding that switching to a previously 

relevant task set impairs task performance more than switching to a novel task set. 

Interestingly, both N-2 repetition costs and findings of slowed lexical decisions on 

intention-related words after intention completion in script-based paradigms have been 

explained by a common mechanism—inhibition of previously relevant task sets (e.g., Koch, 

Gade, Schuch, & Philipp, 2010). However, similar to aftereffects in event-based PM tasks, 

N-2 repetition costs have also been theorized to stem from continued retrieval of a 

previously relevant task set. That is, the re-activated N-2 task set is thought to interfere 

with the still residually active N-1 task set that was just switched from (e.g., MacLeod, 2007; 

MacLeod, Dodd, Sheard, Wilson, & Bibi, 2003). 

Relatedly, research on instruction-based learning showed that instructed stimulus–

response rules or mappings incur costs in terms of stimulus- or response-congruency 

effects even when stimuli that are specified in these mappings occur in a task-irrelevant 

context or dimension (e.g., Liefooghe, Degryse, & Theeuwes, 2016; Meiran et al., 2012). 

This research also showed that binding instructed stimulus-response mappings to specific 

task contexts requires actual performance or prior practice (Braem, Liefooghe, De Houwer, 

Brass, & Abrahamse, 2017). These findings may be viewed as similar to findings from 

                                                 
16 The first paragraph of this section was adapted from the manuscript Chapter 2 is based on. 
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research in event-based PM paradigms. For instance, PMREPEATED cues have also been shown 

to elicit intention retrieval in contexts in which an intention is no-longer relevant (e.g., 

Anderson & Einstein, 2017; Walser et al., 2012). Additionally, commission errors have been 

shown to occur more frequently when PM-task performance had been cancelled or was not 

possible (due to the absence of PM cues) than after successful PM-task performance (Bugg 

& Scullin, 2013; Bugg et al., 2016; Schaper & Grundgeiger, 2017). However, the absence of 

commission errors after a change in the ongoing task (Scullin et al., 2012) suggests that 

aftereffects may be more context specific and less rigid than instructed stimulus–response 

mappings. 

In summary, although all of these research areas assess effects of instructed 

stimulus–response associations and some effects reported by them appear similar, there are 

still substantial differences between paradigms. Hence, further research would be necessary 

to test whether and to what extent these phenomena indeed reflect similar mechanisms. 
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6.7. Conclusion 

Overall, the research presented in this thesis contributes towards systematizing and 

understanding the processes underlying aftereffects of completed intentions as well as the 

circumstances and factors that influence prospective remembering and intention 

deactivation as two central capacities of volitional action. My synopsis of research on 

intention deactivation, showed that although completed intentions are not always 

immediately and fully deactivated, they are also not always continually retrieved either. 

Additionally, Chapter 3 showed that even though cognitive-control abilities seem to play a 

role for intention deactivation, more work is required to elucidate the conditions under 

which cognitive-control abilities come into play and which specific aspects of cognitive-

control abilities are crucial for intention deactivation. More importantly, however, my 

research suggests that intention deactivation should be conceptualized as a dynamic 

process that moves along a continuum from complete re-activation to complete de-

activation of intentions that is shifted by factors that also influence the retrieval of active 

intentions. Additionally, Chapters 4 and 5 showed that, contrary to intuition and research 

on higher-order cognitive functions, acute stress does not seem to impair prospective 

remembering when it can rely on external reminders. Instead, it seems to actually make 

pursuit of such event-based intentions less costly and perhaps more efficient. Importantly, 

here future research on the relative influence of different physiological stress responses 

could substantially further our understanding of the routes of actions and the 

neurochemical changes through which acute stress affects cognitive functioning. Overall, as 

I hinted on in the general discussion, it could be worthwhile for research on PM and 

intention deactivation, on the one hand, to broaden its scope and consider conceptually 

related phenomena in other research areas, and, on the other hand, to take a closer look at 

the underlying mechanisms through which modulating factors exert their influence on 

prospective remembering and intention deactivation. Lastly, I hope that the research and 

the open issues I presented here can stimulate future research that—together with my 

findings—could further elucidate the role of intentions for adaptive goal-directed behavior 

and may also advance psychology’s “journey” towards a more complete understanding of 

volition and cognitive control. 
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8. Appendix A 

Stimulus Set for PM and Oddball Cues (Chapter 3) 
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9. Appendix B 

Stimulus Set for the Cognitive Task (Chapter 4) 

Table B1 

PM-cue and distractor words in the nonfocal condition (verbs on white, nouns on grey background). 

PM-cue words  Distractor words 

TRA   

TRAMPELN, 

BEANTRAGEN 

 TRÖSTEN, TRIEFEN, TRÖDELN, BETRÜGEN, STRÄUBEN, ENTROLLEN, ABTROPFEN, TROMPETEN, 

STRIEGELN, ENTROSTEN, ENTRICHTEN, ENTRÜMPELN, ENTRÄTSELN, ENTRIEGELN, AUFTRUMPFEN 

WELTRAUM, STRAND  STROM, STROH, TRUHE, STRICH, NOTRUF, BISTRO, TRIOLE, BETRIEB, ZENTRUM, GETRÄNK, TRIUMPH, 

STROPHE, ZITRONE, NEUTRON, KONTROLLE 

SPU   

SPUKEN, ABSPULEN  SPRITZEN, SPITZEN, SPIELEN, SPIEGELN, SPANNEN, SPALTEN, SPÄHEN, ENTSPANNEN, DURCHSPIELEN, 

BESPRÜHEN, BESPAßEN, BEANSPRUCHEN, AUFSPIESSEN, ANSPORNEN, ABSPALTEN 

FAHRSPUR, DISPUT  ASPHALT, BEISPIEL, DISPOSITION, FUNKSPRUCH, GASPEDAL, GESPENST, GRÜNSPECHT, HÖRSPIEL, 

KNOSPE, ORGANSPENDE, PROSPEKT, SCHAFSPELZ, SPITZENKOCH, SPONSOR, VORGESPRÄCH 

FLI   

AUFFLIEGEN, FLITZEN  SCHIEFLAUFEN, PFLÜGEN, PFLEGEN, PFLANZEN, FLUTEN, FLÜCHTEN, FLUCHEN, ENTFLECHTEN, 

BEPFLANZEN, AUFLÖSEN, AUFLEUCHTEN, AUFLESEN, AUFLEHNEN, AUFLEGEN, ANFLEHEN 

KONFLIKT, 

SCHULPFLICHT 

 ZAHNFLEISCH, TEFLON, SOUFFLE, PFLUG, NEUAUFLAGE, GRÜNFLÄCHE, FLUTWELLE, FLUGZEUG, 

FLOTTE, FLASCHE, FLADENBROT, DORFLADEN, DAMPFLOK, BAUFLÄCHE, AUFLAUF 

ERM   

VERMIETEN, 

ERMUNTERN 

 WERFEN, ÄUßERN, RUDERN, POKERN, ERHÖHEN, FÖRDERN, WANDERN, ERFORSCHEN, WIDERRUFEN, 

ERSIEGELN, SCHNEIDERN, HERUMTOBEN, WEITERLEITEN, VERSCHROTTEN, DURCHLÖCHERN 

ÜBERMUT, 

SONDERMÜLL 

 SERIE, FEUER, STERN, ERFOLG, HERBST, PAPIER, GERICHT, VERBAND, PFEFFER, HERBERGE, NUTZTIER, 

SERVIETTE, SÜßWASSER, LADEGERÄT, EISBECHER 

ACK   

ANPACKEN, 

WACKELN 

 ZUMACHEN, WETTMACHEN, WACHRÜTTELN, PACHTEN, NACHWEISEN, NACHGEBEN, NACHDENKEN, 

MITMACHEN, LACHEN, FESTMACHEN, COACHEN, BEWACHEN, BEOBACHTEN, ACHTGEBEN, ABMACHEN,  

JACKE, SACKGASSE  WACHSTUM, WACHHUND, SEGELYACHT, SCHIEBEDACH, SCHACHKLUB, SACHMITTEL, SACHBUCH, 

NACHTLEBEN, MACHT, LACTOSE, FACHWISSEN, EISFACH, DACHS, ACRYL, ACHSE 

ING   

EINGEBEN, SINGEN  WEINEN, PINSELN, HINSETZEN, HINLEGEN, HINKEN, GRINSEN, GEWINNEN, FESTBINDEN, EINPRÄGEN, 

EINÖLEN, EINMISCHEN, EINLADEN, EINFÜGEN, ANLEINEN, ABWINKEN 

DOPING, WEINGLAS  WINDBÖE, WEINFEST, VINYL, URINSTINKT, STEIN, RUINE, PROVINZ, MINUTE, MAGAZIN, LEINWAND, 

KINDHEIT, INNENHOF, FEINUNZE, EINZUG, BENZIN 

 

Table B2 

PM-cue and oddball words in the focal condition (verbs on white, nouns on grey background). Each oddball word was matched to a 

corresponding PM-cue word in regard to word type, frequency and length. 

PM cues  Oddball cues 

ABSAGEN, AUFSCHEUCHEN, BENEIDEN, DURCHKNETEN, 

ENTSCHÄRFEN, HANDELN, KÄMPFEN, MÖGEN, SCHMUNZELN, 

UMKIPPEN 

 STÜTZEN, DURCHSTECHEN, UMDENKEN, ANSCHWEIßEN, 

BEIBEHALTEN, ZÄHLEN, BEWEGEN, LEBEN, UMBENENNEN, 

ABFÜLLEN 

AUTOKLUB, BÜFFEL, FUßBANK, HANDSCHUH, MITTE, 

OZONLOCH, ROLLE, SENFKORN, TORSCHÜTZE, WALDSEE 
 BAUWAGEN, KNÖDEL, OHRLOCH, TURBULENZ, KUNST, 

NEUKUNDE, KRIEG, BLUTEGEL, HAFTBEFEHL, SCHÜRZE 

 

Table B3 

Standard words for the initial task practice (verbs on white, nouns on grey background). 

ABLEHNEN, ABNUTZEN, ANDÜNSTEN, BEFEUCHTEN, BEFÜLLEN, BESCHMUTZEN, BEVORZUGEN, ENTGLEISEN, FESTHALTEN, 

GUTHEIßEN, HALTEN, KLEIDEN, KOSTEN, MITWIRKEN, NAHESTEHEN, PADDELN, PROPHEZEIEN, SEGELN, STECHEN, WEGLAUFEN 

ALBUM, APRIKOSE, BIOMASSE, BLUTPROBE, BROTKORB, BÜRSTE, FESTLAND, GEWICHT, HALSKETTE, HOROSKOP, KOMÖDIE, 

LAUFZEIT, LUFTPOST, MUNDLOCH, NUTZLAST, ROMAN, SCHNEIDEZAHN, TEELÖFFEL, TORNADO, UNWISSEN 
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Table B4 

Standard words in the cognitive task (verbs on white, nouns on grey background). 

ABBAUEN, ABBESTELLEN, ABBEZAHLEN, ABBUCHEN, ABGEBEN, ABGEWÖHNEN, ABHALTEN, ABHEBEN, ABHOLEN, ABKLOPFEN, 

ABLENKEN, ABLESEN, ABMÄHEN, ABMALEN, ABRIEGELN, ABROLLEN, ABRUTSCHEN, ABSCHALTEN, ABSCHÄTZEN, ABSCHLEPPEN, 

ABSCHÜTTELN, ABSCHWÄCHEN, ABSTÜRZEN, ABWÄGEN, ABZAHLEN, ANBAUEN, ANBEIßEN, ANFECHTEN, ANHABEN, ANHEBEN, 

ANKNÜPFEN, ANKOPPELN, ANORDNEN, ANPASSEN, ANRUFEN, ANSAGEN, ANSCHAFFEN, ANSETZEN, ANWEISEN, ANWENDEN, 

ANZAPFEN, ANZETTELN, ÄTZEN, AUFBIEGEN, AUFDRÖSELN, AUFFÄDELN, AUFFALLEN, AUFHALTEN, AUFHORCHEN, 

AUFMÖBELN, AUFRUFEN, AUFSCHLAGEN, AUFSCHÜTTEN, AUFSTEHEN, AUFSTELLEN, AUFWEICHEN, AUFWIRBELN, AUFZÄHLEN, 

AUFZEICHNEN, BADEN, BAUEN, BEDANKEN, BEGLEICHEN, BEGRÜNDEN, BEGRÜNEN, BEHALTEN, BEHANDELN, BEICHTEN, 

BEIMISCHEN, BEKLEBEN, BEKOCHEN, BELASTEN, BELEUCHTEN, BENUTZEN, BESCHENKEN, BESIEGELN, BESTÄRKEN, BESTELLEN, 

BEZAHLEN, BEZIEHEN, BIETEN, BITTEN, BOXEN, BRÄUNEN, BRÜLLEN, BRÜTEN, BÜNDELN, DABEIBLEIBEN, DAZUGEBEN, 

DAZULEGEN, DEHNEN, DIENEN, DURCHDENKEN, DURCHLESEN, DURCHSETZEN, EKELN, ENTFALTEN, ENTFRISTEN, ENTHÄUTEN, 

ENTKORKEN, ENTLASSEN, ENTSORGEN, ENTWENDEN, ENTWURZELN, ENTZÜNDEN, ESSEN, FÄDELN, FÄRBEN, FESSELN, 

FESTLEGEN, FESTNAGELN, FESTSETZEN, FOLGEN, FRÖSTELN, FÜHLEN, GEBEN, GEGENLESEN, GEHEIMHALTEN, GEWICHTEN, 

GLÄTTEN, GROßZIEHEN, HEIZEN, HOCHGEHEN, HOCHKLAPPEN, HOCHSCHIEBEN, HOCHZIEHEN, HOCHZÜCHTEN, HOFFEN, 

HOLEN, HUMPELN, HÜPFEN, KIPPEN, KLOPFEN, KNOBELN, KÜHLEN, KUNDTUN, KÜRZEN, KÜSSEN, LANDEN, LENKEN, LESEN, 

LOBEN, LÖFFELN, LÖSCHEN, LOSGEHEN, LOSLÖSEN, MÄHEN, MALEN, MIETEN, MITFÜHLEN, ENTWISCHEN, MITNASCHEN, 

MUNKELN, MUTMAßEN, NASCHEN, NENNEN, OFFENLEGEN, ÖFFNEN, QUIETSCHEN, RÄTSELN, RIESELN, RUFEN, RUMKRIEGEN, 

RUMSITZEN, RUTSCHEN, SAGEN, SÄGEN, SCHALTEN, SCHÄTZEN, SCHENKEN, SCHIELEN, SCHIMPFEN, SCHLAFEN, SCHLEICHEN, 

SCHLÜRFEN, SCHMIEDEN, SCHMUGGELN, SCHNAPPEN, SCHNAUFEN, SCHNEIDEN, SCHRUMPFEN, SCHUFTEN, SCHUNKELN, 

SCHWEBEN, SCHWITZEN, SEHEN, SITZEN, STÜRZEN, TÄTSCHELN, TOASTEN, UMBAUEN, UMJUBELN, UMLEITEN, UMSCHALTEN, 

UMSCHWENKEN, UMSORGEN, UMWÄLZEN, UMWÜHLEN, VOLLLADEN, VORBESTELLEN, VORBEUGEN, VORFÜHLEN, VORKOSTEN, 

VORLADEN, VORLASSEN, VORSCHLAGEN, VORSORGEN, VORSTELLEN, VORWASCHEN, VORZEICHNEN, WÄHLEN, WASCHEN, 

WECHSELN, WEGGEHEN, WEGLASSEN, WEGROLLEN, WEGSCHNAPPEN, WEISSAGEN, WIEGEN, WOHNEN, WÜHLEN, WÜNSCHEN, 

WÜRFELN, WÜRZEN, ZEICHNEN, ZIEHEN, ZÜCHTEN, ZUGEBEN, ZUKNÖPFEN, ZUWEISEN 

ABEND, ABGASWOLKE, ABSCHAUM, ABSOLVENT, AGENTUR, ALKOHOL, ALPHABET, AMSEL, AMTSZEIT, ANEKDOTE, 

APFELSCHORLE, APOTHEKE, AQUÄDUKT, ASTLOCH, AUFBRUCH, AUFSCHUB, AUGAPFEL, AUTOBAHN, AUTOHANDEL, AUTOR, 

AUTORITÄT, AUTOSITZ, BADEGAST, BAHNHOF, BALLSAAL, BALSAM, BANDMAß, BASIS, BASKETBALL, BAUKLOTZ, BELEGSCHAFT, 

BESCHEID, BETONBAU, BETONKLOTZ, BIOGASANLAGE, BIOLADEN, BIOTONNE, BIRNBAUM, BLAUALGE, BLEICHMITTEL, BODEN, 

BODENBELAG, BORDEAUX, BRIEF, BÜHNE, BÜROGEBÄUDE, CHAMPION, CHANCE, COLLAGE, CURRY, DENKMAL, DETEKTEI, 

DETEKTIV, DIENSTWAGEN, DISKOTHEK, DIVISION, EDELHOLZ, EISDIELE, ELCHGEWEIH, ENTSCHEID, ENTWURF, ENZYKLOPÄDIE, 

EXKURSION, EXPLOSION, FAHRGAST, FAHRPLAN, FALLTÜR, FASSADE, FELDBETT, FELSWAND, FESTJAHR, FESTNETZ, FOLGE, 

FRIEDHOF, FRISBEE, FRÜHJAHR, FUNKRUF, FUNKTION, FUNKTIONÄR, FUßBALL, GASMASKE, GEBIET, GEDICHT, GEGENPOL, 

GEHÖRSTURZ, GEIST, GESCHENK, GESCHIRR, GESETZ, GROßHIRN, GRUND, GRUNDGESETZ, GUMMIKUGEL, GYMNASIUM, 

HALLENBAD, HANDBUCH, HANDTUCH, HIRNHAUT, HIRSE, HOCHSAISON, HOCHZEIT, HOLZFASS, HOLZFUßBODEN, HORIZONT, 

HÖRSAAL, HOTEL, HÜLSENFRUCHT, IDENTITÄT, IMPFPASS, IMPFSTOFF, JAHRBUCH, JUGENDAMT, KIRCHE, KNAUTSCHZONE, 

KOHLKOPF, KOMMUNALWAHL, KOMMUNE, KOMPASSNADEL, KOMPOST, KONFEKT, KONJUNKTUR, KOPFTUCH, KRISE, KRITIK, 

KÜCHENSTUDIO, KULTUR, KURHOTEL, LASTWAGEN, LAUBBAUM, LEBENSMITTEL, LEGENDE, LEHRPLAN, LEIHGABE, 

LEUCHTMITTEL, LEXIKON, LÖSEGELD, LUFTKORRIDOR, LUFTLOCH, MAGMA, MAHLZEIT, MAISKORN, MÄRCHEN, MAßBAND, 

MAULWURF, MIKROCHIP, MIKROFON, MODEWELT, MORPHIUM, MOTTO, NÄHZEUG, NEUWAGEN, NOTENBANK, NOTHALT, 

ÖKONOMIE, OPTIMUM, PANDABÄR, PASTETE, PEITSCHE, PETITION, PLANKTON, PLASTIKTÜTE, POTENZIAL, PROFESSOR, 

PROTOKOLL, PROTOTYP, PROZESS, QUELLE, RHETORIK, RHYTHMIK, ROLLSTUHL, ROTKOHL, RUHEPOL, RUNDE, RUNDFUNK, 

SAISON, SCHÄDELBRUCH, SCHALTJAHR, SCHLAGZEUG, SCHLAUCH, SCHLOSS, SCHLÜSSEL, SCHMIEDE, SCHNALLE, SCHNAUZE, 

SCHUBLADE, SCHULJAHR, SCHULNOTE, SCHÜSSEL, SCHWALBE, SCHWEFEL, SCHWIMMBAD, SEEWEG, SEITE, SEKUNDE, 

SELBSTKRITIK, SITZBANK, SITZHÖHE, SKIHÜTTE, SKULPTUR, SOFTEIS, SONNE, SORGE, STOFFWECHSEL, STUNDENPLAN, 

SYNTHESE, SZENE, TEDDYBÄR, TEEKÜCHE, TEEZEIT, TELEFON, THEORIE, TISCH, TITEL, TOURIST, TURNHALLE, VAGABUND, 

VOLLMOND, WAFFE, WAHLJAHR, WANZE, WASCHKÜCHE, WEBSEITE, WEISHEIT, WIRBELSÄULE, WISSENSCHAFT, WOCHE, 

WOHNSITZ, ZEITGEIST, ZUGVOGEL, ZÜNDHOLZ 

 

 

Table B5 

Color pairs for PM cues and oddballs in the focal condition (RGB values in brackets). 
PM-cue color  Oddball color 

light blue [11, 97, 164]  light orange [255, 146, 0] 

blue [27, 27, 179]  ochre [255, 191, 0] 

purple [169, 14, 255]  yellow [255, 255, 0] 

pink [255, 0, 144]  yellow-green [170, 255, 0] 

red [228, 0, 69]  green [103, 227, 0] 

orange [255, 73, 0]  turquoise [0, 175, 100] 
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10. Appendix C 

Supplement and Stimulus Information (Chapter 5) 

Table C1 

Colors for PM cues in the cognitive task (RGB values in brackets). 

Cue color 

brown [140, 94, 24] 

blue  [49, 2, 176] 

green  [0, 176, 80] 

orange  [255, 132, 0] 

pink  [200, 54, 153] 

purple  [113, 4, 168] 

red  [203, 19, 5] 

turquoise  [134, 204, 203] 

yellow  [234, 209, 50] 

yellow-green  [170, 255, 0] 

 

Table C2 

Random effects characteristics in the main analysis. 

Analysis SD Trials 

PM-cue identification  

RT participants 0.229 2200 

 residual 0.344  

Errors participants 0.754 3064 

Output monitoring  

RT participants 0.230 2063 

 residual 0.403  

Errors participants 1.624 2175 

Ongoing-task performance (PM monitoring) 

RT participants 0.203 57093 

 residual 0.315  

Errors participants 0.555 63042 

Note. All analyses were based on 79 participants. 
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Table C3 

Regression of the primary performance measures on various baseline covariates and treatment contrasts based on the complete dataset. 

 Correct response time (RT)  Error probability (ERR) 

Performance measure M() SE() t-value p-value  M() SE() z-value p-value 

PM-cue identification           

Intercept 6.376 0.031 208.435   −1.378 0.131 −10.549  

Cycle (1–10) −0.025 0.003 −8.545   0.038 0.016 2.375  

PM cues per cycle (3–5) 0.009 0.012 0.739   −0.251 0.068 −3.692  

N-back match trial (yes/no) −0.113 0.015 −7.322   −0.003 0.090 −0.037  

Ongoing-task demand:  

low vs. high (0/1) 
0.103 0.019 5.505   0.733 0.110 6.640  

Treatment:  

no-stress vs. stress (0/1) 
0.033 0.030 1.086 .278  −0.201 0.172 −1.170 .242 

Treatment × Ongoing-task demand −0.044 0.030 −1.443   0.223 0.175 1.273  

Output monitoring           
Intercept 6.972 0.033 214.482   −3.971 0.354 −11.232  

Cycle (1–10) −0.054 0.004 −15.403   −0.046 0.045 −1.018  

PM cues per cycle (3–5) −0.025 0.014 −1.746   0.408 0.193 2.115  

N-back match trial (yes/no) 0.001 0.019 0.070   −0.126 0.243 −0.521  

Ongoing-task demand:  

low vs. high (0/1) 
0.046 0.023 2.010   −0.252 0.281 −0.899  

Treatment:  

no-stress vs. stress (0/1) 
−0.020 0.036 −0.550 .582  −0.140 0.420 −0.334 .739 

Treatment × Ongoing-task demand −0.046 0.037 −1.247   −0.131 0.501 −0.261  

Ongoing-task performance (PM monitoring)        
Intercept 6.157 0.023 268.147   −3.390 0.087 −38.964  

Cycle (1–10) −0.021 0.001 −41.267   −0.033 0.006 −5.975  

PM cues per cycle (3–5) −0.002 0.002 −0.829   −0.096 0.023 −4.228  

N-back match trial (yes/no) 0.016 0.003 5.540   1.549 0.029 54.046  

Ongoing-task demand:  

low vs. high (0/1) 
0.185 0.005 33.745   0.930 0.070 13.369  

Block:  

test block vs. PM block (0/1)  
0.133 0.005 27.664   0.687 0.065 10.505  

Treatment:  

no-stress vs. stress (0/1) 
−0.036 0.008 −4.723   −0.257 0.103 −2.483  

Ongoing-task demand × Block −0.045 0.007 −6.506   −0.362 0.082 −4.442  

Treatment × Ongoing-task demand 0.003 0.009 0.306   0.163 0.114 1.429  

Treatment × Block −0.039 0.008 −5.108 < .001  −0.120 0.110 −1.092 .275 

Treatment × Ongoing-task demand × Block 0.024 0.011 2.182 .029  0.034 0.134 0.251  

Note. In this table, p-values are reported only for a-priori defined hypothesis tests that were conducted in the main analysis. 

Statistically significant treatment effects are printed in bold font (p < .005 [.03/6]; see second-level analyses). 
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Table C4 

Exploratory regression of the primary performance measures on various baseline covariates and treatment contrasts over time. 

 Correct response time (RT)  Error probability (ERR) 

Performance measure M() SE() t-value p-value  M() SE() z-value p-value 

PM-cue identification  

Intercept 6.560 0.035 185.132 < .001  –1.585 0.182 –8.700 < .001 

PM cues per cycle (3–5) 0.009 0.012 0.731 .465  –0.248 0.069 –3.585 < .001 

N-back match trial (yes/no) –0.110 0.016 –6.950 < .001  0.014 0.092 0.149 .881 

Cycle (1–10) –0.030 0.005 –6.666 < .001  0.027 0.028 0.958 .338 

Ongoing-task demand:  

low vs. high (0/1) 
0.089 0.036 2.466 .014  0.515 0.216 2.385 .017 

Treatment:  

no-stress vs. stress (0/1) 
–0.060 0.057 –1.053 .292  0.016 0.367 0.043 .966 

Cycle × Ongoing-task demand 0.004 0.006 0.619 .536  0.048 0.037 1.303 .193 

Cycle × Treatment 0.017 0.008 2.007 .045  –0.023 0.055 –0.414 .679 

Treatment × Ongoing-task demand 0.030 0.083 0.362 .717  0.648 0.480 1.349 .177 

Cycle × Treatment × Ongoing-task demand –0.013 0.013 –1.050 .294  –0.073 0.073 –1.004 .316 

Output monitoring 

Intercept 7.354 0.039 189.939 < .001  –3.846 0.454 –8.468 < .001 

PM cues per cycle (3–5) –0.020 0.014 –1.392 .164  0.367 0.195 1.888 .059 

N -back match trial (yes/no) 0.001 0.019 0.039 .969  –0.134 0.248 –0.540 .589 

Cycle (1–10) –0.063 0.005 –11.522 < .001  –0.017 0.069 –0.249 .803 

Ongoing-task demand:  

low vs. high (0/1) 
0.042 0.044 0.955 .340  –0.082 0.568 –0.144 .885 

Treatment:  

no-stress vs. stress (0/1) 
–0.096 0.068 –1.403 .161  0.145 0.840 0.172 .863 

Cycle × Ongoing-task demand 0.001 0.008 0.098 .922  –0.019 0.098 –0.190 .849 

Cycle × Treatment 0.018 0.001 1.736 .083  –0.047 0.128 –0.368 .713 

Treatment × Ongoing-task demand –0.182 0.100 –1.824 .068  –0.474 1.468 –0.323 .747 

Cycle × Treatment × Ongoing-task demand 0.023 0.015 1.487 .137  0.012 0.223 0.052 .959 

Ongoing-task performance (PM monitoring) 

Intercept 6.262 0.024 261.998 < .001      

PM cues per cycle (3–5) –0.001 0.002 –0.649 .516      

N -back match trial (yes/no) 0.016 0.003 5.572 < .001      

Ongoing-task demand:  

low vs. high (0/1) 
0.244 0.011 22.975 < .001      

Cycle (1–10) –0.016 0.001 –11.972 < .001      

Block:  

test block vs. PM block (0/1) 
0.179 0.009 19.525 < .001      

Treatment:  

no-stress vs. stress (0/1) 
–0.065 0.017 –3.932 < .001      

Cycle × Ongoing-task demand –0.013 0.002 –6.798 < .001      

Ongoing-task demand × Block –0.070 0.013 –5.239 < .001      

Cycle × Block –0.009 0.002 –5.895 < .001      

Treatment × Ongoing-task demand –0.013 0.024 –0.568 .570      

Cycle × Treatment 0.005 0.002 1.965 .049      

Treatment × Block –0.086 0.021 –4.190 < .001      

Treatment × Ongoing-task demand × Block 0.006 0.002 2.611 .009      

Treatment × Ongoing-task demand × Cycle 0.007 0.004 1.849 .064      

Treatment × Ongoing-task demand × Block 0.069 0.030 2.338 .019      

Treatment × Block × Cycle 0.010 0.003 3.194 .001      

Treatment × Block × Cycle × Ongoing-task 

demand 
–0.010 0.004 –2.128 .033      

Note. In this table, p-values are reported only as exploratory information. Parameter estimates and tests on error rates in ongoing–

task performance could not be performed due to the low number of data points. 
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