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Abstract

Radio resource allocation in communication networks is essential to achieve
optimal performance and resource utilization. In modern interference networks
the corresponding optimization problems are often nonconvex and their solution
requires significant computational resources. Hence, practical systems usually
use algorithms with no or only weak optimality guarantees for complexity
reasons. Nevertheless, asserting the quality of these methods requires the
knowledge of the globally optimal solution. State-of-the-art global optimization
approaches mostly employ Tuy’s monotonic optimization framework [125]
which has some major drawbacks, especially when dealing with fractional
objectives or complicated feasible sets.

In this thesis, two novel global optimization frameworks are developed. The
first is based on the successive incumbent transcending (SIT) scheme to avoid
numerical problems with complicated feasible sets. It inherently differentiates
between convex and nonconvex variables, preserving the low computational
complexity in the number of convex variables without the need for cumbersome
decomposition methods. It also treats fractional objectives directly without the
need of Dinkelbach’s algorithm. Benchmarks show that it is several orders of
magnitude faster than state-of-the-art algorithms.

The second optimization framework is named mixed monotonic programming
(MMP) and generalizes monotonic optimization. At its core is a novel bounding
mechanism accompanied by an efficient BB implementation that helps exploit
partial monotonicity without requiring a reformulation in terms of difference
of increasing (DI) functions. While this often leads to better bounds and faster
convergence, the main benefit is its versatility. Numerical experiments show that
MMP can outperform monotonic programming by a few orders of magnitude,
both in run time and memory consumption.

Both frameworks are applied to maximize throughput and energy efficiency
(EE) in wireless interference networks. In the first application scenario, MMP is
applied to evaluate the EE gain rate splitting might provide over point-to-point
codes in Gaussian interference channels. In the second scenario, the SIT based
algorithm is applied to study throughput and EE for multi-way relay channels
with amplify-and-forward relaying. In both cases, rate splitting gains of up to
4.5 % are observed, even though some limiting assumptions have been made.
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Chapter 1

Introduction

Radio resource management (RRM) is an integral part of communication systems
design. Its goal is the optimal allocation of scarce resources, e.g., power and
spectrum, with regard to heterogeneous Quality of Service (QoS) demands.
Feasible resource allocation methods provide satisfying service quality to all
users within the limits of the network. In commercial networks, this ensures
customer loyalty and is therefore integral in sustaining the network operator’s
revenue. Moreover, not being subject to explicit standardization, these methods
are one of the key factors for radio equipment manufacturers to differentiate
their product from competitors. In the era of 5G and beyond, the progressive
move towards more heterogeneous network equipment and QoS demands [10],
especially fostered by new concepts like network slicing [91, 102] and tactile
internet [33, 113], leads to ever increasing RRM challenges.

Common to most radio resource allocation tasks is that, at its core, a math-
ematical optimization problem is solved. In real-world systems, a resource
allocation usually has to be obtained in very short time frames rendering the
optimal solution computationally infeasible. Thus, practical systems mostly
employ heuristic algorithms. Nevertheless, from a research and development
perspective, obtaining the true solution, at least within a reasonable tolerance, is
very desirable. Applications of the optimal solution include evaluating theoreti-
cal performance bounds during system and protocol design, feasibility studies,
and standardization; benchmarking and verification of heuristic algorithms;
and insights on the solution structure that lead to better heuristic algorithms
or even to computationally cheap optimal algorithms, e.g., water filling based
procedures.

The challenges in solving resource allocation problems vary greatly among
the different tasks. Mathematical programs can be categorized in several ways.
The most important differentiation is made among the domain of the variables
which is either continuous, combinatorial, or integer. Another criterion is based
on the properties of the objective function and feasible set, which are, e.g., linear
or convex. Of course, combinations of these properties are also possible, e.g., an
optimization problem can have continuous and integer variables, or be linear in
some variables and nonconvex in other variables. For example, power control
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and rate adaption are continuous optimization problems, while scheduling is a
combinatorial problem and spectrum allocation is a (mixed) integer problem.

This thesis is mainly motivated by power control in wireless interference
networks. Depending on the employed interference mitigation techniques, QoS
constraints, and utility function this results in a continuous optimization problem
with either convex or nonconvex variables. Convex optimization theory is well
developed with most problems being solvable in polynomial time. Our focus is
mainly on nonconvex optimization problems that are not solvable in polynomial
time, also known as global optimization problems. Indeed, many resource
allocation problems are known to be NP-hard, meaning that a polynomial
time solution algorithm for these problems would settle the P = NP question
affirmatively. This is considered unlikely and, thus, we focus our attention
on developing solution algorithms that are efficient despite their exponential
computational complexity.

Any efficient optimization algorithm heavily exploits structural properties
of the problem at hand. For example, convex programs are usually categorized
into different problem classes like quadratic, geometric, semidefinite, or con-
ical programs to exploit as much structure as possible. Naturally, nonconvex
optimization requires very different algorithmic approaches than linear or con-
vex programming. Helpful structural properties that can be exploited to great
benefit are partial convexity and monotonicity. Over the past three decades
two major global optimization frameworks relying on these properties have
emerged from the operations research community. The first was DC program-
ming which depends on the objective and constraints being representable as
difference of convex (DC) functions [50]. The second is monotonic programming
which came up around the turn of the millennium and, instead of convexity,
exploits monotonicity properties in the objective and constraints [125]. Similar
to DC programming, both the objective and constraint functions need to be
representable as difference of increasing (DI) functions. From a theoretical point
of view, both frameworks cover a large class of functions. In particular, it can be
shown that they are dense in the space of continuous real-valued functions with
supremum norm and, thus, include many nonconvex optimization problems of
interest.

Especially monotonic optimization has been widely adopted for the solution
of resource allocation problems. In general, global optimization algorithms
can be roughly classified into two groups, outer approximation algorithms and
branch-and-bound (BB) procedures. Along with the initial paper by Tuy [125],
the polyblock outer approximation algorithm was developed to solve monotonic
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optimization problems. Although it suffers from major impairments it is by far
the most widely used algorithm for this framework. Later, a BB method was
proposed in [130] that improves upon the polyblock algorithm in almost all
aspects. However, the necessity to obtain DI representations for all involved
functions limits the usefulness of monotonic programming in practice, and lots
of ingenuity went into transforming problems into DI representations. Consider,
for example, the maximization of a fractional objective which occurs, e.g., when
optimizing the global energy efficiency (GEE) in a communication system. In
this case, the numerator is often a DI function while the denominator is in-
creasing. Although the monotonicity in this program is apparent, the fraction
renders it almost impossible to obtain the DI representation. For this reason,
monotonic programming is usually paired with fractional programming theory,
and Dinkelbach’s algorithm in particular, resulting in an iterative algorithm
that solves several monotonic optimization problems. One of the main contribu-
tions of this thesis is to show that this approach is unnecessarily complex. A
novel optimization framework exploiting partial monotonicity in a much more
general way than classical monotonic programming is proposed. With this
mixed monotonic programming (MMP) approach, fractional functions with a DI
numerator and increasing denominator can be solved directly without involving
Dinkelbach’s algorithm. Resource allocation problems that can be cast directly
into a monotonic program will most likely also benefit from MMP due to its
faster convergence speed.

Common to all these frameworks is that the standard procedures accompany-
ing them can only guarantee convergence to the approximately optimal solution
in an infinite number of iterations when the feasible set is complicated.1 In
practice, these procedures usually still converge in finite time but there is no
theoretical guarantee. Indeed, one of the key defining properties of an algorithm
is its finiteness, i.e., that it always terminates after a finite number of steps [66,
§1.1]. Knuth proposes to call “a procedure that has all the properties of an algo-
rithm except that it possibly lacks finiteness [a] computational method.”2 We do
not make such fine distinctions and mostly use the words algorithm, procedure,

1This statement might call for clarification in several regards. First, most optimization algorithms
are unable to obtain the exact optimal solution due to numerical reasons within a finite number of
steps. Thus, the usual approach is to accept any point that achieves an objective value sufficiently
close to the true optimum as a solution. A notable exception to this are linear programs over the
rational numbers [133]. Please refer to the introduction of Chapter 3 for more details. Second,
the notion of “complicated feasible sets” will be made precise in Section 3.2.

2Source: [66, p. 5].
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and method interchangeably. However, the finiteness of each algorithm is stated
precisely.

The usual solution to this convergence issue is to relax the feasible set by some
small ε > 0 and accept any approximately feasible point that maximizes the
objective as a solution. The general assumption is that, for small enough ε, the
obtained approximate solution is sufficiently close to the real solution. The issue
is that it is impossible to know beforehand how small ε has to be chosen for this
to work. In particular, it has been observed in [126] that this approach easily
leads to completely wrong “solutions” and, possibly, to numerical problems.
One remedy, presently not widely known in the signal processing community is
the successive incumbent transcending (SIT) scheme [127]. The core idea is to
exchange objective and constraints to obtain a problem with a simple feasible set
and then solve the original problem as a sequence of feasibility problems. This
scheme can be directly incorporated into a BB procedure resulting in an efficient
joint algorithm with finite convergence. Another benefit of the SIT scheme
is that it facilitates primal decomposition. This enables the joint treatment of
convex and nonconvex variables in a single optimization problem without losing
polynomial computational complexity in the convex variables and without the
need of cumbersome and problem specific decomposition approaches.

1.1 Overview and Contributions

This thesis is organized into four parts. Important preliminaries are established
in Part I. The main contributions are made in Parts II and III, with the exception
of Chapter 4, which, although covering preliminaries, is better described as an
“optimization framework” and is, therefore, covered in Part II. In particular, two
novel global optimization frameworks are developed in Chapters 5 and 6, and
subsequently applied to study two different aspects of interference networks in
Chapters 7 and 8. Conclusions are given in Part IV. Lists of notation, acronyms
and algorithms are provided in the appendix.

Chapter 2 motivates the resource allocation problems that are solved in this
thesis. Section 2.1 introduces K-user Gaussian interference channels and
discusses some achievability and capacity results. The corresponding
resource allocation problem and common utility functions are stated
in Section 2.2. Although this thesis is motivated by the optimization
problems in this chapter, the developed methods are much more general
and applicable to a wide range of engineering and economic problems.
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Chapter 3 establishes important global optimization concepts and algorithms.
In Section 3.1, we develop a prototype BB algorithm that is the basis for
most algorithms in Part II. The treatment is based on

[128] H. Tuy, Convex Analysis and Global Optimization, 2nd ed., ser. Springer
Optim. Appl. New York; Berlin, Germany; Vienna, Austria: Springer-
Verlag, 2016, vol. 110.

but generalizes where necessary with results from

[51] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,
3rd, rev. and enl. ed. New York; Berlin, Germany; Vienna, Austria:
Springer-Verlag, 1996.

The exposition in [51] is very general and probably unsuitable for a first
exposure to BB methods. It also requires a considerable amount of adapta-
tion to apply it to a specific problem. Instead, [128] presents the standard
approach to BB and focuses mainly on different variants of the bounding
procedure. The main contributions of this section are the generalization
to different selection procedures, a more modular approach than in [128],
and extended, easier to follow, convergence proofs.
Section 3.2 introduces the reader to the SIT scheme and ε-essential fea-
sibility. Again, the treatment follows [128] but, hopefully, is easier to
understand. The reader should be advised that this section does not stand
on its own and Chapter 5 is required for a complete understanding of the
SIT scheme.
In Section 3.3 the Polyblock algorithm for monotonic programming is
introduced. We only discuss its most basic properties because it is mainly
used for benchmarking and to explain state-of-the-art approaches to glob-
ally optimal resource allocation. Nevertheless, the version in Algorithm 3
includes several improvements from the literature to reflect the imple-
mented version employed for numerical experiments in this thesis.
This chapter is concluded by a short treatment of fractional programming
and Dinkelbach’s algorithm in Section 3.4.

Chapter 4 treats the monotonic optimization framework and its application to
radio resource allocation problems. We start with the essentials, mostly
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following [128], along with easy to grasp resource allocation examples
directly explaining how the framework is applied.
In Section 4.2, we derive a BB procedure supported by the material in
Section 3.1 to solve generic monotonic optimization problems. Although
a similar procedure with infinite convergence was derived in

H. Tuy, F. Al-Khayyal, and P. T. Thach, “Monotonic optimization: Branch
and cut methods”, in Essays and Surveys in Global Optimization, C. Audet,
P. Hansen, and G. Savard, Eds., New York; Berlin, Germany; Vienna, Austria:
Springer-Verlag, 2005, ch. 2, pp. 39–78,

we take a slightly more general approach and also discuss the finite case.
This section could also include the Polyblock algorithm from Section 3.3
but there is good reason not to do so. First, although the Polyblock algo-
rithm is invariably connected to the monotonic optimization framework,
the optimization problem considered by the framework is much more
general than that solved by this algorithm. Cumbersome transformations
discussed in Section 4.1 are necessary to apply it to general DI problems.
Second, the BB procedure in Section 4.2 is actually a better fit for DI prob-
lems and should therefore be emphasized. Finally, all basic algorithms are
discussed in Chapter 4 and there is no reason the Polyblock algorithm
should be an exception.
In Section 4.3, fractional monotonic programming, themerger of fractional
programming and monotonic optimization theory, is explained. To the
best of the author’s knowledge, this approach was first applied in

B. Matthiesen, A. Zappone, and E. A. Jorswieck, “Resource allocation for
energy-efficient 3-way relay channels”, IEEE Trans. Wireless Commun., vol. 14,
no. 8, pp. 4454–4468, Aug. 2015

and subsequently developed by Zappone et al. into the framework pre-
sented in this section.
In Section 4.4, optimization over rate regions is discussed. Primal decom-
position is employed to keep the polynomial computational complexity in
the rate variables. The material in this section has been published in
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B. Matthiesen and E. A. Jorswieck, “Weighted sum rate maximization for non-
regenerative multi-way relay channels with multi-user decoding”, in Proc.
IEEE Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process. (CAMSAP),
Curaçao, Dutch Antilles, Dec. 2017.

Chapter 5 develops an easy-to-use resource allocation framework based on the
SIT scheme that inherently differentiates between convex and nonconvex
variables, preserving the low computational complexity in the number of
convex variables. Further highlights of this algorithm are its numerical
stability, that it inherently treats fractional objectives without the need of
Dinkelbach’s algorithm, and that it is several orders of magnitude faster
than state-of-the-art algorithms. To the best of the author’s knowledge,
this is the first application of the SIT scheme in the communication systems
and signal processing communities. This chapter is mostly based on

B. Matthiesen and E. A. Jorswieck, “Efficient global optimal resource alloca-
tion in non-orthogonal interference networks”, IEEE Trans. Signal Process.,
vol. 67, no. 21, pp. 5612–5627, Nov. 2019

Chapter 6 presents theMMP framework. The notion ofmixedmonotonic (MM)
functions, a versatile generalization of DI functions, and their properties
are introduced in Section 6.1. Then, a BB algorithm based on these MM
functions is developed in Sections 6.2 and 6.3. The reduction procedure
for DI functions from

H. Tuy, Convex Analysis and Global Optimization, 2nd ed., ser. Springer Optim.
Appl. New York; Berlin, Germany; Vienna, Austria: Springer-Verlag, 2016,
vol. 110, §11.2.1

is extended to MM functions in Section 6.4. This chapter is concluded by
benchmarks of MMP against several monotonic programming approaches
in Section 6.5.

Chapter 7 evaluates point-to-point (PTP) codes against rate splitting in Gaus-
sian interference channels. This first application example employs the
MMP framework to show that Han-Kobayashi coding might provide bet-
ter GEE than PTP codes in the moderate interference regime, even under
the restricting assumptions of Gaussian codebooks and no time sharing.
This chapter is based on
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B. Matthiesen, C. Hellings, and E. A. Jorswieck, “Energy efficiency: Rate
splitting vs. point-to-point codes in Gaussian interference channels”, in Proc.
IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Cannes,
France, Jul. 2019.

Chapter 8 considers multi-way relay channels with amplify-and-forward (AF)
relaying. After motivating the model and the use of AF relaying, achiev-
able rate regions with and without rate splitting for discrete memoryless
channels are derived in Section 8.1. These results are adapted to Gaus-
sian channels in Section 8.2 and the corresponding resource allocation
problems are discussed in Section 8.3. Numerical results that include
benchmarks of the SIT based resource allocation framework from Chap-
ter 5 against the state-of-the-art are discussed in Section 8.4. This chapter
includes material from

B. Matthiesen and E. A. Jorswieck, “Efficient global optimal resource alloca-
tion in non-orthogonal interference networks”, IEEE Trans. Signal Process.,
vol. 67, no. 21, pp. 5612–5627, Nov. 2019.

B. Matthiesen and E. A. Jorswieck, “Instantaneous relaying for the 3-way
relay channel with circular message exchanges”, in Proc. Asilomar Conf.
Signals, Syst., Comput., Pacific Grove, CA, USA, Nov. 2015, pp. 475–479

B. Matthiesen, A. Zappone, and E. A. Jorswieck, “Resource allocation for
energy-efficient 3-way relay channels”, IEEE Trans. Wireless Commun., vol. 14,
no. 8, pp. 4454–4468, Aug. 2015

B. Matthiesen and E. A. Jorswieck, “Optimal resource allocation for non-
regenerative multiway relaying with rate splitting”, in Proc. IEEE Int. Work-
shop Signal Process. Adv. Wireless Commun. (SPAWC), Kalamata, Greece, Jun.
2018

B. Matthiesen and E. A. Jorswieck, “Weighted sum rate maximization for non-
regenerative multi-way relay channels with multi-user decoding”, in Proc.
IEEE Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process. (CAMSAP),
Curaçao, Dutch Antilles, Dec. 2017

Parts of the material in this thesis were published previously in IEEE trans-
actions and conferences. It is reprinted, with permission, from the following
publications.

• B. Matthiesen and E. A. Jorswieck, “Efficient global optimal resource
allocation in non-orthogonal interference networks”, IEEE Trans. Signal
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Process., vol. 67, no. 21, pp. 5612–5627, Nov. 2019, ©2019 IEEE, primarily
in Sections 2.2 and 3.2 and Chapters 5 and 8.

• B. Matthiesen and E. A. Jorswieck, “Global energy efficiency maximization
in non-orthogonal interference networks”, in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Brighton, U.K., May 2019, ©2019 IEEE,
primarily in Sections 3.2 and 8.4 and Chapter 5.

• B. Matthiesen and E. A. Jorswieck, “Optimal resource allocation for non-
regenerative multiway relaying with rate splitting”, in Proc. IEEE Int.
Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Kalamata,
Greece, Jun. 2018, ©2018 IEEE, primarily in Section 3.2 and Chapters 5
and 8.

• B. Matthiesen and E. A. Jorswieck, “Weighted sum rate maximization for
non-regenerative multi-way relay channels with multi-user decoding”,
in Proc. IEEE Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process.
(CAMSAP), Curaçao, Dutch Antilles, Dec. 2017, ©2017 IEEE, primarily in
Sections 4.4 and 8.4.

• B. Matthiesen, A. Zappone, and E. A. Jorswieck, “Resource allocation for
energy-efficient 3-way relay channels”, IEEE Trans. Wireless Commun.,
vol. 14, no. 8, pp. 4454–4468, Aug. 2015, ©2015 IEEE, primarily in Chapter 8.

• B. Matthiesen, C. Hellings, and E. A. Jorswieck, “Energy efficiency: Rate
splitting vs. point-to-point codes in Gaussian interference channels”, in
Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),
Cannes, France, Jul. 2019, ©2019 IEEE, primarily in Chapters 6 and 7.

• B. Matthiesen and E. A. Jorswieck, “Instantaneous relaying for the 3-way
relay channel with circular message exchanges”, in Proc. Asilomar Conf.
Signals, Syst., Comput., Pacific Grove, CA, USA, Nov. 2015, pp. 475–479,
©2015 IEEE, primarily in Chapter 8.

• B. Matthiesen, Y. Yang, and E. A. Jorswieck, “Optimization of weighted
individual energy efficiencies in interference networks”, in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Barcelona, Spain, Apr. 2018,
©2018 IEEE, primarily in Section 2.1.

• B. Matthiesen, O. Aydin, and E. A. Jorswieck, “Throughput and energy-
efficient network slicing”, in Proc. Int. ITG Workshop Smart Antennas
(WSA), Bochum, Germany, Mar. 2018, primarily in Section 2.2.
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1.2 State-of-the-Art

Radio resource management is essential in most communication systems and
any attempt to a complete literature review of this vast research field is likely
to fail. Being aware of this fact, we discuss just a few contributions in this
area to obtain a general overview. The text books [40, 52] focus on classical
resource allocation techniques mostly for convex problems. A general treatment
of convex problems in communications systems is given in [72]. Examples of
convex problems are weighted sum rate (WSR) maximization for the multiple-
access channel (MAC) in [122], for multi-antenna broadcast channels (BCs) in
[55], and for multiple-input multiple-output (MIMO) MACs and BCs in [57]. An
overview of nonconvex resource allocation problems is given in [18]. Global
optimization for interference limited networks is, e.g., topically covered in the
books [9, 138, 154]. Monotonic optimization as a method for resource allocation
in interference networks is discussed in [154]. This is extended into a framework
for optimal resource allocation in coordinated multicell systems in [9], and a BB
approach to WSR maximization is presented in [138]. Further contributions in
this area are [21], where joint beamformer design in MIMO MACs is considered.
In [92], the WSR in multicell MACs with interference coordination is maximized,
and [115] discusses joint power and subcarrier allocation in non-orthogonal
multiple access (NOMA) systems.

Energy-efficient resource allocation has gained a lot of attention in the past
few years. A good starting point is [149] which focuses on the application of
fractional programming theory to energy-efficient resource allocation inwireless
networks. The first publications to consider the GEE and the corresponding
fractional programming problems for centralized resource allocation are [53],
where the energy efficiency (EE) for multicarrier transmission links is maximized,
and [90] where the EE in multicell orthogonal frequency-division multiple access
(OFDMA) systems with limited backhaul capacity is considered. Further works
consider EE maximization in distributed relay-assisted interference networks
[148], in MIMO BCs [140], for heterogeneous services in OFDMA downlinks
[142], in two-hop MIMO interference channels (ICs) [150], in three-way relay
channels [83], inMIMOunder- and overlay cognitive radio systems [151], and for
5G wireless technologies [152]. Energy-efficient beamforming and precoding in
multicell multi-user systems is considered in [41, 42], respectively. Beamforming
in a similar scenario but a with realistic power consumption model is studied in
[119].

Monotonic optimization, especially in combination with the Polyblock algo-
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rithm, is possibly the most widely employed global optimization framework
for resource allocation in wireless systems. It was first used in [98] for power
control in interference networks. Almost simultaneously it was employed for
beamforming in the two-user multiple-input single-output (MISO) IC in [58,
59]. In [132], the polyblock algorithm is used for coordinated beamforming in
multicell networks. The combination of fractional programming and monotonic
optimization was first proposed in [83]. Later, this approach was generalized to
Gaussian interference networks and named fractional monotonic programming
in [147]. Optimal joint power and subcarrier allocation for full-duplex multi-
carrier NOMA systems is considered in [115]. This work is extended to secure
MISO systems under channel state information uncertainty in [116].

BB algorithms are one of the most versatile and widely used tools in global
optimizations. Possibly the first BB algorithm is proposed in [68] for integer
programming and a computationally successful implementation of the traveling
salesman problem is presented in [70]. Today, virtually all commercial mixed-
integer linear programming solvers rely on BB algorithms [99, 139]. The first
continuous BB method is developed in [32, 114] for separable nonconvex func-
tions relying on convex envelopes for bounding. It is generalized in [8, 46, 47]
and successfully applied to concave minimization in [45]. All these early ap-
proaches suffer from a computationally costly bounding procedure based on
subfunctionals of the objective and other algorithmic problems. These are fixed
in [48] which develops a fairly general BB concept with convergence conditions
that allow for a wide range of bounding approaches. It also incorporates the
conical BB variants developed in [121, 131]. Together with [49, 129], [48] builds
the foundation of modern BB algorithms for continuous optimization problems
as they are taught in textbooks [51, 128]. Applications of BB for radio resource
allocation are in [101], where a nonconvex utility maximization problem for
Gaussian MISO BCs and ICs is solved by transforming the problem such that
the bounding procedure is a convex program; [44], where energy-efficient rate
balancing in BCs is solved with a bounding procedure relying on the principles
behind MMP; [120], where energy-efficient transmit beamforming in multi-user
MISO downlinks is solved with a monotonic optimization inspired BB procedure;
[43] to optimize treating interference as noise (TIN) transmission strategies in
MISO BCs; and [137], where the WSR is maximized for a set of interfering links.

The SIT approach was developed and successively refined by Hoang Tuy in
[126–128, 130]. To the best of the author’s knowledge, it has not been adopted
for resource allocation problems before. However, the importance of robust
feasible sets has been noted in [97] where beamforming in a cognitive radio
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network is solved with DC programming. In [141], the basic principle of the
SIT approach is used to solve a multi-objective optimization problem (MOP).

Primal decomposition approaches [96] are widely used. For example, in [95]
the design of linear transceivers for multicarrier MIMO channels is considered.
This challenging nonconvex problem is solved by primal decomposition into
a convex outer problem and inner problems with closed-form solutions. The
authors of [61] combine successive convex approximation and primal decom-
position to solve the sum rate maximization problem with QoS constraints for
interfering broadcast channels with first order optimality. A distributed algo-
rithm for coordinated beamforming in multicell multigroup multicast systems is
developed in [118] based on primal decomposition and semidefinite relaxation.

This is just a very short and, naturally, very incomplete overview of some
publications related to this thesis. Nevertheless, it should provide interested
readers with a good starting point to get involved in the covered topics.



Part I

Preliminaries





Chapter 2

System Model & Resource Allocation

2.1 Gaussian Interference Networks

Consider the K-user discrete-time Gaussian interference channel (GIC) illus-
trated in Fig. 2.1 with input-output relation

yk =

K∑︂
j=1

hkjxj + zk (2.1)

where hkj ∈ C is the channel coefficient from transmitter j to receiver k,
xj is the complex-valued channel input of transmitter j, yk is the received
symbol at receiver k, and zk is circularly-symmetric complex Gaussian noise
with zero mean and power σ2

k. We assume quasi-static block flat fading, i.e., the
channel coefficients are constant over n symbols. Thus, the channel output in
transmission time i ∈ {1, 2, . . . , n} is

yki =

K∑︂
j=1

hkjxji + zki

where {zki}i is a circularly-symmetric complex white Gaussian noise process
with average power σ2

k, independent of the channel inputs and other noise
processes. Channel inputs are subject to an average power constraint

n∑︂
i=1

|xki|2 ≤ nP̄k

for all k = 1, 2, . . . ,K .
A (2nR1, 2nR2, . . . , 2nRK , n) code for the K-user GIC consists of

• K message sets Mk = {1, . . . , 2nRk}, one for each user k = 1, 2, . . . ,K ,

• K encoders, where encoder k assigns a codeword xk(mk) of length n to
each message mk ∈ Mk,

• K decoders, where decoder k assigns an estimate m̂k ∈ Mk or an error
message e to each pair (mk,yk) where yk is a length-n vector.
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Figure 2.1: Illustration of a K-user Gaussian interference channel.

We assume that the message tuple (M1,M2, . . .MK) is uniformly distributed
over M1 ×M2 × · · · ×MK . The average probability of error is defined as

P (n)
e = Pr

{︂
M̂k ̸= Mk for some k = 1, 2, . . . ,K

}︂
.

A rate tuple (R1, R2, . . . , RK) is said to be achievable if there exists a sequence
of (2nR1, 2nR2, . . . , 2nRK , n) codes such that limn→∞ P

(n)
e = 0. The capacity

region of the K-user GIC is the closure of the set of achievable rates and unknown
except for some special cases.3 One such special case is the PTP capacity region
where codes are restricted to Gaussian-PTP (G-PTP) codes.

A (2nR1, 2nR2, . . . , 2nRK , n) G-PTP code is defined as a (2nR1, 2nR2, . . .,
2nRK , n) code where the codewords xk(mk) = (xk1(mk), . . . , xkn(mk)) are
independent and identically distributed (i.i.d.) CN (0, Pk) sequences for some
Pk ∈ [0, P̄k] and all k = 1, 2, . . . ,K , where CN (µ, σ2) denotes the circularly-
symmetric complex Gaussian distribution with mean µ and variance σ2. Con-
sider the kth receiver and assume it jointly decodes a subset S ⊆ {1, 2, . . . ,K}
of codewords and treats the remaining xj , j ∈ Sc = {1, 2, . . . ,K} \ S , as noise.
This is a MAC with capacity region

Ak(S) =

{︄
(Rj)j∈S ≥ 0

⃓⃓⃓⃓
⃓ ∑︂
i∈T

Ri ≤ C
(︃

Pk(T )

σ2
k + Pk(Sc)

)︃
for every T ⊆ S

}︄
(2.2)

where C(x) = log(1 + x) and Pk(S) =
∑︁

j∈S |hkj |2 Pj . The following propo-
sition from [4] establishes the G-PTP capacity region of the GIC.

3Please refer to Chapter 7 for capacity results of the 2-user GIC.
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2.1 Proposition ([4, Thm. 1]). The capacity region of the K-user GIC with G-
PTP codes is

Cptp =

K⋂︂
k=1

⋃︂
S∈Sk

{R | (Rj)j∈S ∈ Ak(S)} (2.3)

where Sk contains all S such that k ∈ S , i.e.,

Sk = {S ∪ {k} | S ⊆ {1, 2, . . . ,K} \ {k}}. ◁

Observe that this definition of G-PTP codes does not include time sharing.
However, Proposition 2.1 is strengthened in [5, Thm. 2] where the authors show
that Cptp is also the capacity region when the choice of codebooks is limited to
random PTP codes with coded time sharing. Thus, given that a PTP codebook
is employed, the optimal interference mitigation strategy is to either jointly
decode an interfering message or treat it as additional noise. In information
theory, this is known as simultaneous non-unique decoding (SND) [5].

Combinations of arbitrary ratio between those two interference mitigation
techniques are possible by applying rate splitting (RS) and superposition coding.
For K = 2 transmitter-receiver pairs, this is known as Han-Kobayashi (HK)
coding [19, 39] and, again, SND is the best possible strategy for random code
ensembles constrained to superposition coding and coded time sharing [5]. For
Gaussian codebooks, the achievable rate region takes the form{︄

R ≥ 0

⃓⃓⃓⃓
⃓aT

i R ≤
li∑︂

j=1

λj C

(︄
bTijp

cTijp+ σ2
ij

)︄
, i = 1, . . . ,m

}︄
(2.4)

with nonnegative, nonzero vectors ai and bij , nonnegative vector cij , positive
constants σ2

ij , and real λi for all i and j. Inequalities between vectors are
element-wise and 0 is an all-zero vector of appropriate dimension. Observe that
Cptp in (2.3) can be constructed as a finite union of these rate regions, since

Cptp =

K⋂︂
k=1

⋃︂
S∈Sk

{R | (Rj)j∈S ∈ Ak(S)} (2.5a)

=
⋃︂

S1,...,SK

∈S1×···×SK

K⋂︂
k=1

{R | (Rj)j∈S ∈ Ak(S)}. (2.5b)
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and
⋂︁K

k=1{R | (Rj)j∈S ∈ Ak(S)} is an instance of (2.4).

The achievable rate region in (2.4) (respectively a finite union of rate regions)
is fairly general and represents the achievable rate regions of a wide range of
interference networks with Gaussian codebooks. However, Gaussian codebooks
are not necessarily the optimal choice. Indeed, they often perform poorly if
interference is treated as noise. This is due to the competitive nature of the
problem. On the one hand, Gaussian inputs maximize the differential entropy
and constitute capacity achieving PTP codes, while, on the other hand, Gaussian
noise is the worst noise under Gaussian inputs [1]. The optimal codebook for
TIN is still subject to ongoing research. For example, in [28] mixed Gaussian
codebooks are shown to perform well but these mixed distributions are hard to
analyze. Instead, Gaussian codebooks are a common assumption, achieve the
(sum) capacity of the 2-user GIC in all cases where it is established, and are of
practical interest. Hence, we limit the exposition to these codebooks.

State-of-the-art communication systems mostly employ single-user decoders
that treat all interference as noise and operate on PTP codes. The achievable
rate region for such a systems is

K⋂︂
k=1

{R |Rk ∈ Ak({k})} =

{︄
R

⃓⃓⃓⃓
⃓Rk ≤ C

(︄
|hkk|2 Pk

σ2
k +

∑︁
j ̸=k |hkj |2 Pj

)︄}︄
. (2.6)

The main reasons for only employing single user codes and decoders in modern
communication systems are their maturity and commercial availability, ease
of implementation, and fairly moderate requirements on the coordination and
cooperation among transmitters. Instead, a direct implementation of joint
decoding (JD) requires costly multi-user sequence detection. However, this is
subject to ongoing research, e.g., in [134] commercially available PTP codes
and sliding-window decoding are shown to achieve the whole SND region
asymptotically.

Gaussian interference networks are a suitable model for many modern com-
munication systems. Indeed, even systems involving relays often have rate
regions of the form (2.4) and sometimes are even adequately modelled by (2.1).
One such example is the Gaussian multi-way relay channel (MWRC) with mul-
tiple unicast transmissions and AF relaying that will be analyzed in Chapter 8.
Some applications are discussed below.
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Downlink MISO multicell system

Consider a downlink MISO multicell system with K single antenna terminals
and L cells with one base station (BS) each. BS l has nt antennas and serves
the terminals in the nonempty set Cl ⊂ {1, . . . ,K} satisfying |Cl| ≤ nt and
Cl ∩ Cl′ = ∅ for all l ̸= l′. Without loss of generality (WLOG) we assume that
every terminal is associated with exactly one BS, i.e.,

⋃︁L
l=1 Cl = {1, . . . ,K}.

Denote the channel vector from BS l to terminal k as hkl. BS l employs linear
precoding and transmits the signal xl =

∑︁
k∈Cl

√
pkwksk, where sk is the

symbol intended for terminal k, wk is the corresponding beamforming vector
satisfying ∥wk∥ = 1, and pk is the allocated power. Each BS is subject to a sum
power constraint, i.e.,

∑︁
k∈Cl

pk ≤ P̄l for all l. Let ℓk denote the home cell of
terminal k. The received signal at this terminal is

yk = hT
kℓk

xℓk +

L∑︂
l=1
l ̸=ℓk

hT
klxl + zk

=
√
pkγ

k
kℓk

sk⏞ ⏟⏟ ⏞
desired signal

+
∑︂

κ∈Cℓk
\{k}

√
pκγ

κ
kℓk

sκ

⏞ ⏟⏟ ⏞
intra-cell interference

+
∑︂

l ̸=ℓk, κ∈Cl

√
pκγ

κ
klsκ⏞ ⏟⏟ ⏞

inter-cell interference

+ zk⏞⏟⏟⏞
sink
noise

where γκ
kl = hT

klwκ is the effective channel and zk is i.i.d. CN (0, σ2
k) noise. Due

to the linear precoding, this is effectively a K-user IC.

Relay-assisted Multicell Communication

Consider a wireless multicell scenario whereK users located near the cell edges
desire to communicate among each other. The common method of routing
this communication through the respective BSs and over the backhaul network
will suffer from high attenuation and near-far effects. This can result in lower
data rates, higher transmit powers, or higher spectrum utilization. Instead, a
small-cell based on a layer-1 relay close to the cell edges is a simple and cost-
efficient method to overcome these issues and improve the QoS for these users.
This relay-assisted multicell scenario is an instance of the MWRC discussed in
Chapter 8 and illustrated in Fig. 2.2.
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Figure 2.2: Relay-assisted multicell communication [82]. ©2018 IEEE

Digital Subscriber Lines

Digital subscriber line (DSL) systems enable high-speed data transfers over
the copper wires used in traditional telephone systems. Crosstalk between
adjacent lines has long been identified as the main impairment in theses systems.
Thus, the DSL environment is an instance of the GIC. However, in contrast to
most wireless systems where flat fading is often a suitable assumption, the
DSL channel is highly frequency selective and the model in (2.1) might be
an oversimplification [144]. Practical systems use wireline discrete multitone
modulation, a multicarrier modulation similar to orthogonal frequency-division
multiplexing. In that case, the achievable rate region is of the form (2.4) with
li being the subcarrier index. Since the number of subcarriers can be as large
as 4096 and the duality gap in the corresponding resource allocation problem
is asymptotically zero in the number of subcarriers, the resource allocation is
usually done in the dual domain [145].

2.2 Resource Allocation Problems

Radio resource allocation is essential to best utilize the available resources in
a communication network, e.g., spectrum and energy. We have seen in the
previous section that many practical communication systems are modelled as
Gaussian interference networkswith rate region (2.4). WLOG, the corresponding
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optimization problem for some utility function f(p,R) is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
p,R

f(p,R)

s. t. aT
i R ≤ log

(︃
1 +

bTi p

cTi p+ σ2
i

)︃
, i = 1, . . . , n

R ≥ 0, R ∈ Q
p ∈ [0, P̄ ] ∩ P

(2.7)

where the sets Q,P are usually linear and, often, not present at all, and [0, P̄ ]
is the generalized closed interval defined as

[0, P̄ ] = {p |0 ≤ p ≤ P̄ }.

The right-hand side (RHS) of the first inequality constraint is a nonconvex
function if ci ̸= 0. Except for some special cases, this is a nonconvex opti-
mization problem and known to be NP-hard for several of the utility functions
discussed below. This implies that in these cases obtaining the optimal solution
of (2.7) is a challenging computational problem with worst-case computational
complexity scaling exponentially in the number of variables.

Problem (2.7) also covers optimizing over Cptp in Proposition 2.1. Recall from
(2.5) that intersection and union in the definition of Cptp can be exchanged by
properly adjusting the index sets. The following, almost trivial, lemma connects
(2.7) to resource allocation problems over Cptp.

2.2 Lemma. Let f : X → R and X =
⋃︁

i∈I Xi for a finite index set I . Then

sup
x∈X

f(x) = max
i∈I

sup
x∈Xi

f(x). ◁

Proof (adapted from [109]). Let α = supx∈X f(x) and αi = supx∈Xi
f(x), i ∈

I . Clearly, α ≥ αi for all i ∈ I . Hence, α ≥ maxi∈I αi.
On the other hand, for every x ∈ X there exists an i ∈ I such that x ∈ Xi.

Thus, αi ≥ f(x). This implies that there exists an i′ ∈ I such that αi′ ≥
supx∈X f(x). Since maxi∈I αi ≥ αi′ , we have maxi∈I αi ≥ α.

Hence, maximizing a utility function f over Cptp is equivalent to solving a finite
number of instances of (2.7). However, the union in (2.5b) is over 2K(K−1)

elements and optimizing over Cptp is not only challenging due to the exponential
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complexity of (2.7) but also poses an additional combinatorial optimization
problem. In this thesis, we focus on the efficient solution of (2.7) and leave the
combinatorial problem open for future work.

Besides finding the best operating point with respect to f(p,R), solving (2.7)
is also necessary to characterize the outermost boundary of the achievable rate
region R in (2.4), i.e.,

∂+R = {R ∈ R | ∄R′ ∈ R : (∀i : R′
i ≥ Ri) ∧ (∃i : R′

i > Ri)} .

In optimization theory, this is known as the strict Pareto boundary [146], which
is defined as the set of all Pareto-optimal points. A Pareto-optimal point is one
of an infinite number of noninferior solutions to the MOP (2.7) with vector
objective f(p,R) = (R1, R2, . . . , RK). It has the property that it is impossible
to increase one of the objectives without decreasing at least one of the others.
Multi-objective programming theory provides several approaches to convert
the vector objective of a MOP into a scalar one whose maximization results in
a Pareto-optimal point. The two most widely used are the scalarization4 and
utility profile approach [153].

Next, we discuss some widely used utility functions f(p,R).

2.2.1 Weighted Sum Rate

The WSR f(p,R) = wTR is possibly the most widely used utility function
for power control in wireless communication systems. Its operational meaning
is apparent: with all weights wk = 1, f(p,R) is the total throughput in the
network. Without QoS constraints, though, this will often result in very bad per-
formance for some users. Varying the weights between 0 and 1 with

∑︁
k wk = 1

characterizes the convex hull of the achievable rate region’s Pareto boundary.
This is known as the scalarization approach from multi-objective programming
theory. Moreover, in several communication networks this condition leads to
the characterization of the stability region. In this queueing theoretic setting,
choosing the weights proportional to the queue lengths prioritizes longer queues
and stabilizes the network [87, 117].

While many instances of the WSR maximization problem are convex [55, 57,
122], this is not the case for (2.7). Instead, the problem is known to be NP-hard
for TIN [73], and it is a safe assumption that it is also NP-hard for most other
instances of (2.7) with nonzero ci. Despite the computational challenges, WSR
4This approach is also known as rate balancing [56].
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maximization for TIN interference networks is studied widely in the literature,
e.g., [9, 21, 59, 92, 98, 115]. A nice property of the TIN case is that the rate region
is a hypercube, i.e., WLOG ai = ei, for all i, where ei is the ith canonical unit
vector. Thus, the rates are easily eliminated from (2.7) and the optimization
is only over p. This is not the case if, e.g., JD is involved. Then, the rate re-
gion is more involved and the optimization is jointly over p and R. However,
close scrutiny reveals that (2.7) is linear in R. Thus, variable reduction tech-
niques should be employed to avoid treating R as global variables and keep
the computational complexity at a reasonable level. This is done in Section 4.4
and Chapter 5.

2.2.2 Rate Profile Approach

The rate profile approach is an instance of the utility profile approach and finds
the intersection of a ray in the direction w and the Pareto boundary of the
achievable rate region, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
p,R,t

t

s. t. aT
i R ≤ log

(︃
1 +

bTi p

cTi p+ σ2
i

)︃
, i = 1, . . . , n

R ≥ tw, R ∈ Q
p ∈ [0, P̄ ] ∩ P

(2.8)

for some w ≥ 0. WLOG one can assume ∥w∥ = 1. By varying the direction of
the ray, the complete Pareto boundary can be characterized.

Problem (2.8) is the epigraph form of (2.7) with f(p,R) = mink Rk

wk
as long as

w ̸= 0. Besides reducing the number of variables, this reformulation also makes
it apparent that the rate profile approach is equivalent to the weighted max-min
fairness performance function. For w = 1, it puts very strong emphasis on the
weakest user and often results in low spectral efficiency. However, especially for
the characterization of the rate region’s Pareto boundary this approach might be
computationally less challenging than the scalarization approach. For example,
in the TIN case (2.8) is equivalent to a generalized linear fractional program and
can be solved as a sequence of linear programs with polynomial complexity [73,
§III-A-2]. Another example is discussed below in Section 2.2.4.



24 Chapter 2 System Model & Resource Allocation

2.2.3 Global Energy Efficiency

The GEE is the most widely used metric to measure the network EE, a key
performance metric in 5G networks and beyond [53, 149, 152]. It is defined as
the benefit-cost ratio of the total network throughput in a time interval T and
the energy necessary to operate the network during this time, i.e.,

GEE =
TW

∑︁
k Rk

T (φTp+ Pc)
=

W
∑︁

k Rk

φTp+ Pc

[︃
bit
J

]︃
,

where W is the bandwidth, φk ≥ 1 are the inverses of the power amplifier ef-
ficiencies and Pc is a constant modelling the static part of the circuit power
consumption. Using the GEE as a performance metric results in a fractional
programming problem [17, 105, 106] that is commonly solved by Dinkelbach’s
algorithm [26]. This algorithm solves the GEE problem as a sequence of aux-
iliary problems (2.7) with objective

∑︁
k Rk − λ(φTp + Pc) and parameter λ

(cf. Section 3.4). Since the objective includes the sum rate, we conjecture that
this problem is also NP-hard if ci ̸= 0 for at least one i.

2.2.4 Energy Efficiency Region

Similar to the GEE, the individual EE of link k is defined as the benefit-cost
ratio of the link’s throughput divided by the link’s power consumption, i.e.,
EEk = Rk

φkpk+Pc,k
. Analogue to the achievable rate region, there is also an

achievable EE region whose Pareto boundary is the solution to the MOP (2.7)
with objective f(p,R) = (EE1, . . . , EEK) [149]. The same approaches as in
Sections 2.2.1 and 2.2.2 can be used to transform this MOP into a scalar opti-
mization problem. In this case, the utility profile approach should be favored
because the scalarization approach leads to the sum-of-ratios problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
p,R

K∑︂
k=1

wkRk

φkpk + Pc,k

s. t. aT
i R ≤ log

(︃
1 +

bTi p

cTi p+ σ2
i

)︃
, i = 1, . . . , n

R ≥ 0, R ∈ Q
p ∈ [0,P ] ∩ P.

The sum-of-ratios problem in general is one of the most difficult fractional
programs and known to be NP-complete [35, 107]. While for other EE problems
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(e.g., the GEE) first-order optimal solutions are usually observed to be globally
optimal [147] this does not hold for the sum-of-ratios case [82].

Instead, with the utility profile approach the objective in (2.7) is the weighted
minimum EE f(p,R) = mink EEk

wk
. This is, as is the sum-of-ratios problem, a

multi-ratio optimization problem but numerically less challenging. Another
benefit of using the utility profile approach over the scalarization approach is
that the EE region is nonconvex and the scalarization approach only obtains
the convex hull of the Pareto region [147]. The general approach to solving
such an optimization problem is to use the generalized version of Dinkelbach’s
algorithm in [25, 147, 149].

2.2.5 Proportional Fairness

Another well known performance function is proportional fairness where the
objective is the product of the rates, i.e.,

∏︁
k Rk [63]. The operating point

achieved by this metric is usually almost as fair as the one obtained by max-min
fairness but achieves significantly higher throughput. Observe that the objective
is log-concave. Thus, we can determine the proportional fair operating point by
solving (2.7) with concave objective f(p,R) =

∑︁
k log(Rk). For TIN and no

QoS constraints, it is shown in [73, Thm. 5] that this problem can be transformed
into a convex optimization problem and, thus, be solved in polynomial time.





Chapter 3

Global Optimization

Consider the optimization problem

max
x∈D

f(x) (3.1)

where f : D → R is a continuous function and D is a compact,5 nonempty
subset of Rn. A point x∗ ∈ D satisfying f(x∗) ≥ f(x) for all x ∈ D is called
a global maximizer of f on D. If x∗ only satisfies this condition in an open
ε-neighborhood for some ε > 0, i.e., for all x ∈ {x ∈ Rn : ∥x− x∗∥ < ε}∩D,
it is called a local maximizer. When (3.1) is a convex optimization problem, i.e.,
if f is a concave function and D a convex set, then every local maximizer of
(3.1) is also a global maximizer [100, §27].

Algorithms designed for convex optimization problems locate at most a local
optimizer of (3.1). In fact, most of these algorithms obtain Karush-Kuhn-Tucker
(KKT) points. Because the KKT conditions are not only necessary but also
sufficient for convex optimization problems, such a point solves Problem (3.1) if
it is convex. In general, however, KKT points are not even locally optimal in
most instances of (3.1)6 and provide, at best, candidate solutions for the global
solution of (3.1).7 Indeed, it is shown in [86] that even verifying local optimality
in an unconstrained nonconvex optimization problem is NP-hard.

Non-convex optimization problems, henceforth mostly referred to as global
optimization problems, require quite different algorithmic approaches than (gen-
eralized) convex programs. Many global optimization problems are known to
be NP-hard and all available solution algorithms have exponential worst-case
computational complexity in the number of optimization variables. Although
this implies that large-scale problems cannot be solved with global optimality
within reasonable time, exploiting structural properties of (3.1) might still lead
to efficient algorithms for small- to medium-scale problems. These algorithms
can be roughly grouped into BB and outer approximation algorithms. Contin-
5A subset ofRn is compact if it is closed and bounded [103, Thm. 2.41]
6Please refer to [128, p. 128] for an example.
7Murty and Kabadi [86, §5] make an argument for the case that low complexity algorithms for

nonconvex optimization problems should not only converge to a KKT point but also generate
an increasing sequence of objective values.
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D
β1

β3β2

(a) After 2 iterations

D
β1

β3β5β4

(b) In iteration 3

D
β1

β3β5

(c) After iteration 3

Figure 3.1: Illustration of rectangular subdivision in a branch-and-bound (BB) procedure. The
feasible set is denoted as D, the bounds are βi, and in Fig. 3.1b the upper left box is
selected for branching.

uous BB methods are introduced in Section 3.1 and extended to complicated
feasible sets in Section 3.2. A very popular outer approximation algorithm for
instances of (3.1) with certain monotonic properties, known as the polyblock
algorithm, is presented in Section 3.3. A notable exception among the class of
nonconvex optimization problems are fractional programs which are discussed
in Section 3.4.

Determining an exact globally optimal solution to (3.1) is computationally
infeasible because, in general, the solution is an irrational number that cannot
be represented in finite precision.8 This is usually not an issue in practice since
an approximate solution within a tolerance η > 0 around the optimal value is
often sufficient. We say that a feasible point x̄ is a global η-optimal solution of
(3.1) if it satisfies

f(x̄) ≥ f(x)− η

for all x ∈ D. Most algorithms discussed in the remainder of this chapter obtain
such an η-optimal solution.

3.1 Branch-and-Bound

BB algorithms are one of the most versatile and widely used tools in global
optimization. The core idea is to relax the feasible set D and subsequently
partition it such that upper bounds on the objective value can be determined
easily. During the course of the algorithm, available or easily computable feasible
points are evaluated, and the partition of D is successively refined until each
8This is in contrast to, e.g., linear programming where rational input data guarantees that the

solution is also a rational number [133, p. 33].
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partition set is proven to contain no feasible points or no points with an objective
value greater than the current best known feasible solution. Part of this process
is illustrated in Fig. 3.1.

A prototype BB algorithm is stated in Algorithm 1. It requires an initial
partition set M0 that contains the feasible set D. During the course of the
algorithm, in iteration k, Rk−1 holds the partition of the feasible set, x̄k and
γk are the current best solution and value, respectively, Sk holds the partition
element(s) selected for branching, and Pk is an intermediate set that holds the
new subdivision obtained from the elements in Sk. We say that this procedure

Algorithm 1 Prototype BB Algorithm
Step 0 (Initialization) ChooseM0 ⊇ D and η > 0. Let k = 1 and R0 = {M0}. If

available or easily computable, find x̄0 ∈ D and set γ0 = f(x̄0). Otherwise,
set γ0 = −∞.

Step 1 (Selection) Select a subset Sk ⊆ Rk−1 for branching.
Step 2 (Branching) For eachM ∈ Sk, subdivideM and collect resulting sets in

Pk.
Step 3 (Reduction) For eachM∈Pk, replaceM byM′ such thatM′ ⊆M and

(M\M′) ∩ {x ∈ D | f(x) > γk} = ∅. (3.2)

Step 4 (Bounding) For eachM ∈ Pk, compute β(M) ≥ supx∈M∩D f(x). Find
x ∈M∩D and set α(M) = f(x). IfM∩D = ∅, set α(M) = −∞.

Step 5 (Incumbent) Let αk = max{α(M) |M ∈Pk}. If αk > γk−1, set γk = αk

and let x̄k ∈ D such that αk = f(x̄k). Otherwise, let γk = γk−1 and
x̄k = x̄k−1.

Step 6 (Pruning) Delete everyM∈Pk withM∩D = ∅ or β(M) ≤ γk + η. Let
P ′

k be the collection of remaining sets and set Rk = P ′
k ∪ (Rk−1 \Sk).

Step 7 (Termination) Terminate if Rk = ∅ or, optionally, if {M ∈ Rk |β(M) >
γk + η} = ∅. Return x̄k as a global η-optimal solution. Otherwise, update
k ← k + 1 and return to Step 1.

is convergent if it can be infinite only when η = 0 and then

lim
k→∞

γk = max{f(x) |x ∈ D},

i.e., the current best value γk approaches the global optimum [128, §6.2.1]. In
this section, we establish the convergence of Algorithm 1 under some very
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general assumptions to be discussed next.
First, consider the selection in Step 1 of Algorithm 1.

3.1 Definition ([51, Def. IV.6]). A selection operation is said to be bound-improving
if, at least each time after a finite number of steps, Sk satisfies

Sk ∩ argmax{β(M) |M ∈ Rk−1} ̸= ∅,

i.e., at least one partition element where the actual upper bound is attained is
selected for further partitioning in iteration k of Algorithm 1. ◁

The most obvious and widely used bound-improving selection criterion is the
best-first rule

Sk ⊆ argmax{β(M) |M ∈ Rk−1}, |Sk| = 1. (3.3)

Another option is to always select one of the oldest elements in Rk−1, i.e., define
for every M by σ(M) the iteration index of its creation and select

Sk ⊆ argmin{σ(M) |M ∈ Rk−1}, |Sk| = 1, (3.4)

which is named oldest-first rule. Due to the finiteness of Rk, every set M ∈ Rk

will be deleted or selected after finitely many iterations [51, p. 130]. Hence, the
oldest-first rule is bound-improving.

We say that {Mk} is a decreasing sequence of sets if, for all k, Mk+1 ⊂ Mk,
i.e., Mk+1 is a descendent of Mk. The subdivision and bounding procedures in
Algorithm 1 are required to satisfy the next definition.

3.2 Definition ([51, Def. IV.4]). A bounding operation is said to be consistent
with branching (or, simply consistent) if at every step any element in Rk can be
further refined, and if any infinitely decreasing sequence {Mkq

}q of successively
refined partition elements satisfies

lim
q→∞

(β(Mkq
)− α(Mkq

)) = 0. (3.5)
◁

With these convergence criteria in place we are in the position to formally
prove the convergence of Algorithm 1.

3.3 Proposition. If the selection is bound-improving and the bounding opera-
tion is consistent, then Algorithm 1 is convergent and the final x̄k is a global
η-optimal solution of (3.1). ◁



3.1 Branch-and-Bound 31

Proof. In Step 3, let D′ = {x ∈ D | f(x) > γk} ⊆ D and observe that D \ D′

does not contain any solutions better than the current best solution. Thus, if
M′ satisfies (3.2), no solutions better than the current incumbent are lost and
the reduction does not affect the solution of (3.1).

Observe that β(M) > −∞ for all M ∈ Rk and k since M∩D ̸= ∅ for all
M ∈ Rk. Thus, if the algorithm terminates in Step 7 and iteration K , then
β(M) ≤ γK + η for all M ∈ RK and γK > −∞. Hence, x̄K is feasible and

γK = f(x̄K) ≥ β(M)− η ≥ sup
x∈M∩D

f(x)− η (3.6)

for everyM ∈ RK . Now, for every x ∈ D, either x ∈ D∩
⋃︁

M∈RK
M or x ∈

D \
⋃︁

M∈RK
M. In the first case, f(x)− η ≤ f(x̄K) due to (3.6). In the latter

case, x ∈ M′ for some M′ ∈ Pk′ \ P ′
k′ and some k′ since M0 ⊇ D. Because

{γk} is nondecreasing and due to Step 6, f(x) ≤ β(M′) ≤ γk′ + η ≤ γK + η.
Hence, for every x ∈ D, f(x) ≤ f(x̄K) + η.

It remains to be shown that Algorithm 1 is finite. Suppose this is not the case.
Then, due to the bound-improving selection, there exists an infinite decreasing
subsequence of sets {Mkq}q such that Mkq ∈ argmax{β(M) |M ∈ Rkq−1}.
Due to consistency, β(Mkq) − α(Mkq) → 0 as q → ∞. Since α(M) ≤
γkq

≤ β
(︁
Mkq

)︁
for all M ∈ Rkq−1, this implies β(Mkq

) → γkq
. Hence,

β(Mkq
) = γkq

+ δkq
with δkq

≥ 0 and limq→∞ δkq
= 0. Thus, there exists a

K̃ such that δk ≤ η for all k > K̃ , and β(M) ≤ γk + η for all M ∈ Rk−1

and k > K̃ . Then, either the algorithm is directly terminated in Step 7 or the
remaining sets in Rk are successively pruned in finitely many iterations until
Rk = ∅.9

3.4 Remark (Optional reduction). The reduction in Step 3 is optional since
choosingM′ = M satisfies (3.2). On the one hand, a reduction generally results
in tighter bounds and, thus, reduces the number of iterations. On the other hand,
it increases the computation time per iteration. Thus, it depends heavily on the
problem at hand, especially the structure of D, and the implementation of the
reduction procedure whether this step speeds up the convergence or not. ◁

3.5 Remark (Relative Tolerance). Algorithm 1 determines an η-optimal solu-
tion of (3.1), i.e., a feasible solution x̄ of (3.1) that satisfies f(x̄) ≥ f(x) − η
for all x ∈ D. Instead, by replacing all occurrences of “γk + η” in Algorithm 1

9This proof incorporates ideas from the proofs of [128, Prop. 6.1], [51,Thm. IV.3], and [124, Prop. 5.6].
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with “(1 + η)γk”, the tolerance η becomes relative to the optimal value and the
algorithm terminates if the solution satisfies (1 + η)f(x̄) ≥ f(x) for all x ∈ D.
The necessary modifications of Proposition 3.3 are straightforward. ◁

3.1.1 Rectangular subdivision

Subdivision procedures partition an initial set into several subsets of the same
type. There are three basic types of subdivisions: simplicial, conical, and rectan-
gular. We focus on rectangular subdivision in this thesis. The interested reader
is referred to [128] for information on the other two.

A rectangle (or box) in Rn is a set

M = [r, s] = {x ∈ Rn | ri ≤ xi ≤ si, (i = 1, 2, . . . , n)}.

There are several ways to partitionM into sub-rectangles. In nonparallel global
optimization, the most common method is to partition M along a hyperplane
parallel to one of the facets of M. Specifically, given a point v ∈ M and
index j ∈ {1, 2, . . . , n}, divide M along the hyperplane xj = vj . The resulting
partition sets are the sub-rectangles

M− = {x ∈ Rn | rj ≤ xj ≤ vj , ri ≤ xi ≤ si (i ̸= j)} (3.7a)
M+ = {x ∈ Rn | vj ≤ xj ≤ sj , ri ≤ xi ≤ si (i ̸= j)}. (3.7b)

This is referred to as a partition via (v, j) of M and illustrated in Fig. 3.2.

Exhaustive Rectangular Subdivision

Possibly the most widely used rectangular subdivision procedure is the standard
bisection, where a rectangle M = [r, s] is partitioned via (v, j) with j ∈
argmaxj sj − rj and v = 1

2 (s+ r). The bisection belongs to the larger class of
exhaustive subdivision procedures. We formally prove this fact after establishing
convergence criteria for Algorithm 1 with exhaustive subdivision. Note that
exhaustiveness does not necessarily require a rectangular subdivision.

3.6 Definition ([128, §6.1.1]). A subdivision procedure is said to be exhaustive
if it results in an infinite decreasing sequence of sets {Mk} whose limitM∞ =⋂︁∞

k=1Mk is a singleton, i.e., limk→∞ diamMk = 0. ◁
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v

M− M+

r2
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Figure 3.2: Rectangular subdivision inR2 with j = 1 [128, Fig. 6.3].

3.7 Proposition. If the selection is bound-improving, the subdivision is ex-
haustive and the bounding operation satisfies

β(M)−max{f(x) |x ∈ M∩D} → 0 (3.8)

as diam(M) → 0, then Algorithm 1 is convergent and the final x̄k is a global
η-optimal solution of (3.1). ◁

Proof. Let xkq ∈ Mkq ∩ D be such that α(Mkq) = f(xkq). By virtue
of the extreme value theorem,10 there exists a zkq ∈ Mkq ∩ D such that
f(zkq) = sup{f(x) |x ∈ Mkq

∩ D}. The exhaustive subdivision ensures
that diamMkq

→ 0 as q → ∞. Thus,
⃦⃦
zkq − xkq

⃦⃦
→ 0 and, due to continuity,

α(Mkq
) − f(zkq) → 0. Hence, condition (3.8) ensures that (3.5) is satisfied.

Then, the proposition holds by virtue of Proposition 3.3.

Exhaustiveness of the bisection procedure follows from the following lemma.
Slightly simplifyingmatters, it basically states that for a sequence of sets obtained
by rectangular subdivision via (vk, jk), the subdivision points {vk} approach a
corner of the resulting rectangles under the condition that jk is chosen as the
index of the dimension with maximum distance between vk and the corner of
the rectangle to be partitioned closest to vk.
10The extreme value theorem states that both the maximum and minimum of any continuous

mapping on a compact metric space exist [103, Thm. 4.16].
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3.8 Lemma ([128, Thm. 6.3]). Let {Mk = [rk, sk]}k∈K be a decreasing se-
quence of rectangles such that Mk is partitioned via (vk, jk), where jk ∈
argmaxj=1,...,n µ

k
j and µk

j = min{vkj − rkj , s
k
j − vkj }. Then at least one accumu-

lation point of the sequence of subdivision points {vk} coincides with a corner
of the limit rectangle M∞ =

⋂︁∞
k=1Mk. ◁

3.9 Corollary ([128, Cor. 6.2]). Let {Mk = [rk, sk]}k∈K be a decreasing se-
quence of rectangles such that Mk+1 is a child of Mk in a bisection. Then the
subdivision procedure is exhaustive, i.e., the diameter diam(Mk) of Mk tends
to zero as k → ∞. ◁

Proof. Lemma 3.8 is applicable since, for vk = 1
2 (s

k + rk), we have

µk
j = min{1

2
(skj + rkj )− rkj , s

k
j −

1

2
(skj + rkj )}

= min{1
2
(skj − rkj ),

1

2
(skj − rkj )} =

1

2
(skj − rkj ).

Thus, jk ∈ argmaxj s
k
j − rkj satisfies the condition in Lemma 3.8. Then, by

virtue of that lemma, there exists an accumulation point of {vk} that coincides
with one corner of the limit rectangle. This is only possible if

⃦⃦
sk − rk

⃦⃦
→ 0

as k → ∞, i.e., diam(Mk) → 0.

Adaptive Rectangular Subdivision

Exhaustive rectangular subdivision procedures, especially the bisection, are very
easy to implement because they are independent of the optimization problem at
hand. They are also slow since they aim to reduce each sequence of rectangles
towards a singleton.

Given that for each Mk, two points uk,vk ∈ Mk are known such that

uk ∈ Mk ∩ D and β(Mk)− f(vk) → 0 as
⃦⃦
uk − vk

⃦⃦
→ 0, (3.9)

a faster method can be devised. Specifically, bisect Mk via (wk, jk) where
wk = 1

2 (u
k + vk) and jk ∈ argmaxj

⃓⃓
uk
j − vkj

⃓⃓
. This is referred to as an

adaptive subdivision via (uk,vk). Then, if uk and vk satisfy (3.9), Algorithm 1
is convergent and called an adaptive BB algorithm. The following lemma is a
consequence of Lemma 3.8 and essential to proving the convergence.
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3.10 Lemma ([128, Thm. 6.4]). For each k = 1, 2, . . ., let uk, vk be two points
in the rectangle Mk = [rk, sk] and let wk and jk be defined as above. If for
every k = 1, 2, . . .,Mk+1 is a child ofMk in the subdivision via (wk, jk), then
there exists an infinite subsequence K ⊆ {1, 2, . . .} such that

⃦⃦
uk − vk

⃦⃦
→ 0

as k ∈ K, k → ∞. ◁

For example,11 let β(Mk) be an upper bound of f(x) depending on some ap-
proximation point vk and tight at this point, i.e., β(Mk)(v

k) = f(vk). Instead
of shrinking Mk until vk becomes feasible, the adaptive subdivision drives vk

towards a known feasible point uk, resulting in much faster convergence.

3.11 Proposition. If the selection is bound-improving, the subdivision is adap-
tive, uk is such that f(uk) = α(Mk) and (3.9) is satisfied, then Algorithm 1 is
convergent and the final x̄k is a global η-optimal solution of (3.1). ◁

Proof. By Lemma 3.10 there exists a subsequence {kq}q such that
⃦⃦
ukq− vkq

⃦⃦
→

0 as q → ∞. Hence, there exists a limit point x∗ ∈ D such that limq→∞ ukq =
limq→∞ vkq = x∗. From (3.9) it follows that β(Mkq

) → f(x∗), and, due to
continuity, f(x∗) → α(Mkq). Hence, β(Mkq) → α(Mkq) and the proposi-
tion follows from Proposition 3.3.12

3.1.2 Branch selection

Themost widely employed branch selection operation is the best-first strategy in
(3.3). Rigorous complexity analyses for BB methods, especially in the continuous
case, are scarce. However, intuitively it seems obvious that the best-first selection
minimizes the number of bound evaluations and leads to fastest convergence of
Algorithm 1. This intuition is verified by numerical experiments in Section 6.5,
at least when comparing with the oldest-first rule. From a practical perspective,
the convergence speed in terms of iterations is an indirect performance measure.
More important are the run time and memory consumption of Algorithm 1.
Especially in terms of memory consumption, the oldest-first rule (3.4) often
outperforms the best-first selection.

In this section, we identify the optimal data structures to implement Rk

with best-first and oldest-first selection and lay the theoretical foundation to
understand why the better memory efficiency of the oldest-first rule might lead
to shorter average run times despite requiring more bound evaluations.
11Based on [128, Ex. 6.1].
12This proof follows [128, Prop. 6.2].
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PriorityQueue

In each iteration of Algorithm 1, one top access, one deletion, and at most two
insertion operations on Rk are necessary. With best-first selection, the top
access operation obtains the element in Rk with the largest bound value. This
can be described as a largest in, first out list and is known as a priority queue
in computer science. A naive implementation of a priority queue R would be
to keep the elements of R in an ordered list. In that case, accessing the largest
element has complexity O(1) but insertion costs O(n) where n = |R|. An
alternative approach is storing the elements ofR in arbitrary order and searching
for the largest element on every selection. This clearly has insertion complexity
O(1) but requires O(n) operations to select the largest element. Instead, heaps
are much better suited allowing insertion and deletion with complexityO(logn),
top access with constant complexity O(1), and use minimum memory [67,
pp. 148–52], [22, §6.5].13 Then, the total complexity of operations on Rk per
iteration of Algorithm 1 is O(logn). This is also the theoretical minimum
complexity of implementing (3.3).

3.12 Proposition. Best-first selection has a complexity of O(logn) per itera-
tion of Algorithm 1, where n is the number of elements in Rk. ◁

Proof. The complexity of O(logn) is achieved by implementing Rk as a heap.
Now, suppose there exists an algorithm that implements the best-first selection
with complexity less than O(logn). Then, this algorithm could be used to
sort n elements with complexity less than O(n logn), a contradiction to the
fundamental result that every comparison sort algorithm has a worst case lower
bound on the number of comparisons of Ω(n logn) [22, Thm. 8.1].

A benefit of implementing Rk as a priority queue is that the optional ter-
mination criterion in Step 7 of Algorithm 1 can be used at virtually no cost
since the top access operation has constant complexity.14 However, the gain is
small in practice and often outweighed by its major drawback. The best-first
selection rule tends to accumulate a lot of boxes that stay undecided until a
solution is found. This requires a large amount of memory. Moreover, due to
the exponential complexity of Algorithm 1, the number of accumulated boxes
13The C++ standard template library (STL) provides the priority_queue container implemented

on top of a binary heap [60, §11.9.4, §12.3].
14The C++ STL priority_queue uses a vector or deque to store the heap structure. Accessing

the first element of these containers comes at the cost of very few pointer dereferences.
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also tends to grow exponentially in the number of optimization variables. The
result is that deletion and insertion operations on the priority queue become
quite costly for a large number of elements inRk. At some point, this turns into
the performance bottleneck of Algorithm 1. Also, even with the large amounts
of random access memory in contemporary computer systems, memory usage
for larger optimization problems is a major issue. A remedy, especially if the
bounding operation is computationally cheap, is the oldest-first selection rule.

Queue

The implementation of the oldest-first selection rule in (3.4) is a first in, first
out list commonly known as queue. Similarly to the priority queue, it provides
insertion, deletion, and access to the front element. These operations all require
constant time O(1) [22, §10.1]. Thus, large queues do not suffer from the same
performance impairments as priority queues do.

However, the real benefit of the oldest-first rule is that, in practice, the number
of elements in Rk does not grow nearly as fast as with best-first selection.
The downside is that more bound evaluations are necessary and the optional
termination criterion in Step 7 of Algorithm 1 has prohibitive complexity.

These theoretical observations can only provide a rough guidance on the op-
timal selection rule. Ultimately, the answer to this question is problem specific
and can only be obtained by numerical experiments. One such study is per-
formed in Section 6.5, where we benchmark oldest-first selection against the
best-first rule for typical resource allocation problems.

3.2 Successive Incumbent Transcending Scheme

Consider the optimization problem

max
x∈[a,b]

f(x) s. t. gi(x) ≤ 0, i = 1, 2, . . . ,m (3.10)

where f, g1, g2, . . . , gm are continuous real-valued functions and a, b are real-
valued vectors satisfying a ≤ b. This is an instance of (3.1) where the feasible
set D is specified by [a, b] and gi(x), i = 1, . . . ,m.

Problem (3.10) can be solved with Algorithm 1. This requires that for each
box M ⊆ [a, b], the feasibility problem

find x ∈ M∩D (3.11)
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is solved, preferably with reasonably low computational complexity. Unless D
has “nice” structural properties, this is a challenging problem. For example, let
gi be convex (affine) functions, then D is a convex (linear) set and (3.11) can be
solved with polynomial complexity by standard tools from convex optimization
[11, 89].15 Another example of nice feasible sets are normal (conormal) sets
where gi are increasing (decreasing) functions for all i = 1, . . . ,m (cf. Lem-
mas 4.4 and 4.5). A generalization of (co-)normal sets is discussed in Section 6.3.

In many other cases, neither (3.11) nor the test M∩D ?
= ∅ can be solved in

every iteration of Algorithm 1. Instead, assume there is a procedure available
that is able to solve the feasibility problem as limk→∞ diamMk = 0. Then, we
can alter Algorithm 1 such that, in Step 5, a feasible point is only required if
available, and, in Step 6, boxes are only pruned if M∩D is definitely empty.
The necessary adjustments to the proof of Proposition 3.3 require a concrete
implementation of the feasibility test and are discussed for mixed monotonic
programming in Section 6.3.1. For now, the important aspect to note is that
these modifications prevent finite convergence of Algorithm 1.

3.2.1 ε-Essential Feasibility

While, practically, an infinite algorithm might converge in finite time, there are
no theoretical guarantees. A widely accepted method to obtain a finite algorithm
is to accept an η-optimal point that is approximately feasible as solution, i.e., a
point x̄(ε) satisfying f(x̄(ε)) ≥ f(x)− η for all x ∈ D and gi(x̄(ε)) ≤ ε for
all i = 1, . . . ,m and some small ε > 0. Such a point is called (ε, η)-approximate
optimal solution. Since x̄(ε) is almost feasible for small ε > 0 it converges to a
feasible solution as ε → 0. Because f(x̄(ε)) also tends to v(3.10), which denotes
the optimal value of (3.10), f(x̄(ε)) should be close to v(3.10) for a sufficiently
small ε = ε0. The problem with this approach is that ε0 is, in general, unknown
and hard to determine. Thus, the obtained solution and f(x̄(ε)) can be quite
far away from the true optimal value even for a small ε [126]. This becomes
apparent from the following example.

3.13 Example (Issues with ε-approximate solutions). Consider a Gaussian 2-
user single-input single-output MAC with channel coefficients h1 and h2, trans-
mit powers p1 ≤ P1 and p2 ≤ P2, and a minimum total throughput of Q, i.e.,
log(1 + |h1|2 p1 + |h2|2 p2) ≥ Q. Transmitter i, i = 1, 2, is eavesdropped
15In the convex (linear) case, (3.10) may also contain equality constraints hj(x) = 0, j = 1, . . . , l,

with hi affine.
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Figure 3.3: Feasible set of Example 3.13 with optimal solution p∗ and ε-approximate solutions p̄(ε1)
and p̄(ε2) for ε1 = 10−3 and ε2 = 10−4. The ε1-approximate solution is quite far
away from the true optimum [81]. ©2019 IEEE

by a single antenna adversary over a channel gi. The eavesdroppers are only
able to overhear one of the transmitters and do not cooperate with each other
[6]. The total information leakage to the eavesdroppers is limited by L, i.e.,
log(1 + |g1|2 p1) + log(1 + |g2|2 p2) ≤ L. The transmit power of transmit-
ter 1 should be minimized without violating these constraints. The resulting
feasible set for |h1|2 = |h2|2 = 10, |g1|2 = 1

2 , |g2|
2
= 1, Q = log(61),

and L = log(8.99) is shown in Fig. 3.3. The true optimum solution is p∗ =
(4.00665, 1.99335) with f(p∗) = 4.00665, while the ε-approximate solution
for ε1 = 10−3 is p̄(ε1) = (0.995843, 5) with f(p̄(ε1)) = 0.995843. This is,
obviously, quite far away from both, the optimal solution and value. Instead, the
ε-approximate solution obtained for ε2 = 10−4 is p̄(ε2) = (4.00541, 1.99417)
with f(p̄(ε2)) = 4.00541. ◁

Even worse, if the optimal solution is an isolated point, i.e., a point at the
center of a ball containing no other feasible points, any change in the tolerances
ε, η might lead to drastic changes in the (ε, η)-approximate optimal solution. A
numerical example illustrating this issue can be found in [127, §4]. The following
example picks up the scenario from Example 3.13 and illustrates that isolated
feasible points may exist even in simple resource allocation problems. Therefore,
the outlined feasibility test should be avoided in general and the reader is well
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advised not to employ the (ε, η)-approximate feasibility approach.

3.14 Example (Isolated optimal solution). Consider Example 3.13 again. With
L = log(9) there exists an isolated feasible point p = (1, 5) (close to p̄(ε1) in
Fig. 3.3) that also happens to be the optimal solution. However, apart from the
algorithmic difficulties in computing it, it might also be unstable under small
perturbations of the data and is, thus, quite impractical from an engineering
point of view. ◁

A common approach to these numerical problems is to assume that the feasible
set is robust, i.e., it satisfies D∗ = cl(intD), where cl and int denote the closure
and interior of a set, respectively. This assumptions is also a prerequisite for
several global optimization algorithms to ensure convergence. Unfortunately,
this condition is generally very hard to check, so that, in practice, we have to
deal with feasible sets where we do not know a priori whether they are robust
or not.

This motivates the concept of ε-essential optimality developed by Tuy [126–
128]. A solution x∗ ∈ D∗ is called essential optimal solution of (3.10) if f(x∗) ≥
f(x) for all x ∈ D∗. A point x ∈ [a, b] satisfying gi(x) ≤ −ε for all i and some
ε > 0 is called ε-essential feasible and a solution of (3.10) is said to be essential
(ε, η)-optimal if it satisfies

f(x∗) + η ≥ sup{f(x)|x ∈ [a, b], ∀i : gi(x) ≤ −ε},

for some η > 0. Apparently, for ε, η → 0 an essential (ε, η)-optimal solution is
a nonisolated feasible point which maximizes f(x) over D∗. The next section
introduces an algorithm that implements the essential optimality approach.

3.2.2 Successive Incumbent Transcending Scheme

Solving (3.10) with Algorithm 1 involves two major challenges: finding suitable
bounds for the objective and implementing the feasibility check. The SIT scheme
provides an effective method to deal with the second task. The main idea is to
solve a sequence of easily implementable feasibility problems. Specifically, given
a real number γ, the core problem of the SIT algorithm is to check whether (3.10)
has a nonisolated feasible solution x satisfying f(x) ≥ γ, or, else, establish that
no such ε-essentially feasible x exists. In this manner, a sequence of nonisolated
feasible points (“incumbents”) with increasing objective value is generated until
no point with greater objective value than the current best solution γ exists.



3.2 Successive Incumbent Transcending Scheme 41

Given that the feasibility subproblem is solved within finitely many steps, this
algorithm converges to the global essential optimal solution of (3.10) in finitely
many iterations. This algorithm is formally stated in Algorithm 2.

Algorithm 2 SIT Algorithm [128, §7.5.1].
Step 0 Initialize x̄ with the best known nonisolated feasible solution and set γ =

f(x̄) + η; otherwise do not set x̄ and choose γ ≤ f(x) ∀x ∈ D.
Step 1 Check if (3.10) has a nonisolated feasible solution x satisfying f(x) ≥ γ;

otherwise, establish that no such ε-essential feasible x exists and go to Step 3.
Step 2 Update x̄← x and γ ← f(x̄) + η. Go to Step 1.
Step 3 Terminate: If x̄ is set, it is an essential (ε, η)-optimal solution; else Prob-

lem (3.10) is ε-essential infeasible.

The most important part to make this algorithm work is an efficient imple-
mentation of the feasibility problem in Step 1. Consider the optimization problem

min
x∈[a,b]

max
i=1,2,...,m

gi(x) s. t. f(x) ≥ γ (3.12)

where we interchanged the objective and constraints of (3.10). Given that f(x)
has structural properties allowing for “easy” feasibility tests, (3.12) can be solved
efficiently with Algorithm 1. Otherwise, (3.10) can always be reformulated
such that f(x) is a linear function by transforming it into its epigraph form
[11, p. 134]. The following proposition, which is an adapted version of [128,
Prop. 7.13], establishes a duality between (3.10) and (3.12) in the sense that the
feasibility problem in Step 1 of Algorithm 2 is equivalent to solving (3.12).

3.15 Proposition. For every ε > 0, the ε-essential optimal value of (3.10) is
less than γ if the optimal value of (3.12) is greater than −ε. ◁

Proof (adapted from [128, Prop. 7.13]). If the optimal value of (3.12) is greater
than −ε, then any x ∈ [a, b] such that gi(x) ≤ −ε, for all i = 1, 2, . . . ,m,
must satisfy f(x) < γ. Hence, by the compactness of (3.10)’s feasible set,
max{f(x)|x ∈ [a, b], ∀i : gi(x) ≤ −ε} < γ.

Observe that every point x′ in the feasible set of (3.12) with an objective
value less than or equal to zero is also a feasible point of (3.10) with an objective
value greater than γ. Thus, we can solve (3.10) sequentially by solving (3.12)
with a BB method. Each time this BB algorithm finds a feasible point x′ with
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an objective value less than or equal to zero (in (3.12)), the current best value
γ is updated with the objective value of x′ in the original Problem (3.10) (plus
the tolerance η). Then, the BB solver continues solving (3.12) with the updated
feasible set until it either finds a new point to update γ or establishes that no
solution to (3.12) with an objective value less than or equal to −ε exists. By
virtue of Proposition 3.15, the last feasible point x′ that was used to update γ is
an (ε, η)-optimal solution of (3.10). This observation will be formalized later in
Proposition 5.9.

The convergence of Algorithm 2 is evident from the discussion above. Apart
from the improved numerical stability and convergence, Algorithm 2 has another
very desirable feature: it provides a good nonisolated feasible (but possibly
suboptimal) point even if terminated prematurely. Instead, many conventional
algorithms16 usually outer approximate the solution rendering intermediate
solutions almost useless.

3.3 Polyblock Algorithm

Outer approximation algorithms are one of the earliest nonconvex optimization
approaches. The basic idea is to solve a sequence of easier relaxed problems that
converge to a solution of the original problem [128, §6.3]. A popular instance is
the polyblock algorithm that solves the optimization problem

max
x∈[a,b]

f(x) s. t. g(x) ≤ 0 ≤ h(x), (3.13)

where f, g,h are increasing functions. The feasible set of (3.13) is the intersection
of the normal set

G = {x ∈ [a, b] | g(x) ≤ 0}

and the conormal set

H = {x ∈ [a, b] |h(x) ≥ 0}.

A polyblock P is the normal hull of a finite vertex set V ⊆ [a, b], i.e., P =⋂︁
v∈V [a,v]. A vertex set is called proper if for every v ∈ V , no v′ ∈ V exists

such that v′ ≥ v. Clearly, a polyblock is fully defined by its proper vertex set
[128, p. 394]. The algorithm is designed around the following two properties.

16A popular example is the polyblock algorithm in the next section.
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Figure 3.4: Illustration of polyblock feasible set approximation.

1. At least one optimal solution of (3.13) is a Pareto point of G, i.e., x∗ ∈ ∂+G,
if G ∩ H ̸= ∅ [128, Prop. 11.11].

2. Any compact normal set can be approximated as closely as desired by the
intersection of a family of polyblocks [128, Cor. 11.1].

Themain idea is to outer approximate the normal part G of the feasible set by suc-
cessively refined polyblocksPk ⊆ [a, b] until a feasible point x̄ ∈ G∩H is found
such that maxx∈Pk

f(x) ≤ f(x̄)+ η. The optimization problem maxx∈Pk
f(x)

is easily solved since, due to Property 1, it is equal to maxx∈Vk
f(x), where

Vk is the vertex set of Pk. The refined polyblock Pk+1 is obtained from Pk by
projecting the vertex with maximum objective value onto a point zk ∈ ∂+G
and removing the set (zk, b] from Pk. This procedure is illustrated in Fig. 3.4,
where Pk is displayed in red, its (proper) vertex set Vk are the red points, and
the projection and zk are shown in black.

The polyblock algorithm is stated in Algorithm 3. It contains several refine-
ments of the basic procedure which are not mentioned in this section. Please
refer to [128, §11.1–11.2], [154, §3] for more details. An important prerequisite
for convergence of Algorithm 3 is that H does not contain the origin 0, i.e., that
the feasible set of (3.13) lies completely in the positive orthant Rn

>0. By shifting
the origin of (3.13) towards the negative orthant if necessary, this condition is
always satisfied. Convergence of Algorithm 3 is formally stated below.

3.16 Proposition ([128, Prop. 11.16]). When infinite Algorithm 3 with η = 0

generates an infinite sequence {x̄k}, every cluster point of this sequence is a
globally optimal solution of (3.13). ◁
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3.17 Remark (Convergence). With η > 0, Algorithm 3 is finite only if no
conormal constraint h(x) is present. Otherwise, even for η > 0, the generated
x̄k can be infeasible and Algorithm 3 may not provide an η-optimal solution
in finitely many steps. Instead, an (ε, η)-approximate optimal solution can be
computed in finitely many iterations by modifying Algorithm 3 accordingly.
However, then the numerical issues discussed in Section 3.2.1 might occur [128,
Remark 11.3]. ◁

Algorithm 3 Polyblock Algorithm [128, Alg. POA in §11.2.3]
Step 0 (Initialization) Let P1 ⊇ G ∩ H be the initial polyblock and V1 its proper

vertex set. If available, let x̄1 be the best feasible solution available and
γ1 = f(x̄1). Otherwise, let γ1 = −∞. Set k = 1.

Step 1 (Reduction) Let P̄k be a reduced version of Pk still containing all feasible
solutions and V̄k be the corresponding proper vertex set. Specifically, discard
every z ∈ Vk that satisfies min{g(z), h(z), f(z)− γ − η} < 0 and replace
every other z ∈ Vk with z′ = a+

∑︁n
i=1 αi(zi − ai)ei where

αi = sup{α | 0 ≤ α ≤ 1, g(a+α(zi−ai)ei) ≤ 0} for all i = 1, . . . , n.

Step 2 (Termination) If V̄k = ∅ terminate: if γk = −∞, the problem is infeasible;
otherwise, the current best solution x̄k is an optimal solution.

Step 3 (Selection) Select zk ∈ argmaxx∈V̄k
f(x). If g(zk) ≤ 0, terminate: zk is an

optimal solution.
Step 4 (Incumbent) Compute xk = πG(z

k), the last point of G in the line seg-
ment from a to zk. Determine the new current best value as γk+1 ←
max{γk, f(xk)} and set the current best feasible point x̄k+1 accordingly.

Step 5 (Refine Polyblock) Set Pk+1 = P̄k \ (xk, b] and compute its vertex set as

T = (Vk \ V∗) ∪ {zi = z + (xk
i − zi)ei |z ∈ V∗, i = 1, . . . , n}

where V∗ = {z ∈ Vk |xk < z}. Obtain from T the proper vertex set
Vk+1 of Pk+1 by removing all improper vertices: For every pair z ∈ V∗,
y ∈ V+

∗ = {z ∈ Vk |xk < z} compute J(z,y) = {j | zj > yj} and if
J(z,y) = {i} then zi is an improper element of T .

Step 6 (Repeat) Increment k and return to Step 1.
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3.4 Dinkelbach’s Algorithm

Consider the fractional optimization problem

max
x∈D

f(x)

g(x)
(3.14)

where D is a compact and connected subset of Rn, f, g are continuous real-
valued functions, and g(x) > 0 for all x ∈ D. This is a nonconvex optimization
problem even for affine f, g. Several solution methods exist, like the Charnes-
Cooper transformation [17] for linear fractional programs. Possibly the most
general and widely known is Dinkelbach’s algorithm which solves (3.14) as a
sequence of auxiliary problems. Specifically, consider the function

Λ(λ) = max
x∈D

f(x)− λg(x),

which is continuous, strictly decreasing and convex in λ. Thus, Λ(λ) = 0 has a
unique solution [26, Lemmas 1–4]. The main result of [26] is that λ∗ = f(x∗)

g(x∗)

is the optimal value of (3.14) if and only if Λ(λ∗) = f(x∗) − λ∗g(x∗) = 0.
Together with the fact that Λ(λ+) ≥ 0 for all λ+ = f(x+)

g(x+) with x+ ∈ D
[26, Lem. 5], this forms the foundation for Dinkelbach’s algorithm stated in
Algorithm 4. Convergence is established in [26, §3]. From this convergence
proof it can be seen that the algorithm is finite for δ > 0 and the convergence
speed is super-linear [149, pp. 241–42]. Thus, with f concave and g convex
Problem (3.14) can be solved with polynomial complexity.

Algorithm 4 Dinkelbach’s Algorithm

Step 0 Initialize δ > 0, k = 0, and λ0 = f(x0)

g(x0)
if any x0 ∈ D is available and λ0 = 0

otherwise.
Step 1 Solve Λ(λk) and let xk be a solution to this problem.
Step 2 Terminate if Λ(λk) ≤ δ. If Λ(λk) = 0, xk is an optimal solution of (3.14).

Step 3 Update λk+1 ← f(xk)

g(xk)
. Increment k and go to Step 1.

A major drawback of Dinkelbach’s algorithm is that the termination criterion
is unrelated to the optimal value of (3.14), i.e., it does not find a δ-optimal
solution of (3.14). Either, the solution is exact, i.e., Λ(λk) = 0, and xk solves
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(3.14), or xk is assumed to be a reasonably good approximate solution. Thus,
theoretically, the obtained solution is arbitrarily far away from the solution of
(3.14) if δ is not chosen sufficiently small. Another issue is that the auxiliary
problem, which is often nonconvex, needs to be solved globally several times.
This increases the computational complexity quite unnecessarily as we will
discuss in the following chapters.17

17The convergence proof of Algorithm 4 in [26] relies on Λ(λ) being strictly decreasing. This
property, however, does not hold if the auxiliary problem is only solved approximately. Thus,
theoretically, convergence of Algorithm 4 does require an exact solution of the auxiliary problem.
This is, of course, computationally infeasible. However, experience shows that this is not an
issue in practice.



Part II

Optimization Frameworks





Chapter 4

Monotonic Optimization

Monotonic optimization is concerned with the solution of global optimization
problems where the objective and constraints are difference of increasing (DI)
functions, i.e., the solution of

max
x∈[

¯
x,x̄]

f+(x)− f−(x) s. t. g+i (x)− g−i (x) ≤ 0, i = 1, . . . , n, (4.1)

where all functions are continuous and increasing for all x ∈ [
¯
x, x̄]. Over

the past ten years, it has become the most widely used global optimization
framework for resource allocation problems in wireless communications [9,
58, 83, 98, 115, 116, 132, 147, 149, 154]. This is because the rate functions
in interference networks (cf. Chapter 2) often have an easily obtainable DI
representation.

4.1 Example (Throughput maximization for TIN). Consider maximizing the
throughput in a K-user GIC where interference is treated as noise and each
user requires a minimum rate Rk,min ≥ 0. The achievable rate region is given
in (2.6) and the optimization problem is an instance of (2.7) with objective
f(p,R) =

∑︁
k Rk and Q = {R |Rk ≥ Rk,min, k = 1, . . . ,K}. Due to the

rectangular structure of (2.6), the rates can be eliminated from the optimization
problem and we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
p∈[0,P ]

∑︂
k

C

(︄
|hkk|2 pk

σ2
k +

∑︁
j ̸=k |hkj |2 pj

)︄

s. t. C

(︄
|hkk|2 pk

σ2
k +

∑︁
j ̸=k |hkj |2 pj

)︄
≥ Rk,min, k = 1, . . . ,K.

(4.2)

This is easily transformed into a monotonic optimization problem of the form
(4.1), since the rate functions have the DI representation

C
(︃

bTi p

cTi p+ σ2
i

)︃
= log

(︂
(bi + ci)

T
p+ σ2

i

)︂
− log

(︁
cTi p+ σ2

i

)︁
. (4.3)

◁

From a theoretical perspective, (4.1) covers a large class of global optimization
problems as stated in the following proposition.
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4.2 Proposition ([128, Prop. 11.9]). The following functions are DI functions
on [

¯
x, x̄] ⊂ Rn

≥0

1. any polynomial, andmore generally, any functionx ↦→
K∑︁

k=1

ckx
ak1
1 · · ·xakn

n

with real-valued, nonnegative exponents aki and real constants ck, for all
k = 1, . . . ,K and i = 1, . . . , n.18

2. any convex function f : [
¯
x, x̄] → R.

3. any Lipschitz function f : [
¯
x, x̄] → R with Lipschitz constant K .

4. any continuously differentiable function f : [
¯
x, x̄] → R. ◁

Due to the Weierstrass approximation theorem, which states that any continu-
ous real-valued function defined on the interval [

¯
x, x̄] can be uniformly approxi-

mated with arbitrary precision by a real-valued polynomial [103, Thm. 7.26], and
Proposition 4.2, Property 1, the class of DI function is dense in the space C[

¯
x, x̄]

of continuous real-valued functions on [
¯
x, x̄] equipped with the supremum

norm. That is, every function in C[
¯
x, x̄] can be approximated arbitrarily closely

by a DI function and, thus, monotonic optimization is applicable to all functions
in C[

¯
x, x̄].

Practically, however, not all functions covered by Proposition 4.2 have a readily
available DI representation. The proof of Proposition 4.219 is constructive in
the sense that the necessary transformations to obtain a DI representation of
a function covered by Proposition 4.2 are stated explicitly, but these are often
analytically challenging and may result in very slow convergence.

4.3 Example. Consider GEEmaximization in theK-user GIC from Example 4.1.
The objective

f(p) =

∑︁
k C
(︂

|hkk|2pk

σ2
k+

∑︁
j ̸=k|hkj|2pj

)︂
φTp+ Pc

is a continuously differentiable function on [0, P̄ ], and, thus, a DI function by
virtue of Proposition 4.2. However, there obviously does not exist an easily
obtainable DI representation as in Example 4.1. Following the proof of Proposi-
tion 4.2 in [128, Prop. 11.9], we first need a constant M > supx∈[0,P̄ ] ∥∇f(x)∥.

18Some sources call this a synomial but this term is not used consistently in the literature.
19Please refer to [128, Prop. 11.9].
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Then, g(x) = f(x) +M
∑︁K

k=1 pk is an increasing function. Hence, a DI repre-
sentation of f(x) is∑︁

k C
(︂

|hkk|2pk

σ2
k+

∑︁
j ̸=k|hkj|2pj

)︂
φTp+ Pc

+M

K∑︂
k=1

pk⏞ ⏟⏟ ⏞
f+(p)

−M

K∑︂
k=1

pk⏞ ⏟⏟ ⏞
f−(p)

.

Clearly, determining M is a challenging analytical task. Moreover, convergence
of the chosen solution algorithm will be slow. For example, if (4.1) is solved
with a BB algorithm (please refer to Section 4.2.1 below) the bound over the box
[r, s] is computed as

f+(s)− f−(r) =

∑︁
k C
(︂

|hkk|2sk
σ2
k+

∑︁
j ̸=k|hkj|2sj

)︂
φTs+ Pc

+M

K∑︂
k=1

sk −M

K∑︂
k=1

rk.

Comparing this to other bounds obtained for this problem, especially in Chap-
ter 6, it is apparent that this bound is not very tight. Moreover, the quality of
this bound decreases with increasing M . Thus, M should be as close as possible
to the true supremum, rendering the analytical task of determining M even
harder. A similar argument can be made for the polyblock algorithm.

Instead, fractional programs with DI numerator and denominator are usually
solved by a combination of Dinkelbach’s algorithm (cf. Section 3.4) and mono-
tonic optimization. This is known as fractional monotonic programming and
discussed in Section 4.3. ◁

4.1 Canonical Monotonic Optimization Problem

The optimization problem in (4.1) with DI objective and constraints is the most
general form of a monotonic optimization problem. However, the solution
algorithms are mostly designed to solve the canonical monotonic optimization
problem, which is

max
x∈[

¯
x,x̄]

f(x) s. t. g(x) ≤ 0 ≤ h(x), (4.4)

with f , g, h being increasing functions. By virtue of [128, Thm. 11.1], any
monotonic optimization problem can be transformed into the canonical form
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(4.4). First, the system g+i (x)− g−i (x) ≤ 0 is equivalent to a single inequality
g(x) = maxi{g+i (x) − g−i (x)} ≤ 0 with g(x) being DI (cf. [128, Prop. 11.8]).
Thus, (4.1) is equivalent to

max
x∈[

¯
x,x̄]

f+(x)− f−(x) s. t. g+(x)− g−(x) ≤ 0, (4.5)

with g+(x) = maxi
{︂
g+i (x) +

∑︁
j ̸=i g

−
j (x)

}︂
and g−(x) =

∑︁n
i=1 g

−
i (x). Next,

introduce two auxiliary variables z and t and write (4.5) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
x,z,t

f+(x) + z

s. t. f−(x) + z ≤ 0

g+(x) + t ≤ 0 ≤ g−(x) + t

x ∈ [
¯
x, x̄], z ∈ [−f−(x̄),−f−(

¯
x)], t ∈ [−g−(x̄), g−(

¯
x)]

Finally, due to [128, Prop. 11.1], we can replace the inequalities f−(x) + z ≤ 0
and g+(x) + t by the single inequality max{f−(x) + z, g+(x) + t} ≤ 0 and
obtain a monotonic optimization problem in canonical form (4.4).

4.2 Algorithms

Tuy introduced monotonic optimization theory in his seminal paper [125] along
with the polyblock outer approximation algorithm (cf. Section 3.3) to solve the
canonical problem (4.4). Apart from the issues discussed in Section 3.3, the
major downside is that up to two auxiliary variables are required to transform a
general monotonic optimization problem (4.1) into the canonical form. Because
the polyblock algorithm has exponential complexity in the number of variables,
the increase in computational complexity due to extra variables is significant.
Subsequently, Tuy introduced a BB algorithm to solve (4.1) directly in [130, §7],
and a SIT approach in [126, 127, 130]. Both will be discussed in the following
subsections. However, despite its drawbacks, the polyblock algorithm is the
most widely employed algorithm to solve monotonic optimization problems.

4.2.1 Branch-and-Bound

Recall from Section 3.1 that the implementation of Algorithm 1 requires, for
each box M ⊆ M0 encountered during the algorithm, a bound β(M) ≥
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supx∈M∩D f(x), a feasibility check M∩D ?
= ∅, and a method to obtain some

feasible point x′ ∈ M∩D.
First, consider a box M = [r, s] and the objective of (4.1). Since f+(x) and

f−(x) are both increasing functions, a bound over M is easily computed as

sup
x∈M∩D

(︁
f+(x)− f−(x)

)︁
≤ sup

x∈M
f+(x)− inf

x∈M
f−(x)

≤ f+(s)− f−(r) = β(M). (4.6)

For the feasibility problem, we start with the case where either g−i (x) = 0
for all i or g+i (x) = 0 for all i. In the first case, we have the following result.

4.4 Lemma. LetD = {x | g+i (x) ≤ 0, i = 1, . . . , n} with increasing functions
g+i (x), and M = [r, s]. Then, D ∩ M ̸= ∅ if and only if g+i (r) ≤ 0 for all
i = 1, . . . , n. ◁

Proof. We prove the negation, i.e., D ∩M = ∅ ⇔ ∃i : g+i (r) > 0. First,

D ∩M = ∅ ⇒ ∀x ∈ M : ∃i : g+i (x) > 0 ⇒ ∃i : g+i (r) > 0.

Conversely,

∃i : g+i (r) > 0 ⇒ ∃i : ∀x ≥ r : g+i (x) ≥ g+i (r) > 0

⇒ {x ∈ [r, s] | g+i (x) ≤ 0 for all i} = ∅.

Similarly, for the second case we have

4.5 Lemma. LetD = {x | g−i (x) ≥ 0, i = 1, . . . , n} with increasing functions
g−i (x), and M = [r, s]. Then, D ∩ M ̸= ∅ if and only if g−i (s) ≥ 0 for all
i = 1, . . . , n. ◁

The proof is equivalent to the previous one and therefore omitted.
For these two special cases, we obtain a convergent BB algorithm from Algo-

rithm 1 with bound as in (4.6) and feasibility test as in Lemmas 4.4 and 4.5. If
D ∩M ̸= ∅, a feasible point is r if g−i (x) = 0 for all i or s if g+i (x) = 0 for all
i. Convergence is established with the help of Proposition 3.7.

4.6 Proposition. Algorithm 1 solves (4.1) with η-optimality if either g−i (x) = 0

for all i or s if g+i (x) = 0 for all i, the selection is bound-improving, the
bounding operation and feasibility test are as described as above, and exhaustive
rectangular subdivision is employed. ◁
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Proof. The feasibility test in Lemmas 4.4 and 4.5 is conclusive for every box
M ⊆ M0 and, thus, satisfies the requirements of Algorithm 1. Moreover, a
feasible point can be found for every box such that M∩D ̸= ∅. By virtue of
Proposition 3.7, Algorithm 1 is convergent if the subdivision is exhaustive and
the bounding operation satisfies

β(M)−max{f(x) |x ∈ M∩D} → 0 (4.7)

as diam(M) → 0. The exhaustiveness of simple rectangular subdivision (i.e.,
bisection) is established in Corollary 3.9.

Finally, let x̄ ∈ M be a maximizer of f(x) over M ∩ D. Clearly, as
diam(M) → 0, r, s → x̄. Thus,

β(M) = f+(s)− f−(r) → f+(x̄)− f−(x̄) = f(x̄)

and condition (4.7) is satisfied.

If neither g−i (x) = 0 nor g+i (x) = 0 for all i, feasibility of a box M is not
always easily determined. Consider the following lemma, which is part of [130,
Prop. 7.3].

4.7 Lemma. Let M = [r, s] and D be the feasible set of (4.1), i.e., D =

{x | g+i (x) − g−i (x) ≤ 0, i = 1, . . . , n} with increasing functions g+i , g−i .
Then, D ∩M = ∅ if g+i (r)− g+i (s) > 0 for some i = 1, . . . , n. ◁

Proof. First, observe that, due to the monotonicity of g+i and g−i ,

g+i (r)− g+i (s) ≤ g+i (x)− g+i (s) for all x ≥ r

≤ g+i (x)− g+i (x) for all r ≤ x ≤ s.

Thus,

∃i : g+i (r)− g−i (s) > 0 ⇒ ∃i : ∀x ∈ M : g+i (x)− g−i (x) > 0

⇒ M∩D = {x ∈ M| g+i (x)− g−i (x) ≤ 0, i = 1, . . . , n} = ∅.

Lemma 4.7 provides a sufficient condition for the infeasibility of a box M, i.e.,
that M ∩ D = ∅. Instead, Algorithm 1 requires a necessary and sufficient
condition. Of course, we can modify Algorithm 1 as outlined in Section 3.2
to obtain an infinite algorithm, i.e., in Step 5, only perform an update of the
incumbent if new feasible points are available and, in Step 6, only prune boxes
that can be identified as infeasible.
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4.8 Proposition. If Algorithm 1 is modified as described above, the selection is
bound-improving, the bounding operation is as in (4.6), the modified feasibility
test is implemented with Lemma 4.7, and exhaustive rectangular subdivision
is employed, then the algorithm is infinite and, whenever it creates an infinite
sequence {rk}, every accumulation point of this sequence is a globally optimal
solution of (4.1). ◁

Proof sketch. Proposition 4.6 establishes the applicability of Proposition 3.7.
From the proofs of Propositions 3.3 and 3.7 it follows that there exists an infinite
decreasing sequence of sets {Mkq}q such that g+i (rkq)− g+i (s

kq) ≤ 0 for all i
and q = 1, 2, . . . . Since diamMkq

→ 0, rkq and skq approach a common limit
point x. Due to continuity of g+i , g−i , this point satisfies g+i (x)− g+i (x) ≤ 0
for all i. Altering Proposition 3.3’s proof accordingly, it can be shown that the
above proposition holds.20

4.9 Remark. A similar result to Proposition 4.8 is established in [130, Thm. 7.1].
That algorithm incorporates the feasibility check into a reduction procedure
which is intended to speed up the convergence. This optional reduction step is
omitted here for brevity. Please refer to [130, §7.4] or to Section 6.4 for a more
general procedure. ◁

4.10 Remark. While Proposition 4.8 is a significantly weaker statement than
Proposition 4.6, this modified algorithm works surprisingly well for many prob-
lems despite its theoretically infinite convergence. ◁

4.2.2 Successive Incumbent Transcending

Following the discussion in Section 3.2, there are two methods to solve (4.1)
with finite convergence. The first is to relax the constraints by some small
ε > 0 and use the modified algorithm discussed above Proposition 4.8 to obtain
an (ε, η)-approximate optimal solution. However, this very popular approach
might result in a solution quite far away from the true optimal value and should,
therefore, be avoided (cf. Section 3.2.1).

The other option is to employ the SIT approach from Section 3.2.2. This was
first done for monotonic optimization in [126] and subsequently refined in [127,
128, 130]. Except for [127], all of these algorithms are designed for the canonical

20Please refer to Theorem 6.11 for a complete proof of a more general algorithm.
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monotonic optimization Problem (4.4) and require up to two auxiliary variables
to solve the general form (4.1). Instead, [127] solves

max
x∈[

¯
x,x̄]

f(x) s. t. g+(x)− g−(x) ≤ 0

where f , g+, g− are increasing functions of x. This approach requires at
most one auxiliary variable if the objective is DI.21 However, more than one
constraint requires the transformation given below (4.5) in Section 4.1. This
might negatively affect the convergence speed of the algorithm since it results
in increasingly loose bounds as the number of constraints grows.

In Chapter 5, we develop a SIT algorithm that works directly with more than
one DI constraint.

4.3 Fractional Monotonic Programming

Consider the fractional program

max
x∈[

¯
x,x̄]

p+(x)− p−(x)

q+(x)− q−(x)
s. t. g+i (x)− g−i (x) ≤ 0, i = 1, . . . , n, (4.8)

where p+, p−, q+, q−, g+i , g−i , i = 1, . . . , n, are all increasing functions. We have
shown in Example 4.3 that, even though the objective might be a DI function,22
the DI representation required to transform (4.8) into a canonical monotonic
optimization problem can be very hard to find. Instead, the state-of-the-art
approach to solve (4.8) is to combine Dinkelbach’s algorithm (cf. Section 3.4)
with monotonic optimization. This technique was, to the best of the author’s
knowledge, first used in [83] and subsequently stated as a framework in [147,
149].

Recall from Section 3.4 that Dinkelbach’s algorithm (cf. Algorithm 4) solves a
fractional program as a sequence of auxiliary optimization problems that need
to be solved with global optimality. For (4.8) and some λ ∈ R, this auxiliary
problem is ⎧⎨⎩ max

x∈[
¯
x,x̄]

p+(x)− p−(x)− λ(q+(x)− q−(x))

s. t. g+i (x)− g−i (x) ≤ 0, i = 1, . . . , n.
(4.9)

21If f is decreasing the algorithm in [127] works with minor modifications.
22Recall that a sufficient condition for the objective to be DI is that it is continuously differentiable.
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By identifying

f+(x) =

{︄
p+(x) + λq−(x) if λ ≥ 0

p+(x)− λq+(x) otherwise

and

f−(x) =

{︄
p−(x) + λq+(x) if λ ≥ 0

p−(x)− λq−(x) otherwise

it is apparent that this is an instance of the monotonic optimization Problem (4.1).
Thus, we can solve it with global optimality as described in Section 4.2.

The main drawback of this approach is that the inner monotonic problem is
solved several times until convergence of the outer algorithm. This dramatically
increases the computational complexity. Another shortcoming is the termination
criterion. Recall that Dinkelbach’s algorithm iteratively solves (4.9) and updates
λ until the optimal value of (4.9) is close to zero. If it is exactly zero, the finalxk in
Algorithm 4 optimally solves (4.8). Instead, if Algorithm 4 is terminated because
v(4.9) ≤ δ, where v(4.9) is the optimal value of (4.9) and δ is the tolerance
in Algorithm 4, the final xk only solves (4.8) approximately. The quality of
this approximation is expected to improve as δ decreases but there is no strict
mathematical relation between δ and the distance of the obtained solution to
the true optimum. Thus, Dinkelbach’s algorithm cannot guarantee an η-optimal
solution.

In Chapters 5 and 6, two novel frameworks are proposed which are not limited
in this way. In particular, both approaches obtain an η-optimal solution of (4.8).

4.4 Primal Decomposition for Resource Allocation over
Rate Regions

Consider the general GIC resource allocation problem in (2.7) with WSR objec-
tive, i.e., ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
p,R

∑︂
k

wkRk

s. t. aT
i R ≤ log

(︃
1 +

bTi p

cTi p+ σ2
i

)︃
, i = 1, . . . , n

R ≥ 0, R ∈ Q, p ∈ [0, P̄ ] ∩ P,

(4.10)
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where we assumeQ linear and P normal. If the matrix [a1,a2, . . . ,an] is equal
to the identity matrix, the achievable rate region is a hypercube, the rates are
easily eliminated from (4.10), and (4.10) is equivalent to (4.2) in Example 4.1.
Instead, if the rate region is more involved, the rates are usually not eliminated
easily from (4.10) and we have to solve it without prior simplification.

With (4.3), Problem (4.10) is identified as a general monotonic optimization
problem. Since the objective is an increasing function, the transformation into
canonical form requires a single auxiliary variable for the constraints. Thus,
(4.10) is a monotonic optimization problem with dimp+ dimR+ 1 variables,
where dimp is the dimension of vector p, i.e., the number of elements in p. How-
ever, observe that (4.10) is a linear program for fixed p. It is a well established
fact that every linear program can be solved with polynomial computational
complexity in the number of variables [62, 64]. Instead, all algorithms that solve
(4.10) as a monotonic optimization problem have exponential computational
complexity in the number of variables. Thus, treating the rates R as global
variables leads to an unnecessary increase in computational complexity.

We can exploit the structural properties in R by transforming (4.10) into an
outer monotonic optimization problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
t,p

ρ(t,p)

s. t. t+ gΣ(p) ≤ gΣ(P̄ )

0 ≤ t ≤ gΣ(P̄ )− gΣ(0)

p ∈ [0, P̄ ] ∩ P

(4.11)

where gΣ(p) =
∑︁n

i=1 log(c
T
i p+ σ2

i ) and ρ(t,p) is either −∞ or the solution
to the linear program⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
R

∑︂
k

wkRk

s. t. aT
i R < fi(p) +

∑︂
j ̸=i

gj(p) + t− gΣ(P̄ ), i = 1, . . . , n

R ≥ 0, R ∈ Q

(4.12a)

(4.12b)

(4.12c)

if it is feasible, where fi(p) = log((bi+ci)
Tp+σ2

i ) and gi(p) = log(cTj p+σ2
j ).

We first establish that (4.11) is indeed a monotonic optimization problem and
then formally prove the equivalence of (4.10) and (4.11).
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4.11 Proposition. (4.11) is a monotonic optimization problem and has at least
one optimal solution. ◁

Proof. Let D(p, t) be the constraint set of (4.12) for fixed (p, t). Since the RHS
of (4.12b) is an increasing function, D(p, t) ⊆ D(p′, t′) whenever 0 ≤ (p, t) ≤
(p′, t′). This implies max{

∑︁
k wkRk : R ∈ D(p, t)} ≤ max{

∑︁
k wkRk : R ∈

D(p′, t′)} since wk > 0. Thus, ρ(p, t) is an increasing function. Since gΣ(p) is
increasing and continuous for p ≥ 0 and gΣ(p) is constant, the constraint set of
(4.11) is closed and normal [125, Prop. 5]. This proves that (4.11) is a monotonic
optimization problem.

Moreover, the feasible set of (4.11) is nonempty, gΣ(p) is a continuous function
for p ≥ 0 and ρ(t,p) is upper semi-continuous (u.s.c.) on the relevant interval.
Thus, (4.11) has at least one optimal solution [128, Prop. 11.11].

4.12 Proposition. Let (R∗,p∗, t∗) be a solution of (4.11). Then, (R∗,p∗)
solves (4.10). ◁

Proof. First, consider the optimization problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
t,R,p

∑︂
k

wkRk

s. t. aT
i R < fi(p) +

∑︂
j ̸=i

gj(p) + t− gΣ(P̄ ), i = 1, . . . , n

t+ gΣ(p) ≤ gΣ(P̄ )

0 ≤ t ≤ gΣ(p)− gΣ(0)

R ≥ 0, R ∈ Q, p ∈ [0, P̄ ] ∩ P.

(4.13a)

(4.13b)

(4.13c)
(4.13d)
(4.13e)

We know from Proposition 4.11 that (4.11) has a solution. Hence, ρ(t∗,p∗)
takes the value

∑︁
k wkR

∗
k for every optimal solution (R∗,p∗, t∗) satisfying the

constraints in (4.12). Hence, (4.11) yields the maximum of
∑︁

k wkR
∗
k under the

constraints in (4.11) and (4.12). These are exactly the objective and constraints
of (4.13). Thus, (R∗,S∗, t∗) solves (4.13).

Next, observe that any optimal solution of (4.13) satisfies (4.13c) with equality
because the RHS of (4.13b) is increasing in t, and (4.13d) is always inactive since
gΣ is an increasing function and p ≥ 0. Then, for (4.13b), we have

aT
i R

∗ < fi(p
∗) +

∑︂
j ̸=i

gj(p
∗) + t∗ − gΣ(P̄ )
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= fi(p
∗) +

∑︂
j ̸=i

gj(p
∗) + gΣ(P̄ )− gΣ(p

∗)− gΣ(P̄ )

= fi(p
∗) +

∑︂
j ̸=i

gj(p
∗)− gΣ(p

∗).

Thus, constraints (4.13b)–(4.13d) are equal to the first constraint of (4.10) for any
optimal solution of (4.13). Because (4.10) and (4.13) also have the same objective
and all other constraints are the same, any solution to (4.13) is also a solution of
(4.10).

Proposition 4.12 establishes that (4.10) can be decomposed into (4.11) and (4.12).
Proposition 4.11 proves that (4.11) is a monotonic optimization problem and
the algorithms discussed in Section 4.2 are applicable. Numerical experiments
prior to the publication of this approach in [77] have shown that the polyblock
algorithm outperforms the BB algorithm in Section 4.2.1. The most likely reason
for this is that the polyblock algorithm tends to evaluate the objective less often
than a BB algorithm.

Apparently, this decomposition approach is highly problem specific and
cumbersome. A significantly more versatile SIT based algorithm is developed
in Chapter 5. It differentiates between convex and nonconvex variables and
preserves the low computational complexity in the number of convex variables.
Benchmark results in Section 8.4.1 show that it is up to four orders of magnitude
faster than the decomposition approach presented here.



Chapter 5

SIT for Global Resource Allocation

In the previous chapter we have seen that optimization problems with DI con-
straints can be solved only in infinite time with BB, at least from a theoretical
point of view. Moreover, the application of monotonic optimization theory to
problems with several inequality constraints requires cumbersome transfor-
mations that often lead to slower convergence. The SIT scheme introduced
in Section 3.2 is not subject to those limitations. Recall that the core idea is
to exchange objective and constraints to obtain an optimization problem that
is considerably easier to solve than the original problem. This requires some
assumptions on the objective so that the dual feasible set is robust and has
favorable properties that facilitate an easy implementation of the feasibility
checks. Another benefit of this approach is the improved numerical stability
due to the inherent exclusion of isolated feasible points. It also enables us to
directly treat fractional objectives without Dinkelbach’s algorithm.

Another key design objective for the algorithm in this chapter is to differ-
entiate between convex and nonconvex variables without explicit primal de-
composition as in Section 4.4. It is not necessary, however, to draw the line
between convex and nonconvex variables. For example, consider the fractional
programming problem (3.14) and assume that numerator and denominator
are affine functions. In that case, (3.14) is a nonconvex optimization problem
and all variables would be considered nonconvex, although it is solvable in
polynomial time with Dinkelbach’s algorithm or the Charnes-Cooper trans-
formation. Hence, we introduce the notion of global and nonglobal variables.
Consider (3.1), i.e., maxx∈D f(x), and split x into two vectors y = (xi)i∈I and
z = (xi)i∈{1,2,...,n}\I . Modify (3.1) such that the optimization is only over y
for some fixed z, i.e., maxy∈Dz f(y, z) where Dz is the z-section of D. If there
exists an algorithm to solve this optimization problem with computational com-
plexity significantly less than that required for solving the global part of (3.1),23
the variables y and z are denoted as nonglobal and global variables, respectively.

23Ideally, the computational complexity for solving the nonglobal part of (3.1) grows polynomially
in the number of nonglobal variables. However, there are optimization problems with exponen-
tial complexity that still have very efficient solution algorithms, e.g., certain kinds of convex
optimization problems [7, §5.4], [88].
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5.1 Problem Statement

Consider the global optimization problem⎧⎪⎨⎪⎩ max
(x,ξ)∈C

f+(x, ξ)

f−(x, ξ)

s. t. g+i (x, ξ)− g−i (x) ≤ 0, i = 1, 2, . . . ,m,

(5.1)

with global variables x and nonglobal variables ξ. To enable the efficient solu-
tion of this problem with the SIT scheme and a BB algorithm, some technical
assumptions on (5.1) are required. First, the functions {g−i } must have a com-
mon maximizer over every box [

¯
x, x̄] ⊆ M0 with M0 being a box enclosing

the x dimensions of C, i.e., M0 ⊃ projx C, where projx C is the projection of C
onto the x coordinates. A sufficient condition for the existence of this common
maximizer is that the functions g−i (x) are increasing in the variables xj , j ∈ I ,
and decreasing in the remaining variables xk, k ∈ {1, 2, . . . , dimx} \ I , for
all i. This includes the case where all g−i are either increasing or decreasing
in x. Further, we assume the functions f−, g+i , i = 1, . . . ,m, to be lower
semi-continuous (l.s.c.), the functions f+, g−i , i = 1, . . . ,m, to be u.s.c., and,
WLOG, f−(x, ξ) > 0.

Further requirements can be grouped into two different sets. Both of these
cases contain conditions that depend on a constant γ which will hold the current
best known value in the developed algorithm. We will discuss the domain of γ
after the definition of both cases.

5.1 Case (DC problems). If C is a closed convex set and γf−(x, ξ)− f+(x, ξ),
g+1 (x, ξ), …, g+m(x, ξ) are jointly convex in (x, ξ) for all γ, Problem (5.1) re-
sembles a DC optimization problem but with fractional objective and non-DC
variables. ◁

5.2 Case (Separable problems). Let C = X × Ξ be such that x ∈ X and ξ ∈ Ξ
with Ξ being a closed convex set, and let each function of (x, ξ) be separa-
ble in the sense that h(x, ξ) = hx(x) + hξ(ξ). Further, let the functions
γf−

ξ (ξ) − f+
ξ (ξ), g+1,ξ(ξ), …, g+m,ξ(ξ) be convex in ξ for all γ, and let the

functions γf−
x (x) − f+

x (x), g+1,x(x), …, g+m,x(x) have a common minimizer
over X ∩ M for every box M ⊆ M0 and all γ. Finally, let the function
γf−

x (x)− f+
x (x) be either increasing for all γ with X being a closed normal

set in some box, or decreasing for all γ with X being a closed conormal set in
some box. ◁
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5.3 Remark. Separable problems often lead to linear auxiliary optimization
problems with less variables instead of, typically, convex problems for Case 5.1.
They usually have lower computational complexity than DC problems and, thus,
if the problem at hand falls into both cases, it is usually favorable to consider it
as a separable problem. ◁

With both cases defined we can take a closer look at γ. First, observe that γ
only appears as a factor to f−. Thus, its value is only relevant for the technical
requirements above if (5.1) is a fractional program, i.e., if f− is not constant. In
that case, the only relevant property of γ is its sign and whether it may change
during the algorithm. For example, in Case 5.1 the function γf−

ξ (ξ)− f+
ξ (ξ)

is convex if f+
ξ is concave and γf−

ξ is convex. The latter is the case if γ ≥ 0

and f−
ξ is convex or if γ ≤ 0 and f−

ξ is concave. Thus, in most applications
we should ensure that the sign of γ is constant. In general, γ may take values
between some γ0 and v(5.1) + η for some small η > 0, where γ0 is either the
objective value of (5.1) for some preliminary known nonisolated feasible point
(x, ξ) or an arbitrary value satisfying γ0 ≤ f+(x,ξ)

f−(x,ξ) for all feasible (x, ξ). This
implies, e.g., that γ is nonnegative if f+ is nonnegative. Otherwise, it might
be necessary to find a nonisolated feasible point such that f+(x, ξ) ≥ 0 or
transform the problem.

Interchanging the objective and constraints in (5.1) leads to the dual problem⎧⎪⎨⎪⎩
min

(x,ξ)∈C
max

i=1,2,...,m

(︁
g+i (x, ξ)− g−i (x)

)︁
s. t.

f+(x, ξ)

f−(x, ξ)
≥ γ

or, equivalently, ⎧⎨⎩ min
(x,ξ)∈C

max
i=1,2,...,m

(︁
g+i (x, ξ)− g−i (x)

)︁
s. t. γf−(x, ξ)− f+(x, ξ) ≤ 0

(5.2)

since f−(x, ξ) > 0 by assumption. To ease notation, we define

g(x, ξ) = max
i=1,2,...,m

(︁
g+i (x, ξ)− g−i (x)

)︁
. (5.3)

The feasible set D of (5.2) is robust and enables an efficient feasibility test as
long as the conditions in Case 5.1 or 5.2 are satisfied. This is formally established
in the following proposition.
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5.4 Proposition. The feasible set of (5.2) does not contain any isolated points
if the conditions in Case 5.1 or 5.2 are satisfied. ◁

Proof. First consider Case 5.1. The level set F = {γf−(x, ξ)− f+(x, ξ) ≤ 0}
is closed and convex [100, Thms. 4.6& 7.1]. Hence, D = C ∩ F is also closed
and convex. Every nonempty closed convex set is robust [100, Thm. 6.3]. Thus,
D is robust or (5.2) is infeasible.

Now for Case 5.2. The feasible set of (5.2) is D = {x ∈ X , ξ ∈ Ξ : fξ(ξ) +
fx(x) ≤ 0} with fξ(ξ) = γf−

ξ (ξ) − f+
ξ (ξ) and fx(x) = γf−

x (x) − f+
x (x).

By assumption, fξ(ξ) is an l.s.c. convex function and fx(x) an l.s.c. increasing
(decreasing) function. Further, X is normal (conormal) within a box and Ξ is
convex. Observe thatD is a convex set in ξ since for fixed x, fx(x) is a constant,
f̃ξ(ξ) = fξ(ξ) + const is a convex function, and {ξ : f̃ξ(ξ) ≤ 0} is a closed
convex set [100, Thms. 4.6 & 7.1]. By the same argument, f̃x(x) is an increasing
(decreasing) function and {x : f̃x(x) ≤ 0} is a closed normal (conormal) set
[128, Prop. 11.2]. Thus, D is normal (conormal) in a box in x. Neither closed
convex nor closed (co-)normal sets have any isolated feasible points [127]. Since
D is either convex or (co-)normal in each coordinate the proposition is proven.

Before we continue to solve (5.1), we shortly revisit some of the example
resource allocation problems from Section 2.2 to discuss how they fit into (5.1)
and Cases 5.1 and 5.2.

5.5 Example (Weighted Sum Rate). First consider the generic power allocation
problem for GICs in (2.7) with objective f(p,R) = wTR and simple QoS
constraints, i.e.,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
p,R

wTR

s. t. aT
i R ≤ log

(︃
1 +

bTi p

cTi p+ σ2
i

)︃
, i = 1, . . . , n

R ≥ Rmin, p ∈ [0, P̄ ]

(5.4a)

(5.4b)

(5.4c)

for some Rmin ≥ 0. We have already identified R as linear variables (cf. Sec-
tion 4.4) and, thus, we have ξ = R, x = p, f+(x, ξ) = wTξ, f−(x, ξ) = 1,
and C = [0,P ]× [Rmin,∞). In (4.3), we have established that constraint (5.4b)
is equivalent to

aT
i R− log

(︂
(bi + ci)

T
p+ σ2

i

)︂
+ log

(︁
cTi p+ σ2

i

)︁
≤ 0
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and we can identify

g+i (x, ξ) = aT
i ξ − log

(︁(︁
bTi + cTi

)︁
x+ σ2

i

)︁
(5.5a)

g−i (x) = − log
(︁
cTi x+ σ2

i

)︁
. (5.5b)

Then, the functions g−i are decreasing, and, thus, are jointly maximized over
the box [

¯
x, x̄] by

¯
x. Further, g+i (x, ξ) is separable in x and ξ with g+i,ξ(ξ) being

linear and g+i,x(x) decreasing and convex in x. With f(x, ξ) = fξ(ξ) being a
linear function in ξ, Problem (5.4) qualifies for both, Cases 5.1 and 5.2. ◁

5.6 Example (Global Energy Efficiency). Again, consider (2.7) but with GEE
utility function f(p,R) =

∑︁
k Rk

φTp+Pc
. Thus, we identify f+(x, ξ) =

∑︁
k ξk and

f−(x, ξ) = φTx + Pc, and observe that both are linear functions. Hence,
γf−(x, ξ)−f+(x, ξ) is convex for all γ and, with the remaining identifications
as in the previous example, Case 5.1 is satisfied. Of course, f+ and f− are also
separable, and because the GEE is nonnegative, γ ≥ 0 and γf−

x is increasing.
But since g+i,x is decreasing, the functions γf−

x , g+1,x, …, g+m,x do not have a
common minimizer over [0, P̄ ] ∩ M and Case 5.2 does not apply. However,
observe that instead of the choice in (5.5), we can also identify g+i and g−i as

g+i (x, ξ) = aT
i ξ + log

(︁
cTi x+ σ2

i

)︁
(5.6a)

g−i (x) = log
(︁(︁
bTi + cTi

)︁
x+ σ2

i

)︁
. (5.6b)

The functions g+i (x, ξ) are separable in x and ξ, and g+i,x(x) and g−i (x) are
increasing in x. Hence, γf−

x , g+1,x, …, g+m,x have a common minimizer over
[0, P̄ ] ∩M for every box M and Case 5.2 applies. In general, (5.5) will result
in tighter bounds and, thus, faster convergence. On the other hand, Case 5.2
has significantly lower numerical complexity than Case 5.1 (cf. Remark 5.3)
which should compensate for this drawback. However, a final assessment is
only possible through numerical experimentation which will be carried out for
an example application in Section 8.4.2. ◁

Next, we design an adaptive BB procedure to solve (5.2) and then embed this
algorithm within the SIT scheme to solve (5.1).

5.2 A Branch-and-Bound Procedure to Solve the Dual

We design a rectangular BB algorithm to solve (5.2). Recall from Section 3.1
that the core idea of BB is to relax the feasible set and subsequently partition it
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such that lower bounds24 on the objective value can be determined easily. The
technical requirements on (5.1) are chosen such that bounds are easily computed
over hyperrectangles. In particular, this is enabled by the existence of a common
maximizer of {g−i } over every box.

5.7 Proposition. Let x̄∗
M be a common maximizer of {g−i } over the box M.

Then, Problem (5.2)’s objective g is lower bounded over M by

max
i=1,2,...,m

{︁
g+i (x, ξ)− g−i (x̄

∗
M)
}︁

This bound is tight at x̄∗
M. ◁

Proof. For all x ∈ M, g−i (x̄∗) ≥ g−i (x) and hence also g+i (x, ξ)− g−i (x̄
∗) ≤

g+i (x, ξ) − g−i (x) with equality at x = x̄∗. It remains to be shown that for
all real-valued functions h1, h2, . . . ,

¯
h1,

¯
h2, . . . satisfying hi ≥

¯
hi and hi(y) =

¯
hi(y) for all i and some point y, maxi{hi} ≥ maxi{

¯
hi} and maxi{hi(y)} =

maxi{
¯
hi(y)} holds.

Consider the case with two functions and assume that max{h1, h2} <
max{

¯
h1,

¯
h2}. Since hi ≥

¯
hi, this can only hold if max{h1, h2} = h1 and

max{
¯
h1,

¯
h2} =

¯
h2 or vice versa. This implies h1 ≥ h2 ≥

¯
h2 which contradicts

the assumption. The generalization to arbitrarily many functions follows by in-
duction. Finally, if

¯
hi(y) = hi(y) for all i, then mini{

¯
hi(y)} = mini{hi(y)}.

With Proposition 5.7 we can determine the lower bound β(Mi) in Algorithm 1
as the optimal value of⎧⎪⎪⎨⎪⎪⎩

min
x,ξ

max
i=1,2,...,m

{︁
g+i (x, ξ)− g−i (x̄

∗
Mi

)
}︁

s. t. γf−(x, ξ)− f+(x, ξ) ≤ 0

(x, ξ) ∈ C, x ∈ Mi.

(5.7)

This is a convex optimization problem if the conditions in Case 5.1 or 5.2 are
satisfied and can be solved in polynomial time under very mild assumptions
using standard tools [89]. For Case 5.1, the objective of (5.7) is a convex function
because g−i (x̄∗

Mi
) is constant and the feasible set is convex (cf. Proposition 5.4).

24The prototype BB algorithm in Section 3.1 is designed to solve the maximization Problem (3.1)
and requires an upper bound on the objective. Instead, (5.2) is a minimization problem and, thus,
requires a lower bound on the objective.
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Thus, (5.7) is convex given Case 5.1. For Case 5.2, (5.7) can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
x,ξ

max
i=1,2,...,m

{︂
g+i,ξ(ξ) + g+i,x(x)− g−i (x̄

∗
Mi

)
}︂

s. t. γf−
ξ (ξ)− f+

ξ (ξ) + γf−
x (x)− f+

x (x) ≤ 0

ξ ∈ Ξ, x ∈ X ∩Mi.

(5.8)

Let
¯
x∗
Mi

be the common minimizer of γf−
x (x) − f+

x (x), g+1,x(x), …, g+m,x(x)
over X ∩Mi. Then (5.8) is equivalent to⎧⎨⎩min

ξ∈Ξ
max

i=1,2,...,m

{︂
g+i,ξ(ξ) + g+i,x(¯

x∗
Mi

)− g−i (x̄
∗
Mi

)
}︂

s. t. γf−
ξ (ξ)− f+

ξ (ξ) + γf−
x (

¯
x∗
Mi

)− f+
x (

¯
x∗
Mi

) ≤ 0.
(5.9)

It is easy to see that
¯
x∗
Mi

is the optimal solution of (5.8) since it jointly mini-
mizes the objective and the first constraint. Problem (5.9) is convex due to the
assumptions on Ξ and the remaining functions of ξ made in Case 5.2.

This bounding procedure generates two points, namely vk = x̄∗
Mk and the

optimal solution (xk, ξk) of (5.7), that satisfy the convergence criterion (3.9) for
the adaptive rectangular subdivision procedure in Section 3.1.1.

5.8 Lemma. Algorithm 125 with bound (5.7) (or (5.9)), adaptive bisection via
(xk,vk), feasible value α(Mk) = minξ∈D

vk
g(vk, ξ), and bound-improving

selection is convergent and the final x̄k is a global η-optimal solution of (5.2).◁

Proof. By virtue of Proposition 3.11, this lemma holds if the bound satisfies the
convergence criterion in (3.9). Specified to the problem at hand, the bounding
procedure needs to generate two points xk,vk ∈ Mk satisfying

(xk, ξk) ∈ D, β(Mk)− min
ξ∈D

vk

g(vk, ξ) → 0 as
⃦⃦
xk − vk

⃦⃦
→ 0

for some ξk. Neither (5.7) nor (5.9) relax the feasible set D of (5.2). Hence, the
first condition is always satisfied. Further,

β(Mk) = min
ξ∈D

xk

max
i=1,2,...,m

{︁
g+i (x

k, ξ)− g−i (x̄
∗
Mi

)
}︁

25With minor modifications such that the objective is minimized instead of maximized.
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and

min
ξ∈D

vk

g(vk, ξ) = min
ξ∈D

vk

max
i=1,2,...,m

(︁
g+i (x̄

∗
Mk, ξ)− g−i (x̄

∗
Mk)

)︁
Thus, β(Mk) → minξ∈D

vk
g(vk, ξ) as

⃦⃦
xk − vk

⃦⃦
=
⃦⃦
xk − x̄∗

Mk

⃦⃦
→ 0.

BB algorithms typically require a large amount of bound evaluations. This
requires that (5.7) (or (5.9)) is solved as efficiently as possible. Moreover, the
selection procedure should be chosen as the best-first rule in (3.3) because it
results in fastest convergence.

5.3 The SIT Algorithm

The BB procedure from the previous section solves (5.2), but that is not ex-
actly what is required by the SIT scheme. Instead, Algorithm 2 requires the
implementation of

Step 1 Check if (5.1) has a nonisolated feasible solution x satisfying f(x) ≥ γ;
otherwise, establish that no such ε-essential feasible x exists and go to
Step 3.

This is accomplished by the adaptive BB algorithm for solving (5.2) from the pre-
vious section but with pruning criterion β(M) > −ε and termination criterion
minξ∈D

xk
g(xk, ξ) < 0. The following proposition together with Lemma 5.8

establishes convergence of this procedure.

5.9 Proposition ([128, Prop. 7.14]). Let ε > 0 be given, g(x, ξ) as in (5.3), and
(5.2) be solved by the BB procedure from Section 5.2 with best-first selection
rule. Either g(xk, ξ∗) < 0 for some k and ξ∗ or β(Mk) > −ε for some k. In
the former case, (xk, ξ∗) is a nonisolated feasible solution of (5.1) satisfying
f+(xk,ξ∗)
f−(xk,ξ∗)

≥ γ. In the latter case, no ε-essential feasible solution (x, ξ) of (5.1)

exists such that f+(x,ξ)
f−(x,ξ) ≥ γ. ◁

Proof. If minξ∈D
xk

g(xk, ξ) < 0, then xk is a feasible point of (5.1) with objec-

tive value f+(xk,ξ∗)
f−(xk,ξ∗)

≥ γ. By continuity, minξ∈Dx g(x
k, ξ) ≤ 0 for all x in a

neighborhood of xk. Thus, xk is an essential feasible point of (5.1).
Observe that

Mk ∈ argmin{β(M) |M ∈ Rk} ⇒ ∀M ∈ Rk : β(M) ≥ β(Mk) (5.10)
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and, thus, β(Mk) ≤ v(5.2) where v(5.2) is the optimal value of (5.2). Hence, if
β(Mk) > −ε, then also v(5.2) > −ε and, by Proposition 3.15, no ε-essential
feasible solution of (5.1) with objective value greater or equal than γ exists.

It remains to show that either g(xk, ξ∗) < 0 for some k and ξ∗ or β(Mk) >
−ε for some k. Suppose the contrary, i.e.,

∀k : min
ξ∈D

xk

g(xk, ξ) ≥ 0, β(Mk) ≤ −ε. (5.11)

By virtue of Proposition 3.11 and Lemmas 3.10 and 5.8, the sequence {xk,vk}
generated by the adaptive BB procedure satisfies, for some infinite subsequence
{kq} ⊆ {1, 2, . . .},

lim
q→∞

(︄
β(Mkq)− min

ξ∈D
v
kq

g(vkq , ξ)

)︄
= 0 (5.12)

lim
q→∞

xk = lim
q→∞

vk = x′

with f+(x′,ξ)
f−(x′,ξ) ≥ γ for some ξ. By (5.11),

min
ξ∈Dx′

g(x′, ξ) ≥ 0. (5.13)

On the other hand, (5.12) implies

lim
q→∞

β(Mkq) = lim
q→∞

min
ξ∈D

v
kq

g(vkq , ξ) = min
ξ∈Dx′

g(x′, ξ).

Thus, because β(Mk) ≤ −ε, for all k, by assumption (5.11),

min
ξ∈Dx′

g(x′, ξ) ≤ −ε,

which is a contradiction of (5.13).26

We can directly call this BB procedure from Step 1 of the SIT scheme in
Algorithm 2 to solve (5.1). Of course, this means we have to solve (5.2) several
times and the computational complexity of this approach would be prohibitively
26Proposition 5.9 is the same as [128, Prop. 7.14] but adapted to (5.1). The proof is a more verbose

version of the original in [128] and contains verbatim copies of text passages from the original
proof. It is repeated here because it is an important cornerstone of the developed algorithm.
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high. Instead, we can integrate both procedures into a single algorithm. The
outlined BB procedure is started with some initial γ0 and interrupted whenever
a primal feasible point is encountered, i.e., a point with objective value less
than zero in the dual problem (5.2). Then, γ from Algorithm 2, which holds the
current best objective value of the primal problem (5.1), is updated and the BB
procedure is continued with the updated feasible set.

The complete algorithm is stated in Algorithm 5. It is initialized in Step 0
where an initial box M0 = [p0, q0] is required that contains the x-dimensions
of C, i.e.,

p0i ≤ min
(x,ξ)∈C

xi q0i ≥ max
(x,ξ)∈C

xi. (5.14)

The set Pk contains new boxes to be examined in Step 1, γ holds the current
best value adjusted by the tolerance η, and Rk holds all boxes that are not yet
eliminated. In Step 1 the bound is computed for each box in Pk. If it is less
than −ε, the box may contain a nonisolated feasible solution with objective
value greater than γ and is added to Rk. Then, in Step 3, the box with the
smallest bound is taken out of Rk. If the point xk attaining the bound is feasible
in the original Problem (5.1), it is a nonisolated feasible point and needs to be
examined further: if the objective value for xk is greater than the current best
value γ − η, xk is the new current best solution and γ is updated accordingly in
Step 4. Irrespective of xk’s feasibility, the box selected in Step 3 is bisected via
(jk,v

k) adaptively. These new boxes are then passed to Step 1 and the algorithm
repeats until Rk holds no more boxes which is checked in Step 2. Convergence
of the algorithm is established in the theorem below.

5.10 Theorem. Algorithm 5 converges in finitely many steps to the (ε, η)-
optimal solution of (5.1) or establishes that no such solution exists. ◁

Proof. Convergence of the BB procedure is established in Lemma 5.8 and Propo-
sition 5.9. It remains to show that continuing the BB procedure after updating γ
preserves convergence.

Let {γk} be the sequence of updated gammas, and observe that this sequence
is increasing, i.e., γk+1 ≥ γk. Thus, the feasible sets of (5.7) form a decreasing
sequence of sets{︃

x ∈ C̃
⃓⃓⃓⃓
f+(x, ξ)

f−(x, ξ)
≥ γk+1

}︃
⊆
{︃
x ∈ C̃

⃓⃓⃓⃓
f+(x, ξ)

f−(x, ξ)
≥ γk

}︃
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with C̃ = {(x, ξ) | (x, ξ) ∈ C, x ∈ M}. Therefore, the optimal value of the
bound (5.7) is increasing with k

min
x,ξ

{︃
g̃(x, ξ)

⃓⃓⃓⃓
f+(x, ξ)

f−(x, ξ)
≥ γk+1, (x, ξ) ∈ C̃

}︃
≥min

x,ξ

{︃
g̃(x, ξ)

⃓⃓⃓⃓
f+(x, ξ)

f−(x, ξ)
≥ γk, (x, ξ) ∈ C̃

}︃ (5.15)

where g̃(x, ξ) = maxi=1,2,...,m

{︁
g+i (x, ξ)− g−i (x̄

∗
Mi

)
}︁
. Hence, every box

eliminated due to the deletion criterion β(M) > −ε in a BB procedure with
γk, would also be eliminated in a procedure with γk+1. It follows that the set
holding the boxes Rk remains valid after updating γ. In particular, no box is
eliminated prematurely. Thus, restarting the BB procedure after updating γ is
not necessary. Convergence of Algorithm 5 is finite since the underlying BB
procedure is finite and {γk} is bounded.

Observe that (5.16) is a convex feasibility problem due to the assumptions
in Cases 5.1 and 5.2. It also has the same feasible set as (5.17). Because ξ are
nonglobal variables, Problem (5.17) is solvable with reasonable computational
complexity by assumption. For example, if f+(x, ξ) is nonnegative and concave
in ξ, and f−(x, ξ) is convex in ξ it can be solved with Dinkelbach’s algorithm
(cf. Section 3.4). Note that in many circumstances it will be faster to solve (5.17)
directly instead of first considering the feasibility problem (5.16).

5.11 Remark. Proposition 5.9 suggests that “β(Mk) < −ε” should be used
as the termination criterion. Instead, it is employed as pruning rule in the
outlined BB procedure and Algorithm 5. However, with best-first selection
and “β(Mk) < −ε” pruning rule, the termination criterion “β(Mk) < −ε” is
equivalent to the usual termination rule “Rk = ∅” (cf. [128, p. 208]). Thus, the
proposed BB procedure does not violate Proposition 5.9 but might have slower
convergence than a procedure with this additional stopping rule.

However, when the bounding procedure is changed during the algorithm, as
is done in Algorithm 5, the “β(Mk) < −ε” termination criterion is impractical.
This is because, in an implementation of Algorithm 5, the bound of each box is
only calculated once and then stored together with the box in Rk. Thus, after
updating γ, the precomputed bounds in Rk are actually obtained from different
bounding procedures and the argmin box selection in Step 3 is not identical to
the theoretical argmin operation in (5.10). Since the inequality in (5.15) might
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Algorithm 5 SIT Algorithm for (5.1)

Step 0 Initialize ε, η > 0 andM0 = [p0, q0] as in (5.14), P1 = {M0}, R1 = ∅,
and k = 1. Initialize x̄ with the best known nonisolated feasible solution and
set γ as described in Step 4; otherwise do not set x̄ and choose γ ≤ f+(x,ξ)

f−(x,ξ)

for all feasible (x, ξ).
Step 1 For each boxM∈Pk:

• Compute β(M). Set β(M) =∞ if (5.7) (or (5.9)) is infeasible.
• AddM to Rk if β(M) ≤ −ε.

Step 2 Terminate if Rk = ∅: If x̄ is not set, then (5.1) is ε-essential infeasible; else x̄
is an essential (ε, η)-optimal solution of (5.1).

Step 3 LetMk = argmin{β(M) |M ∈ Rk}. Let xk be the optimal solution of (5.7)
for the boxMk (or

¯
x∗

Mk if (5.9) is employed for bounding), and yk = x̄∗
Mk .

Solve the feasibility problem{︄
find ξ ∈ Cxk

s. t. g+i (x
k, ξ)− g−i (xk) ≤ 0, i = 1, 2, . . . ,m.

(5.16)

If (5.16) is feasible go to Step 4; otherwise go to Step 5.

Step 4 xk is a nonisolated feasible solution satisfying f+(xk,ξ)

f−(xk,ξ)
≥ γ for some ξ ∈ Cxk .

Let ξ∗ be a solution to⎧⎪⎨⎪⎩ min
ξ∈C

xk

f+(xk, ξ)

f−(xk, ξ)

s. t. g+i (x
k, ξ)− g−i (xk) ≤ 0, i = 1, 2 . . . ,m.

(5.17)

If x̄ is not set or f+(xk,ξ∗)
f−(xk,ξ∗)

> γ − η, set x̄ = xk and γ = f+(xk,ξ∗)
f−(xk,ξ∗)

+ η.

Step 5 BisectMk via (vk, jk) where jk ∈ argmaxj{
⃓⃓
yk
j − xk

j

⃓⃓
} and vk = 1

2
(xk +

yk) (cf. (3.7)). LetRk+1 = Rk\{Mk}. LetPk+1 = {Mk
−,Mk

+}. Increment
k and go to Step 1.
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be strict, the implication in (5.10) does not hold anymore and a “β(Mk) < −ε”
termination criterion might stop Algorithm 5 prematurely. ◁

5.12 Remark (Reduction). As in any other BB algorithm, we could add an
additional reduction step before computing the bound of a box. This step is
optional and should only be included if it speeds up the algorithm. A direct
application of the reduction procedure of the original SIT algorithm in [128]
requires the solution of several convex optimization problems. This slowed
down the algorithm in preliminary numerical experiments and is thus omitted.
The design of an efficient reduction procedure is left open for future work. ◁

5.13 Remark (Pointwise Minimum). Algorithm 5 is easily extended to the case
were the objective is the pointwise minimum of several functions, i.e.,

max
(x,ξ)∈C

min
j

{︃
f+
j (x, ξ)

f−
j (x, ξ)

}︃
s. t. g+i (x, ξ)− g−i (x) ≤ 0, i = 1, 2, . . . ,m.

In that case, all fractions in the minimum need to be greater or equal than γ and
the dual Problem (5.2) becomes⎧⎨⎩ min

(x,ξ)∈C
max

i=1,2,...,m

(︁
g+i (x, ξ)− g−i (x)

)︁
s. t. γf−

j (x, ξ)− f+
j (x, ξ) ≤ 0, j = 1, 2, . . .

The necessary modifications to Algorithm 5 are straightforward. ◁

5.4 Benchmark

The goal of this section is to assess how Algorithm 5 scales with an increasing
number of global and nonglobal variables. This is done by means of an idealized
example. Namely, consider theK-user GIC from Section 2.1 and its PTP capacity
region in Proposition 2.1.

For the benchmark, assume that receiver i jointly decodes its own message
and the interfering message of transmitter i+ 1 mod K . All other messages
are treated as noise. Moreover, assume that hij = 0 for i ̸= j, j ̸= i+1 mod K ,
j > κ, and some positive κ. These assumptions allow to precisely control
the complexities in the global and nonglobal variables. Thus, Sk = {k, k + 1
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mod K} for all k and Sc
k = {1, . . . , κ} \ Sk. Maximizing the throughput in this

system requires the solution of⎧⎪⎪⎨⎪⎪⎩
max
p,R

K∑︂
k=1

Rk

s. t. p ∈ [0, P̄ ], R ∈ Ak(Sk), for all k,

(5.18)

where Ak(Sk) is as defined in (2.2). First, observe that this is a nonconvex
optimization problem due to Pk(Sc

k) in the denominators of the log-terms in
(2.2). Further, observe that Sc

k ⊆ {1, . . . , κ} for all k = 1, . . . ,K . Hence, we can
identify the global variables as (pk)κk=1 and the nonglobal variables as (pk)Kκ+1

and R. Moreover, the powers (pk)Kκ+1 only occur in the numerators of the log-
terms in (2.2) which are increasing functions in (pk)

K
κ+1. Thus, pk = P̄k is the

optimal solution for all k = κ+ 1, . . . ,K . Plugging-in this partial solution in
(5.18), we obtain a simplified version of (5.18) with κ global variables (pk)κk=1,K
linear variables R, and 3K inequality constraints. Thus, we can independently
control the number of global and nonglobal variables. Since the number of
constraints grows linearly with the number of global variables and the bounding
problem is linear, the complexity of solving (5.18) should grow polynomially
with the number of nonglobal variables.

This rationale is illustrated in Fig. 5.1 where (5.18) is solved for a fixed number
of κ global variables and an increasing number of K total users in the system.
We employ Algorithm 5 with Gurobi [38] as inner solver and choose P̄k = 1 and
Nk = 0.01 for all k = 1, . . . ,K , i.e., a transmit signal-to-noise ratio (SNR) of
20 dB, and hkj ∼ CN (0,1). Each data point is obtained by averaging over 1000
i.i.d. channel realizations. Algorithm 5 was started with parameters η = 0.01,
ε = 10−5, and γ = 0. Since the abscissa is directly proportional to the number
of nonglobal variables (K−κ) and the number of inequality constraints (3K), we
expect to observe a polynomial growth of the run time. Indeed, Fig. 5.1 displays
a roughly linear slope expect for smallK . This is because, for bigK , the optimal
power allocation converges to zero for all global variables. Instead, for small
K these powers are generally nonzero and the global part of the optimization
problem requires more time to converge to the optimal solution.

Finally, Fig. 5.2 illustrates the exponential complexity in the number of global
variables. With the same parameters as in Fig. 5.1, Fig. 5.2 displays the run time
for a fixed number of K = 7 users over the number of global variables κ. Due
to the logarithmic y-axis, exponential growth corresponds to (at least) an affine
function in Fig. 5.2.
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Figure 5.1: Average run time of Algorithm 5 to solve (5.18) as a function of the total number of
users for fixed number of κ global variables. The abscissa is proportional to the number
of nonglobal variables (K − κ). Averaged over 1000 i.i.d. channel realizations [81].
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Figure 5.2: Average run time of Algorithm 5 to solve (5.18) as a function of the number of global vari-
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Chapter 6

Mixed Monotonic Programming

We have seen in Chapter 4 that the monotonic optimization framework’s require-
ment to reformulate every function as the difference of increasing functions can
be quite limiting in practice. A good example for this is given in Section 4.3
where a fractional objective with DI numerator and denominator is maximized.
A likely reason for this is that the initial design of the monotonic optimization
framework was guided by the requirements of the polyblock algorithm. In
particular, the polyblock algorithm solves the canonical monotonic optimiza-
tion problem (3.13) with increasing objective and two constraints defined by
increasing functions. Instead, BB procedures are not limited in this way and
only require that a suitable upper bound can be computed. In this chapter, we
develop a novel optimization framework that exploits monotonicity proper-
ties of the optimization problem in a much more general way than monotonic
programming.

Consider the optimization problem

max
x∈D

f(x) (6.1)

with continuous objective function f : Rn → R and compact feasible set
D ⊆ Rn. For now, we do not need any further assumptions on D and postpone
the discussion of its structure to Section 6.3. If the objective function has a
mixed monotonic programming (MMP) representation, Problem (6.1) can be
solved efficiently with a BB procedure.

6.1 Definition. Let F : Rn ×Rn → R be a continuous function such that

F (x,y) ≤ F (x′,y) if x ≤ x′, (6.2)
F (x,y) ≥ F (x,y′) if y ≤ y′. (6.3)

Then, F is a mixed monotonic (MM) function. ◁

6.2 Definition. Let M0 = [r0, s0] ⊇ D be a box enclosing D. Assume there
exists an MM function F on M0 such that

F (x,x) = f(x), (6.4)
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for all x ∈ M0. Then, (6.1) is a MMP problem and F is denoted as the MMP
representation of f . ◁

Note that, in general, there can exist more than one MMP representation for
a function f . In the next section, we explore properties of MM functions and
consider some examples. Then, in Sections 6.2 to 6.4, we design a BB procedure
to solve (6.1) based on the MMP representation of f . This chapter is concluded
with performance benchmarks in Section 6.5.

6.1 Mixed Monotonic Functions

In this section we discuss some properties and examples of MM functions. We
start with the following proposition which lists some operations that preserve
the MM properties of functions.

6.3 Proposition. Let Fi(x,y) be MM functions for i = 1, . . . ,K , g(x) a real
valued, nondecreasing function, and h(x) a real, nonincreasing function. Then,

(x,y) ↦→
K∑︂
i=1

Fi(x,y), (6.5)

(x,y) ↦→ max
i=1,...,K

Fi(x,y), (x,y) ↦→ min
i=1,...,K

Fi(x,y), (6.6)

(x,y) ↦→ g(Fi(x,y)), (x,y) ↦→ h(Fi(y,x)). (6.7)

are MM functions. If in addition Fi(x,y) ≥ 0 for all i = 1, . . . ,K and x,y ∈ X
for some X ∈ Rn, then

(x,y) ↦→
K∏︂
i=1

Fi(x,y) (6.8)

is an MM function on X . ◁

Proof. Equations (6.5) and (6.6) are trivially verified from Definition 6.1. For
example, take the pointwise maximum and let x′ ≥ x. Then,

max
i=1,...,K

Fi(x,y) ≥ max
i=1,...,K

Fi(x
′,y)

because, for all i, Fi(x,y) ≥ Fi(x
′,y). Similarly, with y′ ≥ y,

max
i=1,...,K

Fi(x,y) ≤ max
i=1,...,K

Fi(x,y
′)
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since, for all i, Fi(x,y) ≤ Fi(x,y
′) by definition. Moreover, for (6.8) if all

factors in the product are positive, the MM properties of the resulting function
are straightforwardly verified from Definition 6.1.

For (6.7), consider the first partial derivatives. Due to the chain rule

∇x g(Fi(x,y)) =
dg(z)

dz

⃓⃓⃓⃓
z=Fi(x,y)

∇xFi(x,y). (6.9)

Since g(x) is a nondecreasing function, g′(x) ≥ 0 and the RHS of (6.9) has the
same sign as ∂

∂xFi(x,y). Thus, the monotonicity properties of F (x,y) are
preserved. Similarly, for the second property, h′(x) ≤ 0 and the monotonicity
properties are inversely preserved from F (x,y). Thus, the resulting function is
increasing in the second argument and decreasing in the first argument of the
original MM function F .

In particular, it follows from (6.7) that (x,y) ↦→ −F (y,x) and (x,y) ↦→
1/F (y,x) are MM if F (x,y) is a positive MM function. The next example
highlights the connection between MMP and monotonic programming.

6.4 Example (Monotonic Programming). Consider the monotonic optimiza-
tion problem

max
x∈D

f+(x)− f−(x)

where f+ and f− are increasing functions. A MMP representation of that
objective is (x,y) ↦→ f+(x) − f−(y). Thus, monotonic optimization is a
special case of MMP. ◁

Since DI functions have a straightforward MMP representation, it follows that
Proposition 4.2 also holds for MM functions. Hence, the following corollary.

6.5 Corollary. For a function f , there exists an MMP representation F such
that f(x) = F (x,x) on [

¯
x, x̄] ⊂ Rn

≥0, if f is

1. a polynomial, and more generally, a function x ↦→
K∑︁

k=1

ckx
ak1
1 · · ·xakn

n

with real-valued, nonzero exponents aki and real constants ck, for all
k = 1, . . . ,K and i = 1, . . . , n, or

2. a convex function f : [
¯
x, x̄] → R, or

3. a Lipschitz function f : [
¯
x, x̄] → R with Lipschitz constant K , or
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4. a continuously differentiable function f : [
¯
x, x̄] → R. ◁

Proof. For the function in Property 1, construct the MM function as follows: For
each k and i, the xi in the term ckx

ak1
1 · · ·xakn

n is replaced by yi if ck > 0 and
aki < 0 or if ck < 0 and aki > 0. The resulting function is increasing in x and
decreasing in y.

Properties 2–4 follow directly from Proposition 4.2 since every DI function
has an MMP representation.

However, the class of functions with MMP representation does not only
include DI functions but is generallymuchmore versatile. The following example
shows how to treat fractional objectives of DI functions without the need of
Dinkelbach’s algorithm (cf. Section 4.3).

6.6 Example (Fractional Monotonic Programming). Consider the fraction of a
DI function and an increasing function, i.e.,

p+(x)− p−(x)

q(x)
(6.10)

where p+, p−, q are increasing functions. A MMP representation of (6.10) is

(x,y) ↦→ p+(x)− p−(y)

q(y)
.

Thus, maximizing (6.10) is an MMP problem and can be solved directly with the
MMP algorithm in Section 6.2. Instead, maximizing (6.10) with the monotonic
optimization framework requires the combination of Dinkelbach’s algorithm
with monotonic programming as explained in Section 4.3.

This bounding approach is easily extended beyond the capabilities of fractional
monotonic programming. For example, consider the sum of ratios∑︂

i

p+i (x)− p−i (x)

qi(x)
. (6.11)

Neither Dinkelbach’s algorithm nor its generalization [24, 25] are able to solve
sum-of-ratios problems.27 Instead, in [147] it is proposed to reformulate (6.11) as∑︁

i

[︂
(p+i (x)− p−i (x))

∏︁
j ̸=i qj(x)

]︂
∏︁

j qj(x)

27A Dinkelbach-type algorithm to solve the sum-of-ratios problem has been proposed in [2] but it
was shown in [31] that it does not converge to the globally optimal solution.
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which is a single ratio fractional program and can be solved by the fractional
monotonic programming framework. However, it is shown in [82] that this
approach has very poor convergence behavior. Instead, from (6.5) it is apparent
that an MMP representation of (6.11) is

(x,y) ↦→
∑︂
i

p+i (x)− p−i (y)

qi(y)
. ◁

We conclude this section with a more concrete example that highlights how
the MMP approach eases the solution of a well known resource allocation
problem. In particular, note that no reformulation of the objective is necessary.

6.7 Example (Treating Interference as Noise). Consider the WSR in a K-user
GIC where interference is treated as noise. The achievable rate region is given
in (2.6) and the maximization of this function with monotonic optimization is
discussed in Example 4.1. In particular, we have

∑︂
k

wk C

(︄
|hkk|2 pk

σ2
k +

∑︁
j ̸=k |hkj |2 pj

)︄
(6.12)

with nonnegative weights wk. A MMP representation for each term can be
obtained directly from (6.12) as

(x,y) ↦→ C

(︄
|hkk|2 xk

σ2
k +

∑︁
j ̸=k |hkj |2 yj

)︄
.

Instead, monotonic optimization operates on the DI representation

(x,y) ↦→ log
(︃
|hkk|2 xk +

∑︂
j ̸=k

|hkj |2 xj + σ2
k

)︃
− log

(︃∑︂
j ̸=k

|hkj |2 yj + σ2
k

)︃
(6.13)

which is also an MM function. This example will be continued in Section 6.5.1.
An important aspect discussed there is that the precise choice of F directly
impacts the convergence speed of the MMP algorithm. ◁

6.2 MMP Algorithm

We design a BB algorithm to determine a global η-optimal solution of (6.1). The
core idea of BB is to relax the feasible set D and subsequently partition it such
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that upper bounds on the objective value can be determined easily. This is where
the MMP representation F of the objective function f comes in handy, since
it is especially well suited to compute upper bounds over rectangular sets. Let
M = [r, s] be a box in Rn. Then,

max
x∈M∩D

f(x) ≤ max
x∈M

F (x,x) ≤ max
x,y∈M

F (x,y) = F (s, r) (6.14)

is an upper bound on the optimal value of f(x) on M∩D. Thus, rectangular
subdivision is an excellent choice to partition D. In particular, exhaustive bisec-
tion is employed because the bounding procedure is not suitable for adaptive
bisection.28

With these observations, we can specialize Algorithm 1 to the MMP algorithm
stated in Algorithm 6. Its convergence is formally established in the theorem
below.

6.8 Theorem. Algorithm 6 converges towards a global η-optimal solution of
(6.1) if it is an MMP problem and the selection is bound-improving. ◁

Proof. By virtue of Proposition 3.7 and Corollary 3.9, Algorithm 6 converges to
the η-optimal solution of (6.1) if the selection is bound-improving and bounding
is consistent with branching, i.e.,

F (s, r)−max{f(x) |x ∈ [r, s] ∩ D} → 0 (6.15)

as ∥s− r∥ → 0. As ∥s− r∥ → 0, r, s converge to a common limit point y.
Then, (6.15) approaches

F (y,y)− f(y) = f(y)− f(y) = 0

and the convergence criterion is satisfied.

6.3 The Feasibility Check

Algorithm 6 requires in every iteration k and for each box M ∈ Pk a feasible
point x ∈ M∩D in Step 3 and a conclusive rule to prune infeasible boxes, i.e.,
28Recall that adaptive bisection requires the bounding procedure to generate two points uk,vk

satisfying (3.9). Bounding as in (6.14) “generates” only the two points rk, sk which result in an
adaptive bisection that is equivalent to exhaustive bisection.
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Algorithm 6 MMP BB Algorithm
Step 0 (Initialization) ChooseM0 ⊇ D and η > 0. Let k = 1 and R0 = {M0}. If

available or easily computable, find x̄0 ∈ D and set γ0 = f(x̄0). Otherwise,
set γ0 = −∞.

Step 1 (Branching) Select a boxMk = [rk, sk] ∈ Rk−1 and bisectMk via ( 1
2
(sk+

rk), j) with j ∈ argmaxj s
k
j − rkj . Let Pk = {M−

k ,M
+
k } withM−

k ,M+
k

as in (3.7).
Step 2 (Reduction) For eachM∈Pk, replaceM byM′ such thatM′ ⊆M and

(M\M′) ∩ {x ∈ D |F (x,x) > γk} = ∅. (6.16)

Step 3 (Incumbent) For eachM ∈ Pk, find x ∈ M∩ D and set α(M) = f(x).
IfM∩ D = ∅, set α(M) = −∞. Let αk = max{α(M) |M ∈ Pk}. If
αk > γk−1, set γk = αk and let x̄k ∈ D such that αk = f(x̄k). Otherwise,
let γk = γk−1 and x̄k = x̄k−1.

Step 4 (Pruning) Delete everyM = [r, s] ∈ Pk withM∩D = ∅ or F (s, r) ≤
γk + η. Let P ′

k be the collection of remaining sets and set Rk = P ′
k ∪

(Rk−1 \Sk).
Step 5 (Termination) Terminate if Rk = ∅ or, optionally, if {[r, s] ∈

Rk |F (s, r) > γk + η} = ∅. Return x̄k as a global η-optimal solution.
Otherwise, update k ← k + 1 and return to Step 1.

M∩D = ∅, in Step 4. This requires some assumptions on the feasible set D. In
particular, assume that D is given by m inequalities, i.e.,

D = {x | gi(x) ≤ 0, i = 1, . . . ,m}.

The most obvious approach in the context of this chapter is to further assume
that each function gi(x) has an MMP representation Gi(x,x) = gi(x), i.e.,

D = {x |Gi(x,x) ≤ 0, i = 1, . . . ,m} (6.17)

whereGi satisfies (6.2) and (6.3). These properties lead to the following sufficient
conditions for (in-)feasibility of M.

6.9 Proposition. Let M = [r, s] and D as in (6.17). Then,

∀i ∈ {1, . . . ,m} : Gi(s, r) ≤ 0 ⇒ M∩D =M̸= ∅ (6.18a)
∃i ∈ {1, . . . ,m} : Gi(r, s) > 0 ⇒ M∩D = ∅. (6.18b)

◁
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Proof. From (6.2) and (6.3), Gi(x,x) ≤ Gi(s, r) and Gi(x,x) ≥ Gi(r, s) for
all x ∈ M. Thus, if Gi(s, r) ≤ 0 for all i = 1, . . . , l, then Gi(x,x) ≤ 0 for all
i and x ∈ M. Hence, (6.18a). Similarly, if Gi(r, s) > 0 for some i = 1, . . . , l,
then also Gi(x,x) > 0 for this i and all x ∈ M. Thus, x /∈ D and (6.18b)
holds.

It is easy to construct a box M and feasible set D such that neither (6.18a)
nor (6.18b) holds. In that case, it is impossible to decide the feasibility of M
with Proposition 6.9. Thus, without further assumptions on D, a conclusive
feasibility test is not available for (6.1) and Algorithm 6 is not applicable. How-
ever, we can alter it as proposed in Sections 3.2 and 4.2.1 to obtain an infinite
version of Algorithm 6. We postpone this to Section 6.3.1 and first discuss two
sets of additional assumptions on D that lead to sufficient feasibility tests for
Algorithm 6.

Suppose D is defined by the system

gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , l.

with gi convex and hj affine. Then, D is a closed convex set and the feasibility
check can be performed by standard tools from convex optimization [11, 89].
However, since this check is performed up to two times per iteration it is still
quite costly.

Instead, let D be defined by MM functions as in (6.17) where Gi not only
satisfies (6.2) and (6.3) but also, for all x,y ∈ Rn,

Gi

(︃∑︂
j∈I

xjej ,
∑︂
k∈Ic

ykek

)︃
= Gi(x,y) (6.19)

for some index set I ⊆ {1, . . . , n} and all i = 1, . . . ,mwhere Ic = {1, . . . , n}\
I . That is, each function gi(x) = Gi(x,x) is increasing in the variables xj ,
j ∈ I , and decreasing in the remaining variables xk, k ∈ Ic. Then, the following
proposition holds.

6.10 Proposition. Let M = [r, s] and D be defined as in (6.17) by MM func-
tions Gi(x,y) satisfying (6.2), (6.3) and (6.19). Then, M∩D ̸= ∅ if and only
if Gi(r, s) ≤ 0 for all i = 1, . . . ,m. In that case,

∑︁
j∈I rjej +

∑︁
k∈Ic skek ∈

M∩D with I and Ic as in (6.19). ◁

Proof. Let ξ =
∑︁

j∈I rjej +
∑︁

k∈Ic skek. Then, for all i and due to (6.19),
Gi(ξ, ξ) = Gi(r, s). Thus, ifGi(r, s) ≤ 0, then ξ ∈ D. Since, trivially, ξ ∈ M,
ξ ∈ D ∩M ̸= ∅. Finally, from (6.18b) follows M∩D ̸= ∅ ⇒ Gi(r, s) ≤ 0.
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Observe, that we can obtain Lemmas 4.4 and 4.5 as corollaries from Proposi-
tion 6.10 by setting I = {1, . . . , n} and I = ∅, respectively.

Proposition 6.10 provides a powerful tool to solve a wide array of feasibility
problems. However, note that this property is not necessary as long as the
feasibility check in Algorithm 6 is somehow implemented (efficiently).

6.3.1 Infinite MMP Algorithm

In this section we alter Algorithm 6 such that it works with a feasible set defined
by MM functions as in (6.17). In particular, no assumptions apart from Gi being
MM functions for all i are required. That is, we design an algorithm to obtain
an η-optimal global solution of

max
x∈[

¯
x,x̄]

F (x,x) s. t. Gi(x,x) ≤ 0, i = 1, 2, . . . ,m (6.20)

with F,G1, . . . , Gm MM functions. The devised procedure will have infinite
convergence in theory, but, in practice, it often converges in reasonable time.

The necessary changes to Algorithm 6 are discussed in Section 3.2. Specifically,
in Step 3, a feasible point is only required if available, and, in Step 4, boxes are
only pruned if (6.18b) is met. The modified procedure is stated in Algorithm 7.
In Step 3, a point x ∈ M is required. This can be any easily obtainable point
in M, e.g., r, s, or any other corner point of M. The actual choice is quite
arbitrary but depending on the feasible set there might be points that are more
often feasible than others. Thus, choosing the “right” point for the specific
problem at hand might speed up convergence.

Convergence of Algorithm 7 is established in the theorem below. We prove
convergence from first principles because infinite BB procedures are not covered
in detail by Chapter 3.

6.11 Theorem. For a bound-improving selection, if Algorithm 7 terminates
(6.20) is either infeasible or x̄k is an η-optimal solution of (6.20). If it is infinite, at
least one accumulation point of the infinite sequence {rk} is a globally optimal
solution of (6.20). ◁

Proof. For the same reasons as in Proposition 3.3, the reduction in Step 2 does
not negatively affect the solution of (6.20), and upon termination of Algorithm 7,
either γK = γ0 and (6.20) is infeasible or x̄K satisfiesF (x,x) ≤ F (x̄K , x̄K)+η
for every x ∈ D.
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Algorithm 7 Infinite MMP BB Algorithm
Step 0 (Initialization) ChooseM0 ⊇ D and η > 0. Let k = 1 and R0 = {M0}.

If available or easily computable, find x̄0 ∈ D and set γ0 = F (x̄0, x̄0).
Otherwise, set γ0 = −∞.

Step 1 (Branching) Select a boxMk = [rk, sk] ∈ Rk−1 and bisectMk via ( 1
2
(sk+

rk), j) with j ∈ argmaxj s
k
j − rkj . Let Pk = {M−

k ,M
+
k } withM−

k ,M+
k

as in (3.7).
Step 2 (Reduction) For eachM∈Pk, replaceM byM′ such thatM′ ⊆M and

(M\M′) ∩ {x ∈ D |F (x,x) > γk} = ∅.

Step 3 (Incumbent) For eachM∈Pk, select a point x ∈M. If Gi(x,x) ≤ 0 for
all i = 1, . . . ,m, set α(M) = F (x,x). Otherwise, set α(M) = −∞. Let
αk = max{α(M) |M ∈ Pk}. If αk > γk−1, set γk = αk and let x̄k ∈ D
such that αk = F (x̄k, x̄k). Otherwise, let γk = γk−1 and x̄k = x̄k−1.

Step 4 (Pruning) Delete every M = [r, s] ∈ Pk with F (s, r) ≤ γk + η or
Gi(r, s) > 0 for some i = 1, . . . ,m. Let P ′

k be the collection of remaining
sets and set Rk = P ′

k ∪ (Rk−1 \Sk).
Step 5 (Termination) Terminate if Rk = ∅ or, optionally, if {[r, s] ∈

Rk |F (s, r) > γk + η} = ∅. Return x̄k as a global η-optimal solution.
Otherwise, update k ← k + 1 and return to Step 1.

If Algorithm 7 is infinite, it generates an infinite decreasing subsequence of
sets {Mkq}q such that Gi(r

kq , skq) ≤ 0, for all i and q = 1, 2, . . ., and Mkq ∈
argmax{F (s, r) | [r, s] ∈ Rkq−1} due to the bound-improving selection. By
virtue of Corollary 3.9, the bisection in Step 1 is exhaustive and, thus, by Propo-
sition 3.7, diamMkq

→ 0. Thus, rkq and skq approach a common limit point
x. Due to the continuity of Gi, this point satisfies Gi(x,x) ≤ 0 for all i. More-
over, F (skq , rkq) → F (x,x) and F (skq , rkq) ≥ argmax{F (s, r) | [r, s] ∈
Rkq−1} ≥ v(6.20).

A popular method to obtain a finite procedure from Algorithm 7 is to relax
the constraints by some small ε > 0. This results in an approximately feasible η-
optimal solution of (6.20). However, as discussed in Section 3.2.1 this approach is
prone to numerical issues and might result in “solutions” that are quite far away
from the true optimal value. Instead, the SIT approach avoids these problems
and should be employed to solve (6.20) if a finite algorithm is required. This is
left open for future work.
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6.4 A Reduction Procedure for MM Feasible Sets

The reduction procedure in Step 2 of Algorithm 6 replaces each box M ∈ Pk

with a smaller box M′ that still contains all feasible points that might improve
the current best known solution. Because smaller boxes result in tighter bounds,
this step speeds up the convergence in general. However, it also increases the
computation time per iteration and, thus, slows down the algorithm. Ultimately,
it depends on the problem at hand, especially the structure of the feasible set
D, and the implementation of the reduction procedure whether it should be
applied.

For D convex (linear), the reader is referred to the vast literature on convex
(linear) optimization theory regarding possible implementations of the reduc-
tion. The most straightforward approach would be to solve the convex (linear)
optimization problems

r′i = min
x∈M∩D

xi s′i = max
x∈M∩D

xi

for all i = 1, . . . , n, and let M′ = [r′, s′]. However, this approach might be
computationally too complex to provide any gain.

For an MM feasible set as defined in (6.17), the reduction can be carried out
in a similar fashion as for monotonic programming problems [128, §11.2.1].

6.12 Proposition. Let M = [r, s] and (6.1) be an MMP with MM feasible set,
i.e., D = {x |Gi(x,x) ≤ 0, i = 1, . . . ,m}. Then, a reduced set M′ ⊆ M
satisfying (6.16) is

M′ =

{︄
[r′, s′] if F (s, r) ≥ γk and Gi(r, s) ≤ 0 for all i
∅ otherwise

(6.21)

with

r′ = s−
n∑︂

i=1

αi(si − ri)ei, s′ = r′ +

n∑︂
i=1

βi(si − r′i)ei (6.22)

and, for all i = 1, . . . , n,

αi = sup
{︃
α ∈ [0, 1]

⃓⃓⃓⃓
F (s− α(si − ri)ei, r) > γk,

Gj(r, s− α(si − ri)ei) ≤ 0, j = 1, . . . ,m

}︃
(6.23)
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βi = sup
{︃
β ∈ [0, 1]

⃓⃓⃓⃓
F (s, r′ + β(si − r′i)ei) > γk,

Gj(r
′ + β(si − r′i)ei, s) ≤ 0, j = 1, . . . ,m

}︃
. (6.24)

◁

Proof. Observe from (6.18b) that if, for some i = 1, . . . ,m, Gi(r, s) > 0, then
M∩D = ∅ andM′ = ∅. Moreover, if F (s, r) ≤ γk, then {x ∈ M|F (x,x) >
γk} = ∅ and M′ = ∅ satisfies (6.16). This establishes the second case in (6.21).

For the other case, we extend [128, Lem. 11.1]. Let D′ = {x ∈ D |F (x,x) >
γk} ⊆ D. Then, condition (6.16) is equivalent to showing that M ∩ D′ =
M′ ∩ D′ holds. Consider the left equation in (6.22) and (6.23). Since r′i =
αiri + (1− αi)si for some αi ∈ [0, 1], we have ri ≤ r′i ≤ si. Thus, M′ ⊆ M
and M∩D′ ⊇ M′ ∩ D′. For the reverse inclusion, first observe that, for every
x ∈ M and because of (6.2) and (6.3), Gi(x,x) ≤ 0 implies Gi(r,x) ≤ 0 and
F (x,x) > γk implies F (x, r) > γk. Hence, M∩D′ ⊆ M∩ D̄ with

M∩ D̄ = {x ∈ M|F (x, r) > γk, Gi(r,x) ≤ 0 for all i = 1, . . . ,m}.

Now, any x ∈ M∩ D̄ is equal to s−
∑︁K

k=1(si − xi)ei. For any such x, the
box [x, s] ⊆ M ∩ D̄ because if x′ ≥ x, then F (x′, r) ≥ F (x, r) > γk and
Gi(r,x

′) ≤ Gi(r,x) ≤ 0. Thus, also xi = s− (si − xi)ei ∈ M∩ D̄. Because
xi ≥ ri, we have xi = s− α(si − ri)ei for some α ∈ [0, 1]. Since xi ∈ D̄, this
and (6.23) implies α ≤ αi. Hence, xi ≥ r′ and x ≥ r′. Thus, every x ∈ M∩D′

is also in M′ and, M ∩ D′ ⊆ M′ ∩ D′. The second reduction step for s′ in
(6.22) and (6.24) can be proved analogously.

Equations (6.23) and (6.24) can be implemented efficiently by a low precision
bisection. It is important though that the obtained solutions are greater (or
equal) than the true αi, βi. Otherwise, feasible solutions might be lost.

6.5 Benchmarks

In this section, we evaluate the performance of MMP against the state-of-the-art.
Consider the K-user GIC from Section 2.1 where all receivers treat interference
as noise. The achievable rate region for Gaussian codebooks is stated in (2.6). In
particular, user k can transmit at most with rate

rk = C

(︄
|hkk|2pk

σ2
k +

∑︁
j ̸=k |hkj |2pj

)︄
. (6.25)
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In Example 6.7, we have established the MMP representation of (6.25) as

Rk(x,y) = C

(︄
|hkk|2 xk

σ2
k +

∑︁
j ̸=k |hkj |2 yj

)︄
. (6.26)

We first continue Example 6.7 and consider the WSR. Afterwards, we compute
the GEE and compare the performance of MMP against fractional monotonic
programming.

6.5.1 Weighted Sum Rate Maximization

The WSR maximization problem with minimum rate constraints is

max
p∈[0,P̄ ]

K∑︂
k=1

wkrk s. t. rk ≥ Rmin,k, k = 1, . . . ,K. (6.27)

This is an MMP problem since the objective has the MMP representation

F (x,y) =

K∑︂
k=1

wkRk(x,y)

due to (6.5), (6.7) and (6.26). The feasible set is as in (6.17) with

Gk(x,y) = Rmin,k −Rk(y,x), k = 1, . . . ,K.

As already observed in Example 6.7, Problem (6.27) is also a monotonic op-
timization problem. It can be solved either by the polyblock algorithm which
requires the transformation into canonical form (cf. Sections 3.3, 4.1 and 4.2),
or by the BB approach in Section 4.2.1 which is equivalent to using the MMP
representation (6.13). Both methods are evaluated and labeled as “PA” and “BRB
DM”, respectively, in the figures below.

Other approaches from the literature rely mostly on the polyblock algorithm.
In the MAPEL framework [98, 154], Problem (6.27) is parametrized in terms of
the signal to interference plus noise ratio (SINR) as

max
γ∈G

K∑︂
k=1

wk C(γk) s. t. γk ≥ γmin,k, k = 1, . . . ,K
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where the set of possible SINR combinations G is approximated from the outside
by means of the polyblock algorithm (cf. Section 3.3) until the globally optimal
solution is found. Since the objective is an increasing function of γ, this method
has the theoretical advantage of not requiring any auxiliary variables that are
necessary if optimizing directly over the powers. However, the feasibility check
γ ∈ G requires the solution of a linear system.

Instead, the authors of [71] formulate Problem (6.27) as

max
ρ∈R

K∑︂
k=1

wkρk s. t. ρk ≥ Rmin,k, k = 1, . . . ,K

where R is the achievable rate region defined in (2.6) (or by (6.25)). This rate
region is then approximated by the polyblock method. This can be considered
as a special case of the framework in [12] and will be labeled as “Ratespace PA”
in the numerical results below. Similarly to the MAPEL framework, this method
requires the solution of a linear system in every iteration to check ρ ∈ R and
project points from outside the feasible set onto its boundary.

The average convergence speed of BB methods depends strongly on the qual-
ity of the bounds, i.e., tighter bounds lead, in general, to faster convergence.
Recall that the bounds in the MMP framework are computed from the MMP rep-
resentation of the objective, i.e., to bound the objective over a box [r, s], F (s, r)
is computed. To show that (6.26) provides tighter bounds than the DI approach,
consider the difference of a single rate term in the MMP representations (6.13)
and (6.26), i.e.,

∆Fk(x,y) = Rk(x,y)−Rk,DM(x,y)

= C

(︄
|hkk|2 xk

σ2
k +

∑︁
j ̸=k |hkj|2 yj

)︄
− log

(︃
|hkk|2 xk +

∑︂
j ̸=k

|hkj|2 xj + σ2
k

)︃

+ log
(︃∑︂

j ̸=k

|hkj|2 yj + σ2
k

)︃

= log

(︄
|hkk|2 xk + σ2

k +
∑︁

j ̸=k |hkj|2 yj
|hkk|2 xk + σ2

k +
∑︁

j ̸=k |hkj|2 xj

)︄
− log (1)

Thus, the difference between the bounds obtained by (6.13) and (6.26) when
bounding the objective over the box [r, s] is

∆Fk(s, r) = log

(︄
|hkk|2 sk + σ2

k +
∑︁

j ̸=k |hkj |2 rj
|hkk|2 sk + σ2

k +
∑︁

j ̸=k |hkj |2 sj

)︄
≤ 0
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Figure 6.1: Average number of iterations required by Algorithm 6 to solve (6.27) with bounds
obtained by 1) (6.26) and best-first selection; 2) (6.26) and oldest-first selection; and
3) (6.13) and best-first selection. Results are averaged over 100 different i.i.d. channel
realizations.

where the inequality holds because r ≤ s.
The results in Fig. 6.1 illustrate this theoretical intuition numerically. It

displays the average number of iterations required by Algorithm 6 to solve
(6.27) versus the number of variables. Each data point is averaged over 100
i.i.d. channel realizations with hij ∼ CN (0, 1) for all i, j = 1, . . . ,K . Further,
η = 0.01, σ2 = 0.01, P̄k = 1, wk = 1, Rmin,k = 0 for all k, and no reduction
is used. It can be observed that, for K = 8 variables, MMP with best-first
selection and MMP function (6.26), labeled as “MMP”, requires three orders of
magnitude less iterations to solve (6.27) than the same algorithm with MMP
function obtained from (6.13), named “BRB DM”. From a practical perspective,
this means that the MMP framework is able to solve (6.27) with 18 variables in
the same time that state-of-the-art monotonic programming requires to solve
problems with 8 variables. A further observation from Fig. 6.1 is that the oldest-
first selection rule (“MMP oldest-first”) requires only slightly more iterations to
converge than the best-first rule. The benefits of oldest-first selection will be
further evaluated below.

A comparison based on iterations works well for algorithms with similar
computational complexity per iteration. However, when evaluating algorithms
as different as the polyblock and BB algorithms, comparing the number of
iterations is meaningless: the polyblock algorithm typically requires much
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Figure 6.2: Average run time required to solve (6.27) with different algorithms. Results are averaged
over 100 different i.i.d. channel realizations.

fewer iterations but each iteration takes much longer than in a BB algorithm.
Thus, we resort to comparing the average run time of the algorithms. This and
the memory consumption of all discussed approaches is displayed in Figs. 6.2
and 6.3, respectively. The same parameters as in the computation of Fig. 6.1
were used.

First, observe that all algorithms scale both in run time and memory consump-
tion exponentially with the number of variables. Since Problem (6.27) is NP-hard
[73, Thm. 1], better asymptotic complexity is not achievable. However, it is
obvious that the computational complexity still may have very different slope
and some algorithms are significantly more efficient than others. Specifically,
the proposed MMP framework solves Problem (6.27) in considerably less time
and memory requirements than all other state-of-the-art methods. The poly-
block based methods all consume more memory than the BB based algorithms
starting from three optimization variables. In terms of run time they are already
outperformed by at least 1.5 orders of magnitude for 2 variables and soon reach
the run time limit of 8 h. For the BB methods, the observations from Fig. 6.1
continue to hold for Fig. 6.2. It can be observed from the memory consumption
that good bounds are not only critical for fast convergence but also for memory
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Figure 6.3: Averagememory consumption of different algorithms to solve (6.27). Results are averaged
over 100 different i.i.d. channel realizations.

efficiency. In this example, the MMP algorithm was able to solve problems more
than twice the size of the DI BB algorithm within a memory limit of 2.5 GB.

Finally, observe that the best-first approach consumes considerably more
memory than the oldest-first rule, e.g., 3.4 times or 546MB more at 18 variables.
Further, observe that while requiring fewer iterations the best-first rule has
longer run times than the oldest-first rule, e.g., 1.5 times or 14.9 s at 18 variables.
This can be explained from Fig. 6.3 since the memory consumption is directly
proportional to the number of boxes in Rk. Recall from Section 3.1.2 that the
best-first rule is equivalent to a priority queue. While accessing the top-element
in a priority queue has complexity O(1), insertion has worst-case complexity
O(logn), where n is the number of elements in the data structure. Compared
to the other operations during each iteration of the algorithm, which have
polynomial complexity in the number of variables, O(logn) is extremely small
except when the size of the queue is very large. Instead, the implementation of
the oldest-first rule is a queue with with constant time insertion, deletion, and
top access complexity.
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6.5.2 Energy Efficiency Maximization

Recall from Section 2.2.3 that the GEE is a key performance metric for 5G
networks and beyond measuring the network EE. It is defined as the benefit-
cost ratio of the total network throughput in a time interval T and the energy
necessary to operate the network during this time, i.e.,

GEE =
TW

∑︁K
k=1 rk

T (φTp+ Pc)
=

W
∑︁K

k=1 rk
φTp+ Pc

[︃
bit
J

]︃
, (6.28)

where rk is the achievable rate of link k, W is the bandwidth, φ ≥ 1 are the
inverses of the power amplifier efficiencies and Pc is a constant modelling the
static part of the circuit power consumption.

Maximizing the GEE for interference networks with TIN, i.e., where rk is as
in (6.25), results in the nonconvex fractional programming problem

max
p∈[0,P̄ ]

∑︁K
k=1 rk

φTp+ Pc
, (6.29)

wherewe have omitted the inessential constantW andminimum rate constraints
that are already discussed in Section 6.5.1.

The state-of-the-art approach to solve (6.29) is fractional monotonic program-
ming introduced in Section 4.3 where Dinkelbach’s algorithm is combined with
monotonic programming to solve a sequence of auxiliary problems

max
p∈[0,P̄ ]

K∑︂
k=1

rk − λ
(︁
φTp+ Pc

)︁
, (6.30)

with nonnegative parameter λ. While most works use the polyblock algorithm
to solve (6.30) (e.g., [83, 147]), we have already established above that the BB
procedure with DI bounds from Section 4.2.1 outperforms the classical polyblock
algorithm [125] in terms of computational complexity.

Instead, the MMP framework allows to solve (6.29) without the need of
Dinkelbach’s algorithm. A MMP representation of (6.28) can be obtained similar
to Example 6.6. Specifically, with (6.26) and the identities in (6.5), (6.7) and (6.8),
we obtain

F (x,y) =
W
∑︁K

k=1Rk(x,y)

φTy + Pc

with Rk(x,y) as in (6.26).
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Figure 6.4: Average run time to solve (6.29) with MMP and Dinkelbach’s algorithm where the inner
problem is solved by Algorithm 6 with DI identification as in (6.13). Results are averaged
over 100 different i.i.d. channel realizations.
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Figure 6.5: Average memory consumption during the solution of (6.29) with MMP and Dinkelbach’s
algorithm where the inner problem is solved by Algorithm 6 with DI identification as in
(6.13). Results are averaged over 100 different i.i.d. channel realizations.

The run time performance of both algorithms is evaluated in Fig. 6.4 where
φk = 5, for all k, and Pc = 1. The remaining parameters were chosen as
in Section 6.5.1. It can be observed that MMP requires significantly less time
to solve (6.29) than the legacy approach employing Dinkelbach’s algorithm.
For example, with K = 6 variables, MMP is, on average, almost five orders
of magnitude faster than fractional monotonic programming. The memory
consumption in Fig. 6.5 scales almost identically to the run time with MMP
using four orders of magnitude less memory for six variables. Besides showing
much better performance, the MMP algorithm obtains an η-optimal solution.
Instead, Dinkelbach’s algorithm does not provide any strict guarantees on the
solution quality as already discussed in Section 4.3.
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Applications





Chapter 7

Interference Channel

We have seen in Chapter 2 that GICs are a suitable model for many mod-
ern communication systems. Despite four decades of research, the complete
characterization of the capacity region, i.e., the fundamental limits of reliable
communication, remains an open problem even for channels with only two
transmitters. Focusing on the sum rate (or throughput) of channels with two
transmitter-receiver pairs, the situation is much more satisfying with sum capac-
ity results being available for most interference regimes. The goal of this chapter
is to evaluate the absolute limits of energy-efficient communication over two
user ICs in terms of the GEE, the most important resource allocation metric to
bring down the total energy consumption in communication networks. We will
see in Section 7.2 that the sum capacity plays a prominent role in maximizing
the GEE.

7.1 System Model & Capacity Results

Consider the 2-user GIC in standard form [14] that is illustrated Fig. 7.1 and
defined by

y1 = x1 + a2x2 + z1, y2 = a1x1 + x2 + z2, (7.1)

where, for i = 1, 2, ai is the complex-valued channel crosstalk coefficient, zi is
i.i.d. zero-mean circularly symmetric complex Gaussian noise with unit power,
and the transmitted signal xi is subject to an average power constraint Pi.
Comparing (7.1) to (2.1), we can identify

a1 =
h21σ1

h11σ2
a2 =

h12σ2

h22σ1
Pi =

|hii|2

σ2
i

P̄i,

where the variables are as defined in Section 2.1.

7.1.1 Point-to-Point Codes

The capacity region of this channel when constrained to capacity-achieving PTP
codes is, according to Proposition 2.1, the union of the achievable rate regions
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Figure 7.1: Illustration of a 2-user Gaussian interference channel in standard form.

with proper Gaussian codebooks where each receiver uses either JD or TIN.
Then, the PTP capacity region of the GIC is

Cptp =
⋃︂

d∈{TIN,JD}2

R1,d1
(P ) ∩R2,d2

(P ). (7.2)

with

R1,TIN(p) =

{︄
R

⃓⃓⃓⃓
⃓ 0 ≤ R1 ≤ C

(︄
p1

1 + |a2|2 p2

)︄}︄
(7.3)

and

R1,JD(p) =

⎧⎨⎩R

⃓⃓⃓⃓
⃓⃓ 0 ≤ R1 ≤ C(p1) ,

R1 +R2 ≤ C
(︂
p1 + |a2|2 p2

)︂⎫⎬⎭ .

This is also the capacity region under the constraint of random codebook en-
sembles and coded time sharing (cf. Section 2.1).

Unconstrained capacity results depend mainly on the channel conditions.
Most notably, if |a1|2 ≥ 1 and |a2|2 ≥ 1, the channel is said to have strong
interference and the capacity region is

2⋂︂
i=1

Ri,JD =

{︄
R

⃓⃓⃓⃓
⃓ 0 ≤ Ri ≤ C(pi), i = 1, 2

R1 +R2 ≤ min{C(p1 + |a2|2 p2), C(|a1|2 p1 + p2)}

}︄
(7.4)

which is achieved by proper Gaussian codewords and jointly decoding x1 and
x2 at each receiver [104, 111].29 The sum capacity, i.e., the maximal sum rate

29The references [104] and [3, 85, 112] to be cited below consider only real-valued channels, while
[111] generalizes these results to complex-valued channels.



7.1 System Model & Capacity Results 101

R1 +R2 at which reliable communication is possible, is readily obtained from
(7.4) as

CΣ = min{C(P1) + C(P2),C(P1 + |a2|2 P2),C(|a1|2 P1 + P2)}.

Apart from the strong interference case, only the sum capacity is known. The
channel has mixed interference if only one receiver observes strong interference,
i.e., |a1|2 ≥ 1 and 0 < |a2|2 ≤ 1, or 0 < |a1|2 ≤ 1 and |a2|2 ≥ 1. The sum
capacity for the first case, i.e., |a1|2 ≥ 1, is

CΣ = min

{︄
C(|a1|2 P1 + P2),C(P2) + C

(︄
P1

1 + |a2|2 P2

)︄}︄
. (7.5)

It is achieved by proper Gaussian codewords, jointly decoding x1 and x2 at
receiver 2, and treating x2 as noise at receiver 1. Likewise, the second case
is obtained by exchanging the indices in (7.5) [85, 111]. For |a1|2 < 1 and
|a2|2 < 1, the channel has weak interference. This regime is subdivided by the
condition

|a1| (1 + |a2|2 P2) + |a2| (1 + |a1|2 P1) ≤ 1.

If it holds, the interference is noisy and the sum capacity is

CΣ = C

(︄
P1

1 + |a2|2 P2

)︄
+ C

(︄
P2

1 + |a1|2 P1

)︄
, (7.6)

which is achievable by proper Gaussian inputs and TIN [3, 85, 111, 112]. Other-
wise, the interference is said to bemoderate and no capacity results are available.
Thus, from a throughput perspective, the moderate interference regime is the
only one in which more complicated codes might improve upon PTP codes. Fig-
ure 7.2 visualizes the different interference regimes and summarizes the quality
of the available capacity results.

7.1.2 Rate Splitting

Recently, RS has been shown to increase spectral and energy efficiency in prac-
tical wireless networks [20, 143]. The concept is much older though, being one
main ingredient of the famous HK coding scheme [19, 39] for the IC. Its advan-
tage over simpler PTP codes is that decoders are not forced to decide between
completely treating an interfering message as noise or decoding it. Instead, HK
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Figure 7.2: Interference regimes and capacity results for the 2-user GIC (adapted from [110]).

coding, and especially the RS part, softly bridges the gap between both interfer-
ence mitigation approaches by allowing to decode interfering messages partially
and treat the remaining part as noise. It leads to the largest known achievable
rate region for the IC and is within one bit per user of the GIC’s capacity region
[30]. It also achieves the (sum) capacity in all cases where it is established. Thus,
the only interference regime where HK coding might provide a throughput gain
over PTP codes is moderate interference, an important scenario for multicell
wireless networks.

The HK codebook of each transmitter is generated by first splitting its message
into a common and private part. These are then combined into a single codeword
by superposition coding [23], [29, §5.3] where the common message is the cloud
center and the private message is the satellite codeword. The common message
is decoded by both receivers, while the private is only decoded by the intended
receiver and considered as noise by the other. An error occurs at each receiver if
either its common or private message is decoded incorrectly, while the common
message of the other receiver needs not be decoded correctly (this is known as
“simultaneous nonunique decoding”). Together with coded time sharing, the HK
achievable rate region is obtained as [19, 29, 39] the set of all nonnegative rate
tuples (R1, R2) satisfying

Ri ≤ I(Xi;Yi|Uj , Q)

Ri +Rj ≤ I(Xi, Uj ;Yi|Q) + I(Xj ;Yj |U1, U2, Q)
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2Ri +Rj ≤ I(Xi, Uj ;Yi|Q) + I(Xi;Yi|U1, U2, Q) + I(Xj , Ui;Yj |Uj , Q)

R1 +R2 ≤ I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q)

for all i, j = 1, 2, j ̸= i, and some probability mass function (pmf) p(q)
p(u1, x1|q) p(u2, x2|q), where |Ui| ≤ |Xi| + 4 and |Q| ≤ 6. It is established
in [5, 135] that this is the largest rate region achievable when constrained to
random code ensembles, RS, superposition coding, and coded time sharing.
Optimizing this region is hard due to its complicated structure, and the optimal
input distribution remains an open problem to date.

Indeed, even for TIN and PTP codes, the optimal codebook is still subject
to ongoing research. This is due to the competitive nature of the problem
discussed in [1] and Section 2.1. It appears that mixed inputs, consisting of
the superposition of a Gaussian and a discrete random variable, are a favorable
choice for TIN [27, 28], and, hence, might also be a good choice for the private
message in the HK scheme. Surprisingly, TIN with such a codebook shows a
resemblance of HK coding in the sense that, even though interference is not
decoded, the discrete part behaves as a common message and can be removed
from the received signal without rate loss. The downside is that mixed Gaussian
inputs complicate analysis significantly and are not (yet) widely used.

However, proper Gaussian codebooks without coded time sharing are com-
mon assumptions and achieve the sum capacity of the GIC in all cases with
established sum capacity. Evaluating the general HK region above under these
assumptions for the channel model in (7.1) results in an achievable rate region
consisting of all nonnegative (R1, R2) such that

Ri ≤ C

(︄
pi + p̄i

1 + |a2|j p̄j

)︄

Ri +Rj ≤ C

(︄
pi + p̄i + a2jpj

1 + a2j p̄j

)︄
+ C

(︃
p̄j

1 + a2i p̄i

)︃

2Ri +Rj ≤ C

(︄
pi + p̄i + a2jpj

1 + a2j p̄j

)︄
+ C

(︄
p̄i

1 + a2j p̄j

)︄
+ C

(︃
a2i pi + p̄j
1 + a2i p̄i

)︃

R1 +R2 ≤ C

(︄
p̄1 + |a2|2 p2
1 + |a2|2 p̄2

)︄
+ C

(︄
p̄2 + |a1|2 p1
1 + |a1|2 p̄1

)︄
for all i, j = 1, 2, j ̸= i and with pi + p̄i ≤ Pi, i = 1, 2. We denote this region
as RHK(p). The sum rate of this rate region, i.e., RΣ(p) = max{R1 +R2 |R ∈
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RHK(p)}, is [123]

C
(︃

p̃1

1 + |a2|2 p̃2

)︃
+ C

(︃
p̃2

1 + |a1|2 p̃1

)︃
+

min
{︃

C
(︃
(p1 − p̃1) + |a2|2 (p2 − p̃2)

1 + p̃1 + |a2|2 p̃2

)︃
, C
(︃
|a1|2 (p1 − p̃1) + (p2 − p̃2)

1 + |a1|2 p̃1 + p̃2

)︃
,

C
(︃
|a1|2 (p1 − p̃1)

1 + |a1|2 p̃1 + p̃2

)︃
+ C

(︃
|a2|2 (p2 − p̃2)

1 + p̃1 + |a2|2 p̃2

)︃
,

C
(︃

p1 − p̃1

1 + p̃1 + |a2|2 p̃2

)︃
+ C

(︃
p2 − p̃2

1 + |a1|2 p̃1 + p̃2

)︃}︃
,

(7.7)
where pi ∈ [0, Pi] is the total transmit power of user i and p̃i ∈ [0, pi] is
the power allocated to the private message. From a throughput perspective,
allocating all available transmit power, i.e., pi = Pi, is optimal. This is not
necessarily true for the GEE.

7.2 Global Energy Efficiency

Recall from Section 2.2.3 that the GEE of a communication network is defined
as the benefit-cost ratio of the total network throughput and the total power
necessary to operate the network, i.e., for a network with two transmitters,

GEE = W
R1 +R2

φTp+ Pc
,

where W is the bandwidth, φ are the power amplifier inefficiencies, and Pc is
the total static power consumption of the network. The goal of this chapter is
to maximize the GEE, i.e., solve the problem

max
p,R

R1 +R2

φTp+ Pc
s. t. R ∈ R(p), p ∈ P (7.8)

where R(p) is the achievable rate region of the chosen coding scheme, and
P are the power constraints. For PTP codes, these are P = [0,P ], while for
HK coding P = {(p1, p2, p̃1, p̃2) ∈ R4

≥0 : pi ≤ Pi, p̃i ≤ pi, for i = 1, 2} and
φ = (φ1, φ2, 0, 0)

T .
Problem (7.8) is a global optimization problem that poses two challenges, the

fractional objective and the nonconcave RHSs of the rate expressions character-
izing R(p) when interfering messages are treated as noise. For example, the
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RHS of (7.3) is easily verified to be nonconcave. However, with the sum capacity
results from Section 7.1 we can identify (7.8) as an MMP problem.

Observe that any optimization problem can be decomposed into an outer and
an inner problem by first optimizing over some variables and then over the
others [11, p. 133]. Thus, Problem (7.8) is equivalent to

max
p∈P

max
R∈R(p)

R1 +R2

φTp+ Pc
= max

p∈P

maxR∈R(p)R1 +R2

φTp+ Pc
= max

p∈P

RΣ(p)

φTp+ Pc
(7.9)

where the first equality is due the objective’s denominator being independent
of R. The numerator of (7.9) is the sum rate which is limited above by the
sum capacity CΣ. Thus, for constant Pc, the maximum achievable GEE is the
solution of (7.9) for RΣ = CΣ. In the next section, we discuss the solution of
the rightmost form of (7.9) with the MMP framework from Chapter 6.

Recall from Section 7.1 that the sum capacity is known for all interference
regimes except moderate interference. In all cases, it is achievable by PTP codes,
which require less complex decoding than HK codes. More complex decoding
also requires more energy and, thus, Pc is likely to increase for HK coding. Thus,
in cases where both PTP codes and HK coding achieve the sum capacity, HK
coding has a lower GEE than PTP codes. However, for moderate interference,
where the sum capacity is unknown, HK coding might offer a benefit despite its
increased decoding complexity. One of the aims of this chapter is to evaluate
numerically whether such GEE gains due to HK coding can occur.

The capacity region of GICs constrained to capacity-achieving PTP codes is
given in (7.2) as Cptp. Then, the maximum achievable GEE when constrained to
capacity-achieving PTP codes is the solution of (7.8) with R = Cptp. Because
supx∈⋃︁

iDi
f(x) = maxi supx∈Di

f(x) by Lemma 2.2, we can split (7.8) into
four individual optimization problems, each equivalent to (7.8) withR = R1,d1

∩
R2,d2

for all different combinations of d1, d2 ∈ {TIN, JD}. These rate regions
are exactly the achievable rate regions of the sum capacity achieving schemes in
the four other interference regimes, and, hence, the solution of (7.8)|R=Cptp is the
maximum of the achievable GEEs in the four other interference regimes.30 After
computing the absolute GEE limit of PTP codes using the algorithms proposed
in the following, we can be sure that any gain observed by RS is definitely not
achievable by these codes.

30These are strong, noisy, and two cases of mixed interference.
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7.3 Optimal Resource Allocation

In the previous section we have shown that (7.8) is equivalent to

max
p∈P

RΣ(p)

φTp+ Pc

All sum rate expressions in Section 7.1, except for the strong interference case,
are nonconcave functions of p. The strong interference case will be solved with
Dinkelbach’s algorithm in Section 7.3.1. For all other interference regimes, we
apply MMP from Chapter 6. This requires an initial box M0 ⊇ P , an MMP
representation of the objective and a feasibility test. First, observe that for all
coding schemes except HK coding, every box M generated by Algorithm 6
is M ⊂ P . Thus, M∩ P = M ̸= ∅ and obtaining a feasible point is trivial.
Instead, for HK coding let the optimization variables be ordered as x = (p, p̃).
Then, for a box M = [r, s]× [r̃, s̃], M∩P ̸= ∅ if s ≥ r̃. In this case, the point
(s, r̃) is always feasible.

For the MM representation of the objective, assume there exists an MMP
representation ofRΣ(p) and denote it as FΣ(x,y). Then, similar to Example 6.6,
an MMP representation of f(p) is

F (x,y) =
FΣ(x,y)

φTy + Pc
. (7.10)

Thus, we require MMP representations of (7.5)–(7.7) to solve (7.9) with Algo-
rithm 6. These are

FΣ(x,y) = C
(︃

x̃1

1 + |a2|2 ỹ2

)︃
+ C

(︃
x̃2

1 + |a1|2 ỹ1

)︃
+

min
{︃

C
(︃
(x1 − ỹ1) + |a2|2 (x2 − ỹ2)

1 + ỹ1 + |a2|2 ỹ2

)︃
, C
(︃
|a1|2 (x1 − ỹ1) + (x2 − ỹ2)

1 + |a1|2 ỹ1 + ỹ2

)︃
,

C
(︃
|a1|2 (x1 − ỹ1)

1 + |a1|2 ỹ1 + ỹ2

)︃
+ C

(︃
|a2|2 (x2 − ỹ2)

1 + ỹ1 + |a2|2 ỹ2

)︃
,

C
(︃

x1 − ỹ1

1 + ỹ1 + |a2|2 ỹ2

)︃
+ C

(︃
x2 − ỹ2

1 + |a1|2 ỹ1 + ỹ2

)︃}︃
for HK coding in (7.7),

FΣ(x,y) = min

{︄
C(|a1|2 x1 + x2),C(x2) + C

(︄
x1

1 + |a2|2 y2

)︄}︄
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for mixed interference in (7.5), and

FΣ(x,y) = C

(︄
x1

1 + |a2|2 y2

)︄
+ C

(︄
x2

1 + |a1|2 y1

)︄
for noisy interference in (7.6). In all cases, verifying the properties in Def-
inition 6.1 and (6.4) is straightforward with the help of Proposition 6.3. Of
course, these MMP representations can also be used directly for throughput
maximization instead of combining them with (7.10) for GEE maximization.

7.3.1 Strong Interference

In contrast to the other interference regimes, the sum capacityCΣ(p) of the GIC
with strong interference is a concave function and, thus, the fractional objective
of (7.9) is pseudo-concave. This problem is solved efficiently by Dinkelbach’s
algorithm as a sequence of convex optimization problems. Specifically, we
identify the auxiliary problem Λ(λ) from Section 3.4 as⎧⎪⎪⎨⎪⎪⎩

max
t,p∈[0,P ]

t− λ
(︁
φTp+ Pc

)︁
s. t. t ≤ C(p1) + C(p2), t ≤ C(p1 + |a2|2 p2),

t ≤ C(|a1|2 p1 + p2).

Since the objective is linear and the inequality constraints form a closed convex
set, this is a convex optimization problem that can be solved by any state-of-
the-art convex optimization solver, e.g., Mosek [84].

7.4 Numerical Evaluation

We consider a wireless interference network in which two single-antenna
senders are placed randomly with uniform distribution in a 1 km×2 km rect-
angular area and communicate with two single-antenna receivers placed at
coordinates (−0.5, 0) km and (0.5, 0) km. The path-loss is modeled accord-
ing to [13], with power decay factor 3.5 and carrier frequency 1.8 GHz, while
small-scale fading effects are modeled as i.i.d. proper Gaussian random variates.
The communication bandwidth is 180 kHz and the noise spectral density is
−174 dBm/Hz. Each receiver has a 3 dB noise figure and power amplifier ineffi-
ciency φ = 4. Static power consumption is Pc = 1W and all senders have the
same maximum transmit power P̄ .
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Table 7.1: Empirical probability of interference regimes [75] ©2019 IEEE

P̄ Strong Mixed Weak
Moderate Noisy

Arbitrary
0 dBm

34.8 % 31.5 %
11.0 % 22.7 %

15 dBm 21.6 % 12.1 %
30 dBm 32.3 % 1.4 %

Multicell
0 dBm

0.3 % 9.3 %
11.3 % 79.1 %

15 dBm 44.1 % 46.3 %
30 dBm 85.3 % 5.1 %

Two different scenarios are considered: One where the transmitters are
dropped in the whole area and always associated with the same receiver, and
one where each transmitter is placed such that it is geographically closer to
its respective receiver. The latter resembles an uplink multicell scenario where
the receivers represent BSs. Table 7.1 shows the empirical probability of the
resulting channel being in a specific interference regime. It is noteworthy that,
while with arbitrary user placement the distribution is approximately uniform,31
the weak interference regime clearly dominates for the multicell scenario. Es-
pecially for realistic transmit powers, moderate interference clearly dominates.
Thus, the only interference regime where RS might provide a benefit over PTP
codes is definitely nonnegligible.

Numerical results for both user placements obtained by Algorithms 4 and 6
with tolerances η = δ = 0.01 are displayed in Fig. 7.3. In addition, the GEEs
for the individual interference regimes are shown. It can be observed that weak
interference achieves the highest GEE, followed bymixed interference and strong
interference. As could be expected from Table 7.1, the multicell scenario achieves
a similar GEE as weak interference, and the arbitrary scenario is approximately
in the middle of the three interference regimes. The slightly better performance
of the multicell scenario compared to the weak interference regime is due to
statistical effects from not completely overlapping sets of channel realizations.

The maximum GEE in the moderate interference regime is unknown. In all
other regimes, it is achieved by PTP codes. To study whether this is also the case
under moderate interference, we compare the maximum GEE achievable with

31From this point of view, the moderate and noisy interference regimes should be considered
together since the differentiation between these two depends on the transmit power.
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Figure 7.3: GEE of GIC with arbitrary and multicell user placement. Averaged over 1,000+ i.i.d.
channel realizations [75]. ©2019 IEEE

PTP codes with the GEE of HK coding with proper Gaussian codebooks without
coded time sharing. In 9 out of 5390 analyzed channel realizations that fell within
the moderate interference regime, HK coding achieves a numerically significant
gain when ignoring the different circuit power consumptions Pc. This implies
that there can still be gains if Pc is modeled as being higher for HK than for
PTP as long as the difference in Pc is not too large. The maximal observed gain
over PTP codes is 0.11 bit/J/Hz (4.44 %) which amounts to 19.71 kbit/J. Having
observed that HK coding can be beneficial in terms of EE, it should be studied
in future research whether more general HK coding with coded time sharing
and codebooks other than proper Gaussian can bring higher gains and/or gains
in a larger number of channel realizations.





Chapter 8

Multi-Way Relay Channel

Relays are fundamental building blocks in wireless networks. Deploying relays
in areas affected by significant shadowing such as tunnels or the inside of
buildings, or in areas that are far away from the transmitter, allows one to
extend cell-coverage and increase the network’s reliability and throughput.
Due to the high attenuation in mmWave communications, this is even more
important in the era of 5G than it was in classical and current wireless systems.
Thus, relaying is a key technology in emerging wireless technologies and its
study is important to understand the fundamental limits of modern and future
wireless communication systems [54].

An integral part to advance the understanding of relaying in networks is the
MWRC. It models relay-aided communication across several nodes with no direct
links between the users. Applications of this model are, e.g., heterogeneous
dense small cell networks in modern and future wireless networks (cf. Fig. 8.1a),
wireless board-to-board communication in highly adaptive computing [34]
where multiple chips exchange data with the help of another chip acting as
a relay (cf. Fig. 8.1b), wireless sensor networks, Industry 4.0 where several
production stations pass messages along with the product, or communication of
several ground stations over a satellite (cf. Fig. 8.1c).

The MWRC was first introduced in [37] as a model for clustered communi-
cation over a relay, where the terminals in each cluster exchange information
among each other with the help of a relay. In each cluster, every terminal trans-
mits a broadcast message to all other terminals in that cluster. Most subsequent
works drop the multiple cluster assumption and consider a single cluster sce-
nario with different message exchanges. In [94] the common-rate capacity of
the additive white Gaussian noise MWRC with multiple broadcast messages is
derived and it is shown that for three or more users this capacity is achieved
by decode-and-forward (DF) for SNRs below 0 dB and compute-and-forward
otherwise. The same authors present in [93] the capacity region of the finite
field MWRC. In [15] a constant gap approximation of the capacity region of
the Gaussian 3-user MWRC is derived. The authors consider the most general
message exchange possible, where each terminal broadcasts a message to all
other terminals and, in addition, transmits unicast messages to each individual
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Figure 8.1: Illustration of different applications for MWRCs. Physical channels are drawn in black
while message paths are displayed in red [79].

terminal. For a more complete discussion of achievability and capacity results
please refer to [16].

In contrast to most other works, we focus on an MWRC with three users and
multiple unicast transmissions such that

1. each user has a message to transmit which is intended for at least one
other user.

2. each user desires at most one message.

From these two properties it follows immediately that each message is only
required at one other user. One such message exchange is illustrated by the red
arrows in Fig. 8.1. In a preliminary study in [83], the GEE of noisy network cod-
ing (NNC), AF, and DF relaying under the assumption of symmetric channels was
evaluated. These relaying schemes impose very different hardware requirements
on the relay and receivers and, thus, also have a different hardware energy
consumption. For example, an AF relay does not decode any messages, so no
digital signal processing (DSP) hardware is necessary, and, thus, no analog-
to-digital converter (ADC) and digital-to-analog converter (DAC) is necessary
either. In comparison, a DF relay needs all those components and has to decode
all three messages, thus, having much higher circuit power consumptions.

Figure 8.2 displays the GEE of these systems for two different choices of the
noise power. It illustrates that the energy-efficient performance of the different
transmission and relaying scheme highly depends on the saturation point of
the GEE function, which in turn is heavily affected by the system parameters.
Thus, for a sensible comparison of the different schemes, it is necessary to
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Figure 8.2: GEE in the 3-user MWRC with 1) NNC, 2) AF-SND, 3) AF-TIN, and 4) DF as a function
of the maximum SNR (SNRmax = P̄

σ2 ) for fixed circuit power Pc = 1W and different
noise powers [83]. ©2015 IEEE

choose physically meaningful values for the noise variance and the circuit power
consumption. Furthermore, assuming the same circuit power consumption for
all schemes is unfair since they have different hardware complexity.

For this reason, a specific communication system is considered in [83, §VI-
A]. A simple model for its energy consumption is developed which allows
a fair comparison of the relaying schemes. In particular, a wireless board-
to-board communication system as illustrated in Fig. 8.1b and operating at
200GHz carrier frequency with 25GHz bandwidth is evaluated. The circuit
power consumption Pc is modeled such that it reflects the different hardware
complexities of the transmission schemes. It is assumed that Pc depends neither
on the power allocation nor the transmission rate. The only component whose
energy consumption is modeled to scale with the transmission power is the
power amplifier with an efficiency of 6.2 % [136]. The model for a DF relay is
shown in Fig. 8.3. Transmitter and receiver are modeled similarly. The DSP
power is assumed to scale discretely with the number of messages to decode:
TIN uses one single user decoder, SND two single user decoders, and a DF relay
has to decode all three messages. The NNC relay requires barely any DSP power,
and the AF relay directly amplifies the analog signal and, thus, requires neither
DSP nor ADC and DAC. Please refer to Table 8.1 and [83] for more details on
the power consumptions model.



114 Chapter 8 Multi-Way Relay Channel
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Figure 8.3: Energy consumption model for the relay.

Table 8.1: Parameters for circuit power modeling of board-to-board communications [83].
©2015 IEEE

Component Symbol Value Unit

Rx Frontend Prx 345 mW
Analog-to-digital converter PADC 812 mW
Single User Decoder Pdec 300 mW
Digital-to-analog converter PDAC 800 mW
Tx Frontend Ptx 57 mW
Power Amplifier η 6.2 %

Figure 8.4 displays the GEE with regard to this power consumption model. It
can be seen that in the low SNR regime DF performs best, but starting from a
transmit power limit of approximately 6.3 dBm, which corresponds to a transmit
SNR of approximately 10 dB, AF-SND achieves the best GEE. This continues to
hold for higher SNRs where DF is outperformed by all other schemes. Observe
that AF performsmuch better than in Fig. 8.2 due to the low hardware complexity.
This is our main motivation to focus on AF relaying for the remainder of this
chapter. Other benefits of AF include very short relaying delay, especially
compared to DF, and low hardware costs.

8.1 Discrete Memoryless Channels

In this section, we study the 3-user discrete memoryless multi-way relay channel
(DM-MWRC) with instantaneous relaying and multiple unicast transmissions as
described above. Instantaneous relaying [65] is a generalization of AF relaying. It
restricts the relay to operate deterministically, memoryless and symbol-wise, i.e.,
the current output signal depends only on the currently observed input symbol.
The AF relaying scheme [69, 108] is a special case of instantaneous relaying and
implemented by a linear relaying function. However, AF is not necessarily the
optimal instantaneous relaying technique and other relaying functions might
achieve higher throughput without surrendering the benefits of AF. For example,
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Figure 8.4: GEE in the 3-user MWRC of 1) NNC, 2) AF-SND, 3) AF-TIN, and 4) DF as a function of
the SNR for wireless board-to-board communication at 200GHz [83]. ©2015 IEEE

it is shown in [65] that a sawtooth relaying function outperforms AF in Gaussian
relay channels with orthogonal receive components.

Restricting the relay to operate instantaneously has two main reasons: First,
the processing delay at the relay is significantly less than in other schemes, e.g.,
DF. Second, the relay does not need power hungry analog-to-digital conversion
and DSP which results in reduced hardware complexity and better EE. The
downside is that noise is not cancelled at the relay and, thus, processed (e.g.,
amplified) in the same way as the signal. However, we have shown in the
previous section that AF can outperform DF and similar relaying schemes in
terms of EE due to the reduced circuit power consumption.

Because of the message exchange, each node only wants to recover one
message and, hence, has to deal with interference. Some of this interference is
self-induced and can be removed, but the remaining interference needs to be
addressed. Common approaches are TIN and JD. With RS and superposition
coding a combination of these two techniques is possible which, in general,
results in higher transmission rates. This coding scheme is known as HK coding.

In this section, we first show that the DM-MWRCwith instantaneous relaying
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is, for every fixed relaying function, equivalent to a 3-user IC with receiver
message side information and feedback. Then, we extend the HK coding scheme
to this channel and derive an achievable rate region, which, to the best of the
author’s knowledge, is the largest achievable rate region for this channel known
to date. In addition, we also derive the SND rate region without RS.

8.1.1 System Model

We consider the 3-user DM-MWRC illustrated in Fig. 8.5. Recall that the message
exchange has two defining properties:

1. Each user has a message to transmit which is intended for at least one
other user.

2. Each user desires at most one message.

From these two properties it follows immediately that each message is only
required at one other user. We denote the message of user k, k ∈ K = {1, 2, 3},
as mk and the node receiving it as q(k). Furthermore, the user not interested
in mk is denoted by l(k). Also, it follows from the properties listed above that
user k, k ∈ K, desires the message sent by user l(k). Further, since mk and
ml(k) are to be decoded by users q(k) and k, respectively, mq(k) is the desired
message at node l(k). This leaves us with two possible message exchanges,
either clockwise as in Fig. 8.1b or counter-clockwise, depending on whether
q(1) is 2 or 3, respectively. Furthermore, it follows immediately that

q(q(k)) = l(k) l(q(k)) = k

q(l(k)) = k l(l(k)) = q(k)

q−1(k) = l(k) l−1(k) = q(k).

The messages of the users are assumed to be independent. They are commu-
nicated in n channel uses with the help of the relay. Each message mk, k ∈ K,
is encoded into a codeword xn

k of length n and transmitted over the channel.
Upon receiving yn

q(k), receiver q(k), k ∈ K , finds an estimate m̂k of message
mk using its own message mq(k) as side information. We assume full-duplex
operation at all nodes.

The 3-user DM-MWRC (X0 ×X1 ×X2 ×X3, p(y0, y1, y2, y3|x0, x1, x3, x4),
Y0×Y1×Y2×Y3) consists of four finite input setsX0,X1,X2,X3, four finite out-
put sets Y0, Y1, Y2, Y3, and a collection of conditional pmfs p(y0, y1, y2, y3|x0,
x1, x3, x4) on Y0 × Y1 × Y2 × Y3.
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Figure 8.5: Block diagram of the 3-user DM-MWRC with circular message exchange and instanta-
neous relaying [76]. ©2015 IEEE

A (2nR1, 2nR2, 2nR3, n) code for the 3-user DM-MWRC consists of

• three message sets Mk = {1, . . . , 2nRk}, one for each user k ∈ K,

• three encoders, where encoder k ∈ K assigns a symbol xki(mk,y
i−1
k ) to

each message mk ∈ Mk and received sequence yi−1
k for i = 1, 2, . . . , n,

• a relay encoder that assigns a symbol x0i(y
i−1
0 ) to every past received

sequence yi−1
0 for i = 1, 2, . . . , n, and

• three decoders, where decoder q(k) ∈ K assigns an estimate m̂k ∈ Mk

or an error message e to each pair (mq(k),y
n
q(k)).

We assume that the message triple (M1,M2,M3) is uniformly distributed
over M1 ×M2 ×M3. The average probability of error is defined as P (n)

e =

Pr
{︂
M̂k ̸= Mk for some k ∈ K

}︂
. A rate triple (R1, R2, R3) is said to be achiev-

able if there exists a sequence of (2nR1, 2nR2, 2nR3, n) codes such thatP (n)
e → 0

as n → ∞. The capacity region of the 3-user DM-MWRC is the closure of the
set of achievable rates.

The MWRC does not include direct user-to-user links. This implies that the
channel decomposes into an upstream channel p(y0|x1, x2, x3) from the users
to the relay, and a downstream channel p(y1, y2, y3|x0) from the relay back to
the users. Further, we constrain the relay to operate instantaneously on the
received symbol y0i using a deterministic mapping

f : Y0 → X0

x0i = f(y0i), i = 1, . . . , n.
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Then, for every fixed f , the channel effectively is a 3-user discrete memory-
less interference channel (DM-IC) with receiver message side information and
causal feedback with inputs (x1, x2, x3), outputs (y1, y2, y3) and a collection of
conditional pmfs p(y1, y2, y3|x1, x2, x3) given as

p(y1, y2, y3|x1, x2, x3) =
∑︂

y0∈Y0

p(y0|x1, x2, x3) pY1Y2Y3|X0
(y1, y2, y3|f(y0)).

From a practical perspective, the assumption of instantaneous relaying is
problematic. However, assume that the relay has a delay of d symbols. In this
case, the relaying function is

x0i =

{︄
0 if i < d

f(y0,i−d) otherwise.

This implies that the messages in blocks n− d+ 1, · · · , n cannot be commu-
nicated. Thus, the maximum achievable rates are decreased by a factor n−d

n .
Since

lim
n→∞

n− d

n
= 1

this does not impair the achievable rates for asymptotically error free communi-
cation and we can use the instantaneous relay assumption WLOG.

Next, we carefully adapt results for the classical DM-IC to the considered
channel with receiver message side information.

8.1.2 Simultaneous Non-Unique Decoding

Recent results show that SND is an optimal decoder for general interference net-
works under the restriction to random codebooks with superposition coding and
time sharing [5]. Before, common wisdom was that neither TIN nor SND domi-
nates the other rate-wise, with TIN generally better in noise limited scenarios
and SND superior when interference is the limiting factor. This misconception
is due to a longstanding oversight in the SND proof that was clarified in [5].
Using PTP codes and SND, we obtain the following achievable rate region that
contains TIN as a special case.

8.1 Theorem (Simultaneous non-unique decoding). A rate triple (R1, R2, R3)
is achievable for the DM-MWRC p(y0, y1, y2, y3|x0, x1, x3, x4) using SND if,
for all k ∈ K,

Rk ≤ I
(︁
Xk;Yq(k)|Xq(k), Q

)︁
, (8.1)
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or

Rk ≤ I
(︁
Xk;Yq(k)|Xl(k), Xq(k), Q

)︁
, (8.2a)

Rk +Rl(k) ≤ I
(︁
Xk, Xl(k);Yq(k)|Xq(k), Q

)︁
, (8.2b)

for some pmf p(q)p(x1|q)p(x2|q)p(x3|q), and some deterministic mapping f(y0)
at the relay. ◁

Proof. Codebook generation: Fix p(q)
∏︁

k∈K p(xk|q) and f(y0). Generate a se-
quence qn according to

∏︁n
i=1 pQ(qi). For each k ∈ K, randomly and condi-

tionally independently generate 2nRk sequences xn
k(mk), mk ∈ {1, . . . , 2nRk},

each according to
∏︁n

i=1 pXk|Q(xki|qi).
Encoding: To send mk, encoder k ∈ K transmits xn

k(mk).
Decoding: We use SND. Suppose that receiver q(k) observes yn

q(k). Then it
finds the unique m̂k such that(︁

qn,xn
k(m̂k),x

n
l(k)(ml(k)),x

n
q(k)(mq(k)),y

n
q(k)

)︁
∈ T (n)

ε

for some ml(k) ∈ {1, . . . , 2nRl(k)} using its own message mq(k) as side infor-
mation. Otherwise it declares an error.

Analysis of the probability of error: To bound the average probability of error
for decoder q(k), k ∈ K, we assume WLOG that (M1,M2,M3) = (1, 1, 1)
is sent. Then, the decoder makes an error if and only if one or more of the
following events occur:

Eq(k),0 = {(Qn,Xn
k (1),X

n
l(k)(1),X

n
q(k)(1),Y

n
q(k)) /∈ T (n)

ε },

Eq(k),1 = {(Qn,Xn
k (mk),X

n
l(k)(ml(k)),X

n
q(k)(1),Y

n
q(k)) ∈ T (n)

ε

for some mk ̸= 1 and some ml(k)}.

Due to the union bound, the average probability of error for decoder q(k) is
bounded above as Pr(Eq(k)) ≤

∑︁2
i=0 Pr(Eq(k),i). By the law of large numbers

(LLN) [36, Thm. 1.7.4], Pr(Eq(k),0) tends to zero as n → 0.
In [5, §II-A] it was observed that there are two ways to bound Eq(k),1. First,

the joint typicality of (Qn,Xn
k (mk),X

n
l(k)(ml(k)),X

n
q(k)(1),Y

n
q(k)) for every

ml(k) implies that (Qn,Xn
k (mk),X

n
q(k)(1),Y

n
q(k)) is also jointly typical for

each ml(k). Hence,

Eq(k),1 ⊆ {(Qn,Xn
k (mk),X

n
q(k)(1),Y

n
q(k)) ∈ T (n)

ε for somemk ̸= 1} = E ′
q(k),1
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and Pr(Eq(k),1) ≤ Pr(Eq(k),1′). By the packing lemma [29, §3.2], Pr(Eq(k),1)
tends to zero as n → ∞ if Rk ≤ I

(︁
Xk;Yq(k)|Xq(k), Q

)︁
− δ(ε).

The second way to bound Pr(Eq(k),1) is the “classical” method. First, split the
error event Eq(k),1 into two individual events

Eq(k),11 = {(Qn,Xn
k (mk),X

n
l(k)(1),X

n
q(k)(1),Y

n
q(k)) ∈ T (n)

ε

for some mk ̸= 1},
Eq(k),12 = {(Qn,Xn

k (mk),X
n
l(k)(ml(k)),X

n
q(k)(1),Y

n
q(k)) ∈ T (n)

ε

for some mk ̸= 1,ml(k) ̸= 1}.

Second, use the packing lemma [29, §3.2] to bound each of these events, i.e.,
Pr(Eq(k),11), and Pr(Eq(k),12), tend to zero as n → 0 if the conditions Rk ≤
I
(︁
Xk;Yq(k)|Xl(k), Xq(k), Q

)︁
− δ(ε), and

Rk +Rl(k) ≤ I
(︁
Xk, Xl(k);Yq(k)|Xq(k), Q

)︁
− δ(ε)

are satisfied, respectively. The bound of Pr(Eq(k),1) again follows from the
union bound, i.e., Pr(Eq(k),1) ≤ Pr(Eq(k),11) + Pr(Eq(k),12). Finally, taking
ε → 0 concludes the proof.

8.2 Remark. Let Rk,TIN and Rk,JD be the regions defined by (8.1) and (8.2),
respectively. Then, similarly to (2.5), the rate region in Theorem 8.1 is

R =
⋂︂
k∈K

(Rk,TIN ∪Rk,JD) =
⋃︂

d∈{TIN,JD}|K|

⋂︂
k∈K

Rk,dk
. ◁

Under the additional assumption of restricted encoders, i.e., the encoders
xki(mk,y

i−1
k ) are not allowed to use the available feedback and are equal to

xki(mk), the rate region Theorem 8.1 is the largest region achievable with
random coding and the given codebook construction [5, Thm. 2]. Nevertheless,
interactive channel coding that employs the available channel observations yi−1

k

might improve this region.

8.1.3 Rate Splitting and Superposition Coding

The achievable rate region in Theorem 8.1 requires each decoder to decide
between treating the interfering message as noise or jointly decoding it. We
can improve upon this scheme by introducing RS and superposition coding.
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Mk

M c
k

Mp
k

Uk

Xk

Figure 8.6: Codebook construction for HK coding. Solid lines show a direct relationship while
dashed lines indicate statistical dependence.

This allows arbitrary combinations of JD and TIN at each decoder. In particular,
each message mk, k ∈ K, is represented by an independent common message
mc

k at rate Rc
k and a private message mp

k at rate Rp
k. These messages are sent

via superposition coding with cloud center uk(m
c
k) and satellite codeword

xk(m
c
k,m

p
k). Receiver q(k), k ∈ K, recovers all common messages and its

desired private message mp
k using its own message as side information. For the

2-user IC, this is known as HK coding. The codebook construction here follows
the modern version in [19] instead of the classical one from [39]. It is illustrated
in Fig. 8.6.

For notational convenience, we define RΣ = R1 +R2 +R3. The achievable
rate region is stated in the theorem below.

8.3 Theorem. A rate triple (R1, R2, R3) is achievable for the DM-MWRC
p(y0, y1, y2, y3|x0, x1, x3, x4) if, for all k ∈ K,

Rk ≤ Bk,

Rk +Rq(k) ≤ Ak +Dq(k),

RΣ ≤ Ak + Cq(k) +Dl(k),

Rk +RΣ ≤ Ak + Cq(k) + Cl(k) +Dk,

RΣ ≤ C1 + C2 + C3,

where

Ak = I
(︁
Xk;Yq(k)|Uk, Ul(k), Xq(k), Q

)︁
(8.3a)

Bk = I
(︁
Xk;Yq(k)|Ul(k), Xq(k), Q

)︁
(8.3b)

Ck = I
(︁
Xk, Ul(k);Yq(k)|Uk, Xq(k), Q

)︁
(8.3c)

Dk = I
(︁
Xk, Ul(k);Yq(k)|Xq(k), Q

)︁
(8.3d)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q)p(u3, x3|q), and some deterministic
mapping f(y0) at the relay, where |Uk| ≤ |Xk|+ 3, k ∈ K, and |Q| ≤ 9. ◁
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Before we proof Theorem 8.3, we need the following lemma.

8.4 Lemma. A rate triple (R1, R2, R3) is achievable for the DM-MWRC
p(y0, y1, y2, y3|x0, x1, x3, x4) if, for all k ∈ K,

Rk ≤ min{Bk, Ak + Cq(k)}
Rk +Rq(k) ≤ Ak +min

{︁
Dq(k), Cq(k) + Cl(k)

}︁
,

RΣ ≤ Ak + Cq(k) +Dl(k),

Rk +RΣ ≤ Ak + Cq(k) + Cl(k) +Dk,

RΣ ≤ C1 + C2 + C3,

for some pmf p(q)p(u1, x1|q)p(u2, x2|q)p(u3, x3|q), and some deterministic
mapping f(y0) at the relay, where Ak, …, Dk are as defined in Theorem 8.3. ◁

Proof. We first show that (Rc
1, R

c
2, R

c
3, R

p
1, R

p
2, R

p
3) is achievable if, for every

k ∈ K,

Rp
k ≤ I

(︁
Xk;Yq(k)|Uk, Ul(k), Xq(k), Q

)︁
,

Rc
k +Rp

k ≤ I
(︁
Xk;Yq(k)|Ul(k), Xq(k), Q

)︁
,

Rp
k +Rc

l(k) ≤ I
(︁
Xk, Ul(k);Yq(k)|Uk, Xq(k), Q

)︁
,

Rc
k +Rp

k +Rc
l(k) ≤ I

(︁
Xk, Ul(k);Yq(k)|Xq(k), Q

)︁
,

for some pmf p(q)p(u1, x1|q)p(u2, x2|q)p(u3, x3|q). Then, we use the Fourier-
Motzkin procedure [29, AppendixD] to project this rate region onto (R1, R2, R3).
Codebook generation: Fix p(q)

∏︁
k∈K p(uk, xk|q) and f(y0). Generate a se-

quence qn according to
∏︁n

i=1 pQ(qi). For each k ∈ K, randomly and condi-
tionally independently generate 2nR

c
k sequences un

k(m
c
k), mc

k ∈ {1, . . . , 2nRc
k},

each according to
∏︁n

i=1 pUk|Q(uki|qi). For each mc
k, randomly and condition-

ally independently generate 2nR
p
k sequences xn

k(m
c
k,m

p
k),m

p
k ∈ {1, . . . , 2nR

p
k},

each according to
∏︁n

i=1 pXk|Uk,Q(xki|uki(m
c
k), qi).

Encoding: To send mk = (mc
k,m

p
k), encoder k ∈ K transmits xn

k(m
c
k,m

p
k).

Decoding: We use SND. Suppose that receiver q(k) observes yn
q(k). Then it

finds the unique (m̂c
k, m̂

p
k) such that(︁

qn,un
k(m̂

c
k),u

n
l(k)(m

c
l(k)),x

n
k(m̂

c
k, m̂

p
k),

un
q(k)(m

c
q(k)),x

n
q(k)(m

c
q(k),m

p
q(k)),y

n
q(k)

)︁
∈ T (n)

ε
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for some mc
l(k) ∈ {1, . . . , 2nR

c
l(k)} using its own messages (mc

q(k),m
p
q(k)) as

side information. Otherwise it declares an error.
Analysis of the probability of error: To bound the average probability of error

for decoder q(k), k ∈ K, we assume WLOG that (M c
k ,M

p
k ) = (1, 1) is sent for

all k ∈ K. Then, the decoder makes an error if and only if one or more of the
following events occur:

Eq(k),0 = {(Qn,Un
k (1),U

n
l(k)(1),X

n
k (1, 1),U

n
q(k)(1),

Xn
q(k)(1, 1),Y

n
q(k)) /∈ T (n)

ε },
Eq(k),1 = {(Qn,Un

k (1),U
n
l(k)(1),X

n
k (1,m

p
k),U

n
q(k)(1),

Xn
q(k)(1, 1),Y

n
q(k)) ∈ T (n)

ε for some mp
k ̸= 1},

Eq(k),2 = {(Qn,Un
k (m

c
k),U

n
l(k)(1),X

n
k (m

c
k,m

p
k),U

n
q(k)(1),

Xn
q(k)(1, 1),Y

n
q(k)) ∈ T (n)

ε for some mc
k ̸= 1,mp

k},
Eq(k),3 = {(Qn,Un

k (1),U
n
l(k)(m

c
l(k)),X

n
k (1,m

p
k),U

n
q(k)(1),

Xn
q(k)(1, 1),Y

n
q(k)) ∈ T (n)

ε for some mc
l(k) ̸= 1,mp

k ̸= 1},
Eq(k),4 = {(Qn,Un

k (m
c
k),U

n
l(k)(m

c
l(k)),X

n
k (m

c
k,m

p
k),U

n
q(k)(1),

Xn
q(k)(1, 1),Y

n
q(k)) ∈ T (n)

ε for some mc
k ̸= 1,mc

l(k) ̸= 1,mp
k}.

Due to the union bound, the average probability of error for decoder q(k) is
bounded above as Pr(Eq(k)) ≤

∑︁4
i=0 Pr(Eq(k),i).

By the LLN [36, Thm. 1.7.4] Pr(Eq(k),0) tends to zero as n → 0. By the
packing lemma [29, §3.2] and since

Uk − (Q,Xk)−
(︁
Y1, Y2, Y3, Uq(k), Xq(k), Ul(k), Xl(k)

)︁
(8.4)

form a Markov chain for every k ∈ K, Pr(Eq(k),1), Pr(Eq(k),2), Pr(Eq(k),3), and
Pr(Eq(k),4) tend to zero as n → 0 if the conditions

Rp
k ≤ I

(︁
Xk;Yq(k)|Uk, Ul(k), Uq(k), Xq(k), Q

)︁
− δ(ε)

Rc
k +Rp

k ≤ I
(︁
Xk;Yq(k)|Ul(k), Uq(k), Xq(k), Q

)︁
− δ(ε)

Rp
k +Rc

l(k) ≤ I
(︁
Xk, Ul(k);Yq(k)|Uk, Uq(k), Xq(k), Q

)︁
− δ(ε)

and

Rc
k +Rp

k +Rc
l(k) ≤ I

(︁
Uk, Xk, Ul(k);Yq(k)|Uq(k), Xq(k), Q

)︁
− δ(ε)
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are satisfied, respectively, where δ(ε) is a functions that tends to zero as ε → 0.
Finally, by substituting Rp

k = Rk −Rc
k and using Fourier-Motzkin we obtain

Lemma 8.4.

Proof of Theorem 8.3

We show that the rate regions in Theorem 8.3 and Lemma 8.4 are equal. For
that, we use the same approach as in [19].

Let P be the set of pmfs on Q×U1 ×X1 ×U2 ×X2 ×U3 ×X3 that factor as
p(q)p(u1, x1|q)p(u2, x2|q)p(u3, x3|q). Fix an input pmf P ∈ P and let Ro(P )
be the achievable rate region from Lemma 8.4 evaluated for P . For a fixed κ ∈ K,
this rate region is given below in explicit form:

Rκ ≤ Bκ (8.5a)
Rq(κ) ≤ Bq(κ) (8.5b)
Rl(κ) ≤ Bl(κ) (8.5c)
Rκ ≤ Aκ + Cq(κ) (8.5d)

Rq(κ) ≤ Aq(κ) + Cl(κ) (8.5e)
Rl(κ) ≤ Al(κ) + Cκ (8.5f)

Rκ +Rq(κ) ≤ Aκ +Dq(κ) (8.5g)
Rq(κ) +Rl(κ) ≤ Aq(κ) +Dl(κ) (8.5h)

Rl(κ) +Rκ ≤ Al(κ) +Dκ (8.5i)
Rκ +Rq(κ) ≤ Aκ + Cq(κ) + Cl(κ) (8.5j)

Rq(κ) +Rl(κ) ≤ Aq(κ) + Cl(κ) + Cκ (8.5k)
Rl(κ) +Rκ ≤ Al(κ) + Cκ + Cq(κ) (8.5l)

Rκ +Rq(κ) +Rl(κ) ≤ Aκ + Cq(κ) +Dl(κ) (8.5m)
Rq(κ) +Rl(κ) +Rκ ≤ Aq(κ) + Cl(κ) +Dκ (8.5n)
Rl(κ) +Rκ +Rq(κ) ≤ Al(κ) + Cκ +Dq(κ) (8.5o)
Rκ +Rq(κ) +Rl(κ) ≤ Cκ + Cq(κ) + Cl(κ) (8.5p)
2Rκ +Rq(κ) +Rl(κ) ≤ Aκ + Cq(κ) + Cl(κ) +Dκ (8.5q)
2Rq(κ) +Rl(κ) +Rκ ≤ Aq(κ) + Cl(κ) + Cκ +Dq(κ) (8.5r)
2Rl(κ) +Rκ +Rq(κ) ≤ Al(κ) + Cκ + Cq(κ) +Dl(κ). (8.5s)

Then, Ro =
⋃︁

P∈P Ro(P ) is the rate region in Lemma 8.4 for a fixed f .
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Further, define R̃c(P ) as the set of all rate tuples (R1, R2, R3) satisfying (8.5a)
to (8.5c) and (8.5g) to (8.5s), and Rc(P ) as the set of all rate tuples (R1, R2, R3)
satisfying (8.5a) to (8.5c), (8.5g) to (8.5i) and (8.5m) to (8.5s). Let

R̃c =
⋃︂
P∈P

R̃c(P ) and Rc =
⋃︂
P∈P

Rc(P ).

Thus, Rc is the rate region in Theorem 8.3 for a fixed f . Our goal is to show
that Rc = Ro.

Obviously, Ro ⊆ R̃c ⊆ Rc since, for every P ∈ P , Ro(P ) ⊆ R̃c(P ) ⊆
Rc(P ). Thus, for equality to hold, we have to show that Rc ⊆ R̃c ⊆ Ro. We
first show that the second inclusion holds and proceed with a distinction of
cases to show that, for every P ∈ P , R̃c(P ) ⊆ Ro. First, if Rk ≤ Ak + Cq(k)

for all k ∈ K, then, obviously, R̃c(P ) ⊆ Ro(P ). Next, consider the case

Rκ > Aκ + Cq(κ). (8.6)

We construct a new input pmf Pκ ∈ P from P that results in a Ro(Pκ) such
that R̃c(P ) ⊆ Ro(Pκ). For this inclusion to hold, we have to show that every
inequality in Ro(Pκ) is implied by R̃c(P ) and (8.6).

Let Pκ =
∑︁

uκ∈Uκ
P be the marginal pmf of P where Uκ has been marginal-

ized out and set Uκ = ∅. Then, Ro(Pκ) consists of all nonnegative rate tuples
(R1, R2, R3) such that

Rκ ≤ Bκ (8.7a)
Rq(κ) ≤ B∗

q(κ) (8.7b)

Rq(κ) ≤ A∗
q(κ) + Cl(κ) (8.7c)

Rl(κ) ≤ Bl(κ) (8.7d)
Rκ +Rl(κ) ≤ Al(κ) +Dκ (8.7e)

Rq(κ) +Rl(κ) ≤ A∗
q(κ) +Dl(κ) (8.7f)

Rκ +Rq(κ) +Rl(κ) ≤ Dκ +A∗
q(κ) + Cl(κ) (8.7g)

where

A∗
q(κ) = I

(︁
Xq(κ);Yl(κ)|Uq(κ), Xl(κ), Q

)︁
,

B∗
q(κ) = I

(︁
Xq(κ);Yl(κ)|Xl(κ), Q

)︁
.
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Equations (8.7a), (8.7d), and (8.7e) are the same as (8.5a), (8.5c), and (8.5i), re-
spectively. From (8.4), (8.5g) and (8.6), we obtain

Rq(κ) < I
(︁
Uq(κ);Yl(κ)|Xl(κ), Q

)︁
≤ B∗

q(κ),

from (8.5j) and (8.6), we obtain

Rq(κ) < Cl(κ) ≤ A∗
q(κ) + Cl(κ),

from (8.5m) and (8.6), we obtain

Rq(κ) +Rl(κ) < Dl(κ) ≤ Dl(κ) +A∗
q(κ),

and, finally, from (8.5q) and (8.6), we obtain

Rκ +Rq(κ) +Rl(κ) < Cl(κ) +Dκ ≤ Cl(κ) +Dκ +A∗
q(κ).

The proof for the cases Rq(κ) ≤ Aq(κ) + Cl(κ) and Rl(κ) ≤ Al(κ) + Cκ

follow exactly along the same lines due to symmetry. Hence, for every P ∈ P ,
R̃c(P ) ⊆ Ro(P ) ∪

(︁⋃︁
k∈KRo(Pk)

)︁
with Pk =

∑︁
uk∈Uk

P . Thus, R̃c = Ro.
Next, we show that Rc ⊆ R̃c using similar steps as before. First, if Rk +

Rq(k) ≤ Ak + Cq(k) + Cl(k) for all k ∈ K, then Rc(P ) ⊆ R̃c(P ). Further,
consider the case

Rκ +Rl(κ) > Al(κ) + Cκ + Cq(κ). (8.8)

Let Pκ be as before. Then, R̃c(Pκ) consists of all nonnegative rate tuples
(R1, R2, R3) such that

Rκ ≤ Bκ (8.9a)
Rq(κ) ≤ B∗

q(κ) (8.9b)

Rl(κ) ≤ Bl(κ) (8.9c)
Rκ +Rl(κ) ≤ Al(κ) +Dκ (8.9d)

Rq(κ) +Rl(κ) ≤ A∗
q(κ) +Dl(κ) (8.9e)

Rκ +Rq(κ) ≤ Bκ +A∗
q(κ) + Cl(κ) (8.9f)

Rκ +Rq(κ) +Rl(κ) ≤ Dκ +A∗
q(κ) + Cl(κ) (8.9g)

Equations (8.9a), (8.9c), and (8.9d) are the same as (8.5a), (8.5c), and (8.5i), re-
spectively. From (8.4), (8.5o) and (8.8), we obtain

Rq(κ) < I
(︁
Uq(κ);Yl(κ)|Xl(κ), Q

)︁
≤ B∗

q(κ),
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from (8.5s) and (8.8), we obtain

Rq(κ) +Rl(κ) < Dl(κ) ≤ A∗
q(κ) +Dl(κ),

from (8.4), (8.5q) and (8.8), we obtain

Rκ +Rq(κ) < Aκ +Dκ − Cκ + Cl(κ) −Al(κ) ≤ Bκ +A∗
q(κ) + Cl(κ),

and, finally, from (8.5i), (8.5p) and (8.8), we obtain

Rκ +Rq(κ) +Rl(κ) < Cl(κ) +Dκ ≤ Dκ +A∗
q(κ) + Cl(κ).

The proof for the remaining cases Rq(κ) + Rκ ≤ Aκ + Cq(κ) + Cl(κ) and
Rl(κ) + Rq(κ) ≤ Aq(κ) + Cl(κ) + Cκ is similar. Hence, Rc(P ) ⊆ R̃c(P ) ∪(︂⋃︁

k∈K R̃c(Pk)
)︂
. Thus, Rc = R̃c = Ro.

Cardinality Bounds Regarding the bound on Q, from the Support Lemma
in [29, Appendix C] and (8.3) follows |Q| ≤ 12. However, this bound can be
tightened. Consider the following functions of Q for some κ ∈ K:

f1(Q) = Bκ f5(Q) = Al(κ) − Cl(κ) +Dl(κ) f8(Q) = Aκ +Dq(κ)

f2(Q) = Bq(κ) f6(Q) = Dκ + Cl(κ) −Dl(κ) f9(Q) = Aq(κ) +Dl(κ)

f3(Q) = Bl(κ) f7(Q) = Cq(κ) −Dq(κ) +Dl(κ)

f4(Q) = Cκ +Dq(κ) + Cl(κ) −Dl(κ)

Then, Rc is

Rκ ≤ f1(Q) Rκ +Rq(κ) ≤ f8(Q)

Rq(κ) ≤ f2(Q) Rq(κ) +Rl(κ) ≤ f9(Q)

Rl(κ) ≤ f3(Q) Rl(κ) +Rκ ≤ f5(Q) + f6(Q)

Rκ +Rq(κ) +Rl(κ) ≤ f7(Q) + f8(Q)

Rq(κ) +Rl(κ) +Rκ ≤ f6(Q) + f9(Q)

Rl(κ) +Rκ +Rq(κ) ≤ f4(Q) + f5(Q)

Rκ +Rq(κ) +Rl(κ) ≤ f4(Q) + f7(Q)

2Rκ +Rq(κ) +Rl(κ) ≤ f6(Q) + f7(Q) + f8(Q)

2Rq(κ) +Rl(κ) +Rκ ≤ f4(Q) + f9(Q)

2Rl(κ) +Rκ +Rq(κ) ≤ f4(Q) + f5(Q) + f7(Q).
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Thus, |Q| ≤ 9.
The bounds on Uk, k ∈ K, also follow from the Support Lemma. First, write

the RHSs of (8.3) as differences of entropies for some κ ∈ K:

Aκ = H
(︁
Yq(κ)|Uκ, Ul(κ), Xq(κ), Q

)︁
−H

(︁
Yq(κ)|Xκ, Ul(κ), Xq(κ), Q

)︁
Bκ = H

(︁
Yq(κ)|Ul(κ), Xq(κ), Q

)︁
−H

(︁
Yq(κ)|Xκ, Ul(κ), Xq(κ), Q

)︁
Cκ = H

(︁
Yq(κ)|Uκ, Xq(κ), Q

)︁
−H

(︁
Yq(κ)|Xκ, Ul(κ), Xq(κ), Q

)︁
Dκ = H

(︁
Yq(κ)|Xq(κ), Q

)︁
−H

(︁
Yq(κ)|Xκ, Ul(κ), Xq(κ), Q

)︁
Aq(κ) = H

(︁
Yl(κ)|Uq(κ), Uκ, Xl(κ), Q

)︁
−H

(︁
Yl(κ)|Xq(κ), Uκ, Xl(κ), Q

)︁
Bq(κ) = H

(︁
Yl(κ)|Uκ, Xl(κ), Q

)︁
−H

(︁
Yl(κ)|Xq(κ), Uκ, Xl(κ), Q

)︁
Cq(κ) = H

(︁
Yl(κ)|Uq(κ), Xl(κ), Q

)︁
−H

(︁
Yl(κ)|Xq(κ), Uκ, Xl(κ), Q

)︁
Dq(κ) = H

(︁
Yl(κ)|Xl(κ), Q

)︁
−H

(︁
Yl(κ)|Xq(κ), Uκ, Xl(κ), Q

)︁
Al(κ) = H

(︁
Yκ|Ul(κ), Uq(κ), Xκ, Q

)︁
−H

(︁
Yκ|Xl(κ), Uq(κ), Xκ, Q

)︁
Bl(κ) = H

(︁
Yκ|Uq(κ), Xκ, Q

)︁
−H

(︁
Yκ|Xl(κ), Uq(κ), Xκ, Q

)︁
Cl(κ) = H

(︁
Yκ|Ul(κ), Xκ, Q

)︁
−H

(︁
Yκ|Xl(κ), Uq(κ), Xκ, Q

)︁
Dl(κ) = H(Yκ|Xκ, Q)−H

(︁
Yκ|Xl(κ), Uq(κ), Xκ, Q

)︁
Note that only 5 different entropies depend uponUκ. The remaining entropies

are preserved as long as p(xκ|q) is preserved. However, since in Rc we only
have the combinations Aκ + Cq(κ), Aκ +Dq(κ), Cκ + Cq(κ), and Cκ +Dq(κ),
we only have the following four functions of Uκ:

g1(Uκ) = H
(︁
Yq(κ)|Uκ, Ul(κ), Xq(κ), Q

)︁
−H

(︁
Yl(κ)|Xq(κ), Uκ, Xl(κ), Q

)︁
,

g2(Uκ) = H
(︁
Yq(κ)|Uκ, Xq(κ), Q

)︁
−H

(︁
Yl(κ)|Xq(κ), Uκ, Xl(κ), Q

)︁
,

and Aq(κ) and Bq(κ). Then, by the Support Lemma, we can find a U ′
κ taking at

most |Xκ|+ 3 values such that

I
(︁
Xq(κ);Yl(κ)|Uq(κ), Uκ, Xl(κ), Q

)︁
= I
(︁
Xq(κ);Yl(κ)|Uq(κ), U

′
κ, Ul(κ), Xl(κ), Q

)︁
I
(︁
Xq(κ);Yl(κ)|Uκ, Xl(κ), Q

)︁
= I
(︁
Xq(κ);Yl(κ)|U ′

κ, Xl(κ), Q
)︁

g1(Uκ) = g1(U
′
κ)

g2(Uκ) = g2(U
′
κ)

p(xκ|q) =
∑︂

u′
κ

p(u′
κ|q)p(xκ|u′

κ, q)

for all xκ = 1, . . . , |Xκ| − 1 and hence for xκ = |Xκ|. Thus, the achievable rate
region in Theorem 8.3 does not change when we substitute Uκ by U ′

κ.
This completes the proof of Theorem 8.3.
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8.2 Gaussian Channels

Consider a continuous version of the DM-MWRC in Section 8.1 with 3-users,
AF relaying, and circularly-symmetric complex Gaussian noise with zero mean.
Under the assumption of quasi-static block flat fading and with single transmit
and receive antennas, the channel outputs in transmission time i ∈ {1, 2, . . . , n}
at the relay and users are

y0i =
∑︂
k∈K

hkxki + z0i, yki = gkx0i + zki, k ∈ K, (8.10)

where hk, gk ∈ C are the up- and downstream channel coefficients of user k, x0

and xk, k ∈ K, is the complex-valued channel input of the relay and transmitter
k, respectively, having an average transmit power Pk =

∑︁n
i=1 |xki|2, and {zki}i,

k ∈ K ∪ {0}, is a circularly-symmetric white Gaussian noise process with zero
mean and average power σ2

k, independent of the channel inputs and other noise
processes. The channel inputs are subject to an average power constraint

n∑︂
i=1

|xki|2 ≤ nP̄k, k ∈ K ∪ {0}.

Amplify-and-forward relaying is a special case of instantaneous relaying
where the relaying function f is a linear function, i.e.,

x0i = αy0i. (8.11)

The constant α must be chosen such that x0i satisfies the average power con-
straint. A sufficient condition follows directly from the power constraint.

8.5 Lemma. The probability of violating the relay power constraint approaches
zero as the block length n → ∞ if codewords are generated as mutually inde-
pendent i.i.d. random sequences, and

α ≤

√︄
P̄0

σ2
0 +

∑︁
k∈K |hk|2 Pk

. ◁

Proof. Consider the average power constraint at the relay, i.e.,

nP̄0 ≥
n∑︂

i=1

|αy0i|2 = α2
n∑︂

i=1

⃓⃓⃓⃓ ∑︂
k∈K

hkxki + z0i

⃓⃓⃓⃓2
.
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Thus, α needs to satisfy α ≤ ᾱ with

1

ᾱ2
=

1

nP̄0

n∑︂
i=1

[︂∑︂
k

|hk|2 |xki|2 + |z0i|2 +
∑︂
k,j ̸=k

hkh
∗
jxkix

∗
ji

+
∑︂
k

(h∗
kz0ix

∗
ki + hkz

∗
0ixki)

]︂
By the LLN [36, Thm. 1.7.4],

1

n

n∑︂
i=1

|z0i|2 → σ2
0 in probability as n → ∞.

By assumption, the symbols xki are generated as i.i.d. random variables, inde-
pendent of xji for all j ̸= k and i. Thus, by the LLN,

1

n

n∑︂
i=1

|xki|2 → Pk in probability as n → ∞,

where Pk is the power of Xk, and

1

n

n∑︂
i=1

xkix
∗
ji → 0 in probability as n → ∞,

for j ̸= k. Thus,

1

ᾱ2
→

σ2
0 +

∑︁
k |hk|2 Pk

P̄0
in probability as n → ∞

and the probability of violating the relay power constraint approaches zero as
n → ∞ if

α ≤

√︄
P̄0

σ2
0 +

∑︁
k |hk|2 Pk

.

8.2.1 Achievable Rate Regions

The achievability results for discrete channels in Section 8.1 can be adapted to
Gaussian channels in a two step process:
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1. Modify the rate region for discrete memoryless channels to include a cost
function as in [29, §3.3].

2. Adapt to continuous channels with the standard discretization argument
in [29, §3.4.1].

For well-behaved continuous channels, and especially Gaussian channels, this
procedure is just a technicality and extending it beyond PTP channels does not
provide any insight. Hence, formal proofs are not provided and the interested
reader is referred to [29, §3.3–3.4].

Simultaneous Non-Unique Decoding

Define the transmit SNR Sk = Pk

σ2
0
, the maximum transmit SNR S̄k = P̄k

σ2
0
, and

the corresponding vectors S = (S1, S2, S3) and S̄ = (S̄1, S̄2, S̄3).

8.6 Proposition (SND). A rate triple (R1, R2, R3) is achievable for the Gaus-
sian MWRC with AF and SND if, for each k ∈ K,

Rk ≤ C

(︄
|hk|2 Sk⃓⃓

hl(k)

⃓⃓2
Sl(k) + δk(S)

)︄
(8.12)

or

Rk ≤ C

(︄
|hk|2 Sk

δk(S)

)︄
(8.13a)

Rk +Rl(k) ≤ C

(︄
|hk|2 Sk +

⃓⃓
hl(k)

⃓⃓2
Sl(k)

δk(S)

)︄
(8.13b)

where Sk ≤ S̄k, and

δk(S) = 1 +
σ2
q(k)⃓⃓

gq(k)
⃓⃓2
P̄0

(︄
1 +

∑︂
i∈K

|hi|2 Si

)︄
. ◁

Proof. Assume Gaussian channel inputs, i.e., let Xk ∼ CN (0, Pk) for all k ∈ K,
and adapt Theorem 8.1 to continuous channels using the standard discretization
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procedure in [29, §3.4.1]. Evaluate the adapted rate region in Theorem 8.1 for
(8.10), (8.11),Q = ∅, and Gaussian codebooks to obtain (8.12) and (8.13) but with

δk(S) = 1 +
σ2
q(k)⃓⃓

gq(k)
⃓⃓2 1

σ2
0

α−2.

This is a decreasing function of α. Hence, the RHSs of the rate expressions are
all increasing with α. Thus, the largest rate region is obtained by setting α to its
upper limit. With Lemma 8.5, we obtain

δk(S) = 1 +
σ2
q(k)⃓⃓

gq(k)
⃓⃓2 1

σ2
0

(︄
σ2
0 +

∑︁
k |hk|2 Pk

P̄0

)︄

= 1 +
σ2
q(k)⃓⃓

gq(k)
⃓⃓2
(︄
1 +

∑︁
k |hk|2 Sk

P̄0

)︄
.

Rate Splitting and Superposition Coding

We first evaluate Theorem 8.3 under the assumption of Gaussian codebooks
in the next lemma. Subsequently, we specialize this result to the case without
coded time sharing.

8.7 Lemma. A rate triple (R1, R2, R3) is achievable for the Gaussian MWRC
with AF relaying if

Rk ≤ EQ

[︃
C

(︄
|hk|2 (λkQ + λ̄kQ)P̄k⃓⃓

hl(k)

⃓⃓2
λl(k)QP̄l(k) + σ2

0 + σ2
q(k)

⃓⃓
gq(k)

⃓⃓−2
α−2

)︄]︃
, (8.14a)

Rk +Rq(k) ≤ EQ

[︃
C

(︄
|hk|2 λkQP̄k⃓⃓

hl(k)

⃓⃓2
λl(k)QP̄l(k) + σ2

0 + σ2
q(k)

⃓⃓
gq(k)

⃓⃓−2
α−2

)︄

+ C

(︄⃓⃓
hq(k)

⃓⃓2
(λq(k)Q + λ̄q(k)Q)P̄q(k) + |hk|2 λ̄kQP̄k

|hk|2 λkQP̄k + σ2
0 + σ2

l(k)

⃓⃓
gl(k)

⃓⃓−2
α−2

)︄]︃
(8.14b)
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RΣ ≤ EQ

[︃
C

(︄
|hk|2 λkQP̄k⃓⃓

hl(k)

⃓⃓2
λl(k)QP̄l(k) + σ2

0 + σ2
q(k)

⃓⃓
gq(k)

⃓⃓−2
α−2

)︄

+ C

(︄ ⃓⃓
hq(k)

⃓⃓2
λq(k)QP̄q(k) + |hk|2 λ̄kQP̄k

|hk|2 λkQP̄k + σ2
0 + σ2

l(k)

⃓⃓
gl(k)

⃓⃓−2
α−2

)︄

+ C

(︄⃓⃓
hl(k)

⃓⃓2
(λl(k)Q + λ̄l(k)Q)P̄l(k) +

⃓⃓
hq(k)

⃓⃓2
λ̄q(k)QP̄q(k)⃓⃓

hq(k)

⃓⃓2
λq(k)QP̄q(k) + σ2

0 + σ2
k |gk|

−2 α−2

)︄]︃
(8.14c)

Rk +RΣ ≤ EQ

[︃
C

(︄
|hk|2 λkQP̄k⃓⃓

hl(k)

⃓⃓2
λl(k)QP̄l(k) + σ2

0 + σ2
q(k)

⃓⃓
gq(k)

⃓⃓−2
α−2

)︄

+ C

(︄ ⃓⃓
hq(k)

⃓⃓2
λq(k)QP̄q(k) + |hk|2 λ̄kQP̄k

|hk|2 λkQP̄k + σ2
0 + σ2

l(k)

⃓⃓
gl(k)

⃓⃓−2
α−2

)︄

+ C

(︄ ⃓⃓
hl(k)

⃓⃓2
λl(k)QP̄l(k) +

⃓⃓
hq(k)

⃓⃓2
λ̄q(k)QP̄q(k)⃓⃓

hq(k)

⃓⃓2
λq(k)QP̄q(k) + σ2

0 + σ2
k |gk|

−2 α−2

)︄

+ C

(︄
|hk|2 (λkQ + λ̄kQ)P̄k +

⃓⃓
hl(k)

⃓⃓2
λ̄l(k)QP̄l(k)⃓⃓

hl(k)

⃓⃓2
λl(k)QP̄l(k) + σ2

0 + σ2
q(k)

⃓⃓
gq(k)

⃓⃓−2
α−2

)︄]︃
(8.14d)

RΣ ≤ EQ

[︃
C

(︄
|h1|2 λ1QP̄1 +

⃓⃓
hl(1)

⃓⃓2
λ̄l(1)QP̄l(1)⃓⃓

hl(1)

⃓⃓2
λl(1)QP̄l(1) + σ2

0 + σ2
q(1)

⃓⃓
gq(1)

⃓⃓−2
α−2

)︄

+ C

(︄
|h2|2 λ2QP̄2 +

⃓⃓
hl(2)

⃓⃓2
λ̄l(2)QP̄l(2)⃓⃓

hl(2)

⃓⃓2
λl(2)QP̄l(2) + σ2

0 + σ2
q(2)

⃓⃓
gq(2)

⃓⃓−2
α−2

)︄

+ C

(︄
|h3|2 λ3QP̄3 +

⃓⃓
hl(3)

⃓⃓2
λ̄l(3)QP̄l(3)⃓⃓

hl(3)

⃓⃓2
λl(3)QP̄l(3) + σ2

0 + σ2
q(3)

⃓⃓
gq(3)

⃓⃓−2
α−2

)︄]︃
(8.14e)

hold for all k ∈ K, where

α−2 =
σ2
0 +

∑︁
k∈K |hk|2 P̄kEQ[λkQ + λ̄kQ]

P̄0
,

for some λkQ, λ̄kQ ≥ 0, k ∈ K, such that EQ[λkQ + λ̄kQ] ≤ 1 and pmf p(q)
with |Q| ≤ 9. ◁

Proof. Using the standard procedure [29, §3.4.1] we can adapt Theorem 8.3 to
the Gaussian MWRC with power constraint. This yields the same inner bounds
as inTheorem 8.3 evaluated for a product input distribution withE[|Xk|2] ≤ P̄k,
k ∈ K ∪ {0}.
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Let Ukq ∼ CN (0, λ̄kqP̄k) and Vkq ∼ CN (0, λkqP̄k) for all kq ∈ K ×Q with
λkQ, λ̄kQ ≥ 0. Then Xkq = Ukq + Vkq is also circularly symmetric complex
Gaussian with zero mean and variance (λkq + λ̄kq)P̄k. With these choices,
evaluation of the mutual information terms in Theorem 8.3 is straightforward
and results in (8.14a)–(8.14e).

The power constraint at transmitter k ∈ K is met as long as E[|XkQ|2] =
P̄kEQ[λkQ + λ̄kQ] ≤ P̄k, or, equivalently, EQ[λkQ + λ̄kQ] ≤ 1. By virtue of
Lemma 8.5, the relay amplification factor α must satisfy

α2 ≤ P̄0

σ2
0 +

∑︁
k∈K |hk|2 Pk

with Pk = EQ[|XkQ|2] = P̄kEQ[λkQ + λ̄kQ]. Observe that the RHSs of the
rate constraints (8.14a)–(8.14e) are all increasing with α−2. Thus, the rate region
is maximized for

α−2 =
σ2
0 +

∑︁
k∈K |hk|2 P̄kEQ[λkQ + λ̄kQ]

P̄0
.

Resource allocation over the rate region in Lemma 8.7 involves |Q| (1+2 |K|)+
|K| = 66 variables. A common assumption to simplify this problem is to neglect
time sharing. Similar to Proposition 8.6, this rate region does not depend on the
absolute values of P c

k , P
p
k and σ2

0 but on their ratio. Hence, we state the result
below in terms of the SNR.

Define the cloud and satellite transmit SNRs as Sc
k =

P c
k

σ2
0

and Sp
k =

Pp
k

σ2
0
,

respectively, their sum Sk = Sc
k + Sp

k , the maximum transmit SNR S̄k = P̄k

σ2
0
,

and the corresponding vectors Sc = (Sc
1, S

c
2, S

c
3), Sp = (Sp

1 , S
p
2 , S

p
3), S =

(Sc,Sp), and S̄ = (S̄1, S̄2, S̄3).

8.8 Proposition (Rate Splitting). A rate triple (R1, R2, R3) is achievable for
the Gaussian MWRC with AF relaying if, for all k ∈ K,

Rk ≤ Bk,

Rk +Rq(k) ≤ Ak +Dq(k),

RΣ ≤ Ak + Cq(k) +Dl(k),

Rk +RΣ ≤ Ak + Cq(k) + Cl(k) +Dk,

RΣ ≤ C1 + C2 + C3,
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where

Ak = C
(︃
|hk|2 Sp

k

γk(S)

)︃
(8.15)

Bk = C
(︃
|hk|2 (Sp

k + Sc
k)

γk(S)

)︃
(8.16)

Ck = C
(︃ |hk|2 Sp

k +
⃓⃓
hl(k)

⃓⃓2
Sc
l(k)

γk(S)

)︃
(8.17)

Dk = C
(︃ |hk|2 (Sp

k + Sc
k) +

⃓⃓
hl(k)

⃓⃓2
Sc
l(k)

γk(S)

)︃
(8.18)

where Sc
k + Sp

k ≤ S̄k and

γk(S) = 1 +
⃓⃓
hl(k)

⃓⃓2
Sp
l(k) +

σ2
q(k)⃓⃓

gq(k)
⃓⃓2
P̄0

(︄
1 +

∑︂
i∈K

|hi|2 (Sc
i + Sp

i )

)︄
. ◁

Proof. In Lemma 8.7, remove time sharing, i.e., set |Q| = 1, and identify P c
k =

λ̄kP̄k and P p
k = λkP̄k.

8.9 Remark. For the case of a linear relaying function, each terminal can
subtract its self-interference from the received signal. The resulting effective
channel is equivalent to a 3-user cyclic IC. The achievable rate region with HK
coding for such a channel is evaluated in [155]. A similar result to Theorem 8.3
is derived in [155, Thm. 1], but only for AF relaying and without cardinality
bounds. This region is then subsequently specialized to Gaussian channels but
with a fixed power allocation that is sufficient to show that this region is within
1.5 bit of the capacity region for 3 users. ◁

8.3 Optimal Resource Allocation

In this section, we discuss the application of the global optimization algorithms
from Part II to resource allocation in Gaussian MWRCs. Specifically, we consider
maximization throughput and EE over the achievable rate regions computed in
Section 8.2.
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8.3.1 Simultaneous Non-Unique Decoding

The SND rate region in Proposition 8.6 is nonconvex in S since both the numer-
ator and denominator in the logarithms on the RHSs of the rate constraints are
functions of S.

Recall from Remark 8.2 that this rate region is equivalent to

RSND =
⋃︂

d∈{TIN,JD}|K|

⋂︂
k∈K

Rk,dk
.

whereRk,TIN andRk,JD are the regions defined by (8.12) and (8.13), respectively.
By virtue of Lemma 2.2,

max{f(R,S) |R ∈ RSND(S)}

= max
d∈{TIN,JD}|K|

max
{︂
f(R,S) |R ∈

⋂︂
k∈K

Rk,dk
(S)
}︂
,

i.e., resource allocation problems over RSND can be split into 23 = 8 individual
global optimization problems. Each of these is easily identified as an instance
of (2.7) with P = ∅, Q = [Rmin,∞) and solvable with Algorithm 5 using the
initial boxM0 = [0, S̄]. Example 5.5 discusses the application of Algorithm 5 to
WSRmaximization, and Example 5.6 to GEE optimization. For theWSR problem,
the monotonic optimization based approach in Section 4.4 is also applicable.

Global Energy Efficiency Maximization

Maximizing the GEE as in Example 5.6, i.e., computing the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
R,S

∑︁
k Rk

φTσ2
0S + Pc

s. t. Rk ≤ C

(︄
|hk|2 Sk

δk(S) + [dk = TIN]
⃓⃓
hl(k)

⃓⃓2
Sl(k)

)︄
, k ∈ K

Rk +Rl(k) ≤ C

(︄
|hk|2 Sk +

⃓⃓
hl(k)

⃓⃓2
Sl(k)

δk(S)

)︄
, ∀k : dk = JD

R ≥
¯
R, S ∈ [0, S̄]

(8.19)

where [·] is the Iverson bracket defined as

[A] =

{︄
1 if A is true
0 otherwise,
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neglects the relay power and, thus, does not reflect the true network GEE. This
user-centric approach to the GEE makes sense in many scenarios where the
relay power consumption is irrelevant, e.g., in satellite networks (cf. Fig. 8.1c)
where the satellite is typically powered by solar energy and does not contribute
to the CO2-footprint of the communication system. However, there are at least
as many scenarios where it is sensible to include the relay into the GEE. For this
case, first consider the SINR expression in the single-user constraint of (8.19),

|hk|2 Sk

1 +
σ2
q(k)

|gq(k)|2P̄0

(︁
1 +

∑︁
i∈K |hi|2 Si

)︁
+ [dk = TIN]|hl(k)|2Sl(k)

=
|hk|2 Sk

1
P̄0

(︂
P̄0 +

σ2
q(k)

|gq(k)|2
(︁
1 +

∑︁
i∈K |hi|2 Si

)︁
+ [dk = TIN]|hl(k)|2Sl(k)P̄0

)︂
=

|hk|2 SkP̄0

P̄0 +
σ2
q(k)

|gq(k)|2
(︁
1 +

∑︁
i∈K |hi|2 Si

)︁
+ [dk = TIN]|hl(k)|2Sl(k)P̄0

.

Identifying

δ′k(S, P0) = P̄0 +
σ2
q(k)

|gq(k)|2
(︁
1 +

∑︂
i∈K

|hi|2 Si

)︁
the GEE maximization problem is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
R,S,P0

∑︁
k Rk

φTσ2
0S + µP0 + Pc

s. t. Rk ≤ C

(︄
|hk|2 SkP0

δ′k(S, P0) + [dk = TIN]
⃓⃓
hl(k)

⃓⃓2
Sl(k)P0

)︄
, k ∈ K

Rk +Rl(k) ≤ C

(︄
(|hk|2 Sk + |hl(k)|2Sl(k))P0

δ′k(S, P0)

)︄
, ∀k : dk = JD

R ≥
¯
R, S ∈ [0, S̄], P0 ∈ [0, P̄0].

(8.20)

This is an instance of (5.1) and solvable with Algorithm 5. We identify

f+(R) =
∑︂
k

Rk f−(S, P0) = φTσ2
0S + µP0 + Pc

g+k (R,S, P0) = Rk + log
(︂
δ′k(S, P0) + [dk = TIN]

⃓⃓
hl(k)

⃓⃓2
Sl(k)P0

)︂
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g−k (S, P0) = log
(︂
|hk|2 SkP0 + δ′k(S, P0) + [dk = TIN]

⃓⃓
hl(k)

⃓⃓2
Sl(k)P0

)︂
g+|K|+k(R,S, P0) =

(︁
Rk +Rl(k) + log(δ′k(S, P0))

)︁
[dk = JD]

g−|K|+k(S, P0) =
(︂
log
(︂
(|hk|2 Sk + |hl(k)|2Sl(k))P0 + δ′k(S, P0)

)︂)︂
[dk = JD].

The global variables x are (S, P0) and the nonglobals ξ = R. Clearly, each of
the functions above is separable in the global and nonglobal variables and the
domain C = [0, S̄] × [0, P̄0] × [Rmin,∞). All functions are linear in the non-
global variables R. Moreover, since δ′k(S, P0) is an increasing function and the
objective is bounded below by zero, γf−(S,P0), g

+
k,x(S,P0), g

+
|K|+k,x(S, P0)

are increasing functions and have a common minimizer over every box M.
The functions g−k (S, P0), g

−
|K|+k(S, P0) are also increasing and, thus, have a

common maximizer over every box M. Hence, Problem (8.20) with the above
identifications is a Case 5.2 problem.

8.3.2 Rate Splitting and Superposition Coding

Globally optimal resource allocation for the achievable rate region in Proposi-
tion 8.8 is a straightforward extension of (2.7):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
S,R

f(S,R)

s. t. aT
i R ≤

∑︂
j

C

(︄
bTi,jS

γκ(i,j)(S)

)︄
, i = 1, . . . , n

Sc
k + Sp

k ≤ S̄k, k ∈ K, R ≥ 0, S ≥ 0

(8.21)

where κ(i,j) maps from (i, j) to the correct k ∈ K and ai, bi,j ≥ 0 are easily
identified from Proposition 8.8. From the discussion in Section 2.2 it is apparent
that (8.21), depending on the identification of g+i (S,R) and g−i (S), satisfies
both, Cases 5.1 and 5.2, and is solvable with Algorithm 5 where the global and
nonglobal variables are S and R, respectively.

However, we can reduce the number of global variables in (8.21) from six
to four: When using the identification g−i (S) = −

∑︁
j log(γκ(i,j)(S)), the

nonconvexity due to Sc stems only from the sum
∑︁

k∈K |hk|2 Sc
k in γk(S).

Thus, if we replace this sum by an auxiliary variable y, the variables Sc can be
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treated as nonglobal. The resulting problem is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
S,R,y

f(S,R)

s. t. aT
i R ≤

∑︂
j

C

(︄
bTi,jS

γκ(i,j)(Sp, y)

)︄
, i = 1, . . . , n

y ≥
∑︂
k∈K

|hk|2 Sc
k

Sc
k + Sp

k ≤ S̄k, k ∈ K, R ≥ 0, S ≥ 0

(8.22)

where (Sp, y) are the global variables and (Sc,R) are the nonglobal variables.
Since the computational complexity grows exponentially with the number of
global variables, solving (8.22) instead of (8.21) reduces the complexity consider-
ably. The drawback of this approach is that Case 5.2 is no longer satisfied and the
bounding problem becomes convex instead of linear. However, the performance
gain significantly outweighs these, comparatively small, performances losses.
The proposition below formally states the equivalence of (8.21) and (8.22).

8.10 Proposition. Problems (8.21) and (8.22) are equivalent in the sense that
v(8.21) = v(8.22) if f(S,R) is increasing with R for fixed S. ◁

Proof. Let F be the feasible set of (8.21) without the first constraint. Then, we
have

max
(S,R)∈F

{︃
f(S,R)

⃓⃓⃓
∀i : aT

i R ≤
∑︂
j

C
(︃

bTi,jS

γκ(i,j)(S)

)︃}︃

= max
(S,R)∈F

y=
∑︁

k∈K|hk|2Sc
k

{︃
f(S,R)

⃓⃓⃓
∀i : aT

i R ≤
∑︂
j

C
(︃

bTi,jS

γκ(i,j)(Sp, y)

)︃}︃

≤ max
(S,R)∈F

y≥
∑︁

k∈K|hk|2Sc
k

{︃
f(S,R)

⃓⃓⃓
∀i : aT

i R ≤
∑︂
j

C
(︃

bTi,jS

γκ(i,j)(Sp, y)

)︃}︃
,

since relaxing a constraint does not decrease the optimal value. Conversely,
γk(S

p, y) is increasing with y and, thus, the RHSs of the constraints are decreas-
ing in y. Since f(S,R) and aT

i R are increasing with R, the RHS should be as
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large as possible. Thus, the optimal y is as small as possible and

max
(S,R)∈F

y≥
∑︁

k∈K|hk|2Sc
k

{︃
f(S,R)

⃓⃓⃓
∀i : aT

i R ≤
∑︂
j

C
(︃

bTi,jS

γκ(i,j)(Sp, y)

)︃}︃

≤ max
(S,R)∈F

y=
∑︁

k∈K|hk|2Sc
k

{︃
f(S,R)

⃓⃓⃓
∀i : aT

i R ≤
∑︂
j

C
(︃

bTi,jS

γκ(i,j)(Sp, y)

)︃}︃
.

This establishes Proposition 8.10.

Finally, note that all constraints in (8.22) except the first are linear and, thus,
C is a convex set. The initial boxM0 required by Algorithm 5 is easily identified
as [0, S̄]× [0,

∑︁
k∈K |hk|2 S̄k].

8.4 Numerical Evaluation

We employ Algorithm 5 to maximize the throughput for SND and HK coding.
Results are benchmarked against the monotonic optimization solution based
on primal decomposition in Section 4.4. Then, Algorithm 5 is applied to GEE
maximization for SND and both identifications in Example 5.6 are benchmarked
against Dinkelbach’s algorithm.

8.4.1 Throughput

We employ Algorithm 5 to compute the throughput optimal resource alloca-
tion for the rate regions in Propositions 8.6 and 8.8. Because the objective
f(S,R) =

∑︁
iRi is increasing with R it satisfies the condition in Proposi-

tion 8.10 and we can solve (8.22) instead of (8.21). We assume equal maximum
power constraints and noise power at the users and the relay, and no minimum
rate constraint, i.e.

¯
R = 0. Channels are assumed reciprocal and chosen i.i.d.

with circular symmetric complex Gaussian distribution, i.e., hk ∼ CN (0, 1) and
gk = h∗

k. Results are averaged over 1000 channel realizations. The precision of
the objective value is η = 0.01, ε is chosen as 10−5, and the algorithm is started
with γ = 0.

Figure 8.7 displays the maximum throughput for SND as in Proposition 8.6
and RS as in Proposition 8.8. Recall that before [5], common wisdom was that
neither TIN nor SND dominates the other rate-wise. Figure 8.7 also includes
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Figure 8.7: Throughput in the MWRC with AF relaying and 1) RS 2) SND; 3) “traditional” SND; and
4) TIN. Averaged over 1000 i.i.d. channel realizations [81]. ©2019 IEEE

results for “traditional” SND and TIN which are defined by the rate regions
obtained from (8.12) and (8.13), respectively. First, observe that, in accordance
with conventional wisdom, neither “traditional” SND nor TIN dominates the
other. Instead, “extended” SND clearly dominates the other two where the gain
is solely due to allowing each receiver to either use TIN or “traditional” SND.
The average gain of SND over the other two is approximately 11 % and 22%
at 10 dB, respectively, or 0.29 bpcu and 0.54 bpcu. Note that this gain is only
achieved by allowing each receiver to choose between TIN and JD which does
not result in higher decoding complexity than “traditional” SND. The average
gain observed for RS over single message SND is rather small, e.g., at 25 dB it is
only 2 % (or 0.2 bpcu). However, depending on the channel realization gains of
up to half a bit (or 4.6 %) at 20 dB have been observed. With spectrum being an
increasingly scarce and expensive resource this occasional gain might very well
justify the slightly higher complexity.

We use the primal decomposition approach from Section 4.4 as state-of-
the-art reference for a performance comparison. The inner linear problem
is solved with Gurobi 8 [38] and the monotonic program with the polyblock
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Table 8.2: Mean and median run times of throughput maximization for SND and “traditional” SND.
For “traditional” SND, both the SIT and the polyblock algorithm (PA) with primal decom-
position as in Section 4.4 are employed [81]. ©2019 IEEE

SNR
0 dB 15 dB 30 dB

SND Mean 385.78 s 351.92 s 5335.48 s
Median 75.51 s 29.16 s 2494.54 s

“trad.”
SND

Mean 19.77 s 6.23 s 3217.21 s
Median 9.50 s 1.84 s 831.71 s

PA Mean 192 426.53 s 77 670.36 s 10 602.06 s
Median 46 210.42 s 7091.09 s 35.67 s

algorithm32 in Algorithm 3with a tolerance of 0.01. Results match those obtained
with Algorithm 5 for “traditional” SND and, thus, are not displayed in Fig. 8.7.
Run times for both algorithms are reported in Table 8.2. About 5.4 % of the
computations with the polyblock algorithm did not complete within one week.
For these, a run time of one week is assumed for the computation of the mean
in Table 8.2. Thus, the reported run times for the polyblock algorithm are
underestimated. Nevertheless, we observe, on average, roughly 10 000 times
faster convergence for the SIT algorithm for low to medium SNRs. Interestingly,
the median run time for high SNRs is lower for the polyblock algorithm while
SIT is clearly faster on average.

8.11 Remark. If all users treat interference as noise (i.e., dk = TIN for all
k ∈ K), the rate variables can be eliminated from the optimization problem
and MMP could be used. While the results in Fig. 8.7 would not change, the
computation times in the first row of Table 8.2 would be even smaller. ◁

8.4.2 Energy Efficiency

The user-centric GEE, i.e., the GEE of only the users and without taking the relay
energy consumption into account, as considered in (8.19) is computed with the
same parameters as in Section 8.4.1 except for the precision which is chosen as
32The polyblock algorithm was implemented in C++ with similar techniques as in the implemen-

tation of Algorithm 5. Thus, performance differences should be mostly due to algorithmic
differences.



8.4 Numerical Evaluation 143

−10 0 10 20 30 40
0

0.1

0.2

0.3

SNRmax [dB]

EE
[b
it/
J/H

z]

SND
“traditional” SND
TIN

Figure 8.8: Energy efficiency in the MWRC with AF relaying and 1) SND; 2) “traditional” SND; and
3) TIN. Averaged over 1000 i.i.d. channel realizations and computed with a precision of
η = 10−3 [81]. ©2019 IEEE

η = 10−3 for Fig. 8.8 and η = 10−2 for Table 8.3. Additionally, we assume the
static circuit powerPc = 1W, the power amplifier inefficiencies φi = 4, and that
the relay always transmits at maximum power. Results for SND, “traditional”
SND, and TIN are displayed in Fig. 8.8. First, observe that the curves saturate
starting from 30 dB as is common for EE maximization. In this saturation region,
all three approaches achieve the same EE. However, for lower SNRs, TIN and,
thus also SND, outperform “traditional” SND by 24% on average at 10 dB. Of
course, as we have seen in the beginning of this chapter, EE performance depends
quite a lot on the choice of real-world simulation parameters, so further work is
necessary to draw final conclusions in this regard.

The main point of this subsection, however, is a performance comparison
of different computational approaches to the EE computation. Recall from
Example 5.6 that there are two possible identifications of g+i and g−i that result
in the problem either belonging to Case 5.1 or Case 5.2. As discussed before,
identification (5.5) (resp. Case 5.1) leads to tighter bounds than (5.6) but requires
the solution of a convex optimization problem in the bounding step. Instead, (5.6)
(resp. Case 5.2) leads to a linear bounding problem which is considerably easier
to solve. Table 8.3 summarizes mean and median computation times for both
approaches. Each bounding problem is solved with the fastest solver available:
the convex problem that stems fromCase 5.1 withMosek [84] and the linear from



144 Chapter 8 Multi-Way Relay Channel

Table 8.3: Mean and median run times of EE computation for “traditional” SND and different solvers,
all with precision η = 0.01 [81]. ©2019 IEEE

SNR
0 dB 20 dB 40 dB

Gurobi Mean 5.1438 s 0.1771 s 0.1550 s
Median 3.2781 s 0.0762 s 0.0600 s

Mosek Mean 15.0453 s 0.1368 s 0.0323 s
Median 10.2756 s 0.0219 s 0.0190 s

Dinkelbach Mean 377.1501 s 145.4181 s 36.9690 s
Median 162.8110 s 23.0270 s 16.9229 s

Case 5.2 with Gurobi [38]. Observe, that the Case 5.2 identification, labelled
as “Gurobi”, is, on average, three times as fast as the Case 5.1 identification
(“Mosek”) at 0 dB and Mosek is almost five times faster than Gurobi at 40 dB.
However, these are only relative numbers. The average total computation time
per channel realization is 8 s for Gurobi and 19 s for Mosek. So, despite the faster
convergence speed of Case 5.1 (i.e., Mosek), Case 5.2 is much faster due to the
lower computational complexity of the linear bounding problem.

The state-of-the-art approach to compute the EE is to combine fractional
programming with monotonic optimization. This could be achieved by com-
bining Dinkelbach’s algorithm with the primal decomposition approach in
Section 4.4. This generalizes the fractional monotonic programming framework
in Section 4.3. However, we have already established in the previous section that
the SIT approach is much faster than the primal decomposition in Section 4.4.
Since the auxiliary problem to be solved in every step of Dinkelbach’s algorithm
is very similar to the throughput maximization problem, the benchmark results
in Table 8.2 are also applicable to Dinkelbach’s auxiliary problem. Instead, we
solve this inner problem with the fastest method available: the SIT algorithm
developed in this paper (cf. Table 8.2). Hence, the differences in the run time
are solely due to the use of Dinkelbach’s algorithm. It can be observed from
Table 8.3 that the inherent treatment of fractional objectives in the developed
algorithm is always significantly faster (up to 800 times on average at 20 dB)
than Dinkelbach’s algorithm. Moreover, the obtained result is guaranteed to
lie within an η-region around the true essential optimal value, which is not
guaranteed for Dinkelbach’s algorithm (cf. p. 57).



Part IV

Conclusions





Chapter 9

Open Topics

The goal when developing an optimization framework is that it finds applica-
tion beyond the motivational problems. Apart from transmit power allocation
in wireless systems, the frameworks developed in this thesis are also suitable
for other resource allocation tasks, e.g., beamforming and precoding, energy
harvesting, flight path planning for unmanned aerial vehicles (UAVs), or ultra-
reliable low-latency communication. Of course, applications are not limited to
resource allocation problems. In particular, every program solvable by mono-
tonic optimization can benefit from the methods in this thesis.

Besides applications, there are several algorithmic improvements and exten-
sions that should be considered for future work.

• Following the discussion in Remark 5.11, integrating the BB procedure
with the SIT scheme requires a weaker termination criterion than could
be used otherwise. An alternative would be to restart the BB part of the
algorithm after every update of the incumbent γ and employ the stronger
stopping rule. Although unlikely from a theoretical perspective, this might
lead to faster overall convergence speed. This question is best answered
through numerical experiments.

• We left the design of an efficient reduction procedure for Algorithm 5
open for future work. Depending on the implementation and problem at
hand, it might speed up the convergence (cf. Remark 5.12).

• The bounding method of the MMP framework is also applicable to the SIT
based algorithm in Chapter 5 andwill most likely increase the convergence
speed. Conversely, applying the SIT approach to the MMP framework
would result in an algorithm with finite convergence that can handle
generic MM constraints (cf. Section 6.3.1).

• While most optimization algorithms are limited by their computational
complexity, the major bottleneck in the MMP algorithm is its memory
consumption. By thoroughly optimizing the data structures that store the
partition of the feasible set it should be possible to reduce the memory
consumption by at least 50 %.



148 Chapter 9 Open Topics

• While exploiting monotonicity in scalar variables is straightforward with
MMP, this is not the case for vectors and matrices. Further work in this
direction is necessary.

• Supporting integer and continuous variables in the same algorithm would
help to solve, e.g., dynamic spectrum allocation problems. Since BB is
the most widely employed method for discrete optimization problems it
should be possible to combine MMP with integer programming.

Some other research directions left unexplored in this thesis and not directly
related to the two developed frameworks are the following.

• Evaluating the PTP capacity region for K-user Gaussian ICs is challeng-
ing for two reasons: the individual power allocation problems and the
combinatorial problem outlined below Lemma 2.2. While we have solved
the first, it is safe to say that the second is considerably more demanding.

• In Chapter 7, we have shown that HK coding might provide better EE
than PTP codes even under the limiting assumptions of proper Gaussian
codebooks and no coded time sharing. It is expected that relaxing these
assumptions leads to more significant gains than those obtained by pure
Gaussian inputs.



Chapter 10

Conclusions

Wehave developed two novel global optimization frameworks that rely on partial
monotonicity of the objective and constraints. They are applied to solve two
different radio resource allocation problems in interference networks. Although
we focused on power control problems, the developed methods are much more
general, both in the context of RRM and more general engineering problems. In
particular, every optimization problem that falls within the class of monotonic
optimization problems is also solvable by our algorithms, most likely with faster
convergence speed.

In the presentation of the underlying mathematical concepts we have put an
emphasis on understandability. While the treatment often follows [128], it is
more general and the concepts are arranged in a modular fashion. A notable con-
tribution is the focus on numerical problems that might arise from complicated
feasible sets, an issue currently not widely known in the communication systems
and signal processing communities. We established ε-essential feasibility and
the SIT approach as a remedy and important concept towards numerical stable
global optimization algorithms. Based on this theory, we have built a novel
global optimization framework tailored to resource allocation problems that
inherently supports fractional objectives, avoids numerical problems with nonro-
bust feasible sets, and is several orders of magnitude faster than state-of-the-art
algorithms. It also preserves the computational complexity in the number of
nonglobal variables without the need for explicit primal decomposition. This is
a major benefit, for example, when optimizing over rate regions where the rate
variables are linear.

The second optimization framework, named mixed monotonic programming
(MMP), generalizes monotonic optimization. At its core is a novel bounding
mechanism accompanied by an efficient BB implementation that helps exploit
partial monotonicity without requiring a DI reformulation. This often leads to
tighter bounds and faster convergence. It also facilitates bounding of functions
that are hard or impossible to express as DI functions. For example, fractional
monotonic programs are usually solved by a combination of Dinkelbach’s it-
erative algorithm and monotonic programming. This approach requires the
solution of several global optimization problems and results in unnecessarily
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long computation times. Instead, the MMP bounding method makes it easy to
obtain suitable bounds for fractional monotonic programs without the need
for Dinkelbach’s algorithm. Benchmark results show that MMP outperforms
monotonic programming by several orders of magnitude, both in run time and
memory consumption.

We have considered two detailed application scenarios, one for each frame-
work. In the first, MMP is applied to evaluate the GEE gain RS might provide
over PTP codes in 2-user GICs. The basis for this study is a comprehensive
overview of sum capacity results for the GIC. These are subsequently used to
establish that RS can only provide a benefit under moderate interference, a
common scenario in multicell systems. The numerical results obtained with
the MMP framework show that RS might offer a gain over PTP even under
restrictive assumptions. The second scenario employs the SIT framework for
WSR and GEE maximization in a 3-user MWRC. After motivating the use of
AF relaying with some preliminary results from [83], we derived achievable
rate regions for discrete memoryless channels with SND and HK coding under
the assumption of instantaneous relaying. These results are then applied to
Gaussian channels and the corresponding optimization problems are identified.
The numerical results show that HK coding might provide a throughput benefit
in certain circumstances and that TIN is the most energy-efficient transmission
scheme. These experiments are also employed to benchmark the algorithm
against the state-of-the-art. It turns out that it is four orders of magnitude faster
than primal decomposition with monotonic optimization and has almost three
orders of magnitude of additional speed-up over Dinkelbach’s algorithm for
fractional programs without a concave-convex structure.

With 5G being rolled out and 6G on the horizon, the developed methods are
an important step towards solving the RRM challenges to come. In particular,
heterogeneous systems and QoS requirements will lead to ever more complicated
feasible sets that require numerically stable algorithms. Another important
aspect is the ability to deal with an increasing number of variables due to
more efficient algorithms. This enables researchers to solve more challenging
problems and gain new insights.
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Appendix A

Implementation Details

All algorithmswere implemented in C++17 and compiledwith GCC 7.3. The code
relies heavily on templates and STL functions. Linear optimization problems
are solved with Gurobi 8 [38] and nonlinear problems with Mosek 8.1 [84] using
the kindly provided academic licenses. Great care was taken to implement all
algorithms with the same rigour to ensure fair benchmarks. Most of the source
code is online available at https://github.com/bmatthiesen.

All computations were done on TU Dresden’s Bull HPC-Cluster Taurus. Re-
ported performance results were obtained on Intel Haswell nodes with Xeon
E5-2680 v3 CPUs running at 2.50GHz. The author thanks the Center for Infor-
mation Services and High Performance Computing (ZIH) at TU Dresden for
generous allocations of computer time.

https://github.com/bmatthiesen
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Notation

Vectors

a Column vector
(ai)

n
i=1 (a1, a2, . . . , an)

T

0 Null vector
ei ith canonical unit vector
aT Transpose of a
a ≤ b Element-wise vector inequality: a ≤ b ⇔ ∀i : ai ≤ bi
a < b Strict element-wise vector inequality: a < b ⇔ ∀i : ai < bi
∥a∥ ℓ2-norm of a
dima Dimension of a, i.e., the number of elements in a

Sets

A Set
A Set of sets
R Real numbers
R≥0 Non-negative real numbers
C Complex numbers
∅ Empty set
{ai}i∈I Sequence of ai, i ∈ I
[a, b] Closed interval. A hypercube (box) if dima > 1.

Defined as [a, b] = {x |a ≤ x ≤ b}
(a, b) Open interval. An open hypercube (box) if dima > 1.

Defined as (a, b) = {x |a < x < b}

Set Operations

|A| Cardinality of A
clA Closure of A
intA Interior of A
A∗ Robust version of A (cf. Section 3.2.1)
diamA Diameter of A: maximum distance between two points in A
∂+A Pareto boundary of A (cf. p. 22)
projxA Projection of A onto the x coordinates:

projxA = {x | (x,y) ∈ A for some y}
Ax x-section of A: Ax = {y | (x,y) ∈ A}
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Mathematical Operators and Functions

|a| Absolute value of a
x → y x approaches y
v(1.1) Optimal value of optimization problem in equation (1.1)
C(x) log(1 + x)
O(g(n)) Asymptotically upper bounded by g(n):

O(g(n)) = {f(n) | ∃c > 0 : ∀n ≥ n0 : 0 ≤ f(n) ≤ cg(n)}
Ω(g(n)) Asymptotically lower bounded by g(n):

Ω(g(n)) = {f(n) | ∃c > 0 : ∀n ≥ n0 : 0 ≤ cg(n) ≤ f(n)}
[A] Iverson bracket: 1 if A is true, 0 otherwise

Functions and Derivatives

f : A → B Function f from A to B
x ↦→ f(x) Function that maps x to f(x)
d
dxf Derivative of f with respect to x
∇f Gradient of f
C[a, b] Space of continuous real-valued functions on [a, b] equipped with

supremum norm

Probability

Pr{A} Probability of event A
EX [g(X)] Expected value of g(X) with respect to random vector X
E[g(X)] Short version of EX [g(X)]
p(x) Pmf of random vector X with argument x: p(x) = Pr{X = x}
p(x | y) Collection of conditional pmfs ofX , one for everyy in the support

of the random vector Y
CN (µ, σ2) Circularly-symmetric complex Gaussian distribution with mean

µ and variance σ2

InformationTheory

T (n)
ε (X) Typical set of X . Please refer to [29, §2.4–2.5]

H(X) Entropy of X (X discrete)
H(X|Y ) Conditional entropy of X given Y (X and Y discrete)
I(X;Y ) Mutual information between X and Y
I(X;Y |Z) Conditional Mutual information between X and Y given Z



Abbreviations
ADC analog-to-digital converter
AF amplify-and-forward

BB branch-and-bound
BC broadcast channel
bpcu bit per channel use
BS base station

DAC digital-to-analog converter
DC difference of convex
DF decode-and-forward
DI difference of increasing
DM-IC discrete memoryless interference channel
DM-MWRC discrete memoryless multi-way relay channel
DSL digital subscriber line
DSP digital signal processing

EE energy efficiency

GEE global energy efficiency
GIC Gaussian interference channel
G-PTP Gaussian point-to-point

HK Han-Kobayashi

IC interference channel
i.i.d. independent and identically distributed

JD joint decoding

KKT Karush-Kuhn-Tucker

LLN law of large numbers
l.s.c. lower semi-continuous
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MAC multiple-access channel
MIMO multiple-input multiple-output
MISO multiple-input single-output
MM mixed monotonic
MMP mixed monotonic programming
MOP multi-objective optimization problem
MWRC multi-way relay channel

NNC noisy network coding
NOMA non-orthogonal multiple access

OFDMA orthogonal frequency-division multiple access

pmf probability mass function
PTP point-to-point

QoS Quality of Service

RHS right-hand side
RRM radio resource management
RS rate splitting

SINR signal to interference plus noise ratio
SIT successive incumbent transcending
SND simultaneous non-unique decoding
SNR signal-to-noise ratio
s. t. subject to
STL standard template library

TIN treating interference as noise

UAV unmanned aerial vehicle
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u.s.c. upper semi-continuous

WLOG without loss of generality
WSR weighted sum rate
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