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Abstract 

Understanding the pressures and impacts of human activities on the marine environment 

can help inform management responses.   

A literature review was conducted of aquatic environmental assessments to identify 

examples of good practice.  Where confusion was found in some assessment 

terminology, definitions were suggested.  A new classification system was proposed, 

based on the environmental components considered, methodologies and nature of the 

linkages between components, and the inclusion or exclusion of socio-economic factors.   

The spatial and temporal distribution of key activities causing direct pressure on the UK 

seabed in 2007 were analysed and their individual and cumulative impact were 

estimated according to habitat type.  Activities were linked to five habitats, defined in 

terms of their particle-size ranges.  Habitat sensitivity was determined from the 

scientific literature of recovery rates of the benthos following cessation of each human 

activity.  Cumulative impacts were estimated as total recovery time under 4 scenarios; 

greatest, additive, antagonistic and synergistic impacts. 

More than half (134 400 km
2
) of the seabed was estimated to be directly affected by 

human activities.  Benthic fishing accounted for 99.6% of this spatial footprint.  

Sensitivity to the pressures of human activities varied by activity-habitat combinations, 

with estimated recovery times from individual activities ranging from <1 month for 

otter trawling in sand, to >10 years for aggregate extraction in low-energy coarse 

sediments.  However, the footprint of aggregate extraction was <0.01% that of benthic 

fishing.  Multiple activities co-occurred in only 165 km
2
 (<0.1% of seabed).  The 

longest estimated cumulative recovery time was ~15 years for aggregate extraction and 

dredge material disposal in low-energy gravel habitat, but the footprint was small, 

<0.01% of seabed.  

The finding that a limited number of activities were the predominant cause of 

widespread, long recovery times of benthic fauna suggests that when time and resources 

are limited, single sector assessment rather than detailed evaluation of cumulative 

effects, can still usefully guide management.  
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CHAPTER 1 

Integrated spatial assessment of human pressures and impact on UK 

seabed habitats 

 

1.1 Managing conflict in the marine environment 

Human demands on natural marine resources, such as fish, minerals, oil and gas are 

increasing (Glover & Smith, 2003).  This is leading to increased degradation of the 

marine environment (UNEP 1982, Choi et al. 2005, Norkko et al. 2006, Halpern et al. 

2008).  This has resulted in a growing need to monitor and assess resource status in 

order to manage demands and militate against deterioration.  Planning and control of 

human activities can secure long-term benefits for the whole of society and nature, with 

sustainable marine development as the desired outcome (Defra 2009).  Driven by 

international commitments such European directives (EU 2000, EU 2008a) and the 

OSPAR Commission (OSPAR Commission 2008), there has been a recent move from 

sectoral planning to integrated strategic co-ordination of human activity, which is 

ecosystem-based.  However, integrated marine assessment is a recent discipline and 

confusion exists in the terminology and methodology used in published studies (Foden 

et al. 2008).   

There is a continuing need to develop improved and cost-effective ways to study and 

monitor ecosystems, and to assess the ecological significance of change in an integrated 

manner (Norkko et al. 2006).  In this context it is imperative that assessments establish 

their terms of reference, use accurate terminology, present results with clarity, and focus 

on informing the development of management strategies for assessment.  At present 

these imperatives are not being met for many assessments undertaken, limiting the 

utility of their findings.   Ecosystem-based management is an approach that recognises 

the complex interactions within ecosystems, of which humans are a part.  Yet to 

implement this approach necessitates knowledge of the pressures and impacts from 

major human activities on ecosystems of potentially differing sensitivities.   
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Pressures are stresses that human activities place on the environment, for example by 

extracting resources such as fish.  Impacts are the resultant changes in the physical, 

chemical or biological state of the environment and the functioning of ecosystems, 

which can have ramifications for human health, society and the economy.  However, 

there is a degree of inconsistency in the use of these terms.  For example some studies 

have mapped the spatial distribution and intensity of human pressures, but have referred 

to this as „impact‟ (e.g. Halpern 2008b).  This can lead to misrepresentation of impact 

analyses (Heath 2008).  For instance, some sea areas are subject to a high intensity of 

pressures, such as the southern North Sea, but if the receiving environment is resilient, 

the level of impact may be low.  Greater understanding and quantification of pressures 

and impacts is required to better underpin effective environmental impact assessment 

and marine planning, and to provide the basis for integrated marine management 

(OSPAR Commission 2003, Eastwood et al. 2007, Borja et al. 2008, Foden et al. 2008, 

Halpern et al. 2008a).   

Accurate information on the extant spatial distribution of pressures and their likely 

impact inform spatial planning, which will contribute to development that is socially, 

economically and environmentally sustainable (HMSO 2009).  Whilst planning in the 

terrestrial environment has long established traditions, for example the Housing, Town 

Planning, Etc. Act of 1909 (Cullingworth & Nadin 2002), marine spatial planning 

(MSP) is an emergent discipline (e.g. Ehler & Douvere 2009, Trouillet et al. 2010, De 

Santo 2011) which lags a century behind.  The EU recognises and promotes MSP as a 

key instrument to optimise the use of marine space for economic development and for 

the benefit of the marine environment by co-ordinating action between public 

authorities and stakeholders (EU 2008b).  In deciding the objectives of MSP, value 

judgements need to be made, which may well change over time, e.g. „maximise fish 

catches‟ could change to „protect biodiversity‟.  At present the vision is for UK‟s oceans 

and seas to be “clean, healthy, safe, productive and biologically diverse” (Defra 2002), a 

vision which MSP can help deliver by implementing an ecosystem approach when 

planning the location of activities.  However, to date there remain gaps in knowledge of 

the distribution of pressure, and in understanding the links between human activities and 

the receiving marine habitat type (Defra 2010).  In particular there is little understanding 
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of the cumulative impact of several activities in one area and the ability of species or 

habitats to recover once a pressure has been removed.  

Developments in geospatial technology have significantly enhanced the ability of 

scientists and managers to quantify spatial and temporal footprints of human activities 

in the marine environment, and to begin identifying locations where cumulative effects 

are likely.  Geospatial technology includes global positioning systems (GPS) and 

geographical information systems (GIS).  A GPS-based vessel monitoring system 

(VMS) has been compulsory on European commercial fishing boats of ≥15 m since 

2005 (EU 2003) and has been used as a surveillance and enforcement tool for fishing 

effort.  The high-resolution locational data VMS provides have greatly enhanced fine-

scale study of fishing effort distribution (Lee et al. 2010).  Similar electronic monitoring 

systems (EMS) have also been fitted to all aggregate dredgers operating in UK (England 

and Wales) waters since 1993 to automatically record position and „dredging status‟ 

(Crown Estate 2009).  These positional data can be easily visualised in a GIS.  There are 

several advantages of GIS for spatial planning: spatial patterns are easily identified, 

statistically robust integration of multiple spatial data layers is possible and spatial data 

can be presented at multiple scales (Foden et al. 2008).  Furthermore, web-based GIS 

encourages stakeholder participation in MSP decisions, for example the UK‟s four 

regional marine conservation zones projects (http://www.mczmapping.org).  This 

technology is becoming widely used for facilitating marine environmental science and 

research (e.g. Danz et al. 2007, Derous et al. 2007, Eastwood et al. 2007, Foden et al. 

2010b).   

The aim of this thesis was to conduct an integrated spatial assessment of human 

pressures and impacts on UK seabed habitats.  Specific objectives were to quantify the 

spatial and temporal footprints of human activities directly affecting benthic habitats to 

estimate the distribution of individual and cumulative activities.  The pressure from 

those activities, be they individual or cumulative, might then be estimated by linking 

their location, frequency and intensity to habitat type.  This research directly addresses 

the recognised knowledge gaps by contributing a method and carrying out an 

assessment of the pressures and impacts of human activities directly affecting UK 

seabed habitats. 

http://www.mczmapping.org/


15 

 

The following sections set the context for the thesis.  Firstly, the main activities of the 

key sectors which cause pressure on the seabed are characterised.  Secondly, the study 

area is delineated and ways in which marine seabed habitats can be classified are 

discussed.  Thirdly, there are several approaches to measuring habitat sensitivity and the 

method chosen for this thesis is justified.  Fourthly, methods for estimating cumulative 

impact are described, and four possible scenarios are defined.  Finally, the structure of 

this thesis is presented. 

1.2 Sectoral pressures  

The Marine Strategy Framework Directive (MSFD, EU 2008a) requires Member States 

to analyse the predominant pressures and impacts on the environmental status of marine 

waters.  Under the MSFD, human activities are grouped into generic pressure types.  

Many different activities directly affect the seabed and they can be grouped into four 

types of pressure: smothering, abrasion, obstruction (also known as sealing) and 

extraction.  Some activities generate more than one pressure.  For example, wind 

turbines are obstructions on the seabed and their influence on the local hydrodynamic 

regime can cause scour, which is an abrasion pressure.  The main activities affecting the 

UK seabed and the pressures they constitute are described as follows.  

Aggregate dredging for mineral resources constitutes extraction pressure.  The UK is 

one of the largest producers of marine aggregate in the world (BMAPA 2008).  The 

main method in the UK is trailer dredging of evenly distributed deposits (BMAPA 

2006), producing shallow linear furrows approximately 1 to 3 m wide and 0.2 to 0.3 m 

deep per pass (Kenny & Rees 1994).  A limited amount of static anchor dredging also 

occurs, where thick localised reserves are exploited to leave saucer-shaped depressions 

typically 8 to 10 m deep, but occasionally reaching 20 m in depth (Dickson & Lee 1972, 

Newell et al. 1998, Boyd et al. 2004).  The degree of impact is a function of the 

environment that is dredged and the intensity and longevity of extraction effort (Cooper 

et al. 2005).   

Benthic fishing is a source of abrasion pressure and it is the most important human 

activity in terms of its spatial extent and level of impact in UK waters (e.g. Collie et al. 

1997, Rijnsdorp et al. 1998, Dinmore et al. 2003, Stelzenmüller et al. 2008).  The main 
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types of fishing gear used in the UK are benthic beam trawls, otter trawls and shellfish 

dredges.  Each gear sweeps the seabed at different widths and depths, which determines 

the area of disturbance (Collie et al. 2000).  For example, mechanised hydraulic suction 

dredges are approximately three metres wide, whereas the overall width of a twin-rig 

beam trawl is generally 24 m (Hall et al. 1990, Rijnsdorp et al. 1998, Kaiser et al. 2006). 

Offshore telecommunication cables represent the vast majority of cable types on the UK 

continental shelf.  Most offshore cables are buried below the seabed to protect them 

from ship anchors and benthic trawl fishing damage, but a small proportion lies on the 

surface of the seabed (Carter et al. 2009).  On rock or boulder sediments, e.g. the rocky 

seabed off North Cornwall, burying is not feasible and exposed cables are armoured, 

representing an obstruction pressure.  In softer sediments of mud, muddy-sand, sand or 

gravel the majority of cables are successfully buried.  The impacts of buried cables 

include loss or disturbance of sea bed habitat, representing an abrasion pressure.  Burial 

is by sea-plough or water jet (Allan 1998, Carter et al. 2009, Drew & Hopper 2009).  

The overall disturbance strip produced by a plough-share and its skids in direct contact 

with the seabed ranges from 2 to 8 m wide, depending on plough size.  Disturbance 

zones associated with jetting (liquefaction and coarse sediment redeposition) are 

typically about 5 m wide (Carter et al. 2009).   

Oil and gas production infrastructure includes platforms, well head protective structures 

and pipelines, which are all obstruction pressures.  When an oil or gas well is drilled, 

waste cuttings are separated on the platform and are normally discharged to the seabed 

(OSPAR Commission 2009), creating a smothering pressure.  The size of cuttings piles 

depends on whether cuttings are discharged close to the seabed or at the surface and on 

the type of cuttings discharged (Daan & Mulder 1996, Zuvo et al. 2005, de Groot 1996, 

Eastwood et al. 2007).  Discharges of untreated cuttings contaminated with oil-based 

drilling fluids and the use of organic-phase or synthetic-based drilling fluids, or cuttings 

contaminated with these fluids, have ceased (OSPAR Commission 1993, 2000).  

Consequently, for more than a decade only water-based fluids (WBM) have been used 

during the first stage of drilling (“spudding”), when discharges to sea cannot be 

prevented.  The use of oil- or synthetic-based mud remains an option for drilling the 

deeper well sections, during which the contaminated mud is recycled and reused, then 

shipped back to shore for reprocessing (R.S. Rowles pers. com. 2010).   
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Wrecks and wind turbines represent two types of obstruction pressure.  Wind turbines 

typically consist of monopile foundations and often scour protection is included at the 

base, which increases the direct spatial contact at the seabed (OSPAR Commission 

2006).  Waves and tides cause sediment transportation away from wind turbine 

foundations, scouring the seabed, particularly in areas of mobile sediments (Rees 2006).  

Poorly designed scour protection can even lead to secondary scour associated with the 

protection installation.   

Seabed dredging occurs in UK waters for three purposes, capital, maintenance and 

aggregate dredging each of which produce characteristic material for disposal to sea.  

Capital dredging takes place mainly in harbour berths and approach channels and 

removes previously undisturbed material the nature of which is mainly consolidated 

material such as rock and stiff clay (A. Birchenough pers. comm.).  Maintenance 

dredging is often a regular, long-term activity, carried out in order to maintain harbour 

berths, marinas and approach channels and is usually concerned with the regular 

removal of silt and clay or sand, deposited as a result of natural siltation.  Some disposal 

material is also generated through aggregate dredging, this is material that has been 

dredged but is unsuitable for aggregate use and is therefore disposed at sea.  This 

operation, often called silt washing, only contributes a small amount of the overall 

material disposed to sea and is only licensed to take place at 3 disposal sites in the UK 

(Birchenough et al. 2010).  

There are over 150 sites designated for the disposal of dredged material around the coast 

of England and Wales.  On average 25–40 million wet tonnes of dredged material are 

disposed of annually to these sites (Bolam et al. 2006, Birchenough et al. 2010).  The 

number of sites used in any one year and the amount disposed to those sites can vary 

significantly.  The licensed area boundaries define the area in which disposal occurs, 

with little under- or over-estimation (A. Birchenough pers. comm.).  Material is 

deposited predominantly from hopper barges where dredged material is deposited 

through vessels‟ bottom opening doors.  Licensees are generally guided to dispose 

material in the centre of the site in an attempt to restrict plumes.  Furthermore some 

sites have licence conditions which restrict disposal operations, e.g. to certain states of 

the tide or to areas within a disposal site, to reduce impacts (S. Pacitto pers. comm.).  

There is an annual programme of disposal site monitoring (Birchenough et al. 2010).   
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To determine the spatial and temporal extent of the direct seabed pressures these various 

activities constitute, firstly requires their location and frequency to be ascertained.  The 

following section describes the hydrodynamics and habitat characteristics of the UK 

marine environment within which the pressures are apparent. 

1.3 Study area and seabed habitats 

The study area for this thesis comprised the marine waters of the UK (England and 

Wales). The boundary of this area was determined for environmental status reporting 

under Charting Progress (Defra 2005) (Figure 1.1).  Water depths range from coastal 

mean high water to: 100 m in the North Sea; 180 m in the English Channel; 200 m in 

the Irish Sea, and; >1000 m in the western approaches.  

Habitats have been classified in several ways.  For example, the „marine landscapes‟ 

that Connor et al. (2006) characterised by sediment type, depth and natural 

hydrodynamic regime, are particularly relevant to studies of impact from aggregate 

extraction pressure.  In studies of bottom-fishing impact on the benthos, habitats are 

generally defined more simply, using particle-size ranges (Kaiser et al. 2006, Pitcher et 

al. 2009), with natural disturbance being implicit in these habitat types.  This is because 

disturbance, such as that caused by near-bed currents and wind-induced waves, is 

related to depth and grain size.  Using British Geological Survey sediment types (Folk 

1954), five habitat types were distinguished and mapped (Figure 1.1), based on the 

largest proportion of constituent particle size: mud, muddy sand, sand, gravel and reef 

(including biogenic habitats constructed or composed primarily of living biota).  

Together the five habitats constitute 97.4% of the entire UK seabed, the remainder 

being diamicton. 

The impact of a human activity is dependent on the sensitivity of the receiving habitat.  

Habitat sensitivity is a complex concept.  The different methods for measuring 

sensitivity are explained in the following section, with a focus upon cumulative impact 

assessment, as this approach was adopted in the material presented in subsequent 

chapters of this thesis.   
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Figure 1.1: Study area. UK (England and Wales) seabed habitat types – Charting 

Progress reporting area. 
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1.4 Habitat sensitivity 

Sensitivity has been defined as the degree to which features of the environment respond 

to deviations in environmental conditions beyond the expected range (Zacharias & 

Gregr 2005).  Measurements of sensitivity sometimes have been based on expert 

judgement or scoring indices (e.g. Tognelli et al. 2009, Scheurle et al. 2010, Teixeira et 

al. 2010).  Whilst these approaches may be suitable when comparing markedly 

contrasting environments, they are less so when considering the range of more closely 

related habitat types found in UK waters.  In this case a more appropriate method would 

be to quantify sensitivity, for example by measuring the physical and biological 

recovery time of the benthic community, following cessation of a pressure of defined 

magnitude and duration (Hiddink et al. 2007).  The assumption is, where recovery times 

are long, sensitivity is considered to be high. 

A number of issues needed to be considered in adopting this approach.  Perhaps the 

most important is defining „recovery‟.  Ideally this would be determined as the time-

period for the re-establishment of a biological benthic community to a condition that 

was virtually indistinguishable from surrounding, non-impacted reference sites (Cooper 

et al. 2005).  However, the study area has a long history of high levels of activity, for 

example trawlers repeatedly target the same grounds year after year (Kaiser et al. 2002, 

Hiddink et al. 2006).  Therefore, the point at which recovery was deemed to have 

occurred was, for some habitats, a point in a constant disturbance cycle, and not 

disturbance of a pristine benthic community.  Furthermore, some sites which are 

subjected to direct and intense physical pressures, where community structure is 

permanently altered, may never recover because new physical conditions will determine 

a different biological community (McCauley et al. 1977, van der Veer et al. 1985).     

Despite these limitations, the estimation of recovery rates of the benthos is widely used 

as an indication of marine habitat sensitivity (e.g. Conlan et al. 2010, Shephard et al. 

2010).  Therefore it was considered a suitable approach to adopt for this thesis, as the 

findings could be directly compared with, and could build upon, a plethora of other 

studies which use this method.   
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There are parts of the UK seabed where more than one activity occurs (Eastwood et al. 

2007).  Coincidental activities can be relatively easily mapped and linked to habitat 

type.  Yet a bigger question is how to estimate the cumulative impact these pressures 

represent.  Habitat sensitivity, in terms of recovery rates of the benthic community from 

human activities, will influence the overall degree of impact.  There are several possible 

methods for cumulative impact assessment that have been used in previous studies.  

These and the approach adopted for this thesis are described below. 

 

1.5 Cumulative impact assessment 

An assessment of cumulative effects first requires locations to be identified where there 

are several pressures, or a single pressure affecting a site repeatedly.  Such spatial and 

temporal inquiry is facilitated by using a GIS.  Just as there are several ways habitat 

sensitivity has been estimated, as described above, estimations of cumulative impact 

from coincidental activities have been conducted in a number of ways.  For example 

cumulative impact has been estimated using modelling (e.g. Stelzenmüller et al. 2010), 

expert judgement (e.g. Teck et al. 2010), scoring indices (e.g. Ban et al. 2010), 

biological recovery rates (e.g. Kaiser et al. 2006), or combinations of these (e.g. Hall et 

al. 2008).  For reasons explained in section 1.4, recovery rates of the benthic community 

from individual activities were used in this thesis and combined using hypothetical 

scenarios, as described below. 

Cumulative impact may be additive or interactive in nature.  Additive effects means the 

overall impact is the simple sum of the impact from individual pressures, whereas 

interactive effects occur when the response of the receiving habitat is non-linear.  The 

latter could lead to overall effects that are less than (antagonistic effects), or more 

commonly greater than (synergistic effects), the sum of their parts (Smit & Spaling 

1995, Cefas 2001).  Although there are some data on the particular type of cumulative 

effect that is likely to result from specific combinations of coincidental human activities 

in certain habitat types, this is not the case across the matrix of all potential cumulative 

pressure-habitat groupings.  The alternative is to use a range of scenarios to estimate 

total recovery time for pressure-habitat combinations, such as greatest, additive, 
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antagonistic and synergistic.  This allows determination of the sensitivity of the findings 

to different measures of impact estimation, for different habitat types. 

 

1.6 Thesis structure 

Chapter 2 presents a critical review of the diversity in approaches to aquatic 

environmental assessment (Foden et al. 2008).  The motivation was to examine the 

different ways in which marine habitat condition is investigated, using examples from 

around the globe.  Particular attention was paid to (a) the definitions of „assessment‟, (b) 

the spatial and temporal scales, (c) the methodologies, and (d) the purpose and target 

audiences of the outcomes.  The findings of the literature would provide a guide to best 

practice and inform the manner in which an assessment of individual and cumulative 

impacts on UK marine habitats would be conducted.   

Marine aggregate extraction and benthic fishing are the two largest causes of physical 

disturbance to the UK seabed (Eastwood et al. 2007, BMAPA 2008, Foden et al. 2009, 

Foden et al. 2010a).  Chapter 3 considers the distribution and impact of aggregate 

extraction on UK seabed habitats, in 2007.  In a GIS, aggregate extraction activity and 

intensity were mapped and spatially linked to seabed landscape types.  This enabled 

determination of footprint as a proportion of habitat.  The sensitivity of habitats to this 

activity was determined by recovery rates of the benthic community, following 

cessation of extraction.  Recovery rates were determined from a literature review of the 

physical and biological effects of aggregate extraction from marine habitats similar to 

those of the UK.  Linking information on habitat recovery potential to marine 

landscapes and aggregate activity can provide a practical tool for use in marine spatial 

management. 

Chapter 4 investigates the distribution of benthic fishing activity in 2007 and the 

sensitivity of habitats to this sector, by adopting a similar approach to that in Chapter 3 

(Foden et al. 2010).  Data were separated by towed bottom-fishing gears (scallop 

dredges, beam and otter trawls) and linked to habitat.  A literature review provided 

estimates of recovery rates for habitat-gear combinations.  Based on the distribution and 

frequency of benthic fishing, the proportion of seabed able to recover at 2007 levels of 
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fishing effort could be estimated.  Cumulative impacts were estimated for locations 

where aggregate extraction and benthic fishing activities coincided.  To determine the 

most and least sensitive habitats total recovery time was estimated under four scenarios; 

greatest, additive, antagonistic and synergistic impacts.   

In Chapter 5 the distribution of multiple human activities affecting the UK seabed, 

including aggregate extraction and benthic fishing, were mapped for 2007.  Together 

these constitute four pressure types as defined by the MSFD (EU 2008a); smothering, 

abrasion, obstruction (sealing) and extraction.  The spatial extent and intensity of 

individual and cumulative activities were quantified by habitat type.  Cumulative impact 

was estimated using published recovery times under the same four scenarios (Foden et 

al. accepted). 

Chapter 6 discusses the main conclusions of this work and suggests further research. 
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CHAPTER 2 

A critical review of approaches to aquatic environmental assessment 

Foden J, Rogers SI, Jones AP (2008) A critical review of approaches to aquatic 

environmental assessment.  Mar Pollut Bull 56:1825–1833 (see Declaration, page 2) 

 

Abstract 

As demands on aquatic resources increase, there is a growing need to monitor and 

assess their condition.  This chapter reviews a variety of aquatic environmental 

assessments, at local, national, international and global scales and finds confusion in the 

terminology used to describe assessments.  In particular the terms „ecosystem‟ and 

„integrated‟ are often misused resulting in lack of clarity.  Therefore, definitions of 

some assessment terminology are suggested, consolidating existing proposals and 

simplifying future applications.   

A conclusion from the review is that a new classification system for types of 

environmental assessments is required.  The categorisation system proposed builds on 

preliminary work of the International Council for the Exploration of the Sea (ICES).  

Assessment classification is based on the environmental components considered, 

methodologies and nature of the linkages between components, and the inclusion or 

exclusion of socio-economic factors.  The assessment terminology and categorisation 

system provided could in future simplify the way that assessments are defined and used 

to inform development of management strategies. 

 

Key words: Environmental assessment; aquatic; assessment terminology; classification; 

review 
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2.1 Introduction 

The diverse nature of aquatic environmental assessments and the lack of a coherent 

terminology to differentiate the various assessment types, are issues of concern raised 

by United Nations Environment Programme World Conservation Monitoring Centre 

(UNEP-WCMC) (UNEP 2007) and the Working Group on Ecosystem Effects of 

Fishing Activities (WGECO) of the International Council for the Exploration of the Sea 

(ICES) (ICES 2005).  In assembling reports, projects and programmes to provide an 

understanding of global and regional assessments concerning the marine environment, 

as well as the processes for undertaking these activities, the UNEP-WCMC 

“Assessment of Assessments” Group of Experts has begun to compile statistics on the 

diversity of assessments.  Of the 258 examples currently listed, the group found the 

amount and detail of information contained was highly variable and in some cases quite 

limited: only 7% of entries are regarded as broad-based assessments, and 20% are 

classified as thematic (or narrow) assessments, focussing on particular features such as 

fisheries, biodiversity or specialised habitats (UNEP 2007).  The purposes of the 

assessments were also wide ranging, as were the methodological approaches employed 

and the audiences at whom the assessments were targeted.   

In conducting an environmental assessment, assessors need to pre-determine three 

components: their definition of what the „assessment‟ is to comprise, the methods to be 

used, and the standards against which measured parameters are judged.  Jennings (2005) 

supports the need to determine these components for fisheries assessment and highlights 

the importance of setting management objectives, identifying appropriate indicators, 

developing methods for monitoring, and setting reference points.  So that management 

systems can improve, the need for repetition and review in the process is implicit.  

However many attempts at aquatic environmental assessment fail to define their terms, 

methods, or reference points, and their outcomes may thus depend upon the subjective 

viewpoint of the assessors or the commissioners of the assessment.  Indeed the UNEP-

WCMC group recognised the importance of defining „environmental assessment‟ and 

stated their intention to devote particular attention to the development of a definition 

(UNEP 2007).  Choi et al. (2005) is one of few examples of a marine environmental 

assessment that explicitly defines the term „assess‟.   



34 

 

After establishing the definition and terms of an environmental assessment, the next 

considerations are the choice of methodology and the standards against which a 

component or study area is to be judged.  Adopting a recognised national or 

international framework with inherent and explicit protocols and standards has the 

advantages of openness, clarity and objectivity.  For example, the ecological status of a 

water body can be assessed following the guidelines of the European Water Framework 

Directive (WFD) or eutrophication can be assessed under the Oslo Paris Convention‟s 

(OSPAR) Comprehensive Procedure.  Conducting an assessment with an explicit 

purpose in mind, such as assessing North Sea cod stocks or assessing an estuary‟s 

ecological status, can result in information that translates into improved management, 

maximising the assessment‟s utility.  A good example of this is the USEPA report on 

the United States‟ estuaries (Bricker et al. 1999).  This study comprehensively assessed 

the scale, scope, and characteristics of estuarine nutrient enrichment and eutrophic 

conditions, using informal information and data brought together in a rigorous manner. 

The results contributed to the development of a national strategy to control nutrient 

enrichment problems affecting national coastal waters.  For assessments to be of 

practical value they should help inform and guide the systems under which they are 

managed, leading to clear management responses.   

This chapter critically reviews a variety of aquatic environmental assessments available 

in the scientific literature, at a range of scales, with two aims.  The first aim is to 

identify the purpose of the assessments, together with an evaluation of the methods of 

analysis and presentation techniques which authors have employed.  The second is to 

investigate and address the problems of diverse interpretation of key assessment 

terminology.  To this end definitions are suggested which aim to consolidate existing 

proposals and a system is proposed for categorising assessments, building on the work 

of ICES WGECO.  The assessment classification incorporates the purpose of the 

assessment, the environmental factors considered, the methodologies and nature of the 

linkages between components, and the inclusion or exclusion of socio-economic factors.   
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2.2 Methods 

Aquatic environmental assessments were identified using computer database searches of 

specialist peer-reviewed research holdings, such as Scopus and ASFA, and general 

Internet search engines.  Search terms included: aquatic, marine, environment, ecology, 

ecosystem, assessment, integrated, offshore, coastal, transitional, estuary, human 

impacts, sustainable, fishery, and management.  The reference lists of identified studies 

were also reviewed for additional studies.  Peer-reviewed academic papers and grey 

literature (e.g. case studies and government, government agency or industry published 

reports) were examined.  Environmental assessments are often in non-peer-reviewed 

grey literature and difficulty can be encountered accessing such information.  Studies 

were included if they provided an assessment of some aspect of an aquatic environment, 

be it biological, abiotic or both.  Assessment was defined as an estimation of the value, 

magnitude or quality (Oxford Dictionary of English 2005) of the aquatic environment.  

The magnitude of an effect in the aquatic environment has a spatial or temporal 

component, the sizes of which can be defined and their impact on the ecological and 

environmental components can be determined.   

To reflect the most recent work in this field, only assessments published since 2000 

were reviewed.  Studies that were included in the review were assessments of aquatic 

(generally marine) environments in a geographically specified location.  Terrestrial 

environmental assessments were excluded, as were studies that investigated an aquatic 

environment without making either an objective or subjective assessment of its value, 

magnitude or quality.  A total of forty studies were identified as relevant to the review, 

ranging in geographical extent from single estuaries to large, regional seas.  The 

majority of the environmental assessment studies reviewed here were conducted in 

Europe (17) and North America (15), with only four from Australia, two from Far East, 

one from Africa and one from South America.   
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2.3 Motivations for undertaking assessments  

Aquatic environments are assessed for a wide variety of reasons that are generally 

determined by the commissioners or authors of the assessment.  The purpose of an 

assessment will dictate its size, scope, spatial extent and frequency.  In general it was 

found that the aquatic environmental assessments reviewed herein had one of five main 

purposes and these are briefly discussed below.   

The most common assessment relates to the sustainability of fish stocks and the purpose 

is the need to report on stock status, condition of habitats and threatened or declining 

species (ICES 2006a, Diaz-Uribe et al. 2007, DFO 2007a, Environment Australia 2007).  

Such assessments focus principally on species of concern and use historic data to 

analyse stock trends.  Their spatial scope is determined by the geographical extent of the 

stock or the fishery being considered.  These assessments are frequent, often conducted 

annually, and publications usually follow established formats.   

A second purpose encompasses coastal and estuarine condition assessment for 

monitoring water quality impacts on biota.  These are on the scale of individual 

countries, published using nationally recognised methods and standards.  To this end, 

the United States Environment Protection Agency (USEPA) has begun to regularly 

assess their national coastal and estuarine condition (USEPA 2001, USEPA 2004, 

USEPA 2006) building on the pioneering US estuarine condition report by Bricker et al. 

(1999), and the USEPA‟s latest report is due in 2008.  Similarly, Environment Australia 

regularly produces state of the environment reports (e.g. Barratt et al. 2001).   

Increasingly, national governments and conventions are required to report on the 

condition of the whole marine ecosystem in response to human pressures.  These large 

scale assessments are less frequent.  They tend to draw on expertise from many parties, 

using information and data from several sectors, and cover a large spatial extent.  For 

example, the UK‟s Department for the Environment, Food and Rural Affairs (Defra) 

commissioned „Charting Progress‟ (Defra 2005), a national scale assessment to evaluate 

the state of the UK‟s seas, predominantly offshore on the continental shelf.  This broad 

scale assessment included reports on environmental quality and processes, biology, 

habitats and climate.  In an international context, a similar exercise was undertaken by 
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Contracting Parties to OSPAR in 2000, and a revised and updated Quality Status Report 

of the entire OSPAR area is to be published in 2010.  More recently OSPAR members 

assessed eutrophication status in their maritime waters (OSPAR Commission 2003) and 

publication of the results for a second round of these assessments is due in 2008. The 

US Clean Water Act (CWA), formally known as the Federal Water Pollution Control 

Act of 1972, requires states, tribes and territories to monitor their waters and report 

biennially to the USEPA.  It has evolved over the last decade attempting to shift from 

specifically physical, chemical and biological programmes to more holistic watershed-

based strategies (Keller & Cavallaro 2008).  The WFD requires European member 

states to assess ecological status in all their fresh, transitional (i.e. estuaries) and marine 

waters, with reporting cycles every six years.  The newly developed European Marine 

Strategy Framework Directive (MSFD) (CEC 2005) has a similar objective to achieve 

good environmental status in European seas.  It is a thematic strategy which will require 

status analyses of habitats, biology, physico-chemical and hydro-morphological 

characteristics, in marine waters on the seaward side of the baseline from which the 

extent of territorial waters is measured, extending to the outmost reach of the area where 

a Member State has jurisdictional rights.  Member states will also have to include an 

economic and social analysis of use and cost of the marine environment; this review 

found such analyses to be rare. 

A fourth purpose of assessment is the need to predict potential environmental impacts of 

future projects, programmes and policies.  Acceptance of the need for this approach is 

widespread amongst European Union member states (Bond & Wathern 1999).  For 

example, the European Environmental Impact Assessment (EIA) Directive requires an 

analysis of the likely effects of an individual programme on the environment (CEC 

1985).  As part of the more recent Strategic Environmental Assessment (SEA) 

Directive, there is an obligation for member states to carry out a SEA to ensure that 

environmental consequences of certain plans and programmes are identified and 

assessed during their preparation and before their adoption (CEC 2001).  The spatial 

scope of a SEA is determined by the size of the proposed plan or programme and the 

area it is likely to affect.  SEAs are conducted in response to plans such as offshore 

renewable energy generation (BMT Cordah 2003), aggregate extraction (East Channel 

Association 2003) or fossil fuel exploitation (DTI 2002).  SEAs have been more widely 
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adopted and the North Eastern Sea Fisheries Committee (NESFC) is in the process of 

conducting a non-mandatory pilot fisheries SEA for their shellfishery (Mott MacDonald 

2008).  The Habitats Directive requires an appropriate assessment to be made of any 

plan or programme, within a member state‟s territories, likely to have a significant 

effect on the conservation objectives of a site designated as a special area of 

conservation (CEC 1992).  Member states have translated these Directives into national 

laws, or are in the process of doing so.   

Finally, there are one-off assessments that are generally restricted in spatial extent, and 

often commissioned to investigate the impact of a particular activity in an estuary or a 

specific area of coastline.  Widdows et al. (2007) and Bale et al. (2007), for example, 

carried out a detailed assessment of the effects of dredging in the Tamar estuary.  Aubry 

& Elliott (2006) also conducted a single estuary assessment and investigated the use of 

environmental integrative indicators to assess seabed disturbance in the Humber.  Mangi 

& Roberts (2006) investigated the effects of fishing gear on 11 Kenyan coral reefs.  

Diaz-Uribe et al. (2007) evaluated the trophic impacts of small-scale fisheries as a 

whole on the marine ecosystem of La Paz Bay, Mexico. 
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2.4 Analysis and presentation techniques 

Table 2.1: Summary of analysis and presentation techniques used in assessments, with 

examples of three advantages and three disadvantages of each 

Analysis and 

presentation 

technique 

Advantages Disadvantages 

Plain text  Simple to write 

 No technical expertise required of authors 

or readers 

 Easy to produce repeated reports (e.g. 

annual assessments) 

 No visual representation of spatial data 

 Difficult to present complex spatial 

relationships 

 Difficult to cross-reference different 

aspects of an assessment 

Plots of time-

series 
 Presentation of temporal trends 

 Simple for authors to produce and readers 

to interpret 

 Correlations between two datasets can be 

presented 

 Difficult to illustrate complex 

relationships between multiple datasets 

 Relies on long-term datasets 

 Time-consuming to investigate all 

potential statistical relationships 

GIS  Spatial patterns are easily identified 

 Statistically robust integration of multiple 

spatial data layers is possible 

 Spatial data can be presented at multiple 

scales 

 All data need geographical references 

 Requires a degree of expertise in 

compiling, analysing and presenting 

multiple data layers 

 2-dimensional maps are not dynamic 

Traffic-light 

system 
 Provides readers with general overview of 

temporal change 

 Simplified presentation of potentially 

complex quantitative 

 data 

 Easy to track temporal changes 

 Categorisation into colour scheme by 

authors may be subjective 

 Risk of losing fine-scale changes in a 

few broad categories 

 Can be influenced by the number and 

ranges of colour categories chosen 

Computer-

based 

modelling 

 Possible to run multiple scenarios 

 Feedback mechanisms and loops can be 

built in to consider cumulative impacts 

 The user interface may be simplified for 

non expert users 

 Computationally intensive requiring 

technical expertise 

 Data quality can affect final outcomes 

 Difficult to convey degree of 

uncertainty 

The techniques used by authors for analysing and presenting results varied, depending 

on the quantity and complexity of data and the nature of their target audience.  Five 

commonly used techniques found in the assessments reviewed are summarised in Table 

2.1, with examples of advantages and disadvantages of each, and are briefly discussed 

below.   
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Plain text is possibly the simplest choice of technique, with discrete sections for each 

environmental factor or pressure considered.  This approach has been used by 

Environment Australia (2003) and in some SEAs, e.g. BMT Cordah (2003) and East 

Channel Association (2003).  However, it can be difficult for a reader to get an overall 

impression of all the environmental pressures affecting an area at one time and it is not 

intuitive (Table 2.1).  

Plots of time-series data are commonly used, particularly for fish stock assessments.  

For example Allen et al. (2007), DFO (2007a), Diaz-Uribe et al. (2007), Environment 

Australia (2007) and González et al. (2007) all employ this method to present trends in 

fish catches over time.  It is also a useful method for presenting temporal trends in 

environmental data, such as flow rates and suspended sediment (e.g. Bale et al. 2007), 

or NAO index (e.g. Widdows et al. 2007).  This method is not ideal where multiple 

datasets are being analysed to identify potential statistical relationships (Table 2.1).  

Geographical information systems (GIS) can provide important spatial context, for 

example by presenting a series of overlay maps and a final cumulative pressure or 

impact map.  Table 2.1 summarises some of the potential advantages and disadvantages 

of GIS.  Use of GIS is specifically recommended by the Countryside Council for Wales 

(CCW 2002) for cumulative effects assessment.  GIS were used by Cefas (2001), BMT 

Cordah (2003), East Channel Association (2003), Danz et al. (2007), Derous et al. 

(2007) and Eastwood et al. (2007).  One disadvantage of their application is that 

complex interactions can be difficult to display in two dimensions.   

A „traffic light‟ system has been used by authors in a variety of ways.  A traffic light 

management approach is proposed by Caddy (2002) to judge the status of a fishery.  As 

increasing numbers of limit reference points are infringed in the fishery, red lights 

accumulate and the quantity of these dictates the severity of the management response 

in terms of either quota or effort limitation.  This response remains in effect until some 

or all of the limit reference points are no longer infringed, i.e. the red lights turn green 

again.  Choi et al. (2005) also adopt a colour coded traffic light scheme, and the 

thresholds between colours are quantitative, representing anomalies in standard 

deviation units from long-term means.  It is a method for providing the audience with a 

general overview of temporal changes, whilst attempting to maintain quantitative detail. 
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Choi et al. (2005) and Kenny et al. (2006) plot the principal component scores of multi-

variate analyses using colour schemes.  Link et al. (2002) summarise 5-year averages of 

abiotic, biotic, and human metrics to ascertain the qualitative status of ecosystem 

characteristics.  Colour codes correspond to the different quintiles that these metrics 

exhibit with respect to the historical time-series.  The traffic light approach has been 

adapted for the Charting Progress report (Defra 2005) to indicate whether the current 

environmental status is „acceptable‟, „unacceptable‟ or there is „room for improvement‟.  

The judgements expressed in the report are subjective estimates based on available 

evidence and were reached in consultation with experts.  Such colour coding schemes 

are useful for showing trends but interpretation is generally subjective and can be 

influenced heavily by the selection of components and the number and ranges of colour 

categories chosen (Table 2.1).   

Computer based modelling systems are used by some authors.  For example, Chang et 

al. (2008) utilise a dynamic Decision Support System (DSS).  These models have a 

series of subsystems containing loops and feedback mechanisms to consider cumulative 

impacts.  The advantage of such models is that whilst the user interface is 

straightforward with drop-down boxes and default variables, it is possible for users to 

explore the way the model has been constructed and to adjust algorithms and 

interactions built into the system if necessary.  Computer based models can be very 

complex requiring technical expertise by either the developers of the model or the users.  

The advantages and disadvantages of this are summarised in Table 2.1. 
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2.5 Terminology and categorisation 

Building on the WGECO‟s descriptions of the diverse types of assessment in the marine 

environment (ICES 2007), Figure 2.1 proposes six main categories of assessment 

(highlighted boxes) within a flow chart to illustrate how these categories have been 

identified.  Further explanations of the key features of the six assessment types are 

given in Table 2.2, along with definitions of terms.   

 

Figure 2.1: Aquatic environmental assessments, classified by their key features.  The six 

assessment categories are in highlighted boxes 
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Table 2.2: Explanation of the key features of proposed aquatic environmental assessment types 

Assessment 

type 

Key features  

Single 

species 

assessment 

Single component assessment, such as 

fish, of a single species; e.g. cod stock 

assessment 

These two categories include so-called „ecosystem‟ 

assessments that omit the environmental (abiotic) 

components and consider only species and their 

interrelationships.  In some instances abiotic factors 

may be included, but provide only limited background 

information.  Consideration of the influences between 

abiotic and biotic factors is more properly an 

ecosystem assessment (see below) 

 Single component assessment, such as 

fish, of multiple species; e.g. a mixed 

fishery assessment 

Simple 

ecosystem 

assessment 

An ecosystem is the complex of a community of organisms (animals, plants, bacteria) and its 

environment (physical and chemical) functioning as a unit, as defined by UNEP (2007)  

More than one trophic level is included; e.g. phytoplankton, zooplankton, molluscs and fish are 

all considered, along with abiotic factors.  However the linkages between trophic levels or 

biology (biotic) and environmental (abiotic) factors are merely presented, possibly with some 

subjective and limited discussion of links 

Statically 

linked 

ecosystem 

assessment 

The trophic levels and abiotic factors are analysed.  The forcing and interactions between them 

are investigated quantitatively or qualitatively, but such linkages are considered as being „static‟ 

because there is limited or no analysis of feedback mechanisms or cumulative effects.  

Qualitative links must be robust and rigorous, e.g. adhering to national or internationally 

approved assessment methodologies 

Dynamically 

linked 

ecosystem 

assessment 

Dynamic links are likely to be modelled or calculated in algorithms, investigating multi-

directional forcing and feedback mechanisms between the biota, environment and 

anthropogenic factors.  This approach also involves an analysis of cumulative effects.  Data 

usually presented mathematically or in geographical information system (GIS) maps 

Cumulative effects: 

 Additive effects means identifying areas where there are several pressures acting at the same 

time.  The overall pressure is the simple sum of the individual pressures 

 Interactive accumulation effects are the results of multiple activities accumulating non-

linearly; i.e. causing lesser or more commonly greater effects than the sum of their parts 

(Smit & Spaling 1995, Cefas 2001, CCW 2002).  These may be called compounding effects  

Socio-economic factors do not inform the dynamic modelling 

Dynamically 

linked, fully 

integrated 

ecosystem 

assessment 

An integrated assessment is a cohesive and comprehensive set of principles, criteria and 

methods, forming a linked, quantitative system (Leadbitter & Ward 2007).  To be integrated, an 

ecosystem assessment should not only incorporate biotic and abiotic factors, but also socio-

economic factors, with an analysis of how these factors interact (UNEP 2007) – i.e. the same 

type of assessment as dynamically linked ecosystem assessments, but with socio-economic 

factors incorporated  

Socio-economic factors are the social, cultural, economic and political processes in and around 

the aquatic environment.  These may include issues such as food security, livelihood 

opportunities, monetary and non-monetary benefits of resources and their equitable distribution, 

sustainable resource use, or local cultures‟ perceptions and awareness of aquatic resources and 

processes 
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2.5.1 Review of environmental assessments  

In this section the categories of assessment shown in Figure 2.1 and Table 2.2 are 

discussed in more detail, using examples of assessments drawn from the literature to 

illustrate the characteristics of each category.  The purpose, authors, audience, available 

resource (e.g. funding, researchers, time) and potential impacts of an assessment report 

can all influence the choice of assessment methods, the criteria included and excluded 

and the interpretation of results.  No single assessment system is likely to be perfect 

because of inherent uncertainties and complexity and it would be impossible for every 

conceivable parameter to be incorporated in a quantitative and relevantly weighted 

manner.  Hence, choices have to be made to ensure an assessment is fit for its purpose.  

During this review it was found that many authors did not explicitly define the terms of 

their assessment; rather these were implied by the purpose, methods and components of 

the study.  Others were misleading in their type-descriptions.  This made the 

categorising process problematic and so classification of all assessments was based on 

their degree of similarity with one of the types shown in Figure 2.1, rather than relying 

on the definition provided by the authors.   

2.5.1.1 Single or multi-species assessments 

Whilst single or multi-species assessments can involve complicated algorithms, for 

example population or food web dynamics modelling, they were the most simple of 

those reviewed because of the absence of links with abiotic factors.  These types of 

assessment were predominantly for commercial or non-target finfish and shellfish 

species.  Such assessments are often regularly repeated and have the explicit purpose of 

aiding management practice, for example through the provision of advice with regard to 

the status of stock levels (e.g. ICES 2006a, ICES 2006b, Tidd & Warnes 2006, Pawson 

et al. 2007), setting total allowable catches (ICES 2006b, DFO 2007a) or establishing 

stock reference points and conservation limits (Environment Australia 2003, Braccini et 

al. 2006, DFO 2007a).  Reports of current stock status usually involve trend analysis of 

previous years‟ data (e.g. Allen et al. 2007, DFO 2007a Environment Australia 2007) 

and may include predictions of future status, such as that of fish biomass in ICES 

reports (2006a, 2006b).  For data-poor species, qualitative and/or semi-qualitative data 

can still be effectively used and modelled to help make competent management 
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decisions (e.g. Caddy 2002).  Expert knowledge has been used in Bayesian (e.g. Martin 

et al. 2005, Michielsens et al. 2006) and fuzzy logic modelling (e.g. Mackinson 2000, 

Cheung et al. 2005) and in hierarchical risk assessment approaches for data-poor species 

(e.g. Braccini et al. 2006).   

The incorporation of broader ecosystem considerations has not yet become widespread 

in fisheries management (Link et al. 2002), although there have been some recent 

moves towards it.  Whilst the majority of single or multi-species assessments do not 

include abiotic factors, a few examples were found which did.  Mangi & Roberts (2006) 

for example examined the impact of fishing gear on fish and the level of structural (i.e. 

abiotic) damage to coral reefs, without considering other environmental data.   

Two ICES reports (2006a, 2006b) present abiotic data on pollution trends, seabed 

topography, substrates, fishing activity related damage to reefs, circulation patterns, 

nutrients, temperature and salinity.  Whilst these data provide the environmental 

context, the reports are essentially compiled based on a series of individual or multi-

species fish stock assessments.  The ecosystem overview is provided as useful 

contextual information, but not linked to biology.  Other than specific stock data, all 

other parameters were discussed in general, using qualitative terminology.  It could be 

argued that the environmental data presented in these ICES reports classify them as 

simple ecosystem assessments.  However, their predominant focus on providing fish 

stock data precludes other ecosystem components which are needed to be considered as 

an ecosystem study.   

Similarly, Diaz-Uribe et al.‟s (2007) multi-species assessment of small-scale fisheries in 

La Paz, Mexico, compiled highly complex connections, utilising quantitative trophic 

mass balance models to analyse interactions between many biological components of 

the food web and the different effects of fishing gear on stocks.  The study‟s 

classification as a multi-species assessment is justified by the absence of abiotic factors, 

which means however complex the linkages are between trophic levels it cannot be 

classed as an ecosystem assessment. 

The single or multi-species reports reviewed did not include an analysis of the socio-

economic factors, as defined by UNEP (2007), other than referring to the inherent 
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economic incentive for commercial fishing.  However, the „traffic light‟ system for 

fisheries management proposed by Caddy (2002) will allow other indices to be 

incorporated (e.g. net earnings per trip), levels of by-catch of protected species, rising 

prices or rising demand for a product and other socio-economic factors.   

2.5.1.2 Simple ecosystem assessments 

An ecosystem approach to the management of human activities is increasingly 

becoming incorporated into international policy making, and it aims to manage these 

activities with greater consideration of ecosystem health and sustainable use (e.g. 

OSPAR Commission 2003, ICES 2006b, HELCOM 2007).  The term „ecosystem‟ is 

defined in Table 2.2, but some assessments were inappropriately described as such (see 

Section 3.1.1).  An assessment that included only biota was a single or multi-species, 

rather than ecosystem, assessment; i.e. it was pertaining to the study of 

interrelationships between biotic organisms of the food web.   

Of the ecosystem assessments reviewed, the simpler ones presented biotic and abiotic 

data but did not link these together.  For example, Munawar et al. (2003) carried out 

what they termed to be an assessment of ecosystem health of a national marine park in 

Lake Huron.  The authors applied a complex, multi-trophic suite of structural and 

functional techniques to evaluate the food web and measure the ecosystem‟s health 

against pristine reference sites.  Abiotic parameters were judged against advisory board 

guidelines and their presentation in the study sets the ecosystem context.  However, 

there are no qualitative or quantitative analyses of linkages or forcing between abiotic 

parameters and the elements of the food web.  Whilst this is a very thorough, holistic 

assessment of the entire pelagic food web, it is not integrated with the abiotic 

ecosystem.  Furthermore, there is no discussion of socioeconomic pressures.  

Eastwood et al. (2007) quantified the overall „footprint‟ (i.e. spatial extent) of a number 

of direct, physical pressures on the seabed caused by humans.  The footprint constituted 

the additive pressures of oil and gas exploration and production, windfarms, cables, 

aggregate extraction, waste disposal fishing and wrecks.  As such the authors provide an 

environmental rather than an ecosystem assessment.  The impacts of these pressures on 

biology and the environment would be needed for this to become an ecosystem 
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assessment.  Similar to Munawar et al. (2003), there were no linkages between the 

different pressures, rather they were examined separately and their additive effect was 

calculated.  Nor were socio-economic factors included.   

2.5.1.3 Statically linked ecosystem assessments 

There was a divergence amongst the assessments reviewed which separated those that 

included links between their measured biotic and abiotic parameters, and those that did 

not (Table 2.2).  Fish were the only biotic component included in all assessments.  

Other variables considered were plankton, seabirds, benthic fauna, macrophytes and 

marine mammals (e.g. DTI 2002, HELCOM 2007).  Abiotic factors driving biological 

change included water quality elements such as nutrients, oxygen, temperature, water 

clarity and the North Atlantic Oscillation (NAO) (e.g. USEPA 2001, Widdows et al. 

2007).  These abiotic drivers were linked semi-quantitatively or qualitatively to the 

biota, without discussion of how feedback mechanisms may operate.  Hence they were 

classed as static links.   

The majority of statically linked ecosystem assessments were conducted in fulfillment 

of national (e.g. USEPA 2001, USEPA 2004, USEPA 2006, Defra 2005, DFO 2007b, 

DFO 2007c) or international legislation and conventions (e.g. HELCOM 2007) and are 

therefore constrained by the agreed protocols of each.  The SEAs carried out by the DTI 

(2002), East Channel Association (2003) and BMT Cordah (2003) conform to both a 

European directive and UK national law.  The characteristic features of these reports are 

discussed in more detail below.   

Charting Progress (Defra 2005) described and evaluated monitoring data from the UK 

seas.  It is organised into four sector reports which are then drawn together into eight 

regions.  Expert judgement is used to present a „traffic light‟ indication of the current 

status of the components.  The variety of components examined makes this an 

ecosystem assessment, but with no quantitative connections between components and 

no analysis of cumulative effects or feedback mechanisms they are classed as statically 

linked.   
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Canada‟s regional seas reports (DFO 2007b, DFOc) are also ecosystem studies, 

containing biotic and abiotic components.  However, they are not true assessments in 

that no judgements are made to the overall condition of the environments examined.  

Whilst there is some trend analysis of individual components (DFO 2007c), the links 

between components are static, in a similar manner to the Defra (2005) report.  For 

example, the cause for the decline in shallow inventories of nitrate is only speculatively 

linked to changes in productivity, water column structure and influence of volume 

transport of the Labrador Current.  As in the Defra report (2005) there is a lack of 

quantification, or consideration of cumulative effects and feedback systems.   

The three USEPA reports (2001, 2004, 2006) are similar to the UK national reports in 

the nature of the linkages.  A variety of biotic and abiotic ecosystem components 

constitute five primary indices of estuarine or coastal condition: water quality, sediment 

quality, habitat loss, benthic and fish tissue contaminants.  These are assigned a rating 

and thresholds are set on the percentage of a region‟s coast in good, fair or poor 

condition for each index, similar to the „traffic light‟ system used by Defra (2005).  

Overall condition is a weighted average of the regional index scores.  The semi-

quantitative connection between components still does not allow for consideration of 

cumulative effects and feedback mechanisms within the ecosystem.  As such, there is 

more emphasis and information in the reports on the effects rather than the causes of 

water body condition.   

The report for offshore windfarms by BMT Cordah (2003) is a typical example of a 

SEA.  The assessment combines descriptive and quantitative information, converting 

the former into a semi-quantitative risk analysis, using a scoring system calculated from 

the consequence and likelihood of different scenarios, and the latter into a series of GIS 

maps.  The term „integrate‟ is used in the document to refer to the presentation of data 

as a series of GIS overlay maps; the maps were created to assist with the description of 

the existing environment and economic activity and to facilitate identification of areas 

of high and low constraints.  The data are not dynamically linked in terms of the 

investigation and quantification of drivers and feedback mechanisms between the 

measured parameters.  Cumulative impacts, in an additive (as opposed to interactive) 

form, are discussed.  Results are qualitative and often subjective because of gaps in 
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knowledge, and are based on professional judgement, supporting evidence, and expert 

opinion.  Judgements are made of cumulative impact being „significant‟, though what 

this means is not clearly defined.  Rather than statistical significance, it is likely to be 

ecological or environmental, but no thresholds for significant impact have been defined.  

Other SEA reports (DTI 2002, BMT Cordah 2003, East Channel Association 2003) 

were similarly limited in detailed analysis of specific impacts.   

The multi-sectoral approach by HELCOM (2007) in the Baltic Sea was the best 

example found of a national or international assessment which most thoroughly 

examines links between components.  A broad range of parameters were measured 

under a series of thematic assessments (e.g. eutrophication, hazardous substances, 

biodiversity, conservation and maritime activities), against explicit targets and 

ecological objectives.  The report cross-references between themes and objectives.  For 

example failure to reach the objectives for eutrophication will impair the achievement of 

favourable status of biodiversity.  At the same time the management objectives for 

airborne nitrogen emissions from shipping and nutrient inputs from ships‟ untreated 

sewage are also relevant for reaching the objectives with regard to eutrophication.  

However, such cross-referencing still does not fully consider cumulative effects, nor did 

the report take into account feedback mechanisms between components of different 

thematic assessments. 

Assessments that were carried out for non-legislative reasons generally covered a 

smaller geographic area.  Widdows et al. (2007) focussed on the Tamar estuary and did 

not consider socio-economic factors.  Aubry & Elliott (2006) did include socio-

economics in the application of their proposed environmental indicators to the Humber 

estuary, as did Xue et al. (2004) in their case study of Xiamen harbour, China, and 

González et al. (2007) in an analysis of the artisanal longline hake fishery in the San 

Matías Gulf, Patagonia.   

2.5.1.4 Dynamically linked and fully integrated ecosystem assessment.   

Eight of the assessments included dynamic linkages that used models or algorithms to 

investigate multi-directional forcing and feedback mechanisms between the biota, 

environment and anthropogenic factors.  Danz et al. (2007) aimed to create a tool for 
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environmental research and management, modelling the effects of anthropogenic 

stressors on a variety of ecological variables, whilst Derous et al. (2007) deliberately 

excluded anthropogenic effects in order to model the intrinsic biological value 

(expressed as diversity) of marine zones to facilitate provision of a greater-than-usual 

degree of risk aversion in management of activities in such areas.  The aim of the study 

by Kenny et al. (2006) was to understand the relationship between the causes of change 

at different scales so as to set targets for the management of human pressures.  

Consequently, it had a wider scope, modelling the interactions between anthropogenic 

effects, biota and abiotic components.  The cumulative environmental impacts of marine 

aggregate extraction on fisheries and the seabed environment were investigated by 

Cefas (2001).  All of these studies analysed cumulative impacts, either additively (Danz 

et al. 2007, Derous et al. 2007) or interactively (Cefas 2001, Kenny et al. 2006), but 

none incorporated the UNEP (2007) defined socio-economic factors.   

The methods and factors that make an assessment „fully integrated‟ (Table 2.2) 

informed only four of the reviewed assessments, probably because of the difficulty in 

establishing and calculating those indicators and setting thresholds against which to 

measure them.  The ability of even highly integrated ecosystem assessments to indicate 

causality and to predict future scenarios can be highly dependent on the approach 

adopted by the assessors, which can have subsequent implications for management 

practices.  Culp et al. (2000a, 2000b), Link et al. (2002), Choi et al. (2005) and Chang et 

al. (2008) all used multiple parameters, including socio-economics, to model present 

and future states, but their assessments were variable in terms of producing quantitative 

or qualitative conclusions.  Culp et al. (2000a) monitored the anthropogenic, biotic, 

environmental, socio-economic and political components that best indicated the 

environmental state relative to objectives articulated by people living within their study 

area.  In this way, these authors were able to propose cause-effect mechanisms of 

multiple anthropogenic stressors on the ecology.  The components‟ interactive effects 

were modelled and a framework was built allowing feedback and management 

responses (Culp et al. 2000b).  Chang et al. (2008) developed a decision support system 

model, dynamically integrating socio-economic, environmental, biological and 

management sub-systems, to build scenarios and inform management strategies.  Their 



51 

 

model was designed to show a reasonable long-term trend rather than precise 

quantification.   

In contrast to the above, Link et al. (2002) analysed more than 30 biotic, abiotic and 

human metrics, empirically and through statistical models.  The conclusion of those 

authors, that many of the metrics are correlated, but that the strength and 

interdependence of those relationships was unknown, is an important one as it 

emphasises the complexity in conducting a baseline integrated assessment and drawing 

accurate conclusions regarding cause and effect of the component parts.  A solution to 

this would be to develop a means of weighting the indicators, as in the USEPA reports 

(2001, 2004, 2006).  However, caution needs to be exercised in assessing the interactive 

cumulative impacts of multiple pressures as they may accumulate non-linearly (Table 

2.2).  Mechanistic assessment models may be incapable of incorporating this feature.   

The most spatially extensive marine ecosystem assessment was conducted by Choi et al. 

(2005), on the Eastern Scotian Shelf, Canada.  The authors present an integrated 

analysis of temporal changes in anomalies of 55 primary and secondary biotic, abiotic 

and human parameters from their long-term mean.  The parameters were ordered in the 

sequence of the primary gradient from a multi-variate ordination.  Inspection of the 

sorted matrix identified changes over time and parameters were then colour coded to 

indicate the degree and direction of change using a „traffic light‟ system (see Section 

2.4).  The study is multi-sectoral and includes socio-economic parameters, but with a 

strong focus on fisheries.  The authors‟ model is capable of identifying the forces 

contributing to the stability of the alternate state including both top-down processes and 

bottom-up processes.  The improved comprehension of the dynamics and contributing 

factors in the shelf system generated by these authors allows for potential early-warning 

indicators of systemic change to be identified and exposed, thereby better informing the 

decision-making processes aiding effective management to avoid deterioration and to 

work towards improving the ecosystem‟s health.   
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2.6 Discussion 

Assessment of aquatic ecosystems is necessary because of the near ubiquity of human 

pressure on them (Glover & Smith, 2003).  Managers and conservationists need to 

identify the most vulnerable ecosystems in order to prioritise mitigation of the pressures 

to which they are subject.  For these reasons it is important for an assessment to have a 

clearly defined purpose and to use accurate terminology.  This chapter has provided an 

approach to more accurate usage of assessment terminology and a system of 

categorisation, which could in future simplify the way that assessments are defined and 

used.   

The majority of the reviewed assessments did specify their terms of reference, purpose 

and methodology.  In particular, the single and multi-species fish stock assessments 

reported extant condition against historic data and scientifically established reference 

levels and thresholds.  This work was predominantly carried out by government 

sponsored agencies, or international bodies, such as ICES, forming part of long-

established annual reporting cycles to provide stock advice for management purposes.  

However, there was a high degree of variability in the interpretation of some 

terminology, with the term „integrated‟, as defined in Table 2.2 (Leadbitter & Ward 

2007, UNEP 2007), being the most misrepresented.   

Leadbitter & Ward (2007) identified the following features for effective assessment 

systems: comprehensiveness (including stock condition, environmental impacts, and 

socio-economics), transparency and accountability, and the nature and quality of data 

and information.  However, there are numerous difficulties in creating an assessment 

system that adequately achieves all these.  Whilst there are scientifically accepted and 

robust, quantitative methods of stock assessments (e.g. Environment Australia 2003, 

Braccini et al. 2006, DFO 2007a), references to the inclusion and measurement of other 

factors which will make an assessment comprehensive are more elusive.  Some 

assessments did not have quantitative thresholds, with Danz et al. (2007) and Derous et 

al. (2007) employing relative values.  To quantitatively determine how environmental 

resources will respond to additional impacts requires knowledge of the „carrying 

capacity of the environment‟ (Cefas, 2001).  The carrying capacity can be defined in 

environmental terms as the maximum number of organisms that can be supported in a 
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given area (Cohen 1997), or in socio-economic terms as ecosystem goods and services 

(Elliott et al. 2007).  However, determining at what point an activity such as aggregate 

extraction might reach a critical intensity beyond which, for example, a fish population 

may be reduced to sub-commercial levels, is difficult to establish.  This is because there 

is often no basis for presuming a simple additive relationship for example between 

dredging activity and the size of stock (Cefas, 2001).  Objective conclusions cannot 

easily be drawn from these studies, limiting their usefulness in the development of 

management strategies in the short term.  The value of such studies, however, is they 

help establish baseline data from which spatio-temporal change can be monitored and 

cumulative impacts can be quantified in the future.   

In other studies environmental impacts were measured and judged against standards 

established under the auspices of national or international policies and directives (e.g. 

OSPAR, WFD), a process having the advantage of transparency and objectivity.  The 

greater difficulty comes in gathering the necessary data for accurately using such 

external standards.  Openness in initially establishing the system to be used, and 

openness of the results to peer-review scrutiny will go a long way to reaching the goal 

of a thorough, scientific ecosystem assessment.  It is noteworthy that much material for 

this review is from non-peer-reviewed grey literature and it is not always clear whether 

there has been a process of openness to public or peer scrutiny in the assessment.  The 

public and stakeholder involvement in some of the assessments reviewed (e.g. DTI 

2002, BMT Cordah 2003) is a positive move towards transparency and accountability.   

Link et al. (2002) conclude that a suite of metrics is required to assess a marine 

ecosystem and limiting an assessment to just a few components may be misleading.  

The number of components used in the assessments reviewed varied between one, such 

as single fish stock assessments (e.g. Environment Australia 2003, DFO 2007a), and 

>100 (Danz et al. 2007).  Points of reference and reference direction can be identified 

but it may be difficult to inform managers of the magnitude of required changes.  

Furthermore, greater complexity is not necessarily better because it can become more 

difficult to unpack the information provided in multi-parameter integrated assessments, 

so as to identify discrete problems and failings which need tackling through improved 

management.  This adds to the difficulty of compiling an all-encompassing assessment 
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and helps explain their relative scarcity.  The series of papers written or edited by Culp 

et al. (2000b) is probably the most comprehensive integrated ecosystem assessment 

reviewed, whilst remaining amenable to identification of specific problems, around 

which management strategies can be designed.   

As degradation of the aquatic environment is escalating on a global scale (UNEP 1982, 

Choi et al. 2005, Norkko et al. 2006, Halpern et al. 2008), there is a continuing need to 

develop improved and cost-effective ways to study and monitor these ecosystems, and 

assess the ecological significance of change (Norkko et al. 2006).  Required methods 

include, inter alia, population and community studies, population and ecosystem 

modelling and biochemical techniques (GESAMP 1995).  In this context the 

establishment of terms of reference, accurate terminology, clarity in the presentation of 

results and a focus on informing the development of management strategies for 

assessments, are imperative.  At present these imperatives are not being met for many 

assessments undertaken, limiting the utility of their findings.   
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CHAPTER 3 

Recovery rates of UK seabed habitats after cessation of aggregate 

extraction 

Foden J, Rogers SI, Jones AP (2009) Recovery rates of UK seabed habitats after 

cessation of aggregate extraction. Mar Ecol Prog Ser 390:15–26 (see Declaration, page 

2) 

Abstract 

Marine aggregate extraction and benthic fishing are the two largest causes of physical 

disturbance to the UK seabed.  Aggregate dredging is a damaging but highly spatially 

heterogeneous pressure, with a footprint <1 % of bottom fishing (2001–2007).  To 

understand the impacts of aggregate extraction, international literature was reviewed for 

recovery rates of the seabed following cessation of dredging, in a range of habitats, 

hydrodynamic conditions and dredge intensities.  Physical recovery (TPhys) and 

biological recovery (TBio) were determined as the mean time-period for recovery to pre-

dredge or reference site conditions.  Recovery times were then estimated for marine 

landscapes targeted by the aggregate industry in UK waters – maintenance dredging 

data were not included.   

Aggregate extraction affects less than one percent of most landscapes and six percent of 

estuarine area.  Ninety-six percent of extraction occurred in sand or coarse sediment.  

Fifty percent targeted coarse sediment plains-moderate tidal stress, which had the 

longest period of TPhys (20 years) and the second longest TBio (8.7 years).  Shallow 

coarse sediments-weak tidal stress had the longest mean TBio, 10.75 years, but 21 % of 

the habitat supported high intensity dredging.  The most intense dredging (>90 hours) 

was in estuaries, which have the shortest recovery times – TPhys 0.17 and TBio 5.25 years.  

At present licensed areas do not appear to be located to avoid the most sensitive marine 

landscapes, nor to target the least sensitive.  Linking information on habitat recovery 

potential to marine landscapes and aggregate activity provides a practical tool for use in 

marine spatial management. 
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3.1 Introduction 

As demands on marine resources increase there is a growing need monitor and assess 

the condition of the marine environment.  Understanding and quantifying pressures and 

impacts from major human activities is necessary to underpin effective environmental 

impact assessment and marine planning, and to provide the basis for integrated marine 

management (OSPAR Commission 2003, Eastwood et al. 2007, Borja et al. 2008, 

Foden et al. 2008, Halpern et al. 2008).  Indeed, current political commitments require 

countries to consider an ecosystem approach to marine planning and management; e.g. 

the World Summit on Sustainable Development (UN 2002), Fisheries Management 

(FAO 2003), creation and maintenance of networks of marine protected areas (MPAs) 

under the UN Regional Seas Programme (UNEP-WCMC 2008), European Directives 

(EU 2000, EU 2005) and the UK Marine Bill (Defra 2007).  While some descriptions of 

the spatial extent of pressures are available (e.g. Eastwood et al. 2007), the lack of 

spatially resolved information on ecosystem attributes and their response to pressure 

makes it difficult to quantify impacts.  It is also necessary to account for additive and 

synergistic interactions between pressures, and other complex forms of cumulative 

impacts (Smit & Spaling 1995, Cefas 2001, Oakwood 2002, DTLR 2002, Foden et al. 

2008).   

Of the direct physical pressures causing disturbance to the seabed, bottom-trawling for 

fish is amongst the most widespread.  More than 50 % of many shelf habitats are 

trawled annually (Hall 2002, Watling & Norse 2008) and in the UK up to 55,500 km
2 

(21.4 %) of the seabed is affected annually (Eastwood et al. 2007, Stelzenmüller et al. 

2008).  Aggregate dredging for mineral resources in the UK is the second most 

widespread pressure, with approximately 135–223 km
2
 of seabed dredged annually, 

1998–2007 (BMAPA 2008).  Although demersal fishing is a much more widespread 

pressure than aggregate extraction, there are some general similarities in their impacts 

on the physical environment and the ecology of the seabed (Hall 1994, Kaiser et al. 

2006, Diesing 2007, Halpern et al. 2008).  These impacts can be quantified by 

measuring the physical and biological recovery time of each habitat that is affected 
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following a pressure of defined magnitude and duration (Hiddink et al. 2007).  The 

period needed for physical recovery of the seabed depends on hydrodynamics, sediment 

particle size and the intensity of the activity.  The length of time that furrows, 

depressions or mounds remain as distinctive features depends on the ability of tidal 

currents or wave action to erode crests or transport sediments into them (Newell et al. 

1998).  Except in areas of mobile sands, this process is slow and even the strongest 

currents are unable to transport gravel from adjacent areas (Millner et al. 1977, Newell 

et al. 1998, Desprez 2000).  Such alterations to the seabed, especially changes in 

sediment characteristics, potentially affect the biological recovery of impacted sites (de 

Groot 1986).   

The more resilient communities of naturally dynamic environments are less sensitive to 

stress than those of more benign, less variable environments such as deep water, coarse 

sand and gravel (Bax & Williams 2001, Bolam & Rees 2003, Hiddink et al. 2007).  In 

general they show more rapid recovery, though exceptions have been noted (e.g. Kenny 

et al. 1998).  Some sites subjected to direct and intense physical pressures, where 

community structure is permanently altered by changes in the physical environment, 

may never recover (McCauley et al. 1977, van der Veer et al. 1985).   Although the 

resulting community may return to its pre-impact abundance levels, it may never regain 

its structure and internal integrity (McCauley et al. 1977).  In addition, the seabed is a 

dynamic environment, with naturally changing faunal assemblages (Matthews et al. 

1996).  If the fauna available to re-colonise a disturbed area of seabed have undergone 

natural change a pre-impact community structure may be replaced by a sustaining 

ecological succession.  That is, at an abandoned site a new suite of species becomes 

consistently abundant over time, either through breeding or repeated settlement from 

pelagic larvae (Ellis 2003).   

Marine aggregate extraction is a spatially heterogeneous activity that affects both the 

physical environment and the ecology of the seafloor, and the degree of impact is a 

function of the environment that is dredged and the intensity and longevity of extraction 

effort.  The UK is one of the largest producers of marine aggregate in the world, and 

23.1 million tonnes of sand and gravel were extracted from 134.7 km
2
 of English and 

Welsh seabed in 2007 (BMAPA 2008). The main method of dredging in UK waters is 
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trailer dredging of evenly distributed deposits (BMAPA 2006), producing shallow linear 

furrows approximately 1–3 m wide and 0.2–0.3 m deep per pass (Kenny & Rees 1994).  

A limited amount of static anchor dredging also occurs, where thick localised reserves 

are exploited to leave saucer-shaped depressions, typically up to 8–10 m deep, but that 

may reach up to 20 m in depth (Dickson & Lee 1972, Newell et al. 1998, Boyd et al. 

2004).   

This chapter describes the temporal and spatial variation in aggregate extraction 

pressure and impact in UK marine waters since 2001.  To quantify recovery periods, a 

review was undertaken of published literature on physical and biological impacts and 

rehabilitation following cessation of dredging.  Results of the review were then used to 

estimate recovery times for the types of marine landscape targeted by the aggregate 

industry in UK waters.  A brief comparison is made with impacts on the seabed caused 

by fishing with demersal gear.   
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3.2 Method 

3.2.1 Literature review of marine aggregate extraction impacts 

A review was conducted of scientific literature which measured recovery time following 

cessation of dredging.  Studies were identified using computer database search engines 

of peer-reviewed literature, such as Scopus and ASFA, and general Internet search 

engines.  Search terms included: marine, aggregate, extraction, dredging, intensity, 

benthos, seabed, physical, environmental, biological, habitat, recovery, rehabilitation 

and colonisation.  The reference lists of identified publications were also reviewed for 

additional studies.  Peer-reviewed academic papers and grey literature (e.g. case studies 

and government, government agency or industry published reports) were examined.  

Each reference was given one of six „quality of evidence‟ categories, based on Pullin & 

Knight (2003).  These represent a decline in quality of evidence, based on the type of 

research undertaken: Category I, randomised controlled study; II-1, controlled study 

without randomisation; II-2, comparison of differences between sites with and without 

controls; II-3, multiple time series evidence; III, qualitative field evidence, descriptive 

studies or expert opinion; IV, inadequate evidence.   

Physical recovery from aggregate dredging, TPhys, was considered complete when 

previously extant dredge tracks and scours were no longer detectable by imaging 

techniques and where sediment composition was similar to either pre-dredge conditions 

or local reference sites (Boyd et al. 2004).  Biological recovery, TBio, was defined as the 

establishment of a community that was virtually indistinguishable from surrounding, 

non-impacted reference sites, determined using both uni- and multi-variate analysis 

techniques (Cooper et al. 2005).  Where numeric data were available to describe species 

number, abundance, and/or biomass in pre-dredge and post-dredge conditions, a return 

to 90 % of the values was considered to indicate recovery (Hiddink et al. 2006).  The 

periods of time needed for TPhys and TBio to take place after cessation of dredging were 

identified for each extraction site. 

To categorise dredge sites into marine landscape types (Connor et al. 2006) (Table 3.1), 

data on sediment grain size, depth, hydrodynamic regime and dredge intensity were 

quantified and standardised.  Descriptive sediment types were converted into grain size 
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diameters (mm) using the Wentworth (1922) scale, and dredge intensity values were 

standardised to a rate of extraction, expressed as tonnes (t) km
-2

 yr
-1

.  HELCOM‟s 

recommended conversion factors were used for converting m
3
 to t (Schneider 1996).  

Authors of the reviewed literature recorded hydrodynamic regimes in differing ways; 

for example as near-bottom current shear-stress in Newtons m
-2

 (N m
-2

), as depth-

integrated current velocity, or velocity 1 m above the bed (m s
-1

).  To standardise these 

data, current velocities were converted to N m
-2

 at 1 m above the seabed.  Where 

authors provided depth-integrated velocity, the velocity at 1 m above the bottom was 

calculated using Soulsby (1997 p 52) and converted to tidal stress N m
-2

 for different 

bottom sediment types (Soulsby 1997 p 55).  These standardised near-bed stress values 

were then grouped into three categories; weak tidal stress = 0–1.8 N m
-2

; moderate = 

1.8–4.0 N m
-2

; and strong >4.0 N m
-2

 (Connor et al. 2006).   

Where a range of years was given by the authors for recovery period of a habitat, TPhys 

and TBio, the upper limit was used as a precautionary approach.  Where recovery was 

reported in the literature as „decades‟, a value of 20 years was chosen, which is 

supported by unpublished biological recovery data (Sánchez-Moyano in Guerra-García 

et al. 2003). 
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Table 3.1: Marine landscape types in UK waters, targeted by the aggregates sector. Wave base is 50–70 m.  Tide stress; weak = 0–1.8 N m
-2

, moderate 

= 1.8–4.0 N m
-2

, and strong >4.0 N m
-2

.  UKCS = UK continental shelf (from Connor et al. 2006) 

Marine landscape type  Abbrev. Substratum  Depth range (m)  

Tide 

stress 

(currents) 

Slope and additional 

descriptors  

Area 

(km
2
)  

Proportion 

of total 

UKCS (%) 

Estuary ES 
Mainly soft sediment, 

limited rock 
0–30m  

Variable– 

moderate 

Strong salinity gradient 

from riverine 
2,881 0.3 

Shallow coarse sediment 

plain-weak tidal stress 
SCSW Coarse sediment Coastline to wave base Weak Negligible slope (<2 %) 33,694 3.9 

Shallow coarse sediment 

plain-moderate tidal stress 
SCSM Coarse sediment Coastline to wave base Moderate Negligible slope (<2 %) 16,745 1.9 

Shallow coarse sediment 

plain-strong tidal stress 
SCSS Coarse sediment Coastline to wave base Strong Negligible slope (<2 %) 7,869 0.9 

Shallow mixed sediment 

plain-moderate tide stress 
SMSM Mixed sediment Coastline to wave base Moderate Negligible slope (<2 %) 2,021 0.2 

Shallow sand plain SS Sand and muddy sand Coastline to wave base Variable Negligible slope (<2 %) 48,218 5.5 

Shelf coarse sediment 

plain-moderate stress 
SHCM Coarse sediment Wave base to 200 m Moderate Negligible slope (<2 %) 17,433 2.0 

Shelf coarse sediment 

plain-strong tide stress 
SHCS Coarse sediment Wave base to 200 m Strong Negligible slope (<2 %) 2,840 0.3 

Shelf mixed sediment 

plain-moderate tide stress 
SHMM Mixed sediment Wave base to 200 m Moderate Negligible slope (<2 %) 2,260 0.3 

Shelf sand plain SHSP Sand and muddy sand Wave base to 200 m Variable Negligible slope (<2 %) 215,215 24.7 
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3.2.2 Study area and data 

Electronic Monitoring Systems (EMS) have been fitted to all aggregate dredgers 

operating in UK (England and Wales) waters since 1993 to automatically record 

position and „dredging status‟ every 30 seconds.  It would have been desirable to also 

analyse data on maintenance dredging of shipping lanes and estuaries.  However, the 

maintenance process involves the removal of recent unconsolidated sediments, as 

opposed to the mineral deposits targeted by the aggregate sector.  Furthermore, 

maintenance dredging data were not available for inclusion.  Annual EMS data (hours 

dredged per year) from the UK Crown Estate were provided in 50 x 50 m (2500 m
2
) 

cells.  EMS data were clipped to the relevant licence boundary for each year using the 

ArcGIS Geographical Information System (ESRI Inc), to remove out-of-area dredge 

events and incorrectly transmitted EMS codes.  The annual spatial records of all areas 

dredged were then combined and a cumulative dredging footprint was created in the 

GIS for the period 2001–2007, inclusive. 

3.2.3 Spatial and temporal pressure of UK marine aggregate extraction 

The locations of aggregate dredging activity were spatially joined to UK marine 

landscapes characterised by a combination of sediment type, depth and tidal stress 

(Connor et al. 2006).  The categories listed in Table 3.1 are those in which aggregate 

dredging occurs in the UK.  Each landscape‟s extent and the proportion of the UK 

continental shelf it constitutes are also given.  Using the results of the literature 

review, physical and biological recovery rates, TPhys and TBio, were estimated for those 

UK marine landscapes affected by aggregate extraction. 

The intensity of dredge effort in the UK is measured as hours dredged annually (h yr
-

1
).  Only a very general approximation can be made of quantities dredged because 

production rates of the ~30 vessels operating in UK waters vary depending upon the 

pump size, power and age, and vessel capacity (currently 880–8800 t).  This is further 

complicated by environmental variables such as water depth and the seabed sediment 

composition which also affect efficiency, so that a vessel‟s extraction rate can vary 

each trip.  High intensity dredging is defined by the aggregate extraction industry as 

>1.25 h yr
-1

 (BMAPA 2008) and low intensity dredging is <1 h yr
-1

 (Boyd et al. 2004, 
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Cooper et al. 2005, 2007a).  Larger dredgers are able to remove up to 5,000 t in three 

hours (BMAPA 2006), which would equate to >2,100 t at high intensity dredging, or 

<1,700 t at low.  However, this would be a gross over-estimate for smaller vessels. 

As details of individual sea-trips for every vessel were not available, the number of 

hours dredged was used as a proxy for intensity.  Intensity of dredge effort was 

available only as categorical data, so the mid-point of each category was used (Table 

3.2).  For each cell the dredge duration mid-points for all seven years were summed to 

estimate cumulative dredging time.   

Table 3.2: Annual dredge duration time ranges and calculated mid-points used to 

describe dredge intensity 

Time range 

(decimal hour) 

Mid-point 

(decimal 

hour) 

0.01–0.24 0.12 

0.25–0.49 0.37 

0.50–0.99 0.75 

1.0–1.49 1.25 

1.5–2.49 2.00 

2.5–4.99 3.75 

5.0–7.49 6.25 

7.5–9.99 8.75 

10.0–12.49 11.25 

12.5–14.99 13.75 

15.0–17.49 16.25 

17.5–19.99 18.75 

20.0–29.99 25.00 

30.0–40.00 35.00 

40.0–50.00 45.50 
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Table 3.3: Summary of (a) physical recovery (TPhys), and (b) biological recovery (TBio) rates for different habitat types, following cessation of dredging.  

Descriptions of ‘Hydrodynamics’; weak = 0–1.8 N m
-2

, moderate = 1.8–4.0 N m
-2

, and strong >4.0 N m
-2

. * = estimated value, n/a = data not available.  

Quality of evidence categories based on Pullin & Knight (2003); categories I–IV represent declining strength of evidence. 

(a) Physical recovery following cessation of dredging 

Habitat type 
Hydrodynamics  

(tidal stress) 
Depth (m) 

Marine 

landscape 
Intensity; rate 

dredging (t km
-2 

yr
-1

) 

Area 

(km
2
) 

TPhys 

(years) 
Examples 

References (& quality of 

evidence category)  

Fine sand Strong tidal current 

estuaries 

Shallow 

subtidal 

<10 

ES 617,500  mean rate  ~ 1*  1–3 Waddenzee – subtidal channels, 

NL.  Fastest TPhys in fastest 

current flows.   

van der Veer et al. 1985 (II-2). 

Low tidal current 

estuaries 

Just below 

LW 

ES 1,045,000 mean rate  ~ 1* 1 Waddenzee – Oosterbierum 

tidal watershed, NL. 

van der Veer et al. 1985 (II-2). 

Non-tidal, energetic 

wave dominated  

10–12 SS 552,900   

 

1.1 7–8 Wustrow, Baltic Sea – „high 

intensity‟.   

Diesing et al. 2006 (II-2). 

Diesing 2007 (II-3). 

Non-tidal, weak wave 

environment 

19–21 SS 329,300   

 

0.6 Decades Tromper Wiek Ost, Baltic Sea.   Diesing et al. 2006 (II-2). 

Very weak seasonal 

erosion 

40–42 SS 1,520,000 1.0 >2.5 Northern Adriatic. Simonini et al. 2005 (II-1). 

Simonini et al. 2007 (II-1). 

Fine to 

medium sand 

Seasonally strong tide 

& wind driven current 

20–23 SS 2,850   

 

1.4 >4 Terschelling, NL.   van Dalfsen et al. 2000 (II-2). 

Energetic wave 

dominated, non-tidal  

8–10 SS 178,125  1.6 ~ 0.5 Graal-Mürtiz I, Baltic Sea. Diesing et al. 2006 (II-2). 

Medium sand Strong 4 – to top 

of bank 

SS 23,000   

 

151.8 0.5 Kwintebank Zone 2 (2001 max 

intensity year).   

Vanaverbeke et al. 2000 (II-2). 

Degrendele et al. 2007 (II-3). 

Sand Strong and moderate–

strong 

<20 SS & ES n/a n/a ≤ 1 Bristol Channel, UK. Newell et al. 1998 (III). 

1
Morphological recovery rate from dredging furrows only.  There are considerable changes in sediment characteristics, but a causal relationship with sand extraction is unproven for 

the whole area (Vanaverbeke et al. 2007) 
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Table 3.3 continued 

Habitat type 
Hydrodynamics  

(tidal stress) 
Depth (m) 

Marine 

landscape 
Intensity; rate 

dredging (t km
-2 

yr
-1

) 

Area 

(km
2
) 

TPhys 

(years) 
Examples 

References (& quality of 

evidence category)  

Medium to 

coarse sand 

Wave dominated delta 

front with seasonally 

strong winter storms 

15 SS ~ 570,000*  
  
 1.5 1–1.5 Tordera river, Catalan, western 

Mediterranean.  Dredge depth 

20 cm*. 

Sardá et al. 2000 (II-2). 

Very coarse 

sand 

Weak–moderate 27–35 SCSW 733,300    0.3 Decades Thames Area 222, UK, 

southern North Sea.   

Boyd et al. 2004 (I). Cooper et 

al. 2007a (I). 

Sand and 

sandy gravel 

Weak 20–25 SCSW Up to 365,000  
 
 2.6 >5 Coal Pit, Area 408, UK. Coastline Surveys Europe 2002 

(I). Cooper et al. 2005 (I). 

Robinson et al. 2005 (II-1).   

Coarse 

sandy-gravel 

Non-tidal, energetic or 

mixed-energy wave 

dominated  

9–13 SCSW 91,500     0.4 5–10 Tromper Wiek I, Baltic. Diesing et al. 2006 (II-2). 

Moderate 15–21 SCSM 960,000   1.35 

(in 

1996) 

Decades  Hastings Shingle Bank Area X, 

UK. 

Boyd et al. 2004 (I). Cooper et 

al. 2007a, (I). 

16–25 SCSM 400,000   3.1 Decades Hastings Shingle Bank Area Y, 

UK. 

Boyd et al. 2004 (I). Cooper et 

al. 2007a (I). 

Gravel  Moderate–strong 12–46 SCSS 75,000   107.0 ~ 4 Cross Sands, East Anglia, UK – 

conglomerate of several dredge 

sites. 

Kenny & Rees 1994 (I), 1996 (I). 

Kenny et al. 1998 (I). Cooper et 

al. 2007b (II-1), 2008a (II-3). 

Mixed – mud 

to gravel 

Moderate 20–30 SMSM n/a n/a >4 Suffolk coast, UK. Millner et al. 1977 (I). 

Moderate–weak 28–34 SMSM 80,000  6.1 Decades Southwold, Area 430, UK.   Andrews Survey 2004 (I).  

Newell et al. 2004b (I). MES 

2007 (I). 
2
Changed sediment type has slowed recovery (Newell et al. 2004) 
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Table 3.3 continued 

(b) Biological recovery following cessation of dredging  

Habitat 

type 

Hydrodynamics (tidal 

stress) 
Depth (m) 

Marine 

landscape  
Intensity; rate 

dredging (t km
-2 

yr
-1

) 

Area 

(km
2
) 

TBio 

(years) 
Example  References 

Fine sand Strong tidal current 

estuaries 

<20 SS & ES n/a n/a 0.5–0.75 Bristol Channel, UK. Newell et al. 1998 (III). 

Shallow 

subtidal <10 

ES 617,500 – mean rate  ~ 1*  >1– >3  Waddenzee – subtidal 

channels, NL.  Fastest recovery 

in fastest current flows. 

van der Veer et al. 1985 (II-2). 

Newell et al. Table 6, 1998 (II-2). 

Low tidal current estuaries Just below 

LW 

ES 1,045,000 – mean rate  ~ 1*  5–10  Waddenzee – Oosterbierum 

tidal watershed, NL. 

van der Veer et al. 1985 (II-2). 

Newell et al. Table 6, 1998 (II-2). 

Non-tidal, energetic wave 

dominated 

10–12 SS 552,900  1.1 >1  Wustrow, Baltic Sea. Krause et al. 2010 (I). 

Non-tidal, weak wave 

environment – with 

infrequent seasonal storms 

16–20 SS 3,230  1.5 5–10  Costa Daurada, Mediteranean. van Dalfsen et al. 2000 (II-2). 

Very weak seasonal erosion 40–42 SS 1,520,000  1.0 >2.5 Northern Adriatic. Simonini et al. 2005 (II-1). 

Simonini et al. 2007 (II-1). 

Fine to 

medium 

sand 

Seasonally strong tide & 

wind driven current 

20–23 SS 2850  1.4 4  Terschelling, NL. van Dalfsen et al. 2000 (II-2). 

Medium to 

coarse sand 

Wave dominated delta front 

with seasonally strong 

winter storms 

15 SS ~ 570,000* 1.5 11–14 

(for full 

bivalve 

growth) 

Tordera river delta, Catalan, 

western Mediterranean. 

Dredge depth 20 cm*. 

Sardá et al. 2000 (II-2). 

Seasonally strong tide & 

wind driven current 

16–18 SS 950  0.5 4  Torsminde, Denmark. van Dalfsen et al. 2000 (II-1). 
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Table 3.3 continued 

Habitat type 
Hydrodynamics (tidal 

stress) 
Depth (m) 

Marine 

landscape  
Intensity; rate 

dredging (t km
-2 

yr
-1

) 

Area 

(km
2
) 

TBio 

(years) 
Example  References 

Very coarse 

sand 

Weak–moderate 27–35 SCSW 733,300  0.3 Decades Thames Area 222, UK, 

southern North Sea.  High 

intensity extraction. 

Boyd et al. 2004 (I). Cooper pers. 

com. (III). 

Sand and sandy 

gravel 

Weak 20–25 SCSW Up to 360,000  2.6 >10 Coal Pit, Area 408, UK. Coastline Surveys Europe 2002 (I). 

Cooper et al. 2005 (I). Robinson et 

al. 2005 (II-1). Cooper pers. com. 

(III). 

Coarse sandy-

gravel 

Moderate 15–21 SCSM 960,000  1.35 

(in 

1996) 

>7 Hastings Shingle Bank Area 

X, UK. 

Boyd et al. 2003 (II-1), 2004 (I), 

2005 (I). Cooper et al. 2005 (I), 

2007a (I), pers. com. (III). 

16–25 SCSM 400,000  3.1 8–9  Hastings Shingle Bank Area 

Y, UK. 

Boyd et al. 2004 (I). Cooper et al. 

2005 (I), 2007a (I). 

Moderate–weak 27–35 SCSM 33,000  0.3 7 Thames Area 222, UK, 

southern North Sea.  Low 

intensity extraction. 

Limpenny et al. 2002 (II-1). Boyd 

et al. 2003 (II-1), 2004 (I), 2005 

(I). Cooper et al. 2005 (I), pers. 

com. (III). 

Weak 18–20 SCSW 65,000  7.1 4  Off Humber estuary, Area 

106, UK.  

Andrews Survey 2004 (I). Newell 

et al. 2004b (I). 

Gravel Strong  15 SCSS 67,000  1.5 ~ 3  Dieppe, English Channel.   Desprez 2000 (II-1). 

Weak 30–40 SCSW n/a n/a >2 Klaverbank, Dutch North 

Sea. 

van Moorsel & Waardenburg 1991 

(II-1). van Moorsel 1993 (II-1), 

1994 (II-1). 

Mixed – mud to 

cobbles & 

stones 

Moderate 10 SMSM 150,000  1.0 3 East of Isle of Wight, Area 

122, UK.   

Newell et al. 2004a (I). Boyd & 

Rees 2003 (II-1). 

20–30 SMSM n/a n/a >4 Suffolk coast, UK. Millner et al. 1977 (II-1). 
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3.3 Results 

3.3.1 Literature review of marine aggregate extraction impacts 

The literature review found that researchers used a range of indices for assessing 

recovery of the macrofaunal community.  Typical indices were biomass, species 

richness and species composition.  Despite this, there was broad agreement between 

them with calculated recovery times differing only by one or two years for 

comparable habitats (Cooper et al. 2008b). 

The aggregate dredge sites reviewed are summarised in Table 3.3.  Dredging activity 

was focussed on soft sediments of fine sand to gravel and was undertaken in widely 

differing tidal stress regimes, from very strongly tidal estuaries (e.g. Bristol Channel) 

to weak non-tidal environments (e.g. Tromper Ost).  Dredge intensity ranged across 

three orders of magnitude; 10
3
–10

6
 t km

-2
 yr

-1
.  TPhys ranged from 0.5 years at 

Kwintebank and Graal-Mürtiz, to decades at Tromper Ost and Hastings.  TBio varied 

from 0.75 years in the Bristol Channel to decades in high intensity dredged sections of 

Thames Area 222.   

Mean (M) TPhys and TBio recovery rates and standard error of the mean (σM) were 

calculated for marine landscapes using the results of the literature review (Figure 3.1).  

Aggregate dredge sites size varied from 0.3–152 km
2
.  Recovery time is considered 

proportional to the spatial scale of a dredge site, as colonisation is more rapid at 

smaller than larger sites.  This is evident in sites 0.1 m
2
–0.1 km

2
 but not in larger sites 

(Guerra-García et al. 2003), i.e. not at the scale of sites in Table 3.3.  All sites 

reviewed were in water depths <50 m and were in six landscape types; sand plain, 

estuary, or shallow coarse and mixed sediments in strong, moderate and weak tidal 

stress.  Different landscape-specific recovery rates at high and low levels of dredge 

intensity were not calculable, as there were too few data at the landscape scale.  

However, the standard error bars offer an indication of the range in recovery rates in 

each marine landscape.  The error bars overlap for some landscape types, as mean 

values were calculated from few studies.  Coarse sediments in moderate (SCSM) and 

weak tidal stress (SCSW) landscapes showed the longest period for TPhys and TBio, 

respectively.  The shortest period for TPhys was 1.7 years in estuaries.  Biological 
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recovery was most rapid (4.5–5.5 years) in shallow coarse and mixed sediments of 

moderate or strong tidal stress, in sand plains and estuary landscapes.  The mean 

values are considered reasonable estimates of recovery rate in UK sites. 

Figure 3.1: Predicted recovery times of marine landscapes from dredging based on 

the literature review.  TPhys = dark grey, and TBio = light grey, and N for each bar 

shown in brackets (TPhys, and TBio), with standard error (σM) bars.  Marine landscape 

codes as given in Table 3.1.   

3.3.2 Footprint of UK marine aggregate extraction 

The total footprint of UK dredge activity since 2001 was 321.7 km
2
, confirming 

summary statistics reported by BMAPA (2008).  The area of discrete dredge sites 

ranged between 0.0025 km
2
 (i.e. isolated 50 x 50 m cells) to 21 km

2
, the latter 

measured as the sum of contiguous cells at a site off the Suffolk coast.  The isolated 

cells are likely to be indicative of vessels surveying, or ballasting (Royal Haskoning, 

pers. comm.) and are not discussed further herein.  There were 63 main dredge sites in 

licensed areas ranging from 0.05–21.36 km
2 
in area, 86 % of which were >1 km

2
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3.3.3 Spatial and temporal pressure of UK marine aggregate extraction 

When spatially joined to the UKSeaMap marine landscapes (Table 3.1), 22 % of the 

EMS records were within four of the „shelf‟ categories (>50 m deep), adjoining the 

boundaries of the „shallow‟ categories.  Typically dredgers work in depths 10–40 m 

(BMAPA 2006).  Twenty seven of the 29 dredgers in UK waters have a maximum 

operating depth of <45 m and two of 50 m or less.  Consequently the categorisation of 

some dredge sites as shelf was considered to be an artefact of the more coarse 

resolution of the UKSeaMap data.   These dredge sites were grouped with the adjacent 

shallow landscapes of the same sediment size and tidal regime.  For example dredging 

activity in shelf sand plain was combined with the shallow sand plain data (Figure 

3.2).   

Six main landscape types are targeted in the UK by the aggregate extraction sector.  

Figure 3.2 illustrates (a) the extent of these landscapes on the UK continental shelf 

and the proportion of each that is dredged, (b) the size of dredged area and levels of 

dredge intensity, by landscape type.  Sand plains constitute the largest landscape 

(Figure 3.2a), and only 0.01 % is dredged for aggregate.  Fifty percent of all aggregate 

extraction in the UK occurred in shallow coarse sediment plain-moderate tide stress 

(Figure 3.2b).  This landscape has an estimated mean physical recovery rate from 

aggregate extraction of 20 years, the longest TPhys of any landscape type (Figure 3.1).  

It also has the second longest TBio, of 8.7 years.  The shallow coarse sediment plain-

weak tide stress landscape has the longest mean TBio, 10.75 years, and a significant 

proportion of its dredge area (30 %) was exploited at moderate or high intensity 

(Figure 3.2b).  Estuaries have the shortest TPhys and TBio recovery periods (1.7 and 

5.25 years, respectively) and aggregate dredging activity is undertaken in six percent 

of this landscape (Figure 3.2a).  This is an under-estimation of total dredging activity, 

as maintenance dredging also occurs in many UK estuaries.  However, the two 

processes are different; maintenance dredging removes recent unconsolidated 

sediments, whereas aggregate extraction removes minerals to a maximum permitted 

depth (DCLG 2007).   

The majority of dredging effort in the UK was at low intensity (Table 3.4).  At least 

89 % of the total area dredged in any one year was worked at low intensity effort (of 
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less than 1 hour).  Over the entire seven year period, 81.7 % (263 km
2
) of the whole 

dredging footprint was always worked at <1 h yr
-1

 and cumulative dredging in this 

area was less than five hours in all locations.   

Table 3.4:  Dredge intensity (h) and extent (km
2
) for the UK marine aggregate 

extraction area.  Data are categorised by low, moderate and high intensities.   The 

seven year cumulative dredged time (h) for these intensities is also shown (rows). 

Cumulative dredge 

time (h) for total 

period 2001–2007 

Dredged area (km
2
) 

Low intensity, 

<1 h yr
-1

 

Moderate intensity, 

1–1.25 hours in one 

or more years 

High intensity,  

>1.25 hours in one 

or more years 

<1 218.02 0.00 0.00 

1–3 43.63 12.48 0.00 

3–5 1.36 4.98 19.68 

5–10 0.00 0.41 15.20 

>10 0.00 0.00 6.07 

TOTAL (km
2
) 263.0 17.9 41.0 

Between 2001 and 2007 only 4.9–6.7 % of the total area was dredged at high intensity 

of >1.25 hours in any one year.  The area continually exploited at this intensity for 

every year was 0.03 km
2
 (0.009 % of the footprint).  Very high intensity dredging of 

>40 hours was rare and the most heavily impacted site was in the Mersey estuary in a 

small area of only 0.0013 km
2
,
 
where >90 hours of dredging occurred in 2001–2007. 

Coarse sediment and sand plain landscapes were heavily targeted by the aggregate 

industry; together constituting 96 % of UK extraction area (Figure 3.2b), though the 

area that was dredged was <0.5 % in each landscape (Figure 3.2a).  The industry 

dredges in all strengths of tidal stress.  The relative proportions of dredge intensity 

within landscape types (Figure 3.2b) shows that the majority of dredging activity (>70 

%) was at low intensity.  Moderate or high intensity dredging formed a larger 

proportion of dredging effort in shallow coarse sediment-weak tide stress, 29 %.  

Moderate and high intensity dredging affected the smallest proportion (<11 %) of 

shallow mixed sediment plain-moderate tide stress landscapes. 
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Figure 3.2: UK marine landscapes targeted for aggregate minerals (landscape codes 

as in Table 3.1).  (a) Extent of marine landscapes in UK (bars) and proportion 

dredged for aggregate (points).  (b) Proportions of dredge intensity in marine 

landscapes; High >1.25 h yr
-1

, Moderate 1 – 1.25 h yr
-1

, Low <1 h yr
-1

.  Values in 

italics above columns are the total area dredged (km
2
) in each landscape type.   

a 

b 
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3.4 Discussion 

The literature review highlighted the influence of environmental characteristics such 

as sediment type and hydrodynamics on recovery rates, following cessation of 

disturbance by dredging.  The generalised model of macrofaunal species recovery 

following aggregate dredging proceeds from initial colonisation beginning within 

days, to recovery of diversity within months, recovery of population density after 

several months and biomass recovery after one or more years (ICES 1992, Newell et 

al. 2004a).  Whilst this sequence is likely to be similar in a wide range of deposit 

types, the absolute rates are likely to vary.  For example stable, low-energy 

environments, or coarse sediments are likely to have a biological community with a 

high proportion of long-lived, slow-growing and slow-reproducing species (Newell et 

al. 1998).  These species may take longer to recover than biological communities in 

naturally more dynamic regimes. 

Where sediment characteristics, topography and the natural hydrodynamic regime do 

not differ before and after dredging, re-establishment of a similar biological 

assemblage is probable (van Moorsel & Waardenburg 1991, van Moorsel 1993, 1994, 

van Dalfsen et al. 2000, Boyd et al. 2004, Robinson et al. 2005, Cooper et al. 2008b).  

In such situations recovery can be rapid, for example 24–30 months in the North 

Adriatic (Simonini et al. 2007).  As expected, the least sensitive habitats, i.e. with the 

lowest TPhys and TBio, occurred in estuaries, highly mobile sands in shallow waters and 

conditions of strong tidal stress (Millner et al. 1977, Bax & Williams 2001, Bolam & 

Rees 2003).  Estuaries are relatively heavily exploited as six percent of their area is 

dredged for aggregate, in comparison with <1 % in the other landscape types.  If 

topography and sediment composition are permanently altered and previously stable 

sediments are not re-established, communities remain at an early developmental stage 

(Boyd et al. 2004) and biological recovery can take more than 10 years (Cooper et al. 

2005).  The identification of physical and biological recovery rates for marine habitats 

should allow managers to further reduce impacts by targeting aggregate deposits in 

environments that can recover the most quickly.   

Aggregate extraction activity in UK waters is restricted to sites licensed by the UK 

Crown Estate.  At present these licensed areas do not appear to be located to avoid the 
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most sensitive marine landscapes, nor to target the least sensitive.  For example, the 

majority of aggregate dredging was found to take place in the shallow coarse 

sediment-moderate tide stress landscape, even though this environment has the 

longest estimated TPhys and the second longest TBio from aggregate extraction (20 and 

8.7 years, respectively).  New statutory regulations for aggregate licensing came into 

force on 1st May 2007; Environmental Impact Assessment and Natural Habitats 

(Extraction of Marine Minerals by Marine Dredging) (England and Northern Ireland) 

Regulations (DCLG 2007).  These replace the previous voluntary, informal, non-

statutory Government View and will require Crown Estate to consider the Habitats 

Directive in their decisions.  Consequently, future decision-making on site licences is 

more likely to be move towards an ecosystem approach. 

The landscapes most heavily fished by towed benthic gears are those representing soft 

seabed with weak or moderate tide stress (Stelzenmüller et al. 2008), which increases 

the likely occurrence of cumulative impacts with aggregate extraction.  Seabed 

penetration of fishing gear, such as hydraulic dredges, causes physical impacts similar 

to those of single passes by aggregate dredgers (Gilkinson et al. 2003).  Other benthic 

trawl gears are less penetrative, but can still generate tracks on the seabed of 1.5–12 m 

width and 1–60 cm depth, depending on sediment and gear type (Churchill 1989, Hall 

et al. 1990, Nédélec & Prado 1990, Hall 1994, Vanstaen et al. 2008).  The gears are 

associated with detrimental impacts on the marine benthos (Currie & Parry 1999, 

Shephard et al. 2008) and studies of epifauna at marine aggregate extraction sites have 

been found to show similar recovery rates to those for towed bottom-fishing gears in 

similar environments (Løkkeborg 2005, Smith et al. 2006).  The impact of fishing 

gear varies significantly among habitats (Kaiser et al. 2006) and L. Robinson et al. 

(unpubl.) found the most sensitive marine landscapes to be the shelf sand plains and 

shallow coarse sediment plains of weak, moderate and strong tidal stress.  Together, 

the area dredged for aggregates in these sensitive marine habitats constitute 213.85 

km
2
, representing 67 % of the total dredged area in UK waters.  Further research of 

fishing impacts fishing on marine landscapes is underway, using spatial analyses 

similar to the methods herein.  
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The intensity of dredging is an important issue in landscapes with longer recovery 

times.  The first anthropogenic sediment disturbance (e.g. dredging or trawling) in a 

previously unaffected site generates the highest mortality of biota, and subsequent 

repeat activity will result in relatively less damage per dredge (Jennings & Kaiser 

1998, Kaiser et al. 2002, 2006).  Most of the macrobenthos lives in the top 30 cm of 

the sediment, so mortality rates are directly related to the surface area of extraction 

(van Dalfsen et al. 2000).  This is the depth to which most UK dredgers remove 

surface sand and gravel (MARINET 2004).  Pranovi et al. (1998) demonstrated that 

fauna can recover after 15 days from dredging that penetrates only 7–13 cm into a 

sand and silt sediment, but if the penetration is 20 cm, recovery does not start until 

after 60 days (Sánchez-Moyano et al. 2004).  The removal of commercial aggregate 

repeatedly over the course of a year has a cumulative effect slowing recovery further 

and increasing mortality (Boyd et al. 2004, Cooper et al. 2005).   

The majority of dredging activity in the UK 2001–2007 was at low intensity, although 

for some habitats the proportion impacted at moderate and high intensity could be 

substantial.  Although it was not possible to quantitatively analyse the effect of 

intensity on recovery in this study, modifying the intensity of dredge activities is 

likely to minimise the risk of permanently changing the physical characteristics of a 

site, which would slow its recovery.  The shallow coarse sediment plain-weak tide 

stress landscape was subject to 30 % of dredging at moderate or high intensity (>1 h 

yr
-1

).  This landscape has the second longest mean TPhys and the longest TBio of all 

landscapes.  Faunal recovery after high intensity (>5 hours), repetitive dredging can 

require up to 10 years for recovery after cessation of dredging (Boyd et al. 2004).   

Overall the dredging activity of the UK‟s marine aggregate sector has a relatively 

small spatial footprint (<1 % of the size of the area trawled for fish), but the size of 

individual dredge sites can affect the re-establishment of the macrobenthic community 

(Guerra-García et al. 2003).  Recovery rates of the biological community following 

dredge cessation will be more rapid at small dredge sites (e.g. <100 m
2
) than at large 

sites (e.g. >1000 m
2
) because larger patches possess a smaller edge/surface area ratio, 

restricting the potential for immigration by colonists (Guerra-García et al. 2003).  

However, 86 % of the main marine dredge sites in the UK were >1 km
2
 in size (mean 
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4.6 km
2
), which is a large spatial scale relative to the range summarised by these 

authors.  Consequently, the most rapid recovery predicted would be a minimum of six 

months, and more probably would be in the order of years, which corresponds with 

the temporal range found in the literature review (Table 3.3).   

A limitation to this study was the inability to consider the effect of aggregate overspill 

and screening creating sediment plumes.  These techniques may significantly alter the 

substratum, extending the period for recovery (de Groot 1996), or the sediment 

plumes may lead to smothering effects (de Groot 1996, Sánchez-Moyano et al. 2004).  

To accurately quantify variation in spatial extent and impact of sediment plumes 

would require site-specific studies to quantify concentration of suspended sediments 

above background levels, but there are too few studies of these factors (Eastwood et 

al. 2007) and they were not incorporated into this study.   

In this study both the physical and biological impacts of dredging have been found to 

be spatially variable and frequently site-specific, as observed by previous workers 

(e.g. Newell et. al. 1998, De Grave & Whitaker 1999, Boyd et al. 2004).  This site-

specificity of dredge impact complicates the prediction of likely effects and recovery 

periods at both extant and prospective extraction areas (Boyd et al. 2004).  

Furthermore it supports the findings of ICES (1992) in highlighting the importance of 

site-specific studies in the future.  Research into effects of different intensities of 

dredging by landscape type is needed.  The general pattern of response to aggregate 

extraction needs to be tested further to establish its general validity in all 

environments, particularly in areas which have been exposed to high intensity 

dredging over many years (Boyd et al. 2004).  Long-term studies of sites disturbed by 

either the aggregate or fishing sectors are few in number (Bradshaw et al. 2002).  

Detailed studies into the cumulative effects of anthropogenic activities, e.g. mobile 

bottom fishing and aggregate dredging, are urgently required for the offshore zone to 

be better understood, so that stakeholders can make sound decisions for marine 

planning.   
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CHAPTER 4 

Recovery of UK seabed habitats from benthic fishing and aggregate 

extraction – towards a cumulative impact assessment 

Foden J, Rogers SI, Jones AP (2010) Recovery of UK seabed habitats from benthic 

fishing and aggregate extraction – towards a cumulative impact assessment. Mar Ecol 

Prog Ser 411:259–270 (see Declaration, page 2) 

 

Abstract 

Assessing cumulative impacts of multiple pressures on the marine environment can 

help inform management response.  This requires understanding of the spatial and 

temporal distribution of human pressures and their impacts.  Quantifying seabed 

recovery rates from two significant pressures in European waters, benthic fishing and 

aggregate extraction, is a significant step towards assessing sensitivity and cumulative 

impact.  

Vessel Monitoring Systems data were used to estimate the distribution and intensity 

of benthic fishing in UK marine waters (2006 to 2007).  Data were separated by 

towed bottom-fishing gears (scallop dredges, beam and otter trawls) and linked to 

habitat in a GIS.  Recovery periods of seabed habitats were estimated by literature 

review, for gear types and fishing intensity.  Recovery rates generally increased with 

sediment hardness and habitats required longer periods of recovery from scallop 

dredging than from otter or beam trawling.  Fishing pressure across the habitat-gear 

combinations was such that 80% of the bottom-fished area was estimated to be able to 

recover completely before repeat trawling, based on mean annual trawl frequencies.  

However, in 19% of the UK‟s bottom-fished seabed, scallop dredging in sand and 

gravel and otter trawling in muddy sand and reef habitats occurred at frequencies that 

prevented full habitat recovery.  

In 2007 benthic fishing and aggregate extraction occurred together in an estimated 40 

km
2 

(<0.02%) of UK seabed.  Cumulative impacts were estimated as total recovery 
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time under four scenarios; greatest, additive, antagonistic and synergistic impacts.  

Recovery from aggregate extraction required much greater periods than from benthic 

fishing, and gravel was identified as a more sensitive habitat than sand.  

Key words: towed bottom-fishing, recovery, cumulative effects, fishing intensity, 

marine habitats, aggregate extraction, UK seabed, vessel monitoring system 

 

4.1 Introduction 

Marine ecosystems provide a range of goods and services of value to humans (e.g. 

Costanza et al. 1997, Foley et al. 2010).  Human activities can alter ecosystems, 

changing energy flows and biological communities, potentially leading to regime 

shifts (e.g. Choi et al. 2004, Hinz et al. 2009) which could undermine the supply of 

marine resources.  Sustainable human use of marine resources requires an integrated 

approach to marine management, with knowledge of the location of activities and 

habitats, and accurate assessment of the condition of the marine environment.  

Mapping the distribution and intensity of pressures on different habitats, and 

assessment of cumulative effects are relevant for spatial planning and conservation 

objectives, as required under legislation such as the Marine and Coastal Access Act 

(HMSO 2009) and the European Marine Strategy Framework Directive (EU 2008).  

At present there are gaps in our knowledge and understanding of the impacts from 

major human activities and the interactions between them (OSPAR Commission 

2003, Eastwood et al. 2007, Borja et al. 2008, Foden et al. 2008, Halpern et al. 

2008b).  Such interactions can create cumulative impacts, which need to be 

understood and quantified for more informed management decisions.  Understanding 

cumulative impacts may be particularly important as repeated impacts may, for 

example, limit the ability of an ecosystem to recover over time.  Furthermore, the 

combined impacts of many different activities might lead to different ecosystem 

responses from those of just one type.  Cumulative effects can be comparative, 

additive or interactive in nature.  A comparative effect predicts the overall impact to 

be equal to that of the single worst or dominant stressor (Bruland et al. 1991).  
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Additive effects are simply the sum of the individual pressures (Halpern et al. 2008a), 

which is judged to be the case for pairs of pressures (Crain et al. 2008).  Interactive 

effects are the results of multiple activities accumulating non-linearly; i.e. causing 

lesser (antagonistic) or greater (synergistic) effects than the sum of their parts.  

Antagonistic effects describe the total impact of multiple pressures as being less than 

the algebraic sum of the individual impacts and synergistic effects occur when the 

total impact is greater than the sum of the individual pressures (Smit & Spaling 1995, 

Folt et al. 1999, Cefas 2001, CCW 2002, Crain et al. 2008).  

Recent ecological studies and meta-analyses have begun to address the theories and 

concepts of cumulative effects caused by multiple human activities on the seabed (e.g. 

Vinebrooke et al. 2004, Darling & Côté 2008, Halpern et al. 2008b).  However, there 

have been fewer attempts to robustly quantify those impacts and there is a gap in 

knowledge regarding environmental sensitivity and response to multiple pressures 

(e.g. Halpern et al. 2008a).  Investigations of seabed recovery rates following 

disturbance provide one method of quantitatively estimating habitat sensitivity 

(Desprez 2000, Cooper et al. 2007, Foden et al. 2009).  If a pressure occurs too 

frequently for a habitat to recover, the benthic community‟s biomass and productivity 

decline (Hiddink et al. 2006a) and sustainability of human use of the resource may be 

jeopardised.  By geospatially modelling the process of cumulative impacts of six 

different pressures, using empirical data, Stelzenmüller et al. (2010) made an 

important advancement in the practical application of cumulative impact concepts.  

Using two major pressures currently affecting the UK seabed these concepts were put 

into practice using quantitative data on habitat sensitivity and the effects of individual 

and cumulative impacts. 

Whilst oil and gas extraction, wind farms, dumping, pipelines and cables can be 

important site-specific pressures acting on the UK (England and Wales) seabed, the 

major sources of seabed disturbance are near-bed currents, wind-induced waves (Hall 

1994), aggregate dredging for mineral resources and bottom-trawling for fish 

(Jennings & Kaiser 1998, Eastwood et al. 2007, BMAPA 2008, Stelzenmüller et al. 

2008).  The UK is one of the largest producers of marine aggregate in the world, and 

23.1 million tonnes of sand and gravel were extracted from the English and Welsh 
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seabed in 2007 (BMAPA 2008).  Recovery rates of the benthic community after 

cessation of disturbance by marine aggregate dredging have been used as a proxy of 

habitat sensitivity (Desprez 2000, Cooper et al. 2007, Foden et al. 2009).  Equivalent 

examinations of impacts caused by other sectors will be required to fully assess 

habitat sensitivity and to estimate the cumulative effects of all pressures operating on 

the UK seabed.  

A broad range of approaches to integrated assessments and cumulative impacts 

assessments have been used, with varying degrees of success (Foden et al. 2008).  A 

sector by sector approach to analysing human pressures on UK seabed habitats was 

adopted, with a view to combining these in a multi-sectoral integrated assessment, and 

the work presented here contributes to this.  The intention is that our approach will 

help inform decision makers, facilitating an ecosystem approach to marine 

management.  

The most important human pressure in terms of its spatial extent and level of impact 

on the UK marine environment results from fishing (Collie et al. 1997, Rijnsdorp et 

al. 1998, Dinmore et al. 2003, Eastwood et al. 2007).  Taking an ecosystems approach 

in the context of fisheries management requires, inter alia, information on the 

response of marine habitats to fishing (FAO 2003).  Fishing practices that have a 

direct physical impact on the seabed such as trawl and dredge gears were considered 

(Rijnsdorp et al. 1998).  Bottom-fishing directly affects the seabed and benthic 

communities and has been recorded as occurring in 75% of the global continental 

shelf (Kaiser et al. 2002).  The degree of disturbance is dependent on three main 

factors: the type of fishing gear deployed, the intensity of fishing activity and the 

sensitivity of the habitat (Collie et al. 2000, Kaiser et al. 2006). 

Benthic trawl gears can generate tracks on the seabed of 1.5 to 12 m width and 0.01 to 

0.6 m depth, depending on sediment and gear type (Churchill 1989, Hall et al. 1990, 

Nédélec & Prado 1990, Hall 1994, Vanstaen et al. 2008).  These gears are generally 

associated with detrimental impacts on the marine benthos (Currie & Parry 1999, 

Shephard et al. 2008).  For example, to increase fish catches, beam trawls are usually 

fitted with chains designed to penetrate the top few cm of the substratum and infauna 

and epifauna can be damaged as the chains pass through the sediment (Kaiser & 
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Spencer 1994, 1995).  Typically, shellfish dredges and flatfish beam trawls disturb the 

seabed more intensively than otter trawls (Hall 1994).  

Biomass, abundance and cover of macro-fauna and -flora in sand and gravel 

environments are known to be negatively correlated with trawling intensity (Svane et 

al. 2009).  In previous work responses and recovery rates of different habitats to 

towed bottom-fishing gears have been reviewed (Kaiser et al. 2006, Pitcher et al. 

2009). Kaiser et al. (2006) found fishing activities had significant negative, but short-

term, impacts on biota in the highly energetic, shallow, soft-sediment habitats, with 

abundance recovering in <50 days (d).  Whereas in more stable gravel sediments, taxa 

were still ~40% reduced after 50 d. Collie et al. (1997) found recovery from scallop 

dredging in shallow gravel sediment at the St George‟s Bank to take five to ten years 

and in the most stable environment of biogenic reefs, biota showed no signs of 

recovery after more than four years.  

Vessel monitoring system (VMS) data have been used successfully for estimating the 

spatial and temporal distribution of fishing effort (Deng et al. 2005, Murawski et al. 

2005).  This study analysed 2006 and 2007 VMS data for UK and foreign vessels 

deploying bottom-fishing gear in the UK (England and Wales) reporting region.  The 

four objectives were to: (i) quantify the spatial extent and annual intensity of benthic 

fishing activity in 2006 and 2007 at a high resolution; (ii) use data on recovery 

periods from published, peer-reviewed studies to estimate the proportion of fished 

habitats in which recovery would be possible at recent (2007) levels of fishing effort; 

(iii) combine the results with published spatial data on aggregate dredging in UK 

waters (Foden et al. 2009) in order to investigate where the two pressures coincided 

during 2007, potentially giving rise to cumulative impacts on the seabed; and (iv) 

estimate overall recovery times for the four cumulative effects scenarios proposed by 

Stelzenmüller et al. (2010) – greatest, additive, antagonistic and synergistic.  The 

latter objective allowed us to determine the sensitivity of the findings to different 

measures of impact estimation, for different habitat types.  Our key aims are for this 

information to contribute to an integrated assessment of cumulative impacts from 

simultaneous pressures acting on the UK seabed, and to help in the application of an 

ecosystem approach to marine management.  
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4.2 Method 

4.2.1 Study area and VMS data 

The study area comprised the marine waters of the UK (England and Wales) (Figure 

1.1). Regions were delineated using boundaries determined for environmental status 

reporting under Charting Progress (Defra 2005).  

Satellite-based Vessel Monitoring Systems (VMS) have been fitted to fishing vessels 

≥15 m since 2005 to automatically record identity, position, speed and heading data at 

an average frequency of ~2 h.  Vessels exclusively fishing within 12 nautical miles of 

the shoreline or that undertake fishing trips of less than 24 h are exempted (Dann et al. 

2002).  Positional data of UK and European vessels (Belgium, Denmark, Holland, 

France, Ireland and Spain) in the study area for the two year period covering 2006 and 

2007 were made available by the Defra Marine Fisheries Agency.  Speed rules were 

applied to determine fishing or steaming activity (Lee et al. 2010).  Benthic fishing 

gears were identified using UK logbook data or the European vessel register and these 

were aggregated to three bottom-fishing gear types; beam trawls, otter trawls and 

dredges.  

4.2.2 Swept area of fishing gears 

The swept area of trawls or dredges depends on the width of that part of the gear 

which is in contact with the seabed.  There are three main bottom-fishing gear types 

deployed in UK waters; beam trawls, scallop or hydraulic dredges and otter trawls.  A 

subset of the latter includes Nephrops (prawn) trawls. Beam trawlers generally 

operate twin rigs with an overall width of 24 m (Rijnsdorp et al. 1998, Dinmore et al. 

2003) and this width was used as the swept area.  

Scallop dredges are often deployed from beam trawl vessels in the UK, with a 

maximum number of nine dredges (~1 m wide) per beam.  As two beams are 

generally deployed, 18 m was used as an estimate of swept area.  The use of hydraulic 

suction dredges for fishing shellfish is geographically restricted in UK waters.  

Mechanised dredges of this nature generate tracks on the seabed up to three metres 

wide (Hall et al. 1990, Hall 1994), which was the area used in our calculations.  
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Because the ecological impacts of these gears are comparable the spatial extent and 

fishing intensity of each were calculated separately and subsequently combined as 

„scallop dredges‟.  

To account for the active region of a benthic trawl, 24 m was used as the swept area of 

an otter trawl (Carrothers 1980, Hiddink et al. 2007).  The area for Nephrops trawls 

was taken from Hinz et al. (2008) whose side-scan sonar observations showed tracks 

up to 60 m wide in the northeast Irish Sea.  These gears were combined and presented 

as „otter trawls‟. 

The locations and swept areas for the different bottom-fishing gears were calculated 

for both 2006 and 2007.  A chi-square test (χ
2
) was conducted to analyse whether the 

particular gears deployed in cells in 2006 tended to be the same as those in 2007.  

4.2.3 Fishing distribution and intensity 

The exact tracks of fishing vessels are not recorded by VMS and previous studies 

have either analysed VMS records as point data (Rijnsdorp et al. 1998) or estimated 

vessel tracks between points (Eastwood et al. 2007, Mills et al. 2007).  Point data 

were used in this study and the spatial extent of the potential surface area fished 

around each point was calculated for 2006 and 2007.  The extent was estimated from 

each VMS record based on vessel speed, VMS interval and width of fishing gear.  For 

example, for a beam trawl 24 m wide fishing at 4.5 knots (8.334 km h
-1

) one VMS 

record (two hour interval) corresponds to a fished surface area of 0.024 x 8.334 x 2 = 

0.4 km
2
.  

Trawling effort derived from VMS records may be represented using high resolution 

grids, with cell sizes of <3 km
2
 (Mills et al. 2007) and 1 nm

2
 or l km

2
 having been 

used for fishing effort analyses (e.g. Rijnsdorp et al. 1998, Hinz et al. 2009).  For this 

study 1 km
2
 cells were used as an appropriate compromise between the high 

resolution VMS point data and the uncertainties in the calculations of surface area 

fished around each point.  Gridded intensity of fishing activity for each year was 

calculated from the annual number of trawls estimated to have passed through each 

cell and their associated fished surface area.  An intensity score of 0.4 therefore 
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represented a fished area of 0.4 km
2
 yr

-1
.  A fished intensity of one could describe a 

situation where the entire area of a l km
2
 cell was fished once a year, assuming the 

trawl distribution was homogeneous.  Intensity scores greater than one indicate a cell 

or parts of a cell were fished more than once annually. To test the similarity of fishing 

intensity per cell in 2006 and 2007 Pearson correlation coefficients were calculated. 

To identify the spatio-temporal distribution of bottom-fishing effort by habitat type 

VMS records were spatially joined to British Geological Survey (BGS) sediment type 

data using the ArcGIS Geographical Information System (ESRI).  This linked bottom-

fishing effort to the sediment classification scheme of Folk (1954).  These classes 

were grouped into five habitat types, based on the largest proportion of constituent 

particle size in the BGS classification scheme.  Mud, muddy sand, sand, gravel and 

reef are the habitat descriptors widely used in studies of bottom-fishing impact on the 

benthos (e.g. Collie et al. 2000, Kaiser et al. 2006, Pitcher et al. 2009).  Biogenic 

habitats constructed or composed primarily of living biota are classed as rock in the 

BGS system.  The potential for recovery of the seabed in UK waters following 

bottom-fishing was then calculated using published recovery rates of each habitat 

type, based on the distribution and intensity of fishing activity.  

4.2.4 Recovery from benthic fishing 

Published studies have found the effects of bottom-fishing on habitats were most 

strongly related to types of gear and sediment, with sediment type itself correlated 

with depth (Kaiser et al. 2006, Pitcher et al. 2009).  Natural disturbance, such as that 

caused by near-bed currents and wind-induced waves, is also related to depth and so it 

is implicit in habitat type and recovery.  Therefore habitats are generally defined in 

terms of their particle-size ranges and this approach was adopted here.  A review was 

conducted of scientific literature for recovery rates of the benthos in different habitats, 

after bottom-fishing by the three main benthic gear types.  Studies were identified 

using computer database search engines of peer-reviewed literature, such as Scopus 

and ASFA, and general Internet search engines.  In our study area primary and 

secondary production are large with strong seasonal patterns, so data from studies 

conducted in this, or similar, areas were used.  The review by Kaiser et al. (2006) 
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provided the majority of the recovery periods and the results of four additional studies 

were used where particular habitat-gear combinations were not given in that review.  

The term recovery was used, as defined by Kaiser et al. (2006); recovery was deemed 

to have occurred when the abundance, species richness or biomass of benthic biota 

was equivalent to a 20% reduction or less in the pre-impact value.  The study area has 

a long history of high levels of fishing activity, with trawlers tending to repeatedly 

target the same grounds year after year (Kaiser et al. 2002, Hiddink et al. 2006b).  

Therefore, the point at which recovery is deemed to have occurred is, for some 

habitats, a point in a constant disturbance cycle, and not disturbance of a pristine 

benthic community.  

An index of recovery (IndRec) was calculated to estimate whether the frequency of 

bottom-fishing allowed habitats enough time to recover between fishing events.  The 

fishing intensity scores (Section 2.3) were used to estimate the mean number of days 

(d) between fishing events, per cell, per year.  For example, a fishing intensity score 

of 0.4 represents 912.5 d between sweeps by fishing gear.  To provide an index of 

recovery (IndRec) for each 1 km
2
 cell, the recovery periods established from the 

literature review were divided by the mean number of days between fishing events.  

Where more than one gear was deployed in a cell the longest recovery period was 

used for the portion of the cell affected by that gear.  Where IndRec = 1, fishing 

intensity was equivalent to the required number of days for a habitat to recover; >1, 

the habitat was unable to fully recover; <1, recovery can be expected before the next 

fishing event.  Benthic fishing fleets are active throughout the year in UK waters, 

although effort is noticeably reduced in December.  The mean sizes of fished area per 

month by gear type, excluding December, were: beam trawling, 8375 km
-2

 (σM = 

322); otter trawling, 7331 km
-2

 (σM = 279); and scallop dredging, 279 km
-2

 (σM = 49).  

During December effort is between ten and 30% of the other 11 months.  Given the 

consistency of fishing activity a homogeneous distribution of pressure during the year 

was assumed.  This also facilitated comparison of fishing effort with aggregate 

extraction records, the latter only being available as annual data.  
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4.2.5 Cumulative impact assessment 

To investigate cumulative impacts of aggregate extraction and fishing pressures, 

locations where these activities coincided were identified.  Electronic Monitoring 

Systems (EMS) have been fitted to all aggregate dredgers operating in UK (England 

and Wales) waters since 1993 to automatically record position and „dredging status‟ 

every 30 seconds.  Aggregate extraction effort in the UK is measured as hours 

dredged annually (h yr
-1

).  EMS data provided in 50 x 50 m (2500 m
2
) cells were 

analysed by Foden et al. (2009).  Electronic monitoring system data for 2007 and the 

gridded 1 km
2 

fishing cells for the same year were spatially combined.  The locations 

and habitats where both pressures coincided could then be identified.  The sediment 

descriptors from Foden et al. (2009) were cross-referenced and these were associated 

with the habitat types used herein for recovery from benthic fishing (Table 4.1).  

Where the pressures were concurrent in 2007, the recovery times of each habitat type 

from aggregate extraction and fishing were estimated.  For recovery from aggregate 

extraction (TBioAgg) values from Foden et al. (2009) were used; recovery was defined 

as the mean time necessary for establishment of a benthic community virtually 

indistinguishable from surrounding, non-impacted reference sites (Cooper et al. 

2005), or when species number, abundance and/or biomass of a site had returned to 

90% of the original values (Hiddink et al. 2006b).  Recovery from fishing was 

estimated for each habitat-gear combination as the mean fishing intensity in 2007 x 

maximum recovery period (from Table 4.4). 

To quantify cumulative impacts where benthic fishing occurred in active aggregate 

extraction sites, impact was estimated as total recovery times under four scenarios.  

The premise for scenario I was the single worst or dominant pressure (i.e. the pressure 

requiring the greatest period for the benthos to recover) takes precedence over the 

others in determining combined effects; with lesser pressures have no additional 

impact (Bruland et al. 1991).  Previous investigations of marine landscapes‟ 

sensitivity to a range of human activities have found sand, coarse and mixed sediment 

environments to be more sensitive to extraction pressures (aggregate removal) than to 

abrasion pressures (benthic fishing) (Stelzenmüller et al. 2010).  Therefore aggregate 

extraction was considered to be the dominant pressure.  For scenario II, multiple 
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pressures were assumed to act independently within the system and therefore overall 

recovery time was the sum of both aggregate extraction and benthic fishing (e.g. Crain 

et al. 2008, Halpern et al. 2008a).  

The purpose of scenarios III and IV was to show a range in the sensitivity of habitats 

to impacts that interact.  Scenario III estimated cumulative impacts as the antagonistic 

effects of multiple pressures (Darling & Côté 2008); if pressures are applied 

consecutively to marine habitats, then the impact of the first pressure may pre-

condition the habitat to be less sensitive to the second pressure.  The total recovery 

period for scenario III was estimated as recovery time from the primary pressure + 

50% recovery time from the secondary pressure.  Recovery times were expected to be 

between those of scenario I and II. In scenario IV synergistic effects were assumed, in 

which the impact from accumulated pressures was greater than the sum of the 

individual parts (Cefas 2001, CCW 2002), the assumption being the first pressure 

lessens the resilience of a habitat, making it more sensitive to subsequent pressures.  

Therefore in scenario IV estimated total recovery time was recovery from the primary 

pressure + 150% recovery time from secondary pressure, with the expectation of total 

times greater than the other three scenarios.  
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4.3 Results 

4.3.1 Fishing distribution and intensity 

In 2006 122 000 km
2 

(47.2%) of the English and Welsh seabed was estimated to be 

affected by benthic fishing, increasing in area to134 000 km
2 

(51.8%) in 2007.  

Fishing activity was patchily distributed with strong spatial variation in annual fishing 

intensity in UK waters.  In locations where towed bottom-fishing was recorded by 

VMS, intensity scores ranged from 0.0002 to 39 in 2006 (i.e. a 1 km
2 

cell may have 

been fished up to 39 times per year) and 0.0002 to 30 in 2007.  In 2006 42% of the 

UK‟s bottom-fished area was fished more frequently than once per year, this value 

decreasing slightly to 40% in 2007.  

There was a strong spatio-temporal correlation in fishing intensity between 2006 and 

2007 (Pearson‟s r = 0.405, p < 0.001), i.e. the spatial pattern of fishing intensity 

remained broadly unchanged.  In particular, there was a consistent pattern of intense 

activity near the northeast coast of England, and low or no activity to the north and 

west of Anglesey in the Irish Sea.  As the spatio-temporal patterns of fishing pressure 

in UK waters have been mapped previously by Stelzenmüller et al. (2008), the data 

have not been reproduced here.  

The spatial distribution of bottom-fishing coincided with 17 sediment classes grouped 

into five habitats (Table 4.1).  Mean fishing intensity per habitat type ranged between 

1.1 and 6.7 yr
-1

.  Mud was the most intensively fished habitat in both 2006 and 2007.  

The habitats most commonly targeted for bottom-fishing were sand and gravel (Table 

4.2).  These constitute relatively large habitats in UK waters (226 000 km
2
 in total) 

and in 2006 and 2007 fishing affected approximately 50% of their areas.  In contrast 

mud is the smallest habitat of the five (2 000 km
2
) in UK waters, but 77% of its area 

was bottom-fished in 2006, increasing to 80% in 2007.  A large proportion (63% in 

2006 and 76% in 2007) of muddy sand was bottom-fished, but only 12% of reef 

habitat in 2006 and 2007. 
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Table 4.1: British Geological Survey (BGS) sediments affected by bottom-fishing 

activity in UK waters 2006 and 2007.  Sediments were grouped to habitat types for 

this study. Mean (M) intensity of fishing per year and standard error of the mean (σM). 

 

       Intensity (times fished yr
-1

) 

BGS sediment type    Habitat 2006  2007 

(Folk 1954)    type  M (σM) M (σM) 

Sand     Sand  1.14 0.005 1.12 0.005 

Gravelly sand 

Slightly gravelly sand 

 

Gravel     Gravel  1.75 0.018 1.46 0.012 

Muddy gravel   

Muddy sandy gravel 

Sandy gravel 

 

Muddy sand    Muddy sand 2.3 0.021 1.92 0.019 

Sandy mud 

Gravelly mud 

Gravelly muddy sand 

Slightly gravelly muddy sand 

 

Rock     Reef   1.72 0.122 1.77 0.128 

     (biogenic) 

 

Mud     Mud  4.67 0.073 6.91 0.122 

Slightly gravelly mud 

Slightly gravelly sandy mud 
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Table 4.2: Seabed habitats subjected to bottom-fishing in UK waters; total habitat 

size, mean areas bottom-fished and unfished in 2006 and 2007.  Proportion (%) of 

habitat fished shown in italics. 

 

Habitat type 

Sand Gravel 
Muddy 

sand 
Reef Mud 

Total habitat size 

(km
2
) 

185817 40041 23722 5085 1843 

Unfished Area (km
2
) 94139 22264 7181 4458 394 

Fished Area (km
2
) 91677 17776 16541 627 1448 

% habitat fished 49.3 44.4 69.7 12.3 78.6 

Fishing gears were deployed in different proportions in each habitat (Table 4.3).  

However, there was a strong spatial overlap in the locations where particular gears 

were deployed in 2006 and 2007 (χ
2 

p <0.001).  Scallop dredgers were the gear 

deployed in the smallest proportions of all habitats, ranging from 0.4% of mud to 11% 

of reef habitats.  

Table 4.3: Proportions (%) of the bottom-fished area by gear type in 2006 and 2007. 

 Habitat type 

 Sand Gravel Muddy sand Reef Mud 

2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 

Dredge only 2.5 1.7 8.2 8.1 3.4 2.3 8.7 11.0 0.7 0.4 

Beam only 41.7 28.8 24.3 8.2 13.5 6.7 42.0 22.7 1.2 0.1 

Otter & 

Nephrops only 
31.9 41.5 33.6 40.4 64.0 76.8 30.8 34.2 93.5 97.9 

>1 gear type 23.9 28.0 33.9 43.3 19.1 14.2 18.5 32.1 4.6 1.6 
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4.3.2 Recovery from benthic fishing 

Table 4.4: Maximum recovery times for habitats by fishing gear types. d: days, mo: 

months, yr: years, n/d: no data.  

Gear type 
Habitat type 

Sand Gravel Muddy sand Reef Mud 

Beam trawl <6 mo
a
 n/d <8 mo

b
 n/d n/d 

Otter trawl 0 d
b
 <12 mo

d
 >7 mo

c
 >8 yr

b
 8 d

b
 

Scallop dredge >8 yr
b e

 >8 yr
b
 1.6 yr

b
 3.2 yr

b
 n/d 

a
Kaiser et al. (1998); 

b
Kaiser et al. (2006); 

c
Ragnarsson & Lindegarth (2009); 

d
Kenchington et al. 

(2006); 
e
Gilkinson et al. (2005) 

Table 4.4 summarises the recovery periods of five habitats after fishing by three types 

of benthic gears.  No published data were found for recovery rates following beam 

trawling in gravel, biogenic reef and mud habitats, nor from scallop dredging in mud 

habitats.  However, these four habitat–gear combinations only represent 

approximately one percent of the total area subject to bottom-fishing in 2007 (Table 

4.5).  The recovery times in Table 4.4 were used to estimate an index of recovery 

(IndRec) for each 1 km
2
 cell.  As there were no statistically significant spatial or 

temporal differences in gear types or fishing intensity between 2006 and 2007, 

recovery at 2007 fishing pressure levels was estimated.  The results are presented in 

Figure 4.1 as a mean IndRec for each habitat and as mean IndRec for each habitat-gear 

combination.  

Table 4.5: Percentage and area (km
2 

in parentheses) of habitats estimated to recover / 

not recover from 2007 levels of fishing intensity. 

Recovery 

status 

Habitat type 

Sand Gravel Muddy sand Reef Mud 

Recovered 89.9 (84 485) 50.3 (10 005) 63.1 (11 412) 20.0 (129) 99.5 (1469) 

Not recovered 10.1 (9 462) 41.5 (8 263) 36.9 (6 676) 57.4 (371) 0.0 (0) 

Undetermined 0.0 (0) 8.2
a
 (1 626) 0.0 (0) 22.7

a
 (147) 0.5

a b 
(8) 

a 
No recovery period for beam trawl; 

b
no recovery period for scallop dredge 
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Figure 4.1: Mean IndRec 2007 for (a) habitats regardless of gear type and (b) gear-

habitat combinations.  BT: Beam trawl; OT: otter trawl; ScD: scallop dredge.  Error 

bars are standard error of the mean (σM).  At IndRec = 1 recovery period equals 

fishing frequency (horizontal broken line on each plot), at <1 fishing frequency is less 

than predicted recovery period and >1 fishing frequency exceeds recovery period.  
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In 2007, at an average fishing intensity for gear types, sand and mud habitats appeared 

to be able to fully recover, whereas gravel, muddy sand and reef habitats were fished 

at frequencies in excess of estimated recovery periods (Figure 4.1a).  However, IndRec 

(Figure 4.1b) varied significantly with individual habitat-gear combinations.  IndRec 

was less than 1 in six habitat–gear combinations and was ~1 for otter trawling in 

gravel.  High fishing intensities in four habitat-gear types were responsible for IndRec 

exceeding one.  On average scallop dredgers were deployed in sand too often to allow 

for the habitat‟s recovery.  Scallop dredgers affected sand habitat 1.22 times more 

frequently than the estimated period required for recovery between sweeps.  Beam 

and otter trawls are more commonly deployed gears in sand habitats (Table 4.3) and 

had an IndRec less than one in 2007, resulting in a mean IndRec of 0.38 for the whole 

habitat.  Scallop dredgers in gravel and otter trawls in muddy sand and reefs were also 

deployed at frequencies unlikely to allow sufficient time for the habitat to recover.  

Recovery was possible in 90% or more of the bottom-fished area of sand and mud, 

decreasing to approximately two-thirds of the fished area of muddy sand and half of 

gravel habitats (Table 4.5).  In reef habitat 20% (129 km
2
) was fished at low enough 

intensity to allow for recovery. For 147 km
2 

of reef no estimate could be made of 

whether recovery was possible.  

4.3.3 Cumulative impact assessment 

Aggregate extraction took place in 135 km
2 

of UK seabed in 2007; in 40 km
2
 of which 

benthic fishing also occurred.  The pressures were found to be concurrent in sand 

(20.3 km
2
) and gravel (19.8 km

2
), in which scallop dredges, beam and otter trawls 

were deployed.  Table 4.6 shows the size of areas for particular habitat-fishing gear 

combinations in aggregate extraction sites.  The intensity score of benthic fishing in 

these locations was less than 1.0 in most habitat-gear combinations, so estimated 

recovery times km
-2

 from fishing were lower than the maximum (Table 4.4), except 

for otter trawling in gravel.  The recovery times from aggregate extraction alone were 

estimated at 7.3 years (σM 2.39) in sand and 9.0 years (σM 2.10) in gravel (Foden et al. 

2009).  
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Table 4.6: Cumulative impacts of benthic fishing at aggregate extraction sites in the UK, in 2007.  See Methods for explanation of recovery times from 

fishing and aggregate extraction (TBioAgg).  Cumulative impacts for four scenarios; I: longest recovery period; II: additive recovery period (fishing 

recovery + TBioAgg); III: antagonistic recovery period (TBioAgg + 50% fishing recovery); synergistic recovery period (TBioAgg + 150% fishing recovery). d: 

days, BT: Beam trawl, OT: otter trawl, ScD: scallop dredge. 

Habitat fishing gears Area  Maximum recovery Mean  Estimated recovery Estimated recovery   Cumulative 

in aggregate  (km
2
)  after fishing  fishing  time after  time after agg     impact (d) 

extraction sites   (from Table 4.4) (d) intensity fishing (d)  extraction (d)   SCENARIOS----- - 

             (TBioAgg)
a
   I II III IV 

Sand BT  18.34  182   0.89  163   2666   2666 2829 2747 2911 

Sand OT  1.45  1   0.38  0.0   2666   2666 2666 2666 2666 

Sand ScD  0.55  2922   0.19  561   2666   2666 3227 2947 3508 

Gravel BT  6.36  n/d   0.62  n/d   3287   3287 3287
b
 3287

b  
3287

b 

Gravel OT  3.46  365   1.26  459   3287   3287 3746 3516 3976 

Gravel ScD  9.99  2922   0.35  1017   3287   3287 4304 3795 4813 

a 
Rates from Foden et al. (2009) 

b 
No recovery period for beam trawling in gravel, therefore values are aggregate TBioAgg only. 
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The cumulative impact of aggregate extraction and benthic fishing was estimated from 

the number of days required for the seabed to recover from these pressures at current 

levels (Table 4.6).  In scenarios III and IV the primary pressure was aggregate 

extraction and the secondary pressure, fishing, because sand and gravel habitats are 

more sensitive to the former (Stelzenmüller et al. 2010).  Under the four scenarios total 

recovery times were estimated between 7.3 and 13.2 years.  The estimated TBioAgg from 

aggregate extraction dominated the cumulative recovery time calculations.  Gravel 

habitat required longer periods of recovery than sand habitat from the cumulative 

impacts of aggregate extraction and benthic fishing, regardless of fishing gear.  In 

gravel habitat cumulative recovery time was greatest from scallop dredging and 

aggregate extraction under scenarios II, III and most especially from the modelled 

synergistic effects in scenario IV.  Deployment of otter trawls in sand at aggregate 

extraction sites did not result in a cumulative effect of increased recovery time.  The 

impact of beam trawls and aggregate extraction in gravel could not be estimated (Table 

4.4). 
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4.4 Discussion 

The objectives of this study were to calculate, at a fine resolution, the spatial extent and 

intensity of benthic fishing in UK waters, and to estimate the proportion of fished 

habitats in which recovery would be possible at 2007 levels of fishing effort.  

Furthermore the intention was to identify locations where benthic fishing and aggregate 

extraction coincided, in order to conduct a cumulative impact assessment under the 

scenarios of greatest, additive and interactive (antagonistic and synergistic) effects. 

4.4.1 Fishing distribution and intensity 

Benthic fishing is the most widespread pressure acting on the continental shelf, with 

half to three-quarters trawled annually (Watling & Norse 1998, Kaiser et al. 2002).  In 

mapping the spatial extent and intensity of benthic fishing, it was found that 

approximately half of the UK seabed was affected in 2006 and 2007.  The estimated 134 

000 km
2 

total bottom-fished area in 2007 is considerably higher than some previous 

authors‟ estimates (e.g. Eastwood et al. 2007, Stelzenmüller et al. 2008).  This is 

because the swept area of otter trawling was calculated to be the entire gear width (i.e. 

24 m) (Hiddink et al. 2007), rather than only the 2 x 2m trawl doors.  Similarly, the area 

of impact for Nephrops trawls was calculated from a gear width of 60 m, as observed by 

Hinz et al. (2008). 

The availability of high resolution VMS data was fundamental to our study, but VMS 

records have two notable limitations.  Firstly, point data do not record the exact tracks 

of fishing vessels.  Calculating the spatial extent of the potential surface area fished 

around each point will inevitably include some locations that were not fished and 

exclude areas that were.  Nevertheless, this has been an established approach used by 

others (e.g. Rijnsdorp et al. 1998).  Secondly, total fishing effort close to the coast is 

expected to be underestimated.  Vessels of ≥15 m are able to fish within 12 nautical 

miles, provided they adhere to local Marine and Fisheries Agency (MFA) and Sea 

Fisheries Committees restrictions, but the majority of their effort occurs in waters 

further offshore.  However, it was not possible to consider the effort by vessels less than 

15 m in length, fishing predominantly within 12 nautical miles, because they are not 

required to carry VMS.  A project is underway to build a dataset of inshore fisheries 
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effort from Sea Fisheries Committees‟ observations, and to compare and integrate this 

information with that available from vessels carrying VMS.  Preliminary results suggest 

fishing effort in inshore areas is comparable to levels of fishing effort in the adjacent 

offshore waters (K. Vanstaen, pers. comm.).  Further effort will be required to identify 

habitat-specific recovery rates for these data. 

The landscapes identified as most heavily bottom-fished are those representing soft 

seabed with weak or moderate tide stress (Stelzenmüller et al. 2008), as scallop dredges, 

beam and otter trawls are generally deployed in soft sediments where the chances of 

gear loss are small (Rijnsdorp et al. 1998, Piet et al. 2000).  In keeping with these 

findings it was established that the majority of benthic fishing by area was in sand 

habitats.  Fishing intensity varied considerably between habitats, being lowest in sand 

and highest in mud.  The spatial distribution of effort remained similar between 2006 

and 2007, an annual consistency noted by Kaiser et al. (2002).  Fishing intensity and 

inter-annual change in intensity between the two years were similar to those found by 

Stelzenmüller et al. (2008).  These authors analysed spatio-temporal patterns of fishing 

pressure in UK waters since 2001 and found it to vary spatially by region, but within 

regions, patches of high fishing pressure remained centred at the same locations.  

Inevitably fishing activity occurs where target species are most abundant (Swain & 

Wade 2003), resulting in patchy distribution of fishing effort (Rijnsdorp et al. 1998, 

Stelzenmüller et al. 2008).  This also helps explain why the deployment of specific 

gears broadly remains spatially unchanged over time, as fishing métiers are designed to 

target particular species.  

4.4.2 Recovery from benthic fishing  

The intensity of bottom-fishing was such that the seabed habitats in 80% of the area 

were estimated to have enough time to recover between fishing events.  Bottom-fishing 

at frequencies greatly in excess of estimated recovery time in 19% of remaining habitats 

means benthic recovery is unlikely to be achieved.  Recovery times could not be 

estimated from our literature review for beam trawling in mud, gravel and reef habitats, 

or for scallop dredging in mud.  However, this was not a serious limitation as these 

habitat-gear combinations only accounted for approximately one percent of the entire 
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fished area.  Notable patterns were identifiable in recovery periods for the five different 

habitats, and for particular habitat-gear combinations. 

The recovery time of habitats was influenced by gear width, gear penetration, fishing 

frequency and sediment grain size.  The literature review showed recovery periods 

increase with habitat stability or sediment grain size; in general soft sediment habitats 

recover more rapidly than hard (gravel or reef) habitats.  For example, otter trawls were 

the predominant gear deployed in mud, and benthic recovery after otter trawling is 

relatively rapid (i.e. days) in this environment (Sanchez et al. 2000, Kaiser et al. 2006).  

In contrast, recovery from benthic trawls may take several years in hard habitats (Kaiser 

et al. 2006, Kenchington et al. 2006).  Scallop dredging in sand and gravel, and otter 

trawling in muddy sand and reef habitats had recovery times greater than one, leaving 

the seabed area unable to recover from bottom-fishing at 2007 levels of fishing 

frequency.  It is hoped this detailed information on habitats‟ sensitivity to particular 

gears and levels of intensity will help inform marine managers when making marine 

planning decisions.  

An important area for ongoing research is the chronic modification of benthic 

communities by long-term bottom-fishing (Jennings & Kaiser 1998, Kaiser et al. 2000; 

de Juan et al. 2007), which was not considered in our study.  Infrequent, pulsed otter 

trawling has been found to allow fauna to recover more quickly with an overall lesser 

effect than more intense, chronic, long-term trawling (Henry et al. 2006, Hinz et al. 

2009).  However, continental shelves are heavily exploited creating a dearth of 

historically unfished reference sites with similar environmental characteristics to fished 

sites (Watling & Norse 1998, Kaiser et al. 2002, de Juan et al. 2007).  This may 

severely restrict the possibility of accurately quantifying both acute and chronic impacts 

of bottom-fishing across the range of seabed habitats.  

4.4.3 Cumulative impacts 

Aggregate extraction in UK waters is spatially restricted but highly damaging in nature 

(e.g. Cooper 2005, Eastwood et al. 2007, Vanstaen et al. 2008, Foden et al. 2009, 

Stelzenmüller et al. 2010).  Aggregate was extracted from a seabed area 10
3
 less than 

that
 
affected by benthic fishing in 2007.  However, the impacts in terms of time required 
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for the seabed to recovery after cessation of extraction are more severe (Foden et al. 

2009).  

The fishing industry has expressed particular concern over the potential for cumulative 

effects in areas where there are local concentrations of marine aggregate extraction 

licences.  Cooper (2005) noted that in general in the UK there is avoidance of areas 

licensed for aggregate extraction by static gear fishers, due to the potential for gear 

damage.  The spatial pattern of fishing effort in 2007 was found to support this finding; 

benthic fishing occurred in less than 30% of the area from which marine aggregate was 

extracted.  

There has been little research quantifying the cumulative impacts of bottom-fishing and 

aggregate extraction on benthic communities and the wider ecosystem (Vanstaen et al. 

2008) and our study is a contribution to this area of cumulative effects assessment.  

Although limited to only two pressures, the four scenarios of cumulative impacts 

provide useful insights of how benthic fishing and aggregate extraction in combination 

might affect the seabed.  All scenarios showed that, in site-specific activity on sand and 

gravel habitats, aggregate extraction appeared to be a greater pressure than benthic 

fishing, regardless of gear type.  Estimated recovery from aggregate extraction (TBioAgg) 

constituted 68 to 100% of the cumulative recovery time for each scenario, where 

calculations could be made for both pressures.  The additive impact modelled in 

scenario II may be the most appropriate for quantifying cumulative impact for a pair of 

pressures (Crain et al. 2008).  Synergistic effects in scenario IV estimated the longest 

recovery times for all habitat-fishing gear combinations in aggregate extraction sites.  

The weighting schemes of scenarios III and IV (Stelzenmüller et al. 2010) should 

ideally encompass several more pressures, in which aggregate extraction and benthic 

fishing would be part of a rank order.  It is hoped that future empirical data from 

observations or experiment will enable application of a more complex weighting 

scheme, making estimations of total impact more comprehensive.  

Many other human activities in the marine environment are absent from this study, such 

as oil and gas extraction, renewable energy structures, dumping, pipelines and cables.  

Nevertheless, our findings contribute to increased understanding of differing marine 

habitat sensitivities, and the individual and cumulative impacts on habitats from two 
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major human pressures.  Further research into the impact of abrasion, obstruction, 

smothering, and extraction pressures on the marine environment is underway, using 

spatial analyses similar to the methods herein.  This will enable integrated assessments 

of cumulative impacts, which can begin to estimate the effects of the multitude of 

pressures acting simultaneously in many offshore locations. 
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CHAPTER 5 

Human pressures on UK seabed habitats – a cumulative impact 

assessment 

Foden J, Rogers SI, Jones (2011) Human pressures on UK seabed habitats – a 

cumulative impact assessment. Mar Ecol Prog Ser 428:33–47 (see Declaration, page 2) 

Abstract 

European Member States are required to assess the status of marine waters, including 

analysis of cumulative effects.  We developed a methodology for evaluating the impact 

of several human activities that constitute four direct pressures on the UK (England and 

Wales) seabed community: smothering, abrasion, obstruction (sealing) and extraction.  

The method was tested by mapping the spatial extent of individual and cumulative 

activities of 2007 by habitat type, quantifying the intensity of activities, and estimating 

impact using published recovery times.  

More than half (134 400 km
2
) of the seabed was directly affected by human activities, 

of which only 165 km
2
 (<0.1%) was occupied by multiple activities.  Benthic fishing 

accounted for 99.6% of the spatial footprint.  Sensitivity to the pressures of human 

activities varied by habitat type, with estimated recovery times ranging from <1 month 

for otter trawling in sand, to ~15 yr for co-occurring aggregate extraction and dredge 

material disposal in low-energy gravel habitat.  

Fully integrated, dynamically-linked environmental assessments are generally 

considered desirable for greater scientific understanding of an ecosystem.  The 

methodology we present to quantify cumulative effects is a step towards this.  However, 

our findings indicate that a limited number of activities were the predominant cause of 

widespread, long recovery times of benthic fauna.  This suggests that when time and 

resources are limited, single sector assessment rather than detailed evaluation of 

cumulative effects, can still usefully guide management.  As the observed cumulative 

effects were primarily related to a few activities, it might reasonably be argued that 
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management effort should be focused on spatially extensive activities, such as benthic 

fishing to mitigate most of human impact on the UK seabed. 

Key words: Abrasion, cumulative impact, extraction, marine habitats, obstruction, 

recovery, smothering, UK seabed 

 

5.1 Introduction 

The UK has commitments to monitor and assess the condition of the marine 

environment under several international conventions and Directives, including the 

United Nations Convention on biological diversity (UNEP 1992), the OSPAR 

Convention for the protection of the North-East Atlantic, and the Habitats (EU 1992), 

Birds (EU 2009) and Water Framework (EU 2000) Directives.  Added to these is the 

new European Marine Strategy Framework Directive (MSFD), which requires member 

states to make an assessment of their marine waters with a requirement to achieve Good 

Environmental Status by 2020 (EU 2008).  The recently published Charting Progress 2 

(CP2) report was compiled to address many of the obligations under these initiatives 

and regulations by providing robust evidence for the current and projected state of the 

marine environment (Defra 2010).  However, the conclusions that could be drawn were 

limited.  The authors reported that they had low confidence in the assessment of shallow 

subtidal sediment habitats and that this was because of a lack of knowledge, data and 

assessment tools.  These habitats, defined as sand, gravel, mud and mixed sediments 

that are affected by wave action, constitute the majority of the seabed of England and 

Wales (Figure 1.1).  Only 10 % of the seabed was assessed using habitat maps and the 

remainder was modelled.  Furthermore, the authors highlighted the severe lack of 

understanding regarding the links between human activities and the marine 

environment.  Most significantly there was little understanding of the cumulative impact 

of several activities in one area and the ability of a species or habitats to recover once a 

pressure has been removed.  

In this chapter some of these knowledge gaps were addressed, with particular reference 

to the requirements of the MSFD.  The Directive requires member states to assess 
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predominant pressures and impacts, including cumulative and synergetic effects.  Apart 

from naturally occurring near-bed currents and wind-induced waves (Hall 1994), the 

major sources of seabed disturbance in UK waters are caused by human activities 

(Foden et al. 2010).  Under the MSFD, human activities are grouped into generic 

pressure types, which are useful because ecosystems respond to types of pressure rather 

than specific activities.  Pressures directly affecting the seabed are physical loss 

(smothering and obstruction) and physical damage (siltation, abrasion and extraction).  

The MSFD defines and lists examples of activities causing such pressures.  From these 

the following four pressures caused by 12 activities which occur in UK (England and 

Wales) waters were considered: 

 Smothering: covering the natural seabed habitat with a layer of material which, under 

some circumstances, might be expected to disperse.  Smothering activities include 

disposal of dredged material and cuttings from oil and gas exploration 

 Obstruction (termed „Sealing‟ in the MSFD): permanent structures fixed on the 

seabed.  Obstruction activities include oil and gas platforms, well heads, oil and gas 

pipelines, telecommunication and power cables, wind turbines and wrecks 

 Abrasion: scouring and ploughing of the seabed.  Abrasion activities include benthic 

fishing using trawl gear, burying activity during telecommunication and power cable 

laying and wind turbine scour 

 Extraction: exploitation by removal of seabed resources.  Aggregate extraction is the 

only activity in this pressure type. 

Habitats vary in their sensitivity to disturbance from different pressures.  Investigations 

of seabed recovery rates following disturbance provide a method of quantitatively 

estimating habitat sensitivity (Desprez 2000, Cooper et al. 2007, Foden et al. 2009, 

Foden et al. 2010).  Habitats requiring long recovery periods might be considered more 

sensitive than those with more rapid recovery rates.  If a pressure occurs too frequently 

for a habitat to recover, the benthic community‟s biomass and productivity decline 

(Hiddink et al. 2006a) and sustainability may be jeopardised.  Defining benthic recovery 

from any type or scale of pressure is problematic.  Ecosystem recovery is complex with 

a range of definitions and metrics used, and existing scientific studies have limitations 

in their scope (Gilkinson et al. 2005, Hall et al. 2008).  This is because complete 
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recovery would be the return of an ecosystem to its original, pre-disturbance state, 

whereby the abundance, diversity, structure and functioning of the biological 

community are the same as prior to the disturbance (Hiscock & Tyler-Walter 2006).  

However, this is unrealistic and most studies focus on the recovery of the key species, 

assemblages and components of the ecosystem (Hall et al. 2008).  

The cumulative effects of coinciding pressures can be additive, antagonistic or 

synergistic.  Antagonism is a cumulative impact value lower than the sum of individual 

impacts and synergy a value greater than the sum of individual impacts (Folt et al. 

1999).  These can be difficult to predict (Crain et al. 2008, Darling & Côté 2008).  

Consequently, with a few notable exceptions (e.g. Stelzenmüller et al. 2010), most 

previous regional and global scale studies have been limited to assuming cumulative 

pressures are additive and have presented relative rather than actual impacts (e.g. 

Halpern et al. 2008b).  Quantifying the capacity for habitats to withstand pressures has 

been identified as a critical step for better understanding of ecosystem resilience (Ban et 

al. 2010) and will help inform decision-makers in facilitating an ecosystem approach to 

marine management. 

Our study builds on the innovative earlier work of Eastwood et al. (2007) who mapped 

human activities in UK (England and Wales) waters, and Stelzenmüller et al. (2010) 

who analysed spatial pressures and marine habitat sensitivity by running scenarios to 

estimate risk of cumulative impacts.  Our objective was to develop a method for 

examing whether cumulative effects are of spatial or temporal concern in UK waters.  

To do this, a „dynamically linked ecosystem assessment‟ (Foden et al. 2008) was 

conducted for a range of different sectors, by: (1) mapping the spatial of extent human 

activities in 2007 at a high resolution; (2) using data on habitat recovery periods as 

indicators of sensitivity and estimating the proportion of habitats in which recovery 

would be possible at 2007 levels of activity; (3) investigating where pressures 

coincided, potentially giving rise to cumulative impacts on the seabed; and (4) where 

pressures overlap, estimating overall recovery times for four cumulative effects 

scenarios – greatest, additive, antagonistic and synergistic (e.g. Crain et al. 2008, 

Darling & Côté 2008, Foden et al. 2010, Halpern et al. 2008a).  



131 

 

5.2 Methods 

5.2.1 Study area and habitats 

The study area (Figure 1.1) comprised the marine waters of the UK (E & W), as 

delineated for environmental status reporting under Charting Progress (Defra 2005).  

Five habitat types were identified, based on the largest proportion of constituent particle 

size: mud, muddy sand, sand, gravel and reef (including biogenic habitats constructed or 

composed primarily of living biota).  These incorporate European Nature Information 

System (EUNIS) habitats A5.1, A5.2, A5.3, A5.4, A5.5 and A5.6 (EEA 2004).  The 

habitat types are relevant to the impact of human activities on the seabed (Collie et al. 

2000, Kaiser et al. 2006, Pitcher et al. 2009, Foden et al. 2010).  Together the habitats 

constitute >99% of the UK seabed with diamicton (matrix of large and fine grains) or 

unclassified sediment accounting for the remainder. 

5.2.2 Spatial data and processing 

To conduct a pressure assessment of human impacts on the seabed spatial data were 

collated for four pressures and associated activities listed above (Table 5.1).  Data for 

2007 were used for compatibility with previous impact assessment work (Foden et al. 

2009, Foden et al. 2010).  Records for each activity were joined to British Geological 

Survey sediment types (Folk 1954) using the ESRI ArcGIS Geographical Information 

System (ESRI), and grouped to the habitat types listed above.  
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Table 5.1: Pressures and activities affecting the UK seabed. Data provided in WGS 84 (world geodetic system 1984) projection in decimal 

degrees (6 decimal places) (*), or British National Grid eastings and northings at ordinate resolution 0.0001 m (#) – see footnotes. 

Pressures and 

activities 

Data source & 

description 

Activity description Manipulation in GIS and 

footprint area 

References 

Smothering 

Disposal of 

dredged 

material 

Cefas
a
, SPIRE

b
.
 
 

Licence area 

polygons 

Disposal occurs within >150 licensed 

sites.  Licensees deposit material over 

the centre of sites 

Dimensions of licensed disposal 

sites, without buffers 

Bolam et al. (2006), Birchenough et al. 

(2010), S. Pacitto (pers. comm.) 

Cuttings from 

oil & gas 

exploration 

SPIRE
b
, UK 

DEAL
c
. 

Point data 

Cuttings are produced during drilling.  

Cuttings are separated and disposed to 

sea.  Since 2000 only water-based fluid 

has been permitted for drilling 

Circular buffers of 100 m radius 

applied to platform and well head 

data.  Area of ~31500 m
2 
per point 

OSPAR Commission (1993, 2000, 2008) 

Daan & Mulder (1996), de Groot (1996), 

Currie & Isaacs (2005), Eastwood et al. 

(2007), R.S. Rowles (pers. comm.) 

Obstruction (sealing) 

Oil and gas 

platforms 

SPIRE
b
, UK 

DEAL
c
.
  
Point data 

Four- or six-leg steel structures, each 2 

m diameter.  Plus associated drilling and 

production gear 

Circular buffers of 7.5 m radius 

applied. Area of 180 m
2
 per 

platform 

UKOOA (2002), Eastwood et al. (2007) 

Well heads SPIRE
b
, UK 

DEAL
c
.  Point data  

Protective structures built over well 

heads 

Circular buffers of 25 m radius 

applied to point data.  Area of 

~2000 m
2 
per well head 

Eastwood et al. (2007) 

Oil and gas 

pipelines 

SPIRE
b
, UK 

DEAL
c
.  Line data 

Pipelines resting on the surface of 

seabed 

Exact dimensions of pipelines Eastwood et al. (2007) 

Telecommu-

nication and 

power cables 

SPIRE
b
, SeaZone

e
, 

UKHO
f
.   

Line data 

Exposed cables on rock are armoured to 

a maximum diameter of 50 mm.  

Approx 20% cables in soft sediment are 

not buried  

Buffers 50 mm wide for cables on 

rock substrate and 25 mm on soft 

sediment 

Kogan et al. (2006), Carter et al. (2009), R. 

Hill,(pers. comm.), UKCPC
d
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Wind turbines Crown Estate, 

SPIRE
b
, SeaZone

e
. 

Point data 

Monopile foundations 4–5 m in diameter 

with scour protection of 30 m diameter 

Circular buffers of 15 m radius 

applied. Area of ~700 m
2 
per turbine 

OSPAR Commission (2006), Rees 

(2006) 

Wrecks SPIRE
b
, SeaZone

e
, 

UKHO
f
.  Point data 

Sizes of individual wrecks unknown.  

Nominal spatial extent used 

Circular buffers of 17.5 m radius 

applied. Area of 962 m
2
 per wreck 

Eastwood et al. (2007) 

Abrasion 

Benthic 

fishing using 

trawl gear 

Cefas
a
. 

Point data 

Vessels ≥ 15 m. Satellite-based Vessel 

Monitoring Systems (VMS) point data.  

UK logbook data and the European vessel 

register for type of gear deployed; 

grouped as otter trawls, beam trawls or 

shellfish dredges 

Estimates of spatial extent of fishing 

for each VMS record based on vessel 

speed, VMS interval and width of 

fishing gear.  Data gridded in 1 km
2
 

cells. Intensity calculated from annual 

number of trawl passes  

Collie et al. (1997), Rijnsdorp et al. 

(1998), Dinmore et al. (2003), 

Stelzenmüller et al. (2008), Foden et 

al. (2010) 

Telecommu-

nication and 

power cables  

SPIRE
b
, SeaZone

e
, 

UKHO
f
. 

Line data 

Fibre-optic cables 17–21 mm diameter, 

protected to a total diameter of 30 mm.  

Buried in soft sediment by sea plough or 

water jet 

Buffers 5 m wide representing the 

mean width of trench disturbance 

Allan (1998), Carter et al. (2009), 

Drew & Hopper (2009), UKCPC
d 

 

Wind turbine 

scour 

Crown Estate, 

SPIRE
b
, SeaZone

e
.
 
 

Point data
 

Waves and tides around turbines cause 

scour pits in mobile sediment, up to 10 

times the diameter of the obstruction 

Circular buffers of 50 m radius 

applied.  Area of ~7850 m
2 
per turbine, 

minus area of scour protection (see 

Obstruction) 

Rees (2006) 

Extraction 

Aggregate 

extraction 

Crown Estate, 

Cefas
a
, SPIRE

b
. 

50 x 50m polygons 

Electronic Monitoring Systems (EMS) 

data in 50 x 50 m (2500 m
2
) cells showing 

location and hours dredged per year 

EMS 50 x 50 m cell locations 

and dredge intensity 

Dickson & Lee (1972), Newell et al. (1998), 

Boyd et al. (2004), Kenny & Rees (1994), 

BMAPA (2006), BMAPA (2008), Foden et 

al. (2009, 2010), K. O‟Shea (pers. comm.) 

a
Centre for Environment Fisheries and Aquaculture Science (Cefas)*, 

b
Shared Spatial Information Services (SPIRE) (https://secure.services.defra.gov.uk/)*, 

c
United 

Kingdom Offshore Oil & Gas Industry, Common Data Access Ltd (www.ukdeal.co.uk)
#
, 

d
United Kingdom Cable Protection Company (UKCPC) (www.ukcpc.org.uk), 

e
British Crown and SeaZone Solutions Limited*, 

f
United Kingdom Hydrographic Office (UKHO)* 

https://secure.services.defra.gov.uk/
http://www.ukdeal.co.uk/
http://www.ukcpc.org.uk/
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The two main causes of smothering in UK waters are the disposal of material from 

harbour dredging (creating dredging spoils) and the discharge of drill cuttings at oil 

and gas platform drilling rigs.  Disposal occurs in defined licensed areas and licensees 

are generally guided to dispose of material in the centre of the site in an attempt to 

restrict plumes (S. Pacitto pers. comm.).  When an oil or gas well is drilled, waste 

cuttings are separated on the platform and are normally discharged to the seabed 

(Kingston et al. 1987, Breuer et al. 2004).  By January 2001 oil- and synthetic-based 

muds could no longer be released into the environment (OSPAR Commission 2000, 

2009).  The assumption was that during the intervening decade, recovery from drilling 

with these muds would have occurred (Daan & Mulder 1996).  Consequently only the 

effects of water-based muds (WBM) cuttings were considered for well heads and 

platforms in operation during or since 2001.  Although cuttings piles will vary in size 

and shape, WBM-contaminated cuttings have been reported to reach approximately 

100 m from the well (Daan & Mulder 1996, Currie & Isaacs 2005, Zuvo et al. 2005), 

which we used as a standard dimension. 

Potential causes of obstruction in UK waters include: oil and gas platforms, well head 

protective structures, pipelines, exposed cables, wind farm turbines and wrecks.  

Individual platforms, well head structures, wind turbine scour protection and wrecks 

vary in size and shape, but as specific information was not available standard 

dimensions were used to generate representative footprints (spatial extent estimates) 

for these activities (Table 5.1).  Dimensions were available for individual pipelines 

and armoured telecommunication cables overlying rock so their footprints could be 

accurately represented.  In soft sediment telecommunication cables are generally 

buried, but to account for a proportion which cannot be buried, ~20% was assumed to 

be exposed and a standard cable width was used (R. Hill pers. comm.). 

Abrasion in UK waters is caused by benthic fishing, wind turbine foundation scour 

and burial of power cables.  The most important human pressure, in terms of spatial 

extent and level of impact, results from fishing using benthic trawl gear such as beam 

trawlers, otter trawlers and shellfish dredges (e.g. Collie et al. 1997, Rijnsdorp et al. 

1998, Dinmore et al. 2003, Stelzenmüller et al. 2008).  Recovery from fishing is gear-

dependent and may also depend on frequency of trawl passes (Kaiser et al. 2006, Hall 
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et al. 2008).  Published estimates of spatial variability and intensity of fishing activity 

in UK waters in 2007 were used (Foden et al. 2010).  Intensity was accounted for as 

follows: e.g. if a beam trawler sweeps the entire area of a 1 km
2 

cell four times a year, 

fishing intensity was set to be 4.0 and the mean recovery time for the cell was 

estimated as the recovery time from one pass x 4 (sensu Foden et al. 2010).  Abrasion 

caused by hydrodynamics around individual turbine foundations can create scour pits 

of 100 m diameter (Rees 2006).  This was used as a standard footprint for all turbines.  

The majority of offshore cables in UK waters are buried using sea-ploughs or water 

jets (Allan 1998, Carter et al. 2009, Drew & Hopper 2009).  The overall disturbance 

strip ranges from two to eight metres (Carter et al. 2009) and the mean width was used 

for all buried cables. 

Aggregate dredging for mineral resources constitutes extraction pressure in UK 

waters.  Published estimates of aggregate extraction effort in UK waters during 2007 

were used (Foden et al. 2009).   

With GIS, estimations were made of the location and areas of seabed habitats affected 

by individual and by coincidental activities.  Activities were also grouped by the four 

pressure categories to estimate the location and areas affected by individual or 

cumulative pressures.  The footprint estimates of each activity were attributed a 

confidence rating on a scale of 1 to 3; 1 indicating the highest confidence rating in 

which location and extent of an activity‟s footprint were accurately known, 2 

indicating known location but estimated extent, and 3 indicating the lowest 

confidence based on estimations of location and extent (sensu Eastwood et al. 2007). 

5.2.3 Recovery 

Seabed habitat sensitivity to different anthropogenic activities was estimated by 

determining recovery rates of the benthic community following cessation of an 

activity, and based on the activity‟s distribution and intensity.  Recovery was 

characterised as having occurred when the abundance, species richness or biomass of 

benthic biota was equivalent to a 20% reduction or less in the pre-impact value 

(Kaiser et al. 2006), or a return of benthic resources to either a baseline (pre-impact) 

or reference condition (Wilber et al. 2008).  Recently published estimates of habitat 
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recovery after aggregate extraction (Foden et al. 2009) and benthic fishing (Foden et 

al. 2010) were used.  A review was conducted of scientific literature for recovery of 

the benthos from the remaining human activities.  Our study area is in temperate 

waters where primary and secondary production are large with high seasonal patterns, 

so data from studies conducted in this, or similar areas, were used. UK waters have a 

long history of high levels of human activity, with many pressures tending to 

repeatedly target the same grounds year after year (Kaiser et al. 2002, Hiddink et al. 

2006b).  For some habitats therefore, the point at which recovery is deemed to have 

occurred is a point in a constant disturbance cycle, and not disturbance of a pristine 

benthic community.  

For some activities the date of occurrence can be important when determining a site‟s 

stage of recovery.  The timing of different activities was known with varying levels of 

precision (e.g. day or month) for four activities: dredge material disposal, fishing, 

cable burial and aggregate extraction.  This information was used to estimate the 

degree of recovery already reached by 2007 and to filter out activities old enough for 

full recovery to be assumed.  Drilling dates were not available for well heads and the 

spatial extent of resultant cuttings piles is likely to be an overestimation, as recovery 

was probably well underway at sites where dispersal had occurred.  Date of 

installation is irrelevant for areas of the seabed permanently sealed by some 

obstruction activities, as no recovery is possible for the duration of the activities‟ 

presence.  Similarly, date of wind farm construction was not relevant for scour pits 

associated with turbines, as they represent a constant abrasion pressure. 

5.2.4 Cumulative impact 

The size and location of multiple activities and pressures were identified, as described 

above.  Activities representing obstruction pressure were considered to be exclusive 

of in-combination effects.  Where the seabed has been effectively sealed by an 

installation, benthic recolonisation is prevented and extra activities cannot have 

further impacts.  For example, disposal may occur on top of a wreck, or a benthic fish 

trawl may pass over a well-head but they can create no more damage.  Within each 

habitat the size and location of areas where activities coincided were estimated; the 

estimation of total recovery times is described below. 
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Where activities were coincident, cumulative recovery times were estimated 

according to the intensity of the activity and habitat in which they occurred. Estimates 

were made under four different cumulative effects scenarios: single greatest, additive, 

antagonistic and synergistic (Halpern et al. 2008a, Foden et al. 2010).  This allowed 

us to determine the sensitivity of the scenarios to different measures of impact 

estimation, according to habitat type.  The premise for Scenario I was that the single 

worst or dominant pressure takes precedence over the others in determining combined 

effects; with lesser pressures having no additional impact.  For Scenario II, multiple 

pressures were assumed to act independently within the system and therefore overall 

recovery time was the sum of all pressures (e.g. Halpern et al. 2008a, Ban et al. 2010).  

The purpose of Scenarios III and IV was to show a range in the sensitivity of habitats 

to impacts that interact.  Scenario III estimated cumulative impacts as the antagonistic 

effects of multiple pressures.  Previous investigations have found marine landscapes 

to be more sensitive to some human activities than others.  If pressures are applied 

consecutively to marine habitats, then the impact of the primary pressure may pre-

condition the habitat to be less sensitive to the secondary pressure.  To estimate total 

recovery time, a linear calculation was used sensu Stelzenmüller et al. (2010); 

recovery time from the primary pressure + 50% recovery time from the secondary 

pressure, + 0% from the third pressure.  Total recovery times were expected to be 

between those of Scenarios I and II.  In Scenario IV synergistic effects were assumed, 

in which the impact from accumulated pressures was greater than the sum of the 

individual parts, the assumption being the first pressure lessens the resilience of a 

habitat, making it more sensitive to subsequent pressures.  Therefore in Scenario IV 

we estimated total recovery time using the same linear relationship: recovery from the 

primary pressure + 150% recovery time from secondary pressure + 200% from the 

third, with the expectation of total times greater than for the other three scenarios.  A 

rank order of pressures needed to be determined for Scenarios III and IV. 

Stelzenmüller et al. (2010) scored the sensitivity of UK marine landscapes to a range 

of pressures and found that in general landscapes were most sensitive to extraction, 

and were slightly more sensitive to smothering than abrasion pressures.  

 



138 

 

Table 5.2: Estimates of spatial extent of human activities and pressures affecting the UK seabed (km
2
) in 2007. Percentages of habitat 

and seabed affected are in italics. Confidence in spatial data; 1: known location and extent, 2: known location and estimated extent, 3: 

estimated location and extent.  

Pressure Human activity Confidence                 FOOTPRINTS PER HABITAT          . FOOTPRINTS ON UK 

SEABED 

Sand  Gravel  Muddy 

sand  

Reef  Mud Per  

activity 

Per pressure 

(overlapping 

activities merged) 

Smothering Dredge material disposal 3 110.8  

0.06 

89.6 

0.22 

61.0  

0.26 

21.9  

0.43 

0.2  

0.01 

283.5  

0.11 

346.01 

0.14 

Cuttings from well-

heads & platforms 

2 52.6 

0.03 

6.2  

0.02 

3.6  

0.02 

0.03  

<0.01 

0.1 

0.05 

62.6 

0.02 

Smothering per habitat (overlapping activities merged) 163.4 95.8 64.5 21.9 0.34  

Obstruction Oil & gas platforms  2 0.8  

<0.01 

<0.1  

<0.01 

<0.1  

<0.01 

0.0  

0.00 

0.0 

0.00 

0.8  

<0.01 

21.1  

<0.01 

Well-heads 2 4.2  

<0.01 

0.5  

<0.01 

0.3  

<0.01 

<0.1  

<0.01 

<0.1  

<0.01 

5.0  

<0.01 

Oil & gas pipelines 1 3.1  

<0.01 

0.7  

<0.01 

0.2  

<0.01 

0.0  

0.00 

<0.1  

<0.01 

4.0  

<0.01 
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Table 5.2: continued 

Pressure Human activity Confidence                        FOOTPRINTS PER HABITAT             . FOOTPRINTS ON UK 

SEABED 

Sand  Gravel  Muddy 

sand  

Reef  Mud Per  

activity 

Per pressure 

(overlapping 

activities merged) 

Obstruction Submarine cables 1 0.2  

<0.01 

<0.1  

<0.01 

<0.1  

<0.01 

<0.1  

<0.01 

0.0  

0.00 

0.3  

<0.01 

 

Wind turbines 1 0.1  

<0.01 

0.1  

<0.01 

0.1  

<0.01 

0.0  

0.0 

0.0 

0.00 

0.2  

<0.01 

Wrecks 2 6.7  

<0.01 

3.4  

<0.01 

1.7  

<0.01 

0.4  

<0.01 

0.1  

<0.01 

12.4 

<0.01 

Obstruction per habitat (overlapping activities merged) 14.4 4.4 1.9 0.4 0.1  

Abrasion Benthic fishing 2–3 93946.2 

50.56 

19893.4 

49.68 

18088.2 

76.25 

647.3  

12.73 

1324.7  

71.89 

133899.7 

52.2 

133909.59 

52.20 

Wind farm scour pits 2 0.6  

<0.01 

0.6  

<0.01 

0.5  

<0.01 

0.0  

0.00 

0.0  

0.00 

1.7  

<0.01 

Submarine cable burial 2 12.3  

<0.01 

4.2  

<0.01 

1.4  

<0.01 

0.0 

0.00 

0.1  

<0.01 

18.0  

<0.01 

Abrasion per habitat (overlapping activities merged) 93,952.3 19,896.8 18,089.3 647.3 1,323.9  

Extraction Aggregate extraction 1 51.9  

0.03 

92.4  

0.23 

1.9  

<0.01 

0.0  

0.00 

0.0  

0.00 

146.3 

0.05 

146.3 

0.05 

Footprint of all pressures, per habitat 94182.0 

50.69 

20089.5 

50.17 

18157.6 

76.54 

669.6 

13.17 

1324.3 

71.87 
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5.3 Results 

5.3.1 Spatial distribution of pressures 

Aggregate extraction and three obstruction activities – pipelines, cables and wind 

turbines – were all at the highest confidence level (Table 5.2), because their location 

and extent were available from the data source (Table 5.1).  The location of dredge 

disposal is only accurate to licence areas not the exact dumping site and this was 

assigned the lowest confidence rating. The location of benthic fishing vessels is 

provided at a 2 hourly frequency from VMS. However, in this time vessels can cover 

up to 12 nautical miles whilst fishing (Lee et al. 2010) and, as an estimate of the exact 

tracks of vessels was required for this work, confidence was rated as 2 to 3 

(intermediate-to-low). Data for the remaining activities were at the intermediate 

confidence level because their locations were known, but the extent of impact was 

estimated. 

The total area affected by human activity was 134 400 km
2
, constituting 52% of the 

UK seabed (Table 5.2).  Abrasion was the main pressure. Specifically, benthic fishing 

accounted for most of the abrasion pressure, affecting an area up to three orders of 

magnitude greater than for any other activity in any habitat.  The total area affected by 

obstruction, extraction and smothering pressures was only 513.4 km
2
, constituting 

~0.2% of the study area.  Smothering was the second largest pressure, mainly 

accounted for by dredge material disposal.  The majority of mud and muddy sand 

habitats were affected by human activities, with an estimated >70% of their area 

affected.  Human activities occurred in approximately half of the area of sand and 

gravel and only 13% of reef habitats.  As benthic fishing was the major cause of 

human pressure but its confidence rating was two-three, then in general overall 

confidence in the location and extent of human activity on the UK seabed in 2007 

could be classed as intermediate-to-low. 

In total only an estimated 166 km
2 

(0.07%) of UK seabed was affected by cumulative 

pressure (Table 5.3).  Smothering, abrasion and extraction pressures were coincident 

in relatively small proportions of habitat areas.  Smothering and abrasion accounted 

for the largest areas of in-combination pressures.  These two pressures coincided in 71 
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km
2
 (<0.1%) of sand, and 45 km

2 
(0.2%) of muddy sand. In all other cases, two or 

three combined pressures were coincident in <0.1% of habitat areas.  

Table 5.3: Estimated areas of coincidental pressures (km
2
) affecting UK seabed 

habitats (percentages of habitat area affected are in italics). 

Coincidental 

pressures 
                                         HABITAT                                   . 

Sand Gravel Muddy 

sand 

Rock Mud 

Smothering + abrasion 71.1 

0.04 

10.2 

0.03 

44.6 

0.19 

0.7 

0.01 

0.1 

0.01 

Abrasion + extraction 13.6 

0.01 

18.5 

0.05 

0.0 

0.00 

0.0 

0.00 

0.0 

0.00 

Extraction + 

smothering 

2.2 

<0.01 

3.7 

0.01 

0.0 

0.00 

0.0 

0.00 

0.0 

0.00 

Smothering + 

extraction + abrasion 

0.1 

<0.01 

0.9 

<0.01 

0.0 

0.00 

0.0 

0.00 

0.0 

0.00 

 

5.3.2 Recovery 

For reasons stated above, no recovery estimates were made for areas where the seabed 

was sealed by obstructions.  Therefore recovery estimates are not given for locations 

in which oil and gas platforms, wellheads, pipelines, wind turbines, wrecks or surface 

laid cables were present.  The precision of published recovery rates of the benthic 

community from the other commonly occurring human activities was variable, e.g. 

quoted as days, months or years.  These were rationalised as months or years, so that 

recovery rates in Table 5.4 were in the range less than one month to nine years.  
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Table 5.4: Recovery times for habitats by seabed pressure (smothering, abrasion or 

extraction) and activity.  Strong hydrodynamics: shallow (≤20 m), strong wave action 

or tidal currents, low residence time (~days), high turbidity and sediment movement.  

Weak hydrodynamics: >20 m deep, non-turbulent, low circulation sites. mo: months, 

yr: years, n/d: no data available, n/r: no recovery until the activity ceases, n/a: not 

applicable (the activity does not occur in the habitat, in UK waters).  

Pressure Human Activity     Environment     

Smothering Dredge material 

disposal 

 Estuarine 

(polyhaline) 

Coastal 

(euhaline) 

Strong hydrodynamics 1–9 mo
a,b

 ≤1 yr
a,b 

 

Weak hydrodynamics ≤2 yr
a 

1–4 yr
a,b,c,d 

 

     Habitat    

  Sand Gravel Muddy 

sand 

Reef Mud 

 Oil & gas 

cuttings 

< 1 yr
e,f 

> 11 mo 

(well 

advanced)
g 

n/d n/d n/d 

Abrasion Beam trawling < 6 mo
h
 n/d < 8 mo

i
 n/d n/d 

Otter trawling < 1 mo
i
 < 1 yr

j
 > 7 mo

k
 > 8 yr

i
 < 1 mo

i
 

Shellfish 

dredging 

> 8 yr
i,l

 >8 yr
i
 1.6 yr

i 
 3.2 yr

i
 n/d 

Wind turbine 

scour 

n/r  n/r n/r n/a n/a 

Cable burial 1–12 

mo
m,n 

< 1 yr
n 

< 1 yr
n
 n/a < 4 mo

o 

Extraction Aggregate 

extraction 

7.3 yr
p
  9.0 yr

p
 n/d n/a n/a 

a
Bolam & Rees (2003), 

b
Wilber et al. (2008), 

c
Borja et al. (2009), 

d
Wilson et al. (2009), 

e
Daan & 

Mulder (1996), 
f
Daan et al. (1994), 

g
Currie & Issacs (2005), 

h
Kaiser et al. (1998); 

i
Kaiser et al. (2006); 

j
Kenchington et al. (2006); 

k
Ragnarsson & Lindegarth (2009); 

l
Gilkinson et al. (2005), 

m
Guerra-García 

& García-Gómez (2006), 
n
Andrulewicz et al. (2003), 

o
Sparks-McConkey & Watling (2001), 

p
Foden et 

al. (2009) 

The impacts on the benthos from smothering are site-specific.  Recovery from dredge 

material disposal is context dependent and thus does not conform to a single 
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ecological model (Bolam & Rees 2003, Bolam et al. 2006, Whomersley et al. 2010).  

In general, communities adapted to strongly hydrodynamic environments recover 

significantly more rapidly than those in weakly hydrodynamic environments (Bolam 

& Rees 2003, Bolam et al. 2006, Wilber et al. 2008).  The recovery rates quoted in 

Table 5.4 are based on salinity, hydrodynamics and water depth of the receiving 

environment.  Our estimates of recovery from cuttings contaminated with WBM were 

based on recovery from physical smothering, because these are quantified in the 

literature.  However, WBM drilling wastes may contain free oil, dissolved aromatic 

hydrocarbons, heavy metals and radionucleides, and recent studies suggest the 

response of the benthic community may be through oxygen depletion (e.g. Trannum 

et al. 2010).  However, benthic recovery has yet to be quantified.  Recovery rates from 

physical smothering depend on particular combinations of sediment characteristics, 

the local hydrodynamic regime, receiving habitat and benthic community (Kröncke et 

al. 1992, Daan et al. 1994, Holdway 2002, Kröncke & Bergfeld 2003, Breuer et al. 

2004).  Although recovery rates were only available for sand and gravel 

environments, 94% of cuttings piles in the UK are in these habitats (Table 5.2).  

Abrasion pressures may be caused by regularly-occurring, constant, or one-off 

activities (Table 5.4).  Recovery rates from bottom-fishing were summarised from 

Foden et al. (2010), who estimated recovery of the benthos by fishing gear-type and 

intensity.  The evidence for the effects of fishing frequency is mixed, i.e. within a 

single habitat type the same frequency of trawl events can lead to differing responses 

of the benthos in different locations. Therefore a minimum recovery time of one year 

in Table 5.5 was used, which also allows for seasonality in the ability of the benthic 

community to recover (Hall et al. 2008, CLJ Frid pers. comm.).  The habitat-gear 

combinations for which there were no recovery rates only represent approximately 

one percent of the area subjected to benthic fishing in 2007.  Scour pits around the 

foundations of wind turbines are likely to be a constant abrasion pressure. Routine 

sampling is not possible within 50 m of a turbine (OSPAR Commission 2008), so it was 

assumed that no benthic recovery is possible from scour during the lifetime of wind 

farms.  Wind farms are licensed for 25 years (A. Judd, pers. comm.) and to date none 

have been decommissioned in UK waters.  Outside the scour zone, between turbines, 

there is little or no evidence for benthic disturbance caused by the wind farm (NPower 
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Renewables 2008, Degraer & Brabant 2009, Cefas 2010).  Cable installation is of 

limited spatial and temporal extent, unless a submarine cable is damaged, and 

recolonisation may be rapid (Guerra-García & García-Gómez 2006).  No data were 

available specifically on recovery from cable burial in mud habitats.  However, a 

study of low intensity benthic trawling effects in a low energy 60 m deep mud 

environment was appropriately comparable as it mirrors the mud habitat in UK 

waters.  

The only activity representing extraction pressure is aggregate dredging. Recovery 

estimates in Table 5.4 for this activity were taken from Foden et al. (2009).  
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Table 5.5: Impact from human activities in UK waters, in 2007. Recovery period estimates for individual activities and cumulative 

impact recovery estimates for four scenarios; I: longest recovery period; II: additive recovery period; III: antagonistic recovery period 

(100% 1
st
 pressure + 50% 2

nd
 pressure + 0% 3

rd
 pressure); IV synergistic recovery period (100% 1

st
 pressure + 150% 2

nd
 pressure + 

200% 3
rd

 pressure). Fishing gear, mean fishing intensity (where 1 = entire 1 km
2
 cell is fished yr

-1
) and period of recovery from fishing 

are taken from Foden et al. (2010), with a minimum recovery period of 1 yr (C.L.J. Frid pers. comm.). BT: Beam trawl, OT: otter trawl, 

SD: shellfish dredge, yr: years. 

Habitat 

Cumulative 

pressures Recovery estimates for individual activities 

Affected 

area 

(km
2
) 

Recovery estimates for 

cumulative impact  

-------- scenarios (yr)------ 

    I II III IV 

Sand Smothering + 

abrasion 

Disposal (estuarine strong dynamics) 0.75 yr, BT (intensity 1.86)
a
 1 yr

b 
4.0 1 1.8 1.3 2 

 Cuttings & disposal (coast strong dynamics) ≤1 yr, BT (intensity 0.81)
a
 1 yr

b
 18.3 1 ≤2 ≤1.5 ≤2.5 

 Disposal (coast weak dynamics) 1–4 yr, BT (intensity 1.11)
a
 1 yr

b 
35.6 ≤4 ≤5 ≤4.5 ≤5.5 

 Cuttings & disposal (coast strong dynamics) ≤1 yr, OT (intensity 1.07)
a
 1 yr

b
 8.2 1 ≤2 ≤1.5 ≤2.5 

 Disposal (coast weak dynamics) 1–4 yr, OT (intensity 1.41)
a
 1 yr

b 
3.3 ≤4 ≤5 ≤4.5 ≤5.5 

 Cuttings & disposal (coast strong dynamics) ≤1 yr, SD (intensity 0.18)
a
 1.4 yr 1.8 1.4 ≤2.4 ≤1.7 ≤3.1 

 Extraction + 

abrasion
 

Extraction 7.3 yr, BT (intensity 0.89)
a
 1 yr 11.6 7.3 8.3 7.8 8.8 

 Extraction 7.3 yr, OT (intensity 0.38)
a
 1 yr

 
1.5 7.3 8.3 7.8 8.8 

 Extraction 7.3 yr, SD (intensity 0.19)
a
 1.5 yr

 
0.6 7.3 8.8 8.1 9.6 

 Extraction + 

smothering 

Extraction 7.3 yr, Disposal, coast strong dynamics ≤1 yr 2.2 7.3 8.3 7.8 8.8 

 3 pressures Extraction 7.3 yr, Disposal, coast strong dynamics ≤1 yr, BT (intensity 0.27)
a
 1 yr

b
 0.1 7.3 ≤9.3 ≤7.8 ≤10.8 
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Table 5.5: continued 

Gravel Smothering + 

abrasion
 

Cuttings & disposal (coast strong dynamics) ≤1 yr, BT (intensity 1.16)
a
 1 yr

b 
0.2

 
1 ≤2 ≤1.5 ≤2.5 

 Disposal (coast weak dynamics) 1–4 yr, BT (intensity 0.85)
a
 1 yr

b 
2.9

 
≤4 ≤5 ≤4.5 ≤5.5 

 Cuttings & disposal (coast strong dynamics) ≤1 yr, OT, (intensity 0.72)
a
 1 yr

b
 1.0 1 ≤2 ≤1.5 ≤2.5 

 Disposal (coast weak dynamics) 1–4 yr, OT (intensity 1.58)
a
 1.6 yr 5.9 ≤4 ≤5.6 ≤4.8 ≤6.4 

 Cuttings & disposal (coast strong dynamics) ≤1 yr, SD, (intensity 0.40)
a
 3.2 yr 0.2 3.2 ≤4.2 ≤2.6 ≤5.8 

 Disposal (coast weak dynamics) 1–4 yr, SD (intensity 0.01)
a
 1 yr

b
 <0.1 ≤4 ≤5 ≤4.5 ≤5.5 

 Extraction + 

abrasion
 

Extraction 9 yr, BT (intensity 0.62)
a
 1 yr

b
 5.9 9

 
10 9.5 10.5 

 Extraction 9 yr, OT (intensity 1.26)
a
 1.3 yr 3.0 9 10.3 9.7 11 

 Extraction 9 yr, SD (intensity 0.35)
a
 2.8 yr 9.6 9 11.8 10.4 13.2 

 Extraction + 

smothering 

Extraction 9 yr, disposal (coast strong dynamics) ≤1 yr 1.9 9 10 9.5 10.5 

 Extraction 9 yr, disposal (coast weak dynamics) 1–4 yr 1.9 9 13 11 15 

 3 pressures Extraction 9 yr, disposal (coast strong dynamics) ≤1 yr, BT (intensity 0.18)
a
 1 yr

b
 0.9 9

 
11

 
9.5

 
12.5

 

Muddy 

sand 

Smothering + 

abrasion 

Disposal (coast strong dynamics) ≤1 yr, OT (intensity 1.5)
a
 1 yr

b
 44.6 1 ≤2 ≤1.5 ≤2.5 

Reef Smothering + 

abrasion 

Disposal (coast weak dynamics) 1–4 yr, SD (intensity 0.15)
a
 1 yr

b
 0.7 ≤4 ≤5 ≤4.5 ≤5.5 

Mud Smothering + 

abrasion 

Cuttings only (no data), OT (intensity 1.03)
a
 1 yr

b
 <0.1 1

c 
1

c 
1

c 
1

c 

a
Foden et al. (2010).   

b
Minimum recovery period of 1 year for all fishing gears and fishing intensity.   

c
No recovery period for one of the activities, therefore values for Scenarios II, III and IV are for one pressure only 
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5.3.3 Cumulative impact 

Co-occurring activities were found in all habitat types (Table 5.5).  The footprints of 

coinciding activities were largest in sand (87.2 km
2
) and smallest in mud (<0.1 km

2
) 

habitats. However, these constitute <0.5 % of each of the five habitat types.  Values are 

stated to an accuracy of 0.1 km
2
 to reflect the variation in confidence levels in the 

locational accuracy of activities and the spatial extent of their impact (from Table 5.2).  

Some combinations of activities were not found.  For example, in weakly hydrodynamic 

estuarine environments disposal did not occur where there were extraction or abrasion 

pressures.  Wherever abrasion coincided with extraction or smothering, benthic fishing 

was the causative activity of abrasion pressure.  Submarine cables and wind farm scour 

pits were exclusive of any other activity.  

Cumulative recovery rates across the four scenarios ranged from less than one to 15 

years.  In Scenario I, recovery time estimates were less than four years for all 

combinations of smothering and abrasion activities, but estimates doubled (7.3–9 years) 

where extraction comprised one of the co-occurring activities.  A similar pattern was 

repeated for Scenarios II, III and IV; aggregate extraction consistently accounted for the 

longest cumulative recovery times.  Consequently, sand and gravel habitats were 

estimated to have the longest recovery periods for Scenario IV, at up to 10 or 15 years, 

respectively, because there was no aggregate extraction in the other three habitats.  

Recovery estimates were most rapid for all scenarios in muddy sand habitats (up to 2.5 

years), where disposal and otter trawling in a strongly hydrodynamic environment were 

the only coincidental activities.  From the values given in Table 5.4 reef habitats might 

have been expected to recover slowly, but recovery from coincidental activities was 

estimated at up to 5.5 years.  The likely explanation is that scallop dredging was at the 

very low intensity of 0.15 (i.e. approximately once per km
2
 every seven years), which 

could allow for the benthos to begin recovering between trawls and dredge material 

disposal events.  Mud habitat was least affected by cumulative activity (<0.1 % of 

habitat).  Benthic recovery from drill cuttings in mud was not known, so cumulative 

times could not be estimated for combined smothering and abrasion pressures in this 

habitat.  However, this mud habitat only represents an area <0.1 km
2
. 
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5.4 Discussion 

This study builds on previous assessment of human activities causing direct, physical 

pressure on the UK seabed (Eastwood et al. 2007) in three key ways: by quantifying the 

intensity of relevant activities, by linking the spatial extent of activities to habitat type, 

and by estimating their cumulative impact using published recovery times.  Our 

methods and findings are relevant to several European and global obligations to assess 

and report marine environmental status, principally those commitments requiring 

greater knowledge and understanding of individual and cumulative effects from 

different human activities.  Using a typical year‟s data a snapshot of the spatial extent of 

human activities acting on the UK seabed in 2007 was provided, by applying the 

framework for evaluating individual and cumulative impacts proposed by Foden et al. 

(2010).  Where activities were coincidental four impact scenarios were applied to assess 

the range of possible consequences.  

In 2007 cumulative activities were relatively rare, in total affecting an area of only 166 

km
2
 (<0.1 % of the study area).  The majority of the footprint of human activities was 

caused by the activity of single, rather than multiple, sectors.  Abrasion had the largest 

spatial extent of the four pressures and just one activity, benthic trawling, accounted for 

99.99% of abrasion by area.  Benthic fishing affected more than half of UK (E & W) 

waters, as compared with 0.2 % affected by all the other 11 activities combined.  Inter-

annual change in this pattern is predicted to be small. Previous work examining 

temporal changes in fishing pressure in UK waters found strong spatio-temporal 

correlation in fishing intensity between 2006 and 2007 (Pearson‟s r = 0.405, p < 0.001) 

(Foden et al. 2010). The other human activities are of more restricted spatial extent, e.g. 

pipelines, dredge disposal licence areas, oil and gas platforms. Therefore the locations 

and sizes of coincident activities are unlikely to be highly variable over time.  To 

control the consequences of human pressures on the marine environment it could 

reasonably be argued that, in terms of extent, the assessment and control of spatially 

limited cumulative impacts is relatively unimportant.  The remaining concern relates to 

consequences of these combined activities on benthic recovery, and the extent to which 

they are sustainable. 
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Estimates of recovery rate for single sector activities were less than one month to nine 

years, while recovery ranged from one to 15 years for cumulative activities under the 

four scenarios.  The largest activity-habitat combinations were beam and otter trawling 

in sand and gravel, where recovery of the seabed community might reasonably be 

expected within one year.  In contrast, the recovery rates from aggregate extraction were 

substantially greater, although the spatial footprint was very restricted, comprising only 

<0.01 % that of benthic fishing.  In the small areas where cumulative effects occurred, 

abrasion and smothering in sand and muddy sand habitats accounted for the majority of 

coinciding pressures.  These pressure-habitat combinations had recovery estimates of up 

to 5.5 years, while other cumulative impact scenarios suggested the benthic community 

would require a decade or more to recover.  Wherever recovery estimates were ≥9 

years, aggregate extraction accounted for the largest proportion of that time period.  

These results provide quantitative estimates of spatial extent and recovery times of 

habitats, which are an important addition to the assessment of UK marine ecosystems 

already undertaken (Defra 2010).  This national assessment of benthic habitat condition 

was based on expert judgement and drew upon limited evidence from monitoring 

studies and research.  Its conclusion states “large areas of subtidal sediments in most 

regions have been adversely affected by mobile fishing gears such as bottom trawls and 

dredges … [and] locally, extraction of aggregates has damaged the seabed in the Eastern 

Channel and Southern North Sea” (Defra 2010, p 31).  Given the large footprint of 

benthic fishing and the slow recovery rate estimates from aggregate extraction, it might 

be reasonable, at least in the short term, for management measures to focus on these two 

activities if impact on the seabed is to be mitigated and marine status improved.  Indeed, 

aggregate extraction is already highly regulated and very spatially restricted (DCLG 

2002). New statutory regulations for aggregate licensing (DCLG 2007) require the 

Marine Management Organisation to consider the Habitats and Environmental Impacts 

Assessment Directives (EU 1992, EU2003) in their decisions. Consequently, decision-

making on site licences is already moving towards an ecosystem approach. 

Furthermore, it has been argued by some commentators that the loss of seabed can be 

balanced by the socio-economic need for aggregate, especially when sites are selected 

within an ecosystem-based management system (Petterson 2008, Rabaut et al. 2009). 

This arguments is more difficult for extensive activities such as fishing, which is 
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amongst the most important factors affecting the ecological state of many marine 

ecosystems (Jennings & Kaiser 1998, Watling & Norse 1998), and for which 

management is widely considered to be a high priority (e.g. Pauly et al 2005, Pitcher & 

Lam 2010). However, in the UK there has been a recent move toward regionalisation 

with the establishment of Regional Advisory Councils, which have the potential to 

improve fisheries management. 

The methodology for analysing individual and cumulative impacts of human activities 

on the seabed and its application presented herein, are likely to be appropriate for other 

locations. Indeed the literature reviews of recovery rates, here and from previous work 

(Foden et al. 2009, 2010), included international studies with similar environmental 

conditions to the UK, based on this a priori assumption. Waters of the wider European 

region have comparable pressures as well as environmental characteristics to the UK, 

and similar responses to those pressures would be expected. The basic framework 

would also be amenable for use in examining the impact of different kinds of pressures 

affecting regions of contrasting environmental conditions, although literature reviews or 

empirical studies of pressure effects would need to be focused on the same 

characteristics of the region under investigation. 

Cumulative impact assessment as a discipline is still in its early stages.  Recent studies 

have mapped spatial extent and intensity of multiple human activities (e.g. Ban & Alder 

2008, Halpern et al. 2008b, Selkoe et al. 2009), but few have considered their impact on 

the receiving habitat (e.g. Ban et al. 2010).  These studies are at a variety of scales and 

in all cases identified greater proportions of overlapping pressures than in this study, 

generally because they considered pressures on the entire marine ecosystem such as 

shipping, recreation, aquaculture, and pelagic fishing.  Our detailed, quantitative study 

is an important step on which a holistic ecosystem assessment could be based.  

However, the more complex and highly integrated the assessment, the more difficult it 

can be to indicate causality and to predict future scenarios (Foden et al. 2008).  For 

example, recent assessments using multiple parameters to model present and future 

states are variable in producing quantitative or qualitative conclusions (e.g. Culp et al. 

2000, Link et al. 2002, Choi et al. 2005, Chang et al. 2008), which can have 

consequences for management practices.  A compromise is needed between the 
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complexity of a fully integrated ecosystem assessment and its utility for directing 

management. 

There are limitations to this work, for example related to the quality of broad scale 

habitat maps, and the lack of ground-truthing of recovery times, which have been faced 

by many previous regional scale assessments (e.g. Halpern et al. 2009, Ban et al. 2010).  

Recovery rates for single activities, summarised in Table 4, are based on empirical 

evidence, but there are too few studies of recovery from the effects of combinations of 

activities to estimate recovery. For this reason we presented four scenarios of 

cumulative effects from multiple activities.  Ideally the scenarios would also have been 

run to investigate cumulative impact from repeat events of the same activity.  However, 

it was not possible to present this within the confines of a single paper, although it 

would be an interesting area for future study.  The use of confidence ratings for our data 

has been a useful step, particularly for those activities for which the exact locations or 

the spatial extent of their impact was unknown.  Confidence was generally low where 

generic spatial dimensions were used, e.g. for cuttings piles (sensu Eastwood et al. 

2007).  In reality a markedly patchy distribution of cuttings around production platforms 

has been noted, depending on site-specific sediment grains size and local hydrography 

(Kingston et al. 1987).  Comparative in situ observations of cuttings from oil and gas 

production would size improve estimates of area affected and biological impacts from 

smothering, by habitat type.  Similarly, the development of scour pits around turbines 

will be in the direction of local, prevailing hydrodynamics and such site-specificity 

could not be taken into account for each structure.  

Finally, it was assumed that recovery of the natural benthic community could not take 

place where obstructions were present.  However, it is possible that some structures, 

such as surface-laid cables and pipelines, have either self-buried, or are themselves used 

as a structure for future colonisation.  Nevertheless, they might also be subject to 

damage and therefore be re-exposed for maintenance and it was not possible to account 

for these differences in our analyses.  Other semi-permanent structures such as well-

heads and turbines might provide a hard substrate offering new habitat for benthic fauna 

and flora (Kogan et al. 2004, 2006, Danish Energy Authority 2006).  Such subtle 

changes in habitat can have implications for higher trophic levels by providing shelter 

and feeding opportunities for predators.  There is some evidence that the artificial reefs 
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created by obstructions such as offshore wind farms can enhance fish populations in two 

ways, by increasing the availability of prey species living on the turbines and excluding 

some types of fishing activity from the region, effectively creating a no-take zone (Punt 

et al. 2009, Reubens et al. 2011).  Consideration of these types of trade-off among 

different activities may be an interesting extension of cumulative impact assessment. 

Nonetheless, establishment of fauna associated with these hard substrates represents 

changes in populations, not re-establishment of the ambient benthic community which 

we defined as recovery. 

The response of the benthic community to all human activity was found to be strongly 

dependent on the type of receiving habitat.  This highlights the necessity for accurate, 

high resolution habitat maps, essential for more precise estimations of impact for 

effective management and control (Defra 2010).  Similarly, higher resolution spatial 

data would more closely link activities to the receiving habitat.  For example, whilst 

two-hourly VMS signals from fishing vessels are suitable for management purposes at 

the UK scale, for estimating cumulative effects more frequent data would improve the 

accuracy in locating coinciding activities.  Further scientific observations of the 

immediate and long-term footprint on the benthos from all human activities are 

necessary to determine which of the four scenarios is the most likely in the natural 

environment. 

This work is a rigorous, quantitative assessment of direct individual and cumulative 

anthropogenic impacts on the seabed.  It contributes towards understanding the links 

between humans and the marine environment by assessing the spatial and temporal 

effects of anthropogenic activities on the benthos.  For future assessment and 

management purposes, in terms of the impact we have examined in this UK-based 

study, perhaps the most significant finding is that cumulative pressures on the seabed 

were very spatially restricted in 2007.  Recovery times were comparable to some single 

sectors; therefore single sector activities remain the predominant cause of direct human 

impact on the benthos. Nevertheless, there is still a need to develop scientific 

understanding of the linkages across those aspects of the marine environment not 

considered herein; e.g. water column pollution, pelagic fisheries, shipping and 

underwater noise. How such considerations might modify our findings is yet to be 

determined.  To implement a full ecosystem-based approach to management would 
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require a coherent and holistic assessment of all such interconnections, some of which 

may lead to cumulative impacts greater than those considered herein (Foden et al. 

2008).  Nevertheless, some of the knowledge, data and assessment tool gaps identified 

in recent national status assessments (Defra 2010) have been addressed, with regards to 

human pressure and impact on the benthic community.  We hope that this approach to 

assessing the state of marine habitats will enable a more quantitative approach in future 

reporting against European and international commitments.  
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CHAPTER 6 

Discussion 

If humans are to exploit marine resources in a sustainable way, ecosystem integrity 

must be preserved.  This means the ecology remains diverse, long-lived, productive and 

resilient despite the human pressures exerted upon it.  In recent years there has been a 

proliferation of national and international policies and regulations designed to deliver 

sustainability in the marine environment, including the European Union‟s 

Environmental Impact Assessment (EU 1985), Habitats (EU 1992), Water Framework 

(EU 2000) and Marine Strategy Framework Directives (MSFD) (EU 2008a), and the 

UK‟s Marine and Coastal Access Act (Defra 2009).  Specifically, the MSFD commits 

member states to achieve Good Environmental Status, providing “ecologically diverse 

and dynamic oceans and seas which are clean, healthy and productive within their 

intrinsic conditions” (Article 3(5) MSFD, EU 2008a).  Furthermore the use of the 

marine environment should be “at a level that is sustainable, thus safeguarding the 

potential for uses and activities by current and future generations”.  To achieve the goals 

of sustainability requires effective marine management, which is based on sound 

knowledge and understanding of the impact of pressures upon the marine environment.   

The research presented in this thesis has developed and applied a methodology for 

analysing the effect of human activities on the UK seabed.  The research was 

undertaken with the aims of investigating the spatial and temporal pressures and 

impacts of both individual and cumulative activities on different seabed habitats, by 

estimating recovery rates of benthic communities following cessation of a pressure of 

defined magnitude and duration.  This chapter draws on the findings of previous 

chapters to propose a method for conducting an integrated assessment of human 

pressures and impacts on UK seabed habitats.  The implications of the research are 

examined, its strengths and weaknesses discussed and recommendations for future work 

explored. 
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6.1 Summary of principal findings 

The purpose of Chapter 2 was to guide development of a practical programme for 

conducting an effective marine environmental assessment, which would then be used to 

steer subsequent research for the thesis.  The review examined a broad range of aquatic 

environmental assessments to identify best practice.   A key finding of the chapter was 

that in conducting an environmental assessment, assessors need to pre-determine three 

components: their definition of what the „assessment‟ is to comprise, the methods to be 

used, and the standards against which measured parameters are judged.  However, 

commonly used terms were often defined or interpreted differently between 

assessments.  Indeed, fewer truly integrated ecosystem assessments have been 

conducted than the literature search would suggest.  The chapter provided an approach 

to more accurate usage of assessment terminology and a system of categorisation which 

could simplify the way that assessments are defined and used. 

At first more complex, dynamically-linked, fully integrated ecosystem assessments may 

seem preferable to simpler assessments, but this is not necessarily the case.  More 

important is for every assessment to have a clearly defined purpose and to use accurate 

terminology, than to be complex.  For example, relatively straightforward single and 

multi-species fish stock assessments, which regularly report extant condition against 

historic data and scientifically established reference levels and thresholds, provide 

valuable long-term datasets.  Managers are able to take action on the findings of these 

reports and their long history means there is good awareness of their strengths and 

limitations.  In contrast one-off, highly complex, fully integrated marine ecosystem 

assessments are difficult to conduct, are time and resource hungry and the resultant 

report can be complicated to interpret.  Often relative rather than quantitative values and 

thresholds are used, reducing transparency.  Managers may face many challenges when 

trying to act on the findings of such reports, as there are fewer clear messages to use as 

guidance. 

Whilst Chapter 2 was in large part a review of existing studies, the lessons learned in 

regard to definitions, methods and standards were applied to subsequent chapters.  For 

example, in analysing the pressure and impact of marine aggregate extraction on UK 

seabed habitats (Chapter 3) terminology and the scope of the assessment were carefully 



167 

 

defined.  The method of measuring habitat sensitivity in terms of benthic recovery rates 

were clearly set out and this is a recognised standard previously established in studies of 

a similar nature.  The key findings were that between 2001 and 2007 the spatial extent 

of this pressure was small, but the environmental impact was high.  In total less than 

0.1% (321.7 km
2
) of seabed was subject to aggregate extraction, but recovery rates of 

the physical environment and the benthic community were estimated to take decades in 

the more sensitive marine landscape types.  Linking information on habitat recovery 

potential to marine landscapes and aggregate activity provides a practical tool for use in 

marine spatial management.  Managers could be guided when licensing aggregate 

extraction activities to avoid the most sensitive marine landscapes and to target the least 

sensitive.   

A similar assessment of pressure and impact from benthic fishing (Chapter 4) was 

conducted and taken a stage further by combining the findings with those of Chapter 3.  

Guided by the principal components for a practical and successful integrated 

environmental assessment set-out in Chapter 1, this was a step towards a cumulative 

impact assessment.  There were three key findings.  Firstly, in 2007 benthic fishing was 

a far more extensive pressure on the UK seabed (~50% of the study area) than aggregate 

extraction, but exerted less environmental impact.  The shorter recovery-time estimates 

suggest 80% of the fished area would be able to recover between trawl events at the 

levels of activity recorded in 2007.  Secondly, aggregate extraction and fishing were 

estimated to be coincident in a very small area, only 40 km
2
 (<0.01%).  Four scenarios 

of cumulative impact were presented, because there are few empirical studies of 

recovery from these combined pressures, across the range of habitat types.  The third 

finding was that the impact of extraction accounted for the majority of the estimated 

recovery times in all scenarios. 

In Chapter 5 the following human activities that directly affected the seabed in 2007 

were added to the aggregate extraction and benthic fishing data, and investigated for 

their individual spatial extent and impact: oil and gas production activities, pipelines, 

telecommunication and power cables, disposal of dredged material, wind turbines and 

wrecks.  The activities were grouped into four pressure types, as specified in the MSFD: 

smothering, abrasion, obstruction (also known as sealing) and extraction (EU 2008a).  

They were incorporated into the cumulative impact scenarios proposed in Chapter 4 and 
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there were four key findings.  Firstly, more than half of the seabed was affected by 

human activities and recovery rates across the matrix of activity-habitat combinations 

ranged from months to decades.  Secondly, benthic fishing had the greatest spatial scale 

of all activities, accounting for 99.6% of the seabed area subjected human pressure in 

2007.  However, the evidence for fishing frequency effects is mixed, so a minimum 

recovery time of 1yr was used, which also allowed for seasonality in the ability of the 

benthic community to recover (Hall et al. 2008, CLJ Frid pers. comm.).  Thirdly, the 

impact on the benthos of smothering did not conform to a single ecological model and 

studies of recovery have found ecological impacts to be site specific (Bolam & Rees 

2003, Bolam et al. 2006, Whomersley et al. 2010).  In general, the composition of 

benthic communities is naturally related to levels of hydrodynamic stress, rather than 

habitat types per se, and communities adapted to strongly hydrodynamic environments 

recover significantly more rapidly (e.g. less than one year) than those in weakly 

hydrodynamic environments (Bolam & Rees 2003, Bolam et al. 2006, Wilber et al. 

2008).  Deep, non-turbulent, low circulation sites show a slow benthic community 

recovery rate because ecosystem communities are slower growing and are considered 

less resilient.  Fourthly, recovery of the benthos was not feasible in the presence of 

some activities.  Where the seabed has been sealed the benthic community cannot 

recover until the obstruction is removed and the seabed becomes available once more.  

Therefore recovery estimates were not given for locations in which oil and gas 

platforms, wellheads, pipelines, wind turbines, wrecks or surface laid cables were 

present.  Wind turbine scour is a constant source of pressure, making recovery 

impossible until removal of the turbines.  Finally, less than 0.1% of the seabed was 

affected by multiple activities.  Wherever aggregate extraction was coincident with 

other activities, extraction accounted for the greatest proportion of estimated recovery 

time.  

In conclusion, a limited number of activities were the predominant cause of widespread, 

long recovery times of benthic fauna.  This suggests that when time and resources are 

limited, single sector assessments are still useful guides for managers.  With the current 

distribution of activities it might reasonably be argued that effort should be focussed on 

spatially extensive activities, such as benthic fishing, to mitigate most of human impact 
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on the UK seabed.  Single sector planning can still be ecosystem-based, if knowledge of 

habitat sensitivity influences management decisions.   

Cumulative impact maps can inform planning decisions where reductions in human-

induced stressors are an explicit goal, and thus it is important that these techniques 

continue to be tested and refined to provide meaningful results (Ban et al. 2010).  

Detailed evaluation of the effects on cumulative activities contributes to a more 

comprehensive picture of pressure and impacts.  As demands on the natural resources of 

the marine environment are predicted to rise, cumulative effects are likely to increase.  

The work presented in this thesis provides a method for assessing such cumulative 

impacts. 

 

6.2 Strengths and limitations 

Inevitably there are both strengths and limitations to the research presented in this 

thesis.  The main strengths are: a method has been proposed for robustly quantifying, at 

a high resolution, the location and intensity of activities directly affecting the seabed; 

the spatial extent of activities has been linked to habitat type, and individual and 

cumulative impacts have been estimated using published recovery times.  Many of the 

strengths have been discussed at length in the preceding chapters and will not be 

repeated here.   

A particular strength is that the thesis has provided a way of combining spatial data 

from a variety of sources at different resolutions.  The use of geospatial technology 

enabled human activities to be visualised, combined and quantified, and was found to be 

an especially valuable tool for identifying cumulative impacts.  The method was tested 

using data from 2007 and is transparent and reproducible.  Therefore, similar analyses 

can be conducted for more recent data in order to carry out an assessment of temporal 

change in individual and cumulative pressures.  An additional strength is that 

estimations of habitat sensitivity were based on data from previously published studies, 

which were independent of the work conducted for the thesis.  Drawing on information 

from a broad base of national and international work makes the estimations of benthic 

community recovery rates more robust.  Finally, Chapter 2 contributes to the 
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clarification of environmental assessment methodologies, including the relatively new 

discipline of cumulative impact analysis.  Cumulative pressure maps have already been 

devised for some regions of the sea to help inform planning decisions (e.g. Halpern et 

al. 2008, Ban et al. 2010).  The approach proposed herein takes mapping a stage further 

and offers a quantitative method to estimate a range of potential impact scenarios.  The 

main limitations to the work and the ways in which these were addressed are discussed 

below. 

Two different classifications of „habitat‟ were used in the thesis.  Aggregate activity was 

linked to marine landscape types in Chapter 3 because aggregate extraction recovery 

rates are determined by a combination of depth, tidal stress and grain size (Foden et al. 

2009), which are characteristics that classify marine landscape types (Connor et al. 

2006).  Impacts from fishing, however, relate primarily to sediment grain size (Kaiser et 

al. 2006, Pitcher et al. 2009) and this single characteristic formed the classification of 

the habitat types used in Chapters 4 and 5.  Nevertheless, these two can be easily cross-

referenced through the common attribute of grain-size.  Habitat types were mapped 

from British Geological Survey data because more accurate habitat maps from survey 

data currently only cover ~10% of the UK continental shelf (Defra 2010). 

The literature reviews undertaken for Chapters 3, 4 and 5 found there to be a limited 

number of studies of recovery of the benthic community following cessation of some 

human activities.  The estimates of recovery times were not ground-truthed, which is a 

problem faced by many regional scale assessments (e.g. Halpern et al. 2009, Ban et al. 

2010).  These problems can complicate the quantification of recovery rates.  Some 

published studies estimate recovery from low impact activities to be less than one year.  

However, the ability of the benthic community to recover from impacts is seasonal 

(Hall et al. 2008).  Seasonality has less effect on recovery periods estimated to be of 

several years, but it can be important when recovery is estimated as ≤ 12 months.  To 

account for this, a minimum of one year was assumed for all recovery periods (CLJ Frid 

pers. comm.).   

Confidence rating was low for the activities which had inexact locations or where the 

precise spatial extent of impact was unknown (Chapter 6).  For example, the location of 

benthic trawl vessels is usually recorded at 2 hourly intervals.  This is generally 
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adequate for a regional scale assessment (Lee et al. 2010), but at finer scales used for 

identifying co-occurring activities (e.g. m
2
), the actual footprint of vessels‟ trawl-gear 

has to be estimated.  Confidence was also low where generic spatial dimensions were 

used, e.g. for cuttings piles and scour pits associated with wind turbines and wrecks 

(sensu Eastwood et al. 2007).  However, the spatially restricted nature of these latter 

pressures means there will be a small effect on the overall spatial estimates.  

As described above, there was an assumption that recovery of the natural benthic 

community could not take place where obstructions were present.  However, it is 

possible that structures such as surface-laid cables and pipelines have self-buried, but it 

was not possible to account for these differences in the analyses.  Other structures might 

provide a hard substrate offering new habitat for benthic fauna and flora.  For example, 

anemones (Actiniaria) were abundant on an exposed cable that traversed soft sediment 

which normally would be unsuitable for such animals (Kogan et al. 2004, Kogan et al. 

2006).  The common mussel (Mytilus edulis), common starfish (Asterias rubens) and a 

macroalgal community became abundant on turbines and scour protection, where 

previously they had been absent (Danish Energy Authority 2006).  Such alterations can 

have implications for higher trophic levels; fish, marine mammals and seabirds, but 

establishment of species associated with hard substrate represents changes in 

population, not recovery of the ambient benthic community.  

Some activities were not included in the assessment either because data were not 

available, or only available in an inappropriate format, such as dredging for navigational 

purposes, potting, fixed-net and inshore fishing.  Total fishing effort is likely to be 

underestimated within 12 n miles of the shore, because the majority of fishing effort 

here is by vessels less than 15 m in length, which are not required to carry VMS (Foden 

et al. 2010).  However, data that were used were prioritised so that those representing 

the greatest pressures and impacts were considered.  Whilst the inclusion of extra data 

would technically offer more comprehensive coverage, their restricted nature means 

they would have a negligible influence on the final outcomes.  Nevertheless, accurately 

quantifying the potential influence of more minor activities would be an interesting area 

for future study. 
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6.3 Recommendations for future work 

As previously noted, accurate habitat maps currently only cover approximately 10% of 

the UK continental shelf (Defra 2010).  Accurate habitat maps for the whole study area 

would be a significant improvement on the British Geological Survey data used herein.  

Linking the location of human activities to more accurate habitat maps would improve 

confidence by reducing the chance of over- or under-estimation of habitat sensitivity 

and recovery rates.  Nevertheless, this level of detail may only be necessary for fine-

scale assessments, for example in locations where there is a risk of multiple pressures 

coinciding, or at the boundaries between contrasting habitat types.  In the absence of 

marine habitat maps generated from survey data, modelled marine habitats have been 

used as a successful alternative in a range of recent scientific studies (e.g. Ierodiaconou 

et al. 2010, Kloser et al. 2010, Robinson et al. 2010). 

Recovery from some activities is site-specific, dependent on particular combinations of 

habitat characteristics, the local hydrodynamic regime and benthic community (Breuer 

et al. 2004), all of which complicate the prediction of potential long-term environmental 

impacts (Holdway 2002).  Comparative in situ observations, for example of cuttings 

from oil and gas production or scour around wind turbines, would improve estimates of 

size of area affected and biological impacts from pressures, by habitat type.   

Another issue worthy of future study is how best to reconcile past one-off pressures that 

still exist, with those which are ongoing.  In Chapter 5 recovery of the benthos was not 

considered feasible in the presence of existing obstructions.  On the other hand, as noted 

in that chapter, it is possible that some structures, e.g. wrecks or surface-laid pipelines, 

have either self-buried, or are themselves used as a structure for future colonisation.  

Therefore the impact of these structures is likely to be considerably lower than for 

repetitive pressures such as bottom-fish trawling.  To take this into consideration would 

require recovery estimates to be tempered by the duration of time since initial impact.  

The concept proposed in this thesis of estimating impact under a range of scenarios, 

could be a model for estimating the possibility of „recovery‟ from obstructions; 

„recovery‟ being the time taken to self-bury or to colonise wrecks and pipelines.  

Recovery is likely to vary with habitat type and although some data are available in the 



173 

 

published literature on self-burial and colonisation (e.g. Guerra-García & García-Gómez 

2006, Kogan et al. 2006), ideally the scenarios would be ground-truthed. 

 

6.4 Conclusions 

This thesis was concerned with developing practical approaches to environmental 

assessment.  Best practice for conducting marine environmental assessments was 

identified in Chapter 1.  A relatively simple assessment of impact caused by a single 

sector was carried out in Chapter 2, based on this best practice; i.e. the scope, the 

methods and standards against which parameters were measured were all clearly set out.  

Chapters 3 and 4 were increasingly complex, in becoming „dynamically linked 

ecosystem assessments‟ (Foden et al. 2008).  The most complex type of assessment, 

„dynamically linked and fully integrated‟, was not conducted because there is still a 

need to develop scientific understanding of the linkages across aspects of the marine 

environment not considered.  Human activities cause pressure to other parts of the 

marine ecosystem, such as water column pollution, pelagic fisheries, shipping, 

underwater noise and siltation caused by plumes from disposal of dredge material or 

aggregate screening might be considered.  To implement a full ecosystem-based 

approach to management would require a coherent and holistic assessment of all such 

interconnections, some of which may lead to cumulative impacts greater than those 

considered in this thesis (Foden et al. 2008).  Nevertheless the focussed approach 

presented in this thesis accepts the limitations of the data outlined above, but it still 

derived significant and important outputs on which future work can be built.  The 

approach has the advantages of clarity and reproducibility, and it delivers analyses 

which can guide management of those activities specifically affecting benthic 

ecosystems.   

Some of the knowledge, data and assessment tool gaps identified in recent national 

status assessments (Defra 2010) have been addressed in this thesis, with regards to 

human pressure and impact on the benthic community.  The spatial data used were 

readily available and after manipulation and preparation of the different datasets, 

analysis was possible in a GIS.  The methods described in previous chapters for 
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combining the data are relevant to marine spatial planning (MSP).  The EU recognises 

and promotes MSP as an instrument for optimising the use of marine space to benefit 

the marine environment (EU 2008b).  Marine spatial planning can aid delivery of the 

vision for UK‟s oceans and seas to be “clean, healthy, safe, productive and biologically 

diverse” (Defra 2002).   It is hoped that the method for assessing the state of marine 

habitats will enable a more quantitative approach in future reporting against European 

and international commitments. 
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