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Abstract: The dually conjugate Hopf algebras Funp,q(R) and Up,q(R) associated

with the two-parametric (p, q)-Alexander-Conway solution (R) of the Yang-Baxter

equation are studied. Using the Hopf duality construction, the full Hopf structure

of the quasitriangular enveloping algebra Up,q(R) is extracted. The universal T -

matrix for Funp,q(R) is derived. While expressing an arbitrary group element of the

quantum group characterized by the noncommuting parameters in a representation

independent way, the T -matrix generalizes the familiar exponential relation between

a Lie group and its Lie algebra. The universal R-matrix and the FRT matrix

generators, L(±), for Up,q(R) are derived from the T -matrix.

1. Introduction

The quantum Yang-Baxter equation (QYBE) admits nonstandard solutions [1]-[5]

characterizing quasitriangular Hopf algebras which are not deformations of classi-

cal algebras. The nonstandard quantum algebras associated with the Alexander-

Conway solution of the QYBE has been studied ([1]-[5]) and its two-parametric

generalization has been obtained [6, 7]. These algebras have the interesting prop-

erty that, by the technique of superization [4], they can be associated with the

graded quantized universal enveloping algebra (QUEA) U〈q〉(gl(1|1)), where 〈q〉 rep-

resents the set of pertinent deformation parameters. Interestingly, the quantum

group realization of the Alexander polynomial was obtained [8, 9] from the algebra

Uq(gl(1|1)) while yielding a free fermion model for the invariant. In addition, for the

nongeneric values of the deformation parameters, the nonstandard R-matrices may

be engendered using a coloured, generalized boson realization [5, 7] of the universal

R-matrices of the corresponding standard ungraded QUEA U〈q〉(gl(2)).
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The FRT-construction [10] associates to any solution R of the QYBE a quantum

matrix pseudogroup defined by the transfer matrix T . The elements of T generate

the function algebra Fun〈q〉(R). The QUEA U〈q〉(R), dually conjugate to Fun〈q〉(R)

in the Hopf sense, may now be obtained [4] if Fun〈q〉(R) contains a group-like, ‘quan-

tum determinent’ type, element and some suitable ansatz for the matrix generators

L± of U〈q〉(R) exists. The significance of a key notion capping the Hopf duality

structure [10] was recently highlighted by Frønsdal and Galindo [11] in the con-

text of Funp,q(GL(2)) and Up,q(gl(2)) : In a representation independent way, they

derived a closed expression for the dual form

T =
∑

eAEA = Te,E , (1.1)

called the universal T -matrix, and established it as the quantum group generaliza-

tion of the familiar exponential map obtaining in the case of classical groups (see

also [12, 13]). Here, the sets
{

eA
}

and {EA} are the respective basis elements of the

dual Hopf algebras A = Fun〈q〉(R) and U = U〈q〉(R), satisfying the relation
〈

eA , EB

〉

= δAB , (1.2)

where 〈 , 〉 is a doubly nondegenerate bilinear form. Conversely, as in the classical

case, an infinitesimal analysis of the quantum group elements would lead to the

quantum algebra, as has been demonstrated by Finkelstein [14] in the example of

Funq(GL(2)). When the algebras Fun〈q〉(R) and U〈q〉(R) are finitely generated,

a closed expression of the T -matrix may be obtained in terms of the two sets of

generators. The T -matrix expresses a representation-free realization of a quantum

group element depending on the noncommuting group parameters. As pointed out

in ([11]-[13]), the main usefulness of the T -matrix derive from the fact that the

transition matrices of the integrable models appear, upon specialization, in passing

from the structure to the representations.

The technique adopted in ([11]-[13]) may be summarized as follows. The struc-

ture relations embodying the duality between the conjugate Hopf algebras may be

expressed succinctly in terms of the T -matrix as

Te,ETe′,E = T∆(e),E , Te,ETe,E′ = Te,∆(E) ,

Tǫ(e),E = 1l , Te,ǫ(E) = 1l ,

TS(e),E = T −1 , Te,S(E) = T −1 , (1.3)

where e and e′ (E and E ′) refer to two identical copies of Fun〈q〉(R) (U〈q〉(R))

and ∆, ǫ and S denote, respectively, the coproduct, counit and the antipode maps.
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Using the known Hopf structure of Fun〈q〉(R), the dual Hopf structure of the QUEA

U〈q〉(R) may be read from (1.3). When both the Hopf algebras are finitely generated,

the basis elements
{

eA
}

and {EA} may be expressed as ordered monomials in the

respective sets of generators. A closed expression of the dual form may now be

explicitly obtained in terms of the two sets of generators.

Using the q-exponentials, an explicit expression for the T -matrix corresponding

to the dual Hopf algebras Funp,q(GL(2)) and Up,q(gl(2)) was first obtained in [11].

The dual forms for the standard quantum gl(n) and the twisted quantum gl(n)

were considered in [12] and [13], respectively. Following the Frønsdal-Galindo ap-

proach, Bonechi et al. [15] derived the T -matrices for some inhomogeneous quantum

groups. Morozov and Vinet [16] constructed these generalized exponential maps for

all standard simple quantum groups with a single deformation parameter. The dual

super-Hopf algebras Funp,q(GL(1|1)) and Up,q(gl(1|1)) were studied in [17] using the

above approach. In another developement, the (p, q)-generalization of the Wigner d-

functions have been obtained [18] using the finite dimensional representations of the

T -matrix for the algebra Funp,q(GL(2)). With a view to provide further concrete

examples of the universal T -matrix we consider here the Hopf duality structure of

the (p, q)-Alexander-Conway algebras and obtain the associated universal T -matrix.

The universal R-matrix for the (p, q)-Alexander-Conway algebra is known [7]

and we show here that it may be obtained from the universal T -matrix via a homo-

morphic map φ : Funp,q(R) −→ Up,q(R) using the relation

(id⊗ φ)T = R . (1.4)

Such a map was first used in [13] in the context of quantum gl(n). It is then

obvious that in view of the link between the universal R-matrix and the FRT matrix

generators L(±) [10] it should be possible to obtain L(±) directly from the T -matrix.

Such a procedure has already been demonstrated in [19] in the case of Uq(sl(2)). We

shall exhibit here a similar derivation of L(±)-matrices for Up,q(R) from the T -matrix.

2. Hopf structure of Funp,q(R)

We study the Hopf algebra associated with the two-parametric nonstandard solu-

tion [6, 7] of the QYBE, namely,

R =











Q 0 0 0
0 λ−1 s 0
0 0 λ 0
0 0 0 −Q−1











, s = Q−Q−1 . (2.1)
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The defining relation of the quantum inverse scattering method [10],

∑

m,n=1,2

Rim,jnTmkTnl =
∑

m,n=1,2

TjnTimRmk,nl , (2.2)

with the R-matrix given by (2.1), describes a transfer matrix

T = [tij ] =

(

a b
c d

)

, (2.3)

whose variable elements obey the braiding relations

ab = p−1ba , ac = q−1ca , db = −p−1bd , dc = −q−1cd ,

p−1bc = q−1cb , ad− da = (p−1 − q)bc , b2 = 0 , c2 = 0 , (2.4)

where

p = λQ , q = λ−1Q . (2.5)

If the diagonal elements of T , a and d, are invertible, the elements {a, b, c, d, a−1,

d−1} generate a Hopf algebra Funp,q(R) whose coalgebraic structure readily follows.

The coproduct, counit and the antipode maps are, respectively, given by

∆(T ) = T ⊗̇T ,

∆(a−1) = a−1 ⊗ a−1 − a−1ba−1 ⊗ a−1ca−1 ,

∆(d−1) = d−1 ⊗ d−1 − d−1cd−1 ⊗ d−1bd−1 , (2.6)

ǫ(T ) = 1l (2.7)

S(T ) = T−1 , S(a−1) = a− bd−1c , S(d−1) = d− ca−1b , (2.8)

where

T−1 =

(

a−1 + a−1bd−1ca−1 −a−1bd−1

−d−1ca−1 d−1 + d−1ca−1bd−1

)

(2.9)

and ⊗̇ denotes the tensor product coupled with matrix multiplication. Despite the

appearance of the relations (b2 = 0, c2 = 0) in (2.4), suggestive of a superalgebraic

structure, the Hopf algebra Funp,q(R) is bosonic as it follows the tensor product

rule

(Γ1 ⊗ Γ2)(Γ3 ⊗ Γ4) = Γ1Γ3 ⊗ Γ2Γ4 , ∀ Γ ∈ Funp,q(R) . (2.10)

In the Hopf algebra Funp,q(R) an invertible group-like element D exists:

D = ad−1 − bd−1cd−1 , D−1 = da−1 − ba−1ca−1 . (2.11)
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Using (2.4), the commutation relations for D follow:

[D, a] = 0 , [D, d ] = 0 , {D, b} = 0 , {D, c} = 0 . (2.12)

The induced coalgebra maps for D are

∆(D) = D ⊗D , ǫ(D) = 1 , S(D) = D−1 , (2.13)

as obtained from the relations (2.6-2.9).

A Gauss decomposition of the T -matrix (2.3) as

T =

(

1 0
ζ 1

)(

a 0

0 d̂

)(

1 ξ
0 1

)

(2.14)

introduces new variables related to the old ones by

b = aξ , c = ζa , d = ζaξ + d̂ , (2.15)

where d̂ is an invertible element. The element D and its inverse now read

D = ad̂−1 , D−1 = d̂a−1 . (2.16)

The algebra (2.4) assumes the form

aξ = p−1ξa , aζ = q−1ζa , d̂ξ = −p−1ξd̂ , d̂ζ = −q−1ζd̂ ,

[a, d̂ ] = 0 , [ξ, ζ ] = 0 , ξ2 = 0 , ζ2 = 0 . (2.17)

The coalgebra maps (2.6-2.9) are rewritten as

∆(a) = a⊗ a + aξ ⊗ ζa , ∆(ξ) = 1l⊗ ξ + ξ ⊗D−1 ,

∆(ζ) = ζ ⊗ 1l +D−1 ⊗ ζ , ∆(d̂) = d̂⊗ d̂− d̂ξ ⊗ ζd̂ , (2.18)

ǫ(a) = 1 , ǫ(ξ) = 0 , ǫ(ζ) = 0 , ǫ(d̂) = 1 , (2.19)

S(a) = a−1 + ξa−1Dζ , S(ξ) = −ξD ,

S(ζ) = −Dζ , S(d̂) = d̂−1 − ξd̂−1Dζ . (2.20)

Assuming that the algebra can be augmented with the logarithms of a and d̂, we

use the map

a = ex , d̂ = ex̂ , (2.21)

and a reparametrization

p = e−ω , q = e−ν (2.22)
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to convert (2.17) to the algebraic structure

[x, ξ] = ωξ , [x, ζ ] = νζ , [x̂, ξ] = ω̂ξ , [x̂, ζ ] = ν̂ζ ,

ω̂ = ω + iπ , ν̂ = ν + iπ

[x, x̂] = 0 , [ξ, ζ ] = 0 , ξ2 = 0 , ζ2 = 0 , (2.23)

where the choice of identical phases for ω̂ and ν̂ is necessitated by the requirement

that the single deformation parameter limit (p = q) exists and, via a duality con-

struction, yields the q-Alexander-Conway algebra ([1]-[5]). Following the technique

of Ref. [11], the coalgebra maps for (2.23) are seen to be

∆(x) = x⊗ 1l + 1l⊗ x+
ν + ω

eν − e−ω
ξ ⊗ ζ ,

∆(ξ) = 1l⊗ ξ + ξ ⊗ ex̂−x ,

∆(ζ) = ζ ⊗ 1l + ex̂−x ⊗ ζ ,

∆(x̂) = x̂⊗ 1l + 1l⊗ x̂+
ν + ω + i2π

eν − e−ω
ξ ⊗ ζ , (2.24)

ǫ(x) = ǫ(ξ) = ǫ(ζ) = ǫ(x̂) = 0 , (2.25)

S(x) = −x+
ν + ω

eν − e−ω
ξex−x̂ζ , S(ξ) = −ξex−x̂ ,

S(ζ) = −ex−x̂ζ , S(x̂) = −x̂ +
ν + ω + i2π

eν − e−ω
ξex−x̂ζ . (2.26)

The above Hopf structure suggests that Funp,q(R) may be embedded in the envelop-

ing algebra of (x, x̂, ξ, ζ) satisfying the algebraic relations (2.23) and endowed with

a noncocommutative coproduct rule. This enveloping algebra is dual to the Hopf

algebra Up,q(R).

All the Hopf algebra axioms for the coalgebra maps (2.24-2.26) can be explicitly

proved. To this end, the following identities are to be noted. If X and X̃ are

elements satisfying

[x, ξ] = cξξ , [X, ζ ] = cζζ , [X, X̃ ] = 0 (2.27)

and C is an arbitrary c-number, we have

exp(X ⊗ 1l + 1l⊗X + Cξ ⊗ ζ) =
(

eX ⊗ 1l
) (

1l⊗ 1l + C̃ξ ⊗ ζ
) (

1l⊗ eX
)

,(2.28)

exp
(

−X + ξX̃ζ
)

= eX + Λξe−XX̃ζ (2.29)

where Λ = e
cζ−e

−cξ

cζ+cξ
, C̃ = CΛ. From the above identities and (2.23), it follows that

the one parametric set of elements

D(θ) = eθ(x−x̂) (2.30)
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satisfies a group-like property

∆(D(θ)) = D(θ)⊗D(θ) , S(D(θ)) = D(θ)−1 (2.31)

for any θ ∈ Z . It is interesting to note that the elements {D(θ)|θ ∈ Z} form a

discrete group that cannot be embedded in a continuous one-parameter group.

Before proceeding to derive the structure of Up,q(R) and construct the universal

T -matrix, let us note an interesting application of the characterization of the ele-

ments of the T -matrix (2.3) through the algebraic algebraic structure (2.23). Let
{(

a1 , a
†
1

)

,
(

a2 , a
†
2

)}

and
{(

b1 , b
†
1

)

,
(

b2 , b
†
2

)}

be fermion operators corresponding

to two disparate, commuting, Fermi fields; they may be the basic operators from

which a pair of 2-nd order para-Fermi operators can be obtained through the well

known Green’s ansatz [20], or they can be considered as belonging to two Fermi

fields of different colours. Such commuting Fermi fields can also be constructed

from a single Fermi field [21]. The algebra of these (a, b)-operators is

{

ai, a
†
j

}

= δij , {ai, aj} = 0 , i, j = 1, 2 ,
{

bi, b
†
j

}

= δij , {bi, bj} = 0 , i, j = 1, 2 ,

[ai, bj ] = 0 ,
[

ai, b
†
j

]

= 0 , i, j = 1, 2 . (2.32)

Using the Bogoliubov transformation, we define

ξ = (cosα)a1 + (sinα)a†2
(

or (cosα)a2 − (sinα)a†1
)

,

ζ = (cos β)b1 + (sin β)b†2
(

or (cos β)b2 − (sin β)b†1
)

. (2.33)

Then, we can take

x = ωξ†ξ + νζ†ζ + f(α, β) , x̂ = ω̂ξ†ξ + ν̂ζ†ζ + g(α, β) , (2.34)

where f(α, β) and g(α, β) are two arbitrary c-number functions of α and β. Now,

it is seen that, using (2.15), (2.22) and (2.32)-(2.34), it is possible to realize the

variable group element (2.3) parametrized by the classical variables α and β. A

similar realization of GLp,q(1|1) in terms of a fermion field was obtained in [17]

following [18] in which GLp,q(2) was realized in terms of a boson field.

3. Dual Hopf algebra Up,q(R) and the universal T -matrix

The monomials {eA|eA = ζa1xa2 x̂a3ξa4 , A = (a1, a2, a3, a4), a1, a4 = (0, 1), a2, a3 =

0, 1, 2, . . .} constitute a basis for A = Funp,q(R) obeying the multiplication and the
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induced coalgebra maps

eAeB =
∑

C

fAB
C eC , (3.1)

∆(eA) =
∑

BC

hA
BCe

B ⊗ eC , ǫ
(

eA
)

= δA0 , S
(

eA
)

=
∑

B

SA
Be

B . (3.2)

The unit element is obtained by choosing A = 0, where 0 = (0, 0, 0, 0). The elements

{EA}, defined by (1.2), form a basis set for the algebra U , dual to A, namely, the

QUEA Up,q(R). The duality construction (1.3) enforces the following Hopf structures

for the basis set {EA} :

EAEB =
∑

C

hC
ABEC , (3.3)

∆(EA) =
∑

BC

fBC
A EB ⊗EC . (3.4)

Using the algebra (2.23) the structure tensor fAB
C is derived:

fAB
C = δ̄a1b1 δ̄a4b4δa1+b1

c1
θa2+b2
c2

θa3+b3
c3

δa4+b4
c4

×
∑

kl

(

a2
k

)(

b2
c2 − k

)(

a3
l

)(

b3
c3 − l

)

×(νb1)
a2−k(−ωa4)

b2−c2+k((ν + iπ)b1)
a3−l(−(ω + iπ)a4)

b3−c3+l , (3.5)

where δ̄ab = δa0δ
b
0 + δa1δ

b
0 + δa0δ

b
1 and θab = 1 (0) if a ≥ b (≤ b). The tensor hA

BC is

determined using the induced coproduct for the basis set {eA}, namely,

∆(eA) = ∆(ζ)a1∆(x)a2∆(x̂)a3∆(ξ)a4 . (3.6)

The following special cases, necessary for determining the dual algebraic structure,

may be directly read from (3.6):

hA
B0 = δAB , hA

0B = δAB , (3.7a)

hA
0b2b300c2c30

= δa10 δa2b2+c2
δa3b3+c3

δa40

(

a2
b2

)(

a3
b3

)

, (3.7b)

hA
1000B = δa11 δ0b1

4
∏

i=2

δaibi , hA
B0001 =

(

3
∏

i=1

δaibi

)

δa41 δ0b4 , (3.7c)

hA
01001000 = δa11 δa21 δa30 δa40 − δa11

4
∏

i=2

δai0 , (3.7d)

hA
00101000 = δa11 δa20 δa31 δa40 + δa11

4
∏

i=2

δai0 , (3.7e)

8



hA
00010100 = δa10 δa21 δa30 δa41 −

(

3
∏

i=1

δai0

)

δa41 , (3.7f)

hA
00010010 = δa10 δa20 δa31 δa41 +

(

3
∏

i=1

δai0

)

δa41 , (3.7g)

hA
00011000 = δa11 δa20 δa30 δa41 + δa10 δa40 Ωa2,a3 , (3.7h)

where

Ωj,k =
νj(ν + iπ)k − (−ω)j(−ω − iπ)k

eν − e−ω
. (3.8)

The antipode maps for the basis elements {eA} are obtained from (2.26) :

S(eA) = S(ξ)a4S(x̂)a3S(x)a2S(ζ)a1

= (−1)a2+a3ζa1
(

x̂+ a1(ν + iπ)− a4(ω + iπ)−
ν + ω + i2π

eν − e−ω
ζex−x̂ξ

)a3

×
(

x+ a1ν − a4ω −
ν + ω

eν − e−ω
ζex−x̂ξ

)a2

e(a1+a4)(x−x̂)ξa4 . (3.9)

The second equality in (3.9) follows by using the commutation relations (2.23) and

will be later used to compute the antipode maps for the dual basis elements.

Employing the duality property, we now extract the multiplication relations for

the dual basis elements {EA}. From (3.3) and (3.7a) the unit element follows di-

rectly:

EAE0 = EA , E0EA = EA −→ E0 = 1 . (3.10)

By choosing the generators of the dual algebra as

E− = E1000 , H = E0100 , Ĥ = E0010 , E+ = E0001 , (3.11)

and using the tensor structure (3.7b) and (3.7c) we express an arbitrary dual basis

element as

EA = (a2!a3!)
−1Ea1

− Ha2Ĥa3Ea4
+ . (3.12)

Further use of the special values of the structure tensor hA
BC in (3.7) now yields the

commutation relations for the generators of the dual alglebra Up,q(R):

[H,E±] = ±E± , [Ĥ, E±] = ∓E± , [H, Ĥ ] = 0 , E2
± = 0 ,

[E+, E−] =
eν(H+Ĥ)g−1 − e−ω(H+Ĥ)g

eν − e−ω
, (3.13)

where

g = e−iπĤ . (3.14)
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The algebra (3.13) may now be exploited to compute the general expression for the

structure tensor hA
BC , which reads

hA
BC = (−1)b2+c2−a2 δ̄b1c1 δ̄b4c4δb1+c1

a1
θb2+c2
a2

θb3+c3
a3

δb4+c4
a4

×a2!a3!(b2!b3!c2!c3!)
−1
∑

kl

(

b2
k

)(

c2
a2 − k

)(

b3
l

)(

c3
a3 − l

)

×cb2+b3−k−l
1 bc2+c3−a2−a3+k+l

4 + δa1b1 δ
b4
1 δc11 δa4c4 a2!a3!

×(b2!c2!b3!c3!(a2 − b2 − c2)!(a3 − b3 − c3)!)
−1Ωa2−b2−c2,a3−b3−c3 .(3.15)

The coproduct rules for the generators of the dual algebra Up,q(R) are obtained

from (3.4) and (3.5):

∆(H) = H ⊗ 1l + 1l⊗H , ∆(Ĥ) = Ĥ ⊗ 1l + 1l⊗ Ĥ ,

∆(E+) = E+ ⊗ e−ω(H+Ĥ)g−1 + 1l⊗E+ , ∆(E−) = E− ⊗ 1l + eν(H+Ĥ)g ⊗ E− .

(3.16)

The counit maps for the dual generators follow from (3.4) :

ǫ(X) = 0 , ∀X ∈ (H, Ĥ, E±) . (3.17)

Special values of the tensor
{

SA
B

}

, obtained from (3.9), yields, via (3.4), the antipode

maps for the dual generators :

S(H) = −H , S(Ĥ) = −Ĥ ,

S(E+) = g−1eω(H+Ĥ)E+ , S(E−) = E−e
−ν(H+Ĥ)g . (3.18)

For the single deformation parameter case (ν = ω), the Hopf structure (3.13, 3.16,

3.17, and 3.18) for the dual algebra Up,q(R), after appropriate mappings, reduce to

the results obtained in [4] using the FRT construction [10]. Following [4], we note

that the element g has a group-like coalgebra structure

∆(g) = g ⊗ g , ǫ(g) = 1l , S(g) = g−1 (3.19)

and the element g2 is central. By superization map [4] the super-Hopf algebra

Up,q(gl(1|1)) may be realized from the quotient algebra Up,q(R)/g2 − 1l. After a

redefinition of the generators

Z =
1

2
(H + Ĥ) , J =

1

2
(H − Ĥ) , χ± = E±Q

∓Zλ−Z+ 1

2 , (3.20)
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the structure of the Hopf algebra Up,q(R) assumes the form

[J, χ±] = ±χ± , [χ+, χ−] =
Q2Zg −Q−2Zg−1

Q−Q−1
, χ2

± = 0 ,

[Z,X ] = 0 , ∀X ∈ (J, χ±) , (3.21)

∆(Z) = Z ⊗ 1l + 1l⊗ Z , ∆(J) = J ⊗ 1l + 1l⊗ J ,

∆(χ+) = χ+ ⊗QZλZg +Q−Zλ−Z ⊗ χ+ ,

∆(χ−) = χ− ⊗QZλ−Z +Q−ZλZg−1 ⊗ χ− , (3.22)

ǫ(X) = 0 , ∀X ∈ (Z, J, χ±) , (3.23)

S(Z) = −Z , S(J) = −J , S(χ+) = g−1χ+ , S(χ−) = χ−g . (3.24)

In spite of the nonstandard commutation relations (3.21) the Hopf algebra Up,q(R)

is bosonic as it obeys the direct product rule (2.10). The algebra Up,q(R) is quasi-

triangular with the universal R-matrix given by [7]

R = (−1)(Z−J)⊗(Z−J)Q2(Z⊗J+J⊗Z)λ2(Z⊗J−J⊗Z)esQ
ZλZχ+⊗Q−ZλZχ− . (3.25)

For later use, we note that, in terms of the generators (3.11),

R = (−1)Ĥ⊗ĤQ(H⊗H−Ĥ⊗Ĥ)λ−(H⊗Ĥ−Ĥ⊗H)eλsE+⊗E− (3.26)

Finally, following the prescription (1.1), we now explicitly write down the uni-

versal T -matrix of Funp,q(R):

T = eζE−exH+x̂ĤeξE+ . (3.27)

It may be noted that in contrast to the case of Funp,q(GL(2)), discussed in [11],

in the present case the q-exponentials do not appear in the expression for the T -

matrix as a consequence of the algebraic property E2
± = 0. Corresponding to the

two-dimensional irreducible representation of the generators of Up,q(R) given by

H =

(

1 0
0 0

)

, Ĥ =

(

0 0
0 1

)

, E+ =

(

0 1
0 0

)

, E− =

(

0 0
1 0

)

, (3.28)

the universal T -matrix (3.27) reduces, as required, to the T -matrix (2.3).

Let us now consider some applications of the T -matrix (3.27). First, we use the

relation (1.4) to reproduce the R-matrix (3.26) from the T -matrix (3.27). To this

end, the required homomorphism is

φ(x) = (lnQ)H − (lnλ)Ĥ , φ(x̂) = (lnλ)H − (lnQ− iπ)Ĥ ,

φ(ξ) = λsE− , φ(ζ) = 0 , (3.29)
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which can be proved to satisfy the algebra (2.23) using the relations (3.13). The

map (1.4) now gives the R-matrix (3.26) from the corresponding T -matrix (3.27).

As noted by Frønsdal [13], in the context of quantum gl(n), there should exist an

alternative homomorphism, say φ̃ : A −→ U , such that (id ⊗ φ̃)T corresponds to

the alternative form of the universal R-matrix. We note that in the present case

the alternative homomorphism is given by

φ̃(x) = −(lnQ)H − (lnλ)Ĥ , φ̃(x̂) = (lnλ)H + (lnQ− iπ)Ĥ ,

φ̃(ξ) = 0 , φ̃(ζ) = −λsE+ . (3.30)

such that, as expected, we get

(id⊗ φ̃)T = R̃ = e−λsE−⊗E+λH⊗H̃−H̃⊗HQH̃⊗H̃−H⊗H(−1)H̃⊗H̃

= (σ(R))−1 =
(

R(+)
)−1

, (3.31)

where σ(a⊗ b) = b⊗ a.

As is well known [10], L(±), the FRT matrix generators of U , can be obtained from

the universal R-matrix. Now, since the universal R-matrix is related to the universal

T -matrix through a map it is obvious that we can get the L(±)-matrices also directly

from T . Let us demonstrate this procedure in the present case following [19] where

the L(±)-matrices of Uq(sl(2)) have been derived directly from the corresponding

universal T -matrix. Using the representation (3.28) in (3.29) and (3.30) we get two

representations of {x, x̂, ξ, ζ} as follows :

π+ : x =

(

lnQ 0
0 − lnλ

)

, x̂ =

(

lnλ 0
0 −(lnQ) + iπ

)

,

ξ =

(

0 0
λs 0

)

, ζ = 0 , (3.32)

π− : x =

(

− lnQ 0
0 − lnλ

)

, x̂ =

(

lnλ 0
0 (lnQ)− iπ

)

,

ξ = 0 , ζ =

(

0 −λs
0 0

)

. (3.33)

Now, we obtain the required results :

(π+ ⊗ 1l)(T ) = L(+) =

(

λĤQH 0

sg−1λ1−HQ−ĤE+ g−1λ−HQ−Ĥ

)

, (3.34)

(π− ⊗ 1l)(T ) = L(−) =

(

λĤQ−H −sE−λ
1−HQĤg

0 λ−HQĤg

)

. (3.35)
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It can be verified directly that these L(±)-matrices generate the algebra Up,q(R) (3.13)

in the FRT-approach [10].

4. Conclusion

We have studied the dually paired Hopf algebras A = Funp,q(R) and U =

Up,q(R) associated with the nonstandard R-matrix (2.1) involving two independent

parameters. Using the technique developed by Frønsdal and Galindo [11]-[13] we

have extracted the full Hopf structure of the algebra Up,q(R). A representation of

the quantum group element, known as the universal T -matrix, and associated with

the corresponding dual form, is obtained and found to exhibit the suitably modified

familiar exponential map relating the Lie group with the corresponding Lie algebra.

Following the construction in [16], the present derivation of the T -matrix may

be extended to general nonstandard algebras [22] related to the Hopf superalgebras

U〈q〉(gl(m|n)). The corresponding nonstandard R-matrices are known [23] to underly

the mathematical structure of the Park-Schultz (generalized six vertex) model and

its associated quantum spin chains, which are of much current interest [24, 25].
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