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Abstract: The recent construction of the non–semisimple gaugings of maximal D = 5
supergravity is reported here. This construction is worked out in the so–called rheonomic
approach, based on Free Differential Algebras and the solution of their Bianchi identities.
In this approach the dualization mechanism between one–forms and two–forms is more
transparent. The lagrangian is unnecessary since the field equations follow from closure of
the supersymmetry algebra. These theories contain 12− r self–dual two–forms and 15+ r
gauge vectors, r of which are abelian and neutral. Such theories, whose existence has
been proved and their supersymmetry algebra constructed, have potentially interesting
properties in relation with domain wall solutions and the trapping of gravity.

1 Introduction

Gauged supergravity with a maximal compact group, G = SO(6) in D = 5 [1, 2], G =
SO(8) in D = 4 [3] and G = USp(4) in D = 7 [4] has attracted much renewed attention in
the last two years because of the AdSp+2/CFTp+1 correspondence (for a general review see
[5] and references therein). Indeed the maximally supersymmetric vacuum of these gauged
supergravities is the AdSD space and the compact gauge group Ggauge is the R-symmetry
of the corresponding maximally extended supersymmetry algebra. However the compact
gaugings are not the only ones for extended supergravities. There exist also versions
of these theories where the gauge group Ggauge is non–compact. Unitarity is preserved
because in all possible extrema of the corresponding scalar potential the non–compact
gauge symmetry is broken to some residual compact subgroup. Furthermore, there are
models in which the gauge group is non–semisimple.
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The non–semisimple gauged supergravities are relevant for a close relative of the
AdS/CFT correspondence, namely the Domain Wall/QFT correspondence [6] between
gauged supergravities and quantum field theories realized on certain domain wall solu-
tions of either string theory or M–theory. Recently, it has been shown [7] that these
domain wall solutions are related with localization of gravity. So, non–semisimple gauged
supergravities could be good candidates to accomodate the Randall Sundrum scenario [8]
into supergravity theories.

Here we report the recent construction [9] of the non–semisimple gaugings for D = 5
maximal supergravity. In the case of D = 4 maximal supergravity, these gaugings has
been worked out in the eighties [10], but some difficulties prevented up to now their
construction in the five dimensional case. These difficulties are related to the feature of
one–form/two–form duality, typical of five–dimensions. As long as all vector fields are
abelian we can consider them as one–form or two–form gauge potentials at our own will.
Yet when we introduce non–abelian gauge symmetry matters become more complicated,
since only 1–forms can gauge non–abelian groups while 2–forms cannot. On the other
hand 1–forms that transform in a non–trivial representation of a non abelian gauge group
which is not the adjoint representation are equally inconsistent. They have to be replaced
by 2–forms and some other mechanism, different from gauge symmetry has to be found
to half their degrees of freedom. This is self–duality between the 2–form and its field
strength [11]. Hence gauged supergravity can only exist with an appropriate mixture of
1–forms and self–dual 2–forms. While this mixture was mastered in the case of compact
and non–compact but semisimple gaugings, the case of non–semisimple algebras is more
involved. Furthermore, it appears problematic to write a Lagrangian for the theories with
non–semisimple gaugings. Again, the problems come from the mixture of 1–forms and
self–dual 2–forms.

The catch of [9] is the use of the geometric approach (for a review of this topic see
[12]) where the mechanism of one–form/two–form dualization receives a natural algebraic
formulation and explanation. The result is that in the case of the non–semisimple gaugings
there are 15+ r gauge vectors and 12− r self–dual two–forms. 15 of the vectors gauge the
non–semisimple algebra while r of them have an abelian gauge symmetry with respect to
which no field in the theory is charged. At the same time these vectors are neutral with
respect to the transformations of the gauge algebra.

In the case of r > 0 extra neutral vector fields, although field equations can be nor-
mally derived from closure of the supersymmetry algebra, a lagrangian of conventional
type might not exist, just as it happens for type IIB supergravity in D = 10 (after
all, this is not terribly surprising since N = 8 supergravities in five dimensions should
eventually be interpreted in terms of brane mechanisms and compactifications from type
IIB superstring). This would make impossible the construction of the theory by means of
lagrangian–based techniques. However in our construction, the existence of a Lagrangian
is not fundamental, the existence of the theory following from the consistent closure of
Bianchi identities.

The scalar potential of these supergravities can be systematically derived, together
with the complete field equations, from the closure of the supersymmetry algebra we have
determined in [9]. This is completely algorithmic and straightforward, but it involves
lengthy calculations that are postponed to a forthcoming publication [13].
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2 D = 5 N = 8 supergravity

In this section we recall the main features of D = 5 N = 8 supergravity theory [1], [2].
The supersymmetry algebra for the ungauged theory is the superPoincaré superalgebra,
whose external automorphism symmetry (the R-symmetry) is USp(8). The theory is
invariant under local ISO(4,1)×USp(8) and global E6(6) transformations, and under local
supersymmetry transformations, generated by 32 real supersymmetry charges, organized
in 8 pseudo–Majorana spinors.

The theory contains: the graviton field, namely the fünfbein 1–form V a, eight gravitinos
ψA ≡ ψA

µ dx
µ in the 8 representation of USp(8), 27 vector fields AΛ ≡ AΛ

µ dx
µ in the 27

of E6(6), 48 dilatinos χABC in the 48 of USp(8), and 42 scalars φ that parametrize the
coset manifold E(6)6/USp(8), and appear in the theory through the coset representative
IL AB

Λ (φ), in the (27, 27) of USp(8)× E6(6). The local USp(8) symmetry is gauged by a
composite connection built out of the scalar fields.

Let us consider the gauged theories. In maximal supergravities, where no matter multi-
plets can be added, gauging corresponds to the addition of suitable interaction terms that
turn a subgroup G of the global E(6)6 duality group into a local symmetry. This is done by
means of vectors chosen among the 27 AΛ. The E(6)6 symmetry is broken to the normal-
izer of G in E(6)6, and after this operation the new theory has a local symmetry USp(8)×G
and a global symmetry N(G, E(6)6). From group theoretical considerations one can derive
necessary conditions which strictly constrain the choice of G. Such conditions are satisfied
only by the semisimple groups SO(p, q) with p+ q = 6 and their non–semisimple contrac-
tions CSO(p, q, r), which will be discussed in section 5 (see [10, 14] for definitions). The
possible gaugings are then restricted to these groups. The normalizer in E(6)6 of all these
groups is SL(2,IR). Therefore this latter is the residual global symmetry for all possible
gaugings. The 27 vectors AΛ are then decomposed into the vectors AIJ in the (1̄5, 1),
that gauge G, and the vectors in the (6, 2), which do not gauge anything. In the SO(p, q)
gaugings, which have been built in [1, 2], the latter 12 vectors have to be dualized into
two–forms BIα, as we will explain in the following. For all the admissible cases, the fifteen
generators GIJ of G have, in the fundamental 6–dimensional representation, the form

(GIJ)KL = δ
[I
L η

J ]K (1)

where ηJK is a diagonal matrix with p eigenvalues equal to 1, q eigenvalues equal to (−1)
and, only in the case of contracted groups, r null eigenvalues. This signature completely
characterizes the gauge groups and correspondingly the gauged theory. The covariant
derivative with respect to G of a field V I in the 6 of SL(6, IR) is defined as

DV I ≡ DV I + g(GKL)IJAKL ∧ V J . (2)

where D is the Lorentz–covariant exterior derivative.
The field content of the (semisimple) gauged supergravity theories is the following:

# Field (SU(2)× SU(2)) –spin rep. USp(8) rep. G rep.
1 V a (1, 1) 1 1

8 ψA (1, 1/2)⊕ (1/2, 1) 8 1

15 AIJ (1/2, 1/2) 1 15

12 BIα (1, 0)⊕ (0, 1) 1 6⊕ 6

48 χABC (1/2, 0)⊕ (0, 1/2) 48 1

42 IL AB
Λ (φ) (0, 0) 27 27

(3)
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3 Gauged supergravities from F.D.A.’s and Rheonomy

Gauged maximal supergravities in D = 5 were originally constructed within the frame-
work of Noëther coupling and component formalism [1],[2]. As we pointed out, the gaug-
ings corresponding to the contracted groups CSO(p, q, r) were left open in that approach.

In [9], these theories have been constructed by using the approach based on free differen-
tial algebras (F.D.A.’s) and rheonomy. To obtain this result, we started by reformulating
the D = 5 N = 8 supergravities [1] [2] with semisimple gauge groups in the rheonomic
framework [12]. Then, the extension to non–semisimple gaugings has been worked out.

Here we do not describe the rheonomic formulation of supergravity. For a compre-
hensive review, see [12], while for a short summary, in the context of D = 5 N = 8
supergravity, see [9]. We only recall that this approach is based on the closure of the
Bianchi Identities of the superspace curvatures. In this context, the Bianchi Identities are
not identically satisfied. Actually, they are the equations of the theory, determining its
dynamics. Not only they give the parametrizations of the curvatures (from which one can
read off the supersymmetry transformations), but they also fix the geometry of the scalar
manifold and give the classical field equations satisfied by the spacetime fields. From
this viewpoint, the explicit construction of the Lagrangian L is not really needed. Simply,
when L exists, the determination of the field equations is more easily obtained by δL vari-
ations than through the analysis of the Bianchi Identities. When the Lagrangian exists,
it can be obtained by means of a straightforward procedure starting from the curvature
parametrizations [12].

This construction has been performed in [9], by solving the Bianchi Identities of D = 5
N = 8 supergravity, both for the semisimple and non–semisimple cases. The parametriza-
tions of the curvatures, and then the supersymmetry transformations, have been deter-
mined (modulo bilinear in the dilatinos). In the semisimple case, they are

δV a
µ = −iε̄AγaψµA (4)

δψAµ = DµεA − g
2

45
TABγµε

B +
2

3
HAB|νµγ

νεB − 1

12
Hνρ

ABγ
λσεBǫµνρλσ

+
3i

2
√
2
χABC ε̄

BψC
µ − i

2
√
2
γνχABC ε̄

BγνψC
µ +O(χ∈) (5)

δχABC =
1√
2
gAD

ABCεD +
√
2P̂ABCD|i∂νφ

iγνεD − 3

2
√
2
H[AB|µνγ

µνεC]

− 1

2
√
2
Ω[ABHC]D|µνγ

µνεD +O(χ2) (6)

δAIJ |µ = IL−1
ABIJ

[

i√
2
χ̄ABCγµεC + 2iε̄AψB

µ

]

(7)

δBIα
µν = ILIα

AB

[

−2igε̄Aγ[µψ
B
ν] −

i

2
√
2
gχ̄ABCγµνεC

]

+2D[µ

[

IL−1 Iα
AB

(

2iε̄AψB
ν] +

i√
2
χ̄ABCγν]εC

)]

(8)

P̂ABCD
,i δφi = 2i

√
2 χ̄[ABCεD] +

3i√
2
Ω[CDχAB]EεE (9)
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as in [1]. In the semisimple case, also the Lagrangian and the equations of motion have
been determined, and found to coincide with the results of [1]. We postpone to section 5
the analysis of the non-semisimple case.

4 The problem of the two–forms

It is a known fact [2], [1] that in order to consistently gauge the N = 8 theory, one has to
dualize the vectors transforming in the (6, 2) of SO(p, q)×SL(2, IR) to massive two-forms
obeying the self-duality constraint:

BIα|µν = mǫµνρσλDρB
Iα
ρσλ (10)

with m ∼ g. In the geometric formulation of the theory, this need for dualization emerges
in a completely natural way. Indeed, let us start by considering the 12 vectors AIα.
There is no way known to reconcile their abelian gauge invariance with their non-trivial
transformation under the gauge group G. Indeed, given the superspace curvatures

DAIα ≡ dAIα + g(GKL)IJAKL ∧AJα (11)

it follows that the corresponding Bianchi Identities contain a term

DDAIα = g(GKL)IJFKL ∧ AJα (12)

where the vectors AJα appear naked. This makes impossible to write a parametrization
of the curvatures covariant under the gauge group. Hence we have a clash between
supersymmetry and the 12 abelian gauge invariances needed to keep the vectors AJα

massless. On the other hand, making them massive would destroy the equality of the
Bose and Fermi degrees of freedom. So in the gauged case, where the 12 vectors AJα

acquire a non–trivial transformation under the non–abelian gauge symmetry, there is no
way of fitting these fields into a consistent supersymmetric theory. The way out, as it was
discussed in [1], is to interpret them as the duals of massive two-forms BIα, obeying a
self–duality constraint which halves their degrees of freedom. This construction emerges
naturally in the rheonomic framework [9]. In this context, one has to introduce superspace
curvatures for the two–forms generalizing the Maurer–Cartan equations to a F.D.A. [12,
15]. At first sight it seems that we cannot escape from the problem described above, that
affects the vectors AIα: indeed Bianchi identities do contain the naked fields BIα. Yet we
can successfully handle this fact by considering the BIα not as gauge potentials (that is,
2-forms defined modulo 1–form gauge transformations), but as physical fields, with their
own explicit parametrization 1. In this way, the two–forms loose their gauge freedom and
become massive, as it can be found by solving the Bianchi identities. In fact, the Bianchi
identities give directly the self–duality constraint (10) obeyed by the two–forms:

D[aB
Iα
bc] = − 1

12
gILIα

ABHAB |deεabcde + fermion terms . (13)

5 Gauging the non–semisimple CSO(p, q, r) groups

Let us consider the gauging of the CSO(p, q, r) p+ q+ r = 6 groups in D = 5 N = 8
supergravity. We begin with a short description of the CSO(p, q, r) algebras (see also

1The same happens to matter two–form fields coupled with N = 2 supergravity [16].
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[10, 14]). The generators of SO(p, q) (with p+ q = n) satisfy

[GIJ , GKL] = f IJ,KL
MN GMN (14)

where
f IJ,KL
MN = −2δ

[I
[Mη

J ][Kδ
L]
N ] (15)

and

ηIJ ≡ diag(

p
︷ ︸︸ ︷

1, . . . , 1,

q
︷ ︸︸ ︷

−1, . . . ,−1) . (16)

Their generalization, studied by Hull in the context of supergravity [10] are the algebras
CSO(p, q, r) with p + q + r = n, defined by the structure constants (15) with

ηIJ ≡ diag(

p
︷ ︸︸ ︷

1, . . . , 1,

q
︷ ︸︸ ︷

−1, . . . ,−1,

r
︷ ︸︸ ︷

0, . . . , 0) . (17)

Decomposing the indices as I = (Ī , Î) Ī = 1,. . ., p+q, Î = p+q+1,. . ., n , we have that

GĪ J̄ are the generators of SO(p, q)⊂CSO(p, q, r) , while the r(r−1)/2 GÎ Ĵ are central
charges

[GĪĴ , GK̄L̂] =
1

2
ηĪK̄GĴL̂ . (18)

They form an abelian subalgebra, and

SO(p, q)× U(1)
r(r−1)

2 ⊂ CSO(p, q, r) . (19)

As in the case of SO(p, q) (see eq. (1)), the

(GIJ)KL = δ
[K
J ηL]I I, J,K, L = 1, . . . , n (20)

are generators of a representation of CSO(p, q, r). This representation is not faithful,
because the generators of the central charges are identically null

(GÎĴ)KL = 0 . (21)

The gauged versions of N = 8, D = 5 supergravity constructed in [1], [2] and based
on a semisimple choice of the gauge group G = SO(p, q) (p+q=6) can be generalized (see
[9]) to the non–semisimple gauge groups G = CSO(p, q, r) (p+q+r=6).

The new gaugings can be obtained by taking for the matrix ηIJ the definition (17),
with some null entries on the diagonal. Let us discuss the consequences of this in the
theory, in order to see if any pathology occurs. One has

(GKL)ÎJ = δ
[K
J ηL]Î = 0 , (22)

so the covariant derivative of a contravariant field (2), along the contracted directions,
reduces to the ordinary Lorentz–covariant derivative:

DV Î = DV Î + g(GKL)ÎJAKL ∧ V J = DV Î . (23)

This, however, does not happen for the covariant derivative of a covariant field:

DVÎ ≡ ∇VÎ − g(GKL)J
Î
AKL ∧ V J = ∇VÎ − gηL̄J̄AÎL̄ ∧ VJ̄ . (24)

Let us consider now the most subtle part of the theory: the two–forms. First of all

we notice that, because of (23), the two–forms along the contracted directions B Îα are
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discharged under the gauge group. Furthermore, one finds that the Bianchi identities of

the two–forms corresponding to the contracted directions (the B Îα) are cohomologically
trivial, so that these fields are actually field strengths of one–form fields

B Îα ≡ dAÎα + fermions (25)

having a U(1) gauge invariance, as argued in [1]. Let us stress that the calculation of [9]
shows that there are no consistency conflicts between the two types of gauge invariances,
and therefore no need arises to introduce massive vectors as proposed in [1]. Indeed,
in the F.D.A. rheonomic approach we see in a transparent way where the consistency
conflicts arise and how they are solved. Summarizing it goes as follows. When a vector
field is charged with respect to the gauge group, but does not gauge any generator of the
gauge algebra it appears naked in its own Bianchi identities. This requires dualization
to a two–form, so the correct number of degrees of freedom is got through self–duality
instead of gauge invariance. On the other hand when a contraction is performed on some

direction Î, in the Bianchi identities of the fields AÎα (25) the naked gauge fields disappear.
Therefore, the two gauge invariances are not inconsistent, and the corresponding vectors
can stay massless. Note that in this case the Bianchi identities look very different from
those along the non-contracted directions. Now the self–duality constraint disappears and
the halving of degrees of freedom is due to the recovered U(1) gauge symmetry.

In this way new gauged D = 5 N = 8 supergravities arise, with (12 − r) two–forms,
(15 + r) one–forms, and gauge group CSO(p, q, r). It is worth noting that the r vectors

AÎα are coupled with the other fields, even if they don’t gauge anything, and so are the
abelian vectors AÎ Ĵ . Indeed,

HAB
ab = ILIJABFab|IJ + IL AB

Īα B Īα
ab + IL AB

Îα
B Îα

ab (26)

and HAB
ab does appear in the equations of motion of the two–forms (13) along the non–

contracted directions, which we have derived from the Bianchi identities and don’t change
in the contracted gaugings.

The supersymmetry transformation rules for the new theories are obtained by substi-

tuting, for the contracted directions Î, the supersymmetry transformation rule (8) for B Îα

with the supersymmetry transformation for AÎα

δAÎα
µ = IL−1 Îα

AB

[

i√
2
χ̄ABCγµεC + 2iε̄AψB

µ

]

(27)

all other transformation laws remaining unchanged. The new theories are completely
sensible and well defined, however apparently there is not a lagrangian formulation of
them. In fact, it seems impossible to write the terms giving the equations of motion of

the r one–form fields AÎα in a covariant and gauge–invariant way. A possible argument to
motivate this situation is the following. The existence of r extra neutral vectors besides
the 15 charged ones implies a sort of Hodge dualization for the corresponding two–forms.
Specifically, what happens here is that the field strength H [3] for r of the B[2] fields is
identically zero, so that we have to interpret the B[2] themselves as field strengths of new
gauge vectors A[1]. In other words, we have traded r ”electric” two–form fields B[2] for just
as many ”magnetic” one–forms A[1]. In view of this, it is not too surprising if the 15 + r
vectors are not mutually local, which would be necessary to admit a common lagrangian
description.
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