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the canonical TnaC sequence, indicating that even
residues unrelated to the stalling process can adopt
a distinct conformation within the exit tunnel. This
notion is supported by a cryo-EM structure of a
yeast 80S ribosome-nascent chain complex stalled
during the translation of a truncated dipeptidyl-
aminopeptidase B (DP120) mRNA at 6.1 A res-
olution (27). Although the DP120 sequence
has no stalling capacity, density for this nascent
chain is visible, indicating a preferred conforma-
tion within the exit tunnel (Fig. 4D). Notably, the
DP120 nascent chain follows a different path
from that reported here for TnaC (Fig. 4, E and
F). Clearly the chemical and electrostatic properties
of the tunnel environment play a pivotal role in
facilitating this kind of distinct nascent chain
behavior (3, 4). The finding that nascent chains
with little or no sequence conservation interact
with the exit tunnel in a distinct manner and adopt
individual conformations may be important not
only for initial folding events (/—3) but also for
the variety of nascent chain—mediated regulatory
mechanisms (5).
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A Crystal Structure of the

Bifunctional Antibiotic Simocyclinone
D8, Bound to DNA Gyrase
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Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing

DNA binding to the enzyme. We report the crystal structure of the complex formed between the
N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two
binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the
antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our
observations that several mutations in this region confer resistance to both agents. Biochemical
studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of
gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our
results should facilitate the design of drug molecules that target these unexploited binding pockets.

acterial diseases remain a major problem
B because of the emergence of drug-resistant

bacteria combined with the dearth of new
antibacterial agents. Despite extensive efforts, there
remain relatively few effective drug targets for
antibacterials. One of these is the enzyme DNA
gyrase, a DNA topoisomerase that controls the
topology of DNA (7, 2). Topoisomerases are
classified into two types, I and II, depending on
whether they catalyze reactions involving the tran-
sient breakage of one or both strands of DNA.
Gyrase is the only type II DNA topoisomerase

that can catalyze DNA supercoiling; this reaction
is driven by the free energy of adenosine triphos-
phate (ATP) hydrolysis (3). Gyrase consists of
two subunits, GyrA and GyrB (97 kD and 90 kD,
respectively, in Escherichia coli), which form
an A,B, complex in the active enzyme. Because
gyrase is essential in bacteria and lacking in hu-
mans, it is a valuable drug target (4). The com-
plexity of the gyrase supercoiling reaction presents
multiple opportunities for intervention. Two well-
known groups of gyrase-specific antibacterial
agents are quinolones and aminocoumarins. Fluo-

roquinolones, such as ciprofloxacin, are highly
successful drugs (5), but their usefulness is di-
minishing as a consequence of bacterial resist-
ance (6). Aminocoumarins, e.g., novobiocin and
clorobiocin, are less successful clinically because
of toxicity and solubility issues but are very well
characterized in terms of their mode of action on
gyrase (7), including several crystal structures
(8-11). Aminocoumarins act by competitively
inhibiting the binding of ATP to the GyrB subunit
(11). The cloning and sequencing of the biosyn-
thetic pathways for the aminocoumarins novobi-
ocin, clorobiocin, and coumermycin A; and the
application of bioengineering methodologies
(12) have enabled the production of a series of
modified aminocoumarins with varying potencies
against their targets, gyrase and topoisomerase IV
(13, 14). This work has raised the possibility of
engineering antibacterial agents targeted to gyrase
that are based on natural antibiotics.
Simocyclinone D8 (SD8) was isolated from
Streptomyces antibioticus T 6040 (15-18). The
antibiotic consists of a chlorinated aminocoumarin
(AC) linked to an angucyclic polyketide (PK) via
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a tetraene linker and a p-olivose sugar (Fig. 1).
Because of the presence of the AC moiety, the
expectation was that SD8 would target the aden-
osine triphosphatase (ATPase) domain of GyrB.
Although SD8 is a potent inhibitor of E. coli
gyrase, it does not inhibit the intrinsic GyrB ATPase
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Tetraene
dicarboxylic
acid

OH o
H
N [+]
~
= oy
HO o [+ °
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activity. Instead, SD8 binds to the N-terminal do-
main of GyrA and prevents DNA binding (/9).
In hindsight, this is not surprising because SD8
lacks the decorated noviose sugar that is attached
to the 7-OH of the AC ring and is involved in the
majority of the interactions with GyrB in other

oH,

D-olivose

Angucyclic
polyketide (PK)

MGD8N2A

Fig. 1. Structure of simocyclinone D8 and analogs. ICsq values for inhibition of supercoiling by gyrase:

for D8, 0.6 uM; C4, 70 uM; MGD8N2A, 50 uM.

Fig. 2. Crystal structure of the GyrA59-simocyclinone
complex. The protein is depicted in cartoon rep-
resentation, the SD8 molecules are shown as red
sticks, and their associated Mg®* ions as small
spheres. (A) Structure of the GyrA59 dimer and the
four SD8 molecules it interacts with. (B) Structure
of the SD8-mediated tetramer (dimer of dimers).
(C) Close-up of the red boxed region in (B) showing
a section through the complex containing two SD8
molecules. The same color scheme is adopted as for
(A) and (B), but the GyrA59 subunits are represented
as semi-transparent molecular surfaces. Regions with
a white background are either outside the complex
or between the subunits; regions with a gray back-
ground are within the molecular envelopes. Key res-
idues (23) that are close to the SD8 molecule in the
foreground are displayed in stick representation.

aminocoumarins (8—/7). In contrast to quinolones
and aminocoumarins, which can act on both gyrase
and its close relative topoisomerase IV, SD8 is
potent against gyrases from E. coli and Staphy-
lococcus aureus but much less effective against
topoisomerase IV from these species (20).

We have crystallized the N-terminal domain
of GyrA (GyrA59) complexed with SD8 and de-
termined the crystal structure at 2.6-A resolution
by molecular replacement from the structure of
unliganded GyrA59 that was previously deter-
mined (27). Our structure reveals a ligand-stabilized
homotetramer of GyrAS59 subunits consisting of
two A59 dimers cross-linked by four molecules
of SD8 (Fig. 2). The tetraene linker of SD8 acts
as an extended rod, about 10 A long, that holds
the AC and PK moieties apart. Each GyrA sub-
unit has distinct pockets that accept the AC and
PK groups, respectively, of two separate SD8
molecules; both pockets lie in the predicted DNA
binding saddle. Additional lobes of electron den-
sity adjacent to the PK moiety have been modeled
as Mg®" ions (Fig. 3A and fig. S1). Although
each subunit interacts with two SD8 molecules,
because each of these molecules is shared by two
subunits from opposing dimers, the stoichiome-
try remains 1:1, consistent with previous exper-
iments (/9). In addition to the SD8-mediated
dimer-dimer interactions, there is about 1500 A>
of protein-protein interface. This includes 12 hy-
drogen bonds, 10 of which involve residues span-
ning Leu'” to Asp®, a region just before o-helix
1 that was not visible in the original GyrA59
structure (27). Superposition of the SD§ complex
and ligand-free GyrAS9 structures gives root
mean square deviation values below 1 A, both for
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subunit-subunit and dimer-dimer comparisons,
indicating that there are no major conformational
changes upon ligand binding (fig. S2). Intrigu-
ingly, a single SD8 molecule can be modeled
in a “bent” conformation such that it bridges
between the AC and PK pockets of the same
subunit, while maintaining essentially the same
contacts with the protein seen in the crystal struc-
ture (fig. S3). This places the tetraene linker close
to, and possibly interacting with, a-helix 4.

To investigate the oligomeric state in solution,
we performed a series of molecular weight (MW)
studies. Analytical ultracentrifugation (table S2)
showed that the MW of GyrA59 in the absence of
SD8 or at low ligand:protein ratios (<~3:1) was
~120 kD, suggesting a dimer, whereas at high
ligand:protein ratios (>~4:1) GyrA59 had a MW
of ~250 kD, consistent with a tetramer. By using
nanoelectrospray ionization mass spectrometry
(nanoESI MS) under conditions where noncova-
lent interactions are preserved, we assessed the
binding of SD8 to GyrA59 and full-length GyrA.
In the absence of SDS, both proteins had MWs
consistent with dimers (fig. S4). Titration of SD8
into solutions containing the proteins showed di-
meric species with either one or two SD8 mole-
cules bound at ligand:protein ratios of <~2:1.
With a ligand:protein ratio of 3:1, we began to see
formation of a tetrameric species, which increased
with increasing SD8 concentrations to become the
predominant species at ~7.5:1 (fig. S4). These
experiments showed small amounts of three SD8
molecules bound per dimer but no evidence of
four, suggesting that a tetramer readily forms once
four molecules are bound (fig. S4). We suggest
that the dimeric species, observed at limiting lig-
and concentrations, might represent a single SD8
molecule bound to the AC and PK pockets within
the same subunit (fig. S3).

To probe the importance of the two binding
pockets, we analyzed the interactions of GyrA59
with simocyclinone analogs lacking either the PK
or the AC moiety (Fig. 1). Simocyclinone C4 is a
naturally occurring intermediate in the SD8 path-
way that lacks the AC moiety; MGD8N2A, which
lacks the PK moiety, was generated by chemical
hydrolysis of SDS. The parent compound has a
minimum inhibitory concentration (ICso) value
of 0.6 uM for inhibition of gyrase supercoiling,
whereas ICs values of 70 and 50 uM were ob-
tained for analogs lacking either the AC or the PK
moiety, respectively (Fig. 1). Although inhibition is
greatly reduced, the fact that these SD§ analogs
have some activity suggests that cross-linking of the
two GyrA dimers is not a prerequisite for inhibition.

One key issue was to establish the in vivo
target of simocyclinones; recent transcriptional
profiling studies (20) suggest but do not prove
that gyrase is the target. To address this, we se-
lected spontaneous resistant mutants in E. coli.
Wild-type E. coli and other Gram-negative bacte-
ria are resistant to simocyclinones because the
compounds cannot penetrate the outer membrane
(15); we therefore used an E. coli strain (NR698)
that is sensitive because it carries an in-frame de-
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Fig. 3. Binding of SD8 to GyrA. (A) Simulated annealing omit electron density map for SD8
contoured at 6 ¢ and superposed on the final coordinates of the ligand (27). (B) Schematic figure
detailing protein-ligand interactions in the GyrA59-SD8 complex. Red dotted lines represent
hydrogen bonds and the single halogen bond (indicated by yellow arrow; see fig. S1). Interactions
with the Mg?* ions are shown as pale blue dashed lines. The side chains of Arg™?* and Tyr*?? (in
the active site) point toward the SD8 molecule across the dimer interface and could interact with it
via water molecules (blue shaded circles labeled “W") coordinated to a Mg®* ion. Similarly, His®°
likely makes a water-mediated interaction with the second Mg®* ion. Nonbonded interactions are
represented by the linked green ovals, which encircle the groups involved; subunit boundaries are
delineated by gray lines.

Table 1. Properties of simocyclinone- and quinolone-resistant GyrA mutants. NA indicates not
applicable. Mutant H78A is not active; K for simocyclinone is ~10 times that of wild type. S83W
data is from (19).

Relative 1Csq (supercoiling)

GyrA mutation

Simocyclinone Ciprofloxacin
Wild type 1 (0.6 pM)* 1 (0.7 uM)
Mutations in the simocyclinone-binding site
Aminocoumarin-binding pocket mutations
H45A 9.1 2.2
R91A 20 1.1
Polyketide-binding pocket mutations
H78A NA NA
H80A 230 2.8
Mutations in both pockets
H45A and H80A >500 2.3
Mutations in the quinolone-resistance—determining region of GyrA
G81D 40 24
S83wW 10 30
A84P 38 28
D87A 7.2 5.2
D87Y 57 30
S83A and D87A 8.3 12

“Actual ICso values are given in parentheses.
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Fig. 4. Stereo view showing a superposition of GyrA59-SD8 and the clinafloxacin-DNA cleavage complex
of topo IV [Protein Data Bank (PDB) code 3FOE], focusing on the drug-binding sites in one half of the
GyrA/ParC dimers (28). The protein backbones are shown as ribbons and the drug molecules in stick
representation, with GyrA59-SD8 in red, ParC-clinafloxacin in green, and the DNA from the latter
structure in yellow. For clarity, the ParE subunits have been omitted from 3FOE. The SD8 and clinafloxacin
binding sites are adjacent but do not overlap. This figure illustrates how SD8 would interfere with DNA
binding; this would also be the case if the drug were bound in the “bent-over” conformation proposed in

fig. S3. The arrow indicates the position of a-helix 4.

letion in the imp (increased membrane perme-
ability) gene (22). We isolated 31 spontaneous
simocyclinone-resistant mutants and in each case
sequenced a ~500-base pair (bp) region of gyr4,
corresponding to residues Met*® to Ser'”? of the
protein. We found gyr4 mutations in 22 of them,
conferring one of the following amino acid
changes: V*—G* (V44G) (23), H45Y, H45Q,
G81S, and D87Y (fig. S5). These amino acids are
close to the bound SD8 molecule in the crystal
structure, consistent with gyrase being the in vivo
target. Unlike the 22 gyr4 mutants, the remaining
nine isolates had also acquired resistance to bile
salts, suggesting that they could be accounted for
by spontaneous second-site mutations that are
known to restore outer membrane impermeability
to the imp mutant (22).

On the basis of the spontaneous mutations
and the crystal structure information, we made
selected site-directed mutations in GyrA to probe
its interaction with SD8 in vitro. The mutant
proteins, together with wild-type GyrB, were
assayed for DNA supercoiling in the presence of
SDS (Table 1). Mutations in either the AC (His*’
and Arg’") or the PK (His*® and Gly®') pocket
showed simocyclinone-resistant supercoiling. SD8
binding to an inactive mutant in the PK pocket,
H78A (23), was investigated by surface-plasmon
resonance using the GyrA59 protein. The mutant
showed decreased binding affinity for SD8 (Kp
values were 1.3 uM for wild type and 10.4 uM
for H78A) and had a near-identical far-ultraviolet
circular dichroism spectrum to wild-type GyrA,
suggesting that it was properly folded.

Quinolone-resistant mutations map to both gyr4
and gyrB in regions known as the quinolone-
resistance determining regions [QRDRs (24, 25)].
In the case of E. coli GyrA, the QRDR occurs
between amino acids 67 and 106 with mutations
identified at Ala®’, Gly81, Aspgz, Ser®, Ala®,
Asp®’, and GIn' (26), mostly occurring either

in or just before a-helix 4 (27) (fig. S5). From the
published structures of quinolone-DNA cleavage
complexes of Streptococcus pneumoniae topo IV
(27), we can infer the location of the quinolone-
binding site in GyrA, which is adjacent to but not
overlapping the SD8 binding sites (Fig. 4). The
quinolones do not make substantive contacts with
the topo IV ParC protein, being closest to the
equivalents of residues Gly®' to Ala® and Asp®’
in GyrA. Therefore, at least some of the muta-
tions in the QRDR of GyrA most likely have
indirect effects on quinolone binding. Given the
proximity of the quinolone and SD8 binding
sites, we investigated whether there was any cross-
resistance between the two types of inhibitor. SD8-
resistant mutants were tested for their susceptibility
to the fluoroquinolone ciprofloxacin, and a range
of ciprofloxacin-resistant mutants were tested for
their susceptibility to SDS (Table 1).

Mutations in the simocyclinone-binding pockets
(AC and PK) result in near—wild-type amounts of
susceptibility to ciprofloxacin (Table 1); QRDR
mutations in o-helix 4 of GyrA confer increased
resistance to both ciprofloxacin and SD8. None
of these amino acids makes direct contacts with
bound SD8 (Fig. 3B); given the low resolution of
the quinolone-DNA-topo IV complex structures,
it is not possible to precisely define any ligand-
protein interactions, but it is likely that substitutions
at positions 81 to 84 and 87 in GyrA would have an
effect on drug binding. The prevalence of mutations
at Ser® and Asp®” in quinolone-resistant clinical
isolates supports this assertion (26). In the case of
SDS, it is possible that mutations in o-helix 4 of
GyrA, which lies between the AC and PK bind-
ing pockets, can affect the proposed bridging of the
two binding sites by the tetraene linker (fig. S3).

Given the global concerns over drug-resistant
bacterial diseases, work on SD8 raises the pros-
pect of developing agents that exploit its bifunc-
tional mode of antibiotic action on a well-validated

target. Alternatively, designing monofunctional
compounds with enhanced affinity for one or the
other of the binding sites may prove fruitful.
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