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COMPOSITION ALGEBRAS
OVER ALGEBRAIC CURVES OF GENUS ZERO

HOLGER P. PETERSSON

Max Koecher in dankbarer Erinnerung gewidmet

Abstract. We rephrase the classical theory of composition algebras over fields,

particularly the Cayley-Dickson Doubling Process and Zorn's Vector Matrices,

in the setting of locally ringed spaces. Fixing an arbitrary base field, we use these

constructions to classify composition algebras over (complete smooth) curves of

genus zero. Applications are given to composition algebras over function fields

of genus zero and polynomial rings.

Introduction

Our main concern in this paper is to initiate the study of nonassociative

algebras over algebraic varieties. As we shall see below, even ordinary finite-

dimensional algebras over fields may benefit from such an investigation. Rather

than treating the subject in excessive generality, we prefer to focus attention

on the classification problem for the most elementary among the interesting

classes of algebras (composition algebras) over the most elementary among the

interesting classes of varieties (curves of genus zero); the base field is arbitrary.

Along the way towards classification, we find it convenient to rephrase the

theory of composition algebras in the language of locally ringed spaces, lead-

ing, after some terminological preliminaries in §1, to relative versions of the

Cayley-Dickson-Doubling Process (2.5) and Zorn's Vector Matrices (3.5); the

former is related to the concept of a quadratic space relative to a "Hamiltonian"
quaternion algebra introduced by Knus [Kn]. The proof of the Classification

Theorem (4.4) will be carried out in §5. The critical step is to show that a
composition algebra of rank at least two over a curve X of genus zero con-

tains a composition subalgebra of rank exactly two defined over the base field
(5.5). The Classification Theorem then follows by the method of descent. As

a byproduct of the proof one obtains the additional result (4.5) that, roughly

speaking, composition algebras of rank r over X containing a nonsplit com-

position subalgebra of rank j which is defined over the base field are, with one

exception, themselves defined over the base field.

Due to the intimate relationship between octonion algebras and groups of

type G2, the present investigation may be regarded as a supplement, carried
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474 H. P. PETERSSON

out on an elementary level, of Harder's fundamental work on algebraic group

schemes over complete curves. As Harder himself has pointed out [H, pp. 147-

148], one should be able, at least in principle, to classify the semisimple ones
among these objects once the underlying curve has genus zero, and it is quite

conceivable that such a classification more or less directly implies our own Clas-

sification Theorem 4.4. Even if this should be the case, however, the approach

adopted here seems to deserve some independent interest since it rather quickly

leads to results that are quite explicit. Moreover, it immediately suggests gener-

alizations to curves of higher genus as well as to more general classes of algebras.

Two applications of our results to finite-dimensional nonassociative algebras

over fields will be discussed in this paper. In 3.8 we construct a whole series of

quadratic alternative algebras with big radicals which do not square to zero by

considering split octonions over projective «-space and passing to global sec-
tions. In §6 we concern ourselves with composition algebras over function fields

of genus zero and polynomial rings. Guided by a classical theorem of Harder

on symmetric bilinear forms over polynomial rings, we show in particular (6.8)

that an octonion algebra over the polynomial ring k[t] is defined over k, for

any field k which is perfect or of characteristic not two.

The terminology adopted in this paper is the standard one; concepts from

algebraic geometry not explained in the text are to be understood in the sense

of Hartshorne [Ha]. The author is greatly indebted to R. Borger, H. Lindel, G.

Schabhüser, W. Scharlau, M. Schulte, M. Slater and, in particular, to O. Loos

for useful conversations on the subject; also, to M. Knus for having supplied

him with a copy of [Kn] as well as with references concerning the Brauer groups

of the affine and projective line. Finally, the extremely useful comments by the

referee, having improved considerably upon the original version of the paper,

are gratefully acknowledged. Special cases of our results have been announced

in [P2].

1. Composition algebras over locally ringed spaces

1.1. Let F be a (unital commutative associative) ring of scalars. An F-module

M is said to have full support if Supp M = Spec F, so Mv ^ 0 for all prime

ideals p c F. Given a quadratic form q: M —y F, the bilinear form induced

by q will be written as

M x M —y R, (u,v) y-* q(u, v) = q(u + v) - q(u) - q(v).

The term " F-algebra" always refers to unital nonassociative algebras over F

which are finitely generated projective as F-modules. An F-algebra C is said

to be quadratic in case there exists a quadratic form n: C —> F satisfying the

following two conditions:

QA1. n is unital, so n(lc) = 1 •
QA2. Each u £ C satisfies the equation

u2 - t(u)u + n(u)lc = 0       (t(u) = n(lc, u)).

Quadratic algebras are invariant under base change.

1.2   Lemma. Let C be a quadratic algebra over R. Then there exists a unique

quadratic form n on C satisfying conditions QA1, 2 above.

Proof. ' By standard facts about localizations, the statement is local on F, so

'This proof grew out of a conversation with G. Schabhüser.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPOSITION ALGEBRAS 475

we may assume that F is a local ring, with maximal ideal m, and hence C is

free as an F-module. Since n is unital, we may extend le £ raC to a basis

of C, and the assertion follows from [M, 2.3(vi)].   Q.E.D.

1.3. Because of 1.2, we are now allowed to call n = nc the norm, t = tc,

defined by t(u) = n(lc, u), the trace, and

*: C -> C, u h-> u* = t(u)lc - u,

the canonical reflection of the quadratic algebra C over F.

1.4. An F-algebra C is said to be a composition algebra in case it has full sup-

port (1.1) and there exists a quadratic form n: C —y R satisfying the following

two conditions:

CAÍ. The symmetric bilinear form induced by n is nondegenerate, so deter-

mines a module isomorphism C ^ C = Hom^C, R).

CA2. n permits composition, so n(uv) = n(u)n(v) for all u, v £ C.

Since a composition algebra C over F by definition has full support, hence

must be unitally faithfull in the sense of [M, p. 85], it follows from [M, 4.6]
that C is alternative (so the associator (uv)w - u(vw) is alternating) as well

as quadratic in the sense of 1.1; more precisely, the quadratic form n on C

satisfying conditions CAÍ, 2 above is unique and, in fact, agrees with the norm

of C in the sense of 1.3. Also, the canonical reflection of C is an algebra

involution [M, p. 96], called the canonical involution of C. Finally, composition

algebras are invariant under base change.

1.5. Now fix a locally ringed space X, with structure sheaf cfx . For P £ X,

we denote by (fp,x (or simply cfP if no confusion can arise) the local ring of

cfx at P, by mp = mp<x the maximal ideal of tfP, and by k(P) = cfp/mp
the corresponding residue class field; the stalk of an ¿fy-module & at P will

be denoted by SFP . As in 1.1, y is said to have full support if Supp^" = X,
so fFp ¿ 0 for all P £ X. An tfx -module ÏÏ is said to be locally free of
finite rank if each P £ X admits an open neighborhood P £ U c X such that

%?\u=.tf¡j, for some integer n > 0 (which may depend on P). We then define

the rank of f as sup{rank^f <§/> ; P £ X} (which is either an integer or +oo).

(Nonassociative) algebras over X are always tacitly assumed to be unital and

locally free of finite rank as ¿f^-modules.

1.6. As in 1.4 we define a composition algebra over X to be an <^V-algebra g7

which has full support and admits a quadratic form A : £P -» rfx satisfying the

following conditions:

^/1. The symmetric bilinear form induced by A is nondegenerate, so

determines a module isomorphism fê —y fé = <%¿mx(W, tfx) ■

ÍS/2. A permits composition, so N(uv) = N(u)N(v) for all sections u,

«off over the same open subset of X .

Quadratic (resp. alternative) algebras over X are defined in a similar man-

ner, and it is clear that 1.2-1.4 carry over to this more general setting. In

particular, we may talk about the norm, trace, canonical involution of a com-

position algebra 9? over X, denoted by A = N<# , F = T<# , *, respectively;

also, we have the following result.
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1.7 Proposition, (a) Let fê bean algebra over X and N:W^yffx a quadratic

form. Then %? is a composition algebra over X with norm N if and only if for

each P £ X, WP is a composition algebra over tfP with norm NP.

(b) Composition algebras are invariant under base change: If a: X' —> X is

a morphism of locally ringed spaces, and W is a composition algebra over X,

a*W = f ®ffx tfx, is a composition algebra over X'.

(c) Composition algebras are quadratic alternative.

(d) Composition algebras exist only in ranks 1, 2, 4, 8.

(e) A composition algebra is associative if and only if it has rank at most 4;

it is commutative associative if and only if it has rank at most 2.

Proof. Since composition algebras by definition have full support, (a) is ob-

vious. (b)-(d) follow immediately from the corresponding statements in 1.4

and standard properties of composition algebras over fields by passing to the

stalks 8p and to the residue class algebras WP ®^p tc(P), for P £ X. (e) By

Nakayama's Lemma, the property of a composition algebra over a field to be

commutative associative (resp. associative) if and only if it has rank at most

2 (resp. 4) if and only if it may be generated by one (resp. two) elements(s)

carries over to composition algebras over local rings. Hence (e) follows from

(a).   Q.E.D.

1.8. A composition algebra over X is said to be a torus (resp. a quaternion

algebra, resp. an octonion algebra) in case it has constant rank 2 (resp. 4, resp.

8). For example,
tfx e tfx       (direct sum of ideals)

is a torus, its norm being given by the hyperbolic quadratic form (a,b)y-^> ab.

A composition algebra over X is said to be split if it contains an isomorphic

copy of tfx ®tfx as a composition subalgebra.

1.7(c) implies that, for any open subset U of X, F(U, W) (i.e., the set
of sections of the sheaf W over U) is a quadratic alternative algebra over

T(U, tfx), without, however, being in general a composition algebra. In fact,

examples will be specified below where this algebra has a highly degenerate

norm form and, consequently, a big radical. 1.7(d) has been obtained earlier in

a slightly different context by Legrand [Le].

1.9. Let Y = Spec F be an affine scheme. Under the usual categorical equiva-

lence, (composition) algebras over Y in the sense of 1.6 are basically the same

as (composition) algebras over F in the sense of 1.4. We will not always distin-

guish carefully between these two notions. If X is an F-scheme, with structure

morphism t : X —y Y, a (composition) algebra ^ over X is said to be de-

fined over R in case there exists a (composition) algebra C over F such that

fê = x*C. We close this section by giving an elementary but useful criterion

for a composition algebra to be defined over the base ring.

1.10 Lemma. Let X be a scheme over the affine scheme Y = Spec F and

suppose T(X, tfx) = R. Then a (composition) algebra W over X is defined
over R providing it is globally free as an tfx-module.

Proof. With n = rank^, R" = T(X,cf^)^ T(X, &) carries the structure of

a (composition) algebra over F whose base change to X becomes canonically

isomorphic to W.   Q.E.D.
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2. The Cayley-Dickson Doubling Process

2.1. Let D be an associative composition algebra over the ring F and p £ R

be a unit. Then Albert [A] has shown that the F-module D © D becomes a

composition algebra under the multiplication

(u, v)(u', v') = (uu' + pv'*v, v'u + vu'*)

for u, v, u', v' £ D. This composition algebra, denoted by Cay(F, p), is

traditionally said to arise from D, p by means of the Cayley-Dickson Doubling
Process. Its norm relates to the norm of D via the formula

ncay(D,p)((u, v)) = nD(u) - pnD(v).

The imbedding of D to the first summand of Cay(F», p) is an algebra monomor-

phism. If D has rank at most two, Cay(F, p) is associative, and we abbreviate

the iterated Cayley-Dickson construction Cay(Cay(F, p), v) by Cay(F; p,v).

2.2 Lemma. Let D be a proper composition subalgebra of a quadratic alterna-

tive algebra C over R.

(a) Suppose I £ D1, the orthogonal complement of D in C relative to «c -

is invertible in C, and put p = -nc(l) ■ Then the imbedding D «-» C uniquely

extends to an imbedding Cay(D, p) «-» C sending (0, lo) to I.

(b) If C is a composition algebra and R is a local ring, there always exists
an I £ DL which is invertible in C.

Proof, (a) is the fundamental fact underlying the structure theory of composi-

tion algebras over fields. In this generality, it is due to McCrimmon [M, 6.5].

(b) is well known and trivial for composition algebras over fields. In the

general situation, we pass to the base change C = C <s>r k from F to its
residue class field and find an /' e (D ®r k)1 = DL ®r k which is invertible in

C . Lifting /' to F-1 now yields an element / of the desired kind.   Q.E.D.

2.3. Given an algebra %? of "Hamiltonian quaternions" over a real scheme,

Knus [Kn, 1.3] has introduced the notion of a quadratic space of type ß? and

has constructed universal gadgets in this context [Kn, 1.5, 1.6]. For our purpose
it will be convenient to rephrase this part of his work in the more general setting

of locally ringed spaces.

So let X be a locally ringed space, 21 an associative composition algebra

over X and ¿P a locally free right ^-module of (constant) rank one. We
write 3x for the sheaf of units of 31. Matching canonically the pointed

set of isomorphism classes of locally free right J5?-modules of rank one with

HX(X, 3*) in the sense of noncommutative Cech cohomology [Mi, III, 4.6],

and noting that the morphism N& : 3X —y tfjf of group sheaves determines a

morphism
N9:HX(X,3X) -y Hx(X,tfx) = PicX

of pointed sets, N^(^) is an invertible sheaf on X, called the norm of ¿P .

We say ¿P is of norm one if A^(^) = tfx . A quadratic map Q: â0 —> y in

the category of ¿fr-modules is said to be multiplicative in case

Q(w . u) = Ns(u)Q(w)

for all sections w in ^ , u in 2$ , the dot on the left referring to the right 3i-

module structure of 3P . By a norm on ¿P we mean a multiplicative quadratic
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map N: 3d —y NS(3Ö) whose induced symmetric bilinear map is nondegener-

ate, i.e., induces a linear isomorphism 3a ^ %émx(3s, Ns(3°)).

2.4. Keeping the notations of 2.3, norms on 3° always exist and are unique up

to an invertible factor in T(X, tfx). Indeed, let il = (t/,-)ie/ be an open cover

of X such that the right ü^-module ¿P becomes free of rank one over each

U¡, with basis vector /, £ F(U,;, 3s). Then /,- = /, • w,-; over Uy = U¡ n £/,- ,
for some u¡j e T(U¡j,3X), and a = (u¡j) is a cocycle of 3x over X which

determines 3s in HX(X, 3X). Hence, setting «J. = N&(u¡j), a' = (wj-) is a

cocycle of ¿f£ over X which determines S? = N3(¿P) in PicX, so we may

assume that J? becomes free over each [/,-, with basis vector /;' £ F(U,■, J?)

satisfying l'j = ¡¡u'^ over Uy. Now it follows easily that the multiplicative

quadratic maps A,: 3s\ui -» ^|i/,- sending /, to /,' (i € /) glue to give a norm

A on ¿P . Also, as observed in [Kn, 1.5], A is universal (in the obvious sense)

in the category of multiplicative quadratic maps, implying its uniqueness up to

a factor in T(X,<fx).   Q.E.D.

2.5 Cayley-Dickson Doubling Theorem, (a) Let 3 be an associative composi-

tion algebra over the locally ringed space X, ¿P a locally free right 3-module

of rank one and norm one and N: ¿P -> Ng,(â°) = tfx a norm on 3s . Then

there is a unique tfx-bilinear map â° x 3s -> 3, written multiplicatively and

satisfying
(w • u)(w ' v) = N(w)v*u

for all u, v in 3, w in 3?. Also, the tfx-module

Cay(3,3>, N)=3®3°

becomes a composition algebra under the multiplication

(u, w)(u', w') = (uu' + ww', w' - u + w • u'*),

with norm ACay(^ ,3>,n) = N& © (-A).
(b) Conversely, suppose W is a composition algebra of constant rank r over

X and 3 c\W a composition subalgebra of constant rank |. Then there exist

a locally free right 3-module 3a of rank one and norm one as well as a norm N

on 9° such that the identity of 3 extends to an isomorphism Cay(3, 3e, N) ^>

&.

Proof, (a) Vi, l¡, i £ I, having the same meaning as in 2.4, we set A¡ = N(l¡) £

T(V¡, tfx) and obtain a bilinear map of the desired kind by glueing the local

data (^\u,) x (3s\Ui) -» 3\v¡ given by

(/,- • u)(l¡ -v) = XiV*u

for u, v in 3\u¡ • Uniqueness is clear locally, hence globally. That
Cay(Ü?, 3e, N) does indeed become a composition algebra over X as indi-

cated is now a matter of straightforward verification.

(b) We write 30 = 3L for the orthogonal complement of 3 in 9? relative

to N<g . Then the action

3Bx3^y3d,(w,u)y-*w-u = uw,

where the right-hand side refers to multiplication in W, gives 3s the structure

of a right üf-module which is locally free of rank one (1.7(a), 2.2). Choosing
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11, /,-, Ujj as in 2.4, and setting X¡ = N<g>(l¡), we conclude N^(u¡j) = X¡ xk¡ over

Vij. Hence NS(3Ö) = tfx . Clearly, the restriction of -Ag> to 3L makes up
a norm A on 3s and Cay(^,3>,N) = W.   Q.E.D.

2.6 Remark. The construction of Cay(3, 3°, N) is functorial in 3°, A : If
cp: (3s, N) —► (3s', A') is a morphism, i.e., a .S*"-linear map 3° -* 3s' preserv-

ing norms,

\s®cp: Cay(3, 3°, N) Z Cay(3, 3", A')

is an isomorphism of composition algebras. As a matter of terminology, the

bilinear map 3a x3> -> 3 of 2.5(a) is said to be associated with A.

2.7 Corollary. Let ^ be a split quaternion algebra over X. Then there exists

an invertible sheaf Sf on X such that

%^g«¿x(Sf®fix)=(^¿   jQ ,

the module on the right being equipped with ordinary matrix multiplication.

More precisely, given a split torus 3 cfé, there exists an isomorphism fê -^

%ndx(Sf ® tfx) sending 3 to the diagonal of IW' x(Sf ®tfx).

Proof. We may identify 3 with tfx®tfx (1.8) and have g' = Cay(^" ,3s, N)

as in 2.5. Since HX(X,3X) = PicX ® PicZ, we have 3° * Sf ® Jf, with
invertible ¿fy-modules Sf, Jf, forcing Sf ® ̂  =■ Ns(3d) = tfx and allowing

us to assume 3> = Sf ® Sf. By 2.4, A = pN° for some p £ T(X,tfx),

where A0 is the hyperbolic quadratic form on Sf ® Sf. The bilinear map
3° x 3s —y 3 associated with A (2.6) is then given by

(sJ)(t,t)=p((s,t),(t,S))

for s, t in Sf, s, t in Sf, ( , ) being the canonical pairing Sf xSf -» tfx ■

Now

cp: Cay(3,3>,N)^(ß   jf) ,

defined by

<p((a,b),(s,S))=(j   ^

for sections a, b in tfx , s in Sf, s in Sf, is easily seen to be an isomorphism

of composition algebras.   Q.E.D.

2.8 Remark. The invertible sheaf Sf in 2.7 is not uniquely determined by W.

In fact,

(tfx   &\~(0X   ¿2>\       (a   i\      'fi   sY_(b    -s\
\Sf   fix)      \Sf   fix)'     \s   b)       \s   b)   -\-s    a)

is an isomorphism.

2.9 Example. Let 3 be an associative composition algebra over the locally

ringed space X. Then 3$ , which is simply 3 viewed canonically as a right

i^-module, is globally free of rank one and norm one. The norms on 33

are exactly the quadratic forms A = p Ns , p £ T( X, fif ) ; the bilinear map
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3g¡ x3g, -+ 3 associated with such an A is then given by (w, w') y-* pw'*w ,

and the multiplication of Cay(^, 3S , A) attains the form

(u, w)(u', w') = (uu' + pw'*w, w'u + wu'*).

Hence we are back to the original Cayley-Dickson Doubling Process of 2.1.

2.10 Example. For X, 3 as in 2.9, PicX acts on HX(X,3X) via (Sf ,3s)
y-y Sf ® 3s , and we have Ns(Sf <g> 3>) = Sf2 <g> N^(3°). This allows us to
construct examples of right üí?-modules which are locally free of rank one and

norm one without being globally free. For instance, if Sf £ PicX has order

two, Sf <g> 3$ is such a module.

2.11 Example. Let W a locally free module of constant rank two over X.

Then 3 = %/ietx(%), the ¿fy-algebra of endomorphisms of i?, is a quaternion

algebra over X whose norm is the usual determinant (cf. EGA II 6.4.8). The

canonical involution of 3 (1.6) may be described as follows: Recalling the

natural isomorphism

<Dy: (detg)®%^%    (det^ = /\2^

given by

**((Ji A s2) es» t) = (sx, i)s2 - (s2, t)sx,

we have

/*=<Pro(ldetr®/)o(Or)-1

for / in 3 . Standard techniques in glueing local data on ringed spaces show

that all locally free right ^-modules of rank one have the form

3> = & ® È = %anx(% , &),

^ being a locally free fix-module of constant rank two; it follows Ng,(3°) =

(det^") <g> (detWy , so 3s has norm one if and only if there exists an isomor-

phism q: det^" ^y det^. Fixing such an isomorphism, there exists a unique

quadratic form A': 3° —> fix satisfying

N(g)(sxAs2) = a(g(sx)Ag(s2))

for g in 3s = %?em(<ÈÏ, SF), sx , s2 in %f, and A is a norm on 3s whose

associated bilinear map 30 x 3s -» 3 has the form

(g\, gl)^ g*X  °g2,

g*, for g in 3s , being defined by

g* =í>?o(a®í)o($^)-1.

3. Zorn algebras

3.1. Let F be an arbitrary base ring. It is known since the work of Zorn [Zo]

that, using the standard vector product R3 x R3 —y R3, (u, v) i-> u x v, on

three-dimensional column space over F, the free F-module

Zor(F)=(£   f)
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of rank 8 becomes an octonion algebra under the multiplication

(a    u\ ( b    v\_i       ab + 'uv' av + b'u- u' x v'\

\u'   a') \v'   b') ~ \bu'+ a'v'+ uxv 'u'v + a'b'      )

for a, a', b, b' £ R, u, u', v , v' £ R3, called the Zorn algebra (of vector

matrices) over F. As in the case of quaternions, the norm of Zor(F) is the

determinant:

det [   ,     , ) = aa' - 'uu'.
\u'   a!)

If F is a field, Zor(F) is the only split octonion algebra over F.

3.2. We wish to extend this construction from rings to locally ringed spaces.

To this end, we consider a locally ringed space X and a locally free ¿^-module

ET of constant rank 3 such that det3^ = /\3 3^ = fix . Fixing an isomorphism

a: det y ^+ fix , unique up to an invertible factor in T(X, fix), we obtain an

induced bilinear map Jx/-t j according to the rule

(u, v) y-y U x v = a(u A V A -).

This bilinear map is called the vector product on y since, locally, it just looks

like the ordinary vector product. On the other hand, a uniquely determines an

isomorphism ß: det y -* fix , characterized by the condition

a(ux Au2A uf)ß(ux A «2 A iif) = det((w,-, «,))

for Ui in y, üj in ^, 1 < i, j < 3 . Hence we also obtain a vector product

jx/-tj, defined analogously to the one on y, using ß rather than a.

3.3. Keeping the notations of 3.2, we contend that

Zor(^,a)=(5    £)

becomes an octonion algebra over X under the multiplication

fa    u\ i b    v \ _ f    aa' + (u,v)       av + b'u-uxii

\it   a') \v   b') ~ \bu +a'i)+ uxv      (v,u)=a'b'

whose norm is given by the determinant:

det\ü   a')= aa' ~ (U ' "^ '

Indeed, one simply notes that, locally, Z,or(3r, a) looks like the Zorn algebra

of 3.1, and then invokes 1.7.2

3.4. The octonion algebras obtained in 3.3 are called Zorn algebras (of vec-

tor matrices) over X. Their construction is functorial in the parameters in-

volved: Suppose 3~, 3~' are locally free ^--modules of constant rank 3, and

a: det y ^* fix, a': det 3r' —* fix are isomorphisms. Suppose further that

cp: (y, a) -y (3r>, of) is a morphism, i.e., an fix-linear map y —> 3r> having

q' o (det cp) = a. Then cp is bijective, and

a    u \      (    a       cp(u)

it   a' )      \<p~x(ii)     a'

2The author is indebted to O. Loos, who greatly simplified the original construction of these

algebras.
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determines an isomorphism Zor(y, a) -^ Zox(3r', a'). Along similar lines,

(a u,)„'(a uX = (a> ~ù)
\u   a'J        \u   a'J       \-u    a )

turns out to be an isomorphism Zor(y, a) ^> Zor(y, ß), ß being defined as

in 3.2.
Zorn algebras are obviously split. The converse is also true, as we shall now

prove.

3.5 Theorem. Let ^ be a split octonion algebra over the locally ringed space

X. Then %> is a Zorn algebra. More precisely, given a split torus 3 c f,

there exist a locally free fix-module y of constant rank 3, an isomorphism

a: dety -^ fix and an isomorphism W -^ Zor(y, a) sending 3 to the

diagonal of Zor(y, a).

Proof. We proceed in three steps.

( 1 ) Identifying 3 = fix® fix , one obtains, by passing to global sections, a

complete orthogonal system (cx, c2) of primitive idempotents in D = Y(X, 3)

c C = T(X, W), giving rise to a Peirce decomposition

W = WXX®WX2®W2X®W22,       %i = fixci       (i = l,2)

with the usual properties (cf. [S, 3.4]). The ¿fy-modules %?x2, %?2X are locally

free and dual to each other under F = T<g , so both have constant rank 3. The

expression T(uxu2uf) being alternating in ux, u2, u-y, £ 3~ = fêX2 , we obtain a

unique ^x-miear map a: dety —> fix satisfying a(ux Au2Auf) = T(uxu2uf).

(2) We now consider the special case X = Spec F, where F is a local ring,

put t = tc and contend that there is a basis (ex, e2, ef) of CX2 = T(X, ^x2)

over R such that

t(exe2ef) = 1 = -t(èxè2ë3),

(èi) being the /-dual basis of C21 = T(X, W2X) relative to (ef). If F is a

field, the assumption t(uxu2uf) = 0 for all ux, u2, «3 £ Cx2 forces C22 = 0 by
nondegeneracy of /, and from (uv)w + (uw)v = u(vw + wv) for u, v £ Cx2,

w £ C2X, we conclude t(uw)v = t(vw)u, in contradiction to CX2 having

dimension 3; hence t(uxu2u^) ^ 0 for some ux, u2, u^ £ Cx2. If F is arbi-

trary, passing to its residue class field now yields a basis (ef of C12 satisfying

t(exe2e$) = 1. Since, in addition, exe2 £ C2X is perpendicular to ex, e2, this

implies exe2 = é-¡. We also have e¡ej = S¡jCX, e¡ej = ai¡c2, which first yields

(èxë2)ex =èx(è2ex) + èx(exè2)-(èxef)ë2 = -è2

and then

t(èxè2èf) = t(ëxë2,exe2) = t((èfe2)ex, e2) = -t(è2e2) = -1,

as claimed.
(3) Returning to the general situation, it follows from (2) that a as defined

in ( 1 ) is an isomorphism and

det(F(w,-, üj)) = -T(uxu2Ui)T(üxü2üi)

for ux , u2, «3 in y, ux, u2, «3 in y = S71 . Hence the vector product

y^ x y —y y coming from a via 3.2 agrees with the original multiplication
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of ^ restricted to fëx2, and the vector product 3~ x3~ ^>3~ belonging to the

isomorphism ß: det 3" ^y fix is the negative of the original multiplication of

W restricted to W2X. It now follows that the map <P: £? -» Zor(y, a) given

by

<D(flCi + U + Ü + eici) =[aü    ", j

for a, a' in fix, u in y = ^2, ü in 3" = W2X is an isomorphism of the

desired kind.   Q.E.D.

3.6 Corollary (cf. [BS, (3.4)]). Let R be a principal ideal domain and C a
composition algebra with zero divisors over R. Then C is isomorphic to R®R,

Mat2(F) (the algebra of 2-by-2 matrices over R) or Zor(R).

Proof. Since finitely generated projective F-modules are free, and in view of

2.7, 3.5, it suffices to show that C is split. So let u ^¿ 0 be a zero divisor in

C. Then nc(u) = 0, and we may assume that u is unimodular relative to

some basis of C . By nondegeneracy, this yields an element v £ C satisfying

tc(uv) = 1, and (uv ,1c- uv) is a complete orthogonal system of primitive

idempotents in C.   Q.E.D.

3.7. Let X = PR be projective «-space over a ring F, so X = Pro} S where

S = R[xq , ... , xn] is the polynomial ring in n + 1 variables over F, equipped

with the natural grading S = ©d>0 Sj . Note that X is covered by the open

affines V¡ = SpecSx¡0 for i = 0, ... , n , where

R 0<j<n, f + i

stands for the elements of degree 0 in the Z-graded k-algebra Sx, obtained

by localizing S with respect to the multiplicative subset {I, x¡, xf, ...} . For

d £ Z, we write as usual fix(d) for the unique (invertible) ¿^--module whose

sections over V¡ (0 < i < n) are the elements of degree d in Sx¡. Recall that

T(X, fix(d)) vanishes for d < 0 and agrees with Sj otherwise [Ha, II (5.13)].

3.8. We now make good on our promise to construct natural examples of

quadratic alternative algebras with big radicals (1.8). Keeping the above nota-

tions and fixing positive integers /, m,

y = fix(l) ® fix(m) ® fix(-l - m)

is a locally free fix -module of constant rank 3, and the multiplication of S

induces a canonical isomorphism a: det3r ^ fix. Hence we may form the

octonion algebra W = Zor(y, a) over X. From 3.7, we conclude

c = r(x,&)=( /   s'®Sm)
\¿>l+m K       j

Multiplication in this F-algebra is carried out according to the rule

(a      fi®fm\(b      gi®g„
\fl+m       a!     ) \g!+m        b'

ab (agi + b'ff) ® (agm + b'fm)
, bfi+m + a' g,+m +fgm- fm g, a'b'
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where a, a', b, b' £ R and the f's and g's are homogeneous polynomials in

S, with subscripts indicating their respective degrees. C is quadratic alternative

(1.7) and free of rank

I + n\     im + n\     ( I + m + n\     .

n   )     \    n    )     {      n       )

Note that C is an F-subalgebra of Zor(S). If F is a field, the radical of C
has the form

radC=L°      S>®S"

and satisfies

(radC)2=U°+m  o)'     (-dC)3 = o,

the last equation being part of a general phenomenon, observed independently

by Zagler [Z, 6.4] and Kunze-Scheinberg [KS, Theorem 1.5], see also [M, 5.6].

4. Curves of genus zero and the Classification Theorem

4.1. Throughout this section, we fix an arbitrary base field k. By a curve

we mean a geometrically integral, complete, smooth scheme of dimension one

over k . Given a divisor F on a curve X, we write degF for its degree and

Sf(D) for the corresponding invertible sheaf, so Dh Sf(D) determines the

canonical identification of the class group of X with Pic X. The term "point"

without further specification always refers to closed points. On the other hand,

the generic point of X is usually denoted by £. We write k(X) = fi^x f°r

the function field of X .

4.2. Let X be a curve of genus zero, i.e., a smooth quadric in the plane. The

following statements are standard consequences of the Riemann-Roch Theorem

(cf. [T]). X always contains points of degree at most two and is rational (i.e.,

isomorphic to P|) if and only if it contains rational points. In particular, X

is a form of the projective line, so becomes isomorphic to it after passing to the

algebraic closure or, in fact, to an appropriate quadratic extension. If Pn £ X

is a point of minimal degree (< 2), the assignment m y-* Sf(mPf) gives an

isomorphism Z ^ Pic X. We also have

dimfcr(A,^(F)) = degF+ 1

for every divisor D of X having degree > 0, whereas Y(X, Sf(D)) = 0

otherwise.

4.3. Following Witt [W], there is a one-to-one correspondence between (nonra-

tional) curves of genus zero and quaternion (division) algebras over k . In order

to describe this correspondence, we adopt the approach of Tillmann [T, 5.4].

Accordingly, X being a nonrational curve of genus zero, there exists an inde-

composable vector bundle f of rank two over X, unique up to multiplication

with a unique invertible sheaf, and D = Endx(l?) is the quaternion division

algebra we are looking for. A standard model ^ of such a bundle may be

described as follows: Let Pc, £ X be a point of degree two, t a local parameter

of X at Pn and f £ fiP x have the property that /(Pn) generates K(Po)/k.

Then Iq is the subsheaf of the constant sheaf k(X)2 (column vectors) which
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agrees with fi\ outside Po and whose stalk at Po is the (free) ^-module gen-

erated by ( l j, ('_'/)• This description obviously implies detfo = Sf(Pf).

We also recall from [T, 5.5] that all locally free ¿fy-modules of rank at least 3

are decomposable.
Now we are in a position to state the main results of the paper.

4.4 Classification Theorem. Let X be a curve of genus zero and fê a compo-

sition algebra over X. Then one of the following holds.

(i) fê is defined over k (see also 4.6).
(ii) ^ is a split quaternion algebra (see also 4.7).

(iii) W is a split octonion algebra (see also 4.8).

(iv) X is not rational and W = Cay(3, 3°, N), where 3 is the base change

from k to X of the quaternion division algebra over k associated with X, 3°

is a locally free right 3-module of rank one and norm one, and N is a norm

on 3° (see also 4.9).

4.5 Theorem. Let X be a curve of genus zero and W a composition algebra

of rank r over X. Suppose W contains a nonsplit composition subalgebra of

rank \ which is defined over k but not isomorphic to the base change from k

to X of the quaternion algebra over k associated with X. Then fê is defined

over k .

4.6. A few comments on the Classification Theorem, whose proof, along with

the one of 4.5, will be postponed to the next section, are in order. Let Y be

any k-scheme having T(Y ,fiY) = k and C a composition algebra over k.

Writing ^ for the base change of C from k to Y, we conclude that the

natural map p: C —yT(Y ,W) is an isomorphism since both algebras have the

same dimension, C is simple as an algebra with involution and p preserves

involutions. In particular, we recover C from W by passing to global sections,

which, in the situation of 4.4, implies that composition algebras over X defined

over k are basically the same as composition algebras over k .

4.7. Let W be a split quaternion algebra over X and suppose W is not defined
over k . Then, by 2.7 and 4.2,

r^f      fix Sf(mPf)\
* - \Sf(-mP0)        fix     ) '

where Po e X is a point of minimal degree (< 2) and m £ Z is nonzero; in

fact, we may even assume m > 0 (2.8). Then the Krull-Schmidt Theorem [T,

Satz 2.7], according to which any locally free fix-module splits into the direct

sum of indécomposables unique up to order and isomorphism, shows that m

is uniquely determined by W .

4.8. Now let ^ be a split octonion algebra over X and again suppose W is

not defined over k. Then, by 3.5, W is a Zorn algebra over X, so ^ =

Zor(y, a), for some locally free ¿^-module y of rank 3 and some iso-

morphism a: dety ^+ fix ■ With Po as in 4.7, we then have the following

possibilities for y.

Case 1. y splits into the direct sum of line bundles. Then, since dety = fix ,

y = Sf(mxP0) ®Sf(m2P0) ®Sf(-(mx + m2)P0)
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for integers mx, m2 not both zero; in fact, using functoriality (3.4), we may

assume mx > m2 > 0, mx > 0 and then conclude from the Krull-Schmidt

Theorem that W determines mx , m2 uniquely. Analogously, the isomorphism

class of W is easily seen to be independent of the choice of a.

Case 2. y does not split into the direct sum of line bundles. Then X is not

rational and, arguing as in Case 1, we conclude

y = Sf(-(2m + 1)P0) © [Sf(mPo) ® g¡¡],

where Êç, has the meaning explained in 4.3 and m > 0 is an integer uniquely

determined by W. Again W is independent of the choice of a.

4.9. Finally, suppose X is not rational and write D for the quaternion division

algebra over k associated with X. For 3 , 3s , N as in 4.4(iv), we assume

that W = Cay(^ ,3s, N) is not defined over k. Observing D = End^ió)

(4.3), 5.2 below shows 3 = gk</x(%b) • As in 2.11, this gives 3> = y <g> Jo =
%ám,x(%{), y), where y is a locally free fix-module of rank two satisfying

dety = det^) = Sf(Pf). If y were indecomposable, this would imply 3r =
#o, hence 3s = 3g¡, forcing ^ to be defined over k (1.10), a contradiction.

Hence y splits and so, without loss, 3s attains its final form

y =^,©^2,       yi = Sf(mPo) ® Jo,       3>2=Sf((-m + l)Pù)®Ê'0

for some integer m > 0 uniquely determined by g7. Viewing Jo as a sheaf

of row vectors, the norm Ao on 3s determined by the natural isomorphism

q: dety -^ det^o via 2.11 has 3°¡ (i = 1, 2) as totally isotropic submodules

and induces the canonical pairing

(sx ® tx, s2 ® t2) h-> -sxs2 det

on 3°x x y2 • We now conclude A = pNo for some p £ kx (2.4). Also,

the map (3d, N) —> (3°, Nf) defined to be multiplication by p on the first
summand and the identity on the second turns out to be a morphism in the

sense of 2.6 and hence shows W = Cay(3, 3e, A) s Cay(^, 3°, N0).
Using the Krull-Schmidt Theorem, the octonion algebras constructed in 4.8,

Cases 1, 2, and 4.9 are easily seen to be mutually nonisomorphic. We have thus

obtained a complete classification, without repetitions, of composition algebras

over X.

5. Proofs

5.1. The proofs of 4.4, 4.5, which are our main concern in this section, will be

carried out simultaneously. We continue to work over an arbitrary base field k

and consider a fixed curve X of genus zero. Our first objective is to show that

every composition algebra over X, other than fix , contains a torus defined over

k . To this end, we first require the following elementary but crucial observation,
which, incidentally, generalizes 1.10.

5.2 Proposition. Let R be a ring, Y an R-scheme, W a quadratic algebra over

Y and D c T(Y, W) a composition subalgebra over R having F(Y, fiY) = F.

Then 3, the fiy-submodule of W generated by the global sections in D, is
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a composition subalgebra defined over R. More precisely, there is a natural

isomorphism from 3 to the base change of D from R to Y.

Proof. We write a : Y —y Z = Spec F for the structure morphism of Y and

denote by M i-> M the natural equivalence between the category of F-modules

and the category of quasicoherent fiz -modules. Recall that, more generally,

the functor ~ is left adjoint to the global section function T(Z , •) from fiz-

modules to F-modules and, also, that a* is left adjoint to the direct image

functor er, from ^-modules to ¿^z-modules. This being so, the inclusion D «->

T(Y, §?) = T(Z, afîf) first induces a homomorphism D -» a¿& and then a

homomorphism a: a*D -> W of quadratic algebras whose image is 3. For

each P £ Y the map (a*D) ®k(P) -+%? ®k(P) determined by a is injective

since composition algebras over fields are simple as algebras with involution.

Hence a is injective and so yields an isomorphism a*D ^ 3 .   Q.E.D.

5.3 Corollary. Let Y be a projective k-scheme having Y(Y,fiY) = k, fê a

composition algebra over Y and k'/k an arbitrary field extension. Write W

for the base change of W from Y to Y' = Yxkk'. Iffé1 admits a composition

subalgebra of rank r defined over k', then fê admits a composition subalgebra

of rank r defined over k.

Proof. C = T(Y,W), C = r(Y',W) are finite-dimensional quadratic alter-

native algebras over k, k', respectively (1.7), and we have C = C <S>k k'.

By hypothesis, C contains a composition subalgebra of dimension r over k'.

Since the assertion is trivial for r = 1, we may assume r > 1. Then C becomes

a composition algebra modulo its radical and so contains a Wedderburn factor

[S, Theorem 3.18], which is a composition algebra of rank at least r, hence

admits a composition subalgebra of rank exactly r. Now 5.2 applies.   Q.E.D.

5.4. At this stage we allow ourselves a digression. Letting Y = Pxk be the

projective line over k, we wish to classify up to isometry quadratic spaces

over Y, i.e., pairs (f, Q) where f is a locally free <fy-module of finite rank

and Q: <§* —y tfy is a quadratic form whose induced symmetric bilinear form
is nondegenerate. For bilinear spaces, hence for quadratic ones as well if the

characteristic is not two, this classification has been carried out by Knebusch [K,

Theorem 13.2.2]. With very minor adjustments, however, the same argument

works for quadratic spaces over an arbitrary base field, leading to a result which

may be described as follows. For a positive integer m , the hyperbolic quadratic

form (a, b) y-y ab gives the fix-module fix(m) ®fix(-m) the structure of a

quadratic space over Y, which we denote by h(m) ; quadratic spaces of this

kind are called hyperbolic planes. Knebusch's Theorem now says that a quadratic

space over Y decomposes into the orthogonal sum of finitely many hyperbolic

planes and a quadratic space defined over k .

Returning to our original curve X of genus zero, we are now in a position

to establish an auxiliary result which is implicit in the Classification Theorem

4.4 and turns out to be of critical importance for the completion of the proof.

5.5 Lemma (cf. [H, Satz 3.1]). Let W be a composition algebra over X having

rank 2" > 1. Then W contains a torus defined over k .

Proof. By 5.3 we may assume that X = Pxk is the projective line over k.

Writing A = Agr for the norm of W, Knebusch's Theorem (5.4) allows us to
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decompose the quadratic space (^, A) as

(W,N) = h(mx) J. • • • 1 h(mr) ±cj*(V,q),

where 0 < r < 2n~x , mx > ■■■ > mr > 0 are integers, a: X —y Speck denotes

the structure morphism, and ( V, q) is a quadratic space over k . Passing to

global sections and observing 3.7, we conclude

C = T(X,W) = T(X, fix(mx)) 1 •• • 1 T(X, fix(mf)) 1 V

and
r

lc = zZgj + e
7 = 1

for some gj £ S homogeneous of degree m¡ and e £ V. Hence q(e) =

N(lc) = 1, so r < 2"~l, and V has dimension at least two. It is now easy to

find a vector u £ V, u £ ke, such that the subspace of V spanned by e , u

is nondegenerate relative to the symmetric bilinear form induced by q . Thus
klc + ku = k[u] c C is a composition subalgebra, giving rise to a subtorus of

W defined over k (5.2).   Q.E.D.

5.6 Remark. 5.5 says in particular that every torus over X is defined over

k . For k algebraically closed of characteristic not two, this result may be put

into a more general context as follows. Let Y be any curve over k . Then a

torus over Y has the form Cay(tfy, Sf, N) where Sf e Pic Y has order two

and A is a norm on Sf (2.5). Hence any torus over Y determines an element

of order two in Pic Y ; equivalently, it determines an étale cover of Y having

degree two [Ha, IV Ex 2.7]. Since Pic A" = Z is torsionfree, and X is simply

connected, both of these facts explain why any torus over X is defined over k .

5.7. Before proceeding with the proof, we introduce some notation. Let k'/k

be a separable quadratic field extension. If W is a composition algebra over X,
we write W for its base change from X to X' = X xk k' ; similar conventions

apply to other algebraic objects over X. The nontrivial Galois automorphism

of k'/k will be denoted by x. We let it act on X' through the second factor.

Observe that, given any fix-module y, x acts on 3r' ; more precisely, we

obtain a natural isomorphism r*y' ^> 3r'. Also, the automorphism of Pic X'

induced by x is the identity.

5.8. Now suppose W is a quaternion algebra over X. Then W contains

a torus 3 defined over k (5.5), and, in order to prove 4.4, 4.5 for W, we

may assume that 3 is not split, so it comes from a separable quadratic field

extension k'/k by changing scalars from k to X. We have to show that W

is defined over k. Adopting the terminology of 5.7, it suffices to show that

f" is defined over k' (5.3). But, 3' being a split torus in W, 2.7 yields an

identification
~,     (*x>   2"\

matching 3' with the diagonal, where Sf' is an invertible sheaf on X'. There-

fore x, being the exchange involution on 3', hence switching the diagonal

idempotents in the matrix representation of ?F' above, induces an isomorphism

Sf' ^y Sf'. Since Pic A" =■ Z is torsionfree, this forces Sf' = fix<, making g7'

globally free as an ¿^'-module, hence defined over k' (1.10).   Q.E.D.
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5.9. It remains to establish 4.4, 4.5 for an octonion algebra ^ over X. As-

suming W to be nonsplit, our first goal is to show that W contains a quaternion

subalgebra defined over k. To this end, we again start with a torus 3 c W
defined over k which agrees with the base change from k to X of a separable

quadratic field extension k'/k . Again adopting the terminology of 5.7, it suf-

fices to show that W contains a quaternion subalgebra defined over k'. But

W , containing 3' as a split torus, is itself split and so is a Zorn algebra over

X' as in 3.3: W = Zor(3r', of) where y is a locally free ¿fy-module of rank

3 and a': det3"' ^4 fix, is an isomorphism. Again x interchanges the diago-

nal and so yields an isomorphism x*3r' ^ y;. Now write y = Sf' © 3f,

where Sf', 3f are locally free of rank 1, 2, respectively. If 3f were in-

decomposable, the Krull-Schmidt Theorem would imply Sf' = fix<, hence

dety/ = dety = fix<, a contradiction. Therefore ET' is a self-dual direct

sum of line bundles and so has the form y = Sf' ® fix< © Sf', for some

invertible sheaf Sf' on X'. This gives 3*' = Sf' © fix< ® Sf', and the two

middle summands of y , y ', together with the diagonal 3' c 9" , produce

a quaternion subalgebra of 8" defined over k', as claimed.

5.10. Continuing with the proof of 4.4, 4.5 for our nonsplit octonion algebra

^ over X, we change notation and now let 3 cW bea quaternion subalgebra

defined over k (5.9), so 3 = o*D for some quaternion algebra D over k,

a: X —> Speck being the structure morphism. We may assume that D is not

split and not the quaternion algebra associated with X and have to show that

^ is defined over k. Since k(X) , the function field of X, splits X without

splitting 3 [W], we may assume X = P[ . Now write *W = Cay(3, 3°, N)
as in 2.5 and consider a separable quadratic field extension k'/k that splits

D. Adopting the terminology of 5.7, we obtain W = Cay(3', 3d' , A') and

3' = ekJx,(fix, ®fix,), so 3" =fiXi(m)®fiXi(m)®fix,(-m)®fix\-m) for
some integer m > 0 as an fiXi-module (2.11), forcing 3e = fix(m) ®tfx(m) ©

fix(-m) © fix(-m) as an fix-module. By 1.10 it suffices to show m = 0.
Arguing indirectly, we assume m > 0. The right Ü?-module structure of 3d

amounts to a homomorphism 3op -> Êki/x(3ô) of fix -algebras. By passing to
global sections and observing 3.7 in conjunction with the natural isomorphisms

*¿»{<?x(p), (fx(q)) = tfx(p)v ® fix(q) = tfx(q - p)

for arbitrary integers p , q , this gives rise to a homomorphism

m. Dop      /Mat2(/c)   Mat2(S2m)\

9'U \      0 Mat2(k)  )

of fc-algebras, where Mat2 refers to 2 x 2-matrices and S = 0¿>o Sd is the

polynomial ring in two variables over k with its natural grading. Following

cp with the projection to the upper left-hand corner of the block matrices on

the right now yields a homomorphism Dop —► Mat2(A:). Since F is a division

algebra, this cannot be.   Q.E.D.

6. Applications

6.1. We now apply our previous results to one-dimensional function fields of

genus zero. In doing so, we will always tacitly assume that the nonsingular model
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associated with such a field is a curve in the sense of 4.1 ; this convention agrees

with the established usage unless we are working over a nonperfect base field

of characteristic two. Given a one-dimensional function field K/k of genus

zero, our aim is to characterize intrinsically those composition algebras over F

which are defined over k .

6.2. To understand this characterization, we need to recall some facts from

[PI]. Let L be a field which is complete under a discrete valuation and C

a composition division algebra over L. Then the valuation of L uniquely

extends to a valuation of C, so the standard vocabulary ofvaluation theory

applies to C. Setting r = dim C, the residue class algebra C of C over the

residue class field L of L has dimension r or j, and is either a composi-

tion algebra or a purely inseparable field extension of characteristic two and

exponent one. C is said to be unramified if C is a composition algebra hav-

ing dimC = r; otherwise, deviating from the terminology of [PI], it is said

to be ramified. Finally, we call C separably ramified if C is a composition

algebra of dimension ¿ . In this case, C has the form Cay(F, n), where D

is an unramified composition division algebra of dimension j over F and n

is a prime element of the valuation ring R of L. Writing Rc , Rd for the

valuation rings of C, D, respectively, and Af for the /-dual (t = tc) of an

F-lattice M c C, it follows easily that

Rc = Rd®Rd,        Rc = Rd ® (n~xRD),

so Rc C Rc and

dimrFc/Fc = r/2.

By contrast, if C is unramified, Rc is self dual relative to t: Rc = Rc ■

6.3. Returning to our one-dimensional function field K/k of genus zero as in
6.1, we let X be its associated nonsingular model. For any point P € X, fiPyx

is a discrete valuation ring, giving rise to a discrete valuation on F, trivial on k ,

so that we may form the corresponding completion, denoted by KP . Following

Küting [Kü], a composition algebra C over F is said to be unramified at P in

case Cp = C®kKp is either split or an unramified composition division algebra

over KP ; C is said to be (separably) ramified at P if CP is a division algebra

having this property over KP. For C to be unramified at P it is necessary

and sufficient that CP contain a selfdual order. We are now ready to establish

the characterization announced in 6.1.

6.4 Theorem. Let K/k be a one-dimensional function field of genus zero and

X its associated nonsingular model. Then a composition algebra over K is

defined over k if and only if it is unramified at all points of X.

Proof. The condition is clearly necessary. Conversely, suppose C is a compo-

sition algebra over F which is unramified at all points of X. Then standard
arguments from elementary lattice theory allow us to find a composition alge-

bra W over X whose stalk at the generic point is isomorphic to C. By the

Classification Theorem 4.4, we have the following possibilities for W .

Case 1. W is defined over k . Then C is defined over k .

Case 2. W is split. Then C is split, hence trivially defined over k .
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Case 3. fê is as in 4.4(iv). Since F splits the quaternion algebra associated

with X, 3 becomes split at the generic point, forcing C to be split, hence

defined over k .   Q.E.D.

6.5 Remark, (i) The preceding argument shows that a composition algebra

over X whose stalk at the generic point is a division algebra must be defined

over k . This corresponds to [H, Satz 3.5].

(ii) If F = k(t) is rational over k , there is a remarkable improvement of 6.4

due to Küting [Kü, 4.3.5]: Assuming char/: ^ 2, a composition algebra over

F is defined over k if and only if it is unramified at all points of the affine line

over k. The following example, modifying in a more general context an earlier

one also due to Küting [Kii, 4.7.1], shows that the hypothesis on k cannot be

avoided.

6.6 Example. Let k be a (nonperfect) field of characteristic 2 and / =

k(^/ä~ö, y/äf, y/a~i) a purely inseparable field extension of exponent 1 and de-

gree 8. Put K = k(t) as in 6.5(a), and let E/K be the splitting field of the
separable polynomial

p = x2 + t~xx + a0 £ K[x].

We view F as a torus over K, which is easily seen to be unramified at all points

P £ Axk. By contrast, F» is a separable quadratic field extension of F» , with

residue class field isomorphic to k(^/äö)/k ; hence E ramifies at infinity. These

properties carry over to the octonion algebra C = Cay(F ; ax, a2), thus showing

that C is unramified precisely at the finite places of K/k without being defined

over k (6.4).

6.7 Remark. Küting's Characterization Theorem (6.5) rests on a result of

Harder's [K, 13.4.3 and L, VI.3.13] according to which a nondegenerate sym-

metric bilinear form over the polynomial ring k[t], char/c ^ 2, can always

be diagonalized (hence is defined over k). It turns out that the original proof

of this result easily adapts to the setting of composition algebras to yield the

following conclusion.

6.8 Theorem. Let C be a composition algebra of rank r over the polynomial

ring k[t] and assume char/c ^ 2, or r > 2 and k is perfect. Then C is defined

over k .

Proof. By 3.6, we may assume that C has no zero divisors, so C = C ®/t[i] F ,

F = k(t), is a division algebra. Setting X = Axk = Spec k[t] and X' = Pxk =
X U oo, we write W for the composition algebra over X determined by C.

Elementary lattice theory allows us to extend W to an algebra W over X' in

such a way that Wf^ becomes a maximal fioo.x' -order in C . Although W may

not be a composition algebra in general, the norm of C induces quadratic form

Ag>/ : W -y fix' whose associated symmetric bilinear form has zero radical and

so determines a short exact sequence

0 -> W -» f" -» Jf' -» 0

of fix' -modules, where Jf' is concentrated at infinity. Here we pass to the

Euler characteristics and observe x(^') = h°(X', Jf') = mr/2, where m = 1
or 0 according as W ramifies at infinity or not (6.2); in the former case, it
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does so separably, by the hypotheses on k . We now invoke the Weak Riemann-

Roch Theorem, which says that %{]£') = degdetl" + rankf" for any locally

free ¿fy<-module g" of finite rank. Hence

2degdet«" + mr/2 = x{<g") - x{&') + x(JÏ') = 0,

forcing

h°(X', «") > x(&') = degdetW + r = (1 - m/4)r > 3r/4.

But T(X' ,W), being a finite-dimensional quadratic alternative A:-subalgebra

of the composition division algebra C over F, has no zero divisors and so,

by the hypotheses on k, is itself a composition algebra, of dimension at least

3r/4. Since no number strictly between r/2 and r can be attained as the
dimension of a composition algebra, this implies dimT(A', W) = r, so W is

defined over k (5.2). But then W = W\X is defined over k as well.   Q.E.D.

6.9. In 6.8, the hypotheses on k and r cannot be avoided. On the one hand,

Küting [Kü, 4.7.1] constructs a torus over F2[i] not defined over F2. On

the other hand, returning to 6.6, the change of variables y = tx leads to the

polynomial

q = y2+y + t2a0£k[t][y]

and thus produces a torus F' over k[t]. Hence Cay(F' ; ao, ax) is an octonion
algebra over k[t] not defined over k since, if it were, the same would be true

of the octonion algebra Cay(F ; a0, af) over k(t), which we have ruled out.
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