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Lie algebras of symplectic derivations
and cycles on the moduli spaces

SHIGEYUKI MORITA

We consider the Lie algebra consisting of all derivations on the free associative
algebra, generated by the first homology group of a closed oriented surface, which
kill the symplectic class. We find the first non-trivial abelianization of this Lie
algebra and discuss its relation to unstable cohomology classes of the moduli space
of curves via a theorem of Kontsevich.

17B40; 17B56, 32G15

1 Introduction

In [16, 17], Kontsevich considered three infinite dimensional Lie algebras, denoted by
cg, ag, lg , and described the stable homology of them, as g tends to ∞, in terms of
his graph homology for the case c∞ , the rational cohomology of the moduli spaces
of curves with unlabeled punctures for the case a∞ , and the rational cohomology of
the outer automorphism group Out Fn of free groups Fn (n ≥ 2) for the case l∞ ,
respectively. See also Conant and Vogtmann [2] for more details on this result.

In this paper, we consider the latter two Lie algebras. The ideal l+g of the last Lie
algebra lg , consisting of derivations with positive degrees, appeared, before the work of
Kontsevich cited above, in the study of Johnson homomorphisms which were introduced
(by Johnson) in [11, 12]; see our papers [21, 22]. In [23], we constructed a large abelian
quotient of the Lie algebra l+g and by making use of this, we defined in [25] many
homology classes of Out Fn via the above theorem of Kontsevich. These classes have
been investigated by Conant and Vogtmann [3, 4] by interpreting them geometrically
on the Outer Space of Culler and Vogtmann [5].

In this paper, we consider the associative case ag . We show the first non-trivial abelian
quotient of the ideal a+

g . More precisely, we determine the weight 2 part of H1(a+
g )

where the grading by weights is induced by that of the graded Lie algebra a+
g . We

discuss possible application of this abelianization to the problem of finding unstable
cohomology classes of the moduli space of curves. We also consider a generalization
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336 Shigeyuki Morita

of our result to the case of the Lie algebra of derivations of a free associative alegbra
without the symplectic constraint.

2 Two Lie algebras of symplectic derivations

In this section, we recall the definition of the two Lie algebras ag, lg mentioned in the
previous section briefly.

Let Σg be a closed oriented surface of genus g ≥ 1. We simply denote by H the
first integral homology group H1(Σg; Z) and let HQ = H ⊗ Q = H1(Σg; Q). The
intersection pairing

H × H 3 (u, v) 7−→ u · v ∈ Z,

which is a non-degenerate skew symmetric pairing, induces the Poincaré duality
isomorphisms

H ∼= H∗, HQ ∼= H∗Q.

Let Sp(HQ) denote the automorphism group of HQ preserving the above pairing. If
we choose a symplectic basis of HQ , then Sp(HQ) can be identified with the algebraic
group Sp(2g,Q). In short, we understand HQ as a symplectic vector space of dimension
2g.

Let Lg denote the free graded Lie algebra generated by H and let LQ
g = Lg ⊗Q. We

denote by LQ
g (k) the degree k part of LQ

g . In particular, we have

LQ
g (1) = HQ, LQ

g (2) ∼= Λ2HQ, LQ
g (3) ∼= HQ ⊗ Λ2HQ/Λ3HQ

and so on. Next let T(HQ) denote the tensor algebra (without unit) on HQ . In other
words, it is the free associative algebra without unit generated by HQ . It is a graded
algebra whose degree k part is H⊗k

Q . As is well known, we can consider LQ
g as a natural

submodule of T(HQ) consisting of Lie elements. We denote by

ω0 ∈ LQ
g (2) ∼= Λ2HQ ⊂ H⊗2

Q

the symplectic class.

Definition 1 We define two Lie algebras ag and lg by setting

ag = {derivation D of the tensor algebra T(HQ); D(ω0) = 0}
lg = {derivation D of the free Lie algebra LQ

g : D(ω0) = 0}.
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These Lie algebras are naturally graded by the degrees of derivations. More precisely,
we have direct sum decompositions

ag =
∞⊕

k=0

ag(k), lg =
∞⊕

k=0

lg(k)

ag(k) = {D ∈ Hom
(

HQ,H
⊗(k+1)
Q

)
; D(ω0) = 0}where

lg(k) = {D ∈ Hom
(

HQ,LQ
g (k + 1)

)
; D(ω0) = 0}

denote the degree k summands.

It is easy to see that
ag(0) = lg(0) ∼= sp(2g,Q) ∼= S2HQ

where sp(2g,Q) denotes the Lie algebra of Sp(2g,Q) and S2HQ denotes the second
symmetric power of HQ . Also observe that lg(k) can be considered as a natural
submodule of ag(k) so that lg is a Lie subalgebra of ag .

Let a+
g =

∞⊕
k=1

ag(k), l+g =
∞⊕

k=1

lg(k)

denote the ideal of ag and lg ,respectively, consisting of elements with positive degrees.
Then, as we already mentioned in the introduction, the latter one l+g is the same as
the Lie algebra hQ

g,1 considered in the study of Johnson homomorphisms (see [21, 22])
before the work of Kontsevich. In this paper, however, we use Kontsevich’s notation l+g
instead of ours.

Proposition 2 The Poincaré duality HQ ∼= H∗Q induces canonical isomorphisms

ag(k) = {D ∈ Hom
(

HQ,H
⊗(k+1)
Q

)
; D(ω0) = 0}

∼=
(

H⊗(k+2)
Q

)Z/(k+2)Z

for the associative case and

lg(k) = {D ∈ Hom
(

HQ,LQ
g (k + 1)

)
; D(ω0) = 0}

∼= Ker
(

HQ ⊗ LQ
g (k + 1)

[ , ]−→ LQ
g (k + 2)

)
for the Lie case, where for the former case the cyclic group Z/(k + 2)Z of order k + 2
acts naturally on H⊗(k+2)

Q by cyclic permutations.
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338 Shigeyuki Morita

Proof The latter statement was proved in [23] and the former statement was mentioned
already by Kontsevich [16, 17]. Here we give a proof of the former for completeness.
Choose a symplectic basis x1, · · · , xg, y1, · · · , yg of HQ . Then it can be checked that
the isomorphism

Hom
(

HQ,H
⊗(k+1)
Q

)
= H∗Q ⊗ H⊗(k+1)

Q
∼= HQ ⊗ H⊗(k+1)

Q

induced by the Poincaré duality H∗Q ∼= HQ is given by the correspondence

Hom
(

HQ,H
⊗(k+1)
Q

)
3 D 7−→ D∗ ∈ HQ ⊗ H⊗(k+1)

Q

where

D∗ =
g∑

i=1

{xi ⊗ D(yi)− yi ⊗ D(xi)}.

Now assume that D belongs to ag(k), namely D(ω0) = 0. Since D acts on ω0 =∑
i(xi ⊗ yi − yi ⊗ xi) by a derivation, we have

D(ω0) =
g∑

i=1

{
D(xi)⊗ yi + xi ⊗ D(yi)− D(yi)⊗ xi − yi ⊗ D(xi)

}
= D∗ − σk+2(D∗)

where σk+2 is a generator of the cyclic group Z/(k + 2)Z acting cyclically on
HQ ⊗ H⊗(k+1)

Q = H⊗(k+2)
Q by

σk+2(u1 ⊗ u2 ⊗ · · · ⊗ uk+2) = u2 ⊗ · · · ⊗ uk+2 ⊗ u1.

It follows that D(ω0) = 0 if and only if D∗ is invariant under the action of Z/(k + 2)Z.
This completes the proof.

Example 3 If we apply the above proposition to the degree 1 cases, we see that

ag(1) ∼=
(

H⊗3
Q

)Z/3 ∼= S3HQ ⊕ Λ3HQ

lg(1) ∼= Ker
(

HQ ⊗ LQ
g (2)

[ , ]−→ LQ
g (3)

)
∼= Λ3HQand

where S3HQ denotes the third symmetric power of HQ .

In fact, as is well known, there is a canonical decomposition

H⊗3
Q
∼= S3HQ ⊕ Λ3HQ ⊕ V ⊕ V

where V denotes a certain GL(HQ)–irreducible representation. It is easy to see that
both S3HQ and Λ3HQ are Z/3Z–invariant while there is no non-trivial Z/3Z–invariant
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subspace of V ⊕ V . The latter statement follows from a well known fact that there
exists a natural isomorphism

LQ
g (3) ∼= HQ ⊗ LQ

g (2)/Λ3HQ

where the factor Λ3HQ corresponds precisely to the Jacobi identity of the free Lie
algebra LQ

g .

3 Main result

In our paper [23], we proved the following theorem.

Theorem 4 [23] There exists a surjective homomorphism

l+g −→Λ3HQ ⊕
∞⊕

k=1

S2k+1HQ

of graded Lie algebras where S2k+1HQ denotes the (2k + 1)-st symmetric power of HQ
and the target is considered as an abelian Lie algebra. In particular, the Lie algebra l+g
is not finitely generated.

In view of this result, we have the following important problem.

Problem 5 Determine whether the Lie algebra a+
g is finitely generated or not. In

particular, is the abelianization H1(a+
g ) of a+

g finitely generated or not?

As the first step towards the solution of the above problem, we determined the weight
2 part of the abelianization of a+

g as follows. Recall here that the Lie algebra a+
g is

graded so that its homology group H∗(a+
g ) is bigraded. In particular, we have a direct

sum decomposition

H1(a+
g ) =

∞⊕
m=1

H1(a+
g )m

where H1(a+
g )m denotes the subspace generated by 1–cycles which are homogeneous

of degree m. More precisely

H1(a+
g )m = quotient of ag(m) by

∑
i+j=m,i,j>0

[ag(i), ag(j)].

In particular, we have

H1(a+
g )1 = ag(1) ∼= S3HQ ⊕ Λ3HQ.

The following is the main theorem of this paper.

Geometry & TopologyMonographs 13 (2008)
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Theorem 6 We have an isomorphism

H1(a+
g )2 ∼= Λ2HQ/Q(ω0)

of Sp(HQ)–modules. More precisely, the correspondence

(1) H⊗4
Q ⊃ ag(2) C13−→ H⊗2

Q −→Λ2HQ mod Q(ω0)

induces the above isomorphism. Here

C13 : H⊗4
Q −→H⊗2

Q

denotes the mapping given by

C13(u1 ⊗ u2 ⊗ u3 ⊗ u4) = (u1 · u3) u2 ⊗ u4 (ui ∈ HQ)

and the last mapping in (1) is the natural projection.

4 Proof of the main result

In this section, we prove Theorem 6. We begin by determining the Sp(HQ)–irreducible
decomposition of the degree 2 part ag(2) of the Lie algebra ag . Here we use the
terminology of [26] to describe irreducible representations of the algebraic group
Sp(2g,Q) as well as their highest weight vectors (see also Fulton and Harris [6] for
the generality of the representation theory of Sp(2g,Q)). In particular, we use the
symbol [b1b2 · · · bk] for expressing irreducible representations which are in one to one
correspondence with Young diagrams. For example, the k-th symmetric power SkHQ is
denoted by the symbol [k] and [12] denotes the irreducible representation Λ2HQ/Q(ω0).
We denote by Q the one dimensional trivial representation which corresponds to the
empty Young diagram. We also fix a symplectic basis x1, · · · , xg, y1, · · · , yg of HQ
which we use to describe highest weight vectors. For example, the highest weight vector
of [12] is x1 ∧ x2 .

Lemma 7 The irreducible decomposition of the Sp(HQ)–module H⊗4
Q is given by

H⊗4
Q
∼= 3Q⊕ 6[12]⊕ 6[2]⊕ 2[22]⊕ 3[31]⊕ 3[212]⊕ [14]⊕ [4]

for all g ≥ 4.

Proof This can be shown by a direct computation using the well known decomposition
formula for tensor products of Sp(HQ)–irreducible representations (see eg [6]).
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Proposition 8 We have a canonical decomposition

ag(2) ∼= Q⊕ 2[12]⊕ [2]⊕ [22]⊕ [212]⊕ [4]

for all g ≥ 4.

Proof By Proposition 2, we have an isomorphism

ag(2) ∼=
(

H⊗4
Q

)Z/4Z
.

Hence we have only to determine the Z/4Z–invariant part in the decomposition given
in Lemma 7 above. We consider each irreducible component case by case.

Case (i) (the trivial representation Q)

We define three Sp(HQ)–invariant elements of H⊗4
Q by setting

ω12 = ω0 ⊗ ω0, ω13 = ω0 ⊗13 ω0, ω14 = ω0 ⊗14 ω0

where ⊗13 and ⊗14 are defined by

(u1 ⊗ u2)⊗13 (u3 ⊗ u4) = u1 ⊗ u3 ⊗ u2 ⊗ u4

(u1 ⊗ u2)⊗14 (u3 ⊗ u4) = u1 ⊗ u3 ⊗ u4 ⊗ u2.

It is easy to see that these three elements form a basis of the Sp(HQ)–trivial part of
H⊗4

Q . Let σ4 ∈ Z/4Z be the generator as before. Then it acts on the above elements as

σ4(ω12) = −ω14, σ4(ω13) = −ω13, σ4(ω14) = −ω12.

It follows that the dimension of the Sp(HQ)–trivial part of ag(2) is one and it is generated
by the element ω12 − ω14 .

Case (ii) (the representation [12])

Let x1, · · · , xg, y1, · · · , yg be the fixed symplectic basis of HQ . Then the element
x1 ∧ x2 = x1⊗ x2− x2⊗ x1 ∈ H⊗2

Q is the highest weight vector of the unique summand
[12] in H⊗2

Q . We define six elements αij (1 ≤ i < j ≤ 4) by setting

αij = (x1 ∧ x2)⊗ij ω0

where
(u1 ⊗ u2)⊗ij (u3 ⊗ u4)

is defined to be the element obtained by applying a permutation on u1 ⊗ u2 ⊗ u3 ⊗ u4

such that u1 and u2 go to the i-th and j-th places respectively, while u3 and u4 go to
the k-th and `-th places respectively (k < `). For example

(u1 ⊗ u2)⊗23 (u3 ⊗ u4) = u3 ⊗ u1 ⊗ u2 ⊗ u4.
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Then it is easy to see that the six elements αij (i < j) form a basis of 6[12] ⊂ H⊗4
Q .

Now we compute the action of σ4 on these elements. We find that

α12, α13, α14, α23, α24, α34

are transformed by σ4 to

−α14, −α24, −α34, −α12, −α13, −α23.

It follows that the Z/4Z–invariant part is generated by the following two elements

(2) α(1) = α13 − α24, α(2) = α12 − α14 − α23 + α34.

Case (iii) (the representation [2])

In this case, the element x1 ⊗ x1 ∈ H⊗2
Q is the highest weight vector of the unique

summand [2] in H⊗2
Q . We define six elements βij (1 ≤ i < j ≤ 4) by setting

βij = (x1 ⊗ x1)⊗ij ω0.

Then it is easy to see that the six elements βij (i < j) form a basis of 6[2] ⊂ H⊗4
Q . Now

we compute the action of σ4 on these elements. We find that

β12, β13, β14, β23, β24, β34

are transformed by σ4 to

β14, β24, β34, −β12, −β13, −β23.

It follows that the Z/4Z–invariant part is generated by the following single element

β12 + β14 − β23 + β34.

Case (iv) (the representation [22])

By Lemma 7, the multiplicity of [22] in H⊗4
Q is two. We have the following two linearly

independent elements

γ1 = (x1 ∧ x2)⊗ (x1 ∧ x2)

= (x1 ⊗ x2 − x2 ⊗ x1)⊗ (x1 ⊗ x2 − x2 ⊗ x1)

γ2 = x1 ⊗ x1 ⊗ x2 ⊗ x2 + x2 ⊗ x2 ⊗ x1 ⊗ x1

− x1 ⊗ x2 ⊗ x1 ⊗ x2 − x2 ⊗ x1 ⊗ x2 ⊗ x1

both of which are highest weight vectors. The action of σ4 is given by

σ4(γ1) = −γ2, σ4(γ2) = −γ1.

It follows that γ1 − γ2 generates the unique summand [22] which is Z/4Z–invariant.

Geometry & TopologyMonographs 13 (2008)



Lie algebras of symplectic derivations and cycles on the moduli spaces 343

Case (v) (the representation [31])

By Lemma 7, the multiplicity of [31] in H⊗4
Q is three. It is easy to see that the element

δ1 = 4x2 ⊗ x1 ⊗ x1 ⊗ x1−x2 ⊗ x1 ⊗ x1 ⊗ x1 − x1 ⊗ x2 ⊗ x1 ⊗ x1

−x1 ⊗ x1 ⊗ x2 ⊗ x1 − x1 ⊗ x1 ⊗ x1 ⊗ x2

is the highest weight vector of one particular summand [31] ⊂ H⊗4
Q . Now define

δ2 = σ2(δ1), δ3 = σ3(δ1), δ4 = σ4(δ1).

Here σi acts on H⊗4
Q by

σi(u1 ⊗ u2 ⊗ u3 ⊗ u4) = ui ⊗ u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ u4 (i = 2, 3, 4)

(the symbol ûi denotes we delete it). Then the four elements

δ1, δ2, δ3, δ4

are transformed by σ4 to
δ4, δ1, δ2, δ3.

On the other hand, it is easy to see that δ1 + δ2 + δ3 + δ4 = 0 and also that δ1, δ2, δ3 are
linearly independent. Hence there is no summand of type [31] which is Z/4Z–invariant.

Case (vi) (the representation [212])

By Lemma 7, the multiplicity of [212] in H⊗4
Q is three. It is easy to see that the element

ε1 = x1 ⊗ (x1 ∧ x2 ∧ x3)

= x1 ⊗
∑
τ∈S3

sgn τ xτ (1) ⊗ xτ (2) ⊗ xτ (3)

is the highest weight vector of a certain summand [212] ⊂ H⊗4
Q . Define

ε2 = σ2(ε1), ε3 = σ3(ε1), ε4 = σ4(ε1).

Then the four elements
ε1, ε2, ε3, ε4

are transformed by σ4 to
ε4, ε1, ε2, ε3.

On the other hand, it is easy to check that ε1 − ε2 + ε3 − ε4 = 0 and also that ε1, ε2, ε3

are linearly independent. We can now deduce that the element

ε1 + ε3 = ε2 + ε4
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generates a unique summand of type [212] which is Z/4Z–invariant.

Case (vii) (the representation [14])

In this case, there is a unique [14] in H⊗4
Q whose highest weight vector is

x1 ∧ x2 ∧ x3 ∧ x4 =
∑
τ∈S4

sgn τ xτ (1) ⊗ xτ (2) ⊗ xτ (3) ⊗ xτ (4).

This element is not cyclically invariant. Hence [14] does not appear in ag(2). In general,
[1k+2] appears in ag(k) if and only if k is odd.

Case (viii) (the representation [4])

In this case, clearly [4] = S4HQ is Z/4Z–invariant so that it appears in ag(2). In
general, [k + 2] = Sk+2HQ appears in ag(k) for any k .

This completes the proof.

Now we prove the main theorem of this paper.

Proof of Theorem 6 Our task is to prove the exactness of the sequence

(3) Λ2ag(1)
[ , ]−→ ag(2) C13−→ Λ2HQ/Q(ω0) ∼= [12] −→ 0

which implies the required isomorphism

H1(a+
g )2 ∼= Λ2HQ/Q(ω0).

We begin by showing that the homomorphism C13 vanishes identically on commutators.
For this, we consider ag(1) to be a submodule of H⊗3

Q by Proposition 2. Let

ξ =
∑

i

ui
1 ⊗ ui

2 ⊗ ui
3 ∈ ag(1) ⊂ H⊗3

Q

η =
∑

j

vj
1 ⊗ vj

2 ⊗ vj
3 ∈ ag(1) ⊂ H⊗3

Q

be any two elements of ag(1). Then the bracket [ξ, η] ∈ ag(2) is given by [ξ, η] =∑
i,j[ξ, η]ij where

[ξ, η]ij

=(ui
1 · v

j
2) vj

1 ⊗ ui
2 ⊗ ui

3 ⊗ vj
3 + (ui

1 · v
j
3) vj

1 ⊗ vj
2 ⊗ ui

2 ⊗ ui
3

−(vj
1 · u

i
2) ui

1 ⊗ vj
2 ⊗ vj

3 ⊗ ui
3 − (vj

1 · u
i
3) ui

1 ⊗ ui
2 ⊗ vj

2 ⊗ vj
3.
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It follows that

C13([ξ, η]ij)

=(ui
1 · v

j
2)(vj

1 · u
i
3) ui

2 ⊗ vj
3 + (ui

1 · v
j
3)(vj

1 · u
i
2) vj

2 ⊗ ui
3

−(vj
1 · u

i
2)(ui

1 · v
j
3) vj

2 ⊗ ui
3 − (vj

1 · u
i
3)(ui

1 · v
j
2) ui

2 ⊗ vj
3

=0

and hence C13([ξ, η]) = 0 as required. We will later observe that the vanishing of C13

on commutators is valid in a broader context (see Proposition 15).

Next we compute the value of C13 on the component of type [12] in ag(2). In the
notation of Case (ii) of Proposition 8, we have

α12 =
g∑

i=1

(x1 ⊗ x2 − x2 ⊗ x1)⊗ (xi ⊗ yi − yi ⊗ xi)

so that
C13(α12) = −x2 ⊗ x1 + x1 ⊗ x2.

Similarly, we have

C13(α13) = 0,

C13(α14) = x1 ⊗ x2 − x2 ⊗ x1, C13(α23) = x1 ⊗ x2 − x2 ⊗ x1,

C13(α24) = 2g (x1 ⊗ x2 − x2 ⊗ x1), C13(α34) = x1 ⊗ x2 − x2 ⊗ x1.

It follows that the values of C13 on the two elements α(1), α(2) (see (2) in Proposition 8)
are given by

C13(α(1)) = −2g (x1 ⊗ x2 − x2 ⊗ x1), C13(α(2)) = 0.

Thus we have proved the exactness at the last factor of the sequence (3), namely the
surjectivity of the homomorphism

C13 : ag(2)−→Λ2HQ/Q(ω0).

It remains to prove that all the irreducible components appearing in Proposition 8 other
than the one generated by the element α(1) above can be represented as commutators.
Consider the degree two part lg(2) of the graded Lie algebra hQ

g,1 which is a graded
Lie subalgebra of a+

g . It is a consequence of a fundamental paper [8] by Hain, suitably
adapted to the case with one boundary component as in [24], that the bracket operation

Λ2lg(1) [ . ]−→ lg(2) ∼= Q⊕ [12]⊕ [22]

is surjective (see also [26] for a related result).
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Thus we have only to prove that the three components [2], [212], [4] appearing in the
decomposition of ag(2) belong to the commutator ideal of a+

g . Recall from Example 3
that ag(1) ∼= Λ3HQ ⊕ S3HQ . We consider case by case.

Case of the representation [2] We consider two elements

ξ1 = x2 ∧ y2 ∧ x3 ∈ Λ3HQ ⊂ ag(1)

η1 = x1 ⊗ x1 ⊗ y3 + x1 ⊗ y3 ⊗ x1 + y3 ⊗ x1 ⊗ x1 ∈ S3HQ ⊂ ag(1).

Then explicit computation implies

[ξ1, η1]

=− x1 ⊗ x1 ⊗ (x2 ⊗ y2 − y2 ⊗ x2)− (x2 ⊗ y2 − y2 ⊗ x2)⊗ x1 ⊗ x1

− x1 ⊗ (x2 ⊗ y2 − y2 ⊗ x2)⊗ x1

+ x2 ⊗ x1 ⊗ x1 ⊗ y2 − y2 ⊗ x1 ⊗ x1 ⊗ x2.

If we apply the contraction C11 : H⊗4
Q →H⊗2

Q defined by

C11(u1 ⊗ u2 ⊗ u3 ⊗ u4) = (u1 · u2) u3 ⊗ u4

to the above element [ξ1, η1], we obtain

−2x1 ⊗ x1

which is the highest weight vector of [2] ⊂ H⊗2
Q . It follows that the summand [2] is a

commutator.

Case of the representation [212] We consider two elements

ξ2 = x1 ∧ x2 ∧ x3 ∈ Λ3HQ ⊂ ag(1)

η2 = x1 ⊗ x1 ⊗ y1 + x1 ⊗ y1 ⊗ x1 + y1 ⊗ x1 ⊗ x1 ∈ S3HQ ⊂ ag(1).

Then explicit computation implies

[ξ2, η2]

=x1 ⊗ (x1 ⊗ (x2 ⊗ x3 − x3 ⊗ x2)− (x2 ⊗ x3 − x3 ⊗ x2)⊗ x1)

−x2 ⊗ (x1 ⊗ x1 ⊗ x3 − x3 ⊗ x1 ⊗ x1)

+x3 ⊗ (x1 ⊗ x1 ⊗ x2 − x2 ⊗ x1 ⊗ x1).

This is the highest weight vector of the summand [212] ⊂ ag(2) because if we replace
x3 with x2 in the above tensor, we obtain 0 and the same is true if we replace x2 with
x1 .

Case of the representation [4] We consider the element

ξ3 = x1 ⊗ x1 ⊗ x1 ∈ S3HQ ⊂ ag(1)
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and the above element η2 ∈ S3HQ ⊂ ag(1). Then explicit computation shows

[ξ3, η2] = 4x1 ⊗ x1 ⊗ x1 ⊗ x1

which is the highest weight vector of the summand [4] ⊂ ag(2).

This completes the proof of Theorem 6.

5 Cycles on the moduli spaces

There are several method of constructing explicit (co)cycles of the mapping class group
as well as the moduli space of curves. They include group cohomological construction
given in [24], combinatorial construction using the natural cell structures on the moduli
spaces by Witten and Kontsevich, Kontsevich’s construction [16, 17] using A∞ algebras
with scalar products, and more recently Penner and the author [28] obtained another
combinatorial method. However all the classes obtained in these ways turn out to be
expressed as polynomials in the Mumford–Morita–Miller tautological classes as shown
in the work of Kawazumi and the author [14, 15] for the group cohomological cocycles
and Igusa [10] and Mondello [20] for the Witten and Kontsevich cycles.

Recently Madsen and Weiss [19] proved that the stable cohomology of the mapping
class group is the polynomial algebra generated by the Mumford–Morita–Miller classes.
Hence we can say that there are many ways of constructing cocycles for any stable
cohomology class. On the other hand, the works of Harer and Zagier [9] and Penner
[29] determining the orbifold Euler characteristics of the moduli space imply that there
should exist huge amount of unstable classes. However there are very few works on the
unstable classes (see Looijenga [18] and Tommasi [30]). It would be worthwhile to
try to use the following (suitably modified) theorem of Kontsevich to produce unstable
homology classes of the moduli space.

Theorem 9 (Kontsevich [16, 17]) There is an isomorphism

PHk(a+
∞)Sp

2n
∼=

⊕
2g−2+m=n>0,m>0

H2n−k(Mm
g ; Q)Sm .

Here P denotes the primitive part of H∗(a+
∞)Sp which has a natural structure of Hopf

algebra, the subscript 2n denotes the weight 2n part and Mm
g denotes the moduli space

of genus g smooth curves with m punctures.

If we apply the above theorem to Tommasi’s unstable cohomology class in H5(M4; Q),
for example, it should yield certain elements in PHk(a+

∞)Sp
14 for k = 7, 9.
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Now if we consider the abelianization a+
g→H1(a+

g ) of the Lie algebra a+
g and apply

the above theorem of Kontsevich, we obtain a homomorphism

lim
g→∞

PHk (H1(a+
g )
)Sp

2n
−→

⊕
2g−2+m=n>0,m>0

H2n−k(Mm
g ; Q)Sm .

We can then ask which part of the cohomology of the moduli spaces can be obtained in
this way. In particular, if the abelianization of a+

g was large like in the case of l+g , then
we would obtain many candidates for unstable classes of the moduli spaces.

Now our main result (Theorem 6) together with Example 3 gives rise to a surjective
homomorphism

a+
g −→S3HQ ⊕ Λ3HQ ⊕ Λ2HQ/Q(ω0)

and hence

lim
g→∞

PHk(S3HQ ⊕ Λ3HQ ⊕ Λ2HQ/Q(ω0))Sp

−→
⊕

2g−2+m=n>0,m>0

H2n−k(Mm
g ; Q)Sm .

It can be shown that the source of the above homomorphism contain many cohomology
classes. By restricting further to the weight 2 part, we obtain

lim
g→∞

PHk(Λ2HQ/Q(ω0))Sp−→
⊕

k=2g−2+m>0,m>0

Hk(Mm
g ; Q)Sm

whose left hand side can be determined as follows.

Proposition 10 The Sp–trivial part H∗
(
Λ2HQ/Q(ω0)

)Sp of the cohomology group
of the irreducible representation Λ2HQ/Q(ω0) ∼= [12] is isomorphic to the cohomology
of the product S5 × S9 × S13 × · · · as g tends to ∞ so that we have

lim
g→∞

PHk (Λ2HQ/Q(ω0)
)Sp ∼=

{
Q (k ≡ 1 mod 4, k 6= 1)

0 (otherwise).

Proof By the classical invariant theory of Weyl, any Sp–invariant cohomology class
in degree k of the Sp–module Λ2HQ/Q(ω0) can be expressed as a linear combination
of certain contractions

C : Λk(Λ2HQ/Q(ω0))→Q

each of which is a various multiples of the intersection pairing on HQ . Such contractions
can be enumerated by bivalent graphs and primitivity in cohomology corresponds to
connectedness of graphs. There is only one connected bivalent graph with k vertices,
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namely a k–gon, for each k ≥ 2. Let Ck be the corresponding contraction. Now we
apply Ck on the following particular element

λk =
∑
τ∈Sk

sgn τ λ(τ (1))
k ⊗ · · · ⊗ λ(τ (k))

k

of Λk(Λ2HQ/Q(ω0)), where

λ(1)
k = x1 ∧ y2, λ

(2)
k = x2 ∧ y3, · · · ,

λ(k−1)
k = xk−1 ∧ yk, λ

(k)
k = xk ∧ y1.

By explicit computations, we see that

Ck(λk) 6= 0

if and only if k ≡ 1 mod 4 (k 6= 1). On the other hand, it can be checked easily that
any contraction corresponding to disconnected graph vanishes on λk . The result follows
from these facts.

Remark 11 If we replace Λ2HQ/Q(ω0) by the second symmetric power S2HQ in the
above argument, we obtain similar result where k ≡ 1 mod 4 is replaced by k ≡ 3 mod 4.
This can be also obtained by making use of the fact that S2HQ is isomorphic to the Lie
algebra of Sp(2g,Q).

Thus we obtain infinitely many unstable odd dimensional homology classes of the
moduli spaces.

Remark 12 If we apply Theorem 9 to Proposition 10, we obtain homomorphisms

lim
g→∞

PHk (Λ2HQ/Q(ω0)
)Sp−→H4k+1(M4k+1

1 )S4k+1

for all k ≥ 1. Recently, Conant [1] proved that the cycles of the genus one moduli
spaces obtained in this way are all non-trivial. It would be interesting to compare this
result with that of Getzler [7] where the rational cohomology of genus one moduli
spaces are determined.

6 Further results

It seems worthwhile to consider the Lie algebra consisting of derivations on free
associative algebras without the symplectic constraint. For this, let Hn denote a vector
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space over Q of dimension n ≥ 2. Also let T(Hn) denote the tensor algebra without
unit generated by Hn . Now define

Der(T(Hn)) = {derivation D of the free associative algebra T(Hn)}.

It has a natural structure of a graded Lie algebra

Der(T(Hn)) =
∞⊕

k=0

Der(T(Hn))(k)

where Der(T(Hn)(k) = Hom
(
Hn,H⊗(k+1)

n
) ∼= H∗n ⊗ H⊗(k+1)

n .

Let Der+(T(Hn)) =
∞⊕

k=1

H∗n ⊗ H⊗(k+1)
n

be the ideal of Der(T(Hn)) consisting of derivations with positive degrees. By definition,
a+

g is clearly a Lie subalgebra of Der+(T(H2g)) and we are interested in the structure of
Der+(T(Hn)) as well. In particular, we have the following problem.

Problem 13 Determine whether the Lie algebra Der+(T(Hn)) is finitely generated or
not. In particular, is the abelianization

H1(Der+(T(Hn)))

of Der+(T(Hn)) finitely generated or not?

Remark 14 We can also consider the free Lie algebra L(Hn) generated by Hn and
also the Lie algebra Der(L(Hn)) consisting of derivations of it. This Lie algebra can
be naturally considered as a Lie subalgebra of Der(T(Hn)). In this case, however,
we know that Der+(L(Hn)) is not finitely generated because the surjective homomor-
phisms trace(k) : Der(L(Hn))(k)→SkHn defined in [23] vanish on the commutator ideal
[Der+(L(Hn)),Der+(L(Hn))] for any k ≥ 2 (see [27]).

The Lie algebra Der+(T(Hn)) is graded. It follows that the abelianization
H1(Der+(T(Hn))) is bigraded and we have a direct sum decomposition

H1(Der+(T(Hn))) =
∞⊕

m=1

H1(Der+(T(Hn)))m.

Clearly we have
H1(Der+(T(Hn)))1 = H∗n ⊗ H⊗2

n .
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Now we show that the next summand, namely the weight 2 part of the abelianization of
Der+(T(Hn)) is non-trivial. For this, consider the contraction

C13 : Der(T(Hn))(2) ∼= H∗n ⊗ H⊗3
n −→H⊗2

n

defined by
C13(f ⊗ u1 ⊗ u2 ⊗ u3) = f (u2) u1 ⊗ u3

where f ∈ H∗n , ui ∈ Hn . It is clearly surjective.

Proposition 15 The composition

Λ2Der(T(Hn))(1)
[ , ]−→ Der(T(Hn))(2) C13−→ H⊗2

n

is trivial. In other words, the homomorphism C13 is trivial on the commutator ideal
[Der+(T(Hn)),Der+(T(Hn))] of the Lie algebra Der+(T(Hn)) so that it induces a
surjection

H1(Der+(T(Hn)))2−→H⊗2
n .

Proof The bracket operation on Λ2Der(T(Hn))(1) is given by

[f ⊗ u1⊗u2, h⊗ v1 ⊗ v2]

= f (v1) h⊗ u1 ⊗ u2 ⊗ v2 + f (v2) h⊗ v1 ⊗ u1 ⊗ u2

−h(u1) f ⊗ v1 ⊗ v2 ⊗ u2 − h(u2) f ⊗ u1 ⊗ v1 ⊗ v2

where f , h ∈ H∗n , ui, vi ∈ Hn . It follows that

C13([f ⊗ u1 ⊗ u2, h⊗ v1 ⊗ v2])

= f (v1)h(u2) u1 ⊗ v2 + f (v2)h(u1) v1 ⊗ u2

−h(u1)f (v2) v1 ⊗ u2 − h(u2)f (v1) u1 ⊗ v2

= 0.

This completes the proof.

Remark 16 There is a close connection between the contraction C13 and the trace
map. In fact, the equality C13 = −2 trace(2) holds so that the following diagram is
commutative (up to a non-zero scalar)

Der(L(Hn))(2)
trace(2)−−−−→ S2Hny y

Der(T(Hn))(2) C13−−−−→ H⊗2
n .
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Conjecture 17 The contraction C13 : Der(T(Hn))(2)→H⊗2
n induces an isomorphism

H1(Der+(T(Hn)))2 ∼= H⊗2
n .

By an explicit computation using a computer, we have obtained the following result.

Proposition 18 The above conjecture is true for the case n = 2, namely we have an
isomorphism

H1(Der+(T(H2)))2 ∼= H⊗2
2 .

Furthermore, the homomorphism

Der(T(H2))(1)⊗ Der(T(H2))(k)
[ , ]−→ Der(T(H2))(k + 1)

induced by the bracket operation is surjective for k = 2, 3 so that

H1(Der+(T(H2)))m = 0

for m = 3, 4.

Remark 19 At present, we have no idea about the (non)-triviality of the abelianization
H1(Der+(T(Hn)))m for n ≥ 3 and m ≥ 3. In the case of Der+(L(Hn)), Kassabov [13]
has determined the abelianization of it in a certain stable range (cf [27]).
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