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Expression of transforming growth factor-beta isoforms and

their receptors in chronic tendinosis
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Chronic tendon lesions are degenerative conditions and may represent a failure to repair or remodel the

extracellular matrix after repeated micro-injury. Since TGF-β is strongly associated with tissue repair, we

investigated the expression of TGF-β isoforms (β1, β2 and β3) and their 2 signalling receptors (TGF-βRI

and TGF-βRII) in normal and pathological Achilles tendons. In all tissues, all 3 TGF-β isoforms and the 2

receptors were present at sites of blood vessels. Cells in the matrix showed no staining for TGF-β1 or β3,

while TGF-β2 was associated with cells throughout the normal cadaver tendon. Tissue from tendons with

pathological lesions showed an increase in cell numbers and percentage TGF-β2 expression. TGF-βRII

showed a wide distribution in cells throughout the tissue sections. As with TGF-β2, there was an increase in

the number of cells expressing TGF-βRII in pathological tissue. TGF-βRI was restricted to blood vessels

and was absent from the fibrillar matrix. We conclude that despite the presence and upregulation of TGF-

β2, TGF-β signalling is not propagated due to the lack of TGF-βRI. This might explain why chronic tendon

lesions fail to resolve and suggests that the addition of exogenous TGF-β will have little effect on chronic

tendinopathy.
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Tendon lesions (tendinopathies) are often chronic,

tending to occur in middle age, frequently in the

absence of trauma or remembered injury. Degener-

ation is commonly associated with most tendino-

pathies, since there is little evidence of inflammation

(Astro$ m & Rausing, 1995; Jarvinen et al. 1997;

Kannus, 1997). They are often associated with

‘overuse’, and are possibly the consequence of

repeated microtrauma and a failure to repair (Kannus,

1997). Repair of matrix injury requires the co-

ordinated control of successive phases of cell activity,

including cell recruitment, cell proliferation, matrix

synthesis and matrix remodelling. Consequently a

failure of any one of these activities may give rise to a

tendinopathy.

Transforming growth factor beta (TGF-β) is likely

to be an important factor in tendon pathology since it

plays a major role in tissue repair (Clark & Coker,
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1998). One of its most important roles is the

promotion of new matrix synthesis (Ignotz &

Massague, 1986; Roberts et al. 1986; Clark et al.

1997; Wang et al. 1999). There are 3 mammalian

isoforms of TGF-β (β1, β2 and β3) which are

differently expressed in a variety of connective tissues

including cartilage (Fukumura et al. 1998; Matsunaga

et al. 1999), bone (Horner et al. 1998), and muscle

(McLennan & Koishi, 1997). Differential activities of

the 3 isoforms in tissue healing have also been shown

(Shah et al. 1995; O’Kane & Ferguson, 1997;

Cordeiro et al. 1999), although their precise role is not

fully understood. First secreted in a 100 kDa latent

form, TGF-β is activated by proteolytic cleavage,

releasing a 25 kDa active dimer (Clark & Coker,

1998). Activity is mediated by 2 signalling receptors,

TGF-β receptor I (TGF-βRI) and TGF-βRII, which

dimerise and transduce their signal via their serine}
threonine kinase activity (Wrana et al. 1994).

There have been no studies of the expression and
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Fig. 1. Haematoxylin and eosin staining (a, b, c) showing morphology of cells and tissue structure. Alcian blue staining (d, e, f ) showing

the presence (blue) or absence (pink) of glycosaminoglycans. Masson’s trichrome staining (g, h, i ) showing organised collagen matrix (red)

and disorganised collagen matrix (blue}green). Normal matrix organisation, normal cellularity and absence of glycosaminoglycan (GAG)

infiltration in a 76-y-old male cadaver (a, d, g). The macroscopically normal site of a 38-y-old male patient with Achilles tendinopathy also

showed normal organisation, normal cellularity and no GAG infiltration (b, e, h). The specimen from the site of the lesion in the same patient

with tendinopathy showed increased cellularity, cell rounding, infiltration of GAG and absence of matrix organisation (c, f, i ). ¬400.

role of TGF-β in human tendon pathology. Studies of

acute tendon lesions in animals, while informative,

have little relevance to the chronic degenerative lesions

found in man (Chang et al. 1997). There are alterations

in TGF-β expression in a number of connective tissue

pathologies such as Dupuytren’s contracture and

keloid scar (Park et al. 1995; Badalamente et al. 1996;

Ichiki et al. 1997), implicating TGF-β in the path-
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Fig. 2. Immunolocalisation of TGF-β isoforms, showing a lack of tenocyte staining for TGF-β1 (a, d, g) and TGF-β3 (c, f, i ). TGF- β2 was

localised to tenocytes throughout the tissues seen as dark brown staining of the cells (b, e, h). Blood vessels stained positively for TGF-β1

( j ), TGF-β2 (k) and TGF-β3 (l). a, b and c are from a 76-y-old male cadaver, d, e and f are from the macroscopically normal site of a 39-

y-old male, g, h and i are from the core lesion site of a 36-y-old male. Haematoxylin counterstain, ¬400.

ology. It has also been suggested that alterations in

responsiveness to TGF-β are the driving force behind

such pathologies (Bettinger et al. 1996; Zhou et al.

1997). TGF-β has been shown to have profound

effects on tissue repair (O’Kane & Ferguson, 1997)

and to accelerate and enhance wound healing as an

exogenously applied agent (Ksander et al. 1990; Beck

et al. 1991; Quaglino et al. 1991; Meyer, 1993;
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Robinson, 1993). However, before the use of TGF-β

therapy in tendon treatment, it is necessary to

determine which, if any, TGF-β isoforms and their

signalling receptors are present in chronic tendinosis.

This will subsequently allow further research into the

possible therapeutic value of TGF-β in tendinopathy.

Here we present the results of an immunochemical

study of all 3 TGF-β isoforms and their signalling

receptors in specimens taken from patients with

chronic tendinosis. Comparisons were then made with

samples of macroscopically and histologically normal

tendon tissue from the same tendon and with

unaffected Achilles tendons from cadavers.

  

Tissue

Achilles tendon tissue was obtained from patients

undergoing surgery for chronic Achilles tendinopathy

(n¯ 7, aged 29–49 y, mean 38±4³7±8 y). Macro-

scopically abnormal tissue was removed from the core

of the lesion, which was localised with the aid of

magnetic resonance imaging. All lesions were located

in the tendon midsubstance approximately 4–8 cm

from the tendon insertion. As part of the operative

procedure, macroscopically normal tissue was also

removed from each tendon from a site distant to the

core lesion. Normal Achilles tendon tissue was

obtained from cadavers, with no known history of

tendinopathy, no more than 48 h after death (n¯ 4,

aged 56–93 y, mean 75±5³15±2 y).

Tissue preparation

Tissue was immediately cut into small cubes and

either snap frozen in hexane before storage at ®70 °C,

or lightly fixed in 4% paraformaldehyde in phosphate

buffered saline on ice for 2–4 h followed by saturation

in cold 30% sucrose at 4 °C. Tissue was embedded in

Optimal Cutting Temperature compound (OCT, Agar

Scientific, Essex, UK) and cryosections cut at

8–10 µm. Sections were mounted on 3-aminopropyl-

triethoxysilane (TESPA, Sigma) coated slides and

allowed to air dry. Unfixed tissue sections were

subsequently fixed briefly in acetone for 30 s before

staining.

Histology and histochemistry

Sections were stained with haematoxylin and eosin to

display general morphology and cellularity and with

Alcian blue}periodic acid Schiff to demonstrate

matrix proteoglycans and glycosaminoglycans

(GAG). Masson’s trichrome stain as described by

Flint et al. (1975) was used to determine whether the

collagenous matrix was well organised or whether it

had lost the organised fibrillar structure associated

with normal tendon.

Immunohistochemistry

Immunochemical staining was performed for all 3

human TGF-β isoforms and for the 2 TGF-β

receptors. Antibodies to the 3 mammalian TGF-β

isoforms and the 2 signalling receptors were obtained

from Santa Cruz Biotechnology (California, USA).

All antibodies were affinity purified rabbit polyclonals

to the human epitopes. The 3 TGF-β antibodies were

isoform specific as confirmed by western blot analysis

and immunohistochemical staining (Frank et al. 1996),

while the receptor antibodies were confirmed to be

specific by immunoprecipitation (Brand & Schnieder,

1995). The anti-TGF-β antibodies do not differentiate

between active and latent TGF-β. Antibodies were

titrated against sections over a range of dilutions,

4 µg}ml, 2 µg}ml, 1 µg}ml and 0±4 µg}ml. Blood

vessels, which had previously been shown to express

all 3 TGF-β isoforms and the 2 receptors (Falanga et

al. 1992; Gold et al. 1997), were used as a positive

internal control. The final antibody titre used for each

antibody was 1 µg}ml, which corresponds to work

previously carried out using these same antibodies

(Gold et al. 1997). Negative controls were performed

using a rabbit IgG fraction (Dako, Ely, UK) at the

same concentration. Some sections were predigested

with 0±1% bovine testicular hyaluronidase (Cal-

biochem, Nottingham, UK) to unmask possible

hidden epitopes. Sections were incubated with primary

antibodies overnight at room temperature before

visualisation using reagents and protocols supplied

with the Vectastain peroxidase kit (Vector Labora-

tories, Peterborough, UK). Sections were counter-

stained with Harris’s haematoxylin. Positive cells

appear dark brown, while negative cells remain

purple}blue. To determine the number of positive

cells in the tendon matrix (excluding blood vessels), 4

random fields of each section were counted for positive

and negative cells on a ¬40 objective and the mean

calculated. Significance values between cadavers,

macroscopically ‘normal ’ sites and core lesion tissues

were calculated using Student’s t test on the raw data

values.



Histology and histochemisty

The histological appearance and staining properties

for the tendons are summarised in Table 1 and
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Table 1. Comparison of tissue histology}histochemistry and total cell number of tissues

Tissue Age (y) Duration of symptoms (y) Histology Cell no. (average}field)

Lesion site

A 36 1

All tissues showed a disorganised matrix

that was hypercellular, hypervascular

and had an increased

glycosaminoglycan content

65±3³16±6
B 36 not known 83±8³18±1
C 32 7 67±5³12±8
D 38 not known 48±3³11±9
E 29 6 38±8³5±7
F 49 1±5 61±8³25±2
G 49 not known 50±3³10±7

Mean 59±4³16±6**

‘Normal site ’

A 36 1
All tissue samples showed a generally

organised matrix, normal cellularity

with occasional hypercellular regions,

normal vascularity with focal

hypervascularity in one sample, no

glycosaminoglycan infiltration

32±8³9±6
B 36 not known 43±8³7±1
C 32 7 21±8³5±1
D 38 not known 15³5±7
E 29 6 21±5³10±1
F 49 1±5 11±7³3±1
G 49 not known 27±3³4±8

Mean 26±1³11±9

Cadaver

1 77 – All tissue samples had an organised

matrix, normal cellularity and

vascularity, no glycosaminoglycan

infiltration

17³2±8
2 93 – 35³10±6
3 56 – 30±8³8±3
4 76 – 34³13±1

Mean 30±9³11±2

** Significant difference compared with macroscopically normal and cadaver tissue.

illustrated in Figure 1. The cadaver tendons showed

the characteristic histology of normal tendon with

dense, parallel packed fibres and sparse cellularity.

The cell nuclei were spindle shaped and cells were

located between collagen fibres in rows (Fig. 1a).

Blood vessels were infrequently seen and were re-

stricted to the endotenon at the edges of fibre bundles.

There was no infiltration with GAGs, seen by Alcian

blue staining, as has been shown previously (Movin et

al. 1997) (Fig. 1d ). Masson’s trichrome staining

showed mainly organised collagen fibril structures,

with some disorganised collagen staining at the cut

ends of the tissue (Fig. 1g). Tissue from the

macroscopically normal site generally showed tissue

architecture similar to that of the cadaver tissue.

There was a paucity of blood vessels (Fig 1b). Alcian

blue staining was again negative (Fig. 1e) and

Masson’s trichrome staining showed mainly organised

collagen (red) though small areas of disorganised

collagen (blue}green) (Fig. 1h). The specimens from

the lesion showed little of the organised matrix

structure seen in normal tendon. There was a

significant increase in cellularity (P% 0±05) compared

with both the macroscopically normal tissue and the

cadaver tissue (Table 1) and an increase in blood

vessels as has been previously reported in chronic

tendinosis (Astro$ m & Rausing, 1995; Khan et al.

1999). There was no indication of inflammatory cells

although cells were more rounded as opposed to the

normal spindle-like morphology (Fig. 1c). Alcian blue

staining showed areas of GAG infiltration in the

majority of specimens as previously described in

Achilles tendinopathy (Movin et al. 1997) (Fig. 1 f ).

Masson’s trichrome stain showed no indication of

organised collagen fibrils (Fig. 1 i ).

Immunolocalisation

Antibodies to TGF-β2 and TGF-βRII stained a

proportion of cells throughout the matrix (see Figs. 2,

3). Cell counts showed that in the cadaver sections,

25±8% of the cells on average were positive for TGF-

β2. In the distant site tissue the average was 46±7%

and in the core lesion site, 51±1%, both of which were

a significant increase in cell proportions over the

cadaver tissue sections (P% 0±001) (Table 2). No

significant difference existed between the macro-

scopically normal site and the core lesion site in the

pathological tendons. TGF-βRII stained positively in

26±4% of the cadaver tissue cells, 45±1% of the

macroscopically normal tissue cells and 39±2% of

lesion tissue cells. There was no significant difference
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Fig. 3. Immunolocalisation of TGF-β receptors showing a lack of tenocyte staining for TGF-βRI (a, c, e). TGF-βRII was localised in cells

throughout the tissue sections seen as dark brown staining of cells (b, d, f ). Blood vessels stained positively for both TGF-βRI (g) and TGF-

βRII (h), a and b are from a 56-y-old male cadaver, c and d are from the macroscopically normal site of a 38-y-old male, e and f are from

the core lesion site of the same 38-y-old male. Haematoxylin counterstain ¬400.

between these values when the raw data were

compared (P& 0±05).

Since there were differences in cellularity, nearly 3

times as many cells stained positively for TGF-β2 in

the core lesion tissue compared both with the

macroscopically normal site and the cadaver tissue

(P% 0±05). The number of cells expressing TGF-βRII

was similar to that expressing TGF-β2 in each of the

specimen groups, with a greater number of cells

expressing the receptor in the lesion site tissue

compared with the other sites (P% 0±05) (Table 2).

There was an absence of staining for TGF-β1, TGF-
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Table 2. Mean cell counts and percentage of cells expressing TGF-β2 and TGF-βII

TGF-β2 Positive

cells}field

% TGF-β2 positive

cells}field

TGF-βRII positive

cells}field

% TGF-βRII positive

cells}field

Lesion site 29±7³14±4** 46±7³26±5* 31±6³23±8** 39±2³28±1
‘Normal Site ’ 12±1³8±2 51±1³23±5* 11±1³9±2 45±1³29±2
Cadaver 12±1³7±1 25±1³9±3 12³11±1 28±1³11±6

*, significant difference compared with cadaver tissue; **, significant difference compared with macroscopically normal and cadaver tissue.

Fig. 4. Negative controls using a rabbit IgG fraction and

counterstained with haematoxylin. a is from a 77-y-old cadaver

section, b is from the core lesion of a 49-y-old male, c shows a blood

vessel from the same patient. There was no peroxidase (brown)

staining in any of the negative controls. ¬400.

β3 (Fig. 2) and TGF-βRI (Fig. 3) in cells throughout

the tissue matrix, although all 5 antibodies stained

positive in blood vessels (Figs. 2, 3). Negative controls

showed no background or nonspecific staining (Fig.

4).

 

We have shown here that of the 3 TGF-β isoforms,

only TGF-β2 was expressed by tenocytes in the

fibrillar matrix. TGF-β1 and TGF-β3 were restricted

to blood vessels, co-expressed with TGF-β2, as

described in previous studies (Falanga et al. 1992;

Gold et al. 1997). We have also shown that of the 2

TGF-β receptors, only TGF-βRII was present in

tenocytes although both were present in blood vessels.

Although we did not apply quantitative techniques

to this analysis, the percentage of cells expressing

TGF-β2 was significantly greater in patient tendons

compared with normal cadaver tendons. We also

found no difference in the percentage of positive cells

between macroscopically normal sites in patient

tendons, and specimens from the site of the lesion,

although the latter were more cellular. Significant

differences were not seen in the percentage of positive

cell stained for TGF-βRII. Since the cadaver tendons

were significantly older than the patient tendons, this

difference in TGF-β2 may reflect an ageing process

rather than an effect of the pathology. As Achilles

tendon injuries are common, it is also possible that

despite the absence of any known history of tendino-

pathy in the cadaver specimens, there may have been

previous pathological changes associated with some

of these samples, although at the histochemical level

there was no indication of obvious pathology.

TGF-β1 has been shown to be upregulated in

response to tissue damage in a number of connective

tissue pathologies including keloid scarring (Lee et al.

1999), hypertrophic scarring (Zhou et al. 1997) and

Dupuytren’s contracture (Badalamente et al. 1996).

Our study has shown that TGF-β1 is absent in chronic

Achilles tendinopathy, or at least is not present at

levels detectable by immunoperoxidase staining.

TGF-β2 however was clearly detectable and promi-

nently localized to cells throughout the tissues. TGF-

β2, along with TGF-β1, is an essential factor in the

Transforming growth factor beta in tendon 237



wound healing process and is associated with tissue

healing and scarring (Shah et al. 1995), and is often

prevalent in the earlier stages of wound healing along

with TGF-β3 (Levine et al. 1993). TGF-β2 has also

been linked to the induction of chondrogenesis and

osteogenesis (Joyce et al. 1990) and may have a role in

the chondrogenic change found in degenerate human

tendons (Chard et al. 1994; Riley et al. 1996).

However, we have found no evidence of markers of a

chondrocytic phenotype, such as type II collagen, at

the sites of chronic Achilles tendinosis (D. Ireland

et al. unpublished). TGF-β1 mRNA and protein have

been shown to be upregulated following acute tendon

laceration and repair. Both mRNA and protein were

localised to intrinsic tenocytes and invading fibro-

blasts from the tendon sheath (Chang et al. 1997).

However, this type of injury bears little resemblance

to the chronic disorders that we have dealt with here,

and therefore it is important to delineate the presence

or absence of TGF-β (and indeed other factors) in

these pathologies.

The factors that regulate TGF-β expression}activity

are not well understood. One study has shown that

both IL-1 and TNF-α are able to increase the synthesis

of TGF-β in endothelial cells (Phan et al. 1992).

Another study by Lemaire et al. (1996) showed

that both granulocyte macrophage-colony stimulating

factor and macrophage-colony stimulating factor

upregulated TGF-β1 mRNA in rat alveolar macro-

phages. A study on human articular chondrocytes has

shown that both IL-1 and IL-6 can selectively induce

TGF-β isoforms (Villiger et al. 1993). A number of

other factors have also been shown to regulate TGF-

β synthesis or secretion, including glucocorticoids

(Karim et al. 1997; Beer et al. 2000), hypoxia (Falanga

et al. 1991; Santilli et al. 1991; Klempt et al. 1992),

ethanol (Szabo et al. 1996) and hyperthermia

(Flanders et al. 1993). There is also evidence for

differential regulation of the TGF-β isoforms

(Falanga et al. 1991; Flanders et al. 1993; Villiger et

al. 1993), suggesting that mechanisms of stress, tissue

insult or cytokine exposure could induce a different

spectrum of TGF-β isoform expression.

The 3 isoforms of TGF-β have been shown to have

important, although differential, roles in wound

healing (Shah et al. 1995; O’Kane & Ferguson, 1997)

but their exact functions have still not been fully

elucidated. The lack of resolution in chronic tendinosis

suggests that there may be either a lack of TGF-β

activity, or a failure to respond to TGF-β. TGF-β2 is

certainly present, although whether in its active form

requires further investigation. Of possibly greater

significance is the evident lack of the type I TGF-β

receptor, at least at the level of antibody detection,

suggesting an absence or low level of expression of the

receptor. TGF-β requires both type I and type II

receptors to propagate its signal (Laiho et al. 1990;

Wrana et al. 1994), therefore the possible lack of (or

low levels of) the type I receptor suggests that signal

might not be induced even in the presence of active

TGF-β. The presence of receptors throughout wound

repair has been shown to occur at a later stage than

the presence of TGF-β ligand. Consequently it was

suggested that TGF-β ligand may upregulate the

TGF-β receptors for function or may reflect a lag

time due to latent TGF-β processing (Gold et al.

1997). However, we are dealing here with a chronic

condition, with symptoms of 12 mo up to 7 y.

Granulation tissue in wounded skin has been shown

to contain high levels of receptor (Schmid et al. 1998),

although in undamaged skin, only small numbers of

fibroblasts have detectable levels of receptors. Under

normal conditions then, fibroblasts may not express

one or both of the receptors, and we have shown that

normal tendon also has an absence (or at least an

undetectable level) of the type I receptor. The factors

regulating TGF-β receptor expression in tendon are

unknown, although a number of studies have been

performed in other models to examine the factors that

regulate receptor expression (Wu et al. 1997; Chang et

al. 1998; Yoshizawa et al 1998). Possibly of most

relevance is the finding that mechanical strain

increases the expression of TGF-β receptors in rat

mesangial cells (Riser et al. 1999). The loss of strain

across the pathological lesion in tendinosis could be a

factor influencing the lack of TGF-βRI expression at

these sites.

The cause of chronic tendon lesions is thought to be

repeated microtrauma (Kannus, 1997). It has been

speculated that microtrauma overwhelms the ability

of tendon to repair (Jarvinen et al. 1997). A similar

process has been shown to occur in chondrocytes

during osteoarthritis, where a stage of the disease is

reached where the chondrocytes fail to repair the

matrix damage (Mankin et al. 1971). Tissue repair is

a complex and tightly regulated process that requires

sequential overlapping phases (Robinson, 1993;

Mutsaers & Laurent, 1995). We postulate that the

healing phases in tendinosis have not occurred in the

correct manner. Inflammation is the first important

step in tissue healing; without this initial stage, the

tissue repair process may not proceed normally. In

all lesions we have examined, there has been no

evidence of inflammatory cells. In these chronic

tendon problems, it may be that the repair process

is not being triggered correctly or not being allowed
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to proceed correctly due to the lack of inflammatory

mediators, and it is this that accounts for the lack of

resolution.

In summary we have shown that there is a

differential expression of the 3 TGF-β isoforms and

their receptors in both normal and pathological

tendon. The number of cells expressing TGF-β2 in

chronic tendon pathology is increased which suggests

that TGF-β2 may have a role to play in mediating cell

activity during this disease process. However, the

lack of the type I receptor implies that TGF-β

signalling does not occur. This study has implications

for the treatment of tendinopathy with TGF-β, as

without the presence of both receptors, exogenous

TGF-β is unlikely to have an effect. We suggest that

greater investigation into the factors that regulate

TGF-β receptor expression is required to determine if

this is a potential target for chronic tendinosis therapy.
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