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Penalty finite element approximations of the stationary power-

law Stokes problem

Lew Lefton ∗ and Dongming Wei †

Abstract — Finite element approximations of the stationary power-law Stokes problem using penalty
formulation are considered. A priori error estimates under appropriate smoothness assumptions on the
solutions are established without assuming a discrete version of the BB condition. Numerical solutions
are presented by implementing a nonlinear conjugate gradient method.

Keywords: Power-law flows, penalty method, stationary Stokes problem, non-Newtonian flows, finite
element method, convergence and error estimates, BB condition

1. INTRODUCTION

Consider the following stationary power-law Stokes problem:

−k∇ · (|D(u)|r−2D(u))+ ∇p = f in Ω,

∇ ·u = 0 in Ω,

u = 0 on ∂Ω.

(1.1)

In the above, Ω is a bounded convex domain in R
d , d = 2 or 3, ∂Ω the boundary of

Ω, u = (u1(x), ...,ud (x)) the velocity of a fluid particle located at x = (x1, ...,xd) ∈

Ω, ∇ ·u = ∑d
i=1

∂ui

∂xi
the divergence of u, ∇p the gradient of the fluid pressure p, f =

f(x) the body force, the constant k a measure of the consistency of the fluid, and 1 <
r < ∞. The rate of deformation tensor D(u)∈R

d ×R
d is the symmetric gradient of u

with components di j(u) = 1
2

(

∂ui

∂x j
+

∂u j

∂xi

)

and |D(u)|= [∑d
i, j=1(di j(u))2]

1
2 . A second

problem for stationary power-law Stokesian flows is to consider the velocity field u
as the minimizer of an appropriate energy functional in the space of divergence free
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vector fields, that is, to solve the problem:

Minimize J(u) =
k

r

∫

Ω
|D(u)|r dx−

∫

Ω
f ·u dx,

subject to u ∈ X =
{

u ∈ W
1,r
0 (Ω) : ∇ ·u = 0

}

.

(1.2)

Problem (1.1) is called the mixed formulation of the stationary power-law Stoke-
sian flow which has a weak form written down precisely in (2.6). Problem (1.2)
is referred to as the variational formulation of the stationary power-law Stokesian
flows. The Euler-Lagrange equation corresponding to this minimization problem is
solved for velocity in a subspace of divergence free vector fields. It is well known
that the connection between these two formulations comes from a technical inf-sup
condition which is frequently called the BB condition named after Brezzi [19] and
Babǔska [7]. The BB condition is also called the LBB condition for it is related to the
work of Ladyzhenskaya [42]. This condition can be stated as the following: ∃β > 0
such that

inf
q∈Lr′

0 (Ω)
sup

v∈W
1,r
0 (Ω)

〈∇ ·v,q〉

||q||0,r′ ||v||1,r
> β . (1.3)

When (1.3) holds, the variational formulation and the mixed weak formulation are
equivalent in the sense that u is a solution of the variational formulation if and only
if (u, p) is a solution of the mixed weak formulation with p being solved in terms
of u using the inverse of the divergence operator.

The BB condition holds for all dimensions d > 1 and for the full range 1 <
r < ∞ in bounded Lipschitz domains in R

d as stated in Amrouche and Girault [6].
Therefore, the mixed weak formulation is well-posed and it is equivalent to the
variational formulation for bounded convex domains in R

d , since such domains are
Lipschitz.

Since, in the variational formulation, u is defined as the minimum of a convex
functional on a separable Banach space, (1.2) always has a unique solution u for
any 1 < r < ∞, and for any bounded domain Ω in R

d, whether or not the BB con-
dition holds. However, the pressure p is not necessarily well defined, so that results
involving the pressure function p typically require the additional assumption of an
BB condition. It is not known if (1.3) holds in non-Lipschitz bounded domains.

The two formulations discussed above for power-law Stokes flows are both use-
ful for the numerical analysis of the problem. Finite element analysis of power-law
Stokes flows using the mixed weak formulation has been studied by several authors,
for example, [8], [9], [10], and [11]. Baranger, et al, [8], [9], obtain error estimates
which require a discrete version of the BB condition, namely, ∃β > 0 independent
of h, such that

inf
q∈Mh

0 (Ω)
sup

v∈Sh
0(Ω)

〈∇ ·v,q〉

||q||0,r′ ||v||1,r
> β , (1.4)

where Mh
0(Ω) × Sh

0(Ω) is the corresponding finite element space for Lr′

0 (Ω) ×

W
1,r
0 (Ω). They show that for 1 < r 6 2 and d = 2, if the BB condition (1.3) holds,
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then

||u−uh||1,r 6 inf
(vh,qh)∈Sh

0(Ω)×Mh
0 (Ω)

(

C1||u−vh||
r
2

1,r +C2||p−qh||
1
2

0,r′

)

.

If, in addition to (1.3), the discrete version of the BB condition (1.4) holds, then,

||p− ph||0,r′ 6 inf
(vh,qh)∈Sh

0(Ω)×Mh
0 (Ω)

(

C1||u−vh||
r−1
1,r +C2||p−qh||0,r′

)

,

where C1 and C2 depend on β . Here we are writing (u, p) for the unique solution of
the mixed formulation of (1.1) as written in (2.6), and (uh, ph) for the correspond-
ing finite element approximation to (u, p) using the corresponding discrete mixed
formulation. Barrett and Liu obtained the following similar results:

||u−uh||1,r 6 inf
(vh,qh)∈Sh

0(Ω)×Mh
0 (Ω)

(

C1||u−vh||
r
2

1,r +C2||p−qh||0,r′

)

and

||p− ph||0,r′ 6 inf
(vh,qh)∈Sh

0(Ω)×Mh
0 (Ω)

(

C1||u−vh||
r−1
1,r +C2||p−qh||0,r′

)

under the same conditions. In addition, Barrett and Liu [11] also extended the results
to the case when 2 6 r < ∞.

Finite element analysis using the direct variational formulation (1.2) requires
one to solve a constrained minimization problem and construct finite element spaces
with divergence free or approximately divergence free interpolation functions. Thus,
the variational formulation and its associated constrained minimization problem is
more difficult for both analysis and practical numerical approximation. Divergence
free elements have been studied extensively and it is not intended here to comment
on the results related to this approach. A natural way to overcome this difficulty is to
introduce a penalty functional that eliminates the constraint. Although, error anal-
ysis and computer implementation becomes relatively simple, the resultant discrete
system from the penalty requires the mesh size to be proportional to the penalty pa-
rameter for convergence. Therefore, a finite element mesh has to be very fine for the
incompressibility condition to be close to being satisfied. However, with the help of
the techniques of reduced integration and the high speed computers, this deficiency
can be degraded and penalty method for fluid flow problems is still a popular choice
among scientists and engineers, see, e.g., [34], [35], [43], [44], [55], and [56] for
applications of the penalty method to power-law flow problems.

The first use of the penalty function method in conjunction with the finite ele-
ment method is due to Babǔska [7]. The method was quickly adopted as a standard
tool for the finite element analysis of viscous, incompressible fluid flows [66]. Ex-
tensive studies of the penalty method applied to Newtonian fluid flow problems,
both experimentally and mathematically, have been conducted from the late sev-
enties to the present day. Here we cite only several important articles in this area:

https://www.researchgate.net/publication/223433942_Penalty_finite_element_analysis_of_incompressible_flows_using_element_by_element_solution_algorithms?el=1_x_8&enrichId=rgreq-05cafc0bbbefa5ea54a0e27cb21ef1cb-XXX&enrichSource=Y292ZXJQYWdlOzI0MzEwNTU4NztBUzoyMTQxMDI3MjQwOTE5MDRAMTQyODA1NzQ3NTQ2OQ==
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[13], [14], [31], [32], [33], [39], [40], [49], [50], [51], [53], [54], and [66]. A very
general mathematical analysis of the penalty method applied to nonlinear problems
including a class of non-Newtonian fluid flow problems was presented by Oden
[51]. His work provides some important convergence results. For a given penalty
parameter ε > 0, the penalty formulation requires the unconstrained minimization
of the nonlinear convex functional

Jε(u) = J(u)+
1

rε

∫

Ω
|∇ ·u|rdx

over the Sobolev space W
1,r
0 (Ω). The corresponding pressure pε is defined in terms

of the minimizer uε . It is known that the penalty approximation uε of the uncon-

strained minimization problem min{Jε (u) : u ∈ W
1,r
0 (Ω)} converges to the true so-

lution u of min{J(u) : u ∈ X} as ε → 0 for any 1 < r < ∞ without assuming that
the domain Ω is convex (see, e.g., [51], [65], [45]). This convergence result is only
for the velocity field since the pressure may be undefined. However, because of the
more general variational setting, this result establishes the validity of a penalty ap-
proximation even when the BB condition fails to hold. This is a convergence result,
not an error estimate, but it doesn’t require the BB condition (1.3).

When the BB condition holds, it has been shown in [45] that the error estimates
for the velocity field are given by ‖u−uε‖1,r = O(εg1(r)), where g1(r) = 1

(r−1)(3−r)

for 1 < r 6 2, and g1(r) = 1
(r−1)2 for 2 6 r < ∞. Let ϕ(z) = |z|r−2z,z ∈ R and

let pε = c− 1
ε ϕ(∇ · uε), where c =

∫

Ω
1

ε |Ω|ϕ(∇ · uε)dx. The corresponding error

estimates for the pressure are given by ||p− pε ||0,r′ = O(εg2(r)) where g2(r) = 1
(3−r)

for 1 < r 6 2 and g2(r) = 1
(r−1)2 for 2 6 r < ∞. These rates of convergence reduce

to known results ‖u−uε‖1,2 + ||p− pε ||0,2 = O(ε) for the Newtonian case r = 2 as
discussed in [13], [14], [37], [49], [53], and [59]. The above error estimates are
generalized for the corresponding power-law Navier-Stokes problem in the case
r 6= 2, see [62] for details.

The penalty finite element numerical scheme for approximating (1.2) is to fix
a small positive ε , and solve for the minimizer uε

h of the problem min{Jε(u) : u ∈

Sh
0(Ω)}. The main result of this work is the following:

Suppose that Ω is a bounded convex domain in R
d and f ∈ W−1,r′(Ω). For

0 < ε 6 1, let u be the unique minimizer of the functional J over W
1,r
0 (Ω), and

let uε
h be the unique minimizer of Jε(u) over Sh

0(Ω). Then, there exists a positive

constant C, which depends only on Ω, f, and r, such that ∀vh ∈ Sh
0(Ω)

C||u−uε
h||1,r 6

(1

ε

)
1

r(3−r) ||u−vh||
1

(3−r)

1,r + ||u−vh||
1
2

1,r + ε
1
2r ,

for 1 < r 6 2, and

C||u−uε
h||1,r 6

(1

ε

)
1

r(r−1) ||u−vh||
1

(r−1)

1,r + ||u−vh||
1
r

1,r + ε
1

r2 ,

https://www.researchgate.net/publication/222983558_Finite_Element_Analysis_of_Incompressible_Viscous_Flow_by_the_Penalty_Function_Formulation?el=1_x_8&enrichId=rgreq-05cafc0bbbefa5ea54a0e27cb21ef1cb-XXX&enrichSource=Y292ZXJQYWdlOzI0MzEwNTU4NztBUzoyMTQxMDI3MjQwOTE5MDRAMTQyODA1NzQ3NTQ2OQ==
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for 2 6 r < ∞. Furthermore, let V = {v ∈ C∞
0 (Ω) : ∇ · v = 0}, and suppose f ∈

W−1,r′(Ω) satisfies ∀ϕ ∈ V,〈f,ϕ〉 = 0. Then ∀vh ∈ Sh
0(Ω)

C||u−uε
h||1,r 6 (

1

ε
)

1
2(3−r) ||u−vh||

1
(3−r)

1,r + ||u−vh||
1
2

1,r + ε
1

2(r−1)

for 1 < r 6 2, and

C||u−uε
h||1,r 6 (

1

ε
)

1

r(r−1)2 ||u−vh||
1

r−1

1,r + ||u−vh||
1
r

1,r + ε
1

r(r−1)

for 2 6 r < ∞.
The above results are important, in particular, if r = 2, 1 < α < ∞, ℓ > 2 is an

integer, Ω is a bounded and open set of R
d of class Cℓ, and f ∈ Wℓ−2,α(Ω), then

there exists a positive constant C, independent of ε , such that ||u||ℓ,α 6 C, and

||u−uε
h||1,2 6 C

(

ε− 1
2 hℓ−1+d( 1

2
− 1

α ) + h
1
2
[ℓ−1+d( 1

2
− 1

α )] + ε
1
2

)

,

with C independent of ε . If ℓ = 2 and we choose ε = h, we then have the optimal
error estimate in velocity for linear elements:

||u−uε
h||1,2 6 C(h

1
2 + h

1
2
(1+d( 1

2
− 1

α ))).

This reduces to the same rate of O(h
1
2 ) found in the paper of Reddy [53] for α = 2

under similar conditions. It is shown by Falk and King [33] that for this “simple”
penalty method, if r = α = 2, ε = h, and Ω is an open bounded set of class Cℓ, then

||u−uε
h||1,2 = O(h

2
3
(ℓ−1)),

with appropriate choice of the finite element space Sh
0(Ω). They also show a higher

order rate of accuracy than that given above can be obtained by using extrapola-
tion techniques (see [33]). A better rate of O(h) is shown by Falk [31] by using a
modified penalty term. Oden, Kikuchi and Song [49] also showed that

‖u−uh‖1,2 +‖p− ph‖0,2 6 C(‖u‖2,2 +‖p‖1,2)h

where (uh, ph) is obtained by using a mixed finite element approximation as the
limit, as ε → 0, with a certain Gaussian integration rule for some domains. For
r 6= 2, an uniform bound on ‖u‖ℓ,α for ℓ > 2 is not available due to lack of regularity
results for the degenerate nonlinear elliptic system (1.1). Regularity of solutions to
nonlinear elliptic systems is an active area of research. Some related results found
in [21], [25], and [60] indicate that the best possible bound for u is in C1,µ (Ω̄) with
0 < µ < 1. If this is the case, then ‖u‖1,∞ 6 C, where C is independent of ε and we
have

‖u−uε
h‖1,r = O(h

d
r
− 1

2 ).
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The results of this work are useful, because although the continuous BB condition
(1.3) must hold, to estimate ‖u−uε‖1,r and ||p− pε ||0,r′ , the corresponding discrete
BB condition (1.4) is not required to obtained convergence and error estimates of
‖u−uε

h‖1,r and ||p− pε
h||0,r′ and therefore simple finite elements can be used. This is

an important feature of the unconstrained penalty minimization formulation which
makes it convenient for error analysis and numerical implementation. In contrast,
the mixed weak formulation requires the solution of a system of nonlinear equations
and a discrete BB condition.

This work provides a mathematical finite element analysis of the penalty method
applied to the power-law Stokes problem in the variational formulation which is a
generalization of the analysis available in the literature for Newtonian Stokes flows.
Penalty method and reduced integration for the analysis of Newtonian Stokes flows
has been studied extensively by Oden, et al. See [49] and [50] for further references.
Numerical experiments have been performed on power-law flow problems using the
penalty method in the engineering literature (see, e.g., [43], [44], [53], [55], and
[66]). Since pressure p must then be calculated from the computed velocity field u,
the accuracy of the pressure is lower than that of the velocity as shown in our error
estimates. Note that the penalty term 1

2ε

∫

Ω |∇ ·u|2dx was used in Reddy and Padhye

[55] instead of 1
rε

∫

Ω |∇ ·u|rdx and reasonable numerical results were obtained. The
accuracy and convergence of the penalty solution is sensitive to the values of the
penalty parameter ε as well as the finite element mesh size h and the numerical
integration of the penalty term.

In Section 2, notations and previous results are reviewed including error esti-
mates in terms of the penalty parameter ε . In Section 3, fully discrete error estimates
in terms of the penalty parameter ε and the finite element mesh size h are estab-
lished. In Section 4, a nonlinear conjugate gradient method is described and imple-
mented to obtained numerical solutions for a cavity problem by using the penalty
formulation. The numerical results support the theoretical analysis.

2. NOTATIONS AND PRELIMINARIES

The following are standard notations. Let Lr(Ω) for 1 < r < ∞ be the space of

real scalar functions defined on Ω whose rth power is absolutely integrable with
respect to Lebesgue measure dx = dx1 . . .dxd . This is a Banach space with the norm

‖u‖0,r = (
∫

Ω |u(x)|r dx)1/r . The Sobolev space W k,r(Ω) is the space of functions in
Lr(Ω) with distributional derivatives up to order k also in Lr(Ω). The norm for this

space is ‖u‖k,r = (
∫

Ω ∑| j|6k |D
ju(x)|r dx)1/r , where we use the standard multi-index

notation. That is, for j = ( j1 . . . jd) ∈ N
d, where N is the set of natural numbers,

define | j| =
d

∑
i=1

ji and write the partial derivative D ju(x) = ∂ | j|u

∂ j1 x1...∂
jd xd

. The closure

of C∞
0 (Ω) in W k,r(Ω) is denoted by W

k,r
0 (Ω). For systems of equations, we need the

product spaces defined by Lr(Ω)= [Lr(Ω)]d , Wk,r(Ω)= [W k,r(Ω)]d , and W
k,r
0 (Ω) =

[W k,r
0 (Ω)]d . The norm for v = (v1, . . . ,vd) ∈ Lr(Ω) is ‖v‖0,r = (

∫

Ω ∑d
i=1 |vi|

r dx)1/r .
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For v ∈ Wk,r(Ω) we have norm ‖v‖k,r = (
∫

Ω ∑d
i=1 ∑| j|6k |D

jvi|
r dx)1/r . It is well

known, [1], that the seminorm |v|k,r = (
∫

Ω(∑d
i=1 ∑| j|=k |D

jvi|
r dx)1/r is equivalent to

‖v‖k,r for v ∈ W
k,r
0 (Ω). In addition, by Korn’s inequality [1], the norm ||D(u)||0,r =

(
∫

Ω ∑d
i, j=1 |Di j(u)|r dx)1/r is equivalent to ||u||1,r in W

1,r
0 (Ω). For 1 < r < ∞ let r′

satisfy 1
r
+ 1

r′
= 1, which is equivalent to r′ = r

r−1
. Let ‖ · ‖−1,r′ denote the norm on

W−1,r′(Ω), which is the dual space of W
1,r
0 (Ω). Let ϕ(x) = |x|r−2x, where x ∈ R

d .

Note that ϕ−1(x) = |x|r
′−2x. Finally, let Lr

0(Ω) = {q ∈ Lr(Ω) :
∫

Ω qdx = 0}.

The following inequalities hold for all x, y ∈ R
d ; the constant C > 0 is indepen-

dent of x and y.

|x−y|2 6 C(ϕ(x)−ϕ(y)) · (x−y)(|x|+ |y|)2−r ,

|ϕ(x)−ϕ(y)| 6 C|x−y|r−1, for 1 < r < 2;
(2.1)

|x−y|r 6 C (ϕ(x)−ϕ(y)) · (x−y),

|ϕ(x)−ϕ(y)| 6 C|x−y|(|x|+ |y|)r−2, for 2 6 r < ∞.
(2.2)

They were proved for the case d = 2 by Glowinski and Marroco [38] and were
generalized by Barrett and Liu [11], see also Chow [22]. A simple proof for general
d is shown in the book by DiBenedetto [25].

The Euler-Lagrange equation associated with problem (1.2) is

〈A(u),v〉 = 〈f,v〉 ∀ v ∈ X, (2.3)

where A : W
1,r
0 (Ω) → W−1,r′(Ω) is defined by

〈A(u),v〉 = k

∫

Ω
|D(u)|r−2D(u) : D(v)dx ∀v ∈ W

1,r
0 (Ω),

and X =
{

u ∈ W
1,r
0 (Ω) : ∇ ·u = 0

}

.

Let us use 〈·, ·〉 to denote the duality pairing between W
1,r
0 (Ω) and W−1,r′(Ω)

as well as between Lr(Ω) and Lr′(Ω). In particular, we only need to assume f ∈

W−1,r′(Ω) for this formulation.

It is well-know that due to (2.1) and (2.2), the following holds

||u−v||21,r 6 C〈A(u)−A(v),u−v〉(||u||1,r + ||v||1,r)
2−r,

||A(u)−A(v)||−1,r′ 6 C||u−v||r−1
1,r , for 1 < r 6 2;

(2.4)

‖u−v‖r
1,r 6 C〈A(u)−A(v),u−v〉,

‖A(u)−A(v)‖−1,r′ 6 C‖u−v‖1,r(‖u‖1,r +‖v‖1,r)
r−2, for 2 6 r < ∞,

(2.5)

where C > 0 denotes a generic constant independent of u and v. From (2.4) and
(2.5), A can be shown to be a bounded, monotone, coercive, potential operator on

https://www.researchgate.net/publication/225913733_Finite_element_error_estimates_for_non-linear_elliptic_equations_of_monotone_type?el=1_x_8&enrichId=rgreq-05cafc0bbbefa5ea54a0e27cb21ef1cb-XXX&enrichSource=Y292ZXJQYWdlOzI0MzEwNTU4NztBUzoyMTQxMDI3MjQwOTE5MDRAMTQyODA1NzQ3NTQ2OQ==
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X = {u ∈ W
1,r
0 (Ω) : ∇ ·u = 0}. It follows that J : X → R is a continuous, strictly

convex functional on X and

lim
||u||1,r→∞

J(u) = ∞.

It is standard to show that (2.3) and (1.2) are equivalent. Note that in (2.3), unlike
(1.1), pressure p does not appear.

Let b(p,v) =
∫

Ω p∇ ·vdx be the bilinear form defined on Lr′

0 (Ω)×W
1,r
0 (Ω) and

let f ∈W−1,r′(Ω) then the mixed weak formulation of (1.1) is the problem of finding

(u, p) ∈ W
1,r
0 (Ω)×Lr′

0 (Ω) such that

〈A(u),v〉−b(p,v) = 〈f,v〉 ∀ v ∈ W
1,r
0 (Ω),

b(q,u) = 0 ∀ q ∈ Lr′

0 (Ω).
(2.6)

The existence and uniqueness of solutions of (2.3) and (2.6) was studied by Baran-
ger and Najib [8] and Barrett and Liu [11].

Using the theory of Baranger and Najib [8] and the BB condition on bounded
convex domains in R

d stated by Amrouche and Girault [6], the following Theorem
holds as a simple consequence

Theorem 2.1. Let 1 < r < ∞ and suppose that Ω ⊂ R
d ,d > 1 is a bounded

convex domain. Then (2.6) has a unique solution if and only if (2.3) has a solution

and the divergence operator ∇· is surjective.

The following Lemma is due to (2.4), (2.5) and (1.3) as shown in Lefton and
Wei [45].

Lemma 2.1. Let Ω be a bounded convex domain in R
d ,d > 1 and let (u, p) be

the solution of (2.6). Then ||u||1,r 6 C and ||p||0,r′ 6 C, where C > 0 depends only

on r, Ω and f.

3. THE PENALTY FORMULATION FOR THE STOKES PROBLEM

Let ε be a positive number and consider the following functional

Jε(u) = J(u)+
1

rε

∫

Ω
|∇ ·u|r dx,

where J(u) is defined in (1.2). The minimizer u of Jε(u) over W
1,r
0 (Ω) satisfies the

corresponding Euler-Lagrange equation

〈A(u),v〉+
1

ε
〈ϕ(∇ ·u),∇ ·v〉= 〈f,v〉 ∀ v ∈ W

1,r
0 (Ω). (3.1)
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Note that Jε(u) is strictly convex and the operator Tε : W
1,r
0 (Ω) → W−1,r′(Ω) de-

fined by Tε(u) = J′ε(u) is a bounded, coercive, and strictly monotone operator on

W
1,r
0 (Ω), since ϕ satisfies (2.1) and (2.2). Therefore, by the standard theory of

monotone operators, (3.1) has a solution uε which is the unique solution of

min
u∈W

1,r
0 (Ω)

Jε(u). (3.2)

The following two Theorems are obtained in [45]:

Theorem 3.1. Suppose that Ω is a bounded domain in R
d,d > 1. Let u be the

solution of (1.2) and, for a fixed ε > 0, let uε be the solution of (3.2). Then uε

converges strongly to u in W
1,r
0 (Ω) as ε → 0, and ∃ C independent of ε such that

||uε ||1,r 6 C and ||∇ ·uε ||0,r 6 Cε
1
r . Furthermore, if (1.3) holds, then ||∇ ·uε ||0,r 6

Cε
1

r−1 .

Theorem 3.2. Suppose that Ω is a bounded convex domain in R
d,d > 1. Let

(u, p) be the unique solution of (2.6) and uε be a solution of (3.2). Let pε = c−
1
ε ϕ(∇ ·uε), where c = 1

ε |Ω|

∫

Ω ϕ(∇ ·uε)dx. Then there exists C > 0 which depends

only on r, Ω, and f such that

||u−uε ||1,r 6 Cε
1

(r−1)(3−r) for 1 < r 6 2

and ||u−uε ||1,r 6 Cε
1

(r−1)2 for 2 6 r < ∞.

Furthermore,

||p− pε ||0,r′ 6 Cε
1

(3−r) for 1 < r 6 2

and ||p− pε ||0,r′ 6 Cε
1

(r−1)2 for 2 6 r < ∞.

The above results will be used in the following section for the corresponding fully
discrete finite element convergence and error analysis.

4. FINITE ELEMENT APPROXIMATION USING PENALTY METHOD

Let Th be a simplicial subdivision of Ω with maximum mesh size

h = max
K∈Th

diam(K).

In this discretization, K denotes a d-simplex, diam(K) denotes the diameter of K,
and ρK denotes the radius of the largest closed ball contained in K. It is assumed
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here that Th is regular, i.e., there exists a positive constant γ independent of h such
that

max
K∈Th

diam(K)

ρK

6 γ .

Let Sh
0(Ω) be the standard C0 finite element space in W

1,r
0 (Ω) consisting of piece-

wise polynomials of degree k in Ω. Thus, ∀v ∈ Sh
0(Ω) and ∀K ∈ Th, v|K ∈ Pd

k

where Pd
k denotes the set of k degree polynomials in d variables. See Ciarlet [23]

for further details. The product finite element space Sh
0(Ω) = [Sh

0(Ω)]d is equipped
with the natural product norm. Let Π be the interpolation operator defined by Scott
and Zhang, [58] which is associated with Sh

0(Ω). This operator differs from standard
Lagrange interpolation by using local averaging to generate nodal values for func-
tions in Sobolev spaces which may not be pointwise well defined. For interpolation

of vectored valued functions, Πu = (Πu1, . . . ,Πud) for u ∈ W
1,r
0 (Ω) is used. An

estimate of the interpolation error in Sobolev norms is needed in the following anal-
ysis. Let v ∈ Wℓ,α(Ω), where ℓ > 1

α and α > 1. Suppose further that 1 < β < +∞,
0 6 m 6 ℓ 6 k + 1, and there is a constant σ satisfying

0 < σ 6
1

β
−

1

α
+

ℓ−m

d
.

Then we have

||v−Πv||m,β 6 Ch
ℓ−m+d( 1

β
− 1

α )
||v||ℓ,α , (4.1)

where C is a positive constant dependent only on Ω. This estimate is a slightly
generalized version of Theorem 4.1 of Scott and Zhang [58] where it is proved
for the case α = β and for a scalar valued v instead of the vector valued v. For
completeness, we state their result here: If ℓ > 1

β , where β > 1, then if 0 6 m 6 ℓ 6

k + 1 we have

∑
K∈Th

||v−Πv||W m,β (K) 6 Chℓ−m||v||ℓ,β , ∀v ∈W ℓ,β (Ω). (4.2)

A sketch of the proof for α 6= β is given in Wei and Lefton [63]. An interested
reader is referred to [63], [58], and [27] for further details. For each ε > 0 and
f ∈ W−1,r′(Ω), we consider uε

h ∈ Sh
0(Ω) to be the unique solution of

min
u∈Sh

0(Ω)
Jε(u). (4.3)

Standard convex analysis can be used to show that such a unique minimizer uε
h exists

and is also the unique solution of the Euler-Lagrange equation

〈A(uε
h),v〉+

1

ε
〈ϕ(∇ ·uε

h),∇ ·v〉 = 〈f,v〉 ∀v ∈ Sh
0(Ω). (4.4)
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Lemma 4.1. Let uε
h be the unique minimizer of (4.3). Then ∃C independent of

ε and h such that ||uε
h||1,r 6 C and ||∇ ·uε

h||0,r 6 Cε
1
r . Furthermore, let V = {v ∈

C∞
0 (Ω) : ∇ ·v = 0}, and suppose that f∈W−1,r′(Ω) satisfies ∀ϕ ∈ V,〈f,ϕ〉= 0, then

||∇ ·uε
h||0,r 6 Cε

1
r−1

Proof. Letting v = uε
h in (4.4) gives 〈A(uε

h),u
ε
h〉+

1
ε 〈ϕ(∇ ·uε

h),∇ ·uε
h〉 = 〈f,uε

h〉,
which together with (2.4) and (2.5) implies that

||uε
h||

r
1,r +

1

ε
||∇ ·uε

h||
r
0,r 6 ||f||−1,r′ ||u

ε
h||1,r.

Therefore ||uε
h||

r−1
1,r 6 C||f||−1,r′ , ||∇ ·uε

h||
r
0,r 6 Cε and ∇ ·uε

h → 0 in Lr(Ω) as ε → 0.

Furthermore, if ∀ϕ ∈ V,〈f,ϕ〉 = 0, then by De Rham’s Theorem, see Theorem 2.8

of Amrouche and Girault [6], there exists a q ∈ Lr′(Ω) such that f = ∇q. Therefore,

|〈f,uε
h〉| = |〈∇q,uε

h〉| = |〈q,∇ ·uε
h〉| 6 ||q||0,r′ ||∇ ·uε

h||0,r,

and

||uε
h||

r
1,r +

1

ε
||∇ ·uε

h||
r
0,r 6 ||q||0,r′ ||∇ ·uε

h||0,r,

which gives ||∇ ·uε
h||0,r 6 Cε

1
r−1 . ✷

The following Theorem of Adolfsson and Jerison, see [2] and [3], is needed to
prove Theorem 4.2 which is the main result of this paper:

Theorem 4.1. Suppose Ω is a bounded convex domain in R
d,d > 2 and f ∈

Lr(Ω), 1 < r 6 2 and
∫

Ω f dx = 0. Then there exists a solution w in W 2,r(Ω) solving

{

∆w = f in Ω,
∂w
∂n

= 0 on ∂Ω,

where ∂w
∂n

= ∇w ·n denotes the outer normal derivative of w. Moreover,

∫

Ω
|∇2w|rdx 6

∫

Ω
| f |rdx,

where ∇2 denotes the second order derivatives and the constant C depends only on

the Lipschitz constant of the domain.

Remark 4.1. Theorem 4.1 does not hold for 2 < r < ∞ in bounded convex
domains. However, if the domain Ω is C2 or better, then the result holds for all
1 < r < ∞, see, e.g., Theorem 37-I in the book of Miranda [47].
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Theorem 4.2. Suppose that Ω is a bounded convex domain in R
d and assume

f ∈ W−1,r′(Ω). For 0 < ε 6 1, let u be the unique minimizer of the functional J over

W
1,r
0 (Ω), and let uε

h be the unique minimizer of Jε(u) over Sh
0(Ω). Then ∀vh ∈ Sh

0(Ω)

C||u−uε
h||1,r 6

(1

ε

)
1

r(3−r) ||u−vh||
1

(3−r)

1,r + ||u−vh||
1
2

1,r + ε
1
2r ,

for 1 < r 6 2, and

C||u−uε
h||1,r 6

(1

ε

)
1

r(r−1) ||u−vh||
1

(r−1)

1,r + ||u−vh||
1
r

1,r + ε
1

r2 ,

for 2 6 r < ∞. Furthermore, let V = {v ∈ C∞
0 (Ω) : ∇ ·v = 0}, and if f ∈ W−1,r′(Ω)

satisfies ∀ϕ ∈ V,〈f,ϕ〉 = 0. Then ∀vh ∈ Sh
0(Ω)

C||u−uε
h||1,r 6 (

1

ε
)

1
2(3−r) ||u−vh||

1
(3−r)

1,r + ||u−vh||
1
2

1,r + ε
1

2(r−1) (4.5)

for 1 < r 6 2.

Note: When r = 2, (4.5)) reduces to

C||u−uε
h||1,r 6 (

1

ε
)

1
2 ||u−vh||1,r + ||u−vh||

1
2

1,r + ε
1
2 .

Letting ε = h and using Scott and Zhang interpolation, we obtain

||u−uε
h||1,r 6 C||u||2,α h

1
2 .

We point out that the corresponding classical result has an h on the right hand side.
A similar gap is also observed by Bercovier and Engelman [14] in studying some
other non-Newtonian flows.

Proof. Consider the simple identity:

〈A(u)−A(uε
h),u−uε

h〉 = 〈A(u)−A(uε
h),u−vh〉+ 〈A(u)−A(uε

h),vh −uε
h〉 (4.6)

which holds for any vh ∈ Sh
0(Ω). Let v = vh −uε

h, then by Theorem 4.1, there exists
a w such that ∆w = ∇ ·v satisfying ||∇w||1,r 6 C||∇ ·v||0,r , for 1 < r 6 2. Similarly,
there exists a w such that ||∇w||1,2 6 C||∇ · v||0,2 6 C||∇ · v||0,r, for 2 6 r < ∞. In
(3.1), replace the test function by v−∇w, which is divergence free, to get

〈A(u),vh −uε
h〉 = 〈 f ,vh −uε

h〉+ 〈A(u)− f ,∇w〉 (4.7)

Similarly, by (4.4),

〈A(uε
h),vh −uε

h〉+
1

ε
〈ϕ(∇ ·uε

h),∇ ·vh −∇ ·uε
h〉

= 〈 f ,vh −uε
h〉

(4.8)
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Take the difference of (4.7) and (4.8). This allows us to rewrite the last term (4.6) to
yield

〈A(u)−A(uε
h),u−uε

h〉 = 〈A(u)−A(uε
h),u−vh〉

+
1

ε
〈ϕ(∇ ·uε

h),∇ ·vh −∇ ·uε
h〉+ 〈A(u)− f ,∇w〉

(4.9)

for any vh ∈ Sh
0(Ω). Adding 1

ε 〈ϕ(∇ ·u)−ϕ(∇ ·uε
h),∇ ·u−∇ ·uε

h〉 to both sides of
(4.9) gives

〈A(u)−A(uε
h),u−uε

h〉+
1

ε
〈ϕ(∇ ·u)−ϕ(∇ ·uε

h),∇ ·u−∇ ·uε
h〉

= 〈A(u)−A(uε
h),u−vh〉+

1

ε
〈ϕ(∇ ·uε

h),∇ ·vh −∇ ·u〉+ 〈A(u)− f ,∇w〉

(4.10)

for any vh ∈ Sh
0(Ω). Using (4.10), (2.1), and (2.4) we get

C

(

||u−uε
h||

2
1,r

(||u||1,r + ||uε
h||1,r)2−r

+
1

ε

||∇ ·u−∇ ·uε
h||

2
0,r

(||∇ ·u||0,r + ||∇ ·uε
h||0,r)2−r

)

6 ||u−uε
h||

r−1
1,r ||u−vh||1,r +

1

ε
||∇ ·uε

h||
r−1
0,r ||∇ ·u−∇ ·vh||0,r

+ 〈A(u)− f ,∇w〉

(4.11)

for 1 < r 6 2. Similarly, using (2.2) and (2.5) we have, for 2 6 r < ∞

C
(

||u−uε
h||

r
1,r +

1

ε
||∇ ·u−∇ ·uε

h||
r
0,r

)

6 ||u−uε
h||1,r(||u||1,r + ||uε

h||1,r)
r−2||u−vh||1,r

+
1

ε
||∇ ·u−∇ ·uε

h||0,r(||∇ ·u||0,r + ||∇ ·uε
h||0,r)

r−2||∇ ·u−∇ ·vh||0,r

+ 〈A(u)− f ,∇w〉.
(4.12)

Recall that the bounds ||∇ ·uε
h||0,r 6 Cε

1
r , ||uε ||1,r 6 C, and ||uε

h||1,r 6 C, where C

is a constant independent of h and ε were proved in Theorem 3.1 and Lemma 4.1.
Since ∇ ·u = 0 we obtain

C
(

||u−uε
h||

2
1,r +

(1

ε

)
2
r ||∇ ·u−∇ ·uε

h||
2
0,r

)

6 ||u−uε
h||

r−1
1,r ||u−vh||1,r

+
1

ε
||∇ ·u−∇ ·uε

h||
r−1
0,r ||∇ ·u−∇ ·vh||0,r + 〈A(u)− f ,∇w〉

(4.13)

for 1 < r 6 2, and

C
(

||u−uε
h||

r
1,r +

1

ε
||∇ ·u−∇ ·uε

h||
r
0,r

)

6 ||u−uε
h||1,r||u−vh||1,r

+
(1

ε

)
2
r ||∇ ·u−∇ ·uε

h||0,r||∇ ·u−∇ ·vh||0,r + 〈A(u)− f ,∇w〉

(4.14)
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for 2 < r < ∞.
Rewrite the first two terms on the right hand side of (4.13) using the inequality

ab 6
1
P
(δa)P + 1

P′ (
b
δ )P′

, a > 0,b > 0, where we choose P = 2
r−1

, P′ = 2
3−r

, and

δ = δ ′ε− 1
r , where δ ′ is chosen sufficiently small. Note that δ ′ actually must be

bounded above and below by an appropriate function of ε . After some computation
we obtain

C
(

||u−uε
h||

2
1,r +

(1

ε

)
2
r ||∇ ·u−∇ ·uε

h||
2
0,r

)

6 ||u−vh||
2

(3−r)

1,r

+
(1

ε

)
2

r(3−r) ||∇ ·u−∇ ·vh||
2

3−r

0,r + 〈A(u)− f ,∇w〉

6
(1

ε

)
2

r(3−r) ||u−vh||
2

(3−r)

1,r + 〈A(u)− f ,∇w〉

(4.15)

for 1 < r 6 2. A similar argument with P = r, P′ = r′, and δ = δ ′ε
1
r , where, as be-

fore, δ ′ is chosen sufficiently small and bounded above and below by an appropriate
function of ε gives

C
(

||u−uε
h||

r
1,r +

1

ε
||∇ ·u−∇ ·uε

h||
r
0,r

)

6 ||u−vh||
r

r−1

1,r

+
(1

ε

)
1

r−1 ||∇ ·u−∇ ·vh||
r

r−1

0,r + 〈A(u)− f ,∇w〉

6
(1

ε

)
1

r−1 ||u−vh||
r

r−1

1,r + 〈A(u)− f ,∇w〉

(4.16)

for 2 < r < ∞. Moreover, we can estimate

|〈A(u)− f ,∇w〉| 6 ||A(u)− f ||−1,r′||∇w||1,r 6 C||∇ ·v||0,r

6 C(||∇ ·u−∇ ·vh||0,r + ||∇ ·uε
h||0,r),

for 1 < r 6 2, and

|〈A(u)− f ,∇w〉| 6 ||A(u)− f ||−1,r′||∇w||1,2

6 C
(

||∇ ·u−∇ ·vh||0,2 + ||∇ ·uε
h||0,2

)

6 C
(

||∇ ·u−∇ ·vh||0,r + ||∇ ·uε
h||0,r

)

,

for 2 6 r < ∞. Combining the above results with (4.15) and (4.16) yields

C||u−uε
h||1,r 6

(1

ε

)
1

r(3−r) ||u−vh||
1

(3−r)

1,r + ||u−vh||
1
2

1,r + ε
1
2r , (4.17)

for 1 < r 6 2, and

C||u−uε
h||1,r 6

(1

ε

)
1

r(r−1) ||u−vh||
1

(r−1)

1,r + ||u−vh||
1
r

1,r + ε
1

r2 , (4.18)
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for 2 6 r < ∞. Furthermore, if f ∈ W−1,r′(Ω) satisfies ∀ϕ ∈ V,〈f,ϕ〉 = 0, then by

Lemma 4.1, ||∇ ·uε
h||0,r 6 Cε

1
r−1 . Then (4.17) can be improved and give the follow-

ing estimate

C||u−uε
h||1,r 6

(1

ε

)
1

2(3−r) ||u−vh||
1

(3−r)

1,r + ||u−vh||
1
2

1,r + ε
1

2(r−1) , (4.19)

for 1 < r 6 2. ✷

Remark 4.2. If the domain Ω is smooth, then the result of Theorem 4.1 holds
even for 2 < r < ∞ and, in this case, the following holds

C||u−uε
h||1,r 6

(1

ε

)

1

r(r−1)2 ||u−vh||
1

(r−1)

1,r + ||u−vh||
1
r

1,r + ε
1

r(r−1) , (4.20)

for 2 6 r < ∞.

Corollary 4.1. Suppose that Ω is a bounded convex domain in R
d. Let f ∈

W−1,r′(Ω) satisfy 〈f,ϕ〉 = 0 ∀ϕ ∈ V, where V = {v ∈ C∞
0 (Ω) : ∇ · v = 0}. For

0 < ε 6 1, let u be the unique minimizer of the functional J over W
1,r
0 (Ω), and let

uε
h be the unique minimizer of Jε(u) over Sh

0(Ω). Suppose that α > 1, 1
α < ℓ 6 k+1,

and there is a constant σ satisfying 0 < σ 6
1
r
− 1

α + ℓ−1
d

. If there is a C > 0 such

that ||u||Wℓ,α (Ω) 6 C. Then ∀vh ∈ Sh
0(Ω)

C||u−uε
h||1,r 6

(1

ε

)
1

2(3−r) h
[ℓ−1+d( 1

r
− 1

α )] 1
(3−r) + h[ℓ−1+d( 1

r
− 1

α )] 1
2 + ε

1
2(r−1) ,

for 1 < r 6 2 and if, in addition, Ω is C2, then

C||u−uε
h||1,r 6

(1

ε

)

1

r(r−1)2 h
[ℓ−1+d( 1

r
− 1

α )] 1
(r−1) + h[ℓ−1+d( 1

r
− 1

α )] 1
r + ε

1
r(r−1) ,

for 2 6 r < ∞.

Proof. Applying Theorem 4.2 with vh = Πu and using the estimate in (4.1), the
result then follows. ✷

Theorem 4.3. Let (u, p) be the solution of (2.6). Let uε
h be a solution of (4.3)

and let pε
h = c′− 1

ε ϕ(∇ ·uε
h) where c′ = 1

ε |Ω|

∫

Ω ϕ(∇ ·uε
h)dx. Suppose that (1.3) holds.

Then there exists a positive constant C such that

||p− pε
h||0,1 6 C(ε

1
3−r +

1

ε
||u−uε

h||
r−1
1,r ),

for 1 < r 6 2, and

||p− pε
h||0,1 6 C(ε

1

(r−1)2 +
1

ε
2
r

||u−uε
h||1,r),

for 2 6 r < ∞.
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Proof. By (2.1), (2.2) and Hölder’s inequality, we have

∫

Ω
|ϕ(∇ ·uε)−ϕ(∇ ·uε

h)|dx 6 C||∇ ·uε −∇ ·uε
h||

r−1
0,r , (4.21)

for 1 < r 6 2 and
∫

Ω
|ϕ(∇ ·uε)−ϕ(∇ ·uε

h)|dx 6

C(||∇ ·uε ||0,r + ||∇ ·uε
h||0,r)

r−2||∇ ·uε −∇ ·uε
h||0,r,

(4.22)

for 2 6 r < ∞. Therefore, using the definitions of pε and pε
h

∫

Ω
|pε − pε

h|dx 6
C

ε

∫

Ω
|ϕ(∇ ·uε)−ϕ(∇ ·uε

h)|dx 6
C

ε
||∇ ·uε −∇ ·uε

h||
r−1
0,r , (4.23)

for 1 < r 6 2. And since ||∇ ·uε ||0,r + ||∇ ·uε
h||0,r 6 Cε

1
r , we have

∫

Ω
|pε − pε

h|dx 6
C

ε

∫

Ω
|ϕ(∇ ·uε)−ϕ(∇ ·uε

h)|dx 6
C

ε
2
r

||∇ ·uε −∇ ·uε
h||0,r, (4.24)

for 2 6 r < ∞. By (4.23) and (4.24),

||p− pε
h||0,1 6 ||p− pε ||0,1 + ||pε − pε

h||0,1 6 ||p− pε ||0,1 +
C

ε
||uε −uε

h||
r−1
1,r ,

for 1 < r 6 2, and

||p− pε
h||0,1 6 ||p− pε ||0,1 + ||pε − pε

h||0,1 6 ||p− pε ||0,1 +
C

ε
2
r

||uε −uε
h||1,r,

for 2 6 r < ∞.
This completes the proof of the theorem since ||∇ ·v||0,r 6C||v||1,r ∀v∈W

1,r
0 (Ω),

and ||u−uε ||1,r is estimated by Theorem 3.2. ✷

Corollary 4.2. Suppose α > 1, 1
α < ℓ 6 k + 1, and there is a constant σ satis-

fying 0 < σ 6
1
r
− 1

α + ℓ−1
d

. Suppose there is a C > 0 independent of ε and h such
that ||uε ||Wℓ,α (Ω) 6 C. Then

||p− pε
h||0,1 6 C

(

ε
1

3−r + ε
−r2+4r−1

r(3−r) h
r−1
3−r

[ℓ−1+d( 1
r
− 1

α )]

)

for 1 < r 6 2 and if, in addition, Ω is C2, then

||p− pε
h||0,1 6 C

(

ε
1

(r−1)2 + ε
− 2r−1

r(r−1) h
1

r−1
[ℓ−1+d( 1

r
− 1

α )]

)

for 2 6 r < ∞.
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Proof. The results follow from Applications of Theorem 4.3, Corollary 4.1, and
Theorem 4.2. ✷

Remark 4.3. The rates of convergence in the error estimates given by Corol-
lary 4.1 and Corollary 4.2 depend on both ε and h. However, if ε > 0 is fixed,

the convergence of uε
h to uε as h → 0 may be obtained by choosing h = ε

1
γ with

0 < γ <
[

ℓ−1+ d(1
r
− 1

α )
]

ϑ2

ϑ1
. However, this requires a very fine mesh when ε is

large and the rate of convergence is not optimal. This is also observed in the numer-
ical experiments. In addition, the boundedness of ||u||Wℓ,α (Ω) requires potentially

higher regularity on the solution. It has been shown, of course, that ||u||W1,r(Ω) 6 C,
but that is not sufficient for a general strong error estimate.

When r = 2, for the Newtonian flows, we have the following Theorem due to Temam
[59]:

Theorem 4.4. Let ℓ > 2 be an integer, α any real number with 1 < α < ∞ and
let Ω be a bounded and open set of R

d of class Cℓ. Let

f ∈ Wℓ−2,α(Ω),ψ ∈W ℓ−1,α(Ω),and g ∈ Wℓ− 1
α ,α(∂Ω)

be given with g and psi satisfying the compactibility condition

∫

∂Ω
g ·ndx =

∫

Ω
ψdx.

Then, the nonhomogeneous Stokes problem

−k∆u + ∇p = f in Ω,

∇ ·u = ψ in Ω,

u = g on ∂Ω.

(4.25)

has a unique solution (u, p) in Wℓ,α(Ω)× W ℓ−1,α(Ω). In addition, there exists a

constant C > 0 dependent only on ℓ, α , k, and Ω, such that

||u||ℓ,α + ||p||ℓ−1,α 6 C(||f||ℓ−2,α + ||ψ ||ℓ−1,α + ||g||ℓ− 1
α ,α).

With the uniform bound on ||u||ℓ,α , one can then use Corollary 4.1 and Corollary
4.2 to give the following error estimates for the Newtonian Stokes problem:

||u−uε
h||1,2 6 C

(

ε + ε− 1
2 hℓ−1+d( 1

2
− 1

α )
)

,

||p− pε
h||0,1 6 C(ε + ε− 3

2 hℓ−1+d( 1
2
− 1

α )).
(4.26)
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In particular, let ε = h and ℓ = 2 in (4.26), then we obtain the optimal error estimate
in velocity for the linear finite elements:

||u−uε
h||1,2 = O(h

1
2
+d( 1

2
− 1

α )). (4.27)

This is comparable to the rate of O(h
1
2 ) found in Reddy [53] under similar condi-

tions. The regularity theory presented in [60], [25], and [21] indicate that for ap-
propriate smooth Ω and f, the solution u may be in C1,µ (Ω̄) for some 0 < µ < 1.
Therefore, ||u||1,α 6C with C independent of ε and for any 1 < α < ∞. Let ℓ = 1 and

α → ∞ in the above error estimates, one can then replace the term ℓ−1+d(1
r
− 1

α )

in (4.26) by d
r
.

5. NUMERICAL SOLUTIONS

Let {Ni}i=1,m be the global basis for the finite element space Sh
0(Ω). Then

Sh
0(Ω) = {v|v =

m

∑
i

xiNi,x = (x1,x2, ...,xm) ∈ R
m}.

Consider the unconstrained nonlinear program: minx∈Rm fε(x), where fε(x) = Jε(v)
and v = ∑m

i xiNi ∈ Sh
0(Ω). Our purpose is to present some numerical solutions by

using the penalty method. For simplicity, we only test the method by using the
linear triangular elements on a cavity Stokes flow problem. The following hybrid
nonlinear conjugate gradient scheme is used for finding the minimizer of the above
nonlinear program:

Set p−1 = 0, β0 = 0, x0 = 0, and set the convergence tolerance δ > 0.
For i = 0,1, ....
If ||∇ f (xi)|| < δ stop.
If i > 0 set
yi−1 = ∇ f (xi)−∇ f (xi−1)
β HS

i = yT
i−1∇ f (xi)/yT

i−1 pi−1

β DY
i = ∇ f (xi)

T ∇ f (xi)/yT
i−1 pi−1

βi = max{0,min{β HS
i ,β DY

i }}
end if
Set pi = −∇ f (xi)+ βi pi−1

Use a line search to determine αi and set xi+1 = xi + αi pi

In the above algorithm, a back-tracking line search method is used and the step
length αk to be the first element of the sequence: 1, 1

2
, 1

4
, 1

8
, ...,2−i, ... that satisfies

a sufficient decrease condition, see, e.g., Nash and Sofer [48] for details. This hy-
brid nonlinear conjugate gradient method was first proposed by Touati-Ahmed and
Storey [61]. It has been tested to perform well for many difficult numerical examples
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Cavity Power−law Stokes flow at r=2.0, h=0.05, eps=0.05

Figure 1. Newtonian Stokes flow with r = 2.0
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Figure 2. non-Newtonian Stokes flow with r = 3.0

[24] in comparison with the Polak-Ribiére-Polyak method and it does not require
the line search scheme to satisfy the strong Wolfe condition. The numerical exam-
ple is problem (3.2) with Ω = (0,1)× (0,1), k = 1, f = 0, and boundary conditions
uε =(1,0),on(0,1)×{1} and uε = (0,0),otherwise. Figure 1 is the graphic solution
of the problem for the Newtonian Stokes flow with r = 2.0. Figure 2 is the graphic
solution of the problem for the corresponding power-law non-Newtonian Stokes
flow with r = 3.0. In both of these numerical experiments ε = .05 and h = .05.
These numerical experiments support our analysis. Oscillations in the gradient of
the objective function is observed. One apparent difference in the two cases is the
center of rotation. For the shear thinning flow, the center is lower, which coincides
with physical intuition.
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