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AFIT/GOR/ENS/08-07 

Abstract 

 
  This research extends the emerging field of hyperspectral image (HSI) target 

detectors that assume a global linear mixture model (LMM) of HSI and employ 

independent component analysis (ICA) to unmix HSI images.  Via new techniques to 

fully automate feature extraction, feature selection, and target pixel identification, an 

autonomous global anomaly detector, AutoGAD, has been developed for potential 

employment in an operational environment for real-time processing of HSI targets.  For 

dimensionality reduction (initial feature extraction prior to ICA), a geometric solution 

that effectively approximates the number of distinct spectral signals is presented.  The 

solution is based on the theory of the shape of the eigenvalue curve of the covariance 

matrix of spectral data containing noise.  For feature selection, previously a subjective 

definition called significant kurtosis change was used to denote the separation between 

targets classes and non-target classes.  This research presents two new measures, 

potential target signal to noise ratio (PT SNR) and max pixel score which is computed for 

each of the ICA features to create a new two-dimensional feature space where the overlap 

between target and non-target classes is reduced compared to the one dimensional 

kurtosis value feature space.  Finally, after target feature selection, adaptive noise 

filtering, but with an iterative approach, is applied to the signals.  The effect is a 

reduction in the power of the noise while preserving the power of the target signal prior 

to target identification to reduce false positive detections.  A zero-detection histogram 

method is applied to the smoothed signals to identify target locations to the user.  

MATLAB code for the AutoGAD algorithm is provided. 
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IMPROVED FEATURE EXTRACTION, FEATURE SELECTION, AND 

IDENTIFICATION TECHNIQUES THAT CREATE A FAST UNSUPERVISED 
HYPERSPECTRAL TARGET DETECTION ALGORITHM 

 
 

I.  Introduction   
 
 

1.1 Background 
 
 Distinguishing man-made objects from natural objects in rural environments is of 

particular interest when man-made objects are targets within the military context.  

Hyperspectral sensors offer a passive means (as opposed to radar where an enemy can be 

alerted to surveillance) by which to identify targets by exploiting information within the 

electromagnetic spectrum (EM).  The typical range of the EM spectrum exploited is the 

optical range which includes ultraviolet, visible, and infrared wavelengths as shown in 

Figure 1-1 below.  Optical regions useful for remote sensing extend beyond the regions 

where photography can be used (Landgrebe, 2003: 13).  

 
Figure 1-1.  EM Spectrum (Landgrebe, 2003:14) 
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The specific physics and hardware specifications to collect hyperspectral images (HSI) is 

beyond the scope of this thesis, but a general explanation of the nature of an HSI image 

will be explained.   

 A particular area being imaged by an HSI sensor is divided into a raster grid with 

each grid cell or pixel corresponding to a rectangular sub-region of the image.  The 

physical dimensions of the pixel correspond to the spatial resolution of the sensor which 

could range typically from some fraction of a meter to tens of meters (Smetek, 2007:16).  

Other than spatial resolution, the sensor can be characterized by the range of EM 

wavelengths it is capable of measuring and the smallest detectable wavelength difference 

(spectral resolution).  Hyperspectral sensors typically record energy, measured in 

radiance (watts per square meter per steradian), over hundreds of discrete intervals called 

spectral bands (the width of the interval is determined by the spectral resolution) across 

some subset of the optical wavelengths.  The sensor records the amount of energy 

radiated by each pixel over all the sensor’s spectral bands.   

 It may not be possible to distinguish between natural foliage and camouflage 

netting concealing tanks or troop tents when examining a normal RGB (red green blue) 

digital image taken from a surveillance aircraft.  However, when analyzing the same 

image taken with an HSI sensor that considers more than just the visible spectrum, the 

camouflage material will reflect electromagnetic energy different than the surrounding 

foliage and thus can be identified.  This difference in the radiated energy can be observed 

when analyzing the spectral signatures of the objects.  The spectral signature of a pixel 

would be a plot of the pixel’s response across each of sensor’s spectral bands.   
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 It should be noted that whereas the HSI sensor collects data in units of radiance 

for each spectral band, data is usually converted to reflectance.  When atmospheric 

correction is performed on the radiance data, the effects of path radiance (energy 

reflected by the atmosphere into the sensor that does not reach the ground) and skylight 

(energy that bounces off the atmosphere and is reflected by the ground) are removed.  

The resulting data is in terms of reflectance signatures and represent the relative amount 

of energy from the sun (without path radiance and skylight) that hits the Earth’s surface 

and is reflected (Smetek, 2007: 12-13). 

 
1.2 HSI Data Representation 
 
 Before proceeding further, the reader should be acquainted with how HSI data is 

organized for processing.  HSI data is represented as a cube where the first two indices of 

( ), ,i j k  coordinate triple represent the spatial location of the pixel in the image and the 

third index defines the pixel’s reflectance response in the thk spectral band.  Figure 1-2 

below is an example of an image cube. 

 
Figure 1-2.  Hyperspectral Data Cube (Shaw and Manolakis, 2003: 13) 

i

k

j

i

k

j
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In order to perform operations on the data cube such as mean and covariance calculations 

for example, the data cube is reshaped in to a data matrix.  Say this particular image was 

150 pixels by 200 pixels by 210 bands making a total of 30,000 pixels.  Reshaping this 

cube into a data matrix would result in a matrix with dimensions of 30,000 pixels by 210 

bands.  Figure 1-3 shows the process. 

 
Figure 1-3.  Reshaping Image Cube into Data Matrix 

 

As shown in Figure 1-3 each pixel in the image cube can be considered a vector where 

each element is a reflectance response in each of the k spectral bands.  Starting from the 

top left of the cube and moving down the first column ( )1j =  of the image, each pixel 

vector in the first column is formed into a column in the data matrix.  The process is 
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repeated starting with the second column and finishing with the thj  column.  The result is 

a data matrix with k rows (one for each spectral band) and n columns (one for each pixel 

observation).  It should be noted that in some texts the data matrix is transposed from the 

one presented in Figure 1-3 to be n pixel observations by k spectral bands. 

 

1.3 Approaches 

 In order to find targets two main methods are pursued.  The first method is 

referred to as signature matching.  Here, one compares pixel vectors (i.e. pixel signatures) 

to a library of target reflectance signatures to determine which pixels belong to targets of 

interest.  Figure 1-4 below shows how spectral signatures of different materials may 

differ across the spectral bands of an HSI sensor. 

 
Figure 1-4.  Spectral Signatures of Different Materials (Smetek, 2007:19) 
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 The second method is referred to as anomaly detection.  Although definitely not 

comprehensive, two common categories are (i) distribution based anomaly detectors 

(local or global) that assume a distribution (typically normal) of the pixel vectors and (ii) 

global linear mixture model detectors.   

 Distribution Based Anomaly Detectors 

 In local anomaly detection, a scanning window (which is some fraction of the size 

of the entire image) is moved over the image and centered on a pixel of interest.  At each 

stop the local mean and covariance is calculated and if the centered pixel of interest is 

beyond some statistical distance threshold (typically a Mahalanobis distance) from the 

mean then it is nominated as an outlier.  Such local anomaly detectors are referred to as 

local normal models, i.e. the pixel vectors are assumed to be distributed Gaussian 

(normal) with meanμ  and covariance Σ .  The RX detector is one such detector.   

 According to Stein, Beaven, Hoff, Winter, Schaum, and Stocker (2002:62), the 

local Gaussian model may not be a valid for hyperspectral data if relatively small regions 

contain multiple materials.  Based on goodness-of-fit tests of a hyperspectral scene to a 

local normal model, the local normal model was rejected for more than 90% of the pixels.  

Thus, the local normal model may not capture the complexity of hyperspectral imagery.  

They assert that global mixture distributions will provide more accurate descriptions. 

 Global normal mixture models assume an image is made of C classes where each 

class has a separate multivariate Gaussian (normal) distribution with parameters cμ and 

cΣ for class c.  The overall pdf of the scene is described by a Gaussian mixture 

distribution: 



 

1-7 

( ) ( ) c
1 1

, ;  0;  1
C C

cc c c
c c

g x N x uπ π π
= =

= Σ ≥ =∑ ∑                               (1.1) 

where cπ  is the probability of belonging to class c (Stein and others, 2002:63).  Stein et 

al. use a stochastic expectation maximization (SEM) method to determine the location of 

the classes and their parameters.  However, as Smetek points out, no guidance is given on 

how to determine the number of classes C (Smetek, 2007:48).  Rather than the SEM 

approach, another way to determine the location of the classes is via the k-means 

clustering algorithm.  However, the number of classes k is subjectively specified by the 

user (Smetek, 2007:49).  Similar to the local anomaly detectors that identify anomalous 

pixels as statistical outliers in the local scanning window, the Gaussian mixture models 

identify anomalous pixels that are outliers for each of these clusters’ distributions. 

 Global Linear Mixture Model Detectors 

 Rather than presuming some distribution of the pixel vectors in the scene, this 

approach assumes that each pixel vector observation is a convex combination of a 

deterministic number of endmembers, i.e. a finite number of distinct spectral signatures.  

The coefficients of the convex combination are interpreted as the fractional abundance of 

each endmember in a particular pixel.  As will be explained in great detail in chapter 2, 

one must solve for the abundances in what is called unmixing the image.  Target-like 

endmembers are identified based on properties of the abundance estimates (Stein and 

others, 2002:60).  Given this research will employ the linear mixture model of HSI, a 

lengthy discussion of this model and a solution methodology to solve for the abundances 

via a technique called independent component analysis (ICA) will be presented in chapter 

2.  
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1.4 Research Objectives  

 Based on the linear mixture model of HSI, this research seeks to develop a fast 

and truly autonomous (unsupervised) global anomaly detector, dubbed AutoGAD, to 

locate targets in an HSI image.  Autonomous, implies the only input from the user is the 

image cube.  The rest of the decisions to identify targets are made via the AutoGAD 

algorithm.  By fast, the goal is to be able to process images in terms of minutes and even 

seconds in order to provide real-time targeting for operational employment.   

 As will be discussed in chapter 2 and chapter 3, feature extraction refers to 

reducing the dimensionality of HSI data by projecting the k dimensional data onto a 

lower dimensional orthogonal subspace (commonly via a technique referred to as 

principal components analysis) where much of the structure of the original data is 

maintained.  The first objective of this thesis is to develop a way to effectively, 

efficiently, and autonomously determine the number of dimensions to project the data.  

As will be explained later, the correct number of dimensions to choose, refers to the 

number of distinct endmember signatures present in the image.   

After reducing the dimensionality, the features (which correspond to the n pixels’ 

scores on each of the new coordinate axes) will be projected again to a new set of axes 

that are not only orthogonal, but independent via a method previously mentioned called 

ICA.  This projection is determined by an optimization scheme which will be rigorously 

developed in chapter 2.  The second objective of this thesis will be to determine which 

objective function, that approximates a measure of independence, yields the least amount 
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of variability in the solution per each test image it is applied to.  This will ensure a level 

of robustness to the new detector. 

 From the final set of features produced by ICA, a process called feature selection 

must choose which features are target like based on some statistical measure of target 

‘likeness’.  Currently, features with high kurtosis values are used to nominate features 

that belong to the target class.  However, the process of selecting the cutoff kurtosis value 

between target classes and non-target classes is a supervised procedure.  As will be 

illustrated in chapter 3, attempts to automate the procedure is problematic and the overlap 

between non-target kurtosis values and target kurtosis values calls for the investigation of 

alternate measures of target ‘likeness’ that minimizes the overlap between the classes so 

that the cutoff decision between the classes can be automated.  This is the third objective 

of this thesis.   

 As previously explained a feature is an n dimensional vector which represents 

each of the n pixels’ scores on a particular axis in the ICA space.  The selected target 

features, are in other words the selected target axes in the ICA space.  The next step in the 

target detection process is to identify which pixels in each of the selected features are the 

target pixels.  The fourth objective of this thesis is to find an unsupervised way to locate 

these pixels that reduce the amount of false positives detected. 

 

1.5 Assumptions 

 Anomaly detectors, since they do not assume a priori knowledge of target 

signatures, must make a few assumptions about the nature of targets.  Further the domain 

of effective application of anomaly detectors is limited.  Targets in an image are assumed 
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to be a small, rare occurring class (as opposed to a large class like a forest) and have a 

spectral signature distinct from the rest of the spectral signatures present in the image.  

Man-made objects in large rural areas of large classes of natural occurring objects like 

dirt, grass, trees, bushes, gravel, sand, etc...meet the definition of targets.  However, in an 

urban environment, most of the objects are man-made objects.  Thus, the definition of 

small, rare occurring class and distinct spectral signature breaks down.  For this reason 

the domain of the new anomaly detector is assumed to be rural environments.   

 Although not mentioned previously, an important initial processing requirement 

before executing AutoGAD is the removal of what are called the atmospheric absorption 

bands from the data.  Atmospheric absorption bands are bands in which the energy at 

these wavelengths is almost entirely absorbed by the atmosphere.  Therefore, the sensor 

detects primarily random noise at these wavelengths.  Given the wavelengths of 

atmospheric absorption are known, the bands in the sensor referred to as the noise bands 

are assumed to be known.  Further, in addition to the atmospheric absorption bands there 

may be other bands in the sensor that record significant noise, often at the extremes of the 

sensor’s band range (Taitano, 2007:33-34).  Before the application of the AutoGAD, it is 

assumed that the user has a priori knowledge of the ‘good’ non-noise bands in the sensor.  

For each different sensor that employs AutoGAD a separate input for the good bands will 

be required. 

 Finally, the set of test and validation images presented in chapters 3 and 4 are 

assumed to be a representative sample from the domain of rural HSI images with targets. 
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II. Literature Review and Critical Analysis of Current Practices 
 
 

2.1 Linear Mixture Model (LMM) for HSI 
 
 As previously described, the LMM assumes each pixel vector is a “linear mixture 

of a discrete number of pure deterministic material spectra” (Chang, 2007:108).  

Terminology such as ‘pure spectra’, ‘pure materials’, or ‘pure pixels’ are often referred to 

as endmembers each having a characteristic spectral signature.     

The physical basis for the linear mixture model is that hyperspectral image 
measurements often capture multiple material types in an individual pixel 
and that measured spectra can be described as a linear superposition of the 
spectra of the pure materials from which the pixel is composed.  The 
weights of the superposition correspond to the relative abundances of the 
various pure materials.  This assumption of linear superposition is 
physically well-founded in situations, for example, where the sensor 
response is linear, the illumination across the scene is uniform, and there is 
no scattering (Chang, 2007:108). 
 

Nonlinear mixing occurs when, for example, there is multiple scattering of light between 

elements in a scene.   

Despite the potential for nonlinear mixing in real imagery, the linear 
mixing model has been found to be a fair representation of hyperspectral 
data in many situations (Chang, 2007:108).     
 
The LMM for a particular pixel observation i, where i = 1,2,…,N observations, 

formulates as follows: 
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where 

jx ≡pixel column vector where each element is an intensity value (in 
terms of spectral reflectance) for one of K spectral bands for observation j, 
where 1,..., .j N=  
 

pε ≡ column vector of KxPE that represents the spectral signature for the 
thp endmember, where 1,2,..., .p P=  Each element is an intensity value 

for one of the K spectral bands.  
 

pjs ≡ abundance fractions of the thp endmember in jx , the thj  pixel vector 
observation.  Note, since pjs  are abundance fractions, 

1
1 for 1,...,

P

pj
p

s j n
=

= =∑  and 0 for 1,...,  and 1,...,pjs p P j N≥ = =  

 
jr ≡ random vector representing additive Gaussian sensor noise with a 

mean of zero for the thj pixel vector observation 
 

Note that in the case where a single pixel vector, jx , is an actual endmember, i.e. pure 

pixel, pjs would be zero for all p except for the endmember occupying that particular 
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observation.  Further, note the sum-to-one and non-negativity constraints on the 

abundance fractions.     

 Because of the random nature of r, each measured x  should be considered a 

realization of a random vector process.  It may also be appropriate to consider the 

abundance fractions as a random component, but an inherent assumption in the LMM is 

that the endmember spectra, Pε , are deterministic (Chang, 2007:110). 

If (2.1) is expressed in terms of an entire data matrix, X, where each column is a 

distinct observation of a pixel vector, one has: 
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X E S R

ε

= ⋅ +

   (2.2) 

Notice that the elements of the thj column of PxNS , represent the separate fractional 

abundances of the P endmembers signatures , 1 2, ,..., Pε ε ε  (column vectors of E), in 

observation j.  Furthermore, the elements of thp row of PxNS , represent the abundance 

fractions of a single endmember, pε , in each of N observations.  Thus, if one where to 

plot the values of the thp  row of  PxNS  (which is termed an abundance map) and the 

signal shows ‘high’ abundance values for observations, say observation 25 through 35, as 
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compared to the values for the other observations, then one could conclude that those 

pixel observations have a high concentration of the thp endmember.  Each abundance row 

vector can be considered a feature in the image. 

 Another important fact to consider for the LMM is that the model is an additive 

only model.  Given that KxPE  is matrix of endmember signatures where each element is a 

reflectance value (nonnegative) in a particular spectral band and the abundance matrix, 

PxNS , contains nonnegative fractions, the LMM is a purely additive model (allowing no 

subtractions).    

 

2.1.1 Abundance Maps and Target Detection 

A Priori Knowledge of Endmember Matrix  

If the endmember matrix E (i.e. total number of endmembers in the image and 

their respective spectral signatures) is known a priori then the problem is to solve for the 

abundance matrix, PxNS , to unmix the hyperspectral image.  The abundance matrix is 

generally solved using constrained least squares methods.  The estimated abundance 

matrix row vectors recovered are usually formed into images and are termed the 

abundance maps, as described earlier, for each respective endmember (Chang, 2007:111).  

The abundance matrix row vector is simply reshaped into the original image pixel length 

by width and plotted on a grey scale (scaled between 0 and 1) to create an abundance 

map.  Analysis of these abundance maps is the key to identifying targets of interest. 

Pixels with high abundance values in abundance map p corresponding to endmember p 
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(which is a signature of a particular target of interest or desirable endmember) identify 

the location of that particular target.  Figure 2-1 is an example of such an abundance map.    

 
Figure 2-1.  Abundance Map for Tank Endmember 

 

No A Priori Knowledge of Endmember Matrix  

Signature Matching 

Of course, if one has no a priori knowledge of the endmember matrix, the 

problem of solving for the endmember matrix and abundance matrix (termed unmixing) 

in hyperspectral images is much harder. One must determine both the endmember matrix 

and the abundance matrix from knowledge of just the observed matrix X.  Such a problem 

falls into the category of a much more general problem referred to as blind source 

separation (BSS).  The term blind indicates that little or no information is available on 

either of the matrices that multiply to form the observed matrix X (Varshney and Arora, 

2004:110).  Two particular solutions applied to the problem of BSS, independent 

component analysis (ICA) and nonnegative matrix factorization can be used to solve for 

both matrices.  One particular target identification algorithm, ICA-EEA (ICA-
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Endmember Extraction Algorithm), performs the ICA algorithm to solve the BSS 

problem, unmixing the hyperspectral data set.  Target candidate pixels are identified from 

each abundance map by choosing the pixel with the highest absolute abundance value 

from each map.  These pixels are hypothesized to represent pure endmembers.  The 

signatures of these pure endmembers, which are obtained from the corresponding pixel 

vectors from the original unmixed data matrix, X, are compared to the material signatures 

of targets of interest to identify which abundance maps may contain those targets of 

interest (Wang and Chang, 2006:623314-3).     

Anomaly Detection 

In the area of anomaly detection, one does not even know the signatures of the 

targets of interest and wishes to identify targets in terms of just anomalous occurrences in 

the overall image.  The hypothesis is that target materials are relatively rare, producing 

abundance maps with relatively few intense pixels (Smetek, 2007:46).  Abundance maps 

corresponding to these target materials will have a relatively constant dark background 

(representing very low values of abundance) with the few target pixels highlighted 

brightly (representing high abundance values).  Such an abundance map represents a 

scenario with small objects and a large homogeneous background.  In such a map, if one 

were to take the kurtosis value of the abundance vector that was used to form the map, 

the value would be high compared to an abundance map representing a large class, like 

for example a large sections of trees.  Thus, one could select the maps with the highest 

kurtosis as the one containing information about small objects.  Robila and Varshney 

make a determination of the number of maps to retain based on a scree graph of the 

kurtosis values.  They state that a considerable slope change represents the border 
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between one class of maps, in our case target classes, to another, non-target classes 

(Robila and Varshney, 2002:177).  An example of this small class (i.e. target) feature 

selection via the scree graph of kurtosis values will be presented later in this chapter in 

section 2.4.  Once the frames with the highest kurtosis are selected, those pixels with 

abundance values higher than a determined threshold will be classified as targets in the 

target identification phase.  

 

2.1.2 Dimensionality Reduction (Feature Extraction) 

Spectral unmixing is usually performed within a subspace of the original K 

spectral bands.  It has been proven that high-dimensional space is mostly empty, and 

multivariate data are usually in a lower dimensional structure.  As a result, for any 

particular hyperspectral image, this K-dimensional data can be projected to a lower 

dimensional subspace without losing significant information and class separability 

(Landgrebe, 2003:270).  This process is referred to as feature extraction.  The features are 

the new variables that define the dimensions of the subspace.  The focus is to increase the 

separation between classes within each feature (i.e. find projections where the new 

variables are uncorrelated) while reducing overall noise (Robila and Maciack, 2006:2).  

Further, since the number of endmembers, P, is not known, the dimension of the 

subspace is considered to be the number of distinct endmembers for the given image 

(Change, 2007:112).  Determination of the number of endmembers via a dimensionality 

reduction technique called principal components analysis will be discussed next. 
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2.1.3 Principal Components Analysis (PCA) 

PCA linearly transforms data into a subspace where the new variables 

(components) are decorrelated and ranked in decreasing order of variance.  Consider a 

random hyperspectral pixel vector, ( )1,...,
T

Kx x x=  in K spectral bands.  To find the first 

principal component, one must find a projection of this vector 

( ) ( ) 11 1 21 2 11 1
...T

K Ky g x g x g x g x= = + + +                                     (2.3) 

such that the variance of the projection, ( )( )1cov y , is maximized subject to the  

projection, 
( )1

g , being of unit norm. 

( )
( )( ) ( ) ( ) ( )

( ) ( )

1 1 1
1

1 1

MAX
 cov    note: =cov( ) g

                s.t.       1

T T
x x

T

g x g g x

g g

= ∑ ∑

=

                             (2.4) 

If x∑ positive definite, then to find 
( )1

g one must satisfy only the necessary condition, 

where the gradient of the Lagrangian is zero.  The Lagrangian of (2.4) and gradient of the 

Lagrangian will be 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )1 11 1 1 1 1
, 1T T

xL g g g g gλ λ= ∑ − −                                   (2.5) 

( ) ( ) ( )

( ) ( )

11 1

1 1

2 2 0
01

x

T

g g
L

g g

λΣ −⎛ ⎞ ⎛ ⎞⎜ ⎟∇ = = ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
                                            (2.6) 

Note that 

( ) ( ) ( ) ( )( ) ( )1 11 1 1
2 2 0 0x xg g I gλ λΣ − = ⇒ Σ − =                                   (2.7) 

In order to have a solution for 
( )1

g which is not the zero vector, one must have 
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( )1 0x Iλ∑ − =                                                          (2.8) 

Thus, the solution, ( )1λ , for (2.8) is the largest eigenvalue of x∑ which means 
( )1

g is the 

normalized eigenvector associated with ( )1λ .  The second principal component 

( ) ( ) 12 1 22 2 22 2
...T

K Ky g x g x g x g x= = + + +                                   (2.9) 

is found by solving (2.4) with the additional constraint, 
( ) ( )1 2

0Tg g = .  Using the same 

argument above it can be shown that 
( )2

g  is the normalized eigenvector associated with 

the second largest eigenvalue of x∑ , ( )2λ . The process is repeated until all K normalized 

eigenvectors of x∑ are found where each eigenvector is orthogonal to every other 

eigenvector (Dillon and Goldstein, 1984:28).  Now by definition of eigenvalues: 
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11 1

22 2
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⇒
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... ...x K K
g g g g g g D⎡ ⎤ ⎡ ⎤Σ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
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⇒ x G G DΣ ⋅ = ⋅                                                     (2.10) 

 
Because G is a matrix of unit norm eigenvectors of a covariance matrix, G is orthonormal 

and TG G I⋅ = .  Thus, left multiplying (2.10) by TG , one has the result: 
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T

xG G D⋅Σ ⋅ =                                                     (2.11) 

(2.11) is significant because the goal is to have new variables, ( )( )(1) (2), ,..., 'Ky y y y= , 

that are uncorrelated.  Notice 

( ) ( )cov cov T T
xy G x G G D= = ⋅Σ ⋅ =                                  (2.12) 

Since D is a diagonal matrix the new variables (components) are uncorrelated with 

the ( )( )var ,  for 1,...,iiy i Kλ= = .   

 Now to address the issue of dimensionality reduction, the goal is to retain enough 

of the ( ) 'iy s so that amount of variability explained is enough to preserve the significant 

information and class separability as was explained previously in the citation from 

Landgrebe.  The total variance of the hyperspectral image can be defined: 

Total Variance ≡  trace ( )xΣ  = 2

1

K

ii
i
σ

=
∑                                  (2.13) 

Right multiplying (2.10) by G’ 

T
x G D GΣ = ⋅ ⋅                                                 (2.14) 

So 

2

1

K

ii
i
σ

=
∑ = trace ( xΣ ) = trace ( )TG D G⋅ ⋅ = trace ( )TG G D⋅ ⋅ = trace ( )D  = 

1

K

i
i
λ

=
∑  (2.15) 

Thus, 

Total Variance ≡
1

K

i
i
λ

=
∑                                               (2.16) 
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Thus, (2.13) and (2.16) give the important result that the total variance of the original 

variables is equal to the sum of the variances for all K principal components (Dillon and 

Goldstein, 1984:29). 

Determining Dimensionality 

One way to determine what the reduced dimensionality of the image is to 

calculate a selected subset of components’ percentage of variance explained. An analysis 

of their corresponding eigenvalues yields: 

1

1

P

i
i
K

i
i

λ

λ

=

=

∑

∑
= % of variance explained by selected subspace                     (2.17) 

Robila and Varshney choose 99.9% in their cited research.   

 Another way to determine the dimensionality of the subspace comes from the 

assertion that covariance of the random hyperspectral pixel vector is made of the true 

signal covariance and noise.  The true signal covariance is contributed by the true 

number, P, of distinct endmember signatures in the image.  Beyond the thP eigenvalue 

of x∑ , the eigenvalue distribution becomes constant with the value of the constant 

eigenvalues equal to the covariance of the noise term, r in (2.1), 2σ I, i.e. white noise 

(Chang, 2007:112; Hyvärinen and others, 2001:131).  As reproduced from Stocker et al., 

Figure 2-2 (a) shows a plot of eigenvalues from simulated data with 64 bands and 8 

signals, i.e. a true dimensionality of 8, with added white noise of variance 1.  Notice the 

constant floor at 1, 2σ , in Figure 2-2 (a).  However in Figure 2-2 (b), due to finite-sample 

estimation errors, instead of a constant eigenvalue noise floor at 2σ , one can view a ‘tilted 
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ramp’ in the general vicinity of 2σ .  The distribution of the noise eigenvalues follow 

approximately an asymptotic distribution called Silverstein’s distribution, provided the 

eigenvalues are from a white noise covariance matrix formed from independently 

identically distributed noise vectors (Stocker and others, 2003: 654).  If the covariance of 

the noise term, r, is not white, i.e. ( ) 2 2 2
1 2cov , ,..., Kr Iσ σ σ⎡ ⎤= ⋅⎣ ⎦ , as depicted in Figure 2-2 

(b), this nonwhite sensor noise added to the same signals imparts additional tilt into the 

sample eigenvalue curve (Stocker and others, 2003: 652).  Fitting the white noise 

eigenvalues to the Silverstein distribution approximately locates the ‘knee’ in the 

eigenvalue curve that separates the signal and noise eigenvalues as shown in Figure 2-2 

(c).  However, for many hyperspectral sensors, noise is not white across the spectral 

range of the instrument, and no analogous closed form expression for the asymptotic 

eigenvalue density exists in the nonwhite noise case (Stocker and others, 2003: 657).  

Thus, locating the ‘knee’ is a more difficult problem due to the absence of a closed form 

theoretical distribution and requires some estimation of the distribution of the nonwhite 

noise eigenvalues.  This is accomplished via an estimate of the spectrally varying noise 

level 2 2 2
1 2, ,..., Kσ σ σ⎡ ⎤⎣ ⎦  extracted from scene data.  Stocker et al. provide a parametric in-

scene approximation to the spectral nonwhite noise characteristic to approximate 

2 2 2
1 2, ,..., Kσ σ σ⎡ ⎤⎣ ⎦  (Stocker and others, 2003: 657-664). 

By locating the breakpoint in the eigenvalue curve between signal and noise of 

the covariance matrix of the data, and discarding those eigenvectors associated with the 

eigenvalues corresponding to noise, one can improve the signal to noise ratio of the data 

in the PCA space. 
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Figure 2-2.  (a) True eigenvalues, (b) sample eigenvalues, and  
(c) Silverstein model fit for simulated 64-band data with 8 signal modes  

and additive sensor noise (Stocker and others, 2003: 653, 657) 
 

(a) 

(b) 

(c) 
(white noise case) 
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Thus, after some decision is made on the number principal components to retain 

denoted by P, our original K-dimensional hyperspectral image is projected onto a P-

dimensional orthogonal subspace by a linear transformation matrix defined by selecting 

the P eigenvectors (where P represents the number of retained eigenvectors) associated 

with the P eigenvalues in (2.17) and discarding the rest of the eigenvectors.  This matrix 

of retained eigenvectors is applied to X shown in (2.18) below, 

11 12 111 12 1

21 2221 22

1 21 2

......
..

. . . .. . . .
......

                                                    

NK

PxN

K K KNP P PK

T
PxK KxN

x x xg g g
x xg g

Y

x x xg g g

G X

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

i
                        (2.18) 

where the  row of  represents the  retained eigenvector of th T th
xp G p Σ .   

Recall the LMM presented in (2.2).  After finding the lower dimensional 

subspace, the new form of the LMM model is 

11 12 111 12 111 12 1

21 22 21 2221 22

1 2 1 21 2

' ' '' ' '

' '' '
'

' ' '' ' '

.........
. ..

. . . . . . . .. . . .
... ......

                               

NPN

PxN

P P PN P P PNP P PP

s s sy y y
y y s s R

y y y s s s

ε ε ε

ε ε

ε ε ε

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ = ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

' ''
                          

                                        PxN PxP PxN PxN

or

Y E S R= ⋅ +

  (2.19) 

Notice the endmember matrix in (2.19) to be determined is now a square matrix which is 

advantageous when employing methods to solve for the endmember matrix and 

abundance matrix simultaneously.  It is important to note that, whereas the thj column of 

X represented the thj pixel’s signature across the K spectral bands, the thj column of Y in 
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(2.19) represents the thj pixel’s signature across the P principal components.  Thus, when 

solving for the endmember matrix in (2.19), the columns of this new square endmember 

matrix denoted by 'E instead of E represent the signatures of the endmembers in the 

principal component space not signatures of the endmembers in terms of reflectance of 

the original K spectral bands. Thus, one loses the physical interpretability of the solved 

endmember matrix in this new space.  Further, given that the principal component space 

is not nonnegative as is the case in the spectral reflectance space, the Y matrix and the 'E  

matrix will have negative terms in (2.19) and thus no longer strictly conforms to the 

additive only LMM in (2.1) since subtractions will occur.  However, based on this 

author’s review of the myriad of literature available on dimensionality reduction of 

hyperspectral images, PCA is the most common tool used to effectively reduce the 

dimensionality of a hyperspectral image.  Another approach called nonnegative PCA is 

suggested by several sources as a reduction technique that produces nonnegative 

components.  This technique should be investigated and compared to PCA to see if the 

additional nonnegative restriction outperforms target detection algorithms using 

traditional PCA image compression as a preprocessing technique.  However, this thesis 

due to its limited scope will employ traditional PCA. 

 

2.1.4 Limitations of the LMM 

 Recall that a basic assumption in the LMM is that the endmembers are 

deterministic, i.e. within an endmember, the signature has no variability.  Further, the 

assertion is that the mixtures of a small number of deterministic spectra (endmembers) 



 

2-16 

can be used to represent all of the non-noise variance in a hyperspectral image.  However, 

there is natural signature variation to almost all materials that would be selected as 

endmembers in a hyperspectral image.  Also, practically, there is a limit to how many 

endmembers can be used to represent a scene.  Thus, any particular endmember may not 

necessarily represent just one material but a class of materials that are spectrally similar.  

Thus, the spectral signature of the endmember will have variation.  Further, another 

source of endmember variation is illumination.  A particular endmember in shade will 

have a different signature than the same endmember exposed to direct sunlight.  Thus, the 

endmembers are not truly deterministic signature vectors, but random vectors.  However, 

when the within endmember variance is small compared to the between endmember 

variance, the deterministic endmember assumption may remain relatively valid.  The 

other assumption of linearity of the mixing fails if  

there is significant three-dimensional structure within a given pixel and where the 
optical energy makes multiple bounces between objects before exiting in the 
direction of the sensor (Chang, 2007:27). 
 

However, if the mixing scale at each pixel is macroscopic, the linear model holds (Chang, 

2007:149).  Next, a solution to the LMM called independent component analysis will be 

presented followed by a discussion of how it approximately fits into the LMM of HSI.  

When discussing independent component analysis it is assumed we are still operating in 

the reduced PCA space. 

 

2.2 Independent Component Analysis (ICA) 

 Independent Component Analysis (ICA) introduced in the early 1980’s is a 

multivariate data analysis method where, given a linear mixture of statistically 
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independent components, these components are recovered by solving for an unmixing 

matrix (Varshney and Arora, 2004:109).  Whereas PCA finds the transform of the 

observed data that decorrelates the observed variables through the use of second-order 

statistics (i.e. a transform based on the eigenvectors of the covariance matrix), ICA 

utilizes higher-order statistics to find projections of the data where the components are 

independent, a stronger statement than uncorrelated.  Throughout the past two decades 

from the initial development the ICA technique in the early 1980s, several solutions to 

the ICA problem have been presented.  This thesis will focus on a computationally 

efficient solution, FastICA, developed by A. Hyvärinen, J. Karhunen, and E. Oja from the 

Neural Networks Research Centre at the Helsinki University of Technology, Finland.  

Their solution finds projections of the original data that maximize their nongaussianity.  

The following sections will formally develop the ICA solution to the BSS problem and 

justify how maximizing the component’s nongaussianity is equivalent to minimizing their 

mutual information, a measure of the dependence of the components.  The formal 

development of ICA in the subsequent sections follows the development given by A. 

Hyvärinen, J. Karhunen, and E. Oja in their text, Independent Component Analysis, 

copyright 2001.  Any proofs of the theoretical results not provided by those authors will 

be provided by the author of this thesis and marked as such.   

  

2.2.1 Formal Definition of ICA 

Consider a situation in which one observes p random variables, 1 2, ,..., Px x x , and 

these random variables are linear combinations of p be independent source signals 

(components), 1 2, ,..., Ps s s .  Thus, we have: 
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1 1 2 2 ...j j j jP Px a s a s a s= + + + for 1,2,...,j P=                            (2.20) 

In matrix notation:   

x As=                                                          (2.21) 

where  

1 11 12 1 1

2 21 22 2

1 2

...
.

, , 
. . . . . .

...

p

P P P PP P

x a a a s
x a a s

x A s

x a a a s

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Note that x  is a random vector and i ix As= denotes a realization of that random vector, 

where 1,2,...,i N= observations.  Further, we can only observe realizations of the random 

vector x , the mixed signals.  The independent components which are random variables 

making up the vector, s , are referred to as latent variables, since they cannot be directly 

observed (Hyvärinen and others, 2001:151).  Further the mixing matrix, A , is also 

unknown.  The model can also be written as: 

 

1 11 12 1

2 21 22 2
1 2

1 2

1 2

= ...
. . . .

                                             
                             or

                   

P

P
P

P P P PP

P

x a a a
x a a a

s s s

x a a a
a a a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1
  

P

j j
j

x a s
=

= ∑

                               (2.22) 
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Finally, in terms of a sample data matrix of N observations (N >> P) where each column 

of X  is a realization of the random vector x and each column of S is a realization of the 

random vector s one has 

PxN PxP PxNX A S=                                                  (2.23) 

where 

 

11 12 1

21 22 2

1 2

...

...
. . .

...

N

N
PxN

PNP P

X

x x x
x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= , 

11 12 1

21 22 2

1 2

...

...
. . .

...

N

N
PxN

PNP P

S

s s s
s s s

s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
 

2.2.2 Assumptions of ICA  

In order for the ICA model to hold, three assumptions must be true.  The first 

assumption states that the independent components (ICs) one is estimating must in fact be 

statistically independent.  Thus, for any of the elements , i js s ( i j≠ ) in the random vector 

s the value of is  does not give any information on value of js .  Formally, , i js s are 

independent for all ( i j≠ ) if and only if ( ) ( ) ( ) ( )1 2 1 1 2 2, ,..., ...p p pf s s s f s f s f s= , i.e. the 

joint density of the components is equal to the product of the marginal densities. 

The second assumption states that the ICs must have nongaussian distributions.  

Higher-order cumulants (e.g. skewness and kurtosis) are zero for Gaussian distributions, 

but this higher order information is essential for estimation of the ICA model.  This 

assertion will be illustrated in a later section.    
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The third assumption is that the mixing matrix A is square and invertible.  The 

solution strategy is to find the projection of the data that maximizes nongaussianity.   

s W x=                                                           (2.24)  

This projection will be defined by the matrix, W.  Thus, to recover the original mixing 

matrix, one would need to simply compute the inverse of W. 

1 1W s x A W− −= ⇒ =                                              (2.25) 

Thus, a square, invertible mixing matrix is needed. 

 It is also convenient to assume that the observed data and the components have 

zero mean.  If this is not the case, one can merely center the data by subtracting the mean 

(Hyvärinen and others, 2001:152-154).  Note that centering the linearly mixed data 

results in the ICs also having zero mean. 

 

2.2.3 Ambiguities of ICA 

In the ICA model, two ambiguities exist.  The first ambiguity is that the variances 

of the ICs cannot be determined.  Referring to (2.22), this stems from the fact that any 

scalar multiplier jα to one of the sources is  could always be canceled by dividing the 

corresponding column jai  of A by the same scalar jα . 

( )
1

1
j

j

p

j j
j

x a s α
α=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑                                           (2.26) 

Thus, one could just fix the magnitudes of the ICs.  Since the components are random 

variables, one can assume that each has unit variance: ( )2 1iE s = .  In order to enforce unit 

variance on the ICs, the matrix A will be adapted to account for this restriction.  This 
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adaptation will be explained in a later section.  There is also the ambiguity of the sign of 

an independent component.  The same argument for this ambiguity can be made from 

(2.26).  

The second ambiguity is that the order of the components cannot be determined 

(Hyvärinen and others, 2001:154). 

 

2.2.4 Example Problem of ICA  

The following example is presented by A. Hyvärinen and E. Oja in 2000 in an 

article published in Neural Networks, volume 13, titled Independent component analysis: 

algorithms and applications covered on pages 414 through 415.  The data used to 

replicate the figures were created by this author in Excel.  

Let 1s and 2s be two ICs with the following marginal uniform PDF: 

( )
1  if 3 3

2 3
0                  otherwise

i
i i

s
f s

⎧ − ≤ ≤⎪= ⎨
⎪⎩

                                         (2.27) 

Note that ( )
3

3

1 0
2 3i i iE s s ds

−

= =∫  and { }{ } { }
3

22 2 2

3

1 1
2 3i i i iE s E s E s s

−

− = = =∫  

So the mean and the variance of is are zero and one respectively conforming to the 

assumptions in the ICA model. Since 1s and 2s  are independent 

( ) ( ) ( )1 2 1 1 2 2

1  if 3 3
, 12

0                  otherwise

is
f s s f s f s

⎧ − ≤ ≤⎪= = ⎨
⎪⎩

i                        (2.28) 
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A depiction of the joint distribution of 1 2,s s , given 5000 samples generated in Excel, is 

shown below in Figure 2-3.  

 

Figure 2-3.  Joint Distribution of 1s and 2s  
 

Let 
2 3
2 1

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 be the matrix to mix the two ICs.  So 1 1

2 2

2 3
2 1

x s
x s
⎡ ⎤ ⎡ ⎤⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

.  Given we 

have 5000 sample data points, the observed mixed matrix would be 2 5000 2 5000x xX A S= ⋅ . 

A depiction of the joint distribution of the observables 1 2,x x is below in Figure 2-4: 

1s  

2s
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Figure 2-4.  Joint Distribution of 1x and 2x  

Notice that the edges of the joint distribution of 1x  and 2x  in Figure 2-5 below are in the 

same direction as the columns of the mixing matrix A .  One way to solve the ICA 

problem would be to estimate the joint density of the observables and then find the 

direction of the edges to estimate the mixing matrix A  and thus solve for the ICs.  

However, this method would be computationally expensive.  Further, the edges may not 

be as clearly defined as they are in a uniform distribution.  For most distributions such 

edges cannot be found (Hyvärinen and others, 2001:156).  A method that can compute 

the A matrix in a reliable and efficient manner is needed. 

 

1x  

2x  
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Figure 2-5.  Edges of Joint Distribution of 1x and 2x  

 

2.2.5 Whitening Data 

The term whitening, refers to centering sample data, decorrelating the variables, 

and scaling them to have unit variance.  Note the only difference whitening has from 

PCA is that whitening in addition to decorrelating the data, scales the data.  Thus, first 

and second order information (mean and variance) is removed from the data.  The first 

step in the whitening processes is to center the data matrix, i.e. make the mean vector the 

zero vector.  To center a sample data matrix, one must first find the mean vector of the 

data  

1
11 1nxpx pxnm n X−= ⋅ ⋅                                                  (2.29) 

where 11nx  is just a column vector of ones of size equal to the number of observations n.  

After finding the mean vector 1pxm , the following matrix operation subtracts the mean 

vector from every observation: 

Edge is parallel to vector 

1x  

2x  
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( )11 1 T
centered nxpxpxnX X m= − ⋅                                           (2.30) 

From this point forward in this thesis, for any reference to a sample data matrix X, it is 

assumed that the matrix has been centered. 

The second step is to find a transformation matrix V to decorrelate and scale the 

random vector x to have unit variance generating the ‘whitened’ random vector, wx .  

Thus,  

wx V x=                                                           (2.31) 

such that  

( ) ( )T
w w wx pxpw

Cov x E x x I= ∑ = ⋅ =                                    (2.32) 

One way to compute V is to consider the eigenvalue decomposition of the covariance 

matrix , x∑ , presented in (2.14).  Let V be the  inverse square root of x∑ in (2.14): 

1 1
2 2 T

xV G D G− −= ∑ = ⋅ ⋅                                                  (2.33) 

Thus, 

( ) ( )
( )

( )
1 1
2 2

1 1
2 2

1 1
2 2

T T T
w wx w

T T T
x

T
T T T

T T T

T T

x w

E x x E V x x V

V E x x V V V

G D G G D G G D G

G D G G D G G D G

G D D D G G G I
I

− −

− −

− −

∑ = ⋅ = ⋅

= ⋅ ⋅ ⋅ = ⋅∑ ⋅

⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ = ⋅ =
⇒ ∑ =

                           (2.34) 

So this choice of V whitens our centered random vector.  The new form of the ICA model 

with a whitened sample data matrix is 
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( ) ( ) i
whiteX V X V A S V A S A S= ⋅ = ⋅ = ⋅ ⋅ = ⋅                                 (2.35) 

Recall that since the variances of the ICs are unknown, as explained earlier, the 

ICs are assumed to have unit variance (as a matter on convenience) and the mixing 

matrix would be adapted to enforce this assumption.  A. Hyvärinen, J. Karhunen, and E. 

Oja prove in their text, Independent Component Analysis, that if one assumes that the 

components are of unit variance and given the data has been whitened, this implies that 

the mixing matrix is orthonormal.  The proof below provided by the author of this thesis 

is similar to their proof.  However, this author comes from the perspective that, one does 

not know that the components have unit variance.  As stated in the ambiguities of ICA, 

another perspective is that one is adapting the mixing matrix to enforce this restriction.  

Unit variance is not known a priori, it is merely a convenient restriction enforced on the 

solved components.  This author proves the converse of what the aforementioned authors 

proved in (2.36), i.e., assuming the mixing matrix is orthonormal and given the data has 

been whitened, this imposes unit variance and decorrelation of the components.   

( ) i i

( ) i i( ) i ( ) i
i ( ) i ( ) i i

( )

Given  from (2.34) and  

Now,    

Cov

TT
w wx w

T TT T T
w w

T TT T

E x x I A A I

E x x E A s s A A E s s A I

A E s s A I E s s A I A I

s I

∑ = ⋅ = ⋅ =

⇒ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ = ⇒ ⋅ = ⋅ ⋅ =

⇒ =

                 (2.36) 

If the mixing matrix iA  were not orthonormal, one would need to estimate all the 

2p parameters of the mixing matrix.  However, by whitening the data, the new mixing 
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matrix is assumed to be orthonormal and thus, contains only ( )1
2

p p −
 degrees of 

freedom (Hyvärinen and others, 2001:160).   

Recall our previous example of the linearly mixed data matrix 2 5000xX  whose joint 

distribution is depicted in Figure 3. If this matrix is whitened using the procedure just 

described one has 

13.3197 7.1298 0.866 0.5001 17.4371 0
, ,  and 

7.1298 5.0907 0.5001 0.866 0 0.9733XC G D
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
(2.37) 

where XC is the sample covariance of 2 5000xX , and G and D contain the eigenvectors (in 

columns) and eigenvalues of XC respectively. So, 

1
2

0.4331 0.3352
0.3352 0.82

TV G D G
− −⎡ ⎤

= ⋅ ⋅ = ⎢ ⎥−⎣ ⎦
                                   (2.38) 

Therefore, 

2 5000

0.4331 0.3352
0.3352 0.82w xX X

−⎡ ⎤
= ⋅⎢ ⎥−⎣ ⎦

                                    (2.39) 

A depiction of joint distribution of the whitened data is shown below in Figure 2-5. 
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Figure 2-6.  Joint Distribution of the Whitened Mixtures 

Now that the linearly mixed data has been whitened, one must estimate the mixing 

matrix, which as seen geometrically in Figure 2-6 given, will be an orthonormal 

transformation matrix (i.e. rotation) given that the original components were of unit 

variance.  So, for a case where one has only 2 ICs, as in this example, the orthonormal 

mixing matrix is determined by a single angle parameter, ( ) ( )1 2 2 1
1.

2 2
p p − −

= =  

From this point forward when referring to a linearly mixed data set, it is assumed the data 

has been centered and whitened. 

 

2.2.6 Independent Components Cannot be Gaussian 

Recall the assumption that the ICs cannot be Gaussian.  The following discussion 

offered by A. Hyvärinen, J. Karhunen, and E. Oja in their text Independent Component 

Analysis motivates this assumption.   

1wx  

2wx  
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A p-dimensional random vector s  is Gaussian has a joint PDF given by 

( )
( ) ( )

( ) ( )1
1

2 2

1 1exp
22 det

T
s ssp

s

f s s m C s m
Cπ

−⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

                  (2.40) 

where sm is the mean vector and sC is the covariance matrix of s  and p is the dimension 

of the vector.  If it’s assumed that sm is zero and sC I= as is the case if s  is a vector of 

ICs with the assumptions previously mentioned then  

( )
( ) ( )

2

2

2 2

1 1exp exp
2 22 2

T

p p
ss sf s

π π

⎛ ⎞⎛ ⎞
⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                         (2.41) 

Consider the case with two independent Gaussian random variables whose distribution is 

illustrated in Figure 2-7 below.  

 

Figure 2-7.  Distribution of Two Independent Gaussian RVs  
(Hyvärinen and others, 2001:162) 

 

Now it can be shown that the density of a linear transformation of s  as in the ICA model  

ix As=  is computed via the following relationship (Hyvärinen and others, 2001:36): 

1s  

2s  
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( ) i( )
i( )11

det
x sf x f A x

A

−
= ⋅                                       (2.42) 

Further, assume that the mixing matrix iA  is orthonormal because the observed data 

matrix has been whitened as described in the previous section in (2.36).  Thus, i i1 T
A A
−
= .  

So the density of x is 

( ) i( )
i( ) i( ) ( )

i
2

21 1 1    exp
2 2det det

T

T

x s

A x
f x f A x

A A π

⎛ ⎞
⎜ ⎟

= ⋅ = ⋅ −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

          (2.43) 

Now, since iA  is orthonormal, i
2

2

2
2

T
A x x=  and i( )det 1A = .  Thus (2.43) simplifies to 

( ) ( )

2
1 exp

2 2x

x
f x

π

⎛ ⎞
= ⎜− ⎟

⎜ ⎟
⎝ ⎠

                                        (2.44) 

Note the density ( )sf s  in (2.41) is identical to the density ( )xf x  in (2.44).  Therefore, 

the orthonormal mixing matrix does not change the PDF.  This is seen in the rotational 

symmetry of Figure 6.  As a consequence, one could not infer any information about the 

mixing matrix after whitening a linearly mixed set of independent Gaussian random 

variables.   

The phenomenon that the orthogonal mixing matrix cannot be estimated 
for Gaussian variables is related to the property that uncorrelated jointly 
Gaussian variables are necessarily independent.  Thus, the information on 
the independence of the components does not go any further than 
whitening…in the case of Gaussian independent components, we can only 
estimate the ICA model up to an orthogonal transformation.  In other 
words, the matrix A is not identifiable for Gaussian independent 
components (Hyvärinen and others, 2001:162).   

 
With linearly mixed Gaussian variables all one can do is whiten the data.   
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An important note for the case that some of the components are Gaussian 

and the rest nongaussian is: 

we can estimate all the nongaussian components, but the Gaussian 
components cannot be separated from each other.  In other words, some of 
the estimated components will be arbitrary linear combinations of the 
Gaussian components.  This means that in the case of just one Gaussian 
component, we can estimate the model, because the single Gaussian 
component does not have any other Gaussian components that it could be 
mixed with (Hyvärinen and others, 2001:163). 

 

2.2.7 Measures of Nongaussianity 

As mentioned previously, FastICA method finds a linear projection of the random 

vector x that maximizes its nongaussianity.  Before justifying that this approach is 

equivalent to minimizing the degree of dependence between the projected components, a 

discussion will be presented on measures of nongaussianity. 

Kurtosis 

Kurtosis, widely used as a classic measure of nongaussianity, is the fourth-order 

cumulant of a random variable.  With respect to the graph of the PDF, it can be viewed as 

a measure of ‘peakedness’. Consider a random variable y, then the kurtosis of y is defined 

as   

( ) { }4

4

( )
kurt 3

E y
y

μ

σ

−
= −                                           (2.45) 

If y has unit variance (2.45) simplifies to 

( ) { }4kurt 3y E y= −                                                   (2.46) 

For a Gaussian random variable of zero mean and unit variance, the 4th moment, { }4E y  is 

3.  Hence, the kurtosis of a Gaussian random variable of zero mean and unit variance is 
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zero.  For most nongaussian random variables kurtosis is non-zero.  Subgaussian 

distributions are typically ‘flat’ (e.g. uniform distribution) and have negative kurtosis.  

Supergaussian distributions are typically ‘spiky’ (e.g. Laplacian distribution) and have 

positive kurtosis.   

Suppose the random variable y is the projection of a linearly mixed random vector 

x defined by a weight vector w, i.e. Ty w x= .  Some optimization schemes search for a w 

that maximizes the absolute value of the kurt( )Tw x  to solve for one of the ICs.  Such 

schemes are computationally simple due to the simplicity of the kurtosis calculation but 

suffer drawbacks.  Kurtosis is very sensitive to outliers when it’s estimated from a 

measured sample.  Consider a sample of 1000 values from a random variable y with zero 

mean and unit variance.  Say we have a single sample point that has a value of 10. 

{ }
4 444 41000

4 4 3 10002

1

1 10 103 3 ... 3 3 7
1000 1000 1000 1000 1000 1000i

i

y yyE y y
=

⎛ ⎞⎛ ⎞
− ≈ − = + + + + − ≥ − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  (2.47) 

As one can see from (2.47), based on just one outlier the kurtosis of y will be at least 7, a 

large kurtosis value (Hyvärinen and others, 2001:182). 

Entropy 

Whereas kurtosis belongs within the field of estimation theory, or in other words, 

parametric statistics, an alternate way to measure nongaussianity is via a concept in 

information theory referred to as entropy.  The entropy of a random variable relates to the 

information that the observations of a random variable gives or their degree of 

‘randomness’ (Hyvärinen and others, 2001:182).  The more random (unpredictable and 

unstructured) the variable is, the larger its entropy.  This section will introduce, formally, 

the concept of entropy.  Further, via examples generated by the author of this thesis, the 
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fact that the Gaussian distribution has the highest entropy of all distributions of the same 

mean and variance will be motivated.  Finally, a scaled version of entropy called 

negentropy and it’s computationally efficient approximation will be developed.  This 

computationally efficient approximation for negentropy provides the basis for the 

objective function to be optimized to find the most nongaussian projections of the 

linearly mixed data, thus, approximately recovering the ICs. 

Entropy for a discrete random variable is defined as follows: 

( ) ( )( ) ( )

( ) ( )( )

log

                         or

      log

i i
i

i

H x P x a P x a

H x E P x a

= − = =

⎡ ⎤= − =⎣ ⎦

∑
                               (2.48) 

It should be noted that usually the logarithm with base 2 is used, in which case the unit of 

entropy is called a bit (Hyvärinen and others, 2001:105).  Let 

( ) ( )logf p p p= − , for 0 1p≤ ≤                                       (2.49) 

Thus, rewriting (2.48) 

( ) ( )
i

H x f p=∑                                                 (2.50) 

Below in Figure 2-8 is a graph of ( )f p . 
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Figure 2-8.  Graph of ( ) 2logf p p p= − (Hyvärinen and others, 2001:106) 

 
 
One can see that entropy is small if the probabilities, p, are close to 0 or 1 and large if the 

probabilities are in between.  Consider a random variable that assumes three values with 

two probabilities all close to 0 (.001 and .001) and one that is close to one (.998).  

( ) ( ) ( ) ( )0.001 0.001 0.998 0.009966 0.009966 0.002883 .022814H x f f f= + + = + + =   (2.51) 

For this case as shown in (2.51), the entropy is small as shown by the value of ( )H x .  

Intuitively this makes since given that the random variable almost always takes on the 

same value with probability of 0.998. Conversely, consider a random variable that takes 

on three values with equal probability.   

( ) 1 1 1 1.58496
3 3 3

H x f f f⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                            (2.52) 

Here the variable is more ‘random’ and thus has a higher entropy value. 

 It has been shown that the Gaussian distribution holds the property of having the 

largest entropy among all random variables of unit variance (Hyvärinen and others, 

 p  
 

( )f p  
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2001:112).  Rather than proving this rigorously, this assertion will be motivated by this 

author via the computation of entropy of three standardized (zero mean and unit variance) 

distributions, the Laplacian, uniform, and the Gaussian.  First, the definition of entropy of 

a continuous random variable x (which can be generalized to a random vector x), termed 

differential entropy is  

( ) ( )( ) ( )

( ) ( )( )

( ) ( )( )

           log

                                 or

               log

for a random vector the definition is the same

               log

H x f x f x dx

H x E f x

H x E f x

= − ⋅

⎡ ⎤= − ⎣ ⎦

⎡ ⎤= − ⎣ ⎦

∫

                      (2.53) 

where ( )f x  is the PDF of the random variable (vector) x.  Figures 2-9, 2-10, and 2-11 

below show the graphs of the PDFs and their respective entropies. 

Laplacian distribution (supergaussian) ( ) ( )1 exp 2
2

f y y= −  

 

- 3 - 2 -1 0 1 2 3 

0.1
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0.8

y 

f ( y )

 

( ) ( ) ( ) ( ) ( )2 2
1 1log exp 2 log exp 2
2 2

H y f y f y dx y y dy
∞

−∞

⎛ ⎞= − = − − − =⎜ ⎟
⎝ ⎠∫ ∫ 1.9427 

 
Figure 2-9.  Laplace Distribution and its Entropy 
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Uniform distribution (subgaussian) ( )
1 , if 3

2 3
0,       otherwise

y
f y

⎧ ≤⎪= ⎨
⎪⎩

 

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

y

f (y)

 

( ) ( ) ( )
3

2 2
3

1 1log log
2 3 2 3

H y f y f y dx dy
−

⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠∫ ∫ 1.7925 

 
Figure 2-10.  Uniform Distribution and its Entropy 

 

Gaussian distribution ( )
21 exp

22
yf y

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
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f ( y )

 
 

( ) ( ) ( )
2 2

2 2
1 1log exp log exp

2 22 2
y yH y f y f y dx dy

π π

∞

−∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − = − − − =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ 2.0471 

 
Figure 2-11.  Gaussian Distribution and its Entropy 

 



 

2-37 

As shown, the Gaussian random variable has the highest value for entropy at 

2.0471. The result of the maximum entropy property of the Gaussian distribution can be 

generalized to multidimensional spaces and arbitrary variances such that the multivariate 

Gaussian distribution has the maximum entropy among all distributions with the same 

covariance matrix (Hyvärinen and others, 2001:112).  Thus, entropy could be used as a 

measure of nongaussianity of a random variable.  The lower the variable’s entropy the 

more nongaussian it is. 

Negentropy 
 

Negentropy is a quantity that scales a random variable’s entropy such that the 

measure is zero for a Gaussian variable and always nonnegative.  The result is that the 

less entropic (more nongaussian) a random variable is, the higher its negentropy value 

will be.  Thus, for the ICA problem, one will need to find a vector w that maximizes the 

negentropy of Tw x .  The definition of negentropy for a continuous random variable 

(vector) is  

( ) ( ) ( )gaussJ x H x H x= −                                              (2.54) 

where gaussx  is a Gaussian random variable (vector) with the same variance (covariance 

matrix) as x .  From the three examples just mentioned, the negentropy of the uniform 

random variable would be 

( ) ( ) ( ) 2.0471 1.7925 0.2546gaussuniform uniformJ y H y H y= − = − =            (2.55) 

To use negentropy in practice, one would have to compute an integral involving a 

probability density function (that must be estimated in some fashion) which would be 

computationally complex.  However, approximations of negentropy exist that are 
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computationally simple (integral computation not required) like the kurtosis based 

measure of nongaussianity, but are robust to the presence of outliers, unlike the kurtosis 

based measures.   

First, an approximation of negentropy will be derived using high order moments 

to approximate the density of the observed data (which is still plagued by the outlier 

problem since it uses high order moments).  However, this is done first as a motivation to 

another approximation using nonpolynomial functions which are robust to the presence 

of outliers.  

Approximation of Negentropy Using the Gram-Charlier Expansion 

Assuming the random variable x has been standardized (zero mean and unit 

variance) an approximation of its density can be accomplished using a Taylor-like 

expansion called the Gram-Charlier expansion of the PDF of x.  This type of expansion is 

belongs to a class called polynomial density expansions.  If we make the assumption that 

the distribution of x is ‘near’ the standardized Gaussian density, ( )
21 exp

22
f νν

π
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

, 

the PDF of x can be approximated by 

( ) l ( ) ( ) ( ) ( ) ( ) ( )3 4
3 41 ...

3! 4!
H H

f x f x f k x k x
ν ν

ν
⎛ ⎞

≈ = + + +⎜ ⎟
⎝ ⎠

               (2.56) 

where 
( ) { }3

3 ,  skewnessk x E x= of observables 

( ) { }4
4 3,  kurtosisk x E x= − of observables 

( )iH ν ≡Chebyshev-Hermite polynomials. 
These polynomials are solutions to the differential 

equation, ( ) ( ) ( ) ( )1 i
i

i

i
f

H f
ν

ν ν
ν

∂
= −

∂
 The 

polynomials form an orthonormal system meaning: 
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( ) ( ) ( )
1,  if 
0,  if i j

i j
f H H d

i j
ν ν ν ν

=⎧
= ⎨ ≠⎩

∫  

 
The expansion of l ( )f x  in (2.56) has an infinite number of terms, but will be truncated 

after the fourth moment.  The expansion starts at high order moments because x has been 

standardized to have zero mean and unit variance.  In essence, one can see in that the 

estimated distribution of x is determined by its skewness and kurtosis.  Now, this 

approximation for the PDF of x can be substituted into the definition of entropy giving 

 
( ) l ( ) l ( )logH x f x f x dν≈ −∫  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 4 3 4
3 4 3 41 log 1

3! 4! 3! 4!
H H H H

f k x k x f k x k x d
ν ν ν ν

ν ν ν
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − + + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∫ i  

(2.57) 
 

Letting ( ) ( ) ( ) ( )3 4
3 43! 4!

H H
e k x k x

ν ν
= + , (2.57) simplifies to 

 
( )( ) ( )( )1 log 1f e f e dν ν ν⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= − + +∫ i  

( )( ) ( ) ( )log 11 log f ef e dνν ν⎡ ⎤ + +⎡ ⎤⎣ ⎦⎣ ⎦= − +∫ i  

(2.58) 
 
Now if the PDF of x is close to Gaussian, e should be small.  A simple approximation can 

then be used 

( )
2

log 1
2
ee e+ ≈ −                                               (2.59) 

This further simplifies (2.58) giving 

( )( ) ( )
2

2
1 log ef ef e dνν ν⎡ ⎤⎡ ⎤≈ + −⎢ ⎥⎣ ⎦ ⎣ ⎦

− +∫ i                           (2.60) 

Resubstituting the  value of e 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
3 4

3 4
3 4 3 4

3 4 3 4

3! 4!
1 log

3! 4! 3! 4! 2

H H
k x k x

H H H H
f k x k x f k x k x d

ν ν
ν ν ν ν

ν ν ν

⎡ ⎤⎛ ⎞
⎢ ⎥+⎜ ⎟⎡ ⎤⎛ ⎞ ⎢ ⎥⎝ ⎠= − + + + + −⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

∫ i

(2.61) 

 

Given that the Chebyshev-Hermite polynomials are orthonormal as defined in (2.56), the 

final simplification for entropy yields 

( ) ( ) ( ) ( ) ( )2 2
3 4log
2 3! 2 4!

k x k x
H x f f v dν ν≈ − − −∫ i i

                        (2.62) 

Now 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
3 4log log
2 3! 2 4!gauss

k x k x
J x H x H x f f v d f f v dν ν ν ν

⎛ ⎞
= − ≈ − − − − −⎜ ⎟

⎜ ⎟
⎝ ⎠

∫ ∫ i i

( ) ( ) ( ) ( ) { } { }
2 2

222 23 4 3 4
3 4

1 1 1 1 3
2 3! 2 4! 12 48 12 48

k x k x
k x k x E x E x⎡ ⎤= + = + = + −⎣ ⎦i i

 

 
 
So, finally the computationally simple approximation of negentropy is 

( ) { } { } 223 41 1 3
12 48

J x E x E x⎡ ⎤≈ + −⎣ ⎦                                  (2.63) 

As stated previously, this measure of nongaussianity will still be plagued by the outlier 

problem just as the kurtosis measure since this approximation for negentropy also uses 

higher-order cumulants, skewness and kurtosis.  However, the form of (2.63) provides 

motivation for another approximation robust to the presence of outliers which will be 

discussed next. 

Approximation of Negentropy Using Expectations of Nonpolynomial Functions 
 

An alternate density approximation derived from a first-order approximation of 

the maximum entropy density for a continuous random variable (given a number of 
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simple constraints) results in a density expansion similar to the classic polynomial density 

expansion by Gram-Charlier.  However, this approximation of entropy is more exact and 

more robust against outliers than the approximations based on the polynomial density 

expansions, without being computationally more expensive (Hyvärinen and others, 

2001:116).  The derivation of this alternate density expansion is outside the scope of this 

thesis, but can be thought of as a generalization of the higher-order cumulant 

approximation in (2.63) using expectations of general nonquadratic functions, or 

‘nonpolynomial moments’ rather than ( )3E x  and ( )4E x , the standard moments used by 

Gram-Charlier.  In general one replaces the polynomial functions 3x and 4x in (2.63) with 

other functions iG .  This alternate approximation of negentropy is 

( ) ( ){ }( ) ( ){ } ( ){ }( )2 2

1 1 2 2 2J x k E G x k E G x E G ν≈ + −                    (2.64) 

where 

ν ≡Gaussian variable of zero mean and unit variance 
                         1 2 and k k ≡positive constants 

Notice if one takes 3
1G x= and 4

2G x= , ( ) { }( ) { } { }( )2 23 4 4
1 2J x k E x k E x E ν≈ + − .  Now 

since ν  is a standardized Gaussian random variable, { }4E ν = 3. So one has 

( ) { }( ) { }( )2 23 4
1 2 3J x k E x k E x≈ + − , which is identical to (2.63) for the same choice of 

constants.  In the case where only one nonquadratic function is used (2.64 ) simplifies to 

( ) ( ){ } ( ){ }( )2
J x k E G x E G ν≈ −                                      (2.65) 

This is merely a generalization of (2.63) if x is symmetric, in which case the first term in 

(2.63) is zero.  
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 By choosing a function G that does not grow too fast, one can obtain 

approximations of negentropy more robust to the presence of outliers than (2.63).  The 

following choices of G have proven to be effective: 

( ) ( )1
1

1 log coshaG y a y
a

=                                             (2.66) 

( )
2

exp
2b
yG y

⎛ ⎞−
= − ⎜ ⎟

⎝ ⎠
                                               (2.67) 

where 11 2a≤ ≤ is some constant, often taken to equal one (Hyvärinen and others, 

2001:184).  Figure 2-12 below shows aG and bG compared to 4x .  The dashed line 

represents 4x , the dotted line aG , and the solid line bG .  Notice the growth of the G’s 

versus 4x .  
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Figure 2-12.  The functions aG  in (2.66), bG  in (2.67) given by the dotted  
and solid curve, respectively compared to 4x , the dashed curve  

(Hyvärinen and others, 2001:184). 
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In conclusion, one now has an approximation of negentropy (a measure of 

nongaussianity) that is computationally simple and has appealing statistical properties as 

robustness in the presence of outliers.  

 

2.2.8 Connection between Mutual Information and Nongaussianity 

As stated previously, this particular solution to the ICA problem finds projections 

of the linearly mixed data such the nongaussianity of the elements of the new random 

vector is maximized.  This section will argue that in the case where our components are 

constrained to be uncorrelated and of unit variance, maximizing nongaussianity is 

equivalent to minimizing the mutual information (a measure of dependence) between the 

p random variables, is , 1...i p= .   

For a p-dimensional random vector s, the mutual information of its elements is 

defined as follows: 

( ) ( )

( )
1 2

1

, ,..., logp p

i
i

f s
I s s s E

f s
=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟=
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∏

                                  (2.68) 

where ( )f s  is the joint density and ( )if s  are the marginal densities.  When the 

components, is , are independent, the ratio inside the logarithm in(2.68) reduces to one 

and thus, the mutual information becomes zero.  The converse of this statement is also 

true (Varshney and Arora, 2004:115).  Varshney and Arora state the mutual information 

can be also defined in terms of the difference between the sum of the marginal 

(individual) entropies and the joint entropy.  This author provides the proof of this 
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statement below in (2.69) by simplifying (2.68) using log identities and applying the 

definition of entropy given in (2.53) 

( ) ( )

( )
( )( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( )

( ) ( ) ( )

1 2
1

1

1

1

1

1 2
1

, ,..., log log log

log log

log log

from (2.53)

, ,...,

p

p ip
i

i
i

p

i
i

p

i
i

p

i
i

p

p i
i

f s
I s s s E E f s f s

f s

E f s E f s

E f s E f s

H s H s

I s s s H s H s

=

=

=

=

=

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟ ⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟= = −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎡ ⎤= − ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

= − +

⇒ = −

∏
∏

∑

∑

∑

∑

  (2.69) 

Recall that the random vector of ICs, from (2.24), is defined as s W x=  where W is the 

inverse of the mixing matrix A.  It’s been proven that for an invertible linear 

transformation of s (Hyvärinen and others, 2001:109) that 

( ) ( ) log detH s H x W= +                                               (2.70) 

Now, recall that if x has been whitened, the mixing matrix is constrained to be 

orthonormal to enforce unit variance and decorrelation of the individual is  as seen from 

(2.36).  Since W is the inverse of the mixing matrix, W is also orthonormal.  Thus 

( )log det log 1 0W = = .  So for whitened data  

( ) ( )H s H x=                                                       (2.71) 

Substituting (2.71) into (2.69) 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
1 1

1

1 1

from definition of negenentropy in (2.54)

(note:  is a Gaussian RV with mean = 0 and variance = 1)

, ,...,

, 

now 

i gauss

p p

p i i
i i

p

i gauss i
i

p p

i gauss i
i i

s

I s s s H s H s H s H x

H s J s H x

H s J s H x

H s

= =

=

= =

= − = −

⎡ ⎤= − −⎣ ⎦

= − −

∑ ∑

∑

∑ ∑

( ) ( )

( ) ( )

1

1 2
1

 and  are constants

, ,..., constant

p

i gauss
i

p

p i
i

H x

I s s s J s

=

=

⇒ = −

∑

∑

 (2.72) 

The result of (2.72), ( ) ( )1 2
1

, ,..., constant
p

p i
i

I s s s J s
=

= −∑ , stated by Hyvärinen, 

Karhunen, and Oja in their text, “Independent Component Analysis” and proven here by 

this author, shows that by maximizing the negentropy (which maximizes the 

nongaussianity) of the individual components, ( )iJ s , one is in effect minimizing the 

mutual information (statistical dependency) between the is ’s.  Thus, a rigorous 

justification for finding projections of the data that maximize their nongaussianity to 

approximately recover the ICs has been provided.  

 

2.2.9 FastICA to Estimate One Component (One Unit FastICA) 

Now that a suitable approximation for negentropy (a measure of nongaussianity) 

has been derived, the remaining issue left to in order to solve the ICA problem is a 

constrained optimization problem.  The objective function to be maximized will be 

(2.65), the approximation for negentropy using only one nonquadratic function, 

( ) ( ){ } ( ){ }( )2

i iJ s k E G s E G ν≈ − , whereν is a Gaussian random variable with zero 
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mean and unit variance and G is either (2.66) or (2.67).  This section will proceed to 

derive an iteration scheme that will recover a single independent component is  of s .   

Now, since the random vector s W x=  from (2.24), any particular random 

variable of s, T
is w x= , where Tw is a row of W, the inverse of the mixing matrix iA .  

This row of W defines the nongaussian projection of the random vector x whose value 

one wishes to maximize.  Thus, rewriting (2.65) one has  

( ) ( ){ } ( ){ }( )2
T TJ w x k E G w x E G ν≈ −                                    (2.73) 

Recall that in order to enforce decorrelation and unit variance of the ICs, iA  is 

restricted to be orthonormal as seen from (2.36).  Since W is the inverse of an 

orthonormal matrix i.e. i 1
W A

−
= , this implies iT

W A= .  So the rows of W are the columns 

of A.  Thus, the norm of each row of W must be one, i.e. 2

2
1w = , which will be the 

constraint in the optimization problem.  Further, since W is the inverse of an orthonormal 

matrix, W is also orthonormal. 

Note that the maxima of the approximation of the negentropy of Tw x  in (2.73) 

are typically obtained at certain optima of ( ){ }TE G w x  (Hyvärinen and others, 

2001:189).  It should be noted that since one is dealing with sample data one will 

compute this expectation by its estimate, i.e. ( ){ }TE G w x ≈ ( )( )
1

1 n
T

i

G w x i
n =
∑ , where ( )x i  

is a realization of the random vector x, i.e. a column of the sample data matrix X defined 

in (2.23).  Thus, we have the following optimization problem: 
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( ){ }
2

2

  max  

  

       s.t. 1

TE G w x

w =

                                                 (2.74) 

According to first-order necessary conditions for optimality, candidates for optima of 

(2.74) are obtained at the stationary points of the Lagrangian function, i.e. where gradient 

of the Lagrangian is zero.  The Lagrangian of (2.74) is 

( ) ( ){ } ( )2

2
, 1TL w E G w x wλ λ= − −                                   (2.75) 

The gradient of (2.75) denoted by ( )F w  below is  

( )
( ) ( ){ }

2

2 2 0
T

T
G w x wL F w E E x g w x w

w w w
λ

λ
⎧ ⎫∂ ∂∂ ⎪ ⎪= = − = ⋅ − =⎨ ⎬∂ ∂ ∂⎪ ⎪⎩ ⎭

        (2.76) 

where 'g G= .  In order the find the zeros of (2.76), one can use the following Newton 

iteration scheme followed by a normalization of the weight vector at each iteration 

( ) ( )1'

            

w w F w F w

ww
w

−+

+

+

= − ⋅

=
                                            (2.77) 

Now 

( ) ( ){ }' 'T TF w E xx g w x Iβ= ⋅ −                                    (2.78) 

where 2λ β= .  A reasonable approximation to be made, given the random vector x is 

whitened (Hyvärinen and others, 2001:189) is  

( ){ } { } ( ){ } ( ){ }' ' 'T T T T TE xx g w x E xx E g w x E g w x I⋅ ≈ =i i               (2.79) 

 

w  
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So the approximation to (2.78) becomes 

( ) ( ){ } ( ){ }( )' ' 'T TF w E g w x I E g w xI Iβ β≈ − −=i                    (2.80) 

Thus, the approximate Newton iteration scheme is 

( ){ }( ) ( ){ }( )1

' T Tw w E g w x I E x g w x wβ β
−

+ ⎡ ⎤= − − ⋅ −⎢ ⎥⎣ ⎦
i i                 (2.81) 

Since the approximation for ( )'F w given in (2.80) is a diagonal matrix with the same 

element along the diagonal, matrix inversion is not needed at each iteration, a high 

computational cost for the traditional Newton method.  Thus, (2.81) simplifies to 

( ){ }
( ){ }'

T

T

E x g w x w
w w

E g w x

β

β
+

⋅ −
= −

−
                                         (2.82) 

The algorithm can be further simplified by multiplying both sides of (2.82) by 

( ){ }' TE g w xβ −  as shown below in (2.83).   

( ){ }( ) ( ){ }
( ){ } ( ){ }( )

( ){ }( ) ( ){ } ( ){ }
( ){ }( ) ( ){ } ( ){ }

( ){ }( ) ( ){ } ( ){ }( )

( ){ }( )
( ){ } ( ){ }( )

' '
'

' '

' '

1 '
'

1Let = ,  note  is a scalar
'

'

T

T T

T

T T T

T T T

T T

T

T

T T

E x g w x w
w E g w x w E g w x

E g w x

w E g w x w E g w x w E x g w x w

w E g w x E x g w x E g w x w

w E x g w x E g w x w
E g w x

E g w x

w E x g w x E g w x w

β
β β

β

β β β

β

β

γ γ
β

γ

+

+

+

+

+

⎛ ⎞⋅ −
⎜ ⎟− = − −⎜ ⎟−⎜ ⎟
⎝ ⎠

⇒ − = − + ⋅ −

⇒ − = ⋅ −

⇒ = ⋅ −
−

−

⇒ = ⋅ −

i i

i

i

i
 

(2.83) 
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Finally, the basic iteration scheme in one unit FastICA is (Hyvärinen and others, 

2001:189): 

( ){ } ( ){ }'

                        

T Tw E x g w x E g w x w

ww
w

+

+

+

= ⋅ −

=
                                   (2.84) 

Note that the scalar γ  has been omitted because it would be eliminated in the subsequent 

normalization step.  The function g and g’ presented in (2.85) and (2.86) are the 

derivatives and second derivatives of (2.66) or (2.67) respectively.  Choices for g and g’ 

in the FastICA algorithm are shown below. 

( ) ( )1tanhag y a y=  

( ) ( )( )2
1 1

' 1 tanhag y a a y= −                                         (2.85) 

( )
2

exp
2b
yg y y

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 

( ) ( )
2

2' 1 exp
2b
yg y y

⎛ ⎞−
= − ⎜ ⎟

⎝ ⎠
                                        (2.86) 

(for the case where one uses kurtosis to approximate negentropy) 

( ) 3
cg y y=   

( ) 2' 3cg y y=                                                     (2.87) 

Recall the whitened data matrix wX whose joint distribution is depicted in Figure 

5.  If the iteration scheme in (2.84) is run (choosing ( )ag y ) and using a random w as the 

initial solution, the algorithm converges (i.e. the dot product of the current and the 

previous iterate is close to one within some tolerance) to the following weight vector 
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[ ]0.9824 0.1873Tw = −  depicted below in Figure 2-13.  This vector represents the 

direction of maximum negentropy (nongaussianity).   

 

Figure 2-13.  Direction of Maximum Negentropy (Nongaussianity) 

Thus, 
2 50001 2 1x

T
x ww X s⋅ =  would be the estimated recovered signal (i.e. realizations of the 

random variable across 5000 observations).  To find the other vector defining the 

projection corresponding to the second independent component, one could just find a 

vector perpendicular to the first vector since we know that the vectors Tw are orthonormal 

in the whitened space.  This leads to a brief discussion of how to estimate more than just 

one independent component simultaneously. 
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2.2.10 FastICA to Estimate Multiple Components 

As stated previously, since the projection matrix W is the inverse of the 

orthonormal mixing matrix iA , the rows (as well as the columns) of W are orthogonal and 

of unit length.  Further thi  row of W defines the projection of the linearly mixed random 

vector x onto is  as shown below in (2.88) 

1 11 12 1 1

2 21 22 2 2

1 2

...

...
. . . . . .

...
                                           

P

P

P P P PP P

s w w w x
s w w w x

s w w w x
s W x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i
                                  (2.88) 

For the rest of the discussion in this section let T
iw  represent the thi  row of W.  

One way to solve for multiple ICs would be to use the one unit FastICA algorithm 

in (2.84) to find a projection vector T
iw  and then use the algorithm again but add an 

additional constraint that the second projection vector, T
jw , must be orthogonal to the 

previous.  The third would then have to be orthogonal to the first and second and so on.  

The Gram-Schmidt method could be used to orthogonalize the current projection vector 

estimate with all the previously estimated projection vectors at each iteration of the one 

unit FastICA algorithm, a process termed deflationary orthogonalization.  The problem 

with this sequential orthogonalization approach is that each application of the one unit 

algorithm produces only an estimate of the true projection vector T
iw and these estimation 

errors are accumulated in the subsequent estimates of other projection vectors during the 

orthogonalization process (Hyvärinen and others, 2001:195). 
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A better approach, rather than estimating the T
iw ’s one by one, is to compute them 

in parallel at each iteration of an algorithm.  Then at each iteration, the p row vectors that 

compose the matrix W will be orthogonalized meaning a new set of vectors will be found 

that are orthogonal to each other, but also span the same space as the vectors of W at the 

current iterate, i.e. an orthonormal basis for the space spanned by the original vectors.   

In symmetric orthonormalization (orthogonalization and normalization to norm 1) 

methods, none of the original vectors T
jw are treated differently from the others as is the 

case in deflationary orthogonalization.  A classic approach to accomplish the 

orthonormalization of W is the following equation (Hyvärinen and others, 2001:195): 

( )
1
2TW W W W

−+ = ⋅                                                  (2.89)   

The result is a matrix where the T
iw ’s are orthogonal and have unit norm.  The FastICA 

algorithm to find multiple ICs is presented below in (2.90). 

1. Center and whiten the observed data. 
2. Choose p, the number of ICs to estimate.   
3. Choose the initial values for the 'T

iw s , 1,...,i p= , each of unit norm.  
Complete a symmetric orthogonalization of the matrix W as shown in 
(2.89) 

4. For every 1,...i p= , let ( ){ } ( ){ }'T T
i i i iw E x g w x E g w x w+ = ⋅ −  (one 

unit ICA presented in (2.84) 
5. Complete a symmetric orthogonalization of the matrix W as shown in 

(2.89) 
6. If not converged, go back to step 4 (Hyvärinen and others, 2001:195). 
 (2.90) 

 
Running the algorithm in (2.90) on the whitened data matrix 

2 5000xwX whose distribution is 

shown in Figure 5, the W matrix (demixing matrix) after convergence is 
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0.982401 0.18732
0.185004 0.982840

W
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.  Thus, the two projection vectors are 

( )1 0.982401 0.18732Tw = −  and ( )2 0.185004 0.982840Tw = .  A plot of these vectors 

on the whitened distribution is displayed in Figure 2-14 below. 

 

Figure 2-14.  Projection Vectors to Recover Both of the Independent Components 

Now that the technique of ICA has been rigorously developed, the next section 

will proceed to discuss how the ICA model approximates the LMM of hyperspectral data 

and can be used to solve for the endmember matrix and abundance matrix.  

 

2.3 ICA Applicability to HSI 

 Recall that ICA utilizes higher-order statistics, third and fourth moments as shown 

in (2.63) and nonpolynomial generalizations of third and fourth moments as shown in 
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(2.64), to find projections of the data that maximize these higher order statistics which in 

turn approximately recovers components (features) that are independent.  Further, prior to 

running the ICA algorithm, first and second order statistics (mean and variance) are 

removed.  A. Bell and T. Sejnowski write in an article titled The ‘Independent 

Components’ of Natural Scenes are Edge Filters from the Vision Research Journal in 

December 1997 that 

…second-order statistics correspond to the amplitude spectrum of a signal.  
The remaining information, higher-order statistics, corresponds to the 
phase spectrum.  The phase spectrum is what we consider to be the 
informative part of a signal, since if we remove phase information from an 
image, it looks like noise, while if we remove amplitude information (for 
example, with whitening), the image is still recognizable.  Edges and what 
we consider ‘features’ in images are suspicious coincidences in the phase 
spectrum (Bell and Sejnowski, 1997:3335). 

Similarly, as stated by Q. Du, I. Kopriva, and H. Szu in an article titled Independent-

component analysis for hyperspectral remote sensing imagery classification from the 

Optical Engineering journal in January 2006 

In contrast with many conventional techniques which use up to second 
order statistics only, ICA exploits higher-order statistics, which makes it 
more powerful in extracting irregular features in the data (Du and others, 
2006:2). 
 

Thus, for the purpose of extracting irregular features, which could possibly be 

targets in the military context, ICA appears to be well suited theoretically to 

accomplish this task. 

 

 2.3.1 ICA as a Solution to the LMM of HSI 

 One may question the interpretation of the mixing matrix and the ICs in 

the context of HSI.  Recall the LMM of HSI given in (2.2), 
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KxN KxP PxN KxNX E S R= ⋅ + , where X represents N observations of a K dimensional 

random vector where the elements of the vector are reflectance responses in the K 

spectral bands, E represents P endmember signatures in the K spectral bands, S 

represents the abundance fractions of the P endmembers for each of the N 

observations, and finally R represents Gaussian noise in each of the N 

observations.  Assume in the endmember matrix, there are as many endmembers 

as there are spectral bands.  Thus, E is a square matrix and one has 

 KxN KxK KxN KxNX E S R= ⋅ + .  Also, recall the LMM after dimensionality reduction to the 

PCA space given in (2.19), ' ' '
PxN PxP PxN PxNY E S R= ⋅ + .  Now consider the ICA model 

presented in (2.3), PxN PxP PxNX A S⋅= .  Assume that P K= if one is operating in the 

spectral space rather than the PCA space when relating the LMM to the ICA model.  

When operating in the PCA space (note that after PCA, the data is also whitened as 

explained in section 2.2.5), PxNY  in the LMM given by (2.19) is the same as PxNX  in the 

ICA model.  According to several sources, the mixing matrix A in the ICA model is 

interpreted as the endmember matrix, E, and the matrix of ICs, S, in the ICA model is 

interpreted as the abundance matrix, S, in the LMM (Chang, 2007:150; Chen, 2007:416; 

Du and others, 2006:2-3; Nascimento and Dias, 2005:175-176; Sarigul and Alam, 

2007:65650A-2; Varshney and Arora, 2004:125; Wang and Chang, 2006:1587).  Notice, 

that the ICA model does not include the Gaussian noise term R in the LMM.  In a study 

conducted by Nascimento and Dias, they conclude that ICA performance increases when 

signal to noise ratio, SNR, increases (Nascimento and Dias, 2005:186).  Recall the LMM 
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model in (2.1), x E s r= ⋅ + , where r represents system noise.  SNR in the LMM as 

defined by Nascimento and Dias is 

 
( )( ) ( )

( )10 10

cov
10 log 10 log

cov

T

T

E Es Es Es
SNR

rE r r

⎡ ⎤
⎣ ⎦= ⋅ = ⋅

⎡ ⎤⋅⎣ ⎦
                         (2.91) 

However, in completing a PCA dimensionality reduction prior to executing the 

ICA algorithm, by discarding much of the eigenvectors associated with the ‘noise’ 

eigenvalues prior to projecting onto the PCA space, the magnitude of the noise 

component of the LMM, TE r r⎡ ⎤⋅⎣ ⎦ = ( )cov r , is reduced thus increasing the SNR 

in the PCA space.   

 Except for one Gaussian component, a key assumption in the ICA model is that 

the ICs are distributed nongaussian.  According to Neher and Srivastava who reference an 

earlier study of HSI images conducted by Srivastava et al. titled On advances in 

statistical modeling of natural images, it’s well documented that pixel values in natural 

images seldom follow Gaussian distributions (Neher and Srivastava, 2005:1365).  Thus, 

the X matrix (holding the pixel values) in the ICA model is most likely distributed 

nongaussian.  Since, the X matrix a linear combination of elements in the S matrix, this 

implies that the ICs also are most likely distributed nongaussian.  Thus, the nongaussian 

nature of HSI conforms to one of the main constraints of the ICA model that the ICs are 

nongaussian. 
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2.3.2 LMM Abundance Constraints Relaxed in ICA 

So far, it appears that ICA is well suited for use in HSI and a good fit to the LMM 

of HSI.  Thus, it seems to be an acceptable way to simultaneously solve for the 

endmember matrix and the abundance matrix given only knowledge of the X matrix.  

However, given the interpretation that the ICs are the abundance fractions in the LMM a 

few problems arise.  As shown in the variable definitions in (2.1) the abundance fractions 

have two constraints.  First for each realization of the random vector s, since the elements 

of s are the fractional contribution of the endmembers to a particular pixel observation, 

those elements must sum to one, i.e.  

1

1
P

pj
p

s
=

=∑  for 1, 2,...,j N=                                            (2.92) 

Thus, the abundance fractions are not truly independent due to this constraint.  Second, 

the abundance fractions are nonnegative.  However, in the ICA model the ICs have zero 

mean, and thus any realization of s can have both positive and negative elements.  This 

does not conform to the additive only LMM.  Robila suggests in the text by Varshney and 

Arora modifying the LMM saying,  

it seems natural to modify the model by assuming that the abundance of 
one endmember in a specific pixel does not provide any information 
regarding the abundance of other endmembers for that pixel (Varshney 
and Arora, 2004:125). 
 

This seems to suggest interpreting the abundance fractions (or ICs), as unconstrained 

weights rather than nonnegative fractions.   

 In a study by Nascimento and Dias previously mentioned cited by Chang, if one 

assumes that the abundances are in fact dependent, the unmixing matrix W given by ICA 

might be far from the true one in the case where there are only a few number of 
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endmembers (Chang, 2007:163).  However, abundance fraction dependency is reduced if 

the number of endmembers is increased.  However, there will always be endmembers 

incorrectly unmixed (Chang, 2007:172).   

For the sake of clarity, the interpretation of ICA model in the context of the LMM 

in the PCA space is given below. 

 

11 12 1 11 12 111 12 1

21 22 21 22 221 22

1 2 1 21 2

... ......
. .

. . . . . . . .. . . .
... ......

                                                       

N NP

N

P P PN P P PNP P PP

y y y s s sa a a
y y s s sa a

y y y s s sa a a

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟= ⋅
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
  

                                             PxN PxP PxN

or
Y A S= ⋅

               (2.93) 

 

 

 

 

 

2.4 Current Practices to Select Target Features from Unmixed Images 

Now that this thesis explained in detail the LMM of HSI and an approximate 

solution methodology to unmix the LMM using ICA to solve for the endmember matrix 

and the abundance matrix, two images will be presented, unmixed and target abundance 

maps will be selected using current practices.  A brief discussion of those current 

practices will be presented followed by the examples and analysis.  

In the current literature several authors first perform PCA to reduce the 

dimensionality of the image and decide how many principal components to retain based 

Signature of 2nd endmember in the P 
principal components of the PCA space 
is the 2nd column of the mixing matrix A. 

N realizations(scores) of the 2nd independent 
component, 2s , are the N  weights of the of 
the 2nd endmember in each of the N pixel 
vector observations. 
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on a percentage of variability explained (usually in excess of 99%) or based on some 

estimate of the distribution of the covariance eigenvalues to determine where the cutoff 

between signal and noise eigenvalues occurs.  Many times a simple scree graph (on a log 

scale) is visually examined to determine where the ‘knee’ occurs in the curve rather than 

a rigorous estimation of the eigenvalue distribution (i.e. Silverstein distribution).  ICA is 

performed on the PCA transformed data matrix to solve for the ICs, or the rows of the 

abundance matrix in terms of the LMM.  The individual rows of this matrix can be 

displayed as a series of abundance maps (see Figure 2-1) after normalized to a gray scale.  

To identify abundance maps containing targets, one ranks the maps in decreasing order 

according to the kurtosis value, KV, of the independent component that was used to form 

the map.  If one assumes that targets represent a small class, i.e. are relatively rare in the 

image, the kurtosis will be high compared to abundance maps of larger classes.  As 

mentioned previously, the cutoff between target and non-target is decided via a scree 

graph of the KV’s.  Just as in the scree graph to determine dimensionality, the first point 

where the slope significantly changes, the ‘knee’, distinguishes between target and non-

target.  A second criteria in addition to KV to distinguish targets suggested recently by 

Koo calculates a mean silhouette value, MSV, for each abundance map.  First 2-class 

clustering is performed on each abundance map (K-means clustering, with K=2).  For 

more information on K-means clustering see Dillon and Goldstein, pages 188-190.  The 

idea is to find the abundance map that separates best into two classes, namely, 

background and target.  After completing the K-means clustering, silhouette plots show 

how well the two classes are clustered.  Each silhouette value is in the range of -1 and 1. 

When the classes are well clustered, the silhouette values should be close to 1.  Thus, the 
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target map should have a MSV (mean of all the silhouette values for each cluster) close to 

1.  Koo states that KV and MSV act as a check-and-balance filtering process, since it is 

possible that two well separated non-target classes within a map may also produce a very 

high MSV.  An abundance map containing the real targets should be among the features 

with the highest KV and have a MSV near 1.   Koo’s two-phased filtering method selects 

target maps that have a relatively high KV and a MSV close to 1 (Koo, 2007:46-47).    

Below in Figure 2-15 are two HSI images image taken from the United States Air 

Force’s Airborne Remote Sensing Program (ARES) using the Hyperspectral Digital 

Imagery Collection Equipment (HYDICE) sensor during the Forest Radiance I and 

Desert Radiance II data collection efforts.  The sensor utilizes 210 narrow spectral 

bands covering the ultraviolet, visible and near-infrared portions of the electromagnetic 

spectrum (0.4 – 2.4 μm).  Analysis by T. Smetek, determined which bands where 

atmospheric absorption bands and/or noise bands.  After these bands were removed, 145 

bands remain.  The top row is the RGB images and the bottom row is the truth mask of 

the targets.  These images were analyzed in the work by Koo and this section will attempt 

to reproduce his results using his methodology.   
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Figure 2-15.  ARES 1F, ARES 1D with Truth Masks 

 

Koo retained 12 and 14 principal components in ARES 1F and 1D respectively 

accounting for 99.83% and 99.84% respectively of the total variance.  These 

dimensionality reduction decisions will be followed in an attempt to reproduce the 

results.  In his thesis, Koo reports the following settings in FastICA. 

• Symmetric Orthogonalization 

• Function g of choice: g = 3y   
 

o Default. Uses kurtosis approximation of negentropy.  g is the derivative of 
4G y=  without the coefficient of 4 

 
• Secondary refinement using function g = tanh(y) 

o When initial convergence is achieved, the entire process will repeat using 
the refinement function for a second convergence 
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Note the g functions mentioned here refer to the choices 
given in equations (2.85), (2.86), and (2.87) of this thesis. 
 

• Initial starting point: Random 

• Stopping criterion: 610−  

Although not documented in Koo’s research, via correspondence from Koo, the 

following settings were used to calculate the K-means clustering: 

• Distance measurement: squared Euclidean 

• Method of choosing 2 initial cluster centroid positions: uniformly at random  

• Action to take if cluster loses all its members: singleton (creates a new cluster 
consisting of the one point furthest from its centroid) 

 
For each image in Figure 2-15, the ICs solved for by FastICA will be formed into 

abundance maps and presented followed by the results from the K-means clustering and 

mean silhouette plots.  Next a summary table of the KVs, MSVs, and computation time 

will precede a discussion of the results.  Koo’s results for the same image will then be 

presented.   
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Results for ARES 1F  

 
Figure 2-16. ARES 1F: Abundance Maps from ICs Sorted by Kurtosis Value  
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Table 2-1.  ARES 1F Summary: IC’s KV and MSV and overall Run Times 

 
 

 

Figure 2-17.  ARES 1F:  Silhouette Plots (Top 5 Maps by KV) with MSV  
and Binary Images Produced by K-means to the Right of Each Plot 
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The first three abundance maps isolate the targets and the fifth map contains 

targets but the class is not separated from the non-targets classes of trees and road.  The 

three abundance maps that isolate the targets have the three highest KVs.  Further, 

abundance maps 1 and 2 have the highest MSV.  However, the MSV of the third 

abundance map is not close to 1, but non-target maps 4 and 5 have MSVs higher than 0.9 

as shown in Table 2-1.  Further, note the computational expense of 636.8 seconds, in 

excess of 10 minutes, to calculate the 12 MSVs for this image.  Notice the maps with the 

highest MSV, maps 1, 2, 4 and 5, cluster nicely into 2 classes (background and outlined 

objects) evidenced by the K-means binary images in Figure 2-17.   

It should be noted that the K-means clustering algorithm is stochastic and 

therefore can yield different results from one run to the next.  To ensure the K-means 

binary images in Figure 2-17 were not just a rare occurrence of the algorithm, it was re-

run 20 times on the same ICs that FastICA yielded.  The binary images in Figure 2-17 

resulted in every run.  Further the ICA algorithm is also stochastic, so it was re-run 10 

times, followed by the K-means algorithm and, still, the binary images in Figure 2-17 

resulted in every run.   
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Figure 2-18.  Scree Graph of Kurtosis Values of ARES 1F Maps 

 

Analysis of a scree graph of the kurtosis values of the abundance maps (suggested 

technique by Robila) in Figure 2-18 shows that considerable change occurs between 

abundance maps 5 and 6.  This considerable slope change is suggested to be the 

breakpoint between target maps and non-target maps.  Thus, assuming potential target 

maps to be maps 1 though 5, Koo’s two-phased filtering method that selects the maps 

with the highest KV and MSV would incorrectly select maps 4 and 5 as target maps and 

incorrectly omit abundance map 3.  The results given by Koo for this image are shown 

below in Table 2-2 and Figure 2-19.  As previously mentioned, due to the stochastic 

nature of the FastICA algorithm and K-means clustering, results can differ.  As seen in 

Table 2-2, the two-phase filtering in Koo’s research is successful at identifying the target 

maps.  Note, that the abundance maps in Figure 2-16 and Figure 2-19 are quite similar.  

This thesis’s results successfully reproduced Koo’s results for target maps 1 and 2, but 

not for target map 3.  Perhaps Koo’s result was a positive chance occurrence that 

Considerable slope 
change 
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validated his method or there are alternate K-means settings that yield a MSV close to 1 

for target map 3.    

Table 2-2.  Koo Results for ARES 1F (Koo, 2007:81) 
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Figure 2-19.  ARES 1F: Abundance Maps From ICs Sorted by KV  
from Koo (Koo, 2007:82) 
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Results for ARES 1D  

 

Figure 2-20.  ARES 1D: Abundance Maps from ICs Sorted by Kurtosis Value  
Using Secondary Refinement 

 

Notice, maps 4 and 5 in Figure 2-20 highlight the targets. However, the target 

class is not separated from non-target classes that exist in the bottom right and upper left 
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of the maps.  FastICA was run 10 times and each time the target class did not separate out 

into its own map as shown in maps 4 and 5 (in order of KV) in Figure 2-20.  Instead of 

running ICA twice, using g = 3y first and then running ICA again using tanh( )g y=  on 

the solved ICs (i.e. the secondary refinement previously mentioned), ICA was run 10 

times using just tanh( ) g y= with no secondary refinement.  The same negative results 

were observed as in Figure 2-20.  Thus, the secondary refinement technique is 

superfluous here.  Finally, ICA was run 10 times using 3g y= with no secondary 

refinement.  Each time the target class was isolated successfully in a single abundance 

map (map number 4 sorted by KV) as shown in Figure 2-21. 
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Figure 2-21.  ARES 1D: Abundance Maps from ICs Sorted by Kurtosis Value  
Using g = 3y  without Secondary Refinement 
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Table 2-3.  ARES 1D Summary: IC’s KV and MSV and overall Run Times 

 
 

 

Figure 2-22.  ARES 1D: Silhouette Plots (Top 4 by KV) with MSV and Binary Images  
Produced by K-means to the Right of Each Plot
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Contrary to ARES 1F, the target map is not the map with the highest KV.  

Although, as shown in the scree graph of KVs in Figure 2-23, a considerable slope 

change occurs between maps 5 and 4.  Thus, maps 1-4 would be considered candidate 

target maps by this criteria, keeping the true target map.  As see in Table 2-3 and Figure 

2-22, applying the second filtering technique, maps 1, 3, and 4 have MSVs in excess of 

0.9 and cluster nicely into 2 classes.  Since all are among the highest KV maps, they 

would be selected as target maps by the two-phase filtering technique.  In the 10 runs of 

FastICA using g = 3y , maps 1 and 3 sorted by kurtosis yielded high MSVs in excess of 

0.9.  Further, in the 10 runs using the secondary refinement, and in the 10 runs just using 

g = tanh(y), maps 1 and 3 yielded MSVs higher than 0.9.  Thus, the result that maps 1 and 

3 would be classified as target maps using the two-phase filtering technique is not a rare 

occurrence.  Again, as shown in Table 2-3, note the computational expense of 2724.14 

seconds or 45.4 minutes to calculate the 14 MSVs for this image.   
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Figure 2-23.  Scree Graph of Kurtosis Values of ARES 1D Maps 
 

Examining the incorrectly selected non-target maps 1 and 3 a few observations 

can be made.  Map 1 appears to be a large rock or large bush class.  The large rocks or 

bushes (difficult to determine from the RGB image) in the upper left and lower right 

along with the smaller rocks or bushes throughout the image constitute a class with a 

spectral signature significantly different from the desert sand background.  Further, of the 

57,909 pixels in this image, approximately 2,100 pixels belong to this class or 3.6% of 

the image.  Thus, this class also represents a small class, meeting the assumptions 

underlying an anomaly detector.  Hence, one would expect a high MSV and KV for this 

class.  Map 3 shows a thick bright line on the far left of the image which appears to be 

some kind of artifact from the HSI sensor.  However, this is only speculation.  

Regardless, it is also distinct from its background and is a small class resulting in high a 

MSV and KV.   

Considerable slope 
change 
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Also, of important note is that the clustering of map 4 (true target) resulting in a 

MSV of 0.9555 occurred 80% of the time in an experiment repeating K-means clustering 

20 times on this independent component (map 4).  As shown in Figure 2-24 below, 5 out 

of the 20 runs resulted in a MSV of 0.66 and the corresponding binary image.  This 

highlights the stochastic nature of the K-means clustering algorithm.   

 

Figure 2-24.  Map 4 (True Target) MSV and Binary Image Produced  
in 20% and 80% of the Trials 

 

The results given by Koo for this image are shown in Table 2-4 and Figure 2-25.  

As shown in Table 2-4, Koo’s two-phase filtering approach correctly selected map 4 as 

the only map with a MSV in excess of 0.9.   

20% of Trials 

80% of Trials 
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Table 2-4.  Koo Results for ARES 1D (Koo, 2007:72) 
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Figure 2-25.  ARES 1D: Abundance Maps From ICs Sorted by KV  
from Koo (Koo, 2007:73) 

  

Notice map 1 (top left) in Figure 2-25, the negative of map 1 in Figure 2-21, does 

not isolate the class of rocks or bushes quite as well as evidenced visually (more noise) 

and by its KV of 27.4 versus the map 1 that occurred 30 times in Figure 2-21 with a KV 

of 53.5.  Map 3 in Figure 2-25 is quite similar to map 3 in Figure 2-21 showing the same 

artifact of a thick bright line on the left.  Figure 2-25 map 3 KV is 12.26 and Figure 2-21 

map 3 KV is 12.88.  However, K-means clustered this map differently in Koo’s research 

causing it to have a low MSV.  One must conclude that either the results Koo achieved 
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were either a positive chance occurrence where FastICA did not did not produce a well 

isolated rock/bush feature enabling his method to work well or some alternate settings in 

FastICA, not documented, were used that consistently unmixed the image in the fashion 

presented in Figure 2-25.  The settings used by this author consistently unmixed the 

image as either the way it is presented in Figure 2-20 using the secondary refinement or 

Figure 2-21 using just  g = 3y .  Further for map 3, since it has a similar KV in both Koo’s 

results and this thesis’s results, either this was also chance occurrence where K-means did 

not cluster well or alternate settings in K-means were used than the ones reported to this 

author via correspondence. 

Conclusions on Current Practices to Identify Target Maps  

Ranking ICs (i.e. row vectors that comprise the abundance matrix) by kurtosis 

value as suggested in a myriad of current literature and using a scree graph as suggested 

by Robila to identify the break point between potential target classes and non-target 

classes appears to be a relatively effective initial processing technique to identify target 

maps from these example HSI images.  However, identifying the point of considerable 

slope change via inspection could be problematic and not reproducible from one analyst 

to the next.  A quantifiable, repeatable algorithm is needed to identify the breakpoint in 

the kurtosis scree plot.  Koo’s novel approach of using K-means clustering, followed by a 

mean silhouette calculation appears to be inconsistent at nominating the correct target 

maps when comparing results of this research to Koo’s.  Thus, given the inconsistent 

results with just two example images, the new two-phase filtering approach does not 

appear to be a robust method.  Further, the computational cost of computing the MSV for 

the images is high, 10 and 45 minutes for ARES 1F and ARES 1D respectively.  Thus, 
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even if it identified target maps consistently, it is not feasible as a real time target 

detector.  Approaches to nominate target maps that work consistently and quickly in 

addition to or instead of the KV sort are still desired.   

 

2.5 Current Practices to Identify Target Pixels from Selected Target Maps 

Assuming one is able to determine which of the abundance maps the target maps 

are, the next problem to solve is the identification of which pixels in the maps are the 

target pixels.  Recall that each abundance map corresponds to a row vector in the 

abundance matrix that has been converted to a gray scale (normalized to values between 

0 and 1) and reshaped into the original image pixel length by width.  If one where to take 

the raw abundance matrix row vector corresponding to a particular abundance map and 

graph its elements, the signal in Figure 2-26 would be observed.  This signal represents 

the pixel scores on this particular independent component (abundance matrix row vector).  

One can observe pixel scores that rise above the background.  These pixels represent the 

pixels corresponding to the targets in the map to the right in Figure 2-26.  The problem is 

to locate the threshold that separates background pixels from target pixels.  Note that due 

to the ambiguity of the sign of the independent component, this signal may sometimes be 

reversed with the signal pointing down.  To alleviate this, one can just reverse the sign of 

the signal if the absolute value of the minimum pixel is larger than the max pixel 

(practiced by this author), or as suggested by in the citation by Robila, one can calculate 

the skewness of the signal and reverse the sign if skewness is negative.  
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Figure 2-26.  ARES 1D: Abundance Row Vector Elements  

Corresponding to the Abundance Target Map 
 

According to Koo’s research, a threshold at a certain percentile of the data was 

used.  For map 4 in ARES 1D, shown above in Figure 2-26, Koo tested the 98th, 99th, 

99.5th, and 99.8th to find the percentile that yielded zero false positives according to truth 

information.  He found that the 99.8 percentile (all scores above 3.87 classified as target) 

yielded no false positives (Koo, 2007:76-78).  For ARES 1F, for the first three maps by 

KV, he found that the 98.8th, 98.7th, 99.8th percentile, scores above 2.385, 2.911, and 

5.592 for maps 1, 2 and 3 respectively yielded no false positives.  As one can see from 

these results, the percentile threshold to separate target from background is different from 

image to image.  Thus, one cannot simply set one particular percentile threshold to be 

used for all images and effectively identify targets.  Further these image dependent 

percentile thresholds were supervised decisions made with full a priori knowledge of the 

targets which is not a practical approach for an unsupervised algorithm.  The decision for 

the score above which to separate target and non-target must be determined dynamically 

and unsupervised, i.e. some piece of information in the abundance row vector yields a 
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clue as to how to choose this score autonomously if one is to hope to create an 

unsupervised detection algorithm. 

One such approach to determine the score that separates target from non-target is 

to create a histogram of the chosen target independent component and find the first point 

in the tail of the histogram where the number of pixels in a particular bin is zero (Chiang 

and others, 2001:1383).  This represents the first point of clear separation from the scores 

of the pixels that comprise potential targets to those that comprise objects that are in the 

background.  Given the ambiguity of the sign of the ICs, one must determine in which 

direction of the signal (extreme negative scores or extreme positive scores) the target 

pixels are concentrated.  To make this determination, Robila calculates the skewness of 

the signal (Robila and Varshney, 2002:178).  Positive skewness means targets are 

concentrated in the positive direction (right tail of the histogram) and vice versa for 

negative skewness.  The scores in Figure 2-26 have a positive skew so the right tail of the 

histogram will be analyzed. 

To illustrate this approach, a histogram is created in Figure 2-27 using the scores 

from Figure 2-26.  Not mentioned in the cited article by Chiang is the bin width to use to 

create the histogram.  For this example bins were used ranging from -15 to 15 with a bin 

width of 0.05.  Recall that ICA standardizes scores to have mean of zero and variance of 

one.  Thus, the scores are concentrated heavily around zero and we would expect 

background pixels to be concentrated around this mean.  To identify the point that 

distinguishes the background from target, we zoom in on the right tail in Figure 2-27 (b) 

and the first point with a bin value of zero, 4.1, is chosen as the threshold.   
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 (a) 

 (b) 

 
(c) 

Figure 2-27.  Histogram of Scores (a) and (b) from Map 4  
of ARES 1D and Threshold Determined (c) 

Threshold of 4.1 on 
original plot of scores 
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Applying this threshold one gets the following binary image below.  Given truth 

knowledge, we can see a false positive rate of zero and a true positive rate (percentage of 

true target pixels identified) of 0.65.   

 

Figure 2-28.  ARES 1D: Target Detection Binary Image using  
Histogram Method with Bin Width of 0.05 

 

However, what if a histogram bin width size of 0.1 is used or width of 0.01?  Figure 2-29 

shows the results of each.  Using a bin width size of 0.1, the first bin to have zero pixels 

was 8.7.  For a bin width of 0.01 the first bin to have zero pixels was 2.37. 
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                                 Bin Width of 0.01                     Bin Width of 0.1 
Threshold 2.37                          Threshold 8.7 

 
Figure 2-29.  ARES 1D: Target Detection Binary Image using  

Histogram Method with Bin Widths of 0.1 and 0.01 
 

Thus, how well the histogram method works is sensitive to the choice of bin width.  One 

questions to ask is whether or not there is a bin width that works well at determining the 

threshold for all images.  For this image, a width of 0.05 appears to work reasonably well.   

Using a bin width of 0.01, 0.05, and 0.1 was tested on the top 3 maps sorted by 

KV from ARES 1F.  Figure 2-30 below shows the binary images resulting from applying 

this method to each of the three maps and combining the binary maps to form a single 

detection image for each bin width.  Again, a bin width of 0.05 appears to work 

reasonably well at determining the threshold between target and background. 
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0.01 Bin Width                 0.05 Bin Width                        0.1 Bin Width 

Figure 2-30.  ARES 1F: Target Detection Binary Image using  
Histogram Method with Bin Widths of 0.01, 0.05, and 0.1 

 

In Figure 2-31, the thresholds determined using the histogram method for maps 1, 2, and 

3 are shown.  The lower thresholds are associated with using a bin width of 0.01 and 

highest thresholds are associated with a bin width of 0.1.  Notice for the second map, bin 

width choice could have high variability in threshold selection for some signals.   
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Figure 2-31.  ARES 1F: Target Thresholds for Maps 1, 2, & 3 Using  
Histogram Method with Bin Widths of 0.01, 0.05, and 0.1 
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 Conclusions on Current Practices to Identify Target Pixels  

As shown from Koo’s work, a particular constant percentile threshold to apply to 

all images would not be an effective way to identify target pixels due to the inherent 

difference in independent component scores (i.e. signals) from one image to the next.  

The zero-detection histogram method (term coined by Chiang et al.), i.e. choosing the 

first point with a bin value of zero, dynamically chooses the threshold with the critical 

decision being histogram bin width size.  For these two images a bin width of 0.05 works 

reasonably well.  However, as evidenced in Figure 2-31 in the second map, since bin 

width choice can yield high variability in threshold determination, more test images are 

needed to see the robustness of the 0.05 bin width choice.
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III. Methodology and Test Image Experimentation 
 
 

3.1 Process Flow for Detector 

As previously mentioned, HSI data is made into an image cube of length by width 

by reflectance values per spectral band (really just a data matrix of three dimensions) and 

then reshaped into a two dimensional data matrix of bands by pixel observations.  After 

this arrangement of the data, an HSI detection algorithm can be broken down into four 

general phases. 

First, the dimensionality (determined by the number of spectral bands) must be 

reduced (referred to as feature extraction), most commonly via PCA.  Some decision is 

made as to the number of principal components retained (which will be assumed to be the 

number of different spectrally distinct endmembers in the image) via percentage of 

variability explained or some estimation of the noise floor of the eigenvalues, as 

previously mentioned in the citation from Stocker et al..  Further, the data is also 

whitened as described in section 2.2.5.  An effective technique with simple 

implementation that takes into account the theoretical shape of the eigenvalue curve is 

needed to automate this initial phase.    

Second, assuming a linear mixture model, some optimization algorithm is used to 

solve for the endmember matrix and the abundance matrix, i.e. to unmix the image into 

the separate endmembers that make up the image.  The abundance of a particular 

endmember in each of the observations, i.e. pixels, lies in a row of the abundance matrix.  

In other words, each row of the abundance matrix represents a feature in the image.  

These abundance rows are reshaped into the original image’s length by width and plotted 
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on a grey scale to form abundance maps.  The abundance maps show, visually, the 

location of the endmember it represents.  This phase can be considered an extension of 

the feature extraction phase that finds projections of the data that further separate the 

classes. 

Third, from these rows of the abundance matrix, those rows which represent 

target features must be selected.  Selecting the rows that are ‘target like’ is referred to as 

the target feature selection phase.  As previously mentioned, one technique to determine 

which abundance rows are the target features, is to identify for each row the pixel with 

the highest abundance score.  The pixel from each row with the highest score represents 

what some refer to as a pure pixel relative to its endmember class.  The spectral signature 

for each of these pixels in the original HSI data matrix is compared to spectral signatures 

of targets of interest.  Those pixels whose signatures are closest to targets of interest tell 

which rows from the abundance matrix are rows that correspond to target features.  In the 

case where target signatures are unknown, as is the case with this thesis, one must 

determine the target features based solely on the information in the data.  In this domain, 

one must make some assumptions about target characteristics.  Targets are rare in the 

image (represent a small class) and have a spectral signature significantly different from 

the signatures of the other classes in the image.  Currently, the kurtosis values of 

abundance rows significantly higher than kurtosis values of other abundance rows are 

used to nominate the rows that are the target features.  However, what is lacking is a clear 

repeatable mathematical definition of what constitutes a significantly high kurtosis 

relative to the other abundance rows.  Analysis of a scree graph of kurtosis values to find 

the significant slope change via inspection is problematic.  Further, except for Koo’s 
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work, other statistical measures have not been investigated that could identify target 

features.  These are a few improvements in the target feature selection phase that are 

needed in the field of HSI global anomaly detection that uses the LMM. 

The fourth phase is the target identification phase.  Once the abundance rows 

corresponding to targets are selected, one must identify the location of the targets in the 

abundance maps formed from the selected abundance matrix row vectors.  As explained 

in section 2.5, one such method is the histogram method that selects the first bin with a 

zero value as the separation point between target and non-target.  While a bin width of 

0.05 appears to be a good choice as shown in Figures 2-28 and 2-30, choice of bin width 

needs to be tested on a larger image set to gain insight as to the most robust choice.  

Further, as shown in figure 2-30, the middle image, false positive declarations are still 

made even though the correct target features (maps 1, 2, and 3 sorted by KV) were 

selected.  The threshold set was low enough to include some background pixels as target 

pixels in the selected target signals.  Perhaps, smoothing the selected target signals prior 

to target identification will improve the histogram method’s performance.   

Below in Figure 3-1 is a simple flow diagram of the target detection process 

explained.  The goal of this research effort is to fully automate the target detection 

process via development of robust, repeatable, and programmable set of decisions at each 

stage in the process outlined below. 

 

Figure 3-1.  Process Flow for Target Detection 
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3.1.1 Test Images 

The following HYDICE images in Figure 3-2 will be used in the following sections 

as representative samples of HSI images from non-urban, rural environments.  They will 

be used in the development of improved methods at each phase of the detection process.  

As previously mentioned, atmospheric absorption bands have been removed leaving 145 

bands. 

 
                  ARES 1F                       ARES 2F                ARES 1D                   ARES 2D 
                  10 Targets                     30 Targets                6 Targets                   46 Targets 
 

Figure 3-2.  HYDICE HSI Test Images 
(‘F’ denotes Forest Radiance and ‘D’ denotes Desert Radiance) 
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3.1.2 Measures of Detector Performance 

Performance of the detector will be measured based on three standards, false 

positive fraction, FPF, true positive fraction, TPF, and of the total number of pixels 

detected the percentage that are truly targets.  In order to define FPF and TPF more 

clearly, one must have the definitions of the following four measures calculated at the 

pixel level. 

 True Positive (TP) - A target pixel is correctly declared a target pixel 

 False Positive (FP) - A non-target pixel is falsely declared a target pixel 

 True Negative (TN) - A non-target pixel is correctly declared a non-target pixel 

 False Negative (FN) - A target pixel is incorrectly declared a non-target pixel 

Based on the definitions above, TPTPF
TP FN

=
+

 and FPFPF
FP TN

=
+

.  TPF simply stated 

is of all the target pixels present, what percentage of pixels detected were declared as 

target pixels.  Likewise, FPF simply stated is of all the non-target pixels present, what 

percentage were declared as target pixels.  The third measure of performance, of the total 

number of pixels detected, what percentage are targets pixels, would be calculated as 

percent TGT = TP
TP FP+

.  These scores will be calculated from the truth masks in Figure 

3-2.  The highlighted areas represent the location of true target pixels.  Note the white 

line around the targets in the truth masks.  These denote regions of indifference meaning 

no penalties occur for false declarations (FP or FN) or true declarations (TP or TN).   

Worth noting before proceeding further is the prior probability of a pixel being a 

target pixel in each of these images.  For ARES 1F, 1,980 out of 30,560 pixels are targets 

or a prior probability of 0.065.  For ARES 2F, 1,528 pixels out of the total 47,424 pixels 
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are targets.  Thus, the prior probability is 0.032.  For ARES 1D, 672 out of 57,909 pixels 

are targets or a prior probability of 0.012.  Finally, for ARES 2D, 2465 out of 22,360 

pixels are targets, or a prior probability of 0.11. 

 

3.1.3 FastICA Settings and Computer Specifications 

The following settings in FastICA were used to conduct all experimentation for 

the remainder of this thesis: 

• Symmetric Orthogonalization 

• Function g of choice: g = 3y  (denoted by pow3 in FastICA) 

o The decision to use pow3 vs. tanh will be justified in section 3.3 
 

• Initial starting point: Normal random matrix with elements that have zero mean 
and unit variance 

   
o This matrix refers to the W matrix described in (2.88) and (2.89).  It is the 

default starting point in FastICA. 
 
• Maximum number of iterations: 1,000 

• Step size: 1 

• Stabilized version of algorithm selected 

o This allows the step size to be momentarily halved if the program detects 
that the algorithm is stuck between two points 

 
o Also if no convergence has been achieved after an eighth of the number of 

max iterations (125 iterations) the step size is halved for the remainder of 
the iterations 

 
This author modified the FastICA code.  Originally if no 
convergence had been achieved after half the number of max 
iterations (500 iterations) the step size would be halved for the 
remainder of the iterations.  This was found, empirically, to be too 
long to wait to permanently change the step size.  Line 390 of the 
fpica.m file was changed to an eighth of the max iterations. 
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• Stopping criterion: 510−  

It should be noted that all experiments in this thesis were completed on an Intel Xeon 

5160 dual core computer with dual processors speeds of 3.00 GHz and 2.99 GHz and 

3.00 GB of RAM. 

 

3.2 Dimensionality Reduction (Feature Extraction) Automation  

As mentioned previously two options that can be used to determine the number of 

principal components to retain after accomplishing PCA, is to retain enough components 

to explain a particular percentage of variability or where the eigenvalue noise floor 

occurs in the covariance matrix of the data.  To illustrate the pitfalls of using a set 

percentage of variability to reduce the dimension, consider a truncated version of ARES 

2F shown below in Figure 3-3. 

 

Figure 3-3.  Truncated Version of ARES 2F 
 



 

3-8 

Table 3-1 shows the number of components to keep for each choice of percentage of 

variability explained.  Notice that for just a small change in percentage of variability 

explained 99.1% to 99.9% the number of components changes from 8 to 56.  For a simple 

image such as this, with background of mainly grass and dirt and small panel targets, 56 

components or endmembers is much more than its true dimensionality.  For this image, 

99.32% or 10 components was found to be sufficient at isolating the targets into separate 

abundance maps after performing an ICA.  However, a choice of 99.32% variability was 

insufficient at isolating the targets into separate abundance maps with ARES 1F.  99.78% 

or 9 components were needed before all targets were isolated into their own abundance 

map.   

 

Table 3-1.  ARES 2F: Truncated Percentage of Variability Explained 
per Number of Components to Retain 

 

 
Table 3-2.  ARES 1F: Percentage of Variability Explained 

per Number of Components to Retain 
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If one were to use 99.78% on ARES 2F truncated, then 33 components would be 

retained, significantly more than required.  Further, although retaining more components 

may attenuate the dependency that exists between the abundance row vectors and aids in 

ICA effectiveness, conversely, retaining significantly more components than needed 

reduces the signal to noise ratio and the effectiveness of ICA as explained in section 

2.3.1.  This results since one would be retaining more of the eigenvalues associated with 

noise.  Further, the more components one retains, the slower FastICA will perform due to 

having to compute more ICs.  Thus, even with just two examples finding a constant 

choice of percentage of variability explained to reduce the dimensionality for any image 

is problematic.  Percentage of variability to retain to effectively reduce dimensionality is 

image dependent.   

Recall the discussion on pages 2-12 through 2-14 regarding the distribution of the 

eigenvalues associated with the covariance of the random noise vector in the LMM.  A 

least square fit to the Silverstein distribution (assuming white noise) approximately 

locates the location of the ‘tilted ramp’ on the eigenvalue curve to locate the breakpoint, 

(i.e. ‘knee’) between signal and noise eigenvalues.  Finding the breakpoint in the 

nonwhite noise case can be more difficult given the lack of a closed form expression for 

the distribution of the nonwhite noise eigenvalues.   

 

3.2.1 Max Euclidean Distance from Log-Scale Secant Line 

A simpler approach developed by this author, not considered in the current 

literature, is a simple optimization scheme to locate the ‘knee’ in the eigenvalue curve.  
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In Figure 3-4 are the white and nonwhite noise cases again from Figure 2-2 (b) that was 

reproduced from page 653 of the Stocker citation.  However, the figure has been 

modified to illustrate this new method.   

 
Figure 3-4.  Finding Breakpoint between Signal and Noise  

Eigenvalues of White Noise and Nonwhite Noise Using 
Max Euclidean Distance from Log-Scale Secant Line 

 

As shown from Figure 3-4, if one finds the Euclidean distance from each 

eigenvalue coordinate pair on the curve to the line that connects the endpoints of the 

curve (deemed secant line), the eigenvalue with the maximum normal distance to the 

secant line locates the breakpoint relatively well.  It should be noted that the vertical 

component of all the coordinate pairs for each eigenvalue is considered to be the base 10 

logarithm of the original eigenvalue in calculating the Euclidean distances from each 

coordinate pair to the secant line.  For both the white and nonwhite cases this simple rule 
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appears to locate the ‘knee’ relatively well.  This method is by no means a rigorous 

solution to find the true breakpoint between signal and noise eigenvalues, but offers a 

simple dimensionality approximation easy to implement in computer code to 

autonomously determine dimensionality.  Further, for the purposes of target detection, 

locating the exact breakpoint between signal and noise eigenvalues may not be necessary.  

Finding the general location of the knee may prove relatively effective if the sensitivity of 

the decision in general vicinity of the knee is low with regard to keeping enough 

dimensions to unmix the image into enough classes such that targets are isolated.    

The true dimensionality of a hyperspectral image, in terms of the LMM, is the 

number of endmembers in the image, or the total number of distinct classes of objects in 

the image.  In the case of a HSI target detection algorithm using the LMM, practically, 

one would need to retain at least enough principal components so that after solving the 

LMM via ICA, target classes are separated from non-targets classes in abundance maps.  

Consider for example ARES 1F.  An experiment was conducted varying the number of 

principal components kept from just 1 component to 9 components, the point at which all 

targets were isolated from non-targets in abundance maps after running FastICA on the 

reduced PCA space.   
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Figure 3-5.  Minimum Dimensionality Needed for ARES 1F to Isolate Targets 
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Figure 3-5 on the previous page shows the abundance maps labeled with kurtosis 

value (KV) that result from keeping 3, 4, and 9 principal components and then executing 

FastICA.  For a dimensionality of 3, the first map from the left shows vehicles and tarps 

(the targets) convoluted with road.  For a dimensionality of 4, some of the tarps are 

isolated in their own abundance map as seen in the map with a KV of 49.  However, the 

vehicles are still convoluted with the road.  By a dimensionality of 9, one can see the 10 

targets are isolated in the 3 abundance maps with the highest KVs.  Thus, the minimum 

dimensionality needed for purposes of target detection for ARES 1F is 9.  It should be 

emphasized that 9 is not necessarily the true dimensionality of the image.  It is merely 

argued that at least 9 components are needed to separate out targets after running 

FastICA.  

 Below in Figure 3-6 is the eigenvalue curve for ARES 1F on a log scale and the 

point where the Euclidean distance from the log-scale secant line is maximum.   

 
Figure 3-6.  ARES 1F: Eigenvalue Curve with Max Euclidean  

Distance from Log Scale Secant Line Occurring at 16th Eigenvalue 
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This geometric solution would keep 15 components rather than the 9 suggested in Figure 

3-5.  Note the abundance maps underlined (dotted line) in Figure 3-7 below.   

 
Figure 3-7.  ARES 1F: Abundance Maps from 15 ICs that  

Result from New Dimensionality Decision - 3/15 Isolate All 10 Targets 
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It seems that retaining 15 components results in 4 abundance maps that appear to be 

entirely noise.  However, retaining these additional 6 components does not effect clear 

target isolation in the 3 abundance maps with the highest KVs in Figure 3-7. 

Further worth noting is the increase in target signal strength (using kurtosis as a 

measure of signal strength) from a dimensionality of 9 to 15.  With a dimensionality of 9, 

the kurtosis values associated with the target abundance maps are 101, 38, and 26.  

However, with a dimensionality of 15, the kurtosis values increase to 109, 59, and 35 

respectively.  Thus, despite adding the additional maps that are only noise, using this 

dimensionality decision, targets are still clearly separated but with stronger signals.  For 

the purpose of target detection, this new method of deciding dimensionality appears 

effective for this image.     

Including some eigenvalues associated with noise can, as seen in this example, 

improves target signal strength.  This effect appears to agree with the research conducted 

by Nascimento and Dias where they state that increasing the number of endmembers 

improves ICA performance due to attenuating the dependency that truly exists between 

the components.  Recall that in the LMM the abundance fractions, which are the 

independent components in ICA, are not truly independent due to the sum-to-one and 

non-negativity constraints imposed on the fractions.  This dimensionality decision 

increased the number of endmembers from 9 (enough to separate targets) to 15 which 

includes 4 noise endmembers (the dotted underlined maps in Figure 3-7).  However, their 

research also states that ICA decreases as SNR decreases.  Thus, retaining too many noise 

endmembers could eventually degrade the performance of ICA due to reducing the SNR 

of the LMM as defined in equation 2.91.  Further, retaining more and more dimensions 
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will increasingly slow the rate of convergence of ICA due to having to compute more and 

more ICs.   

The next section will use the maximum distance from the eigenvalue curve to the 

log-scale secant line to reduce the dimensionality of the test images.  For the remainder of 

this thesis, this new method will be referred to as the MDSL (Max Distance Secant Line) 

decision for dimensionality reduction.  Effectiveness will be judged on whether or not the 

MDSL decision was sufficient at isolating all targets into separate abundance maps. 

 

3.2.2 Dimensionality Assessment for Test Images 

Figure 3-8 shows the log-scale eigenvalue curves of the covariance matrices for 

ARES 2F (a), ARES 1D (b), and ARES 2D (c) along with the respective MDSL 

decisions.  Figures 3-9, 3-10, and 3-11 show the abundance maps formed from the ICs for 

each image that result from the MDSL dimensionality decisions from Figure 3-8.  Images 

are sorted by kurtosis value, labeled above each map. 
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Figure 3-8.  ARES 2F (a), ARES 1D (b), and ARES 2D (c)  
Dimensionality Decisions via MDSL 
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Figure 3-9.  ARES 2F: Abundance Maps from 15 ICs via MDSL Decision 

Top 12 Maps by KV Isolate All 30 Targets  
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Figure 3-10.  ARES 1D: Abundance Maps from 8 ICs via MDSL Decision 

3rd Map by KV Isolates All 6 Targets 
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Figure 3-11.  ARES 2D: Abundance Maps from 13 ICs via MDSL Decision 

Top 9 Maps and Map 11 by KV Isolate All 46 Targets  
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Given that the MDSL decision resulted in sufficient dimensionality to isolate all 

targets using ICA, this technique appears to be an effective autonomous dimensionality 

reduction method.  However, there can be cases where the shape of the eigenvalue curve 

does not conform to the theoretical shape an eigenvalue curve of a covariance matrix of a 

spectral data matrix under the LMM.  Recall, that of the 210 spectral bands, 145 were 

retained after removing the atmospheric absorption bands.  Consider the case if the 

absorption bands were left.  Notice the shape of the eigenvalue curve of the covariance 

matrix for ARES 2D with all 210 bands shown in Figure 3-12.   

 
Figure 3-12.  ARES 2D: Eigenvalues of Covariance  

Matrix of Spectral Data with all 210 Bands 
 

One can still observe a tilted ramp except for the eigenvalues near the end of the curve.  

Due to including the absorption bands, these eigenvalues are very close to zero compared 

the rest of the eigenvalues on the tilted ramp.  Some are even negative in value (which 

cannot be shown due to the log scale) still very close to zero due to computer precision 
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error.  One would not want to connect the log-scale secant line to the endpoints of this 

curve.  Doing so would bias the MDSL calculation away from the true ‘knee’.  As a 

protection against a pathological case such as this, MDSL method will check the right 

endpoint and successively move the endpoint up from which to construct the secant line 

until the eigenvalue is greater than 410− (merely a nominal decision point).   

Worth noting is that in Figures 3-9 and 3-11 some of the same targets appear in 

more than one map.  In some cases a target with a weak abundance in one map may have 

a stronger abundance in another where it is duplicated.  Thus, this can be a positive result.  

Redundancy does not negatively affect the detection process so long as maps with 

duplicated targets which are kept during the target feature selection phase do not have 

significant noise than can result in false positives during the target identification phase.  

As seen with Figure 3-11, maps 9 and 11 sorted by KV can be considered redundant.  

Circled targets appear in other maps.  The histogram method with a bin size of 0.05 

(previously described in section 2.5) was applied keeping maps 1-9 and 11, and then 

applied keeping only maps 1-8 to check for ill effects.  Results are shown in Figure 3-13.  

Across the three measures of performance, no significant detection difference occurs 

from keeping the redundant maps.  
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                                          Keeping 10 Maps      Keeping 8 Maps 
 

Figure 3-13.  ARES 2D: Target Identification Comparing 
10 Target Maps Selected to 8 Target Maps Selected 

 

3.3 Variability Analysis to Choose FastICA Objective Function 

Before continuing any further analysis, it would be prudent to check the 

variability from one run to the next for each of the test images given the random nature of 

FastICA.  Recall FastICA finds projections of the data, Ty w x=  defined by w, that 

maximize the projected data’s negentropy.  Kurtosis can be used to approximate 

negentropy where ( ) 4G y y=  for the G function in (2.65). Thus, the g function for this 

choice in the fixed point iteration scheme given in (2.84) would be 3g y= , where g is the 

derivative of kurtosis.  Also, nonpolynomial moments can be used such as 

( ) ( )1
1

1 log coshG y a y
a

=  for the G function in (2.65) to approximate negentropy.  

Thus, ( )1tanhg a y=  in the fixed point iteration scheme given in (2.84), where g is 
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derivative for this choice of G.  These choices correspond to the ‘pow3’ and ‘tanh’ 

settings in FastICA respectively.  Further, recall that FastICA uses a random initial W 

matrix (the matrix described in (2.88) and (2.89) ) as the staring point in the algorithm.  

Thus, results can vary for each run on the same image.  The FastICA settings described in 

section 3.1.3 will be held constant except for the choice of g function.  The results for the 

FastICA g functions, ‘pow3’ and ‘tanh’, will be contrasted.  Further, the MDSL 

dimensionality decisions described in the previous section will be used for each image.  

Tables 3-3 through 3-6 show the mean and variance of the kurtosis values for the 

abundance maps sorted by kurtosis value for each test image using the ‘pow3’ and  

‘tanh’ FastICA settings.   
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Table 3-3.  ARES 1F: 100 Runs Using FastICA Settings of pow3 vs. tanh 
 

 
 

For ARES 1F the variance for each map sorted by kurtosis is quite low, between 

2710− and 610−  for the pow3 solved maps and 710− and 310−  for tanh solved maps.  Despite 

both settings having low variances, when examining the ratio of the variances for each 

map between tanh and pow3, tanh variances are between 1 and 4 orders of magnitude 

more (except for the one case of 19 orders of magnitude) than the pow3 run variances.  

Thus, although both give relatively stable results in terms of low variability, pow3 is the 

more stable of the two for this image.  

Map 1 5.19E+19
Map 2 1.28E+03
Map 3 1.31E+03
Map 4 5.61E+00
Map 5 1.74E+01
Map 6 2.98E+04
Map 7 2.43E+02
Map 8 4.01E+03
Map 9 3.53E+01

Map 10 4.86E+02
Map 11 8.95E+03
Map 12 4.75E+01
Map 13 2.58E+01
Map 14 1.40E+03
Map 15 6.97E+02

tanh  variance per map
pow3 variance per map

Abundance Map Mean KV Var KV Abundance Map Mean KV Var KV
Map 1 109.31 7.34E-27 Map 1 108.74 3.81E-07
Map 2 58.73 1.42E-08 Map 2 58.76 1.82E-05
Map 3 34.70 5.16E-07 Map 3 25.71 6.76E-04
Map 4 16.37 5.27E-06 Map 4 16.88 2.96E-05
Map 5 14.16 1.04E-05 Map 5 15.28 1.81E-04
Map 6 9.22 1.69E-07 Map 6 7.51 5.03E-03
Map 7 5.55 1.71E-07 Map 7 5.68 4.16E-05
Map 8 5.45 2.32E-07 Map 8 5.62 9.30E-04
Map 9 4.84 5.20E-06 Map 9 4.85 1.83E-04

Map 10 3.75 1.12E-07 Map 10 3.58 5.44E-05
Map 11 3.61 6.36E-09 Map 11 3.55 5.69E-05
Map 12 3.46 3.86E-07 Map 12 3.46 1.83E-05
Map 13 3.31 8.43E-06 Map 13 3.41 2.17E-04
Map 14 3.27 9.08E-07 Map 14 3.25 1.27E-03
Map 15 2.34 1.85E-08 Map 15 2.17 1.29E-05

ARES 1F 100 Runs (tanh)ARES 1F 100 Runs (pow3)

Map 1 5.19E+19
Map 2 1.28E+03
Map 3 1.31E+03
Map 4 5.61E+00
Map 5 1.74E+01
Map 6 2.98E+04
Map 7 2.43E+02
Map 8 4.01E+03
Map 9 3.53E+01

Map 10 4.86E+02
Map 11 8.95E+03
Map 12 4.75E+01
Map 13 2.58E+01
Map 14 1.40E+03
Map 15 6.97E+02

tanh  variance per map
pow3 variance per map

Abundance Map Mean KV Var KV Abundance Map Mean KV Var KV
Map 1 109.31 7.34E-27 Map 1 108.74 3.81E-07
Map 2 58.73 1.42E-08 Map 2 58.76 1.82E-05
Map 3 34.70 5.16E-07 Map 3 25.71 6.76E-04
Map 4 16.37 5.27E-06 Map 4 16.88 2.96E-05
Map 5 14.16 1.04E-05 Map 5 15.28 1.81E-04
Map 6 9.22 1.69E-07 Map 6 7.51 5.03E-03
Map 7 5.55 1.71E-07 Map 7 5.68 4.16E-05
Map 8 5.45 2.32E-07 Map 8 5.62 9.30E-04
Map 9 4.84 5.20E-06 Map 9 4.85 1.83E-04

Map 10 3.75 1.12E-07 Map 10 3.58 5.44E-05
Map 11 3.61 6.36E-09 Map 11 3.55 5.69E-05
Map 12 3.46 3.86E-07 Map 12 3.46 1.83E-05
Map 13 3.31 8.43E-06 Map 13 3.41 2.17E-04
Map 14 3.27 9.08E-07 Map 14 3.25 1.27E-03
Map 15 2.34 1.85E-08 Map 15 2.17 1.29E-05

ARES 1F 100 Runs (tanh)ARES 1F 100 Runs (pow3)
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Table 3-4.  ARES 2F: 100 Runs Using FastICA Settings of pow3 vs. tanh 
 

 
 

In contrast to ARES 1F, ARES 2F has more run to run variability for the 15 maps sorted. 

Kurtosis values range from a variance of 16 to 598 for pow3 and 5 to 66,057 for tanh.  

Except for the last four maps, tanh’s variance is between 1.3 and 183 times more per map 

than pow3’s variance for the map of the same KV rank. Thus, again for this image, pow3 

yields more consistent results in terms of lower variability. 

Map 1 1.83E+02
Map 2 7.32E+01
Map 3 3.61E+01
Map 4 8.21E+00
Map 5 9.72E+00
Map 6 6.81E+00
Map 7 9.08E+00
Map 8 2.94E+01
Map 9 7.25E+00

Map 10 2.99E+00
Map 11 1.29E+00
Map 12 3.20E-01
Map 13 3.50E-01
Map 14 2.42E-01
Map 15 3.13E-01

tanh  variance per map
pow3 variance per map

Abundance Map Mean KV Var KV Abundance Map Mean KV Var KV
Map 1 166.64 361.88 Map 1 403.04 66057.20
Map 2 157.99 513.43 Map 2 318.35 37592.56
Map 3 111.27 589.22 Map 3 260.96 21271.20
Map 4 106.53 598.41 Map 4 150.27 4914.49
Map 5 91.64 126.31 Map 5 115.19 1227.69
Map 6 87.17 166.00 Map 6 78.16 1129.89
Map 7 79.84 119.79 Map 7 70.70 1087.70
Map 8 63.99 33.54 Map 8 59.50 986.36
Map 9 62.50 20.74 Map 9 28.87 150.32

Map 10 60.28 23.32 Map 10 21.39 69.68
Map 11 57.43 53.82 Map 11 17.27 69.35
Map 12 52.40 112.93 Map 12 12.84 36.08
Map 13 34.67 65.17 Map 13 10.23 22.79
Map 14 18.04 58.94 Map 14 8.23 14.24
Map 15 8.77 16.20 Map 15 4.83 5.07

ARES 2F 100 Runs (tanh)ARES 2F 100 Runs (pow3)

Map 1 1.83E+02
Map 2 7.32E+01
Map 3 3.61E+01
Map 4 8.21E+00
Map 5 9.72E+00
Map 6 6.81E+00
Map 7 9.08E+00
Map 8 2.94E+01
Map 9 7.25E+00

Map 10 2.99E+00
Map 11 1.29E+00
Map 12 3.20E-01
Map 13 3.50E-01
Map 14 2.42E-01
Map 15 3.13E-01

tanh  variance per map
pow3 variance per map

Abundance Map Mean KV Var KV Abundance Map Mean KV Var KV
Map 1 166.64 361.88 Map 1 403.04 66057.20
Map 2 157.99 513.43 Map 2 318.35 37592.56
Map 3 111.27 589.22 Map 3 260.96 21271.20
Map 4 106.53 598.41 Map 4 150.27 4914.49
Map 5 91.64 126.31 Map 5 115.19 1227.69
Map 6 87.17 166.00 Map 6 78.16 1129.89
Map 7 79.84 119.79 Map 7 70.70 1087.70
Map 8 63.99 33.54 Map 8 59.50 986.36
Map 9 62.50 20.74 Map 9 28.87 150.32

Map 10 60.28 23.32 Map 10 21.39 69.68
Map 11 57.43 53.82 Map 11 17.27 69.35
Map 12 52.40 112.93 Map 12 12.84 36.08
Map 13 34.67 65.17 Map 13 10.23 22.79
Map 14 18.04 58.94 Map 14 8.23 14.24
Map 15 8.77 16.20 Map 15 4.83 5.07

ARES 2F 100 Runs (tanh)ARES 2F 100 Runs (pow3)
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Table 3-5.  ARES 1D: 100 Runs Using FastICA Settings of pow3 vs. tanh 
 

 
 

Similar to ARES 1F, variability is low for the kurtosis values of each sorted map but with 

pow3 variances consistently lower. 

Map 1 7.68E+03
Map 2 2.11E+04
Map 3 1.46E+03
Map 4 3.93E+03
Map 5 2.69E+03
Map 6 8.59E+02
Map 7 2.24E+03
Map 8 1.40E+03

tanh  variance per map
pow3 variance per map

Abundance Map Mean KV Var KV Abundance Map Mean KV Var KV
Map 1 51.00 4.39E-06 Map 1 37.58 3.38E-02
Map 2 17.50 1.77E-05 Map 2 15.69 3.73E-01
Map 3 8.46 1.66E-04 Map 3 8.11 2.42E-01
Map 4 6.15 1.45E-06 Map 4 6.46 5.72E-03
Map 5 5.97 8.63E-07 Map 5 6.26 2.32E-03
Map 6 4.64 1.13E-04 Map 6 6.11 9.74E-02
Map 7 3.72 3.86E-05 Map 7 3.81 8.66E-02
Map 8 2.44 3.42E-07 Map 8 2.31 4.78E-04

ARES 1D 100 Runs (pow3) ARES 1D 100 Runs (tanh)

Map 1 7.68E+03
Map 2 2.11E+04
Map 3 1.46E+03
Map 4 3.93E+03
Map 5 2.69E+03
Map 6 8.59E+02
Map 7 2.24E+03
Map 8 1.40E+03

tanh  variance per map
pow3 variance per map

Abundance Map Mean KV Var KV Abundance Map Mean KV Var KV
Map 1 51.00 4.39E-06 Map 1 37.58 3.38E-02
Map 2 17.50 1.77E-05 Map 2 15.69 3.73E-01
Map 3 8.46 1.66E-04 Map 3 8.11 2.42E-01
Map 4 6.15 1.45E-06 Map 4 6.46 5.72E-03
Map 5 5.97 8.63E-07 Map 5 6.26 2.32E-03
Map 6 4.64 1.13E-04 Map 6 6.11 9.74E-02
Map 7 3.72 3.86E-05 Map 7 3.81 8.66E-02
Map 8 2.44 3.42E-07 Map 8 2.31 4.78E-04

ARES 1D 100 Runs (pow3) ARES 1D 100 Runs (tanh)
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Table 3-6.  ARES 2D: 100 Runs Using FastICA Settings of pow3 vs. tanh  
 

 
 

Finally, for ARES 2D, yet again the same trend is evident that pow3 yields unmixed 

images with lower variability.   

Thus, in conclusion, from these four images, choosing the setting in FastICA that 

maximizes negentropy using the kurtosis approximation (‘pow3’ setting) rather than the 

nonpolynomial moment approximation (‘tanh’ setting) results in lower run to run 

variability.  With respect to creating a detector, an objective function that yields more 

consistent results in unmixing the image into separate classes, would be the robust 

choice. 

Map 1 3.62E+03
Map 2 1.62E+08
Map 3 1.11E+07
Map 4 1.62E+03
Map 5 5.91E+06
Map 6 1.69E+02
Map 7 4.59E-01
Map 8 1.19E+04
Map 9 1.11E-01

Map 10 5.57E+00
Map 11 2.15E+02
Map 12 1.01E+05
Map 13 1.48E+02

tanh  variance per map
pow3 variance per map

Abundance Map Mean KV Var KV Abundance Map Mean KV Var KV
Map 1 1172.90 1.27E-02 Map 1 776.36 45.93
Map 2 532.67 1.56E-07 Map 2 529.28 25.34
Map 3 485.71 3.63E-05 Map 3 476.07 402.83
Map 4 290.40 1.35E-02 Map 4 280.91 21.94
Map 5 282.31 8.48E-06 Map 5 242.03 50.10
Map 6 132.80 6.66E-03 Map 6 151.93 1.13
Map 7 100.61 2.51E-02 Map 7 79.45 1.15E-02
Map 8 76.37 1.33E-04 Map 8 38.11 1.58
Map 9 22.44 3.06E-01 Map 9 17.12 3.39E-02

Map 10 12.78 3.24E-03 Map 10 16.25 1.80E-02
Map 11 8.62 9.46E-05 Map 11 15.69 2.03E-02
Map 12 4.10 6.73E-07 Map 12 5.58 6.78E-02
Map 13 2.70 4.02E-06 Map 13 2.38 5.95E-04

ARES 2D 100 Runs (pow3) ARES 2D 100 Runs (tanh)

Map 1 3.62E+03
Map 2 1.62E+08
Map 3 1.11E+07
Map 4 1.62E+03
Map 5 5.91E+06
Map 6 1.69E+02
Map 7 4.59E-01
Map 8 1.19E+04
Map 9 1.11E-01

Map 10 5.57E+00
Map 11 2.15E+02
Map 12 1.01E+05
Map 13 1.48E+02

tanh  variance per map
pow3 variance per map

Abundance Map Mean KV Var KV Abundance Map Mean KV Var KV
Map 1 1172.90 1.27E-02 Map 1 776.36 45.93
Map 2 532.67 1.56E-07 Map 2 529.28 25.34
Map 3 485.71 3.63E-05 Map 3 476.07 402.83
Map 4 290.40 1.35E-02 Map 4 280.91 21.94
Map 5 282.31 8.48E-06 Map 5 242.03 50.10
Map 6 132.80 6.66E-03 Map 6 151.93 1.13
Map 7 100.61 2.51E-02 Map 7 79.45 1.15E-02
Map 8 76.37 1.33E-04 Map 8 38.11 1.58
Map 9 22.44 3.06E-01 Map 9 17.12 3.39E-02

Map 10 12.78 3.24E-03 Map 10 16.25 1.80E-02
Map 11 8.62 9.46E-05 Map 11 15.69 2.03E-02
Map 12 4.10 6.73E-07 Map 12 5.58 6.78E-02
Map 13 2.70 4.02E-06 Map 13 2.38 5.95E-04

ARES 2D 100 Runs (pow3) ARES 2D 100 Runs (tanh)
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3.4 New Target Feature Filters (Feature Selection) 

As previously mentioned in the arena of global anomaly detectors that employ ICA 

to solve the LMM, the kurtosis value of the abundance matrix row vectors is used to 

identify the which rows represent target features.  Those maps with significantly higher 

kurtosis values than the rest are deemed as target maps.  For this method there two issues: 

1.  What is a quantifiable definition of significantly higher kurtosis value? 

2.  Is there an absolute kurtosis value threshold that can be used to determine if a 

image even has any targets?  In an image that has no targets, there will still 

invariably be frames with kurtosis values higher than the rest. Without a target 

kurtosis value threshold, for any image, the highest kurtosis maps will be deemed 

target maps regardless of whether or not an image even has target like anomalies.     

A computer algorithm tasked to analyze these images has no a priori knowledge of 

target information and must make a decision as to the cutoff between target and non-

target classes via some quantifiable definition of significant change between non-target 

classes of kurtosis values and target classes of kurtosis values.  For the four test images, a 

scree plot of each map’s kurtosis values (as computed for each image in sections 3.2.1 

and 3.2.2) will be presented in Figures 3-13 through 3-16.  For each image, two possible 

definitions of significant change in kurtosis value to decide between target and non-target 

classes will be compared to truth information.  Results illustrate that attempting to 

quantify this breakpoint is problematic. 
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3.3.1 Kurtosis Value Filter Problematic 

 
Figure 3-14.  ARES 1F: KV Scree Plot. Target Maps Highlighted in Gray 

   

As shown in Figure 3-14, two definitions are used to quantify significant kurtosis 

change.  One option may be to choose the target candidate maps with KVs higher than 

the average KV for all maps.  Another option, starting from the right of the plot, could 

identify the first slope larger than the average of all the slopes between the sorted KVs.  

All maps above this significant slope would be chosen as target candidate maps.  As 

shown in Figure 3-13, this clear definition of significant change between non-target 

classes and target classes correctly picks the maps that belong to the target class.  An 

analyst visually analyzing this graph could arguably make the same judgment keeping 

maps 1 through 3 due to the noticeable jump from map 4 to map 3.   

Addressing issue 2, in terms of a simple absolute KV threshold to determine if an 

image even has targets, from this image, one might choose a KV of 20.  All non-target 

maps have a KV less than 20.  Thus, when analyzing another image, if no maps had a KV 
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Abundance Map KV Slopes
Map 1 109.31
Map 2 58.73 50.58
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above 20, the conclusion could be made that no targets are in the image.  However, as 

will be seen in subsequent examples, this conclusion would be naïve.   

 
Figure 3-15.  ARES 2F: KV Scree Plot.  Target Maps Highlighted in Gray. 

 

Unlike ARES 1F, identifying the point of separation between classes is not as 

clear.  Both definitions of separation between classes fail to identify correctly maps 1 

through 12 as target maps.  Further, notice the shape of this plot.  Even an analyst, having 

no a priori target information could arguably have a difficult time determining the 

breakpoint visually.  Several noticeable jumps occur, from maps 13 to 12, then 8 to 7, and 

finally from 3 to 2.   

As far as issue 2, a couple of non-target maps have a KV greater than 20.  Thus, 

the KV threshold conclusion from the previous image would be incorrect.  Further, note 

that for ARES 2F, one non-target map (map 13) has a KV of 38.64.  ARES 1F has a 

target map with a KV of 34.70.  Thus, with just two examples, it is apparent that non-
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target classes can have KVs just as high as or higher than target class KVs.  This 

phenomena will appear in ARES 1D. 

 
Figure 3-16.  ARES 1D: KV Scree Plot. Target Map Highlighted in Gray. 

 

For ARES 1D, the target map (map 3) does not even have the highest KV.  

Further, both definitions of significant change would not even include map 3 in the target 

class.  Also, notice the much lower KV of this target map relative to the KVs of the target 

maps from the previous two images.   

Addressing issue 2 again, this image would force the lower bound KV threshold 

to determine if an image even has targets to 8.   
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Figure 3-17.  ARES 2D: KV Scree Plot. Target Maps Highlighted in Gray. Lighter 

Highlighted Maps (9 and 11) Denotes Indifference. 
  

Again, these definitions of significant slope change fail to correctly identify maps 

1 through 8.  An analyst could arguably choose maps 1 through 8, given the slope from 

map 9 to 8 is 54.6, substantially higher than the previous four slopes of 8.94, 4.22, 4.53, 

and 1.4.  Perhaps another definition of significant slope change would correctly choose 

54.6 as the significant change.  However, this research will not attempt to further refine 

the definition of significant KV change because regardless of finding a better definition 

of significant KV change, from these four examples the second issue explained on page 

3-28 remains unsolved.   

By defining a target as a rare occurrence in the image (a small class) and having a 

spectral signature significantly different from the signatures of the other classes, an 

anomaly detector will invariably include some objects that meet this criteria that are not 

intended to be included as target classes.  For example, in an image with a few boulders 

and tanks in a scene of primarily sand, dust, and gravel, an anomaly detector might 
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conclude the boulders and tanks are targets.  This is an inescapable reality.  However, an 

anomaly detector viewed as a preprocessing algorithm prior to the application of a 

signature matching detector, should eliminate as many pixels as possible that could be 

considered potential targets without eliminating the true targets.  Thus, the work load of a 

signature matching algorithm is reduced due to having fewer pixels to compare to a 

library of target signatures of interest.  In order to eliminate as many pixels as possible, 

without eliminating the true targets, based on sample images of the terrain, one would 

want to set a threshold no higher than the lowest value (KV for this example) of a target 

class in that terrain across the sample images.  Figure 3-18 shows the smallest uncertainty 

region that does not eliminate any true target maps.  Setting the KV threshold near the 

lowest mean target KV of 8 as a rule of whether or not an image even has targets would 

include 9 non-target maps across these four test images.   

 
Figure 3-18.  Smallest Possible Uncertainty Region that  

Includes all Target Maps in KV Feature Space 
 

Range of Mean Non-Target KVs: 2.34 to 51.00
Range of Mean Target KVs : 8.46 to 1172.90
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As an illustrative example, Figure 3-19 below shows an image with no targets and 

the results from unmixing the image using ICA and using KV to determine if targets are 

present.  Based on the scree plot of KV values, the first map would be classified as target. 

Further, based on a KV threshold setting of 8 to determine if the image even has targets, 

the first sorted map with a KV of 15.88 (road) would still be considered a target.  Thus, 

filters are needed that better separate targets from non-targets than the KV filter. 

 
Figure 3-19.  Image with No Targets 

 

  

Map with KV of 15.88 is a 
Target Map based on KV 
Threshold of 8 and Based on 
Significant Slope change in 
Scree Plot

Map with KV of 15.88 is a 
Target Map based on KV 
Threshold of 8 and Based on 
Significant Slope change in 
Scree Plot
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3.3.2 Max Pixel Score and Potential Target Signal to Noise Ratio Filter 

Rather than using kurtosis value to rank solved abundance maps, two other 

potential filters developed by this author to select target maps that are not in the current 

literature are the map’s max pixel score and potential target signal to noise ratio.   

Max Pixel Score 

Recall that the original data matrix is centered (zero mean) and ICs are 

standardized to have unit variance.  Thus, for a particular independent component a 

pixel’s absolute value score of 1, 2, 3, etc... on that component represents 1, 2, 3, etc... 

standard deviations above the mean score for that component.  Perhaps ICs that have at 

least one pixel score above a certain consistent threshold could be used to nominate 

which ICs belong to the target class.  One would expect target maps to have higher pixel 

scores than maps that isolate larger background classes.  The top object in Figure 3-20 

shows the plots of the pixel scores for each independent component.  These plots will be 

referred to as IC signals from this point forward.  Also, on a side note, so that the reader 

has a common reference when referring to map number in presented abundance maps and 

corresponding IC signals, maps will be presented in order of kurtosis value as in the 

previous sections.  Figure 3-20’s maps are still in order of kurtosis value.  Notice the 

target signals in the first three plots have pixel scores higher than the plots of non-target 

classes.  Thus, it appears ranking by max pixel score has potential. 

Potential Target Signal to Noise Ratio 

Another filter to nominate target maps will be called potential target signal to 

noise ratio (PT SNR).  In the top three plots (the target plots), notice the difference 

between target pixel variability and background pixel variability.   
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Figure 3-20.  ARES 1F: Independent Component Signal Plots in  

Order of KV with Abundance Maps Directly Below 
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Pixel variability can be thought of as a measure of signal power.  The signal to noise ratio 

is a measure of a signal’s power to the power of the noise (background) and then is 

converted to decibels. The reason this author includes the wording ‘potential target’ with 

SNR is that here one is interested in the power of only those pixels that could be defined 

as potential target pixels.  Thus, for a particular signal, the potential target signal to noise 

ratio would be computed as follows: 

( )
( )10

10

power potential target signal
 10 log

power background

var(potential target signal)          10 log
var(background)

dBPT SNR
⎛ ⎞

= ⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠

                 (3.1) 

 A crucial problem to solve in order to calculate the PT SNR for each IC signal is 

to locate the separation point (partition line) between potential target signal and 

background.  Thus, one needs a clear mathematical definition potential target pixels.  An 

obvious choice is the zero-detection histogram method mentioned in section 2.5.  

According to Chiang, Chang, and Ginsberg, the outliers in the signal caused by small 

targets create ripples in the tails.  This method defines potential target pixels as those 

pixels that come after the first empty (zero point) bin from the histogram constructed 

from the signal.  An initial decision point with this method considered by this author is to 

use a bin width of 0.05.  Figures 3-20 and 3-21 closely examine map 1’s (target) signal 

and map 4’s (non-target, road) signal using the zero-detection histogram method.  

Given targets represent a small class, they comprise only small percentage of 

pixels in proportion to the total number of pixels in an image.  Defining targets as a small 

class results in some telling characteristics of the frequency distribution constructed from 

the target class IC signal as shown in Figure 3-21.   
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Figure 3-21.  ARES 1F: Map 1 Potential Target Threshold Determination 

 

The frequency distribution drops sharply to a thin long tail in the direction of the target 

signal.  The distribution drops sharply due to the high concentration of the background 

ARES 1F: Map 1 (Target) Histogram, Zoomed
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pixels about the mean of zero.  The tail is long due to the high scores of the outlier target 

pixels.  The tail is thin due to the outlier target pixels representing, as just described, only 

a small proportion of the total pixels.  Thus, the resulting density of the tail will be quite 

low.  These characteristics contribute to the success of the zero-detection histogram 

method in detecting the breakpoint between potential target and background for the 

purposes of calculating PT SNR. 

 For this particular example, after applying the zero-detection histogram method, 

the variance of the pixels above the threshold are 10.50 and the variance of the pixels 

below the threshold are 0.0248.  Thus, calculating the PT SNR one has 

10
10.510 log 26.27 dB

0.0248
⎛ ⎞⋅ =⎜ ⎟
⎝ ⎠

. 

 In contrast to the characteristics of a frequency distribution constructed from a 

signal that isolates target, notice the characteristics of the frequency distribution 

constructed from a signal that isolates a larger class, such as the road in map 4 as shown 

in Figure 3-22.  The pixels are less concentrated about the mean (lower peak in the 

distribution) and a fatter tail in the direction of the road signal.  The peak is lower and the 

tail is fatter, due to the outlier road pixels representing a large class, a more substantial 

portion of the overall number of pixels.  Thus, as evidenced in the zoomed in portion of 

Figure 3-22, the tail is ‘fat’ with the first zero-detection not occurring until, nearly, the 

very end of the tail.  Therefore, the zero-detection histogram method determines this 

signal as having almost no pixels that would be considered potential targets.  For an 

independent component signal representing a large class, this methods results in a quite 

low PT SNR, -37.83 dB as detailed in Figure 3-22.  In conclusion, this new filter shows 
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promise at drawing a clearer separation between target maps and non-target maps than 

the KV filter.     

 

 
Figure 3-22.  ARES 1F: Map 4 Potential Target Threshold Determination 
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 Figure 3-23 shows the breakpoint decisions between background and potential 

target for the remaining IC signals and the corresponding PT SNR and max pixel score.  

Note that the target maps have the highest PT SNR and max pixel scores.  The non-target 

map with the highest PT SNR and max pixel score of 7.12 dB and 11.6 respectively is 

map 6.     

 
Figure 3-23.  ARES1F: PT SNR and Max Pixel Score for Each Signal  

with Potential Target Threshold Lines 
 

Notice map 6 highlights a small patch of vegetation pointed out in Figure 3-24.  This 

small patch meets the assumptions of targets (small, rare class).  Although, not as strong 
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as the other true target signals, such a phenomena could invariably produce false 

positives depending on the target threshold decision for the PT SNR and max pixel score.   

 
Figure 3-24.  ARES 1F: Highest SNR and Max Pixel Score of Non-target Map 

 

 For the remaining test images, these two new filters will be calculated for each IC 

signal to test if a clearer separation exists between targets and non-targets using these 

measures.  The experiment will be replicated 100 times to check for variability in each of 

the new filters for each IC signal in each test image.  Summarized results will appear in 

subsequent tables for each of the test images.  The maps will be sorted in descending 

order according to PT SNR.  Map numbers will stay consistent with the numbers given 

according to the KV ranking.   
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Table 3-7.  ARES 1F: New Target Feature Filters Summary 100 Reps 
Target Maps Highlighted in Gray 

 
 

Table 3-8.  ARES 2F: New Target Feature Filters Summary 100 Reps 
Target Maps Highlighted in Gray 

 
 

Abundance Map Mean KV Var KV Mean Max Score Var Max Score Mean PT SNR Var PT SNR
Map 1 109.31 7.34E-27 15.40 1.00E-10 26.27 5.10E-29
Map 2 58.73 1.27E-09 15.03 6.32E-08 14.43 1.27E-29
Map 3 34.70 8.75E-09 14.98 2.73E-09 10.95 5.10E-29
Map 6 9.22 7.35E-08 11.63 2.66E-08 7.12 2.23E-09
Map 8 5.45 2.38E-07 9.36 2.78E-05 2.63 2.60E-02

Map 10 3.75 1.12E-07 8.65 2.26E-04 0.97 4.92E-03
Map 11 3.61 9.94E-10 6.89 3.34E-05 -0.17 1.13E-02
Map 12 3.46 4.01E-07 6.50 2.40E-05 -1.99 1.34E-02
Map 7 5.55 1.64E-07 7.38 6.15E-06 -2.54 7.55E-05
Map 5 14.17 3.66E-09 6.86 9.66E-09 -5.06 8.30E-08

Map 14 3.27 8.91E-07 5.47 7.96E-05 -6.96 5.36E-04
Map 9 4.84 5.31E-06 6.15 3.21E-05 -9.52 1.37E-01

Map 15 2.34 1.72E-08 3.60 5.02E-08 -12.18 7.16E-05
Map 13 3.31 8.62E-06 4.73 6.24E-04 -13.28 1.66E-02
Map 4 16.37 2.12E-08 5.93 2.93E-09 -37.78 2.15E-03

Abundance Map Mean KV Var KV Mean Max Score Var Max Score Mean PT SNR Var PT SNR
Map 1 165.82 385.20 28.52 0.17 21.06 0.27
Map 2 157.35 543.28 27.19 0.60 19.72 2.08
Map 4 107.71 581.35 25.40 3.74 18.83 1.98
Map 3 111.52 537.88 26.00 2.64 18.72 2.57
Map 5 92.80 73.50 23.57 1.87 17.71 0.38
Map 6 87.76 129.30 22.90 1.44 17.27 0.93
Map 7 79.67 113.61 22.45 2.98 15.94 1.35
Map 8 63.76 21.82 22.33 0.57 15.70 0.07
Map 9 62.64 13.33 22.63 1.38 15.63 0.46

Map 10 60.57 14.30 21.26 0.39 15.34 0.29
Map 11 58.28 45.11 19.59 8.31 13.07 48.16
Map 12 52.26 119.11 17.00 13.71 8.68 97.15
Map 14 17.76 58.41 9.01 8.80 -9.61 106.79
Map 13 34.13 62.94 10.02 5.21 -12.55 92.07
Map 15 8.76 14.26 5.76 5.52 -18.83 340.65
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Table 3-9.  ARES 1D: New Target Feature Filters Summary 100 Reps 
Target Map Highlighted in Gray 

 
 

Table 3-10.  ARES 2D: New Target Feature Filters Summary 100 Reps 
Target Maps Highlighted in Gray.   

Lighter Highlighted Maps (9 and 11) Denote Indifference. 

 
 

 First, notice in all four images that the majority of the 25 non-target signals have a 

negative mean PT SNR.  Only 7 out of the 25 non-target signals have positive mean PT 

SNR.  Particularly, large classes such as road, ARES 1F map 4, and forest, ARES 2F map 

15, have the most negative mean PT SNR.  For the 26 target signals, 24 have a mean PT 

SNR greater than 10 dB.  Of those target maps below a mean of 10 dB, ARES 1D map 3 

and ARES 2F map 12 have mean PT SNRs of 4.56 dB and 8.68 dB respectively.   

 With regard to the other filter, max pixel score, 21 out of 25 non-target signals 

have a mean max pixel score less than 10.  Of the 4 non-target signals that have a mean 

Abundance Map Mean KV Var KV Mean Max Score Var Max Score Mean PT SNR Var PT SNR
Map 1 51.00 3.19E-06 18.52 4.06E-06 8.04 2.32E-01
Map 3 8.46 1.59E-04 11.74 1.37E-03 4.56 1.77E-01
Map 2 17.50 1.44E-05 12.04 3.85E-06 1.52 1.18E-03
Map 6 4.64 1.17E-04 6.77 1.87E-04 -5.34 2.09E-03
Map 8 2.44 2.49E-07 4.62 1.40E-06 -5.59 3.11E-02
Map 4 6.15 1.08E-06 6.29 7.29E-07 -10.25 5.44E-03
Map 7 3.72 2.96E-05 5.48 8.14E-05 -10.81 1.14E+00
Map 5 5.97 7.04E-07 5.66 9.50E-07 -18.25 1.76E-04

Abundance Map Mean KV Var KV Mean Max Score Var Max Score Mean PT SNR Var PT SNR
Map 2 532.67 1.48E-07 30.05 2.57E-07 34.70 1.48E-07
Map 3 485.71 3.52E-05 30.38 6.59E-07 28.23 5.17E-08
Map 1 1172.90 1.25E-02 58.24 1.56E-07 25.73 1.16E-05
Map 5 282.31 6.97E-06 24.97 8.06E-07 23.71 2.49E-08
Map 4 290.39 1.32E-02 28.29 3.40E-06 20.74 7.41E-03
Map 6 132.79 6.51E-03 24.18 3.08E-07 18.32 4.62E-02
Map 7 100.61 2.46E-02 16.98 1.24E-04 17.14 1.70E-04
Map 8 76.37 1.23E-04 18.82 2.76E-05 15.54 2.02E-03
Map 9 22.46 2.99E-01 14.91 1.22E-02 12.95 1.79E-02

Map 11 8.62 7.87E-05 15.65 7.79E-05 10.91 6.88E-02
Map 12 4.10 6.31E-07 8.71 7.64E-06 8.41 3.66E+00
Map 13 2.70 3.83E-06 7.02 1.21E-05 1.94 1.57E-03
Map 10 12.78 3.15E-03 7.61 1.61E-04 -5.60 2.47E-02
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max pixel score greater than 10, only 3 have a mean PT SNR that are positive with mean 

PT SNR’s of 8.04 dB (ARES 1D map 1, large rock or bush feature), 7.12 dB (ARES 1F 

map 6, small patch of vegetation feature) and 1.52 dB (ARES 1D map 2 small numerous 

rocks or bushes feature).  All 26 target signals have a mean max pixel score above 10.  

 Figure 3-25 plots all 49 IC signal values for the four test images in the new 

feature space defined by the max pixel score filter and the PT SNR filter.  Notice, in this 

new space it is possible to define an uncertainty region with only 2 non-target maps, a 

substantial improvement over the KV feature space where the smallest uncertainty region 

included 9 non-target maps.  The non-target maps in the uncertainty region are ARES 1D 

map 1 and ARES 1F map 6.   

 
Figure 3-25.  Smallest Possible Uncertainty Region in Max Score and  

PT SNR Feature Space that Includes all Target Maps 
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Other than defining the smallest uncertainty region that contains all target maps 

based on the training test set’s target and non-target signal values in this two-dimensional 

feature space, one could use a quadratic discriminant function trained on these values.  

The quadratic discriminant function defines as follows (Bauer, 2007:88): 

 ( ) ( ) ( ) ( )1
0 0 0

1 1ln ln
2 2

TQ
i i i ii i

d X S X S X Pμ μ−= − − − − +                   (3.2) 

where 

 Q
id ≡  quadratic discriminant score for the thi population denoted iρ  

 0X ≡ exemplar in question (i.e. the values of a map in the feature space) 
 iS ≡ population i sample covariance 
 

i
μ ≡mean vector for population i in feature space 

 iP ≡ prior probability of being in population i 

 0X  belongs to iρ  if ( ) ( ) ( )( )0 0 01 ,...,Q Q Q
i gd X MAX d X d X=  

 
Assuming multivariate normality, using Bayes’ rule, the posterior probability of 

belonging to iρ  with K populations calculates as follows (Bauer, 2007:95): 
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Figure 3-26.  Group Classifications Based on Quadratic  

Discriminant Score with Misclassifications Labeled 
 

Figure 3-26 shows the results of using the quadratic discriminant function to 

classify the target and non-target maps.  Misclassified maps are labeled.  The posterior 

probability of ARES 1D Map 1, a non-target map, belonging to the target population 

calculates to 0.99 and ARES 1D map 3, a target map, belonging to the non-target 

population calculates to 0.85.   

Wishing to err on the side of including some non-target maps so that no target 

maps are misclassified as non-target maps given the view of an anomaly detector as a 

preprocessing algorithm prior to execution of a signature algorithm, all maps that fall into 

the uncertainty region in Figure 3-25 will be classified as targets in subsequent validation 

images.  Thus, any map with a PT SNR greater than 2 dB and a max pixel score greater 
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than 10 will be classified as a target.  Use of the trained quadratic discriminant function 

will not be employed.   

 

3.4 Target Pixel Identification Improvements via Iterative Adaptive Noise Filtering 

 After identifying which IC signal corresponding to the displayed abundance maps 

isolate potential targets, one must determine from those signals which pixels are targets 

pixels.  As previously discussed the zero-detection histogram method appears from the 

test images to be well suited to identify which pixels belong to small, rare objects.  

However, the target signals can have significant noise that can result in several false 

positive detections.  One technique not exploited in the current literature to improve 

target pixel identification is an adaptive filter.  First, one should reshape the ICA signal 

into the original images pixel length by width, so that targets are again clustered in their 

true physical location.  An adaptive filter has the desirable property of smoothing 

‘heavily’ the part of the signal where the variance is close to overall system noise and 

smoothing ‘little’ the part of the signal where the variance is significantly higher than 

overall system noise.  Thus, after completing the adaptive smoothing, the effects of noise 

during detection are minimized while not significantly reducing the target signals.  The 

effect should improve target detection in terms of increasing TPF and percent TGT while 

reducing FPF, the measures of performance explained in section 3.1.2.   

 Let N and M be the pixel length by width respectively of a moving smoothing 

window.  At each stop the mean score and variance of the pixel neighborhood is 

calculated via (3.3) below. 
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where 

 ( )1 2,a n n ≡  a pixel at location ( )1 2,n n  in neighborhood η  
 μ ≡  mean pixel score in neighborhood η  
 2σ ≡  variance of pixel score in neighborhood η  

The current pixel score is replaced with the smoothed or filtered score via (3.4) below. 

( ) ( )
2 2

1 2 1 22, ,b n n a n nσ νμ μ
σ
−

= + −⎡ ⎤⎣ ⎦                                         (3.4) 

where 

 ( )1 2,b n n ≡ new pixel score  

 2ν ≡ system noise variance (noise power level for the signal) 
 Note: if 2ν is not known the algorithm uses the average of all the locally  
 estimated variances as the estimate of 2ν   
 

Consider an example of a neighborhood where 2σ is high in relation to 2ν , i.e. a 

neighborhood with potential targets.  Let 2σ =50, 2ν =  1 and 15μ = .  Suppose a pixel 

score in the neighborhood is ( )1 2, 12a n n = .  Then 

( ) ( )1 2
50 1, 15 12 15 15 .98 3 12.06

50
b n n −

= + − = − ⋅ = .  Thus, the new pixel score is nearly 

the same as the old pixel score.  Conversely, consider a neighborhood where 2σ  is 

similar in relation to 2ν , i.e. a neighborhood that could be considered background.  Let 

2 1.4σ = , 2ν =  1 and 1.9μ = .  Suppose a pixel score in the neighborhood 
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is ( )1 2, 5a n n = , an errant pixel score compared to the mean of its local neighborhood.  

Then ( ) ( )1 2
1.4 1, 1.9 5 1.9 1.9 .286 3.1 1.013

1.4
b n n −

= + − = − ⋅ = .  Thus, the possibly noise 

pixel with a score of 5 is reduced substantially to 1.013.  Hence, the algorithm is 

classified as an adaptive filter due to its changing level of filtering based on local 

behavior of the signal.  This algorithm exists in the Image Processing Toolbox of 

MATLAB named ‘wiener2’ denoting the algorithm as an adaptive Wiener filter.   

 An important decision for this algorithm is choice of window size.  A window 

size too large, could adversely affect target signals by reducing their score.  This happens 

due to the fact that the larger the window size the smaller the neighborhood variance.  As 

previously described, for neighborhoods with smaller variance or variance closer to the 

system noise variance, the adaptive filter applies more smoothing.  Thus, target pixels 

will be smoothed more than desired.  A smaller window will prevent this occurrence.  

However, with a small window, neighborhoods with just background pixels will not be 

smoothed as much since smaller neighborhoods will undoubtedly have larger variance 

and an adaptive algorithm applies little smoothing to neighborhoods with larger 

variances.  In order to substantially smooth the background but not target pixels, this 

author suggests that the answer is to use a small window size, but repeat the algorithm, 

i.e. an iterative smoothing, to continually reduce the power of the background while 

maintaining the power of the target signal.   

 Consider for example ARES 1D map 3 signal presented below in Figure 3-27.  

A small window size of 3 x 3 was used and the wiener2 algorithm was applied 20 times.  

Notice the power of the target signal was not adversely affected, but the power of the 
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background was reduced substantially as predicted.  Notice further the effect to the 

abundance map.  The background is now near black with target pixels remaining white. 

 
Figure 3-27.  ARES 1F: Map 3 Results after Applying  
Adaptive Noise Filter with 3 x 3 window size 20 times 

 

 Recall the uncertainty region defined in Figure 3-25.  To further improve detector 

performance in this region, maps that fall into this category will be smoothed more 

aggressively since the PT SNR of these maps is lower.  Low SNR being indicative of 

weaker target signal and stronger noise signal, completing more iterations of the adaptive 

filter should improve detector performance of true target maps in the uncertainty region 
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by reducing the presence of the stronger background power.  Figure 3-28 illustrates the 

benefit of increased iterations of the adaptive noise filter in this region.   

 
Figure 3-28.  ARES 1D: Map 3 Results after Applying 

Iterative Adaptive Noise Filter with 3 x 3 window size 20 and 100 times 
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 After target feature selection for ARES 1D, maps 1 and 3 are selected as potential 

target maps based on meeting the criteria of having PT SNRs above 2 dB and max pixel 

scores above 10.  Figure 3-29 details the target identification process without adaptive 

noise filtering using the zero-detection histogram method to set the threshold between 

background pixels and target pixels.  On the left are the IC signals corresponding to the 

abundance maps in the middle.  The line in the signals represents threshold determined 

by the zero-detection histogram with a bin width of 0.05.  The right of the figure presents 

the pixels identified as potential targets.   

 
Figure 3-29.  ARES 1D: Target Identification without Iterative  

Adaptive Noise Filtering, False Positives in Red 
 

 For contrast Figure 3-30 details the target identification with iterative (100 

iterations) adaptive noise filtering.  As predicted, TPF improved from 71.2% to 84.0%, 

FPF decreased from 0.42% to 0.19%, and percent TGT increased from 41.6% to 65.6%.  
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Notice that for the retained non-target map, the adaptive noise filtering removed all 

signals except the strongest signals corresponding to the upper right and lower left large 

rock or bush feature.  The numerous smaller rocks or bushes were removed being 

smoothed into the background.  In conclusion, only the strongest, rare, and small class 

signals remain, a desirable effect for a global anomaly detector that precedes a signature 

matching algorithm.  

                                                                                                          
Figure 3-30.  ARES 1D: Target Identification with Iterative  

Adaptive Noise Filtering, False Positives in Red 
100 Iterations Due to Both Classes Being in Uncertainty Region 

 

 The following figures show target identification for the remaining test images 

without and with iterative adaptive noise filtering.   
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                            9/9 Targets                                                    9/9 Targets 
 

Figure 3-31.  ARES 1F: Target Identification without (left) and with (right)  
Iterative Adaptive Noise Filtering, False Positives in Red  
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                                 30/30 Targets                                   29/30 Targets 
 

Figure 3-32.  ARES 2F: Target Identification without (left) and with (right)  
Iterative Adaptive Noise Filtering, False Positives in Red 
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                                    46/46 Targets                              40/46 Targets 
 

Figure 3-33.  ARES 2D: Target Identification without (left) and with (right) 
Iterative Adaptive Noise Filtering, False Positives in Red 

 

For all cases FPF reduced and percent TGT increased.  With the exception of ARES 2D, 

TPF increased.  The reduction in TPF in ARES 2D resulted from the elimination of some 

of the true targets during smoothing.  Also, although TPF improved for ARES 2F, one 

target was eliminated during smoothing.  For some images with extremely small targets 

(only a few pixels in size), this could be an unavoidable tradeoff.  Otherwise, the user 

may wish to perform less or no smoothing if expected targets are extremely small. 
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3.5 New Unsupervised Target Detection Algorithm (AutoGAD) 

 This section details the proposed unsupervised target detection algorithm in 

Figure 3-34 based on the results from the test images of the preceding sections.  New 

contributions from this author to the field of global anomaly detection using ICA to solve 

the LMM include: 

1.  Autonomous dimensionality determination via MDSL. 

2.  Autonomous selection of target features based on a PT SNR filter which uses 
the zero-detection histogram method to determine separation between 
potential targets pixels and background pixels.  After this determination, 
pixels above threshold are used to calculate potential target signal power and 
below threshold are used to calculate background noise power. 

 
3.  Use of a secondary autonomous target feature filter, max pixel score, whose 

threshold must also be met in addition to the PT SNR filter.  Thus, a two 
dimensional feature space is created rather than the one dimensional KV 
feature space. 

 
4.  Use of an iterative adaptive noise (coined IAN) filtering technique on selected 

target feature signals prior to using the zero-detection histogram method to 
autonomously identify target pixels. 

 
The algorithm will be referred to as the Autonomous Global Anomaly Detector or 

AutoGAD.  The algorithm is detailed in Figure 3-34. 
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Figure 3-34.  AutoGAD Target Detection Algorithm 

 

 The AutoGAD algorithm in Figure 3-34 was applied to each of the test images 

100 times to check for variability across the three measures of performance and 

computational time.  An additional measure of performance included will be the number 

of targets detected out of the total present for each iteration.  A target will be considered 

detected if at least one pixel from the target was detected.  Table 3-11 details the results.  

Since computational time is influenced by file size, Table 3-12 details the total number of 

elements (pixels x bands) of each image before and after dimensionality reduction.   
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Table 3-11.  AutoGAD Algorithm Results for Test Images (100 Reps) 
 

 
 

Table 3-12.  Test Image Statistics 
 

 

Mean TPF Var TPF Mean FPF Var FPF 
Mean 

Percent TGT
Var Percent 

TGT
Mean Time 

(sec) Var Time
No. TGTs 
Detected

ARES 1F 0.96 4.03E-30 0.0017 1.19E-36 0.96 6.10E-31 4.74 0.609 9 / 9 
ARES 2F 0.96 2.06E-05 0.0012 3.49E-07 0.87 3.08E-03 41.01 24.968 29 / 30
ARES 1D 0.84 4.03E-30 0.0025 1.28E-07 0.60 1.31E-03 6.64 0.284 6 / 6
ARES 2D 0.90 2.05E-06 0.0002 1.29E-08 0.99 1.72E-05 2.99 0.060 40 / 46

Min TPF Max TPF Min FPF Max FPF
Min Percent 

TGT
Max Percent 

TGT
ARES 1F 0.96 0.96 0.0017 0.0017 0.96 0.96
ARES 2F 0.95 0.97 0.0004 0.0028 0.74 0.95
ARES 1D 0.84 0.84 0.0019 0.0028 0.56 0.66
ARES 2D 0.90 0.91 0.0001 0.0005 0.98 1.00

Mean TPF Var TPF Mean FPF Var FPF 
Mean 

Percent TGT
Var Percent 

TGT
Mean Time 

(sec) Var Time
No. TGTs 
Detected

ARES 1F 0.96 4.03E-30 0.0017 1.19E-36 0.96 6.10E-31 4.74 0.609 9 / 9 
ARES 2F 0.96 2.06E-05 0.0012 3.49E-07 0.87 3.08E-03 41.01 24.968 29 / 30
ARES 1D 0.84 4.03E-30 0.0025 1.28E-07 0.60 1.31E-03 6.64 0.284 6 / 6
ARES 2D 0.90 2.05E-06 0.0002 1.29E-08 0.99 1.72E-05 2.99 0.060 40 / 46

Min TPF Max TPF Min FPF Max FPF
Min Percent 

TGT
Max Percent 

TGT
ARES 1F 0.96 0.96 0.0017 0.0017 0.96 0.96
ARES 2F 0.95 0.97 0.0004 0.0028 0.74 0.95
ARES 1D 0.84 0.84 0.0019 0.0028 0.56 0.66
ARES 2D 0.90 0.91 0.0001 0.0005 0.98 1.00

ARES 1D
Total No. of Elements

Original Image 57909 pixels x 210 bands = 12,160,890
After Removal of Absortion Bands 57909 pixels x 145 bands = 8,396,805

After PCA (MDSL decision) 57909 pixels x 8 bands = 463,272

No. Target Pixels = 672

ARES 2D
Total No. of Elements

Original Image 22,360 pixels x 210 bands = 4,695,600
After Removal of Absortion Bands 22,360 pixels x 145 bands = 3,242,200

After PCA (MDSL Decision) 22,360 pixels x 13 bands = 290,680

No. Target Pixels = 2465

ARES 1F
Total No. of Elements

Original Image 30,560 pixels x 210 bands = 6,417,600
After Removal of Absortion Bands 30,560 pixels x 145 bands = 4,431,200

After PCA (MDSL Decision) 30,560 pixels x 15 bands = 458,400

No. Target Pixels = 1980

ARES 2F
Total No. of Elements

Original Image 47,424 pixels x 210 bands = 9,959,040
After Removal of Absortion Bands 47,424 pixels x 145 bands = 6,876,480

After PCA (MDSL Decision) 47,424 pixels x 12 bands = 569,088

No. Target Pixels = 1528

ARES 1D
Total No. of Elements

Original Image 57909 pixels x 210 bands = 12,160,890
After Removal of Absortion Bands 57909 pixels x 145 bands = 8,396,805

After PCA (MDSL decision) 57909 pixels x 8 bands = 463,272

No. Target Pixels = 672

ARES 2D
Total No. of Elements

Original Image 22,360 pixels x 210 bands = 4,695,600
After Removal of Absortion Bands 22,360 pixels x 145 bands = 3,242,200

After PCA (MDSL Decision) 22,360 pixels x 13 bands = 290,680

No. Target Pixels = 2465

ARES 1F
Total No. of Elements

Original Image 30,560 pixels x 210 bands = 6,417,600
After Removal of Absortion Bands 30,560 pixels x 145 bands = 4,431,200

After PCA (MDSL Decision) 30,560 pixels x 15 bands = 458,400

No. Target Pixels = 1980

ARES 2F
Total No. of Elements

Original Image 47,424 pixels x 210 bands = 9,959,040
After Removal of Absortion Bands 47,424 pixels x 145 bands = 6,876,480

After PCA (MDSL Decision) 47,424 pixels x 12 bands = 569,088

No. Target Pixels = 1528
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 As shown in Table 3-11 on the previous page, the AutoGAD algorithm yields 

relatively consistent results in terms of low variability across TPF, FPF, and percent 

TGT.  Also, the number of targets detected for each image remained the same for each 

run.  Further, note the low computational times, all under a minute and for three of the 

images under 10 seconds.  Recall the computational times of 636 and 2,724 seconds (10.6 

and 45.4 minutes) for ARES 1F and ARES 1D respectively that resulted from computing 

the MSV in Koo’s two-phase filtering approach.  Further, the two-phase filtering 

approach could not be validated to consistently nominate the same target features.  

According to Taitano, who used a local anomaly detector on ARES 1D, his Iterative RX 

detector (using a suggested local scanning window size of 21) took on average 290 

seconds (4.83 minutes) per iteration.  Retaining 5 principal components, his algorithm 

required 33 iterations to converge to a solution.  Thus, the average run time was 9,570 

seconds (159.9 minutes) (Taitano, 2007:85).  Further, his solution for ARES 1D had a 

TPF of 0.166 and an FPF of 0.01 (Taitano, 2007:51).  AutoGAD’s run time for ARES 1D 

was on average 6.64 seconds and had a mean TPF of 0.84 and FPF of 0.0025.  

AutoGAD represents a substantial leap in performance in terms of accuracy and run time 

based on this comparison. 

 In chapter four, the AutoGAD algorithm will be applied to each of the 

validation images.  Further, sensitivity analysis will be performed to check the sensitivity 

of the zero-detection histogram method in the neighborhood of the 0.05 bin width 

decision for all test and validation images.  The method is used in two phases of the 

detection process.  First in the target feature selection phase, this method is used to 

determine the breakpoint between potential target and background for the PT SNR 
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calculation.  Second, the method is used to identify the target pixels in the selected target 

features.  If the neighborhood around this decision point in the target feature selection 

and target identification phases across the test and validation images is not volatile in 

terms of variability in the response (TPF, FPF, percent TGT), then one might conclude 

that the decision is possibly a robust one for images other than the ones available for this 

research.   
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IV. Results and Analysis 

4.1 Validation Images 

 The AutoGAD algorithm will be applied to the images in Figure 4-1 and 4-2.  

ARES 4F in Figure 4-1 will be especially challenging due to partially hidden and some 

completely hidden targets under the tree line.  Note, the images in Figure 4-2 are absent 

of targets.  Since it is likely most target searches in rural environments will survey areas 

with no true targets, images with no targets should be included in the testing of the 

AutoGAD algorithm. 

                                                    ARES 3F             ARES 4F 
                                                   20 Targets           29Targets 
 

Figure 4-1.  HSI Validation Images with Targets 
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                                ARES 1C                             ARES 2C 
 

Figure 4-2.  HSI Validation Images without Targets 
(‘C’ denotes Clear of Targets) 

 

4.2 Overview of Validation Image Results Presentation 

 For each of the validation images, the section 4.3 will detail: 

1. The dimensionality decision via MDSL. 

2. The abundance maps and independent component signals with decision line 
between potential target and background via zero detection histogram method. PT 
SNR and max pixel score will display above each signal. 

 
Note, maps are no longer presented in order of KV.   
Maps will be presented in the random ICA solution 
order.   

 
3. Target signals and target abundance maps after IAN filtering. 
 
4. Binary target identification map without and with IAN filtering with TPF, FPF, 

and percent TGT labeled. 
 
 Section 4.4 will include: 
 

1. Results from 100 replications to check for variation in TPF, FPF, and percent 
TGT. 
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2. All validation image abundance vector’s values in the PT SNR and max pixel 
score feature space in the same scale as the test image feature space in Figure 3-
26. 

 
3. Sensitivity analysis of the histogram bin width decision for target feature selection 

and target identification. 
 
 

4.3 Validation Image Results 

 Results for ARES 3F 

 
Figure 4-3.  ARES 3F: Dimensionality Decision via MDSL 

 

 As in the test images, the shape of the eigenvalue curve on a log scale reveals the 

tilted ramp that locates the eigenvalues of the covariance matrix of the noise term in the 

LMM.  The MDSL method effective locates the ‘knee’ and as evidenced by Figure 4-4, 

this dimensionality determination is sufficient to separate target classes from non-target 

classes after unmixing the reduced dimension data set. 

14th eigenvalue has maximum 
distance from line. Thus, keep 
components 1 – 13.

14th eigenvalue has maximum 
distance from line. Thus, keep 
components 1 – 13.
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Figure 4-4.  ARES 3F: Abundance Maps from 13 ICs via MDSL Decision 

Maps 2, 3, 4, 10, and 12 isolate 17 out of 20 targets when considering only positive 
outliers (white appearance).  Targets not isolated are circled on truth mask and in map 7 
where they are convoluted with the non-target class of road.  Circled targets in map 10 
illustrate negative outlier targets.  Considering positive and negative outliers, 20 out of 20 
targets are isolated. 
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 Notice during the target feature selection phase in Figure 4-4, AutoGAD correctly 

selected the maps that isolate target features based on the new filters of PT SNR and max 

pixel score.  Non-target classes had PT SNRs below 0 dB, while target classes had PT 

SNRs well above the PT SNR threshold of 2 dB and max pixel score of 10.   

 Further, notice map 10 isolates some of the panel targets in the lower part of the 

image denoted by their white pixel appearance with respect to the rest of the image.  

Thus, these pixels have positive outlier scores on the corresponding signal plot.  Circled 

in map 10 are target pixels that appear near black, some of which are the same targets that 

are convoluted with the road feature as circled in map 7 when considering only positive 

outlier signal scores.  These pixels have outlying negative scores on the corresponding 

signal plot for map 10.  Thus, one has an IC with target pixels that are both positive and 

negative outliers on the signal.  This example illustrates one of the pitfalls with ICA not 

conforming to the non-negativity constraint of the LMM.  Recall that after the application 

of FastICA, due to the ambiguity of the sign of the scores, the author’s proposed 

algorithm reorients each signal such that the highest absolute magnitude score is made 

positive.  During target identification only the side of the signal with the highest absolute 

magnitude score is considered when using the zero-detection histogram to determine the 

target threshold.  Perhaps after IAN filtering, thresholding can be accomplished to check 

for positive and negative outliers.  The algorithm in Figure 3-34 will be modified to 

compare results of thresholding just the positive side of the signal and thresholding both 

sides.    
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Figure 4-5.  ARES3F: PT SNR and Max Pixel Score for Each Signal 

with Potential Target Threshold Lines 
 

 Figure 4-5 illustrates the zero-detection histogram method effectively determining 

the breakpoint between outlier pixels (potential targets) and the background.  In the 5 

selected signals denoted by the potential target label, notice visually the difference in 

variability between the pixels above the threshold versus those below.  Hence those 

signals have PT SNRs higher than the PT SNRs of the other signals.  Further notice in 

map 7 and 8 the ‘bulge’ in the corresponding signal plots.  These bulges correspond to 

Negative Target Pixels
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the large classes of road and bare earth patch respectively in map 7 and 8 in Figure 4-4.  

Given these are large classes, as discussed previously, the tails of the frequency 

distribution will be ‘fatter’ relative to those signals with targets.  Thus, the first zero bin 

does not occur until the near the end of the tail as evidenced by the breakpoint in the 

signal plot not occurring until the top of the bulge.  Thus, as in the test images, large non-

target classes have low PT SNR.   

 
Figure 4-6.  ARES 3F: Target Abundance Maps after 20 iterations of IAN Filtering 

Filtered FilteredFiltered

FilteredFiltered

Filtered FilteredFiltered

FilteredFiltered
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 As intended, notice in the abundance maps in Figure 4-6 on the previous page and 

below in the signal plots in Figure 4-7 how after IAN filtering much of the detail 

associated with the background has been ‘smoothed’ out while target detail is still 

apparent. 

 
Figure 4-7.  ARES 3F: Target Signals after IAN Filtering with  

Positive Signal Target Identification Threshold 
 

Also shown in Figure 4-7, in addition to target pixels that can be negative outliers, 

thresholding to check for both positive and negative outliers in selected target feature 

signals will include more false positive detections for situations where non-target pixels 

are also negative outliers.  Positive and negative thresholding using the zero-detection 

histogram method is detailed in Figure 4-8.  The additional thresholding on the negative 

Negative Target Pixels Negative Non-Target PixelsNegative Target Pixels Negative Non-Target Pixels
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side will include the negative outlying target pixels in the signal for map 10 but also 

include false positive pixels corresponding to the negative outliers in the signal for map 

12.   

 
Figure 4-8.  ARES 3F: Target Signals after IAN Filtering with 
Positive and Negative Signal Target Identification Threshold 
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Figure 4-9.  ARES 3F: Target Identification, False Positives in Red 

(1) without and (2) with IAN Filtering 
(a) Positive Threshold (b) Positive and Negative Threshold 

 

As shown in Figure 4-9, IAN filtering reduces FPF and increases TPF and percent TGT 

when comparing (1) images to (2) images.  Although, TPF increased, 2 smaller panel 

(2b)(2a)

15/20 Targets 17/20 Targets

(1a) (1b)

17/20 Targets 19/20 Targets

(2b)(2a)

15/20 Targets 17/20 Targets

(2b)(2a)

15/20 Targets 17/20 Targets

(1a) (1b)

17/20 Targets 19/20 Targets

(1a) (1b)

17/20 Targets 19/20 Targets
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targets (lower right) where eliminated during the smoothing in (2) images.  Further, when 

comparing (a) images to (b) images, thresholding on both sides results in an increase in 

the number of targets detected and TPF, but increases FPF and decreases percent TGT as 

discussed when analyzing the signal plots in Figure 4-7.  The user should be aware of 

these tradeoffs when employing the algorithm and choose whether or not to threshold on 

both sides and/or employ IAN filtering depending the user’s priorities concerning the 

measures of performance, TPF, FPF, percent TGT, and number of targets detected.   

 Results for ARES 4F 

 
Figure 4-10.  ARES 4F: Dimensionality Decision via MDSL 

 

 As with ARES 3F, again the eigenvalue curve reveals the tilted ramp and the 

MDSL method effectively locates the knee.  

15th eigenvalue has maximum 
distance from line. Thus, keep 
components 1 – 14.

15th eigenvalue has maximum 
distance from line. Thus, keep 
components 1 – 14.
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Figure 4-11.  ARES 4F: Abundance Maps from 15 ICs via MDSL Decision 

Maps 1, 2, 5, 6-8, 10-12, and 14 isolate 29 out of 29 targets.  Although, some targets have 
weak positive signal as evidenced by the low white target pixel intensity in the gray scale.  
Although not selected as a potential target map due to large class of bare earth, circled in 
map 9 are negative outlier target pixels.  Further, circled in map 13 are intense pixels 
corresponding to trees, a non-target class convoluted with target classes in the same map. 
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 AutoGAD correctly selects the maps that isolate target features based on the PT 

SNR and max pixel score filter except for map 13.  Although, some target’s pixels are 

highlighted in the map, some intense pixels corresponding to trees are also isolated.  This 

will contribute to more false positives during target identification.  Also, notice in map 9, 

a non-target feature of bare earth, targets appear as negative outliers.  However, this 

feature was not selected due to PT SNR begin calculated by considering the power 

(potential target pixel variability) of the positive part of the signal only.  Whereas 

AutoGAD was modified to threshold on both sides of the signal for ARES 3F, this 

modification only applied to those maps kept during target feature selection.  During 

target feature selection PT SNR is only calculated for the positive outliers in the IC 

signal.  Perhaps, a future modification to AutoGAD would also calculate the PT SNR of 

the negative side of the signal so that maps with negative outliers are not necessarily 

discluded from entry into the target identification phase as was the case here due to the 

PT SNR of the positive side falling below the PT SNR threshold.  If the PT SNR of one 

side was greater than that of the other side and above the PT SNR threshold for targets, 

then that map could be selected as a target map.  During the target identification phase, 

the side with the higher PT SNR would only considered during thresholding to locate 

target pixels.  This endeavor will be left to subsequent researchers employing the 

AutoGAD algorithm as an area of future research.  For this research effort, PT SNR will 

continue to be calculated from the positive side of the signal which is determined during 

initial signal processing to be the side with the highest absolute magnitude score.   
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Figure 4-12.  ARES 4F: PT SNR and Max Pixel Score for Each Signal 

with Potential Target Threshold Lines 
 

 As with ARES 3F, Figure 4-12 illustrates the zero-detection histogram method 

again effectively determining the breakpoint between outlier pixels (potential targets) and 

the background.  Notice in the signal corresponding to map 13, the tree outlier pixels on 

the left of the signal.   
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Figure 4-13.  ARES 4F: Target Abundance Maps after IAN Filtering 

 

Filtered Filtered Filtered

FilteredFilteredFiltered

Filtered Filtered Filtered

Filtered

FilteredFiltered Filtered Filtered
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 As with ARES 3F, notice in the abundance maps in Figure 4-13 on the previous 

page and below in the signal plots in Figure 4-14 how after IAN filtering much of the 

background detail has been filtered out while target detail is still apparent.  However, 

notice in map 13 the variability (power) of the tree outliers in the left side of the signal in 

Figure 4-14 was significant enough to not be smoother out with IAN filtering.  One can 

also see the intense pixels remain in the corresponding abundance map in Figure 4-13.  

  
Figure 4-14.  ARES 4F: Target Signals after IAN Filtering with  

Positive Signal Target Identification Thresholds 
 

Negative Target Pixels Negative Non-Target Pixels 
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Figure 4-15.  ARES 4F: Target Signals after IAN Filtering with 
Positive and Negative Signal Target Identification Thresholds 

  

 As with ARES 3F, thresholding on both sides of the smoothed signal was 

accomplished to check for positive and/or ill effects.   
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Figure 4-16.  ARES 4F: Target Identification, False Positives in Red 

(1) without and (2) with IAN Filtering 
(a) Positive Threshold (b) Positive and Negative Threshold 
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 As with ARES 3F in Figure 4-16, IAN filtering reduces FPF and increases percent 

TGT when comparing (1) images to (2) images.  TPF decreased due to some panel 

targets, as before, being eliminated during smoothing.  When comparing (2a) images to 

(2b) images, thresholding on both sides results in no difference in performance.  

However, with no IAN filtering, comparing (1a) to (1b), thresholding on both sides 

increases false positives, but does not increase the number of targets detected. 

 It should be noted that AutoGAD’s result of locating 21/29 targets with a TPF of 

0.85 and FPF of 0.003 (2a and 2b) is a significantly positive result in light of the many of 

the targets being hidden under the tree line.  More on the significance of this result will 

be discussed in chapter 5. 

 Results for ARES 1C 

 
Figure 4-17.  ARES 1C: Dimensionality Decision via MDSL 

 

9th eigenvalue has maximum 
distance from line. Thus, keep 
components 1 – 8.

9th eigenvalue has maximum 
distance from line. Thus, keep 
components 1 – 8.
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 In Figure 4-17, the MDSL method presents another successful location of the 

knee in the eigenvalue curve determining 9 endmembers. 

 
Figure 4-18.  ARES 1C: Abundance Maps from 8 ICs via MDSL Decision 

No maps are above PT SNR and max pixel score thresholds 
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 Figure 4-18 and 4-18 illustrate a significant positive result of AutoGAD’s ability 

to recognize an image that has no targets based on the PT SNR and max pixels score 

filters.  Recall, by using the KV filter, having set the threshold for target detection to the 

lowest KV value for an image with targets, as explained in Figure 3-19, the road would 

have been deemed a target.  However, based on the feature space characterized by the 

two new filters, the road feature falls into the non-target class.  Thus, during feature 

selection AutoGAD eliminates all maps as potential targets. 

  
Figure 4-19.  ARES 1C: PT SNR and Max Pixel Score for Each Signal 

with Potential Target Threshold Lines 
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 Results for ARES 2C 

 
Figure 4-20.  ARES 2C: Dimensionality Decision via MDSL 

 

 Having now applied the MDSL method to eight sample HSI images, it appears 

that if the shape of the eigenvalue curve of the covariance matrix of the spectral data 

conforms to the theoretical shape that occurs under the LMM (see Stocker citation) where 

noise eigenvalues lie on a tilted ramp and eigenvalues representing the distinct spectral 

signals in the image lie above the knee, then the MDSL method locates this point 

effectively.  As with any new method, the success of the MDSL method should be 

compared to other means of approximating the breakpoint between noise and signal 

eigenvalues over many more HSI images.  Based on this subset of images, this method is 

fast and effective and thus, indicates promise. 

12th eigenvalue has maximum 
distance from line. Thus, keep 
components 1 – 11.

12th eigenvalue has maximum 
distance from line. Thus, keep 
components 1 – 11.
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Figure 4-21.  ARES 2C: Abundance Maps from 11 ICs via MDSL Decision 

Maps 3 and 8 are above PT SNR and max pixel score thresholds and thus, are falsely 
declared target features.  Circled in these maps are the anomalies causing the false 
selection. 
 

 Unfortunately, AutoGAD selects two non-target anomalies as potential targets 

based in PT SNR and max pixels score.  Map 8 highlights small, rare, and spectrally 

unique bushes, the same definition for targets in the eyes of an anomaly detector.  Map 3 

highlights what appears to be some disturbed dust/earth on the dirt road.  Although, not a 

target, such a detection could indicate recent road use.  Regardless, this result highlights 

the need for fusion with a signature matching algorithm to eliminate these false positives 

as non-man-made objects. 
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Figure 4-22.  ARES 2C: PT SNR and Max Pixel Score for Each Signal 

with Potential Target Threshold Lines 
Circled in these signals are the anomalies causing the above threshold PT SNRs and max 
pixel scores. 
 

 
Figure 4-23.  ARES 2C: False Target Abundance Maps after IAN Filtering 

 

Filtered FilteredFiltered Filtered
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 After IAN filtering the non-target signal power is strong enough to remain and be 

detected during AutoGAD’s target identification phase. 

  
Figure 4-24.  ARES 2C: False Target Signals after IAN Filtering with  

Positive Signal Target Identification Thresholds 
 

                      
Figure 4-25.  ARES 2C: Target Identification, False Positives in Red 

without (left) and with (right) IAN Filtering 
 



 

4-26 

4.4 Critical Analysis 

 This section will provide some more in depth analysis of AutoGAD’s 

performance.  First this research will present a comparison of the feature space of the 

validation images to the feature space of the test images to check for similarities.  

Second, as with the test images, 100 runs were completed for each validation image to 

test the run-to-run variability of AutoGAD using FastICA across the measures of 

performance.  Finally, sensitivity analysis will be conducted on the zero-detection 

histogram bin width decision used during the target feature selection phase to calculate 

PT SNR and target pixel identification phase to determine target pixels. 

 

 4.4.1 Feature Space Comparison 

 Figure 4-26 shows the similarity of the feature spaces for the test and validation 

images.  In the validation image feature space, no target classes fell in the uncertainty 

region, but two non-target classes, labeled in the figure, lie in the region.  More images in 

multiple rural environments need to be tested using the PT SNR and max pixel score 

filters to further characterize the overlap between the classes.   
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Figure 4-26.  Max Score and PT SNR Feature Space for 

Test Images (top) and Validation Images (bottom) 
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4.4.2 Variability Analysis 

As with the test images, note the low run-to-run variability across the measures of 

performance.  Further the number of targets detected remained consistent for each run.  It 

should be noted that the source of variability is from FastICA, the algorithm that has a 

random initial starting point.  This is the reason for choosing the ‘pow3’ setting in 

FastICA since it was observed to have the minimum amount of run-to-run variance 

compared to ‘tanh’.  The other features of AutoGAD are deterministic.  Hence if one 

fixes the an initial staring point for FastICA by using the same position in the random 

number stream, AutoGAD will return the exact same results for the image regardless of 

the number of runs.   

Table 4-1.  AutoGAD Results for Validation Images (100 Reps) 

 
 

Mean TPF Var TPF Mean FPF Var FPF 
Mean Percent 

TGT
Var Percent 

TGT
Mean Time 

(sec) Var Time
No. TGTs 
Detected

ARES 3F 0.85 5.53E-05 0.0004 5.66E-10 0.92 3.15E-06 4.99 1.10 15 / 20 
ARES 4F 0.84 8.99E-06 0.0039 1.04E-06 0.71 0.0029 8.26 9.35 21 / 29
ARES 1C N/A N/A 0 0 N/A N/A 1.44 0.17 N/A
ARES 2C N/A N/A 0.0051 5.15E-07 N/A N/A 3.28 2.97 N/A

Positive Outlier Thesholding  

Min TPF Max TPF Min FPF Max FPF 
Min Percent 

TGT
Max Percent 

TGT
ARES 3F 0.84 0.86 0.0004 0.0005 0.92 0.93
ARES 4F 0.83 0.84 0.0028 0.0054 0.64 0.78
ARES 1C N/A N/A 0 0 N/A N/A
ARES 2C N/A N/A 0.0044 0.0083 N/A N/A

Mean TPF Var TPF Mean FPF Var FPF 
Mean Percent 

TGT
Var Percent 

TGT
Mean Time 

(sec) Var Time
No. TGTs 
Detected

ARES 3F 0.92 3.86E-06 0.0029 1.46E-07 0.66 0.0010 5.00 0.87 17 / 20
ARES 4F 0.85 6.59E-06 0.0042 1.35E-06 0.71 0.0033 9.02 6.79 21 / 29

Positive and Negative Oultlier Thresholding

Min TPF Max TPF Min FPF Max FPF 
Min Percent 

TGT
Max Percent 

TGT
ARES 3F 0.92 0.93 0.0020 0.0032 0.62 0.73
ARES 4F 0.84 0.85 0.0030 0.0061 0.63 0.77

Mean TPF Var TPF Mean FPF Var FPF 
Mean Percent 

TGT
Var Percent 

TGT
Mean Time 

(sec) Var Time
No. TGTs 
Detected

ARES 3F 0.85 5.53E-05 0.0004 5.66E-10 0.92 3.15E-06 4.99 1.10 15 / 20 
ARES 4F 0.84 8.99E-06 0.0039 1.04E-06 0.71 0.0029 8.26 9.35 21 / 29
ARES 1C N/A N/A 0 0 N/A N/A 1.44 0.17 N/A
ARES 2C N/A N/A 0.0051 5.15E-07 N/A N/A 3.28 2.97 N/A

Positive Outlier Thesholding  

Min TPF Max TPF Min FPF Max FPF 
Min Percent 

TGT
Max Percent 

TGT
ARES 3F 0.84 0.86 0.0004 0.0005 0.92 0.93
ARES 4F 0.83 0.84 0.0028 0.0054 0.64 0.78
ARES 1C N/A N/A 0 0 N/A N/A
ARES 2C N/A N/A 0.0044 0.0083 N/A N/A

Mean TPF Var TPF Mean FPF Var FPF 
Mean Percent 

TGT
Var Percent 

TGT
Mean Time 

(sec) Var Time
No. TGTs 
Detected

ARES 3F 0.92 3.86E-06 0.0029 1.46E-07 0.66 0.0010 5.00 0.87 17 / 20
ARES 4F 0.85 6.59E-06 0.0042 1.35E-06 0.71 0.0033 9.02 6.79 21 / 29

Positive and Negative Oultlier Thresholding

Min TPF Max TPF Min FPF Max FPF 
Min Percent 

TGT
Max Percent 

TGT
ARES 3F 0.92 0.93 0.0020 0.0032 0.62 0.73
ARES 4F 0.84 0.85 0.0030 0.0061 0.63 0.77



 

4-29 

Of important note are the low computation times for the images.  Mean times are all 

under 10 seconds.  Again, as with the test images, image files sizes are presented in Table 

4-2.  Reducing the image size via PCA using the MDSL decision significantly lowers the 

file size for each of the images enabling fast computation times for FastICA and 

AutoGAD’s target feature selection, IAN filtering, and then identification. 

Table 4-2.  Validation Image Statistics 

 
 

  

ARES 3F
Total No. of Elements

Original Image 30,736 pixels x 210 bands = 6,454,560
After Removal of Absortion Bands 30,736 pixels x 145 bands = 4,456,720

After PCA (MDSL Decision) 30,736 pixels x 13 bands = 399,568

No. Target Pixels = 459

ARES 4F
Total No. of Elements

Original Image 16,400 pixels x 210 bands = 3,444,000
After Removal of Absortion Bands 16,400 pixels x 145 bands = 2,378,000

After PCA (MDSL Decision) 16,400 pixels x 14 bands = 229,600

No. Target Pixels = 448

ARES 1C
Total No. of Elements

Original Image 21,924 pixels x 210 bands = 4,604,040
After Removal of Absortion Bands 21,924 pixels x 145 bands = 3,178,980

After PCA (MDSL Decision) 21,924 pixels x 8 bands = 175,392

No. Target Pixels = 0

ARES 2C
Total No. of Elements

Original Image 24,552 pixels x 210 bands = 5,155,920
After Removal of Absortion Bands 24,552 pixels x 145 bands = 3,560,040

After PCA (MDSL Decision) 24,552 pixels x 8 bands = 196,416

No. Target Pixels = 0

ARES 3F
Total No. of Elements

Original Image 30,736 pixels x 210 bands = 6,454,560
After Removal of Absortion Bands 30,736 pixels x 145 bands = 4,456,720

After PCA (MDSL Decision) 30,736 pixels x 13 bands = 399,568

No. Target Pixels = 459

ARES 4F
Total No. of Elements

Original Image 16,400 pixels x 210 bands = 3,444,000
After Removal of Absortion Bands 16,400 pixels x 145 bands = 2,378,000

After PCA (MDSL Decision) 16,400 pixels x 14 bands = 229,600

No. Target Pixels = 448

ARES 1C
Total No. of Elements

Original Image 21,924 pixels x 210 bands = 4,604,040
After Removal of Absortion Bands 21,924 pixels x 145 bands = 3,178,980

After PCA (MDSL Decision) 21,924 pixels x 8 bands = 175,392

No. Target Pixels = 0

ARES 2C
Total No. of Elements

Original Image 24,552 pixels x 210 bands = 5,155,920
After Removal of Absortion Bands 24,552 pixels x 145 bands = 3,560,040

After PCA (MDSL Decision) 24,552 pixels x 8 bands = 196,416

No. Target Pixels = 0
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4.4.3 Sensitivity Analysis 

 As stated previously, a key decision is choice of bin width when using the zero-

detection histogram method to determine the breakpoint between background and 

potential target pixels to calculate PT SNR during feature selection and when using the 

method to determine target pixels during the identification phase.  The choice of bin 

width need not be the same for both phases, although AutoGAD uses a default choice of 

0.05 for both phases.   

 The PT SNR and max pixel score feature space was indeed based on a bin width 

choice of 0.05.  One may ask how the PT SNR values for the target and non-target 

classes change for different choices of bin width.  As the choice of bin width is 

increasingly different from 0.05, then the PT SNR threshold of 2 dB may no longer be an 

effective one and thus the uncertainty region characterized in Figure 4-26 may become an 

incorrect characterization of the overlap between the classes.  Fortunately, max pixel 

scores do not change based on choice of bin width during feature selection.  The max 

pixel score is just based on the IC signals produced from ICA.  No secondary calculation 

on the signal is required as is the case for PT SNR.  Thus, the second criteria of the 

abundance vector having to have a max score of at least 10 to be classified as a potential 

target class acts as a good balance to the variability in PT SNR values that may change 

with choice of bin width.  Ultimately, using these two filters, one would hope that over a 

decision space for bin widths during target feature selection, AutoGAD performance will 

be consistent, i.e. the same target features will be selected for perturbations about 0.05.  

Also, over the decision space for bin widths during target pixel identification on the 

selected target features, one hopes AutoGAD performance to be relatively consistent, i.e. 
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the variance of TPF, FPF, and percent TGT is low.  For the target feature selection phase, 

rather than analyzing the change in PT SNR for each map and for each image across the 

bin width decision space, the bottom line is (as in the target pixel identification phase) 

change in TPF, FPF, and percent TGT.  Further, total performance for each phase can be 

captured with just TPF and percent TGT.  Perfect performance would be: 

(a) Of all the target pixels present, all were detected (TPF = 1) 

(b) Of all the pixels detected, all were target pixels (percent TGT = 1) 

 Thus, the question is, over the decision space for each phase (target feature 

selection and target pixel identification), what is the variability of TPF and percent TGT?  

For ease of variance analysis, this research will project the two-dimensional response 

vector (percent TGT, TPF) to one dimension and analyze the variability in this one 

dimensional response.  One can have a perfect TPF, TPF = 1, but to do so may sacrifice 

percent TGT.  In other words, all the target pixels could be detected but the threshold was 

set so low that several non-target pixels were detected as well the making percentage of 

pixels detected that are targets low and vice versa.  Thus, one can consider TPF and 

percent TGT as competing objective functions.  One way to project competing objective 

functions to 1R  in multicriteria optimization is to use the vector’s distance from the ideal 

point as the new response.  In this case, the ideal point is (1,1).  This is one of several 

techniques in the field of multicriteria optimization to order a set of vector valued 

responses.  For more information the reader can consult the Ehrgott citation in the 

bibliography.  An implicit assumption in this projection is that each objective function 

response, TPF and percent TGT, is of equal importance or weight to the user.  This may 

not necessarily be the case for this application, but for the purposes of analyzing the 
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variability of the response in one dimension, this research will make the assumption of 

equal weighting.   

 Variability of the TPF, Percent TGT Vector’s Distance from Ideal Point 

 Figure 4-27 illustrates AutoGAD’s response for ARES 3F in the two dimensional 

space (top) versus the one dimensional space (bottom) when varying the histogram bin 

width for target pixel identification from 0.01 to 0.1 incrementing by 0.001, thus creating 

91 data points.  In the top chart one can see that starting from left to right TPF stays 

roughly the same, but percent TGT increases.  Then one reaches a point where percent 

TGT stays roughly the same, but TPF decreases.  The region between these two points is 

considered the trade-off space between the two objective function values in the field of 

multicriteria optimization.   

 The scale for the bottom chart in Figure 4-27 on the vertical axis is from 0 (best 

case) to 2 (worst case) distance from the ideal point.  Due to some coordinate pairs 

being nearly identical in the 2-D space, it is not possible to visualize all 91 data points in 

the top chart.  However, in the bottom chart all 91 data points are visible and give insight 

as to the variability about the default bin width decision of 0.05.  After projection to the 

1-D space that represents each coordinate pair’s Euclidean distance from the ideal point, 

one can see in a neighborhood about the default decision of 0.05 little variability in the 

response.  Specifically, from a bin width of 0.038 to 0.069, except for one point at 0.043, 

the response is nearly horizontal indicating little variability in the response on this range.   
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Figure 4-27.  Comparison of 2-D Response (top) to 1-D Response (bottom) 

 

On this range the mean percent TGT is 0.92 with a variance of 0.001 and mean TPF is 
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Euclidean distance from the ideal point on this range is 0.17 with a variance of 0.0009.  

Further, this region is also has the lowest distance from the ideal point over the decision 

space range.  This low region in the bottom chart corresponds to the set of coordinate 

pairs in 2R with the shortest distance from the ideal point.  Ideally, for each image one 

would want the range of low variability about and near 0.05 to be substantial relative to 

the total range tested and the values to be low signifying short distance from the ideal 

point.   

 The next section will show visually AutoGAD’s 1-D response for each image 

(test and validation) during the target feature selection phase as the bin width is varied 

from 0.01 to 0.1 by 0.001 increments.  Then for the following section, the same will be 

presented for the target pixel identification phase.  For each section, while varying the bin 

width for that particular phase, the bin width for the other phase will be held at the default 

value of 0.05.  Note, so that the minor run-to-run variability in ICA does not influence the 

variability analysis of bin width choice for each phase in the detection process, the initial 

random matrix input to ICA was fixed to a particular state in MATLAB.  In MATLAB 

the initial state (or position in the random number stream) can be held constant.   
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Target Feature Selection Phase Variability Analysis 

 
Figure 4-28.  AutoGAD’s 1-D Response during Feature Selection  

across all Images with Targets 
The 4 largest regions with zero variability across all images over the decision space with 
the lowest Euclidean distance across all images are labeled.   
 
 Notice that except for ARES 1D and ARES 1F, the response for the images is 

constant over much of the decision space range.  Even for ARES 1D and ARES 1F the 

response is constant over a substantial portion of the range. Labeled in Figure 4-28 are 

four regions of zero variance across all six images.  This is by no means all the regions of 

zero variance, just the substantial regions on the left side of the decision space where the 

distance from the ideal point is the lowest across all images.  The largest region across all 

six images with zero variability and shortest distance from the ideal point is from 0.048 – 

0.057 bin width.  This makes sense since the feature space was characterized (i.e. the PT 

SNR threshold was decided) using a bin width of 0.05.  However, substantial regions of 
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algorithm stability other than at the point where the detector was designed yields some 

insight as to the algorithm’s robustness across this bin width decision space.   

On a side note, this way of viewing a detector’s 1-D response (Euclidean distance 

from the ideal point) over some decision space for the detector is useful in comparing 

performance of a detector from one image to the next, much like a ROC curve. The 

image that has the lowest area under this new curve in Figure 4-28 can be considered the 

image across the sample images where the detector performs the best.  Further when 

comparing detectors, instead of ranking the detectors by the one that yields the largest 

area under a ROC curve for a particular image, perhaps this method offers another way to 

compare detectors by ranking them according to those with the smallest area under the 

Euclidean distance from the ideal point curve.   

Figure 4-29 details AutoGAD’s response across the two images without targets.  

Notice the variance in the response is zero over the entire bin width range.  Also, for 

these images, FPF was the response used since TPF and percent TGT have no values in 

images with no targets.    
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Detector Response Varying Bin Width During Target Feature Selection 
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Figure 4-29.  AutoGAD’s 1-D Response across all Images without Targets 
 
 

 Summary Target Feature Selection Phase Variability Analysis 

 The reason the response lines are predominantly horizontal is that as one makes 

small changes to the bin width for the PT SNR calculation, the value will not change 

significantly because PT SNR calculation considers thousands of pixels.  Plus as 

mentioned previously, the constancy of max pixel score over the decision space balances 

the variability in PT SNR.  However, one can observe areas of significant jumps in 

Figure 4-28.   These represent points where the change in PT SNR became significant 

enough to alter what features where selected as targets.  These points are especially clear 

for ARES 1D and ARES 1F.  As stated previously, areas of zero variance other than near 

the region the detector was designed is a positive result and suggests robustness. 
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Relationship between Bin Width and Threshold Location 

 So that the reader has an understanding on the effect that bin width choice and 

IAN filtering has on TPF and percent TGT during the target identification phase, Figure 

4-30 is offered using ARES 4F as an example. 

 Although the response in percent TGT and TPF is not ‘smooth’ the predominant 

trend can be described as follows: 

 As bin width increases from 0.01 to 0.1, of all the pixels detected, the percentage 

that are targets increases.  In other words, the number of false positives decreases.  This is 

due to the threshold increasing on the IC signal as bin width increases.  The is expected 

because the wider the bin width, the lower fidelity one has when creating the frequency 

distribution and thus the zero-point bin will occur further out in the tail.  As a result the 

calculation of the threshold will be higher.  Conversely, for a thinner bin width, the 

fidelity of the frequency distribution is higher and as such the zero-point bin will occur 

sooner in the tail.  When comparing the top chart in Figure 4-30 to the bottom chart, 

notice the effect IAN filtering has on percent TGT.  The curve is shifted upwards 

denoting an overall increase in this performance measure across the decision space.  

Thus, false positive detections are substantially decreased.    

 Not as pronounced, but the opposite trend is observed for TPF as bin width 

increases.  Again due to the threshold increasing as bin width increases, the number of 

true target pixels detected out of the total number of true target pixels present will 

decrease.  Notice the effect of IAN filtering has on TPF.  By applying the smoothing a 

slight drop in TPF performance can be observed in Figure 4-30.  Recall ARES 4F has 

small panel targets and as explained previously the smoothing process has been observed 
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to eliminate some of the smaller panel targets in the sample images, thus the slight 

reduction in the TPF curve.  Depending on the users priorities, increasing percent TGT 

performance at the expense of small reduction in TPF may be acceptable especially for 

cases where the cost of false positives is high.   

 

 
Figure 4-30.  AutoGAD’s Response in Percent TGT and TPF 

across Histogram Bin Width for Target Identification (ARES 4F) 
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 Now that the reader hopefully has a better understanding of the dynamics between 

bin width, percent TGT and TPF, sensitivity analysis for the target pixel identification 

phase will be presented in the 1-D response space.  

 Target Pixel Identification Phase Variability Analysis 

 Considering Figure 4-31, it is expected that AutoGAD’s response will more 

variable in the target identification phase since we are now looking at the variability in 

the response as we change the threshold not for feature selection but for pixel 

identification.  For feature selection the response will change only when as explained 

before the PT SNR calculation is significantly different enough to alter what features (i.e. 

abundance vectors) where selected as targets.  Here, for each minor threshold change, 

TPF and percent TGT changes at the pixel level rather than the feature level.  Thus, one 

can observe a much more noise (i.e. more variable) response.  Again, the top chart details 

the response without IAN filtering and the bottom with IAN filtering.     

 First, consider the bottom chart with IAN filtering.  The region with the lowest 

distance from the ideal point and the least amount of variability in the response across all 

six images occurs on the bin width range from 0.045 to 0.064.  On this range, ARES 1F, 

2D, 2F and 3F have the least variation compared to ARES 4F and ARES 1D as noticed 

by the near smooth horizontal line. Now, consider AutoGAD’s performance without IAN 

filtering on the same range.  Notice the considerable increase in volatility in the response 

for ARES 1F, 2D, and 2F.  Further notice the trend of a decrease in distance from the 

ideal point when using IAN filtering.  Table 4-3 details quantitatively what is observed 

visually in Figure 4-31 on the range from 0.045 to 0.064.  Across all images except 

ARES 1D the variance in the response decreased after applying IAN filtering.  Also, 
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except for ARES 2D the distance from the ideal point decreased after applying IAN 

filtering.    

 

 
Figure 4-31.  AutoGAD’s 1-D Response during Identification  

across all Images with Targets 
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Table 4-3.  Comparison of Mean and Variance of Euclidean Distance from Ideal 
Point without and with IAN Filtering on the Range from 0.045-0.064 

 
 

 Summary Target Pixel Identification Phase Variability Analysis 

 Across these sample images, the range of bin widths with the least amount of 

response variability and lowest distance from the ideal point is a bin width for 

identification of 0.045 – 0.064 when using IAN filtering.  Thus, AutoGAD’s default 

choice of 0.05 for target pixel identification appears to be a robust one.  Reiterating, 

AutoGAD’s feature space was characterized based on a 0.05 bin width to calculate PT 

SNR.  Thus, stability directly about 0.05 was expected for the target feature selection 

variability analysis.   There were areas of stability, other than the region directly around 

0.05, which was a positive result.  It should be noted that the target identification phase 

was not designed around a bin width of 0.05.  It was merely chosen based on pilot runs 

from chapter 2 when analyzing the zero-detection histogram method as a current 

technique for target identification.  Bin width choice during target identification has no 

influence on the feature space characterization since the target identification phase 

succeeds the target feature selection phase.   However, intuition that the 0.05 bin width 

choice was a good choice for target identification from the pilot runs in chapter 2 has 

been proven here to be the robust choice especially after IAN filtering based on the 
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sample image responses seen in the bottom chart of Figure 4-31.  More images are 

needed to further validate this choice of bin width during AutoGAD’s target pixel 

identification phase. 
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V. Discussion 

5.1 Limitations 

 Note that this detector’s development, testing, and validation occurred over 8 HSI 

images in rural environments (forest and desert) where the targets consisted of tanks, 

smaller vehicles, tents and/or tarps, and different colored panels.  Non-target classes 

consisted of roads, trees, large rocks, sand, gravel, dirt, grass, various sized and colored 

bushes, etc...  The sensor was the HYDICE sensor and 145 of the 210 bands available 

were utilized prior to dimensionality reduction.  Thus, the PT SNR and max pixel score 

target thresholds were based on the feature space characterization of the separation 

between target and non-target classes in these environments, with this sensor, retaining 

those 145 bands.  AutoGAD most likely will require calibration if used with different 

sensors in different environments.  More testing should be conducted with images from 

different sensors from more environments with more non-target classes and target classes 

to further define the PT SNR and max pixel score feature space of targets and non-targets 

under a myriad of different operating conditions.  It may be found that a desert calibration 

is different from a woodland calibration.  Thus, depending on the environment different 

thresholds are used when employing AutoGAD operationally.    

 

5.2 Contributions to the Field of HSI Target Detection 

 Based on this subset of HSI images, this research made the following 

contributions that were not found after a review of the current literature in the field: 

1.  Using the kurtosis approximation of negentropy (the ‘pow3’ setting) as the 
objective function, this author illustrated that FastICA yields the least amount of 
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variability compared to using the non-polynomial approximation of negentropy 
(the ‘tanh’ setting). 
 
2.  Based on the theory of the shape of the eigenvalue curve of the covariance 
matrix of spectral data under the LMM, a simple and as shown effective 
unsupervised dimensionality determination can be made via a new process 
provided by this author coined the MDSL method. This method finds the 
eigenvalue with maximum distance from the log-scale secant line to identify the 
‘knee’ in the curve that approximately separates the noise eigenvalues from the 
signal eigenvalues. 
 
3.  The need to subjectively analyze a scree graph of kurtosis values of 
independent component signals has been eliminated by using new target feature 
filters suggested by this author, PT SNR and max pixel score.  Target classes and 
non-target classes have less overlap in this new feature space when comparing the 
overlaps from Figures 3-17 and 3-24.  . 
 
4.  The zero-detection histogram method suggested by Chiang, Chang, and 
Ginsberg was validated by this author as an effective technique at locating the 
breakpoint between background and potential targets for use in calculating PT 
SNR during target feature selection and for identifying outlier target pixels during 
target identification. Further, a bin width of 0.05 (based on the test and validation 
images) was demonstrated to be the robust choice when employing this method.  
 
5.  False positives during target identification were reduced using an adaptive 
noise filter, but with an iterative approach (suggested by this author and coined 
IAN filtering) using a small scanning window.  Thus, target signal power is 
preserved, while background signal power is repeatedly reduced, in essence an 
effective signal noise smoothing technique. 
 
6.  Projecting a detector’s vector response (TPF, percent TGT) to its Euclidean 
distance from the ideal point (1,1) (an idea borrowed from multicriteria 
optimization) is offered as a way to grade a detector’s overall performance across 
a user defined decision space as an alternative to a ROC curve.   

 

5.3 Future Research 

In order to calibrate the AutoGAD algorithm to other HSI scenarios and with 

other HSI sensors, after determining the atmospheric absorption bands for each sensor, 

one could apply a robust parameter design to find the settings for the algorithm across a 

range of hyperspectral images that minimize the distance from the ideal point of [1 
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(TPF), 1 (percent TGT)], while also minimizing the variability of this response.  Specific 

factors for consideration are detailed below.  As a beginning search of the space, the 

center points for the control factors could be AutoGAD’s default settings detailed in 

Figure 3-34. 

Control factors:  

(1) Histogram bin width for target feature selection  

(2) PT SNR threshold  

(3) Max pixel score threshold  

(4) Histogram bin width for target identification  

(5) Number of iterations of IAN filtering to complete on selected target 

features prior to target identification 

Noise factor: 

        Hyperspectral images 

Response: Euclidean distance from ideal point [1 (TPF), 1 (percent TGT)] 

 Another improvement to this effort discussed in chapter 4, could be to modify the 

AutoGAD algorithm to include more intelligent target feature selection by calculating the 

PT SNR of the negative side of the independent component signal as well.   

 One challenging extension could be an investigation of methods other than ICA 

that do conform to the non-negativity and sum-to-one constraints to solve for the 

abundance matrix in the LMM.  One such possible method is non-negative matrix 

factorization (NMF).  However, given the large file sizes inherent in HSI images, some 

dimensionality reduction must be accomplished prior to employing NMF.  Normal PCA 

is not an option due to projecting the original data to a space that is not non-negative.  
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Thus, in addition to exploring NMF, a new technique, non-negative PCA should be 

explored. 

 A final recommendation is a fusion of AutoGAD with a signature matching 

algorithm.  As discussed, natural objects can meet the assumptions of an anomaly 

detector and be falsely classified as targets.  Thus, after preprocessing an rural HSI image 

with AutoGAD, nominated pixels’ spectral signatures could be compared to a library of 

man-made targets of interest to further eliminate false positives.   

 

5.4 Conclusion 

 Recall at the outset of chapter 4 the statement of the added difficulty ARES 4F 

would provide given targets hidden under the tree line.  Despite the few false positive hits 

observed even after employing IAN filtering as denoted in Figure 4-16 (2a) and (2b), 

AutoGAD successfully detected hidden targets under the tree line with an impressive 

0.85 TPF and 0.003 FPF.  Regardless of missing some of the targets, an operator 

analyzing this intelligence product produced from AutoGAD, would be alerted to an 

obvious linear pattern of objects under the tree line.  Such awareness may not have been 

known prior to the application of the detector, analyzing a transmitted RGB image only.  

This result is significant in light of the Air Force coined acronym TUT, Tanks Under 

Trees, referring to the ever present problem that targets hidden under foliage presents.  

Further, this application of AutoGAD took only 9 seconds.  This speed of this detection 

provides promise for AutoGAD as a target detection algorithm that could be employed in 

UAVs with hyperspectral sensors so that the aircraft has the ability to process its imagery 

onboard in real time and relay potential coordinates and binary images like (2a) to 
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operators.  The size of such a binary file presented in Figure 4-16 for ARES 4F is 16.4 

kb.  The alternative would be to transmit the entire HSI data matrix for the operator to 

process at the ground control station.  Capability provided by an algorithm such as 

AutoGAD could give UAVs on board processing ability that would drive down the data 

transfer rate requirement from the UAV to the control station, given the file, after 

processing for this example is only 16.4 kb (the binary target location file).  The 

following quote from the OSD Unmanned Arial Vehicles Roadmap 2000-2025 gives 

perspective on this issue. 

The most fundamental, technology-driven decision facing UAV 
planners early in the 2000-2025 timeframe is whether to migrate towards 
an air-centric (processor based) or a ground-centric (communications 
based) architecture.  In the case of the former, relatively autonomous 
UAVs with minimal ground infrastructure and direct downlinks to users 
will be the norm.  For the latter, UAVs will be remoted “dumb” sensors 
feeding a variety of sensory data into a centralized ground node which 
builds a detailed, integrated picture for the users.  Hybrid architectures, in 
which processing is begun on the aircraft and completed on the ground 
and transmission requirements are reduced by using recorders and/or data 
compression techniques, are used by today’s reconnaissance aircraft.  This 
architecture exists because the capabilities of current processors and data 
links are inadequate by themselves to handle the amount of data generated 
by today’s sensor suites.  Data compression techniques are the most 
prevalent workaround for insufficient onboard processing speed and data 
link data rate constraints.   

At some future point, sufficient onboard processing power for 
the worst case information processing requirement, such as streaming 
video of ultra spectral imaging (thousands of spectral bands), will be 
reached.  At that point the answer, vice the data that provided it, will 
become the driver for the data link’s capacity, downsizing its 
requirement drastically.  As an illustration, a future UAV system 
searching for “tanks under trees” (TUT) with a hyper-spectral 
imaging sensor would process and exploit its imagery onboard in real 
time, then relay the coordinates and certainty of identification of all 
tank suspects found over a 9.6 kbps link, simultaneously with the 
UAVs health and status.  This becomes an air-centric (processor 
driven) architecture, in which UAVs become highly autonomous 
extensions of man, drawing their own conclusions onboard and 
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distributing their answers directly to users (Office of the Secretary of 
Defense, 2001:55). 

 
 The last portion of the quotation highlighted by this author emphasizes the point 

that if sufficient processing power (and not just CPU power but intelligent software such 

as AutoGAD) is available on UAVs with HSI sensors, the requirement for data link 

capacity is drastically reduced.  The technology potentially offered by AutoGAD offers 

planners the option of migrating towards an air-centric (processor based) architecture 

rather than ground-centric (communications) architecture that requires higher data 

transfer rates.  Further, by removing the need to relay an entire HSI data matrix to the 

operator, who must process the data at the control station to make a determination for 

targeting, the ability of a UAV to process the data via artificial intelligence in real time 

and transmit a small file with a determination of target locations (with some confidence 

attached) dramatically improves capability during time critical targeting scenarios.   

 Even if not employed as an on board processing algorithm on a UAV with an HSI 

sensor, AutoGAD shows potential as an effective target detection algorithm for use by 

intelligence analysts.  The full MATLAB code for AutoGAD will be provided in the 

hopes that researchers will further test AutoGAD to validate its effectiveness and refine 

the algorithm.  Further, this author hopes operators in the intelligence community will use 

the algorithm and that it provides additional capability.   

 In closing, the end product delivered by this author is a fast, truly autonomous 

(unsupervised) global anomaly detection algorithm.  Dimensionality determination, target 

feature selection, and target identification have been improved and fully automated.  Its 

speed and automation make it of practical use in an operational environment.  
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Appendix. MATLAB Code  

%********************************************************************% 
%AutoGAD version 1.0                                                 % 
%                                                                    % 
%                                                                    % 
%Hyperspectral Autonomous Global Anomaly Detector (AutoGAD)          % 
%Using FastICA                                                       % 
%                                                                    % 
%Author: Capt Robert Joseph Johnson                                  % 
%Feb 2008                                                            % 
%********************************************************************% 
clear all; 
close all; 
clc; 
  
  
%Tactical Decisions By User------------------------------------------------ 
functn=2;%objective function in ICA to use.  Options [1=tanh, 2=pow3] 
orthogonalization=1;%find ICs in parallel (symm) or one by one (delf). 
%Options [symm=1, defl=2] 
dim_adjustment=0;%how much to adjust max distance log scale secant line (MDLS) 
%dimensionality decision 
max_score_thresh=10;%threshold above which decision is made to declare target 
bin_width_SNR=.05;%bin width when using zero-detection histogram method to 
%determine breakpoint between background and potential targets for 
%calculating potential target SNR (PT SNR) 
PT_SNR_thresh=2;%2;%threshold above which decision is made to declare target 
bin_width_ident=.05;%bin width when using zero-detection histogram method to 
%determine breakpoint between background and targets for identifying target 
%pixels from selected target signals 
threshold_both_sides=0;%1=identifiy outliers on both sides of IC signal, 
%0=identify ouliers on side with highest magnitude scores only 
clean_sig=1;%0 = no signal smoothing, 1 = signal smoothing prior to target 
%identification 
smooth_iter_high=100;%number of iterations to complete for iterative smoothing 
%of low SNR object 
smooth_iter_low=20;%20;%number of iterations to complete for iterative smoothing 
%of high SNR object 
low_SNR=10;%Threshold decision for choosing smooth_iter_low or smooth_iter_high 
window_size=3;%image window size for smoothing 
show_plots=2;%1=yes, 2=no 
%-------------------------------------------------------------------------- 
  
switch num2str(functn) 
    case '1' 
        funct='tanh'; 
    case '2' 
        funct='pow3'; 
end 
  
switch num2str(orthogonalization) 
    case '1' 
        orthog='symm'; 
    case '2' 
        orthog='defl'; 
end 
  
  
%--------------Solicit User Input to Load HSI Image File------------------- 
display('This program requires the Image Processing Toolbox for MATLAB.'); 
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display('Make sure your version of MATLAB has this toolbox.'); 
display('  '); 
display('Make sure you have in your working directory the all the files for'); 
display('FastICA and the Center_and_PCA.m file'); 
display('   '); 
display('The first several lines in the AutoGAD algorithm detail default'); 
display('settings for AutoGAD.  If you would like to experiment'); 
display('changing these settings, hit ctrl c to interrupt this run.  Open'); 
display('up AutoGAD in the the editor and make changes.'); 
display('   '); 
display('Please hit enter'); 
display('  '); 
answer=input(''); 
display('Enter you image cube file name to be processed.'); 
display('File should be in .mat format '); 
display('  '); 
display('!Make sure to put it in single quotes!') 
display('!Make sure the image cube is in the same directory as this code!'); 
display('  '); 
temp1=input(''); 
temp2=struct2cell(load(temp1)); 
im_cube=temp2{1}; 
display('   '); 
display ('Enter truth mask'); 
display('  '); 
display('If you do not have a truth mask and this is a real target search'); 
display('with no truth knowledge, enter 0'); 
display('  '); 
temp3=input(''); 
if temp3~=0; 
    temp4=struct2cell(load(temp3)); 
    truth=temp4{1}; 
end 
clear temp1 
clear temp2 
clear temp4 
clc; 
display('   '); 
display('Please enter the good bands for this HSI sensor'); 
display('These are the bands that are NOT the atmospheric absorption bands'); 
display('  '); 
display('If this the the 210 band HYDICE sensor, LtCol Tim Smetek concluded'); 
display('that the good_bands = [5:72, 78:85, 92:99, 116:134,158:199]'); 
display(' '); 
display('If this is HYDICE data and you would like to keep these bands, type');  
display('1 and hit enter'); 
display('   '); 
display('If this is not HYDICE data or you do not want to keep those bands'); 
display('just hit enter and then enter the bands you wish to keep'); 
display('  '); 
answer=input(''); 
if answer==1 
    good_bands=[5:72,78:85,92:99,116:134,158:199]; 
else 
    good_bands=input('good_bands = '); 
end 
%-------------------------------------------------------------------------- 
  
  
%-----------Ask User if they want to see color image----------------------- 
display('  '); 
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display('Do you want to see a RGB image of your HSI file?'); 
display('  '); 
display('If so, enter 1. If not just hit enter.          '); 
display('   '); 
answer=input(''); 
if answer==1 
    Red=input('Please enter the band number for red, HYDICE is 50       '); 
    display(' '); 
    Green=input('Please enter the band number for green, HYDICE is 29     '); 
    display('  '); 
    Blue=input('Please enter the band number for blue, HYDICE is 22      '); 
  
    R=im_cube(:,:,Red); 
    G=im_cube(:,:,Green); 
    B=im_cube(:,:,Blue); 
     
    %Borrowed from Lt Col Tim Smetek, lines 142 - 163, offer a way to make  
    %an RGB image look better.  The following lines are used in conjunction  
    %with the mat2gray function to perform a 2% linear stretch on the image  
    %data 
  
    m1=size(R,1); 
    n=size(R,2); 
    low_id=floor(0.02*m1*n); 
    hi_id=floor(0.98*m1*n); 
  
    r_vec=reshape(R,m1*n,1); 
    r_vec=sort(r_vec); 
    r_vec=double(r_vec); 
    min_R=r_vec(low_id); 
    max_R=r_vec(hi_id); 
  
    g_vec=reshape(G,m1*n,1); 
    g_vec=sort(g_vec); 
    g_vec=double(g_vec); 
    min_G=g_vec(low_id); 
    max_G=g_vec(hi_id); 
  
    b_vec=reshape(B,m1*n,1); 
    b_vec=sort(b_vec); 
    b_vec=double(b_vec); 
    min_B=b_vec(low_id); 
    max_B=b_vec(hi_id); 
  
    %The IPT function mat2gray to scales the values in each matrix between 0 
    %and 1.  This is necessary because the matrices are of type double and 
    %imshow requires double value matrices to be scaled between 0 and 1 
  
    R=mat2gray(double(R),[min_R max_R]); 
    G=mat2gray(double(G),[min_G max_G]); 
    B=mat2gray(double(B),[min_B max_B]); 
  
    %**Now stack the three matrices into a 3D array and display the image 
    RGB=cat(3,R,G,B); 
    figure (1) 
    imshow(RGB,[]); 
    title('True Color Image'); 
    impixelinfo; 
    %**Turn-on the interactive pixel value utility 
    clear R G B 
    clear RGB 
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    clear r_vec g_vec b_vec 
end 
%-------------------------------------------------------------------------- 
  
  
tic; 
%----Resize Image Cube into matrix where each row is a pixels-------------- 
%-----------------signature in the spectral bands-------------------------- 
dims=size(im_cube,3); 
num_pixels=size(im_cube,1)*size(im_cube,2); 
num_lines=size(im_cube,1); 
num_col=size(im_cube,2); 
  
%**Place all the pixel vectors into a single matrix where each row 
%corresponds to a pixel vector 
data_matrix=zeros(num_pixels,dims); 
data_matrix_truth=zeros(num_pixels, 1); 
for x=1:dims 
    data_matrix(:,x)=reshape(im_cube(:,:,x),num_pixels,1); 
end 
clear im_cube; 
%If HSI cube is too large for MATLAB since MATLAB converts variables to 
%double precision, this will make file smaller so that MATLAB can 
%operate on it. 
if num_pixels*dims > 25*10^6 
    data_matrix=single(data_matrix); 
end 
%%%%%%%%%%%%%%%%% 
  
if temp3~=0; 
    data_matrix_truth=reshape(truth,num_pixels,1); 
end 
%-------------------------------------------------------------------------- 
  
  
%----------Keep bands that are not atmospheric absorption bands------------ 
data_matrix_new=data_matrix(:,good_bands); 
dims=size(data_matrix_new,2); 
clear data_matrix; 
%-------------------------------------------------------------------------- 
  
  
%------------------------------Perform PCA--------------------------------- 
[Ac,Lc,TotVarCompC,YscorC]=Center_and_PCA(data_matrix_new); 
%Function written by Capt Johnson does PCA on covariance matrix 
  
Lplot=diag(Lc); 
%checks for eigenvalues 10^-4 and smaller and moves the endpoint of the 
%eigenvalue curve to the point where eigenvalues are greater than 10^-4 
%so that the MDSL method in the next section is not biased by pathological  
%cases where the endpoint of the log scale eigenvalue curve has extremely  
%small endpoints and grossly alters the theoretical shape of the curve that  
%should arise for eigenvalues of covariance matrices of spectral data  
%that follow the LMM 
while Lplot(dims)<=10^-4; 
    dims=dims-1; 
end 
L=log10(Lplot); 
clear data_matrix_new; 
clear Ac; 
clear Lc; 
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%-------------------------------------------------------------------------- 
  
  
%---------------------Dimensionality Assessment---------------------------- 
%slope of line connecting endpoints of scree plot of eigenvalues 
m_slope = (L(1)- L(dims))/(1-dims); 
  
%calculate Euclidean distances from scree plot curve to line connecting 
%endpoints 
Eqdist=[]; 
for i=1:dims 
    x_int=(L(i) - L(1)+ m_slope + (i/m_slope))/(m_slope + (1/m_slope)); 
    y_int=L(1)+ m_slope*(x_int-1); 
    Eqdist(i)=sqrt((i-x_int)^2+(L(i)-y_int)^2); 
end 
%find the point on the log scale eigencurve curve with the largest distance 
%from the line connecting the endpoints 
[max_Eqdist, index_dim]=max(Eqdist); 
reduced_dim = index_dim; 
k=reduced_dim-1; 
k=k+dim_adjustment; 
percent_var=TotVarCompC(k,1); 
Y=YscorC(:,1:k); 
clear YscorC; 
if show_plots==1 
    figure(3); 
    semilogy(Lplot(1:dims), '.-'); 
    title({'Plot of Eigenvalue vs. PC Component',... 
        sprintf('Dimensionality = %i',k)},'fontweight','b'); 
end 
%-------------------------------------------------------------------------- 
  
  
%---------------------Perform ICA on reduced PCA space--------------------- 
[icasig, A, W]=fastica(Y','approach',orthog, 'g', funct, 'epsilon',... 
    .00001, 'stabilization','on', 'verbose','off'); 
icasig=icasig'; 
%If an IC score has a high signals, make them always positive 
for j=1:k 
    if abs(min(icasig(:,j)))>max(icasig(:,j)) 
        icasig(:,j)=-icasig(:,j); 
    end 
end 
clear Y 
%-------------------------------------------------------------------------- 
  
  
%-------------------Find the Kurtosis of Each Signal----------------------- 
kurt=zeros(k,1); 
for j=1:k 
    kurt(j)=abs(kurtosis(icasig(:,j))); 
end 
%this statistic will not be used in AutoGAD, but is included if the user 
%wishes to compare this value to the PT SNR and max pixel score values 
%-------------------------------------------------------------------------- 
  
%--------------------Find the Max Score of Each Signal--------------------- 
maxim=zeros(k,1); 
for j=1:k 
    maxim(j)=max(icasig(:,j)); 
end 
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%-------------------------------------------------------------------------- 
  
  
%---------------------Find the PT SNR of each signal----------------------- 
for j=1:k 
    bins=[]; 
    freq=[]; 
    bins=min(icasig(:,j)):bin_width_SNR:max(icasig(:,j)); 
    freq=hist(icasig(:,j),bins); 
    count=1; 
    %find the bin that is at center (mean) of the ICA signal 
    for i=1:size(bins,2) 
        if bins(i)<0 
            count=count+1; 
        else 
            break 
        end 
    end 
    %from the center of the signal keep counting until the first zero 
    %bin is found 
    count1=1; 
    for i=count+1:size(freq,2) 
        if freq(i)> 0; 
            count1=count1+1; 
        else 
            break 
        end 
    end 
    %if there are no zero bins until the very end of the tail then the 
    %threshpoint is set above the last data point  
    if count+count1 > size(bins,2) 
        thresh_pt(j)=max(icasig(:,j)); 
    else 
    %otherwise use the first bin were a zero value occurs 
        thresh_pt(j)=bins(count+count1); 
    end 
end 
PT_SNR=zeros(k,1); 
for j=1:k 
    potent_target=[]; 
    potent_bkrd=[]; 
    %find the indices of those pixels greater than threshold 
    ind = icasig(:,j)>thresh_pt(j); 
    %store those pixels greater than threshold in vector 
    potent_target=icasig(ind,j); 
    if size(potent_target,1)==0 
        potent_target=0; 
    end 
    %find the indices of those pixels less than threshold 
    ind2 = icasig(:,j)<=thresh_pt(j); 
    %store those pixels less than threshold in vector 
    potent_bkrd=icasig(ind2,j); 
    power_target(j)=var(potent_target); 
    power_bkrd(j)=var(potent_bkrd); 
    PT_SNR(j)=10*log10(power_target(j)/power_bkrd(j)); 
end 
%-------------------------------------------------------------------------- 
one=ones(num_pixels,1); 
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%---Plot Abundance Maps from ICs Frames with PT SNR and Max Pixel Score---- 
if show_plots==1 
    figure (4) 
    d=ceil(sqrt(k)); 
    for j=1:k 
        subplot(d,d,j) 
        ICsig(:,:,j)=reshape(icasig(:,j),num_lines,num_col); 
        ICsig_grey(:,:,j)=mat2gray(double(ICsig(:,:,j))); 
        imshow(ICsig_grey(:,:,j)); 
        if maxim(j)>=max_score_thresh && PT_SNR(j)>=PT_SNR_thresh 
            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',j,PT_SNR(j)... 
                ,maxim(j)),'Potential Target'},'fontweight','b'); 
        else 
            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',j,PT_SNR(j)... 
                ,maxim(j)),'Non-Target'},'fontweight','b'); 
        end 
    end 
    clear ICsig; 
    clear ICsig_grey; 
%-------------------------------------------------------------------------- 
  
  
%---------------------------Plot IC signals-------------------------------- 
    figure(5) 
    PT_SNR_line=[]; 
    for j=1:k 
        PT_SNR_line(:,j)=thresh_pt(j)*one; 
    end 
    for j=1:k 
        subplot(d,d,j) 
        plot(icasig(:,j),'.', 'MarkerEdgeColor','r'); 
        hold on 
        plot(PT_SNR_line(:,j),'LineWidth',2); 
        xlabel('Pixel'); 
        ylabel('Abundance (IC Score)'); 
        if maxim(j)>=max_score_thresh && PT_SNR(j)>=PT_SNR_thresh 
            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',j,PT_SNR(j)... 
                ,maxim(j)),'Potential Target'},'fontweight','b'); 
        else 
            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',j,PT_SNR(j)... 
                ,maxim(j)),'Non-Target'},'fontweight','b'); 
        end 
        axis([0,num_pixels,-10,30]); 
    end 
    clear PT_SNR_line 
%-------------------------------------------------------------------------- 
end 
  
%----------------Keep only Those Signals Above Both Thresholds------------- 
ind_max=[]; 
ind_SNR=[]; 
ind_both=[]; 
ind_max = maxim>=max_score_thresh; 
ind_SNR = PT_SNR>=PT_SNR_thresh; 
ind_both=ind_max+ind_SNR; 
[rind,cind]= find(ind_both==2); 
if size(rind,1)==0 
    display('NO TARGETS') 
    target_sig=zeros(num_pixels,1); 
    target_vec=zeros(num_pixels,1); 
else 
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    target_sig=icasig(:,rind); 
end 
clear icasig; 
num_tgt_maps=size(target_sig,2); 
for j=1:num_tgt_maps 
    tgt_sig_map(:,:,j)=reshape(target_sig(:,j),num_lines,num_col); 
end 
%-------------------------------------------------------------------------- 
if size(rind,1)~=0 
%-------------Show Abundance Maps of Retained Target Signals--------------- 
    if show_plots==1 
        d=ceil(sqrt(num_tgt_maps)); 
        tgt_gray=[]; 
        figure(6) 
        for j=1:num_tgt_maps 
            subplot(d,d,j); 
            tgt_sig_map_gray(:,:,j)=mat2gray(tgt_sig_map(:,:,j)); 
            imshow(tgt_sig_map_gray(:,:,j)); 
            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',rind(j),... 
                PT_SNR(rind(j)),maxim(rind(j))),'Potential Target'},... 
                'fontweight','b'); 
        end 
        clear tgt_sig_map_gray 
    end 
    clear target_sig 
%-------------------------------------------------------------------------- 
  
  
%----Clean (IAN Filtering) target Signals prior to Identification---------- 
    if clean_sig==1 
        for j=1:num_tgt_maps 
            if PT_SNR(rind(j))<low_SNR 
                for c=1:smooth_iter_high 
                    [tgt_sig_map(:,:,j)]=wiener2(tgt_sig_map(:,:,j), ... 
                        [window_size,window_size]); 
                end 
            else 
                for c=1:smooth_iter_low 
                    [tgt_sig_map(:,:,j)]=wiener2(tgt_sig_map(:,:,j), ... 
                        [window_size,window_size]); 
                end 
            end 
        end 
%-------------------------------------------------------------------------- 
  
  
%-------------------Plot IAN Filtered Target Maps------------------------------- 
        if show_plots==1 
            for j=1:num_tgt_maps 
                clean_map_gray(:,:,j)=mat2gray(tgt_sig_map(:,:,j)); 
            end 
            figure(7) 
            for j=1:num_tgt_maps 
                subplot(d,d,j); 
                imshow(clean_map_gray(:,:,j)); 
                title(sprintf('Filtered Map %i',rind(j)),'fontweight','b'); 
            end 
        end 
    end 
%-------------------------------------------------------------------------- 
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%----------Identify Target Pixels from Selected Target Maps---------------- 
%-------------------------------------------------------------------------- 
    target_sig_clean=[]; 
    for j=1:num_tgt_maps 
        target_sig_clean(:,j)=reshape(tgt_sig_map(:,:,j), num_pixels, 1); 
    end 
    for j=1:num_tgt_maps 
        bins=[]; 
        freq=[]; 
        bins=(min(target_sig_clean(:,j))):bin_width_ident:... 
            max(target_sig_clean(:,j)); 
        freq=hist(target_sig_clean(:,j),bins); 
        count=1; 
        %find the bin that is at center (mean) of the ICA signal  
        for i=1:size(bins,2) 
            if bins(i)<0 
                count=count+1; 
            else 
                break 
            end 
        end 
        %from the center of the signal keep counting until the first zero 
        %bin is found 
        count1=1; 
        for i=count+1:size(freq,2) 
            if freq(i)> 0; 
                count1=count1+1; 
            else 
                break 
            end 
        end 
        %if there are no zero bins until the very end of the tail then the 
        %threshpoint is set above the last data point  
        if count+count1 > size(bins,2) 
            thresh_pt_ident(j)=max(target_sig_clean(:,j))+.01; 
        else 
        %otherwise use the first bin were a zero value occurs 
            thresh_pt_ident(j)=bins(count+count1); 
        end 
    end 
     
    target=zeros(num_pixels, num_tgt_maps); 
    for j=1:num_tgt_maps 
        ind_tgt = target_sig_clean(:,j)>thresh_pt_ident(j); 
        target(:,j)=ind_tgt; 
    end 
  
    target_vec=zeros(num_pixels,1); 
    for j=1:num_tgt_maps 
        target_vec=target_vec + target(:,j); 
    end 
end 
%-------------------------------------------------------------------------- 
%Checks both sides of the selected target signals for target pixels if user 
%specified this option 
if threshold_both_sides==1 
    target_sig_clean_left=-target_sig_clean; 
    for j=1:num_tgt_maps 
        bins=[]; 
        freq=[]; 
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        bins=(min(target_sig_clean_left(:,j))):bin_width_ident:... 
            max(target_sig_clean_left(:,j)); 
        freq=hist(target_sig_clean_left(:,j),bins); 
        count=1; 
        for i=1:size(bins,2) 
            if bins(i)<0 
                count=count+1; 
            else 
                break 
            end 
        end 
        count1=1; 
        for i=count+1:size(freq,2) 
            if freq(i)> 0; 
                count1=count1+1; 
            else 
                break 
            end 
        end 
        if count+count1 > size(bins,2) 
            thresh_pt_ident_left(j)=max(target_sig_clean_left(:,j))+.01; 
        else 
            thresh_pt_ident_left(j)=bins(count+count1); 
        end 
    end 
  
  
    target_left=zeros(num_pixels, num_tgt_maps); 
    for j=1:num_tgt_maps 
        ind_tgt = target_sig_clean_left(:,j)>thresh_pt_ident_left(j); 
        target_left(:,j)=ind_tgt; 
    end 
  
    target_vec_left=zeros(num_pixels,1); 
    for j=1:num_tgt_maps 
        target_vec_left=target_vec_left + target_left(:,j); 
    end 
    target_vec=target_vec+target_vec_left; 
end 
%------------------------------------------------------------------------- 
target_pic = reshape(target_vec,num_lines,num_col); 
%------------------------------------------------------------------------- 
%------------------------------------------------------------------------- 
  
%----------Plot Target Signals with Calculated Thresholds----------------- 
if show_plots ==1 
    if size(rind,1)~=0 
        d=ceil(sqrt(num_tgt_maps)); 
        linetrh_ident=[]; 
        for j=1:num_tgt_maps 
            linetrh_ident(:,j)=thresh_pt_ident(j)*one; 
        end 
        if threshold_both_sides==1 
            for j=1:num_tgt_maps 
                linetrh_ident_left(:,j)=-thresh_pt_ident_left(j)*one; 
            end 
        end 
        figure(8) 
        for j=1:num_tgt_maps 
            subplot(d,d,j) 
            plot(target_sig_clean(:,j),'.', 'MarkerEdgeColor','r'); 
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            hold on 
            plot(linetrh_ident(:,j),'LineWidth',2); 
            if threshold_both_sides==1 
                hold on 
                plot(linetrh_ident_left(:,j),'LineWidth',2); 
            end 
            xlabel('Pixel'); 
            ylabel('Abundance (IC Score)'); 
            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',rind(j),... 
                PT_SNR(rind(j)),maxim(rind(j))),'Potential Target'},... 
                'fontweight','b'); 
            axis([0,num_pixels,-10,30]); 
        end 
        clear linetrh_ident 
    end 
    clear one 
end 
%-------------------------------------------------------------------------- 
  
%-------Grade Performance of AutoGAD if Truth Mask was Provided------------ 
if temp3~=0; 
%----------------------Confusion Matrix Calculation------------------------ 
    ConfusMat=[]; 
    ConfusMat(1,1)=0; %(TP) 
    ConfusMat(1,2)=0; %(FP) 
    ConfusMat(2,1)=0; %(FN) 
    ConfusMat(2,2)=0; %(TN) 
  
    for i=1:num_pixels 
        if target_vec(i,1)>= 1 && data_matrix_truth(i,1) >= 1 
            ConfusMat(1,1)=ConfusMat(1,1)+1; 
        else 
            if target_vec(i,1)>= 1 && data_matrix_truth(i,1) == 0 
                ConfusMat(1,2)=ConfusMat(1,2)+1; 
            else 
                if target_vec(i,1)== 0 && data_matrix_truth(i,1) == 1 
                    ConfusMat(2,1)=ConfusMat(2,1)+1; 
                else 
                    if target_vec(i,1)== 0 && data_matrix_truth(i,1) == 0 || 2 
                        ConfusMat(2,2)=ConfusMat(2,2)+1; 
                    end 
                end 
            end 
        end 
    end 
  
    APER = (ConfusMat(1,2)+ConfusMat(2,1))/(num_pixels); 
    TPF = ConfusMat(1,1)/(ConfusMat(1,1)+ConfusMat(2,1)); 
    FPF = ConfusMat(1,2)/(ConfusMat(1,2)+ConfusMat(2,2)); 
    Perc_tgt = ConfusMat(1,1)/(ConfusMat(1,1)+ConfusMat(1,2)); 
%-------------------------------------------------------------------------- 
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%-------------------Show Target Locations to the User---------------------- 
    target_vec_color=zeros(num_pixels,1); 
    for i=1:num_pixels 
        if target_vec(i,1)>=1 && data_matrix_truth(i,1)>=1 
            target_vec_color(i,1)=4; 
        elseif target_vec(i,1)>=1 && data_matrix_truth(i,1)==0 
            target_vec_color(i,1)=2; 
        end 
    end 
    target_pic_color = uint8(reshape(target_vec_color,num_lines,num_col)); 
    if size(rind,1)~=0 
        figure(9) 
        imshow(mat2gray(target_pic_color)); 
        colormap('Hot') 
        title(sprintf('TPF = %4.6f \n FPF = %4.6f \n Percent TGT = %4.6f',... 
            TPF, FPF,Perc_tgt),'fontweight','b'); 
        impixelinfo; 
    elseif size(rind,1)==0 
        figure(9) 
        imshow(target_pic); 
        title('No Targets Detected') 
    end 
    figure (2) 
    imshow(truth,[]); 
    title('Truth Mask'); 
    impixelinfo; 
else 
    if size(rind,1)~=0 
        figure(9) 
        imshow(target_pic) 
        title({'Suspected Target Pixels'}); 
        impixelinfo; 
    elseif size(rind,1)==0 
        figure(9) 
        imshow(target_pic) 
        title({'No Targets Detected'}); 
        impixelinfo; 
    end 
end 
time=toc 
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%PCA Data Analysis   
%by Capt Robert Joseph Johnson 
  
%-------------------------------------------------------------------------- 
%----------------------------Variables------------------------------------- 
% X = n observations x p variables data matrix  
% Xd = centered data matrix 
% C = covariance of X 
% Lc = diagonal matrix of eigenvalues of C  
% Ac = matrix of eigenvectors of C 
% YscorC = matrix of component scores if input is C 
%-------------------------------------------------------------------------- 
  
  
%------------------Function and Initial Variable Definitions--------------- 
  
function [Ac,Lc,TotVarCompC,YscorC]=Center_and_PCA(X) 
n = size(X,1); 
p = size(X,2); 
one = ones(n,1); 
  
%center data_matrix 
Xbar = mean(X); 
Xd = X - one*Xbar; 
%-------------------------------------------------------------------------- 
  
  
%----------------------PCA based on Cov(x) = C----------------------------- 
C=cov(X); 
  
%----Sort in descending order Eigenvalues and associated Eigenvectors------ 
[ac,lc] = eig(C); 
[lc_ordered, ord_value_lc] = sort(diag(lc), 'descend'); 
Lc = diag(lc_ordered); 
for i=1:p 
    Ac(:,i)=ac(:,ord_value_lc(i)); 
end 
%-------------------------------------------------------------------------- 
  
  
%-------Calculate percentage of total variance for each compnent----------- 
TotVar = trace(Lc); 
TVC = 0; 
TotVarCompC=[]; 
for i=1:p 
    TVC = TVC + Lc(i,i)/TotVar; 
    TotVarCompC = [TotVarCompC;TVC,i]; 
end 
%------------------------------------------------------------------- 
YscorC = Xd*Ac; %Component Scores 
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