
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

11-19-2018

Sequence Pattern Mining with Variables Sequence Pattern Mining with Variables

James S. Okolica
Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

Robert F. Mills
Air Force Institute of Technology

Michael R. Grimaila
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Artificial Intelligence and Robotics Commons, Information Security Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
Okolica, J. S., Peterson, G. L., Mills, R. F., & Grimaila, M. R. (2020). Sequence Pattern Mining with Variables.
IEEE Transactions on Knowledge and Data Engineering, 32(1), 177–187. https://doi.org/10.1109/
TKDE.2018.2881675

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277532195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Ffacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Ffacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Ffacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Sequence Pattern Mining with Variables
James S. Okolica, Gilbert L. Peterson, Robert F. Mills, and Michael R. Grimaila

Abstract—Sequence pattern mining (SPM) seeks to find multiple items that commonly occur together in a specific order. One common
assumption is that all of the relevant differences between items are captured through creating distinct items, e.g., if color matters then
the same item in two different colors would have two items created, one for each color. In some domains, that is unrealistic. This paper
makes two contributions. The first extends SPM algorithms to allow item differentiation through attribute variables for domains with
large numbers of items, e.g, by having one item with a variable with a color attribute rather than distinct items for each color. It
demonstrates this by incorporating variables into Discontinuous Varied Order Sequence Mining (DVSM) [1]. The second contribution is
the creation of Sequence Mining of Temporal Clusters (SMTC), a new SPM that addresses the interleaving issue common to SPM
algorithms. Most SPM algorithms address interleaving by using a distance measure to separate co-occurring sequences. SMTC
addresses interleaving by clustering all subsets of temporally close items and deferring the sequencing of mined patterns until the
entire dataset if examined. Evaluation of the SPM algorithms on a digital forensics media analysis task results in a 96% reduction in
terms to review, 100% detection of true positives and no false positives.

Index Terms—Sequence Pattern Mining, Digital Forensics, Temporal Event Abstraction

F

1 INTRODUCTION

THE goal of sequence pattern mining (SPM) is to find
multiple items that commonly occur together in a

specific order. For example, if someone purchases a com-
puter and printer, then they are likely to later purchase
replacement ink cartridges and paper. It has been applied
in domains as varied as market basket analysis [3], natural
languages [4], biology [5], elder care [6], and digital foren-
sics [7].

In general, SPM algorithms either ignore item attributes
or use them to define constraints a prior. For instance, there
are algorithms [11], [12] that might search for computer
and printer purchases where the price of the computer
is more than $1,000 and the price of the printer is less
than $200. However, the authors have failed to find any
SPM algorithms that automatically discovers what the range
of constraints should be. When the attribute does matter,
either a separate item is created for each potential attribute
value or only sequences whose items match the predefined
constraint are found.

At times, constraints are not known a priori. In those
cases, it may be desirable to first define a range of con-
straints and then mine frequent sequences that contain all
of those constraints. For instance, in the above example,
it might be desirable to mine the set of purchases to find
that computer prices fall into categories of under $200,
between $200 and $600, $600 to $1500 and over $1500.
Then, when mining for patterns, instances of all of these
constraints can be captured. One issue that emerges is that
if there are several attributes and each attribute has several
constraints, creating items for each combination of attributes
may become prohibitive.

An alternative to creating items for each combination
of attributes is keeping a single item and embedding the

• All the authors are with the Department of Electrical and Computer
Engineering, Air Force Institute of Technology, WPAFB, OH, 45433.

Manuscript received April 19, 2005; revised August 26, 2015.

attribute value within the item. For instance, in the digital
forensics domain, it is desirable to have one item for copying
files and another for printing files. A person might log into
his computer, copy file 123.txt and then print it. The items
are copy and print, but it’s important to associate the
file 123.txt with those items. Then, it becomes possible
to create a new item, CopyPrint, with file 123.txt as a
value associated with attribute filename (whereas copying
file 123.txt and printing file 456.txt wouldn’t fit). For
this paper, items that contain variable attribute values are
called terms.

Sequence mining in the predicate logic domain [13],
[14], where there are a small number of predefined items
and interleaving is not an issue, has already addressed
incorporating variables. This paper presents an SPM for
domains with large numbers of items that are discovered
during mining and where interleaving exists. This paper
makes two contributions. First, it discusses adding variables
to SPM algorithms and demonstrates this by extending an
existing SPM, Discontinuous Varied Order Sequence Mining
(DVSM) [1] to DVSM with Variables (DVSM-V). Second,
this paper creates a new SPM, Sequence Mining of Tempo-
ral Clusters (SMTC) specifically designed to minimize the
impact of interleaving.

Application of the SPM to a digital forensics media
dataset produces sequences for several user activities (e.g.,
starting Microsoft Word). When the sequences are checked
against the dataset, they are found in all locations where the
user activities occurred and no locations where they didn’t
occur.

2 RELATED WORK

Aggrawal and Srikant [2] describe SPM as “ Given a database
of sequences, where each sequence consists of a list of transactions
ordered by transaction time and each transaction is a set of items,
sequential pattern mining is to discover all sequential patterns

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

with a user-specified minimum support, where the support of a
pattern is the number of data-sequences that contain the pattern.”

SPM algorithms fall into three main categories [8]. The
first, Apriori-Based Algorithms, extend the original algo-
rithms developed by Agrawal [9]. The second, Pattern
Growth Algorithms, addresses Apriori’s need for creating a
large number of candidates during multiple passes through
the dataset by creating a frequent pattern tree and then
dividing the tree into a set of projected databases. Finally,
the third type of algorithm, Temporal Sequence Mining
Algorithms, mine datasets that are episodic in nature [10]
where an episode is “a collection of events that occur rela-
tively close to each other in a given partial order.” Observe
that while all three types of algorithms are appropriate to
temporal data, i.e., data that is sequenced by a timestamp,
the temporal sequence mining algorithms address a partial
ordering, e.g., where an item may occur over a span of time
that overlaps a span of time when a second and third item
occur.

The general process the Apriori techniques use is to
make multiple passes through a database of item. The first
pass creates sequences of length 1 and stores the most
frequent ones. The second pass extends the frequent length
1 patterns by one to length 2 patterns and stores the most
frequent length 2 patterns. The process repeats until no new
patterns are added.

Discontinuous Varied Order Sequential Miner
(DVSM) [1] is a recent Apriori-baed SPM algorithm
applied to the activities of daily living (ADL) domain where
activities are the items being mined for sequences. DVSM
handles two issues that arise when looking for sequences.
The first is that the order that items occur within a sequence
changes (e.g., one time when making a sandwich, they get
a knife out first and the next time, they get the bread out
first). The second is interleaving. Interleaving occurs when
two sequences of items occur simultaneously (e.g., setting
the table and fixing breakfast). DVSM handles both of
these with sequence categorization. DVSM groups similar
sequences together using the CLUSEQ algorithm [19] and
the Levenshtein edit distance [20] to measure similarity.
Frequency is based on the minimum description length [21]
which argues that the best description of a data set is the
one that maximally compresses it. One assumption that
DVSM makes is that item attributes can be safely ignored.

SPM Algorithms that do handle item attributes through
the use of variables include SeqLog [13] and MiTempP [14].
Lee and Raedt [13] created SeqLog as a logical language that
handles sequences of logical atoms with variables attached
to them. Lattner et. al. [14] extend this work with MiTempP
which handles temporal data. Both SeqLog (and its associ-
ated algorithm, MineSeqLog) and MiTempP are designed to
work in domains where there are a small number of items
that are defined a priori and where interleaving is not an is-
sue. To the best of our knowledge, no SPM approach handles
large numbers of items, item discovery during mining, in-
terleaving, and variables. Observe that there are algorithms
that mine for sequences subject to constraints [11], [12].
These algorithms constrain the sequences they find based
on item attributes. However, this differs from the current
work in that these Constraint Frequent Set Queries search
for sequences where the constraints are defined a priori. The

current work searches for sequences where the constraints
are defined as part of the mining process.

3 APPLICATION DOMAIN

A domain that includes large numbers of items, interleav-
ing, and variables is Digital Forensics. Digital forensics is
the “discipline that combines elements of law and computer
science to collect and analyze data from computer systems,
networks, wireless communications, and storage devices in
a way that is admissible as evidence in a court of law” [22].
A digital artifact is a digital trace found on digital media
that is of evidentiary interest. Digital artifacts serve several
purposes, including as a record of an activity, and as a record
of the digital items on the digital media. A digital object
is an organized collection of bits that provide content to
either a digital device or a user of a digital device. Digital
objects include several types of content, all of which must
be predefined.

Consider digital objects in the Windows NT Master
File Table (MFT). Each file stored on digital media has
additional digital artifacts stored with it that include the
time the file was created, the last time it was modified,
the last time it was accessed, and the last time its meta
information was changed. Each of these times corresponds
to a separate activity, respectively the file being created, the
file being modified, the file being accessed, and the file’s
meta information being changed. Consider the unique case
where all four activities occurred at the same time (e.g.,
the file was created but nothing has been done with it
since). Summarizing those four activities into an “A file was
created at ” idea provides the same amount of high level
information to an examiner but with a 75% reduction in the
amount of data that needs to be read.

Beyond the MFT, there is a large amount of temporal
information available on a digital device. Office automation
applications in Microsoft Windows keep track of the most
recently used files in the Windows Registry to improve
user productivity. Web browsers keep track of the websites
visited and the files downloaded in web logs. And the
operating system keeps track of important system events
like user logins in the Microsoft Windows Event Log and
active processes (e.g. volatile memory image).

As with activities of daily living (ADL) domain, the
items being mined in the digital forensics domain are ac-
tivities. While most of the issues with applying sequence
pattern mining to digital forensic data are the same as
applying it to activities of daily living (e.g., interleaving,
items occurring in different orders), there is one specific to
computer data. Digital forensics contains a large number
of digital objects. For instance, the researcher’s computer
contains a 465 gigabyte hard drive with over 1.5 million
files. It is unrealistic to create separate items for each ac-
tivity performed on each digital object. Instead, these items
must be considered attributes of a much smaller number
of common items. Incorporating variables into SPM is one
method for handling this.

A common requirement in Digital Forensics is to summa-
rize the activities that occurred on a digital device [23]. Early
work on this problem used pre-installed sensors [24] and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

then mined the resulting data. While research involving pre-
installed sensors continues [25], [26], there is also now re-
search without them [7], [27]. This is important for applying
digital forensics to non-corporate crimes, especially those
that are non-digital. Both Zeitline [27] and Python Digital
Forensic Timeline (PyDFT) [7] extract low level events and
allow manual combination of these events into higher-level
events. PyDFT does this with rules manually created by
subject matter experts. [28] create a new comprehensive
system, ParFor (Parallax Forensics) which includes extrac-
tion and uses forward chaining inference rules to develop
abstractions. This previous work either deals with specific
low level sequences of activities or involves significant
effort by subject matter experts to create the sequences of
activities, i.e., the rules. The current research endeavors to
automate the creation of these sequences for more abstract
user activities.

4 DEFINITIONS

This section defines several terms.
An Attribute is a quality or feature of an item.
A Variable is a symbol that may assume a given value

subject to specified constraints.
A Dataset is an ordered sequence of items. For this re-

search, each item will have one or more attributes associated
with it.

A Term is an item with one or more attributes, each with
a variable assigned to it.

An Abstraction is the replacement of a sequence of terms
with a single term.

A loop is an abstraction where all of the terms in a
sequence are the same and differ only in their attribute
values.

A single-item sequence is an abstraction where the at-
tributes of the terms all have the same value.

A multi-item sequence is an abstraction with no constraints
on the terms.

Conditional Variables are variables that may only take on
a subset of values. For instance, a, b, and c may only take
on rational values between $0.01 and $100.00. Any time
these variables are associated with a term the value of the
attributes that the variables are assigned to will be within
the constrained space. Within the term, the relationship
between the variable, attribute and value is called a cross
reference.

An Instantiation of a term is one of its location within the
dataset. Associated with the instantiation is the values of the
attributes for the term or sequence.

The Workspace is an ordered subset of the terms in a
dataset that is currently being examined by an SPM.

5 TERM AND SEQUENCE GENERATION

In the digital forensics domain, there are large number
of sequences where the adjacent terms (i.e., activities) act
on the same digital item. More generally, there are a
large number of sequences where adjacent terms have at-
tributes with the same variable instantiation. While DVSM-
V would capture these single term sequences, using an
algorithm specifically designed for single term sequences

improves the overall results. Single Term Sequence and
Loop Abstraction (STSLA) is a greedy algorithm that cre-
ates sequences based on adjacent terms with the same
variable instantiation. Since DVSM-V allows for multi-
object sequences, the sequences often have two parts of
one object and two parts of a second object. For instance,
given the terms T1(attribute = file1) + T2(attribute =
file1) + T3(attribute = file1) + T4(attribute = file1) +
T1(attribute = file2) + T2(attribute = file2) where
Tn represents term n, STSLA creates two sequences:
T1T2T3T4(file1) and T1T2(attribute = file2) while DVSM-
V is equally likely to produce T1T2(attribute = file1)
and T3T4(attribbute = file1) + T1T2(attribute = file2).
Both sets of sequences are correct, but STSLA’s is more
understandable.

Discontinuous Varied Order Sequence Mining with Vari-
ables (DVSM-V), an extension of the DVSM algorithm [1],
takes the STSLA output and mines sequences from it. While
DVSM is described in [1], it is repeated here for convenience.
DVSM proceeds sequentially through the dataset creating
all possible sequences of size 1. It then saves those sequences
it considers interesting, i.e.,

DL(D)

DL(a) +DL(D|a)
> C (1)

where C is a minimum compression value, D is the
dataset, a is a potential sequence and DL is the number
of bytes to encode the argument). It then looks at all of
the interesting sequences and creates sequences of size 2
based on the items that occurred immediately preceding
and following the size-1 sequences. Once it has created all of
these size-2 sequences, it again removes all but those it con-
siders interesting. This process repeats either until it does
not consider any sequences of the new length interesting or
until it reaches a previously defined maximum length. The
algorithm concludes by producing sequences for all of the
interesting sequences of size 2 or more.

5.1 Attaching Variables to SPM algorithms

Variables provide receptacles for attributes of mined se-
quences without the need to change the SPM algorithm
itself. For instance consider a sequence of computer com-
ponent purchases where if a customer purchases a memory
card and storage, about 15% of the time he later purchases
a video card (e.g., S2 = memory + storage + video
card). That may be statistically significant, but does it merit
targeted advertising? If a price attribute is added to each
item, then analysis of the mined sequences may show that
when the price of the memory card and storage are both
above $100, the purchase of the video card occurs 80% of
the time. Using variables as a receptacle to store attribute
values allows better analysis of the mined sequences.

Variables also enable sequences based on the values of
the attributes. In the previous example, variables enable
sequences like memory(price > $100) + storage(price >
$100) + video card. In this case, when the SPM mines
a sequence, it passes it off to a variable attachment al-
gorithm for further processing. The result is that se-
quences that have the same items (e.g., S1 = memory +
storage + video card) may become sequences with

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

different terms after variable attachment (e.g., S2(p, q|p, q >
100) = memory(p) + storage(q) + video card and
S2(c, d|c < 50, d < 80) = memory(c) + storage(d) +
video card). For consistency sake, the variable attach-
ment algorithm pre-defines variables with different con-
straints (e.g., p and q are constrained to always be greater
than 100, while c is always less than 50 and d is always less
than 80). Thus, whenever these variables are assigned to
attributes, it is clear what the constraints for those attributes
are.

While the previous examples have been restricted to
a single attribute, attaching variables to SPM generalizes
to multiple attributes. For instance, rather than limiting
the attributes of the memory, storage and video card
items to price, an additional attribute of size can be added.
Perhaps it is not the price of memory and storage that is
influencing whether video cards are part of the sequence
but rather the size of memory and storage. Or, perhaps by
adding in a variable with the size attribute to the video
card, we can find an additional relationship between the
price of memory and storage and the size of the video card.
For simplicity, the remainder of this paper only considers
items with a single attribute that can have a variable number
of values; however, everything discussed generalizes to
multiple attributes without loss of generality.

Fig. 1. Attaching Variables to SPM.

As shown in Figure 1, sequence mining of terms takes
several steps. First the sequence of terms is identified. Then
the number of variables needed is determined by consid-
ering the different attribute values in the different terms.
Next, variables are assigned to the different values based on
the categories the values fall into. Finally, the sequence with
the variables assigned is fed back to the SPM for further
processing. Observe that in Figure 1 that sequence S1 is
transformed into sequence S1(a,f). In other words, different
instances of the same sequence of terms may transform into
different sequences (e.g., S1(a,f), S1(a,b), or S1(f) based on
the number and types of different values the attributes of
those terms have.

Sequence Pattern Mining with Variables can handle
mining sequences of terms where the terms are

Fig. 2. Traceability.

themselves sequences. Consider a sequence A,B,C .
A might be memory1 ($120), B might be memory2
($123) + memory3($130) + memory4($127), and
C might be memory1($120) + storage1($150) +
video2($124). A is a simple term. B is known as a
loop, a single term with a list of values assigned to a
single variable , and C is a sequence of terms, each with
one or more variables. The process described in Figure 1
becomes more involved. As shown in Algorithm 1, there
are now three possibilities when considering a term (i.e.,
simple terms, loops, and sequences). Loops are handled
like simple terms except that there is no attempt to find
other terms in the sequence with the same list of values.
Finally, there are sequences, a term that is itself a sequence
of terms that already has a list of variable assignments. As
shown in Figure 2, these variable assignments need to be
combined with the variable assignments for the other items
in the sequence. When the same value has already been
assigned to a different variable, a cross reference between
the new variable and the old variable needs to be made for
traceability. When the variable assignments for a sequence
is completed, it has the same structure whether it contains
sequences or not. The only difference is the cross reference
used for traceability.

6 ABSTRACTION WITH VARIABLES

Sequence pattern mining can be done iteratively. In this
case, after each iteration of SPM, the “interesting” mined
sequences in the dataset are replaced with a single term,
either a sequence or loop, that represents the sequence.
The result of iterative SPM, also known as abstraction, is
a smaller sequence of terms that more compactly describes
the dataset. Abstraction is done in two steps. First, the entire
dataset is processed using for sequences and then a second
time for loops (i.e., sequences of terms where the objects are
all the same but the variable instantiations vary).

One initial complication that arises when performing
abstraction on sequences with variables concerns the dis-
tance measurement. A common algorithm for measuring

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 1 SPM - Variable Attachment
1: Input
2: Si - a sequence of terms
3: ConditionalV ariables - list of conditions and a list
4: of variables for each condition
5: Output
6: So - a sequence of terms
7: Xv - cross reference of variables
8: Usedv - list of used variables
9: Variables

10: tnew - a copy of Si’s current term
11: v - variable being assigned to current term
12: attList - list of attribute values associated with term
13: wattribute - attribute value being examined for term
14: Xref - if term is a sequence, cross reference
15: for the instance of that sequence in the dataset
16: vold - variable/value for an attribute in Xrefi
17: vnew - variable/value for an attribute for So

18: Usedv, Xv ← ∅
19: Algorithm
20: for i← 1, Si.getLength() do
21: tnew ← Si.getTerm(i)
22: tnew.xref, tnew.variable← NULL
23: if tnew.isLoop() then
24: v = ConditionalV ariables.getV ariable(NULL)
25: tnew.variable← v
26: else if tnew.isSingleV alue() then
27: v = Usedv.getV ariable(t.getAttributes()
28: if v == NULL then
29: v = ConditionalV ariables.
30: getV ariable(t.getAttributes())
31: end if
32: Usedv ← Usedv

∪
{v, t.getAttributes()}

33: tnew.variable← v
34: else
35: attList← t.getAttributes()
36: while wattribute = attList.pop() do
37: v = Usedv.getV ariable(t.getAttributes())
38: if v == NULL then
39: v = ConditionalV ariables.
40: getV ariable(t.getAttributes())
41: end if
42: Usedv ← Usedv

∪
{v, t.getAttributes()

43: end while
44: Xref ← Si.getTerm(i).getXref()
45: for j ← 1, Xref.getLength() do
46: witem← Xref.getAttributes(j)
47: vold ← Xref.getV ariable(wattribute)
48: vnew ← Usedv.getV ariable(wattribute)
49: if vnew == NULL then
50: vnew = ConditionalV ariables.
51: getV ariable(wattribute)
52: Usedv ← Usedv

∪
{vnew, wattribute}

53: end if
54: Xv ← Xv

∪
{vold, vnew}

55: end for
56: tnew.xref ← Xv

57: end if
58: So ← So

∪
tnew

59: end for

the distance between two sequences is the Levenshtein edit
distance [20]. This distance is a measure of how many
changes must occur before one sequence is identical to
the the other. Changes include inserting a term, deleting a
term and replacing one term with another. When variables
are added, the concept of replacing one term with another
becomes more complex. If two terms are identical except for
the constraints placed on the attributes (e.g., both terms are
computer memory but one is memory with a price under
$100 and the other is memory with a price over $100), are
they “closer” than two terms that are different even without
considering their attributes (e.g., memory versus storage).
The general Levenshtein edit distance algorithm allows for
a different costs for inserting, deleting, and swapping terms.
When using it with sequences with variables, it needs to
further allow for different costs if the only difference in the
terms being swapped are variable constraints.

6.1 Sequence Mining of Temporal Clusters (SMTC)

While there are several SPM algorithms that handle inter-
leaving, most handle it as an afterthought. Interleaving oc-
curs when two or more sequences of terms occur simultane-
ously. For instance, if sequence 1 is ABBCD and sequence
two is CBFFA then ACBBBCFFDA is an example of
those two sequences interleaved. If ACBBBCFFDA is the
only example of sequences 1 and 2, then it’s impossile to
mine them. However, if they occur frequently elsewhere
as individual sequences where there isn’t interleaving, it
becomes possible to find them in ACBBBCFFDA .

A common method for decoupling interleaved se-
quences is to compare the sequence being examined with
previously extracted sequences. If the sequence in question
is “close enough” to a previously extracted sequence, then
it is considered another example of the sequence. There are
several methods for determining “closeness”. One measure-
ment of distance that is often used is the Levenshtein edit
distance [20]. This determines the minimum number of sim-
ple edit operations necessary to transform one sequence to
another. In the above example, transform ACBBBCFFDA
into ABBCD or CBFFA would require five delete op-
erations. Thus, the distance between the sequences is five.
There are several issues with this. The first is determin-
ing what a reasonable threshold for closeness is. In the
above example, five operations are required to transform
ACBBBCFFDA into ABBCD and CBFFA (four if we
can ignore the final or first characters respectively). Using
that threshold would mean that sequence 1 and 2 are also
the same sequence (since they can be transformed into
each other with only 4 swap operations). One way around
this issue is to put different costs on different types of
operations (e.g., the delete operation costs 1 distance while
the insert and swap operations cost 2). A second issue in
separating interleaved sequences is that the same candi-
date sequence needs to be compared to every previously
extracted sequence. For instance, it is not sufficient to simple
transform ACBBBCFFDA into ABBCD; it needs to be
transformed into ABBCD and CBFFA. Thus, once one
sequence is extracted, the terms remaining in the candidate
(i.e., the noise) needs to be examined again to see if there are
more sequences hidden in it.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

An alternative method for resolving interleaving is to
focus first on what terms occur together. By first clustering
terms that occur close together, we avoid several compli-
cations. First, there is no need to worry about the order of
terms varying (e.g., one time when making a sandwich, they
get a knife out first and the next time, they get the bread
out first). Terms are first considered without order, only as
temporally close sets. Second, since temporally close terms
are first placed in clusters, there is no concept of interleav-
ing. Each time two or more temporally close terms occur,
all possible subsets of those terms are placed in clusters. For
instance, if v1, v2 and v3 occur temporally close together,
the subsets {v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, and
{v1, v2 v2, v3} are all created. Then the existing set of clusters
is checked to see if these subsets already exist. If they do,
the new instance of the subset is added to the cluster. In
this way, once the entire dataset has been examined, the
resulting clusters are free from interleaving. Any cluster
that exceeds a threshold (discussed below) is considered
interesting. Only after the clusters have been created and
the uninteresting ones removed is sequencing considered
(discussed below).

Sequence Mining of Temporal Clusters (SMTC) is based
on this second option for resolving interleaving. There are
two implementation decisions to be considered when imple-
menting the SMTC class of sequence pattern mining algo-
rithms. The first is how are interesting clusters determined.
For this implementation, the score used is

occurrences(C) ∗ |C|variableCount(C)∗ϵ (2)

where occurrences(C) is the number of times this clus-
ter of terms occurs in the dataset, variableCount(C) is the
number of distinct variables in C , and ϵ is a user specified
weighting. Observe that using a different formula, e.g.,
Equation 1, doesn’t change the SMTC class of algorithms
at all. The second implementation decision is how to de-
termine the optimal sequence for a given cluster. In this
implementation, the sequence that occurred most frequently
in the dataset (i.e., the mode) is considered the representa-
tive sequence for the cluster. However, other choices can
be made (e.g, using the median sequence) without changing
the SMTC class of algorithms. Algorithm 2 shows the SMTC
class of algorithsm. Parameters associated with SMTC in-
clude the maximum number of terms in the workspace (i.e.,
how big of a power set can the machine handle), how much
weight to give to fewer different variables in a sequence, the
maximum time lag for terms to be considered temporally
close, and the threshold score for SMTC to keep a cluster of
terms.

7 THE EXPERIMENT

The dataset used in this research is constructed from a
collection of virtual machine snapshots created in a con-
trolled environment with Microsoft Windows 10 and Of-
fice 2013 installed to create the terms and sequences for
Microsoft Word, Microsoft Excel, Microsoft PowerPoint,
Google Chrome, and Mozilla Firefox. Table 1 is a summary
of the five use cases and the five to eight scenarios for each.
When performing each scenario, there are several guide-
lines. First, after starting the virtual machine, the examiner

Algorithm 2 Sequence Mining of Temporal Clusters (SMTC)
1: Input
2: D - the dataset - a sequence of terms
3: MS - maximum terms in a sequence
4: Mτ - maximum workspace time lag
5: ϵ - the weight of more variables in a sequence
6: threshold - the minimum score necessary for a
7: sequence to be interesting
8: Output
9: si - a generated sequence and all its instantiations in

D
10: of it
11: S - the set of generated sequences, ∪si
12: sn → t1 + t2 + ...+ tn where
13: t1, t2, ..., tn ∈ D.getTerms()
14: ∪D.getSequences()
15: Variables
16: t - the current term
17: W - the workspace - the subset of D being examined
18: wi - the ith entry in the workspace
19: P - the power set generated by W where each
20: p ∈ P has all its instantiations attached
21: C - the set of clusters. For c ∈ C, c is an
22: unordered set, but the instantiations
23: attached to c are ordered as in D
24: distance(x, y) - the temporal distance between x and

y

25: Algorithm
26: S,W,C ← ∅
27: D.gotoBeginning()
28: while (t← D.nextTerm()) ̸= NULL do
29: if (|W | > MS or distance(w1, t) > Mτ) then
30: P ← powerset(W)
31: for p ∈ P do
32: c← t
33: if c ∈ C then
34: c.occurrences++
35: c.addInstantiations(
36: p.getInstantiations())
37: else
38: C = C ∪ c
39: c.occurrences← 1
40: c.addInstantiations(
41: p.getInstantiations())
42: end if
43: end for
44: Remove terms from workspace till
45: new term fits in workspace
46: end if
47: end while
48: S ← KeepInteresting(C, ϵ, threshold)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE 1
Use Cases.

Use Case Scenarios for Starting and Using Applications
in Windows 10

1a User creates a MS Word document
1b User opens MS Word from the start menu, opens an

existing file from within MS Word, edits and saves
it, and exits

1c User open File Explorer, clicks on an existing file,
edits and saves, it, and exits MS Word

1d User opens Command Line, types the file name, edits
and saves it, and exits MS Word

1e User opens MS Internet Explorer and downloads and
opens a document and saves it

1g User opens Mozilla Firefox and downloads and opens
a document and saves it

1h User opens two files and copy/pastes between them
2 Same scenarios for MS Excel
3 Same scenarios for MS PowerPoint
4a User starts Google Chrome by selecting it from the MS

menu and visits a website
4b User starts Google Chrome by selecting it from the MS

menu, visits several websites and downloads/saves
content

4c User starts Google Chrome by selecting it from the MS
menu, visits Facebook, logs in, and starts instant
messaging

4d User starts Google Chrome by selecting it from the MS
menu, visits Twitter, logs in, and makes a tweet

4e User starts Google Chrome by selecting it from the MS
menu, visits Instagram, logs in, and views pictures

5 Same scenario for Mozilla Firefox

TABLE 2
Extracted Data Files

Data Type File System Location
Event Logs /windows/system32/winevt/logs
Registry Files /windows/system32/config
User Data /%USERPROFILE%/appdata/NTUSER.DAT

/%USERPROFILE%/appdata/local/microsoft/
windows/UsrClass.DAT
/%USERPROFILE%/appdata/local/microsoft/
windows/history/history.ie5
/%USERPROFILE%/appdata/local/google/
chrome/user data/default/History
/%USERPROFILE%/appdata/roaming/mozilla/
firefox/profiles/xxxx/places.sqlite

waits 30 minutes before performing the first step of the sce-
nario. The second is that there is at least a two minute delay
between each step in the scenario. Both of these guidelines
are to minimize the chances of the operating system running
background processes that will complicate generating the
grammar. Once the images have been created, the files
shown in Table 2 are extracted and used to create the dataset.
Each scenario takes approximately 90 minutes to create and
extract the data form and another 90 minutes to load into a
database for use. A separate database is used for each use
case and all scenarios for a single use case are in the same
database.

First, STSLA is applied to the dataset to create an ab-
stracted dataset. Next, DVSM-V and SMTC are applied to
further abstract the dataset. In each case, there is a max-
imum size sequence that is considered. During testing of
STSLA, it was shown that no single term sequence was ever
larger than eight terms and thus a maximum size of eight
was used. For DVSM-V and SMTC, the constraints of the

machine used to abstract the data limits us to a maximum
sequence size of thirty and six respectively. The six term
limitation for SMTC has resulted in it being run twice for
a total maximum sequence size of thirty-six. As shown in
Figure 2, the terms and sequences are applied to items at
a specific level of abstraction to create items at a higher
abstraction level as well as traceability back to the original
items, terms and sequences. The result of applying these
algorithms to the dataset is the creation of 4,709 terms and
7,710 sequences in the DVSM-V dataset and 61,778 terms
and ‘8,759 sequences in the SMTC dataset. In both cases,
there is a 96% reduction in the number of terms.

Once the dataset has been sufficiently abstracted, the
final step is creating a set of production rules that describe
starting the appropriate application (e.g., MS Word, MS
PowerPoint, MS Excel, Chrome, Firefox). This occurs by
using the detailed times recorded during creating the use
cases of when the application begins loading and when it
finishes loading. The activities bookended by these times
are all considered to be part of starting the application.
As an example, Table 3 shows the terms and sequences
involved in starting Microsoft Word and Table 4 shows
how they combine for the different scenarios. Note that
there are some terms that seem to perform the Create,
Modify, Access, Change on the same file twice. In reality,
this is part of establishing exclusive access to the file (and is
actually the file and a lock file with a similar name). Table 5
shows the production rules generated after the sequences in
Table 4 are consolidated. Table 6 shows an example of the
production rules used to generate the sequence for scenario
UC1A. There are three cases where a specific scenario for
a specific use case produced so few (three - five) terms
and sequences that it was excluded. In all cases, when the
generated production rules are applied to the constructed
datasets, the activities used to generates the rules are found
and no other sequences of activities are found.

8 CONCLUSIONS AND FUTURE WORK

The Variable Attachment algorithm discussed is the first
attempt at attaching items to sequence pattern mining (SPM)
algorithms in domains with large numbers of items discov-
ered during SPM where interleaving exists. By attaching it
to DVSM [1], we show that it can be used with existing SPM
algorithms. Sequence Mining of Temporal Clusters (SMTC)
is a new perspective on SPM that focuses on resolving
interleaving at the expense of either pattern size or number
of passes through the dataset. The utility of variable attach-
ment has been shown by applying DVSM-V and SMTC to
the a constructed dataset in the digital forensics domain.
Applying these algorithms to a constructed dataset has
resulted in a 96% reduction in the number of terms and the
creation of production rules for recognizing user activities.

The current results only show the algorithms applied to
the use cases for starting the applications. Subsequent tests
should be run using the existing data for performing simple
tasks in the applications. Once all of these user activities are
modeled as well as some system processes (e.g., automated
software updates), a technical narrative of a “day in the
life” can be presented. Further use cases would provide

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE 3
Representative Terms and Sequences

Term/Sequence Description
T13 Modify File ˆ.*$
T112 System Modify Registry Key ˆ.*$
T150 User Modify Registry Key ˆ.*$
T205 Change File ˆ.*$
T145 System Modify Registry Key ˆ.*/Windows/.*$
T230 User Modify Registry Key ˆ.*/Windows/.*$
T310 User Access File ˆ.*$
S347 Modify and Change File

ˆ.*/Windows/.*/Windows/.*$
S667 Modify and Change File ˆ.*/Windows/.*$
S676 Modify, Access and Change File ˆ.*/Windows/.*$
S677 Create, Modify, Access, Change, Create, Modify,

Access, and Change File ˆ.*/Windows/.*$
S706 Modify, Access and Change File ˆ.*$
S757 Create, Modify, Access, Change, Create, Modify,

Access, and Change File
ˆ.*/Users/user/AppData/.*/Microsoft/.*$

S754 Create, Modify, Access, Change, Create, Modify,
Access, and Change File
ˆ.*/Users/user/AppData/Local/.*$

S759 Modify and Change File
ˆ.*/Users/user/AppData/.*/Microsoft/.*$

S766 Modify, Access, and Change File
ˆ.*/Users/user/AppData/.*/Microsoft/.*$

S768 Create ˆ.*/Users/user/AppData/.*/Microsoft/.*$
S777 Modify, Access, Change, Modify, Access and Change

File ˆ.*/Users/user/AppData/.*/Microsoft/.*$
S940 Modify, Access, and Change File

ˆ.*/Users/user/AppData/Local/.*$
S1080 Create, Modify, Access, Change, Create, and Access

File ˆ.*/Users/user/AppData/.*/Microsoft/.*$

TABLE 4
Example Sequences for Starting Microsoft Word

Scenario Sequence
UC1A 667 230 112 150 1080 766 757 667 112 667 667 676 677

667 230 145 667
UC1B 667 667 667 310 230 667 230 112 150 145 667 112 667

667 112 676 677 667 145
UC1C 230 667 112 667 667 667 150 230 112 145 667 667 676

677 667 667 112
UC1D 13 230 706 768 205 150 230 667 150 230 667 112 145

667 676 677 667 667 112 766 777 759 766 759 777 230
150 112 766 757 759 310 230 230 759 759 150 230 150
766 150 112 145 940 150

UC1E 768 205 230 766 757 230 667 766 777 759 150 667 112
145 667 676 677 667 754 667 150 766 759 777 150 230

UC1F 150 766 759 766 676 677 1070 150 836 214 150 145 112
428 735 940 228 667 735 1196 735 214 150 667 347

UC1G 667 230 112 150 112 667 150 145 676 677 145 667 706
145 1070 112 667 667

UC1H 940 377 228 667 112 150 759 150 112 667 643 676 1050
667 150 667 1063 112 40 766 315 490 202 112 667 150
230 145 766 757 667 230 667 490 48 759 667 13 74 8
40 667 342 677 757 766 230 667 112 677 667 230 754
667 230 777 667 112 112 676 686 112 1047 112 676
667 202 667 706 145 145 766 777 759 694 150 667
759 145 706 150 777 150 759 230 112 766 759 777
230 112 754 766 940 766 150 377 667

additional rules for better results when applied to unseen
datasets.

BIBLIOGRAPHY

REFERENCES

[1] P. Rashidi, D. J. Cook, L. B. Holder, and M. Schmitter-Edgecombe,
“Discovering activities to recognize and track in a smart envi-

TABLE 5
Representative Production Rules

ID Rule
S3 T112 + T150 + T1080 + T766 + T757
S12 T676 + T677
S21 T112 + T667
S28 T230 + T145
S84 S21 + T667 + S12
S252 T667 + T230 + S3
S284 S252 + T667 + S84
S285 S284 + T667 + S28
S1010 (b) S285 + S1012
S1011 T0 + S1010 + T0
S1012 (f) T667

TABLE 6
Example of Production Rules Generating a Sequence

S1010 (b)
S285 + S1012 (f)
S284 + T667 + S28 + S1012 (f)
S252 + T667 + S84 + T667 + S28 + S1012 (f)
T667 + T230 + S3 + T667 + S84 + T667 + S28 + S1012 (f)
T667 + T230 + T112 + T150 + T1080 + T766 + T757 + T667 + S84 +

T667 + S28 + S1012 (f)
T667 + T230 + T112 + T150 + T1080 + T766 + T757 + T667 + S21 +

T667 + S12 + T667 + S28 + S1012 (f)
T667 + T230 + T112 + T150 + T1080 + T766 + T757 + T667 + T112 +

T667 + T667 + S12 + T667 + S28 + S1012 (f)
T667 + T230 + T112 + T150 + T1080 + T766 + T757 + T667 + T112 +

T667 + T667 + T676 + T677 + T667 + S28 + S1012 (f)
T667 + T230 + T112 + T150 + T1080 + T766 + T757 + T667 + T112 +

T667 + T667 + T676 + T677 + T667 + T230 + T145 + S1012 (f)
T667 + T230 + T112 + T150 + T1080 + T766 + T757 + T667 + T112 +

T667 + T667 + T676 + T677 + T667 + T230 + T145 + T667

ronment,” IEEE Transactions on Knowledge and Data Engineering,
vol. 23, no. 4, pp. 527–539, 2011.

[2] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Pro-
ceedings of the International Conference on Data Engineering. IEEE,
1995, pp. 3–14.

[3] S. Brin, R. Motwani, J. Ullman, and S. Tsur, “Dynamic itemset
counting and implications rules for market basket data,” in Pro-
ceedings of the ACM Special Interest Group on Management of Data
Conference on the Management of Data, vol. 26. ACM, 1997, pp.
255–264.

[4] N. Jindal and B. Liu, “Identifying comparative sentences in text
documents,” in Proceedings of the 29th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval.
ACM, 2006, pp. 244–251.

[5] G. Bejerano and G. Yona, “Modeling protein families using proba-
bilistic suffix trees,” in Proceedings of the Third Annual International
Conference on Computational Molecular Biology. ACM, 1999, pp.
15–24.

[6] D. J. Cook, N. C. Krishnan, and P. Rashidi, “Activity discovery
and activity recognition: a new partnership,” IEEE Transactions on
Cybernetics, vol. 43, no. 3, pp. 820–828, 2013.

[7] C. Hargreaves and J. Patterson, “An automated timeline recon-
struction approach for digital forensic investigations,” Digital In-
vestigations, vol. 9, pp. S69–S79, 2012.

[8] C. H. Mooney and J. F. Roddick, “Sequential pattern mining–
approaches and algorithms,” ACM Computing Surveys (CSUR),
vol. 45, no. 2, p. 19, 2013.

[9] R. Agrawal, R. Srikant et al., “Fast algorithms for mining associa-
tion rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol.
1215, 1994, pp. 487–499.

[10] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovering fre-
quent episodes in sequences extended abstract,” in 1st Conference
on Knowledge Discovery and Data Mining, 1995.

[11] L. V. Lakshmanan, R. Ng, J. Han, and A. Pang, “Optimization of
constrained frequent set queries with 2-variable constraints,” in
ACM SIGMOD Record, vol. 28, no. 2. ACM, 1999, pp. 157–168.

[12] C. Bucilă, J. Gehrke, D. Kifer, and W. White, “Dualminer: A dual-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

pruning algorithm for itemsets with constraints,” Data Mining and
Knowledge Discovery, vol. 7, no. 3, pp. 241–272, 2003.

[13] S. Dan Lee and L. De Raedt, Constraint Based Mining of First Order
Sequences in SeqLog. Springer Berlin Heidelberg, 2004, pp. 154–
173.

[14] A. D. Lattner and O. Herzog, “Constraining the search space in
temporal pattern mining,” in LWA, 2006, pp. 314–321.

[15] M. J. Zaki, “Spade: An efficient algorithm for mining frequent
sequences,” Machine learning, vol. 42, no. 1-2, pp. 31–60, 2001.

[16] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo, “Fast discovery of association rules,” Advances in Knowl-
edge Discovery and Data Mining, vol. 12, no. 1, pp. 307–328, 1996.

[17] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu,
“Freespan: frequent pattern-projected sequential pattern mining,”
in Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2000, pp. 355–359.

[18] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu, “Prefixspan: Mining sequential patterns efficiently
by prefix-projected pattern growth,” in Proceedings of the 2001
International Conference on Data Engineering. IEEE, 2001, pp. 215–
224.

[19] J. Yang and W. Wang, “Towards automatic clustering of protein se-
quences,” in Proceedings of the IEEE Computer Society Bioinformatics
Conference. IEEE, 2002, pp. 175–186.

[20] V. Levenshtein, “Binary codes capable of correct deletions, inser-
tions and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–
710, 1966.

[21] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, pp. 465–471, 1978.

[22] A. Marcella and D. Menendez, Cyber Forensics: A Field Manual for
Collecting, Examining, and Preserving Evidency of Computer Crimes,
Second Edition. Auerbach Publications, 2007.

[23] S. L. Garfinkel, “Digital forensics research: the next 10 years,”
Digital Investigation, vol. 7, pp. S64–S73, 2010.

[24] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings
of the Nineteenth ACM Symposium on Operating System Principles.
ACM, 2003, pp. 223–236.

[25] M. N. A. Khan, “Performance analysis of bayesian networks
and neural networks in classification of file system activities,”
Computers & Security, vol. 31, no. 4, pp. 391–401, 2012.

[26] Y.-C. Liao and H. Langweng, “Resource-based event reconstruc-
tion of digital crime scenes,” in IEEE Joint Intelligence and Security
Informatics Conference. IEEE, 2014, pp. 129–136.

[27] F. P. Buchholz and C. Falk, “Design and implementation of zeit-
line: a forensic timeline editor.” in Proceedings of the 2005 Digital
Forensics Research Workshop, 2005, pp. 1–7.

[28] B. Turnbull and S. Randhawa, “Automated event and social net-
work extraction from digital evidence sources with ontological
mapping,” Digital Investigation, vol. 13, pp. 94–106, 2015.

	Sequence Pattern Mining with Variables
	Recommended Citation

	Sequence Pattern Mining with Variables

