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A geometrical optics polarimetric
bidirectional reflectance distribution
function for dielectric and metallic

surfaces
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2950 Hobson Way

Wright-Patterson AFB, OH., 45433-7765

milo.hyde@afit.edu

Abstract: A polarimetric bidirectional reflectance distribution function
(pBRDF), based on geometrical optics, is presented. The pBRDF incorpo-
rates a visibility (shadowing/masking) function and a Lambertian (diffuse)
component which distinguishes it from other geometrical optics pBRDFs
in literature. It is shown that these additions keep the pBRDF bounded
(and thus a more realistic physical model) as the angle of incidence or
observation approaches grazing and better able to model the behavior of
light scattered from rough, reflective surfaces. In this paper, the theoretical
development of the pBRDF is shown and discussed. Simulation results of a
rough, perfect reflecting surface obtained using an exact, electromagnetic
solution and experimental Mueller matrix results of two, rough metallic
samples are presented to validate the pBRDF.

© 2009 Optical Society of America

OCIS codes: (290.1483) BSDF, BRDF, and BTDF; (290.5855) Scattering, polarization;
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1. Introduction

Rough surface scattering has been an active area of research for nearly half a century. One of
the early areas of research dealt with radio [1] and acoustic [2, 3] wave scatter from the ocean
surface. Measurement of this scatter led to methods for sensing ocean wave heights [4]. In an-
other application, in preparation for the NASA Apollo missions, analysis of light scattered from
the lunar surface led researchers to conclude that the moon’s surface is composed of a partic-
ulate material [5]. Study of the scattering from rough surfaces has also been applied to pre-
dict reflections from tree canopies [6,7], biological/medical sensing [8,9], and computer/video
graphics [10–12].

Scattering from a rough surface is typically modeled using a bidirectional reflectance dis-
tribution function (BRDF) or its polarimetric counterpart, a polarimetric BRDF. BRDFs are
generally classified in two main types—empirical and analytical BRDFs. As the name implies,
empirical BRDFs are formulated from measurements. An example of such a BRDF can be
found in Ref. [13]. Analytical BRDFs are typically derived using either physical optics or geo-
metrical optics. Physical optics BRDFs rely on the electromagnetic physical optics approxima-
tion [14, 15] (known as the Kirchoff approximation in optics) to predict the scatter from rough
surfaces. The seminal work in this type of BRDF is that of Beckmann and Spizzichino [16].
Another work which presents an excellent description of the Kirchoff approximation of rough
surface scattering is that of Ishimaru [17]. More recently, Beckmann and Spizzichino’s BRDF
has been extended to include shadowing (described below) and polarization [12, 18]. Geomet-
rical optics BRDFs rely on the ray approximation of light [15, 19]. The seminal paper in this
BRDF genre is that of Torrance and Sparrow [20]. Since Torrance and Sparrow, numerous ge-
ometrical optics BRDFs have been developed. These include BRDFs specialized to predict IR
signatures of aircraft [21], full polarimetric geometrical optics BRDFs [22–26] , and BRDFs de-
rived to predict scatter from multilayer coatings [27]. Both types of analytical BRDFs discussed
here require the surface roughness features to be several times larger than the wavelength of the
incident light. Since physical optics BRDFs are based on a more sound approximation, they
tend to be more accurate than geometrical optics BRDFs. However, geometrical optics BRDFs
tend to be simpler in mathematical form and thus more numerically efficient. They also tend to
be more physically intuitive than their physical optics counterparts. It is for these reasons that
the BRDF introduced in this paper is a geometrical optics BRDF.

The geometrical optics BRDF introduced here is a full polarimetric BRDF (pBRDF). It is
very similar in form to the pBRDF introduced by Priest and Germer [23, 24]; however, this
pBRDF includes a shadowing function (in particular, the Torrance and Sparrow [20] shadowing
function) and a Lambertian (diffuse) pBRDF component. It is shown that the pBRDF satisfies
reciprocity and conserves energy. Section 2 of this paper introduces the theoretical form of
the pBRDF. Section 3 compares the pBRDF prediction of the scatter from a rough, perfectly
reflecting surface to that of an exact, electromagnetic solution. In Section 4, Mueller matrix
predictions are made using the pBRDF and compared to measurements made using a Mueller
matrix ellipsometer [28] in order to validate the model. Lastly, the paper is concluded with a
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Fig. 1. Macroscopic surface scattering geometry. Light subtending solid angle dωi is in-
cident from the (θi,φi) direction on a small area dA of a much larger rough surface with
complex index of refraction η = n− jκ . Light is scattered and observed within solid angle
dωr in the (θr,φr) direction.

summary of the work presented.

2. Methodology

Consider the scattering geometry shown in Fig. 1. Light, subtending solid angle dωi and cen-
tered on polar angle θi and azimuth angle φi, is incident on a small area dA of a larger rough
surface with complex index of refraction η = n− jκ . Light is scattered from the surface and
observed within solid angle dωr at polar angle θr and azimuth angle φr. The BRDF is defined
as the ratio of the scattered radiance to the incident irradiance:

f (θi,θr,φ) =
dLr (θr,φ)

dEi (θi)
=

dLr (θr,φ)
Li (θi)cosθidωi

(1)

where dLr is the scattered radiance, dEi is the incident irradiance, and φ = |φr −φi| (i.e., surface
is isotropic and homogeneous). Note that the incident irradiance is equivalent to the product
of the incident radiance and the projected solid angle cosθidωi [20, 29–35]. In the general
polarimetric case, the scattered radiance and incident irradiance are replaced by Stokes vectors
and the BRDF (now a pBRDF) by a Mueller matrix, i.e. [23, 24, 26, 29, 30, 33, 34, 36, 37],

F(θi,θr,φ) =
dLr (θr,φ)

Li (θi)cosθidωi
. (2)

Note that f of Eq. (1) equals F00 where the subscript 00 is the element in the first row and
first column of the pBRDF Mueller matrix [33, 34]. It is common in literature to express the
scattered radiance as the sum of the radiance which leaves the surface after one reflection and
the radiance which leaves the surface after multiple reflections [11, 20, 25–27,33–35,37, 38]:

Lr (θr,φ) = Lsingle
r (θr,φ)+Lmultiple

r (θr,φ) (3)

implying that
F = Fsingle +Fmultiple. (4)
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Fig. 2. Scattering geometry of a single microfacet. The angle α is the polar angle from the
mean surface normal to the microfacet normal n. The angle β is the incident angle onto
and reflected angle from a microfacet as measured from the microfacet normal. The angle
γi is the angle between the macroscopic plane of incidence and the scattering plane of the
microfacet (depicted in the figure as the plane containing the vectors n and t). Likewise, the
angle γr is the angle between the macroscopic plane of reflection and the scattering plane
of the microfacet.

It follows that light leaving the surface after a single scattering event (for convenience termed
the first reflection) models the specular component of reflection. This component carries with
it all polarimetric information gained from interaction with the material surface. The multiple
scattering term models the diffuse, or Lambertian component of reflection. One can glean this
by considering the effect on polarization after multiple, random surface reflections. In general,
the first reflection is partially polarized and directed in the specular direction relative to the
local surface normal of the illuminated area. If a portion of the first reflection is incident on
another part of the material surface, the second reflection is a partially polarized version of
the first, directed, once again, in the specular direction relative to the local surface normal of
that illuminated area. This being repeated numerous times results in scatter which is unpolar-
ized and of uniform radiance throughout the scattering hemisphere. Therefore, a pBRDF can
be expressed as the sum of a polarized, specular component and of an unpolarized, diffuse
component [11, 20, 25, 26, 33–35,37, 38]:

Fs = Fsingle, Fd = Fmultiple

F = Fs +Fd
. (5)

As noted by Sun [35], Maxwell and Beard [38], and Ellis [27], this assumption is not always
valid; however, it is an assumption which is very common in literature and, for the purpose of
keeping the mathematical form of the pBRDF simple, is utilized here. In the next subsection,
the form of the specular pBRDF component is shown and discussed.

2.1. Specular pBRDF component

The pBRDF in this paper makes use of the microfacet surface model introduced by Torrance
and Sparrow [20]. The model assumes that a rough surface is composed of a collection of
randomly (according to some distribution) oriented facets each scattering light in the manner
stipulated by Fresnel’s equations (see Fig. 2). For Fresnel’s equations to be an accurate model
for reflection from the surface of a microfacet, the size of the facet must be large compared
to the incident wavelength λ . This implies that the “roughness” of the macroscopic surface
should be large compared to λ . As discussed by Sun [35], the microfacet surface model can be
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considered accurate when the surface height standard deviation σh and the surface correlation
length � are large compared to λ , i.e., σh, � � λ . The specular component of a microfacet
model-based pBRDF takes the form

Fs (θi,θr,φ ;σh, �;η) =
P(α;σh, �)M(β ;η)G(θi,θr,φ)

4cosθi cosθr cosα
(6)

where P is the distribution function modeling the orientation of the facets around the mean
surface normal (z direction in Figs. 1 and 2), M is the Mueller matrix modeling the polarimet-
ric scattering from the material surface, and G is the visibility function (shadowing/masking
factor) [23–26,33–35]. Note that the angles α and β are derived using spherical trigonometry:

cosα = (cosθi + cosθr)/(2cosβ )
cos2β = cosθi cosθr + sinθi sinθr cosφ

. (7)

For the sake of brevity, the derivation of Eq. (6) is not shown. A full derivation of the expression
can be found in Ref. [35]. It should be noted that Eq. (6) differs from that given in Refs. [33,
34] by a factor of cosα in the denominator. Shell [34] notes that the impact of this factor is
minimal since the BRDF magnitude rapidly decreases with increasing α such that division by
a decreasing cosα is negligible.

Since the height distributions of most natural surfaces are Gaussian [35], the facet distribution
function utilized in this pBRDF is that of Beckmann [16]:

P(α;σh, �) =
�2 exp

(−�2tan2α/4σ2
h

)

4πσ2
h cos3α

. (8)

Note that while this facet distribution function is very common, utilized in Refs. [11, 23, 24,
26, 35], other facet distributions do exist. For example, Torrance and Sparrow [20] utilize a
simpler, unnormalized distribution function of Gaussian shape, Shell [34] and Gartley [39]
discuss Cauchy facet distribution functions in their research, and Wellems et al. [25] introduce
a two-parameter hyper-Cauchy facet distribution function in their work.

The elements of the Mueller matrix M in Eq. (6) can be found by starting with Jones vectors
and matrices, i.e.,

[
Es

r
E p

r

]
=
[

cosγr sinγr

−sinγr cosγr

][
rs 0
0 rp

][
cosγi −sinγi

sinγi cosγi

][
Es

i
E p

i

]

[
Es

r
E p

r

]
=
[

Tss Tps

Tsp Tpp

][
Es

i
E p

i

] (9)

where Es
i and Es

r are the s-pol (perpendicular polarization), incident and reflected, complex
electric field components, E p

i and E p
r are the p-pol (parallel polarization), incident and reflected,

complex electric field components, and rs and rp are the complex Fresnel field reflection coeffi-
cients for the s- and p-pol, respectively [23–26,33,34,39]. Note that s- and p-polarization for Es

i ,
Es

r , E p
i , and E p

r are defined with respect to the macroscopic coordinate system (see Fig. 1); how-
ever, the complex Fresnel field reflection coefficients are defined with respect to the microfacet
coordinate system (see Fig. 2). Thus, it is necessary to perform coordinate system rotations to
align the macroscopic planes of incidence and reflection with the microfacet planes of incidence
and reflection. This fact explains the rotation matrices in Eq. (9). Relating the angles γi and γr

to the macroscopic angles is, once again, accomplished using trigonometry [23–26,33, 34, 39]:

cosγi = (cosα − cosθi cosβ )/(sinθi sinβ )
cosγr = (cosα − cosθr cosβ )/(sinθr sinβ )

. (10)
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Before converting the Jones matrix into a Mueller matrix, it is important to discuss briefly the
physical interpretation of the Jones scattering matrix in Eq. (9). The Jones matrix elements, Tss,
Tps, Tsp, and Tpp, can be interpreted as modeling how s- or p-pol incident light couples into s- or
p-pol reflected light. For instance, the Tps element models how incident s-pol light couples into
p-pol reflected light. The other elements can be interpreted in a similar manner. For scattering in
the specular plane (i.e., φ = π), intuition leads one to conclude that the Jones scattering matrix
in Eq. (9) becomes diagonal, i.e., incident s-pol and incident p-pol couple into reflected s-pol
and reflected p-pol, respectively. This conclusion is easily confirmed by substituting φ = π into
Eq. (10). Converting the Jones matrix in Eq. (9) to a Mueller matrix is performed using the
analysis in Ref. [30]:

M =
1
2

⎡

⎢
⎢
⎣

M00 M01 0 0
M01 M00 0 0

0 0 M22 jM23

0 0 −jM23 M22

⎤

⎥
⎥
⎦

M00 = |Tss|2 +
∣
∣Tsp
∣
∣2 +

∣
∣Tps
∣
∣2 +

∣
∣Tpp

∣
∣2

M01 = |Tss|2 +
∣
∣Tsp
∣
∣2 − ∣∣Tps

∣
∣2 − ∣∣Tpp

∣
∣2

M22 = TssT
∗
pp +T ∗

ssTpp +TpsT
∗
sp +T ∗

psTsp

M23 = TpsT
∗
sp −T ∗

psTsp −TssT
∗
pp +T ∗

ssTpp

(11)

where ∗ is the complex conjugate operation. For the sake of brevity, the expressions for all 16
elements are not shown. The Mueller matrix represented in Eq. (11) occurs when observation
is confined to the specular plane as is done for the measurement results presented in Section 4.
The full expressions can be found in Refs. [23–26, 33, 34, 39]. Note that the Mueller matrix in
Eq. (11) has a similar physical interpretation as the Jones scattering matrix discussed above. For
instance, the M23 element of the above Mueller matrix models how the fourth Stokes param-
eter (circular polarization) couples into the third Stokes parameter (linear polarization) upon
reflection.

The shadowing/masking function utilized in this pBRDF is that derived by Torrance and
Sparrow [20] and simplified by Blinn [10]:

G(θi,θr,φ) = min

(
1;

2cosα cosθr

cosβ
;
2cosα cosθi

cosβ

)
. (12)

This expression is derived assuming that each microfacet comprises one side of a symmetric v-
shaped groove (see Fig. 3). Mathematically, G determines the fraction of an illuminated micro-
facet which contributes to the scattered radiance. Physically, as is evident from Fig. 3, G models
the incident and reflected light blocked by adjacent microfacets. Most of the BRDFs/pBRDFs
in literature include a shadowing/masking function of some form [11, 20, 25, 26, 35, 38]. The
function is instrumental in keeping the BRDF bounded and thus satisfying the conservation of
energy. A notable exception to this is the pBRDF of Priest and Germer [23, 24]. The lack of G
causes their pBRDF to asymptotically approach infinity as the angle of incidence or observation
approaches grazing [25, 26].

The desired specular component of the pBRDF can now be formed by substituting the facet
distribution function P [Eq. (8)], the Mueller matrix M [Eq. (11)], and the shadowing/masking
function G [Eq. (12)] into Eq. (6) [25, 26]:

Fs
jk (θi,θr,φ ;σh, �;η) =

�2 exp
(−�2tan2α/4σ2

h

)

16πσ2
h cosθi cosθrcos4α

G(θi,θr,φ)M jk (β ;η) . (13)

Note that the form of Eq. (13) is very similar to that of Priest and Germer [23, 24] with the
important difference being the addition of the shadowing/masking function G in Eq. (13). As is
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Fig. 3. Scattering geometry of a v-shaped groove. The top subfigure depicts shadowing
while the bottom subfigure depicts masking. Shadowing occurs when the angle of incidence
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stated above, G plays a critical role in keeping the pBRDF bounded and thus a realistic physical
model. In order to demonstrate the function’s importance, consider the pBRDF predictions
shown in Fig. 4. The figure shows traces comparing the F00 elements of the Priest and Germer
pBRDF [23,24] and the pBRDF in Eq. (13) for θi = 45◦, 60◦, 75◦, and 85◦ with 21/2σh/� = 0.3.
The pBRDFs are evaluated in the specular plane (φ = π) and using a perfect reflecting surface,
i.e., a perfect electric conductor (PEC). The figure clearly shows that the pBRDF in Eq. (13)
remains bounded while the Priest and Germer pBRDF diverges as θr approaches 90◦. Having
developed and discussed the specular pBRDF component, attention can now be turned to the
diffuse component.

2.2. Diffuse pBRDF component

Before the diffuse component of the pBRDF can be developed, the concept of directional hemi-
spherical reflectance (DHR) must be introduced. The DHR is defined as the ratio of the total
energy reflected into the entire hemisphere above a material surface to the total energy incident
from a particular direction [23–26,30, 33–35,39]:

ρDHR (θi;σh, �) =
2π∫

0

π/2∫

0

F00 (θi,θr,φ ;σh, �;η)cosθr sinθrdθrdφ . (14)

Note that ρDHR � 1, otherwise the pBRDF violates the conservation of energy (assuming a
passive material). The stated condition becomes an equality when the surface is a PEC. Sub-
stituting Eq. (5) into the DHR expression and applying the equality condition (a PEC surface)
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evaluated in the specular plane (φ = π) and using a perfect reflecting surface.

produces

1 =
2π∫

0

π/2∫

0

Fs, PEC
00 cosθr sinθrdθrdφ +

2π∫

0

π/2∫

0

Fd, PEC
00 cosθr sinθrdθrdφ . (15)

Note that Eq. (15) is a statement of the conservation of energy. The diffuse term is assumed to
obey Lambert’s law; thus,

Fd, PEC
00 (θi;σh, �) =

1
π

⎛

⎝1−
2π∫

0

π/2∫

0

Fs, PEC
00 cosθr sinθrdθrdφ

⎞

⎠

Fd, PEC
00 (θi;σh, �) =

1
π

[
1−ρs, PEC

DHR (θi;σh, �)
]

. (16)

Note that Eq. (16) represents the fraction of scattered light not comprising the specular lobe,
or equivalently, the fraction of light which is scattered multiple times. Therefore, generalizing
Eq. (16) to a surface other than a PEC is simply a matter of multiplying Fd, PEC

00 times M00 [25,
26]. Eq. (16) possesses two notable characteristics which make it an attractive model for the
diffuse pBRDF component. First, it depends only on the angle of incidence and the statistical
properties of the rough surface. One’s intuition dictates that for a “smooth” surface light leaves
the surface after a single reflection and therefore most of the scattered radiance is contained
within the specular lobe. This can be verified mathematically by noting that as σh → 0, the facet
distribution function in Eq. (13) becomes a Dirac delta function. Substituting this expression
into Eq. (16) results in Fd

00 = 0. Likewise, as surface roughness increases, one would expect
light to be scattered multiple times before leaving the material surface. Mathematically this can
be verified by observing that Fs

00 → 0 as σh → ∞. Substituting Fs
00 = 0 into Eq. (16) produces

the trivial result Fd
00 = 1 (i.e., pure diffuse scattering). The second characteristic of note in

favor of modeling the diffuse pBRDF component in the manner outlined above is that no fitted
coefficients are required to model the strength of the diffuse pBRDF component. The use of
coefficients, whose values are determined by fitting the BRDF to measured data, is a common
feature in other BRDFs [11, 20, 33, 34, 37–39].
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2.3. Summary of theory

Combining the specular pBRDF term [Eq. (13)] and the diffuse pBRDF term [Eq. (16)] pro-
duces the desired result [25, 26]

F00 (θi,θr,φ ;σh, �;η) = Fs
00 (θi,θr,φ ;σh, �;η)+

1
π

[
1−ρs, PEC

DHR (θi;σh, �)
]

M00 (β ;η)

F jk (θi,θr,φ ;σh, �;η) = Fs
jk (θi,θr,φ ;σh, �;η) j,k �= 0

. (17)

Note that since it is assumed to be unpolarized, the diffuse component only contributes to the
F00 element of the pBRDF Mueller matrix.

In order to show that the above expression satisfies electromagnetic reciprocity, θi and φi

must be switched with θr and φr. It is easy to show that doing so produces the same expression
as that in Eq. (17); thus, the pBRDF satisfies the reciprocity condition. Proving that Eq. (17)
conserves energy requires one to show that ρDHR � 1. Note that the conservation of energy is
enforced when finding the value of the diffuse pBRDF component (detailed above). Therefore,
Eq. (17) conserves energy as well.

Summarizing the theory, Eq. (17) possesses two characteristics which distinguishes it from
existing geometrical optics pBRDFs in literature. The first is the addition of the shadow-
ing/masking function G. As discussed above, G keeps Eq. (17) bounded and thus a realistic
physical model. The second is the development of a diffuse pBRDF component. As previously
stated, this component depends only on physical parameters and does not need to be fit to
measured data. In the next section, predictions made using Eq. (17) of a rough, PEC surface
are compared to Method of Moments [40] (MoM) solutions for the purpose of validating the
model.

3. Simulation

Before analyzing the simulation results, a brief background on the MoM is warranted. The
MoM is a technique to solve integral equations which arise frequently in electromagnetics. The
problem of interest here is a 15,000λ long, random (surface height is Gaussian distributed)
PEC surface. The surface is invariant in the z direction (see Fig. 5) significantly reducing the
number of unknowns in the problem. Also, as is shown in Fig. 5, only s-pol is considered here.
The electric field integral equation (EFIE) for the scattering problem depicted in Fig. 5 (as-
suming plane wave excitation) is formulated by applying the transverse electric field boundary

#118213 - $15.00 USD Received 6 Oct 2009; accepted 5 Nov 2009; published 18 Nov 2009

(C) 2009 OSA 23 November 2009 / Vol. 17,  No. 24 / OPTICS EXPRESS  22147



condition at the random, PEC surface, i.e., Ez
r = −Ez

i :

πZ0

2λ

∫

C′
Jz (ρρρ ′)H(2)

0

(
2π
λ
∣
∣ρρρ −ρρρ ′∣∣

)
dC′ = exp

[
−j

2π
λ

(ki ·ρρρ)
]

ρρρ ∈C′ (18)

where Z0 is the intrinsic impedance of free-space (approximately 377 Ω), ρρρ = xx + yy is the
observation vector, ρρρ ′ = xx′ +yy′ is the source vector, ki = xsinθi −ycosθi is the propagation
vector of the incident field, Jz is the current induced on the PEC surface by the field, and

H(2)
0 is a zeroth order Hankel function of the second kind. Note that the integral in Eq. (18) is

over the parameterized surface contour denoted by C′. The unknown in Eq. (18) is the surface
current Jz. Note that assuming J = 2n×Hi forms the basis of the physical optics, or Kirchoff
approximation [14–17]. In the MoM, Jz is expanded in a set of basis functions (in this case,
fixed width pulses):

Jz (ρρρ ′)=
N

∑
n=1

αn pn
(
ρρρ ′). (19)

After simplification, the resulting expression is then tested using another set of functions (in
this case, Dirac delta functions located at the center of each pulse) to produce an N ×N matrix
equation where N is the number of unknowns, i.e.,

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

α1

α2
...

αN

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

Ez
i,1

Ez
i,2
...

Ez
i,N

⎤

⎥
⎥
⎥
⎦

. (20)

Note, for example, that the 2N element of the MoM matrix shown above models how the Nth

source current segment contributes to the scattered field at the 2nd observation segment. The
other elements of the MoM matrix can be interpreted in a similar manner. Solving Eq. (20)
yields the unknown current. Once Jz is computed, the scattered field can be found at any obser-
vation point by

Ez
r (x,y) =

πZ0

2λ

N

∑
n=1

αn

∫

C′
n

H(2)
0

(
2π
λ
∣
∣ρρρ −ρρρ ′∣∣

)
dC′

n

lim
ρ→∞

Ez
r (ρ,θr) =

Z0

2
√

ρλ
exp

[
−j

(
2π
λ

ρ − π
4

)] N

∑
n=1

αn

∫

C′
n

exp

[
j
2π
λ
(
x′ sinθr + y′ cosθr

)
]

dC′
n

(21)
where C′

n is the segment of the parameterized contour represented by the nth pulse and ρ =
(
x2 + y2

)1/2
is the Euclidean distance from the origin. The second line of the above expression

assumes that the observation point ρ is in the far-field as defined by Fraunhofer [15]. Note that
the MoM solution shown above is a coherent field solution. Since the incoherent solution is the
one desired, the 15,000λ surface is divided up into M = 100 partitions and the scattered field
from each partition is summed incoherently [41–44]. Also, in order to minimize the effect of
edge diffraction from the surface partitions, i.e., approximate an infinite surface, Jz is windowed
using a Gaussian taper:

Wm (x) = exp

[

−
(

x− xm

w

)2
]

(22)

#118213 - $15.00 USD Received 6 Oct 2009; accepted 5 Nov 2009; published 18 Nov 2009

(C) 2009 OSA 23 November 2009 / Vol. 17,  No. 24 / OPTICS EXPRESS  22148



0 20 40 60 80

0.5

1

1.5

2

2.5

3

3.5

θr[Degrees]

N
or

m
al

iz
ed

R
efl

ec
ta

nc
e

D
is
tr

ib
ut

io
n

 

 

θi = 10◦ θi = 30◦

θi = 45◦

θi = 60◦

θi = 75◦

MoM Solution
pBRDF

Fig. 6. Comparisons of the reflectance distributions predicted by MoM solutions of a
15,000λ long, random (surface height is Gaussian distributed) PEC surface with those
of the pBRDF in Eq. (17) for θi = 10◦, 30◦, 45◦, 60◦, and 75◦ and 21/2σh/� = 0.3. Note
that the reflectance distributions in the figure are normalized with respect to their values at
the specular angles (θi = θr). Observation for both the MoM and the pBRDF predictions is
in the specular plane (φ = π).

where the index m represents the mth surface partition, xm is the center of the mth partition, and
w is the taper width [41–44]. The incoherent, far-field reflectance distribution can now be found
from

σ (θr) =
1

w
√

π/2

(
1
M

lim
ρ→∞

2πρ
M

∑
m=1

∣
∣Ez

r,m

∣
∣2
)

(23)

where Ez
r,m is the scattered field from the mth partition [41–44]. Note that the above expression

is the average incoherent radar cross section (RCS) of the random, PEC surface normalized by
the effective illumination length. Detailed analysis of these steps can be found in Refs. [41–44].
Having provided the necessary background on the MoM, attention can now be turned to the
simulation results.

The simulation results are shown in Fig. 6. As mentioned above, the simulation surface is
a 15,000λ long, random (surface height is Gaussian distributed) PEC surface. The Gaussian
surface is generated as shown in Ref. [43] with roughness equal to 21/2σh/� = 0.3. The traces
on the figure are far-field reflectance distributions for θi = 10◦, 30◦, 45◦, 60◦, and 75◦. Note
that the reflectance distributions in the figure are normalized with respect to their values at the
specular angles (θi = θr), and observation for both the MoM and pBRDF predictions is in the
specular plane (φ = π). Overall, the pBRDF predictions match very well with the exact, MoM
solutions. At some incident angles, the pBRDF predictions deviate from the MoM solutions;
however, there is almost unanimous agreement between the pBRDF and MoM solutions on the
locations and magnitudes of reflectance maxima. Note that ripples are visible in the MoM solu-
tion traces for θi = 45◦, 60◦, and 75◦. These ripples are caused by constructive and destructive
interference in the scattered field. Incoherent scatter should not interfere; however, as discussed
above, the MoM solution is coherent. The incoherent scatter is being approximated by summing
the scattered field incoherently over 100 partitions of the entire 15,000λ surface. Although this
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Fig. 7. Photograph of the Mueller matrix ellipsometer used in this experiment. The ellip-
someter is located at the Air Force Research Laboratory, Wright-Patterson Air Force Base,
Ohio.

should be sufficient [41], some interference is still occurring. Summing the scattered field in-
coherently over more partitions should lessen the interference ripples; however, the cost is a
longer simulation run time. The results shown here are sufficient to demonstrate the validity of
the pBRDF. In the next section, Mueller matrix element predictions made using Eq. (17) are
compared to experimental measurement results in order to further validate the pBRDF.

4. Mueller matrix measurement results

The instrument used to collect the Mueller matrix data presented here is an ellipsometer [28] at
the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio. A photo-
graph of the ellipsometer is shown in Fig. 7. It, like all ellipsometers, consists of two arms—the
polarization state generator (PSG) and the polarization state analyzer (PSA). The material under
test (MUT) is placed in between the PSG and PSA in a sample holder which is able to rotate.
The PSG of the instrument shown in Fig. 7 consists of a 1064 nm laser followed by polar-
ization optics mounted on a stationary optical rail. Note that the polarization state of the laser
is set using a polarizing beam splitter. The PSG polarization optics consist of two half-wave
plates and a quarter-wave plate. They are contained within a mechanical housing which allows
them to be moved precisely into and out of the source beam. This allows the PSG to generate
four independent polarization states to interrogate the MUT. As is common, the PSA of the
ellipsometer shown in Fig. 7 is a mirror image of the PSG. It consists of a set of polarization
optics followed by a horizontal linear polarizer and a detector mounted on a rotating base. The
PSA is able to rotate independently of the MUT sample holder, thus allowing any (θi,θr) to
be measured. The polarization optics used in the PSA are identical to and are contained within
the same type of mechanical housing as that of the PSG. This allows the PSA to analyze four
independent polarization states. Overall, the instrument is able to make 16 independent, polari-
metric measurements of a MUT, thereby providing all the necessary information to deduce the
MUT’s Mueller matrix.

Before the MUT is measured, the instrument is calibrated using the Eigenvalue Calibration
Method (ECM) [45]. The ECM is a calibration technique developed by Compain et al. [45] in
which the Mueller matrices of a set of known standards are measured in order to compute the
experimental Mueller matrices for the PSG and PSA. Once these matrices have been determined
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Fig. 8. Mueller matrix measurement results for LabSphere Infragold [46] compared to
predictions made using the pBRDF. The measurement results are plotted as symbols;
the pBRDF predictions are plotted as solid lines. Note that the measurements are made
in the specular plane (φ = π). The complex index of refraction used for gold is η =
0.285− j7.3523 [47] and 21/2σh/� = 0.44. The plotted values for the measured Mueller
matrix elements of LabSphere Infragold are the means of 256 irradiance measurements.
The bars on the figure represent ±1σ , i.e., one standard deviation of those 256 measure-
ments.

(see Ref. [45] for details), the desired Mueller matrix of the MUT can be found by

M = A−1SW−1 (24)

where S is a 4×4 matrix of measured (ellipsometric) irradiances, W is the experimental Mueller
matrix of the PSG, and A is the experimental Mueller matrix of the PSA. In the measurement
results presented here, the standards used to calibrate the ellipsometer are a no sample measure-
ment, a linear polarizer, and a quarter-wave plate. The linear polarizer is measured at 0◦, 60◦,
and 120◦; the quarter-wave plate is measured at 45◦.

The Mueller matrix measurement results are shown in Figs. 8 and 9. Fig. 8 shows the Mueller
matrix measurement results for LabSphere Infragold [46]. The complex index of refraction for
gold (η = 0.285− j7.3523) is obtained from Ref. [47]. The figure shows the experimental M01,
M11, M22, and M23 elements compared to predictions made using the pBRDF in Eq. (17). Note
that all measurements are made in the specular plane (φ = π), and the Mueller matrix elements
are normalized with respect to the M00 element as annotated on the figure. The plotted values for
the measured Mueller matrix elements of LabSphere Infragold are the means of 256 irradiance
measurements. The bars on the figure represent ±1σ , i.e., one standard deviation of those 256
measurements. Note that the LabSphere Infragold results are consistent with those published by
Priest and Meier [24]. Although there are discrepancies between the measured Mueller matrix
elements and the pBRDF (especially at 10◦ and 20◦), the pBRDF predictions agree well with
the measurements. The most important aspect of the results is that the pBRDF captures the
trend of the data (i.e., the physics of the material surface interaction) as the observation angle
(or equivalently incident angle) approaches grazing.

Figure 9 shows the Mueller matrix measurement results for flame sprayed aluminum (FSA).
The complex index of refraction for aluminum is η = 1.226− j10.413 [47]. Shown in the figure
are the same Mueller matrix elements as Fig. 8. As before, all measurements are made in the
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Fig. 9. Mueller matrix measurement results for flame sprayed aluminum (FSA) compared
to predictions made using the pBRDF. The measurement results are plotted as symbols;
the pBRDF predictions are plotted as solid lines. Note that the measurements are made in
the specular plane (φ = π). The complex index of refraction used for aluminum is η =
1.226− j10.413 [47] and 21/2σh/� = 0.43. The plotted values for the measured Mueller
matrix elements of FSA are the means of 256 irradiance measurements. The bars on the
figure represent ±1σ , i.e., one standard deviation of those 256 measurements.

specular plane (φ = π), and the Mueller matrix elements are normalized with respect to the M00

element. Once again, the plotted values for the measured Mueller matrix elements of FSA are
the means of 256 irradiance measurements. The bars on the figure represent ±1σ of those 256
measurements. As is the case in Fig. 8, discrepancies do exist between the measured data and
the pBRDF predictions; however, the pBRDF, once again, captures the trend of the measured
data.

Before concluding, it is worth discussing a possible cause of the discrepancies observed in
Figs. 8 and 9. It is assumed that the published values of η for gold and aluminum are accu-
rate for the LabSphere Infragold and FSA samples measured in this experiment. As noted in
Ref. [47], the value of η can vary greatly depending on sample quality, sample preparation, or
measurement technique. If, instead of using the published values for η , the best values for η are
found via nonlinear least squares, one obtains for LabSphere Infragold η = 0.4364− j5.2526
and for FSA η = 0.8886− j3.4602. While it is possible that the best-fit index for LabSphere
Infragold could be more representative of the true η value for the specimen (considering how
LabSphere Infragold is manufactured [46]), the best-fit FSA index is more difficult to explain.
One possibility is that the FSA specimen used in this experiment is slightly oxidized (i.e., a
thin coating of Al2O3). This hypothesis would explain the sharper than predicted rise in the
measured M22/M00 element in Fig. 9.

5. Conclusion

In this paper, a geometrical optics pBRDF is presented. As discussed, the pBRDF is composed
of a specular (single reflection) component and a diffuse (multiple reflection) component. The
specular component, derived using the microfacet surface model [20], is shown to consist of
a facet distribution function, a Mueller matrix modeling the polarimetric scattering from the
material surface, and a visibility (shadowing/masking) function. Each one of these constituent
functions is discussed in detail. The diffuse component is derived using the DHR and the con-
servation of energy. It is shown that a diffuse pBRDF component derived in this fashion de-
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pends only on geometrical parameters (angle of incidence, surface height standard deviation,
and surface correlation length) and does not require coefficients fit to measured data. Taken as
a whole (i.e., adding the specular and diffuse components), the pBRDF presented in this paper
is shown to satisfy electromagnetic reciprocity and the conservation of energy. Lastly, in order
to validate the pBRDF, predictions made using the pBRDF are compared to MoM solutions of
a rough, PEC surface and experimental Mueller matrix data for two rough, metallic samples. It
is shown, via these results, that the pBRDF accurately models the physics of the light/material
surface interaction.

The pBRDF presented in this paper possesses two characteristics which distinguishes it from
existing geometrical optics pBRDFs in literature. The first is the addition of the visibility (shad-
owing/masking) function. As shown and discussed, the visibility function keeps the pBRDF
bounded and thus a realistic physical model. The second is the development of a diffuse pBRDF
component. This component allows for better modeling of rough, reflective surfaces which tend
to depolarize light via multiple surface reflections.
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