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Scattering of a partially-coherent wave
from a material circular cylinder

Milo W. Hyde IV,∗ Andrew E. Bogle, and Michael J. Havrilla
Air Force Institute of Technology, 2950 Hobson Way, Dayton, OH 45433, USA

∗milo.hyde@afit.edu

Abstract: The case of a partially-coherent wave scattered from a
material circular cylinder is investigated. Expressions for the TMz and TEz

scattered-field cross-spectral density functions are derived by utilizing the
plane-wave spectrum representation of electromagnetic fields and cylindri-
cal wave transformations. From the analytical scattered-field cross-spectral
density functions, the mean scattering widths are derived and subsequently
validated via comparison with those computed from Method of Moments
Monte Carlo simulations. The analytical relations as well as the simulation
results are discussed and physically interpreted. Key insights are noted and
subsequently analyzed.

© 2013 Optical Society of America

OCIS codes: (030.0030) Coherence and statistical optics; (290.5825) Scattering theory;
(290.1350) Backscattering; (290.2558) Forward scattering; (260.2110) Electromagnetic optics;
(350.4010) Microwaves.
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1. Introduction

The scattering of waves from cylinders is a classic problem in electromagnetics (EM). Because
cylinders closely model man-made objects such as aircraft, rockets, antennas, etc. as well as bio-
logical structures [2], they have received much attention in the literature including several com-
mon EM texts [3–6]. The early accounts on the subject considered plane-wave scattering [7–9].
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More recent treatments consider plane-wave scattering from arrays of cylinders [10, 11], scat-
tering from cylinders in front of ground planes [12–15], scattering from cylinders embedded in
random media [16, 17], scattering from random cylinders [18], and scattering from cylinders
composed of complex media [19–21].

Beginning in the late 1970s and into the 1980s, Gaussian-beam scattering from cylinders
began to appear in the literature [22–24]. Since then, the amount of published research dealing
with Gaussian beams and cylinders has increased greatly with the proliferation of laser radar
and directed energy systems [25–33].

Although much effort has been devoted to plane-wave and Gaussian-beam scattering from
cylinders, little has been devoted to partially-coherent wave scattering from cylinders. This
topic is germane considering that coherent waves lose coherence as they propagate through
random media, such as Earth’s atmosphere, natural bodies of water, biological tissues, and soil.
The majority of the relevant work in the scattering of partially-coherent waves from cylinders
has actually focused on spheres [34–36]. Only one paper known to the authors deals with cylin-
ders. Lindberg et al. [37] used the coherent-mode representation of partially-coherent fields and
a numerical technique very similar to the Method of Moments (MoM) to analyze the scattering
from metallic nanocylinders.

In this work, the scattering of a partially-coherent wave from a material cylinder is investi-
gated. In contrast to the previous effort discussed above, the partially-coherent incident field
is written in terms of its plane-wave spectrum in a transverse plane situated away from the
cylinder. The resulting expression is then expanded in terms of cylindrical wave functions.
Continuity of the transverse electric and magnetic fields is then enforced at the surface of the
material cylinder producing expressions for the unknown cylindrical wave function weights.
With these weights, the autocorrelation of the scattered field, termed the cross-spectral den-
sity (CSD) function, is derived and discussed. Both the TMz and TEz scattered-field CSD func-
tions are presented.

To validate the analytical TMz and TEz scattered-field CSD functions, the general CSD func-
tion expressions are specialized to the case of a partially-coherent plane-wave incident field.
From these plane-wave CSD relations, the mean two-dimensional radar cross sections, i.e., the
mean scattering widths, are derived. The analytical mean scattering widths are subsequently
compared to those computed from MoM Monte Carlo simulations. These results are presented
and physically analyzed. A summary of the presented work and key physical findings are pro-
vided to conclude this paper.

2. Methodology

The pertinent scattering geometry for this research is shown in Fig. 1. The figure depicts a
material cylinder (of radius a, permittivity ε , and permeability μ) illuminated by a partially-
coherent wave (shown as a partially-coherent plane wave for ease of visualization). The cylinder
and the incident field are assumed to be invariant in the z direction. The partially-coherent
incident field is emitted from the η-z plane (termed the source plane hereafter) whose origin is
located at (−xs,ys). The two spatial-domain vectors emanating from the source-plane origin,
ρρρξ η = x̂xxxs− ŷyyys and sss= ρρρξ η +ρρρ , point to the center of the cylinder and to any location in space

ξ ≥ 0, respectively. The wavenumber vector kkki = ξ̂ξξki
ξ + η̂ηηki

η denotes the direction of a plane

wave emanating from the source-plane origin. The vector kkki makes the angle α with respect to
the ξ axis.

The partially-coherent incident field is treated as a random process, statistically defined via its
autocorrelation function

〈
Ei (η1)Ei∗ (η2)

〉
. In the space-time domain, this expression is com-

monly referred to as the mutual coherence function (MCF) Γi (η1,η2,τ) [1, 38]. If the random
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Fig. 1. Two-dimensional scattering geometry (invariant in the z direction) of a material
(ε,μ) circular cylinder (of radius a) illuminated by a partially-coherent wave. The partially-
coherent incident field is emitted from the η-z plane whose origin is located at (−xs,ys).
The spatial-domain vectors emanating from the source-plane origin, ρρρξ η = x̂xxxs − ŷyyys and
sss = ρρρξ η + ρρρ , point to the center of the cylinder and to any location in space ξ ≥ 0, re-

spectively. The wavenumber vector kkki = ξ̂ξξki
ξ + η̂ηηki

η denotes the direction of a plane wave

emanating from the source-plane origin. The vector kkki makes the angle α with respect to
the ξ axis.

field is wide-sense stationary (assumed in this work), it is most convenient to work in the space-
frequency domain, where

W i (η1,η2,ω) =
〈
Ei (η1,ω)Ei∗ (η2,ω)

〉
=

1
2π

∞∫

−∞

Γi (η1,η2,τ)ejωτdτ (1)

is the CSD function [1,38]. Note that if the field satisfies the quasi-monochromatic conditions (a
common assumption in traditional studies of coherence) [39], the CSD is essentially equivalent
to the MCF [40].

2.1. TMz scattered-field CSD function

For TMz polarization, the incident field in the source plane takes the form

EEEi = ẑzzEi
z (η) , (2)

where the dependence of the field on the radian frequency ω has been omitted for brevity.
Utilizing the plane-wave spectrum representation of electromagnetic fields [41], the incident
electric field becomes

EEEi =
1

2π

∞∫

−∞

TTT i
e

(
ki

η
)

e−jkkki·sssdki
η ξ � 0

= ẑzz
k0

2π

∫

Γ

T i
ez (α)cos(α)e−jk0xs cos(α)ejk0ys sin(α)e−jk0ρ cos(φ−α)dα

, (3)
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where Γ is the contour in the complex α plane defined by (−π/2− j∞,−π/2), [−π/2,π/2],
and (π/2,π/2+ j∞). The contribution to the integral from the real-axis portion of Γ corre-
sponds physically to forward propagating waves; whereas, the contributions from the complex
portions of Γ correspond to evanescent waves [42]. In this work, it is assumed that the source
plane is sufficiently far from the cylinder such that the evanescent wave contributions can be
neglected. The remaining undefined symbol in Eq. (3) is

T i
ez

(
ki

η
)
=

∞∫

−∞

Ei
z (η)ejki

η ηdη . (4)

Note that ki
η = k0 sin(α).

Expressing the exp [−jk0ρ cos(φ −α)] in terms of cylindrical wave functions [2, 3] yields

EEEi = ẑzz
k0

2π

∞

∑
n=−∞

j−nJn (k0ρ)ejnφ
π/2∫

−π/2

T i
ez (α)cos(α)e−jk0xs cos(α)ejk0ys sin(α)e−jnαdα, (5)

where Jn is a first-kind Bessel function of order n. Hereafter, the integral over α is referred to
as I TM

n . The transverse, incident magnetic field Hi
φ can now be found by utilizing Faraday’s

law:

Hi
φ =

k0

2π
1

jη0

∞

∑
n=−∞

j−nJ̇n (k0ρ)ejnφ I TM
n , (6)

where J̇n represents the derivative of the Bessel function with respect to its argument. The
scattered and transmitted, transverse electric and magnetic fields take the forms

Es
z =

∞

∑
n=−∞

bnH(2)
n (k0ρ) Hs

φ =
1

jη0

∞

∑
n=−∞

bnḢ(2)
n (k0ρ)

Et
z =

∞

∑
n=−∞

cnJn (kρ) Ht
φ =

1
jη

∞

∑
n=−∞

cnJ̇n (kρ)

, (7)

where H(2)
n is a nth-order Hankel function of the second kind and physically represents outgoing

cylindrical waves and bn and cn are unknown complex amplitudes.
Expressions for bn and cn are found by enforcing the continuity of transverse electric and

magnetic fields at the surface of the cylinder, i.e., ρ = a. In the discussion to follow, only bn

is considered since the scattered field is paramount here. Imposing the boundary condition and
subsequent simplification yields

bn =
−k0

2π
j−nejnφ RTM

n I TM
n , (8)

where

RTM
n =

ηJn (ka) J̇n (k0a)−η0Jn (k0a) J̇n (ka)

ηJn (ka) Ḣ(2)
n (k0a)−η0H(2)

n (k0a) J̇n (ka)
(9)

and physically acts as a reflection coefficient. For good-conducting cylinders, i.e., ε →−j∞ and

μ = μ0, it is easy to show that RTM
n → Jn (k0a)/H(2)

n (k0a). Note that this is the same reflection
coefficient that one would derive assuming a perfect electric conductor (PEC) cylinder.
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With an expression for bn and thus Es
z from Eq. (7), the relation for the scattered-field CSD

function immediately follows:

W s (ρρρ1,ρρρ2,ω) =
∞

∑
n=−∞

∞

∑
m=−∞

〈bn (φ1)b∗m (φ2)〉H(2)
n (k0ρ1)H(1)

m (k0ρ2)

=
k2

0

(2π)2

∞

∑
n=−∞

∞

∑
m=−∞

〈
I TM

n I TM*
m

〉
jm−nej(nφ1−mφ2)

RTM
n RTM*

m H(2)
n (k0ρ1)H(1)

m (k0ρ2)

. (10)

The incident-field term is

〈
I TM

n I TM*
m

〉
=

π/2∫

−π/2

π/2∫

−π/2

cos(α1)cos(α2)
〈
T i

ez (α1)T i∗
ez (α2)

〉

e−jk0xs[cos(α1)−cos(α2)]ejk0ys[sin(α1)−sin(α2)]e−j(nα1−mα2)dα1dα2

=
1

k2
0

k0∫

−k0

k0∫

−k0

〈
T i

ez

(
ki

η1

)
T i∗

ez

(
ki

η2

)〉

e
−jxs

(
ki

ξ1−ki
ξ2

)

e
jys

(
ki

η1−ki
η2

)

e
−j

[
nsin−1

(
ki

η1/k0

)
−msin−1

(
ki

η2/k0

)]

dki
η1dki

η2

. (11)

2.2. Physical discussion

Note that Eq. (10) is remarkably physical. If one ignores the incident-field term, the remaining
expression in Eq. (10) is the scattered-field CSD function for a coherent plane wave incident
on a material cylinder. Thus, Eq. (11) can be thought of as a “filter,” which is subsequently
“convolved” with the response of the system to a coherent plane-wave input.

The behavior of the “filter” can be complicated depending on the form of the incident-
field CSD function Eq. (1); however, insight can be gleaned into its behavior by considering a
partially-coherent plane-wave incident field:

W i
PW (η1,η2,ω) = E2

0C (η1 −η2;�s) , (12)

where E0 is the magnitude of the incident field, �s is the spatial correlation, or coherence radius,
and C (η1 −η2;�s) is the normalized correlation, or coherence function. For natural random
processes, e.g., atmospheric turbulence, this function decreases from unity at η1 − η2 = 0.
Common choices for C are exponentially decaying functions with powers between one and
two [43].

As �s → ∞,
〈
T i

ez (α1)T i∗
ez (α2)

〉 → δ (α1 −α2) (recall Eq. (4)) resulting in W s Eq. (10)
converging to the traditional plane-wave scattered-field solution. As �s → 0 [44],〈
T i

ez (α1)T i∗
ez (α2)

〉→ 1 yielding an incident-field term which “filters out” the fine lobing struc-
ture characteristic of the traditional plane-wave scattered-field pattern. This makes physical
sense when one considers that the scattered-field lobing pattern is caused by interference of
the field upon scattering from the cylinder. Since incoherent fields do not interfere, one should
expect a more homogeneous scattered-field pattern with a partially-coherent incident field than
that obtained with a fully-coherent incident wave.

2.3. TMz mean scattering width

Setting ρρρ111 = ρρρ222 = ρρρ , substituting Eq. (12) into Eq. (11), taking the limit of Eq. (10) as ρ →
∞, and subsequent simplification yields the TMz far-zone plane-wave scattered-field spectral-
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density Ss
FF function:

W s
FF (ρρρ,ρρρ ,ω) = Ss

FF (ρρρ,ω)

=
E2

0

π2k0ρ

∞

∑
n=−∞

∞

∑
m=−∞

RTM
n RTM*

m ej(n−m)φ

k0∫

−k0

e−j(n−m)sin−1(ki
η/k0)

∞∫

−∞

C (η ;�s)ejki
η ηdηdki

η

. (13)

The mean scattering width can easily be found by applying its definition, namely,

σ2D (ω) = lim
ρ→∞

2πρ

〈∣∣Es
z (ρρρ,ω)

∣∣2
〉

〈∣
∣Ei

z (η ,ω)
∣
∣2
〉 = lim

ρ→∞
2πρ

〈Ss
FF (ρρρ ,ω)〉

〈
W i

PW (η ,η ,ω)
〉 . (14)

The integral over η in Eq. (13) is nothing more than the Fourier transform of the coherence
function making it akin to the power spectral density [39]. Unfortunately, after the Fourier
transform is computed, it is not possible to simplify the remaining ki

η integral further. For
the results presented in Section 3, adaptive Gauss-Kronrod quadrature is used to numerically
compute the remaining ki

η integral.
Note that by specifying a partially-coherent plane-wave incident field, the scattered-field

CSD function no longer depends on the location of the source plane. Physically, this makes
sense since plane-wave fields are infinite in extent. Mathematically, this location invariance
manifests as a result of the form of Eq. (12), where statistical homogeneity, viz., the spatial
counterpart of wide-sense stationarity, is implied. This location invariance property should re-
sult for all statistically homogenous incident fields. For more complicated incident fields, such
as partially-coherent Gaussian beams, the scattered-field CSD function will, in general, not be
independent of the source-plane location.

2.4. TEz scattered-field CSD function

Since many of the details in the TEz scattered-field CSD function derivation are similar to those
just presented for the TMz case, only the major differences are presented here. For the TEz

polarization, it is most convenient to work with the magnetic field, i.e.,

HHHi = ẑzzHi
z (η) = ẑzz

1
2π

∞∫

−∞

T i
hz

(
ki

η
)

e−jkkki·sssdki
η ξ � 0

= ẑzz
k0

2π

∞

∑
n=−∞

j−nJn (k0ρ)ejnφ I TE
n

, (15)

where I TE
n is the same as I TM

n except that T i
ez (α) is replaced with T i

hz (α). The transverse,
incident electric field Ei

φ can be found by utilizing Ampere’s law, viz.,

Ei
φ =

−k0

2π
η0

j

∞

∑
n=−∞

j−nJ̇n (k0ρ)ejnφ I TE
n . (16)

The scattered and transmitted, transverse magnetic and electric fields take the forms

Hs
z =

∞

∑
n=−∞

bnH(2)
n (k0ρ) Es

φ =
−η0

j

∞

∑
n=−∞

bnḢ(2)
n (k0ρ)

Ht
z =

∞

∑
n=−∞

cnJn (kρ) Et
φ =

−η
j

∞

∑
n=−∞

cnJ̇n (kρ)

. (17)
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Enforcing the continuity of the transverse electric and magnetic fields at the surface of the
cylinder yields the following expression for bn:

bn =
−k0

2π
j−nejnφ RTE

n I TE
n , (18)

where

RTE
n =

ηJn (k0a) J̇n (ka)−η0Jn (ka) J̇n (k0a)

ηH(2)
n (k0a) J̇n (ka)−η0Jn (ka) Ḣ(2)

n (k0a)
. (19)

For good-conducting cylinders, RTE
n → J̇n (k0a)/Ḣ(2)

n (k0a), or the same reflection coefficient
that one would derive assuming a PEC cylinder.

With bn, the TEz scattered-field CSD function is

W s (ρρρ1,ρρρ2,ω) = η2
0

∞

∑
n=−∞

∞

∑
m=−∞

〈bn (φ1)b∗m (φ2)〉 Ḣ(2)
n (k0ρ1) Ḣ(1)

m (k0ρ2)

= η2
0

k2
0

(2π)2

∞

∑
n=−∞

∞

∑
m=−∞

〈
I TE

n I TE*
m

〉
jm−nej(nφ1−mφ2)

RTE
n RTE*

m Ḣ(2)
n (k0ρ1) Ḣ(1)

m (k0ρ2)

. (20)

Recall that I TE
n is in terms of T i

hz and therefore
〈
I TE

n I TE*
m

〉
includes the moment〈

T i
hz (α1)T i∗

hz (α2)
〉
. In general, the CSD function Eq. (1) is defined in terms of the electric

field. Thus, to proceed further, a relation must be found between T i
hz and TTT i

e. This relation can
be derived using Faraday’s law and is

TTT i
h =

kkki ×TTT i
e

ωμ0
= ẑzz

T i
eη

η0 cos(α)
, (21)

where it is assumed that the incident electric field in the source plane takes the form EEEi =
η̂Ei

η (η). Utilizing the above relation, the incident-field term in Eq. (20) becomes

〈
I TE

n I TE*
m

〉
=

1

η2
0

k0∫

−k0

k0∫

−k0

〈
T i

eη

(
ki

η1

)
T i∗

eη

(
ki

η2

)〉

ki
ξ1ki

ξ2

e
−jxs

(
ki

ξ1−ki
ξ2

)

e
jys

(
ki

η1−ki
η2

)

e
−j

[
nsin−1

(
ki

η1/k0

)
−msin−1

(
ki

η2/k0

)]

dki
η1dki

η2

. (22)

2.5. TEz σ2D

As in the TMz polarization, setting ρρρ111 = ρρρ222 = ρρρ , substituting Eq. (12) into Eq. (22), taking the
limit of Eq. (20) as ρ → ∞, and subsequent simplification yields the TEz far-zone plane-wave
scattered-field spectral-density function:

Ss
FF (ρρρ ,ω) =

E2
0 k0

π2ρ

∞

∑
n=−∞

∞

∑
m=−∞

RTE
n RTE*

m ej(n−m)φ

k0∫

−k0

exp
[−j(n−m)sin−1 (ki

η/k0
)]

k2
0 −

(
ki

η
)2

∞∫

−∞

C (η ;�s)ejki
η ηdηdki

η

. (23)

The σ2D can be found by applying its definition provided in Eq. (14).
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3. Simulation results

This section presents simulation results which serve to validate the analytical expressions de-
rived above. Before presenting and discussing these results, a brief discussion on the simulation
set-up is warranted.

3.1. Simulation set-up

The TMz and TEz σ2D derived above were validated by full-wave Monte Carlo simulations.
The random, correlated incident fields were generated using the phase-screen method de-
scribed by Xiao and Voelz [45]. In their paper, Xiao and Voelz generate Gaussian Schell-model
beams [1, 38]—a popular model for partially-coherent light. In order to compare the analytical
σ2D derived above with the well-known fully-coherent plane-wave scattering widths [6], Xiao
and Voelz’s phase-screen method was slightly modified to produce partially-coherent plane-
wave fields which possessed Gaussian-shaped coherence functions, i.e.,

C (η ;�s) = e−η2/�2
s . (24)

Incident fields with �s = 1λ , 5λ , 10λ , 30λ , and 50λ were generated.
Once the random plane-wave incident fields were produced, the scattering width for each in-

cident field was computed using the MoM [4,5]. As is the common practice for two-dimensional
closed structures [4, 5], systems of coupled electric and magnetic field integral equations were
formulated and solved for the TMz and TEz polarizations, respectively. For both polarizations,
pulse basis and delta testing functions were used. The basis function widths were chosen to be
no greater than λ/20. Overall, 2,500 trials were used for each �s to yield the MoM σ2D. This
required 12,500 MoM scattering width computations for each polarization state.

In the results presented below, the MoM σ2D of two a = 10λ material cylinders were
computed. The first cylinder was made of aluminum, i.e., index of refraction n =

√εrμr =
1.44819− j7.5367 at λ = 632.8 nm [46]. The second cylinder was composed of germanium,
viz., n = 4.00431 at λ = 10 μm [46]. These materials were chosen because of their common
use in constructing artificial materials.

3.2. Results

Figures 2, 3, 4, and 5 show the σ2D results for the TMz and TEz polarizations for aluminum and
germanium, respectively. The σ2D results are presented on log-log plots to more clearly show
the differences in the traces. For the σ2D obtained using the analytical expressions derived
in Sections 2.3 and 2.5 (dashed traces), 161 Bessel modes (i.e., sums in Eqs. (13) and (23)
truncated to −80 to 80) were required for solution convergence. The bars on the MoM Monte
Carlo simulation result traces denote ±2σσ2D , where σσ2D = σσ2D/

√
N is the standard deviation

of the σ2D calculated using N = 2,500 trials.
Overall, the agreement between the MoM Monte Carlo results and the theoretical σ2D is ex-

cellent. Some interesting characteristics of the results are worth noting: First, all the aluminum
traces, regardless of �s, converge to a monostatic (φ = 180◦) scattering width value approxi-
mately equal to πa. Note that πa is the asymptotic (λ 	 a) PEC monostatic scattering width
result. For cylinders, the monostatic scattering width is a measure of the power reflected at nor-
mal incidence, i.e., the specular angle. For highly reflective and electrically large objects (such
as the aluminum cylinder considered here), specular reflection does not generally depend on
the coherence of the incident field.

The situation is quite different in the monostatic scattering regions of the germanium figures.
Germanium, being generally translucent in the long-wave infrared, allows a significant fraction
of the incident field to enter the cylinder. This interior field proceeds to reflect off and transmit

#199759 - $15.00 USD Received 21 Oct 2013; revised 4 Dec 2013; accepted 6 Dec 2013; published 19 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.032327 | OPTICS EXPRESS  32335



10
0

10
1

10
2

10
1

10
2

10
3

φ (Degrees)
(a)

σ
2D

 

 

�s = 1λ

�s = 5λ

�s = 10λ

10
0

10
1

10
2

10
1

10
2

10
3

φ (Degrees)
(b)

σ
2D

 

 

 

 

F-C Plane Wave

Theory

Simulation

�s = 10λ

�s = 30λ

�s = 50λ

Fig. 2. TMz σ2D results for an aluminum cylinder of radius a = 10λ . The plots compare
the σ2D obtained using the analytical expression derived in Section 2.3 (dashed traces
labeled “Theory”) with those obtained from the MoM Monte Carlo simulations (circles
and bars labeled “Simulation”). The color of the trace denotes the value of �s. For (a),
�s = 1λ , 5λ , and 10λ ; for (b), �s = 10λ , 30λ , and 50λ . Included for reference is the scat-
tering width for a fully-coherent plane wave (solid black trace labeled “F-C Plane Wave”).
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Fig. 3. TEz σ2D results for an aluminum cylinder of radius a = 10λ . The plots compare
the σ2D obtained using the analytical expression derived in Section 2.5 (dashed traces
labeled “Theory”) with those obtained from the MoM Monte Carlo simulations (circles
and bars labeled “Simulation”). The color of the trace denotes the value of �s. For (a),
�s = 1λ , 5λ , and 10λ ; for (b), �s = 10λ , 30λ , and 50λ . Included for reference is the scat-
tering width for a fully-coherent plane wave (solid black trace labeled “F-C Plane Wave”).
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Fig. 4. TMz σ2D results for a germanium cylinder of radius a = 10λ . The plots compare
the σ2D obtained using the analytical expression derived in Section 2.3 (dashed traces
labeled “Theory”) with those obtained from the MoM Monte Carlo simulations (circles
and bars labeled “Simulation”). The color of the trace denotes the value of �s. For (a),
�s = 1λ , 5λ , and 10λ ; for (b), �s = 10λ , 30λ , and 50λ . Included for reference is the scat-
tering width for a fully-coherent plane wave (solid black trace labeled “F-C Plane Wave”).
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Fig. 5. TEz σ2D results for an germanium cylinder of radius a = 10λ . The plots com-
pare the σ2D obtained using the analytical expression derived in Section 2.5 (dashed traces
labeled “Theory”) with those obtained from the MoM Monte Carlo simulations (circles
and bars labeled “Simulation”). The color of the trace denotes the value of �s. For (a),
�s = 1λ , 5λ , and 10λ ; for (b), �s = 10λ , 30λ , and 50λ . Included for reference is the scat-
tering width for a fully-coherent plane wave (solid black trace labeled “F-C Plane Wave”).
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Fig. 6. Physical picture of role played by coherence in the forward scatter phenomenon.
Depicted is one instance of a partially-coherent incident field (dashed red traces on left)
which, when scattered from the cylinder, yields a σ2D instance (dashed red trace on right).
When all σ2D instances are averaged, the resulting σ2D (solid red trace) in the forward
scatter direction is reduced with the forward scatter lobe subsequently broadened. To serve
as a reference, the case of fully-coherent plane-wave illumination is also depicted (solid
blue traces).

through the interior walls of the cylinder thereby interfering with the scattered field. This is the
cause of the highly-oscillatory σ2D results starting at about φ = 80◦ in Figs. 4 and 5. For the
�s < 10λ traces, this region is more homogenous and is a direct consequence of the fact that
incoherent fields do not interfere.

Second, as �s increases, the σ2D converge to the classic plane-wave scattering widths. For
�s < 2a, the lobing pattern characteristic of the bistatic plane-wave scattering width is com-
pletely lost. For �s < a, the forward scatter region is reduced in amplitude (by approximately
an order of magnitude) and no longer directional. This result shows that coherence plays a
significant role in the forward scatter phenomenon. Note that similar results were obtained by
Fischer et al. [36] in their work on the scattering of partially-coherent beams from spheres.
The fact that the forward scatter is reduced in magnitude and no longer directional makes the
cylinder appear smaller when illuminated with partially-coherent waves. These forward scatter
results make physical sense. Consider the case of a cylinder illuminated by a fully-coherent
plane wave, i.e., kkki = ξ̂ξξk0 + η̂ηη0 (solid blue traces on the left of Fig. 6). The symmetry of the
cylinder combined with the coherent, uniform illumination results in constructive interference
of the scattered field yielding a maximum in σ2D (solid blue trace on the right of Fig. 6) in the
forward scatter direction (φ = 0◦). Using the physical interpretation of the plane-wave spectrum
representation of electromagnetic fields as a guide, partially-coherent illumination can be inter-
preted as the sum of infinitely-many (a continuum of) randomly-weighted plane waves incident
from many angles, viz., kkki = ξ̂ξξki

ξ + η̂ηηki
η , where ki

ξ > 0 and, in general, ki
η 
= 0 (dashed red traces

on the left of Fig. 6). When scattered from the cylinder, the sum, or integral of the plane-wave
components of the partially-coherent incident field produces a σ2D instance (dashed red trace
on the right of Fig. 6). The maxima of this σ2D instance are, in general, located at angles other
than φ = 0◦. When all instances of σ2D are averaged, the resulting σ2D in the forward scatter
direction is reduced with the forward scatter lobe subsequently broadened (solid red trace in
Fig. 6).
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Last, for all but the least coherent �s cases, the bar widths on the simulation traces are negligi-
ble implying statistical convergence of σ2D. The others, namely, �s = 1λ and 5λ , would require
many more trials to reach the confidence levels of the other �s simulations. This is physically
expected since generating nearly incoherent incident fields necessitates using very strong phase
screens [45]. This requires many trials, in this case many more than 2,500, to achieve statis-
tical convergence. Although the �s = 1λ and 5λ σ2D do not achieve the confidence levels of
the other �s cases, the corresponding analytical traces lie within the bars giving credence to the
validity of the theoretical σ2D expressions for these tough cases.

4. Conclusions

The scattering of a partially-coherent wave from a material cylinder was investigated. Expres-
sions for the TMz and TEz scattered-field CSD functions were derived. This was accomplished
by first writing the partially-coherent incident fields in terms of their plane-wave spectrums.
The resulting incident-field expressions were then expanded in terms of cylindrical wave func-
tions. Transverse field boundary conditions were then enforced at the surface of the cylinder
to yield relations for the unknown cylindrical wave function coefficients. From these, moments
of the scattered fields were derived including the desired CSD functions, the spectral densities,
and the mean scattering widths. These relations were also physically interpreted.

To validate the TMz and TEz analytical solutions, MoM Monte Carlo simulations were per-
formed to compute σ2D of a= 10λ aluminum and germanium cylinders. The simulations tested
the analytical relations over a wide range of incident-field spatial-coherence radii �s, spanning
from nearly fully-coherent (�s � a) to incoherent (�s 	 a) cases. Overall, the agreement be-
tween the theoretical and simulation results was excellent. For the highly reflective and elec-
trically large aluminum cylinder, the results showed that the monostatic scattering width was
independent of the coherence of the incident field. On the other hand, the monostatic scattering
width demonstrated a rather strong dependence on the coherence of the incident field in the case
of the translucent germanium cylinder. Last, the forward scatter regions of both the aluminum
and germanium cylinders were significantly reduced in magnitude and directionality as �s → 0.
This result shows that coherence plays a significant role in the forward scatter phenomenon.
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