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Abstract: Two different methodologies for generating an electromagnetic 
Gaussian-Schell model source are discussed. One approach uses a sequence 
of random phase screens at the source plane and the other uses a sequence 
of random complex transmittance screens. The relationships between the 
screen parameters and the desired electromagnetic Gaussian-Schell model 
source parameters are derived. The approaches are verified by comparing 
numerical simulation results with published theory. This work enables one 
to design an electromagnetic Gaussian-Schell model source with pre-
defined characteristics for wave optics simulations or laboratory 
experiments. 
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1. Introduction 

The electromagnetic Gaussian Schell-model (EGSM) source/beam was introduced as an 
extension of the scalar Gaussian Schell-model (GSM) beam [1, 2]. Since then, it has attracted 
special attention due to the interesting polarization evolution that can occur on its propagation 
and the reduction in scintillation that is possible in free-space optical communications, 
imaging through turbulence, and remote sensing applications [3–10]. The ability to customize 
the EGSM attributes can lead to improved performance for particular applications and 
scenarios. 

An EGSM beam can be described by a 2 × 2 cross-spectral density (CSD) matrix that 
characterizes second-order correlations between two mutually orthogonal components of the 
fluctuating electric field at a pair of spatial arguments and frequency [10]. Substantial 
progress has been made on the theoretical understanding of these beams including their 
propagation aspects, correlation features, and realizability conditions [11–15]. Concurrently, 
various methods have been proposed to produce EGSM sources numerically and 
experimentally [16–23]. These efforts include an approach to experimentally synthesize 
EGSM sources with the same mutually orthogonal electric field components [18], an 
experimental measurement to verify the validity of the EGSM beam parameters [19, 22], and 
a practical method of producing a general EGSM source [20]. Most recently, a reduction in 
scintillation for a particular subclass of EGSM beam (completely unpolarized) was 
successfully demonstrated for propagation in thermally simulated atmospheric turbulence 
[23]. These studies provide practical techniques to physically realize the EGSM beam and 
successfully validate the existing theory; however, a practical ability to design and control the 
EGSM beam characteristics was not the primary emphasis of these efforts. 

In this paper, the fundamental relationships between the two orthogonal polarization 
components of an EGSM beam are examined and a computational approach for creating 
numerical random screens that are associated with the components is presented. The desired 
EGSM beam parameters determine the selection of the screen parameters. The concept is that 
a pair of such screens is applied at the source plane to two orthogonally polarized coherent 
waves. The two resulting wave components constitute an instantaneous electromagnetic beam 
realization. Sufficiently large, mutually independent sequences of the screen pairs are then 
applied and the resulting intensities for each field component are averaged over these 
ensembles of realizations. The four average intensities, two representing self-correlations and 
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two representing joint correlations, between the two components comprise the EGSM beam. 
The beams produced in this manner are consistent with the EGSM realizability conditions 
stemming from the fundamental properties of the CSD matrix [14, 15]. The produced 
ensembles of screens can be used in a numerical wave optics simulation or in the laboratory 
with spatial light modulators (SLMs). 

In Section 2, two screen methodologies, the phase screen (PS) and the complex 
transmittance screen (CS), are introduced. The relationships between the screen parameters 
and the desired EGSM beam parameters are explored and the benefits and constraints of the 
two approaches are discussed. The screen methodologies are validated in Section 3 via 
numerical modeling of typical EGSM beams and comparison of the results with theoretical 
predictions. Some final remarks and future research directions are given in Section 4. 

2. Methodology 

Laser

HWP

GAF

VRBE
HWP

PBS

Path 2

Path 1
LS

LS

PBS

EGSM
Source
Plane

Mirror

SLM

Mirror

SLM
 

Fig. 1. Proposed experimental schematic for generating EGSM sources. The acronyms used in 
the figure are beam expander (BE), half-wave plate (HWP), polarizing beamsplitter (PBS), 
lens systems (LS), spatial light modulator (SLM), Gaussian amplitude filter (GAF), and 
variable retarder (VR). The polarization state of the light passing through the system is denoted 
by two-sided arrows (representing horizontal polarization) and circles (representing vertical 
polarization). When both are present, the light is in a general polarization state, i.e., polarized, 
partially polarized, or unpolarized. 

Figure 1 shows a proposed experimental schematic for generating EGSM sources. Note that 
this proposed set-up is similar to that presented in Ref [20]. Light leaves a laser and traverses 
a beam expander (BE) and half-wave plate (HWP) before being split along two paths by a 
polarizing beam splitter (PBS). The initial HWP is used to control the relative amplitudes of 
the fields along each path. In paths 1 and 2, the light is polarized vertically (denoted by the 
circle) and horizontally (denoted by the two-sided arrow), respectively. It is assumed here that 
the SLMs control only vertically polarized light; thus, a HWP is used in path 2 to transform 
horizontal linear polarization into vertical polarization. 

The light in both paths is then incident on the SLMs. Because of their widespread use, it is 
assumed that the SLMs in Fig. 1 are reflective, phase-only SLMs. The SLMs impart random, 
correlated phases to the light in paths 1 and 2. After the SLMs, the light enters general lens 
systems (LS). These LS could be spatial filters, 4-f systems, etc. and are included to remove 
unwanted diffraction orders, produced by the SLMs, which may corrupt the desired EGSM 
source output. 
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After traversing the LS, the light in both paths passes through Gaussian amplitude filters 
(GAFs) which set the desired Gaussian amplitude widths of the EGSM source (discussed in 
more detail below). The light from path 1 and path 2 is then recombined using a PBS. Note 
that the HWP, located before the GAF, on path 1 is required to transform the polarization 
state from vertical to horizontal polarization so that the light from both paths can be 
recombined. Lastly, a liquid crystal variable retarder (VR) is included to control the relative 
phasing between the vertical and horizontal polarization states. 

It must be stated that the experimental set-up depicted in Fig. 1 is hypothetical. No 
experimental results are presented in this paper. The approaches presented here for generating 
EGSM sources are validated via simulation. The above description is included to provide 
background on how one might generate EGSM sources in practice. An experimental system 
similar to the one in Fig. 1 is currently in work. Experimental results will be presented in a 
future paper. 

Two methods for generating EGSM sources are presented in this paper—the PS and CS 
methods. The PS approach involves generating two random phase screens, one for each 
polarization component. This approach can be implemented in the laboratory with two phase-
only SLMs as shown in Fig. 1. The interested reader is referred to Ref [24]. for the practical 
aspects of generating a scalar GSM beam with a single nematic phase-only SLM. The PS 
approach is equivalent to that presented in Ref [20]; however, here, the derivation is presented 
differently. 

While the PS approach is useful for practical implementation purposes, its main 
disadvantage is that the autocorrelation function of the screen transmittances is typically not 
of the desired form. This is a significant problem when the desired autocorrelation function is 
not Gaussian. The CS approach, on the other hand, does not suffer from this shortcoming. 
This approach involves generating two screens with complex transmittance functions, i.e., 
both the amplitude and phase of the incident wave are randomized spatially upon 
transmission through the screen. The CS approach is ideal for numerical simulations, but 
laboratory implementation is rather difficult because both the amplitude and phase of the 
source must be controlled. 

The elements of the CSD matrix of an EGSM source are [10] 
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where , ,x yα β = , Sα  is the spectral density, αβμ  is the spectral correlation function and 

ˆ ˆx y= +x yρ . Further, ασ  and αβδ  are the r.m.s. widths of the spectral density and correlation 

profiles, respectively. The parameters ασ , Bαβ , and αβδ  are constrained by the following 

relationships: 
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In addition, an EGSM source must satisfy the fork inequality 

 
2 2

2
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+
≤ ≤  (3) 

to be realizable [15]. It is imperative to show that both proposed approaches produce sources 
whose parameters obey the above constraints. Hereafter, the dependence on the radian 
frequency ω  is omitted for the sake of brevity. 

2.1 PS approach 

Let the electric field in the source plane, 0z = , be 
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where ( )exp jC Cα α αθ=  is a complex constant and ( )αφ ρ  is the random phase contribution 

due to the screen. Performing the autocorrelations necessary to fill the CSD matrix produces 
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The phase screen realizations are sample functions drawn from two correlated Gaussian 
random processes. Hereafter, for the sake of brevity, functions evaluated at 1ρ  or 2ρ  are 

denoted with a subscript 1 or 2, respectively. For example, ( )1αφ ρ  is expressed as 1αφ . 

The expectation on the second line of Eq. (5) is recognized as the joint characteristic 
function of the Gaussian random variables αφ  and βφ  evaluated at 1 1ω =  and 2 1ω = − , 

where 1ω  and 2ω  are radian frequencies. This expression is [25] 
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where 
αφσ  and 

βφσ are the standard deviations of the αφ  and βφ  phase screens, respectively; 

0 1
α βφ φρ≤ ≤  is a correlation coefficient ( 1

α βφ φρ =  if α β= ); and 
α βφ φγ  is the normalized 

cross-correlation function taken here to be Gaussian-shaped, viz., 
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The symbol 
α βφ φ  is the spatial cross-correlation radius of the phase screens αφ  and βφ . 

Assuming that ( )2 2 2 1
α βφ φσ σ+  , or equivalently ,

α βφ φσ σ π≥ , 
α βφ φγ  can be safely 

approximated as 
2 2

1 21
α β α βφ φ φ φγ ≈ − − ρ ρ . Substituting this expression into Eq. (6), then into 

Eq. (5), and simplifying produces 
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By comparing Eq. (8) to Eq. (1), one deduces the following relationships: 
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Note that the relations reported in the left column of Eq. (9) are coupled and cannot be chosen 
at will. On the other hand, the relations in the right column of Eq. (9) are uncoupled and can 
be chosen at will. Referring back to Fig. 1, xA  and yA  are controlled using the initial HWP, 

xσ  and yσ  are set by using the appropriate GAFs, and xyB∠  is set using the VR. The 

remaining EGSM source parameters are determined by the statistical properties of the phases 
commanded to the SLMs discussed in detail in Section 2.3. 

2.2. CS approach 

Let the electric field components in the source plane, 0z = , be 

 ( ) ( )
2

2
exp ,

4
E C Tα α α
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where ( )Tα ρ  is the complex transmittance function of the screen. Performing the 

autocorrelations necessary to fill the CSD matrix produces 
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Just like αφ  and βφ  in the PS approach, Tα  and Tβ  are sample functions drawn from two 

correlated Gaussian random processes. This time, however, the random processes are 
complex. 

The expectation in Eq. (11) is recognized as the cross-correlation function of the Gaussian 
random processes Tα  and Tβ : 
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γ  is the normalized 

cross-correlation function taken here to be Gaussian-shaped, namely, 
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The symbol T Tα β
  is the spatial cross-correlation radius of the complex transmittance screens 

Tα  and Tβ . Substituting Eqs. (12) and (13) into Eq. (11) and simplifying produces 
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By comparing Eq. (14) to Eq. (1), the following relationships are deduced: 
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While not yet evident, the relations reported in the left column of Eq. (15) are coupled and 
cannot be chosen at will. The relations in the right column are uncoupled and can be chosen at 
will. 

2.3. Generating phase screens (PS approach) 

In this section, a method for generating the required discretized xφ  and yφ  is presented. Of 

the two approaches discussed above, the PS approach is the most applicable to laboratory 
research because of the commercial availability of phase-only SLMs. The specifications of 
commercial SLMs (size of active area, number of pixels, pixel pitch, etc.) vary by vendor. 
Here, the specifications of the Boulder Nonlinear Systems (BNS) Model P512-0635 SLM are 
adopted, i.e., 512 × 512 pixel array with a 15 mμ  pitch [26]. These numbers are used in the 

simulation results presented in Section 3. 
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Let φ  and φ  be Fourier transform pairs, i.e., 
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 (16) 

Since αφ  obeys Gaussian statistics, 
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The phase screen αφ  is real; the complex conjugate on the second term in the autocorrelation 

is provided only for completeness. 
Expanding αφ  in a Fourier series yields 
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where mnαϕ , the Fourier series coefficients, are zero mean circular complex Gaussian random 

numbers and L N= Δ  is the size of the discrete grid. Here, r
mnαϕ and i

mnαϕ are the real and 

imaginary parts of mnαϕ , respectively. 

Taking the autocorrelation of αφ , making use of the assumption that mnαϕ  are circular 

complex Gaussian random numbers, and simplifying yields 

 ( ) ( ) ( )* r r
1 1 2 2 1 1 2 2
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, , cos .mn pq
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  (19) 

This expression must be equal to the autocorrelation of αφ  computed using Eqs. (16) and 

(17); therefore, 
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 (20) 

where ( ) ( )2 2 2 2 2 2, expx y x yf f f f
α α α α α α αφ φ φ φ φ φ φσ π π Φ = − +    is the power spectral density of αφ , 

( )2r
mnαϕ  and ( )2i

mnαϕ  are the variances of the real and imaginary parts of the Fourier 

series coefficients mnαϕ , and mpδ  and nqδ  are Kronecker deltas. The desired phase screen αφ  

can be produced by using Eq. (18), namely, 
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where rα  is a matrix of zero mean circular complex Gaussian random numbers with the real 

and imaginary parts each having unit variance. 
In order to generate correlated xφ  and yφ , necessary to synthesize the “cross” terms of the 

CSD matrix, the cross-correlation of Eq. (21) must be computed: 
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where rr  and ir  are the real and imaginary parts of r , respectively. Expanding the terms 
inside the angle brackets, letting 
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where 0 1≤ Γ ≤  is a correlation coefficient, and simplifying yields 
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Note that the complex exponential terms in the braces are discrete inverse and forward 
Fourier transform kernels. The discrete function being transformed in Eq. (24), equivalent to 
the cross-power spectral density, is even in m  and n ; therefore, the forward and inverse 
Fourier transforms yield the same result. Applying these simplifications produces 
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By comparing the discrete function being transformed in Eq. (25) to the continuous cross-
power spectral density function, i.e., 

 ( ) ( )2 2 2 2 2, exp ,
x y x y x y x y x yx y x yf f f fφ φ φ φ φ φ φ φ φ φσ σ πρ π Φ = − +    (26) 

one obtains the following relationships: 
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Using Eq. (9), the general relationships between the EGSM source parameters and the 
phase screen design parameters are found to be 
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 (28) 

In the above equations, , 0
x x y yφ φ φ φ >  , ,

x yφ φσ σ π≥ , and 0 1< Γ ≤ . 

Equation (28) expresses the four desired EGSM source parameters in terms of five phase 
screen design parameters; thus, the system of nonlinear equations is undetermined. Upon 
closer inspection of Eq. (28), one notes that three of the four desired EGSM parameters can 
be chosen at will (recall that xA , yA , and xyB∠  can be chosen freely). The values of the three 

chosen parameters then set the value of the remaining one. This is most evident if one decides 

to choose the values of xxδ , yyδ , and xyδ . The value of xyB  is then set by the values of those 

other parameters. This is in contrast to previous EGSM synthesis research where xyδ  was a 

function of xxδ  and yyδ  [18–20]. 

While Eq. (28) could be inverted in the manner just outlined, the optimal solution is not 
guaranteed. Here, the optimal solution is defined as the phase screen design parameters that 
yield EGSM parameters “nearest to” the desired EGSM parameters. Thus, in this work, the 
optimal phase screen design parameters are found using constrained nonlinear optimization. 

2.4. Generating complex screens (CS approach) 

In this section, a method for synthesizing discretized xT  and yT  is shown. Because both 

amplitude and phase must be controlled, the CS approach is much better suited to research 
involving simulation. For ease of comparison, the same SLM specifications listed above are 
used in the simulation results presented in Section 3. 
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Like αφ  in the PS approach, the complex screen transmittances have zero mean and a 

Gaussian correlation function, i.e., 
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Expanding Tα  in a Fourier series yields 
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where mnαT , the Fourier series coefficients, are zero mean circular complex Gaussian random 

numbers and L N= Δ  is, again, the size of the discrete grid. Taking the autocorrelation of Tα  

produces 
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Like in the PS approach, Eq. (31) can be shown to be equal to the autocorrelation of Tα , 

computed using similar Fourier transform relations as given in Eq. (16) and the expression 
given in Eq. (29). Performing the necessary analysis, one deduces that 
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where ( ) ( )2 2 2 2 2 2, expT T x y T T T T T x yf f f f
α α α α α α α

σ π π Φ = − +    is the power spectral density of Tα  

and 
2

mnαT  is the variance of the Fourier series coefficients mnαT . The complex amplitude 

screen Tα  can be produced by using Eq. (30), i.e., 
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where rα  is, again, a matrix of zero mean circular complex Gaussian random numbers with 

the real and imaginary parts each having unit variance. 
In a manner completely analogous to the PS approach presented above, the cross-

correlation of Eq. (33) must be computed. Using Eq. (23) and simplifying yields 

#225412 - $15.00 USD Received 21 Oct 2014; revised 21 Nov 2014; accepted 25 Nov 2014; published 15 Dec 2014 
(C) 2014 OSA 29 Dec 2014 | Vol. 22, No. 26 | DOI:10.1364/OE.22.031691 | OPTICS EXPRESS 31701 



 

[ ] [ ]

( ) ( )
( )

*

,

2 2 2 2
2

2

, ,

exp
2

2 2 1
exp j exp j .

x y x x y y

x x y y

x y T T T T T T
m n

T T T T

T i j T k l

m n

N N

m i k n j l
N N N

σ σ π

π

π π

= Γ

  +       − +       Δ Δ        
   − −       Δ

  

 
 (34) 

By comparing the discrete function being inverse Fourier transformed in Eq. (34) to the 
continuous cross-power spectral density function, i.e., 
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one obtains the following relationships: 
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Using Eq. (15), the general relationships between the EGSM source parameters and the 
complex screen design parameters are 
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 (37) 

In the above equations, , 0
x x y yT T T T >   and 0 1< Γ ≤ . 

It is clear from Eq. (37) that two of the three correlation function widths can be chosen 

freely (the third is set by the other two). One is generally free to choose the value of xyB  

subject to the constraint that 1Γ ≤ . The other EGSM source parameters, xA , yA , and xyB∠ , 

can be chosen at will. 

3. Validation 

3.1 Simulation description 

In this section, simulation results are presented to validate the PS and CS approaches 
described above. As stated previously, 512 points per side and a spacing of 15 mμ  were used 

to discretize the fields along paths 1 and 2 in Fig. 1. These numbers were chosen to match the 
BNS Model P512-0635 SLM. A wavelength of 632.8nmλ =  was assumed. Two different 

EGSM sources were simulated. The first was a linearly, partially polarized EGSM source 
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with the off-diagonal elements of the CSD matrix equal to zero. Since for this case x yσ σ= , 

the polarization state was uniform across the source plane [2]. The second was an elliptically 
partially polarized EGSM source with a fully-populated CSD matrix. Table 1 reports the 
desired, PS, and CS EGSM source parameters for both cases. 

Table 1. EGSM Source Parameters 

Case I ( 0xy yxW W= = ) 

 xA  yA  xyB∠  
xσ  

(mm) 
yσ  

(mm) 
xxδ  

(mm) 
yyδ  

(mm) 
xyδ  

(mm) xyB  

Desired 1.2 1 0 0.4286 0.4286 0.1071 0.1429 0.1714 0 
PS 1.2 1 0 0.4286 0.4286 0.1071 0.1429 0.1714 5.2 ‰ 10−11 
CS 1.2 1 0 0.4286 0.4286 0.1071 0.1429 0.1263 0 

Case II (Fully-Populated CSD Matrix) 

 xA  yA  xyB∠  
xσ  

(mm) 
yσ  

(mm) 
xxδ  

(mm) 
yyδ  

(mm) 
xyδ  

(mm) xyB  

Desired 1.3 1 6π−  0.4286 0.3750 0.1500 0.1607 0.1714 0.1500 

PS 1.3 1 6π−  0.4286 0.3750 0.1501 0.1608 0.1713 0.1500 

CS 1.3 1 6π−  0.4286 0.3750 0.1500 0.1607 0.1554 0.1500 
 
The screen parameters for the PS and CS approaches were determined by inverting Eqs. 

(28) and (37), respectively. For the CS approach, Eq. (37) is easily inverted. When the off-
diagonal elements of the desired CSD matrix are zero (Case I), the CS approach can generate 
an EGSM source with the desired parameters (note that xyδ  is irrelevant in these cases). This 

is not guaranteed when the desired CSD matrix is fully populated (Case II), however. 
For the PS approach, Eq. (28) is a coupled system of nonlinear equations and not easily 

inverted. Here, constrained nonlinear optimization was used to find the phase screen 
parameters such that 
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δ δδ
δ δ δ∈
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 (38) 

where x  was a vector of the unknown phase screen parameters. The constraints on x  
included the conditions given in Eqs. (2) and (3) as well as positivity. In addition, to satisfy 
the “strongly scattering screen” requirement, i.e., the Gaussian approximation to the joint 
characteristic function [see Eq. (8)], ,

x yφ φσ σ π≥ . Like in the CS approach, when the off-

diagonal elements of the desired CSD matrix are zero (Case I), the PS approach can generate 
an EGSM source with the desired parameters. Again, this is not guaranteed when the desired 
CSD matrix is fully populated (Case II). 
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Fig. 2. Case I PS and CS simulation results versus theory.  The rows are 0S , 1S , 2S , 3S , and 

η , respectively, while the columns are the PS, CS, and theory results, respectively.  Each row 

of images is on the same color scale specified by the color bar in each row. 
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Fig. 3. Case II PS and CS simulation results versus theory.  The rows are 0S , 1S , 2S , 3S , 

and η , respectively, while the columns are the PS, CS, and theory results, respectively.  Each 

row of images is on the same color scale specified by the color bar in each row. 
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3.2 Simulation results 

Figure 2 and Fig. 3 show the simulation results for Case I and II, respectively. The figures are 
organized such that the PS, CS, and theoretical results are along the columns—PS results are 
Figs. 2(a), 2(d), 2(g), 2(j) and Figs. 3(a), 3(d), 3(g), 3(j); CS results are Figs. 2(b), 2(e), 2(h), 
2(k) and Figs. 3(b), 3(e), 3(h), 3(k) ; and theoretical results are Figs. 2(c), 2(f), 2(i), 2(l) and 
Figs. 3(c), 3(f), 3(i), 3(l) . Each row of images in Figs. 2 and 3 is a Stokes parameter— 0S  are 

Figs. 2(a)-2(c) and Figs. 3(a)-3(c); 1S  are Figs. 2(d)-2(f) and Figs. 3(d)-3(f); 2S  are Figs. 

2(g)-2(i) and Figs. 3(g)-3(i); and 3S  are Figs. 2(j)-2(l) and Figs. 3(j)-3(l)—and on the same 

color scale specified by the color bar in each row. Lastly, the spectral degree of coherence η  

is shown in Figs. 2(m) and 3(m). The PS and CS statistics were computed at the simulated 
EGSM source plane (see Fig. 1) using the results of 20,000 simulations. The theoretical 
Stokes parameters and η  are related to the CSD matrix elements by [27], 
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 (39) 

where Tr  is the trace of the CSD matrix W  [10]. 

4. Conclusion 

Two random screen methods, the PS and CS approaches, for generating EGSM sources were 
developed. The relationships between the desired source parameters and the random screen 
parameters were derived and discussed. For the CS approach, these relations were easily 
inverted. Eight of the nine desired EGSM source parameters could be produced exactly—any 
two of xxδ , yyδ , or xyδ  could be produced exactly (the remaining parameter’s value is set by 

the values of the other two). The CS approach is well suited for simulation purposes; 
however, it is difficult to implement in the laboratory because field amplitude (in addition to 
phase) must be controlled. A major advantage of this method is its ability to easily simulate 
non-Gaussian electromagnetic Schell-model sources. 

For the PS method, the relations between the desired EGSM source parameters and the 
screen parameters formed a system of coupled nonlinear equations which could not be 
analytically inverted. Constrained nonlinear optimization was used to find the best solution. 
In theory, all nine EGSM source parameters could be produced exactly because the nonlinear 
system was underdetermined, i.e., there are more screen parameters than desired EGSM 
source parameters. However, because of the complexity of the inverse problem, the optimal 
parameters were (generally) slightly different than the desired EGSM parameters. The PS 
approach is well suited for both simulation and laboratory experiments. Future work is needed 
to generalize this approach to non-Gaussian electromagnetic Schell-model sources. 

Both the PS and CS approaches were tested through numerical wave optics simulations. 
The simulation results showed excellent agreement with published theory, thus validating the 
proposed approaches. Future work will include implementation of the approaches in the 
laboratory. 
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