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Abstract: In a previous paper [Opt. Express 22, 31691 (2014)] two different wave optics 
methodologies (phase screen and complex screen) were introduced to generate 
electromagnetic Gaussian Schell-model sources. A numerical optimization approach based on 
theoretical realizability conditions was used to determine the screen parameters. In this work 
we describe a practical modeling approach for the two methodologies that employs a common 
numerical recipe for generating correlated Gaussian random sequences and establish exact 
relationships between the screen simulation parameters and the source parameters. Both 
methodologies are demonstrated in a wave-optics simulation framework for an example 
source. The two methodologies are found to have some differing features, for example, the 
phase screen method is more flexible than the complex screen in terms of the range of 
combinations of beam parameter values that can be modeled. This work supports numerical 
wave optics simulations or laboratory experiments involving electromagnetic Gaussian 
Schell-model sources. 
© 2017 Optical Society of America 

OCIS codes: (030.0030) Coherence and statistical optics; (030.1670) Coherent optical effects; (110.4980) Partial 
coherence in imaging; (260.5430) Polarization. 
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1. Introduction

The electromagnetic Gaussian Schell-model (EGSM) source is a partially coherent, partially 
polarized optical beam. It has an intensity profile that is Gaussian, a transverse spatial 
coherence function that is Gaussian, and partial polarization based on a Gaussian cross-
correlation [1,2]. The EGSM exhibits an interesting polarimetric evolution during propagation 
and can provide performance improvement for free-space optical applications such as 
communications, imaging, and remote sensing [3–6]. 

Fig. 1. Conceptual diagram for EGSM beam formation. 

Understanding and exploring the behavior of the EGSM beam is greatly aided by 
numerical simulation and laboratory experiment [7–9]. Figure 1 illustrates a general approach 
for constructing the EGSM beam in either a simulation or laboratory. Two Gaussian beams 
with orthogonal linear polarizations (x and y) are sent through separate random screens and 
the resulting beams are combined. Correlations between the two polarization channels are 
embodied in the screens. Averaging the output intensity patterns over many independent 
realizations of the screens produces the EGSM beam result. 

In a recent publication, two types of computational random screen approaches were 
introduced for use in modeling the EGSM beam: complex screens (CS) and phase-only 
screens (PS) [10]. In that work, the EGSM source was defined by four transverse spatial 
parameters: x-correlation length, y-correlation length, xy-cross-correlation length, and xy-
correlation coefficient. The last two parameters have some dependence on the first two. It was 
shown that the four EGSM source parameters map to three deterministic CS parameters. 
However, the PS is defined by five parameters that represent an overdetermined relationship 
with the source parameters. A numerical optimization approach based on previously 
developed realizability conditions [5,6] was used to find the PS parameters; however 
deterministic relationships between the source and PS parameters were not identified. 

In this paper, we introduce a well-known relationship for generating correlated Gaussian 
random sequences and proceed through an analytic development that precisely defines the 
relationships between the source and the PS and CS parameters. A computer simulation of an 
EGSM source and propagation of the beam demonstrates the utility of the approach. 
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2. Source definition

Consider the polarized electric field vector at the source plane given by [11]: 

ˆ ˆ( ;0) ( ) ( ),x yE E= +E ρ x ρ y ρ (1)

where ρ is a two-dimension position vector. Assume scalar diffraction so each component can 
be considered independently. Referring to Fig. 1, the components are modeled as 

0 0( ) ( ) ( ); and ( ) ( ) ( ).x x x y y yE E T E E T= =ρ ρ ρ ρ ρ ρ     (2) 

Tx and Ty are transmittance functions or “screens” that embody the random characteristics 
of the transverse coherence for each component. E0x and E0y describe the deterministic part of 
the Gaussian beam fields and are generally given by 

( )
2

0 2
exp ,

4
jE A e αθ

α α
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 −=  
 

ρ
ρ (3)

where α = x or y, the Aα, θα and σα are on-axis amplitude, phase, and beam width constants, 
respectively. An EGSM beam can be characterized by a 2 × 2 cross-spectral density matrix 
[8] 
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where 1ρ  and 2ρ  are the position vectors of two points within the initial beam pupil. The 

elements are defined by 

( ), ( ) ( ) ,W E Eαβ α β
∗=1 2 1 2ρ ρ ρ ρ (5)

where α, β = x or y and the angle brackets indicate an ensemble average. With the definitions 
in Eqs. (2) and (3), Wαβ takes the form 

( ) ( ) ( )
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In terms of the beam field, μαβ is known as the complex coherence factor [10]. In our 
implementation, μαβ physically represents the degree of correlation of Tα and Tβ and is defined 
as 

( ) ( ) ( )* ., T Tαβ α βμ =1 2 1 2ρ ρ ρ ρ (7)

The degree of correlation is Gaussian in form 

( )
2

2
exp ,

2
Bαβ αβ

αβ

μ
δ

 
= −  

 

Δρ
Δρ (8)

where Δρ = ρ1 − ρ2 and μαβ is assumed to be only a function of the separation of the two 
positions in the beam pupil. The parameter δαβ is the root-mean-square (rms) width of the 
correlation function and |Bαβ| is the correlation peak value. Note that |Bαβ | = 1 for α = β and 
|Bαβ | ≤ 1 for α ≠ β . 

The task is to generate random realizations of Tx and Ty given the correlation parameters 
|Bxy|, δxx, δyy, and δxy. A useful relationship is that Gaussian random sequences X1 and Y1 with 

correlation coefficient Γ can be computed using Y1 = ΓX1 + 21− Γ X2, where X1 and X2 are 
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independent Gaussian random sequences, and Γ is the correlation coefficient with value 0 ≤ Γ 
≤ 1. In the spatial domain, the screen realizations can be synthesized by 

( ) ( ) ( )2 ,x xx x xT r gπδ= ⊗  ρ ρ ρ (9)

( ) ( ) ( ) ( ) ( ){ }22 1 ,y yy x x y yT r g r gπδ  = Γ ⊗ + − Γ ⊗    ρ ρ ρ ρ ρ  (10) 

where ⊗ indicates a 2D convolution; rα is independent, delta-correlated, complex circular 
Gaussian random array with unit variance; and gα represents Gaussian response functions that 
act to create spatial correlation in the random array values. For the convenience, we keep the 
symbols consistent with those in [10] except for introducing a few new parameters. 

In practice, the screens are typically generated by filtering complex random arrays in the 
spatial frequency domain (f x, f y) [12]: 

( ) ( ) ( ), , , ,
x x xx x y x x y x x yT f f r f f G f fϕ ϕ ϕπ σ= l (11)

( ) ( )2, 1 , .
y y yy x y x y y x yT f f r r G f fϕ ϕ ϕπ σ  = Γ + − Γ 

  l  (12)

where T α and Tα are a Fourier transform pair, 
αϕσ and l

α αϕ ϕ  are real positive constants that 

characterize the spatial standard deviation and correlations in the α direction, and Gα is a 
Gaussian filter given by 

( ) ( )2 2 2 2, exp / 2 ,x y x yG f f f f
α αα ϕ ϕπ = − + l (13)

and r α are independent, circular complex Gaussian random variables with zero mean and 
unit variance in real and imaginary parts. The random screens φα (φαPS and φαCS in the 
following sections) can be obtained by utilizing certain components of Tα. 

3. PS approach

The PS approach to creating the EGSM beam is attractive because a common phase-only 
device, such as a spatial light modulator (SLM), can be used in each polarization leg to 
implement the screens. In addition, the overdetermined relationship between the screen and 
beam parameters allows for some screen design flexibility. Either the real or imaginary part 
can be extracted from Tα for use as a phase screen φαPS, therefore, φαPS = Re(Tα) or Im(Tα). 
The associated autocorrelation and cross-correlation functions of the phase-only transmittance 
functions are [13] 
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 (15) 

If the following conditions are true 

2 21and 1,
x yφ φσ σ>> >>  (16)

then Eqs. (14) and (15) are approximately Gaussian of the form in Eq. (8). Equating Eqs. (14) 
and (15) with Eq. (8), the following equations can be obtained 
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Equations (18)‒(21) are essentially identical to Eqs. (28) in [10] however Γ in this work is 
well-defined and the equations are provided for reference as they are critical to the following 
derivations. There are 4 equations that include 5 simulation parameters: 

xϕσ , 
x xϕ ϕ ,

yϕσ ,
y yϕ ϕ

and Γ; and 4 source parameters: δxx, δyy, δxy and |Bxy|. The next task is to explore the limiting 
conditions on the relationships between the simulation parameters and the source parameters. 
Substituting Eqs. (18) and (19) into Eqs. (20) and (21) yields 
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It is apparent from Eqs. (22) and (23) that both Γ and |Bxy| can be defined in terms of the 
ratios δxx/δxy = Rx and δyy/δxy = Ry. Hence, they can be simplified as 

2
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To help with further simplification, we introduce the following inequation where the right 
side of Eq. (24) is used but the sum is changed to a difference, 

2

0 .yx

y x
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RR
R R
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φφ
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By subtracting the right side of Eq. (26) from Eq. (24) and considering the inequality, the 
lower limit of Γ can be defined. Thus, the valid full range of Γ is 

1x yR R ≤ Γ ≤ (27)

A useful approach to study the interrelationship of the parameters is to consider the valid 
range of |Bxy| as a function of the screen parameter values. Three situations are considered: a) 
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Rx < 1 and Ry < 1, b) Rx < 1 and Ry = 1 and c) Rx < 1 < Ry and Ry < 1/Rx. Since Rx and Ry are 
interchangeable, the scenarios with x and y reversed are also covered. Figure 2 illustrates 
representative examples with (a) Rx = 0.75 and Ry = 0.90, (b) Rx = 0.75 and Ry = 1.0, and (c) 
Rx = 0.75 and Ry = 1.1, when both 2

xφσ  and 2

yφσ  are greater than or equal to 6 (black solid), 9 

(red dash) and 12 (blue dot). In each plot, the shaded areas underneath the lines indicate the 
valid |Bxy| values for the stipulated 2

xφσ  and 2

yφσ  values. For example, in Fig. 2(b), with the 

indicated Rx and Ry values and appropriate choice of 2

xφσ  and 2

yφσ , correlation peak values 

ranging from about 0 ≤ |Bxy| ≤ 0.27 can be modeled with a value of Γ that can range from 0 
0.75 ≤ Γ ≤ 1. Figure 2(a) shows that smaller Rx and Ry values (suggestive of a larger δxy 
value), place a significant upper limit on the value of |Bxy| that can be modeled. On the 
contrary, when the product RxRy is near 1 (implying δxy

2 is similar in value to δxxδyy) then the 
attainable upper limit of |Bxy| is increased [Fig. 2(c)]. Generally speaking, the available range 
of parameter values is more limited when modeling larger |Bxy| as compared with modeling 
smaller |Bxy|. 

Fig. 2. Correlation coefficient |Bxy| as a function of Γ when Rx = 0.75 and Ry = (a) 0.90, (b) 
1.00, and (c) 1.10 with both σφx

2 and σφy
2 ≥ 6 (—), ≥ 9 (—), ≥ 12(···). 

4. CS approach

In contrast to the PS approach, the relationships for the CS parameters are deterministic. It is 
also more difficult to implement a complex valued screen in the real world, for example with 
a SLM, although it is certainly possible [14]. However, the CS approach has no 
approximation requirement, such as indicated by Eq. (16), to produce the Gaussian 
correlation functions and the analytic relationships between parameters are relatively simple. 
The CS is generated directly from the complex transmittance function, or φαCS = Tα and the 
corresponding autocorrelation and cross-correlation functions are 

2
* 2

1 2 2
exp ,CS CS
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α α

α α φ
φ φ

ρφ φ σ
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1 2 2 2 2 2
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(29)

The relationship between EGSM source parameters and complex screen parameters can 
be obtained by comparing Eqs. (28) and (29) with Eq. (8) 

2 2 1,
x yφ φσ σ= = (30)

2
2

,
2
x x

xx
φ φ

δ =
l

(31)
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Again, Eqs. (31)‒(34) are substantially the same as Eqs. (37) in [10] except for the use of 
the symbols 

x xϕ ϕ and
y yϕ ϕ to clarify the relationships between the PS and CS approaches. 

Equation (30) restricts the spatial variances in both x and y directions so that 3 simulation 
parameters

x xϕ ϕ ,
y yϕ ϕ  and Γ remain. This implies that the four source parameters δxx, δyy, δxy, 

and |Bxy| in Eqs. (31)–(34) cannot be chosen independently – one of the three rms widths is 
determined by the other two. Applying the ratios Rx and Ry again, the following relationships 
are derived: 

2 2 2,x yR R+ = (35)

.xy x yB R R= Γ (36)

Equation (36) indicates that the beam correlation peak value is directly proportional to the 
correlation coefficient of the random sequences, as well as the rms width ratios. 

5. Simulation design example

Table 1. EGSM Beam Parameters 

Ax Ay θx θy σx(mm) σy(mm) δxx(mm) δyy(mm) δxy(mm) |Bxy| 

1.3 1 0 π/6 0.4286 0.3750 0.1500 0.1607 0.1554* 0.1500 

* Original value in ref [10], case II was δxy = 0.1714 mm.

To illustrate the beam design and simulation approach, we consider the EGSM beam 
presented as case II in [10]. The parameters for this beam are listed in Table 1. Note that 
although the deterministic phase values θx and θy of the two component fields are different. 
This has no effect on the resulting beam intensity patterns. The last 4 columns are the beam 
parameters that are used in the simulation for both the PS and CS approaches. In the original 
beam definition of [10], the cross correlation width was selected as δxy = 0.1714 mm. 
However, this value is not consistent with Eq. (35) and the values given for δxx and δyy. To 
satisfy the requirement for the CS approach, the cross correlation width is assigned δxy = 

2 2( ) / 2xx yyδ δ+  = 0.1554 mm. 
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Fig. 3. Correlation coefficient |Bxy| as a function of Γ with Rx = 0.9650 and Ry = 1.0338 (δxx = 

0.1500 mm, δyy = 0.1607 mm, and δxy = 0.1554 mm) with (a) PS approach when both 
2

yφσ  and 

2

yφσ  ≥ π2, and (b) CS approach. The green line denotes the range of |Bxy| = 0.15. 

For the PS approach, Fig. 3(a) is generated for the parameters given in Table 1 along with 
the assumption that 2

xφσ  and 2

yφσ  ≥ π2. The green solid line in Fig. 3(a) shows the valid range 

is Γ ∈  [0.9982, 1] for |Bxy| = 0.15. If we choose Γ = 1 and solve for the spatial standard 
deviation values of the random phase screens (

xφσ ,
yφσ ) we find two solutions pairs: (17.21, 

15.39) or (39.38, 38.36). On the other hand, if we choose Γ = 0.9985, which is at the other 
end of the valid range, then the solution pairs are (19.48, 17.85) or (26.00, 24.71). In fact, 
there is a continuum of choices available for the PS screen parameters, but we generally find 
that seeking to make the screen width parameters 

x xϕ ϕ and
y yϕ ϕ values closer to the initial

source beam width parameters xσ  and yσ  provides better simulation design flexibility in 

terms of pixel number, grid size, and computation time trade-offs. In this case we choose to 
use Γ = 1 and (

xφσ ,
yφσ ) = (17.21, 15.39). 

Table 2. EGSM Beam Screen Simulation Parameters for both PS and CS Approaches 

Simulation Parameters Γ xσ yσ
x xϕ ϕ (mm) y yϕ ϕ

(mm) 

PS* 1 17.21 15.39 2.582 2.474

CS 0.1503 1 1 0.2121 0.2273

* Γ = 1 is used but there are multiple options. 

Fig. 4. Correlation coefficient |Bxy| as a function of Γ for Rx = 0.8751 and Ry = 0.9376 (δxx = 

0.1500 mm, δyy = 0.1607 mm, and δxy = 0.1714 mm) when both
2

xφσ  and 
2

yφσ  ≥ π2. Green line

denotes the available range for |Bxy| = 0.15. 

Figure 3(b) illustrates the relationship between |Bxy| and Γ for the CS approach and the 
specific choice of Γ = 0.1503 necessary for |Bxy| = 0.15. Table 2 shows our choice of PS 
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screen parameters and the required CS screen parameters for the EGSM simulation results 
that are presented in section 6. 

Prior to presenting the simulation results, it is instructive to illustrate the wider 
applicability of the PS approach. Consider the value of δxy = 0.1714 mm that was originally 
proposed in ref [10]. As noted above, this value does not provide a valid definition for the 
EGSM beam in Table 1 for simulation with the CS approach. However, when applying the PS 
approach, Fig. 4 shows the validity relationship between |Bxy| and Γ. This beam belongs to the 
scenario where both Rx and Ry are less than 1 and the attainable |Bxy| has a relatively small 
upper limit of 0.1732. But the desired |Bxy| = 0.15 is under this value and the available range 
for the screen correlation is Γ ∈  [0.82, 0.85], which is marked as the green solid line. Thus, it 
is possible to use the PS approach to simulate this beam. 

6. Simulation results

Fig. 5. PS and CS simulation results vs. theory. The rows are S0, S1, S2, and S3, and the columns 
are the PS, CS, and the analytical results, respectively. 

In this section we show the results of modeling the EGSM beam of Table 1 in the source 
plane using the PS and CS screens. The screens were created using a grid of 1024 × 1024 
pixels corresponding to a physical area of 15mm × 15mm. The pixel number and physical 
size were chosen to ensure that the array physical side length was at least 5 times the 
maximum value of any of the width parameters (σx, σy,

x xϕ ϕ ,or
y yϕ ϕ ) and, meanwhile, the 
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pixel sample interval is small enough to provide >


 10 samples for the minimum width

parameter value [15]. To display the intensity pattern of resulting beam, we use the Stokes 
parameters. Analytically, the Stokes parameters are obtained by [11,16] 

22

0 ( ) ( ) ( ) ,x yS E E= +ρ ρ ρ (37)

22

1( ) ( ) ( ) ,x yS E E= −ρ ρ ρ (38)

*
2 ( ) 2Re ( ) ( ) ,x yS E E =  ρ ρ ρ (39)

*
3 ( ) 2 Im ( ) ( ) .x yS E E =  ρ ρ ρ (40)

Figure 5 presents the PS, CS, and analytical beam results for each component of the 
Stokes vector. A relative intensity scaling is used where the same color scale is applied to all 
plots. Both the PS and CS Stokes parameters were obtained by averaging 20,000 realizations. 
The agreement with the analytic beam definition (theory) is excellent. We note that the CS 
approach generally seems to take more realizations to converge to the smooth analytical 
predictions. The beam intensities are shown in the S0 frames (top row) and a preference for 
horizontal polarization can be observed in S1 (second row). In the third row, the yellow in the 
center of S2 indicates a slight preference for 45° linear polarization, which is a result of the 
small correlation between the components |Bxy| = 0.15. The red in S3 (representing a negative 
value) in the last row indicates a slight left-hand circularly polarization preference. Although 
the results shown in Fig. 5 represent the beam in the source plane, propagation of the beam 
can be simulated by applying the fields created for each screen realization to a numerical 
propagation algorithm and then applying the averaging [15]. 

7. Conclusions

We have introduced a practical approach for generating random phase-only screens and 
complex screens for modeling EGSM beam sources. These results can be applied in 
numerical wave optics simulations or in laboratory experiments where the screens can be 
implemented on a device such as spatial light modulators. Our work provides a more direct, 
deterministic approach to EGSM beam modeling design than a previous method that relies on 
numerical optimization based on analytic realizability conditions. Our results can also be 
easily applied as a test of whether a set of selected EGSM parameters is physically realizable. 
The approach incorporates a common numerical recipe for the generation of correlated 
random Gaussian sequences. Average autocorrelation and cross-correlation functions for the 
screens were derived and the exact relationships were established between the screen 
parameters and the defined EGSM source parameters. Both the PS and the CS methodologies 
were demonstrated in a wave optics simulation framework for an example EGSM source. The 
Stokes image results show excellent consistency with the analytic beam definitions. There are 
several differences between the implementation and application of the PS and CS methods. 
For example, in the CS method the beam correlation peak value |Bxy| is directly proportional 
to the correlation coefficient Γ of the random sequences whereas this correlation relationship 
is more flexible in the PS method and is a function of the phase variance values and 2

yφσ . In 

general, the PS method is more flexible than the CS in terms of the range of combinations of 
beam parameter values that can be modeled. 
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