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Abstract: This article presents a method to simulate a three-dimensional (3D) electromagnetic
Gaussian-Schell model (EGSM) source with desired characteristics. Using the complex screen
method, originally developed for the synthesis of two-dimensional stochastic electromagnetic
fields, a set of equations is derived which relate the desired 3D source characteristics to those
of the statistics of the random complex screen. From these equations and the 3D EGSM source
realizability conditions, a single criterion is derived, which when satisfied guarantees both the
realizability and simulatability of the desired 3D EGSM source. Lastly, a 3D EGSM source,
with specified properties, is simulated; the Monte Carlo simulation results are compared to the
theoretical expressions to validate the method.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

The behavior of two-dimensional (2D) stochastic electromagnetic (EM) fields has and continues
to be an important and popular topic of optics research [1–6]. This area of study is quite mature
and optical systems that exploit coherence and polarization to beam shape, mitigate atmospheric
scintillation, or reduce speckle are being developed [7–12].
For certain scenarios, e.g., near-field beam shaping [13–16], observing in the near zone of a

scatterer, or observing in the vicinity of a caustic, a full, three-dimensional (3D) vector treatment
of the field is required. The study of light’s behavior under these and other similar conditions
motivates research involving 3D stochastic EM fields. Much of the published work on this subject
involves defining physically significant statistics of 3D random EM fields, most notably, the
degree of coherence [17, 18], Stokes parameters [19], and the degree of polarization [20, 21]. To
date, little work has been performed developing 3D random field models (counterparts to the
ubiquitous Schell-model sources in 1D and 2D) or in synthesizing 3D random field instances.
Here, a method to simulate a 3D electromagnetic Gaussian Schell-model (EGSM) source

with desired shape and coherence properties is presented. The 3D EGSM source was recently
introduced in Ref. [22]. There, the authors derived a set of conditions that all 3D EGSM sources
must satisfy in order to be physically realizable sources.
Using the complex screen method (originally developed for the synthesis of 2D random

fields) [23–25], equations relating the desired 3D EGSM source parameters (source widths,
spatial correlation radii, et cetera) to the random complex screen parameters are derived. Then,
using these equations and the realizability conditions developed in Ref. [22], a single criterion
is found, which when satisfied guarantees that the desired 3D EGSM source is both realizable
and simulatable. Lastly, a 3D EGSM source, with specified properties, is simulated using the
3D complex screen method. The simulated results are compared to the analytical expressions to
validate the analysis.

It should be noted that no device or method for physically realizing a designer 3D EGSM
source currently exists. Nevertheless, the work presented here provides a recipe for generating
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such a source should the technology become available. This work can be put to immediate use in
wave optics simulations of scenarios similar to those mentioned above.

2. Theory

The cross-spectral density matrix elements of a 3D EGSM source take the form

Wi j (r1, r2) = Ai AjBi j exp

(
−

r2
1

4σ2
i

)
exp

(
−

r2
2

4σ2
j

)
exp

(
− |r1 − r2 |2

2δ2
i j

)
, (1)

where i, j = x, y, z, Ai is the amplitude of the ith field component, Bi j is the complex cross-
correlation coefficient between the ith and j th components, σi is the spectral density width of
the ith component, δi j is the width of the cross-correlation function between the ith and j th

components, and r = x̂x + ŷy + ẑz [22]. For the 3D EGSM source to be physically realizable,
the δi j and Bi j must satisfy [22]

δi j = δji (2)
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. (5)

In addition, Bii = 1 and
��Bi j

�� ≤ 1 when i , j.
Generating 3D EGSM sources can be accomplished by using extensions of the techniques

discussed in Refs. [24–26]. Since it forms the basis of the modified phase screen technique [27,28],
the complex transmittance screen approach (in this context, more accurately termed the complex
volume approach) is presented here. The traditional Gaussian phase screen [24–26] details can
be derived in a similar manner; for completeness, the phase screen expressions are provided in
Appendix A.

Let an instance of the ith component of a 3D EGSM source be

Ei (r) = Ci exp

(
− r2

4σ2
i

)
Ti (r) , (6)

where Ci is the complex amplitude and Ti is the random complex transmittance screen. Taking
the vector autocorrelation of Eq. (6) produces

〈Ei (r1) E∗j (r1)〉 = CiC∗j exp

(
−

r2
1

4σ2
i

)
exp

(
−

r2
2

4σ2
j

)
〈Ti (r1)T∗j (r2)〉. (7)

Comparing Eqs. (7) and (1) reveals the following:

|Ci | = Ai

arg
(
CiC∗j

)
= arg

(
Bi j

)
〈Ti (r1)T∗i (r2)〉 = exp
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) . (8)
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One is free to choose the amplitudes Ai and the spectral density widths σi of the 3D EGSM
source. The phase angles arg

(
Bi j

)
are solutions to

©«
1 −1 0
1 0 −1
0 1 −1

ª®¬ ©«
αx

αy
αz

ª®¬ = ©«
θxy
θxz
θyz

ª®¬ , (9)

where αi = arg (Ci) and θi j = arg
(
Bi j

)
. Solving the above system of equations reveals that

θxy + θyz = θxz ; thus, two of the three phase angles can be chosen freely, the last is determined
by the other two. This stands in contrast to the 2D case where one is free to choose the phase
angle [24].
Lastly, the

��Bi j

�� and δi j are coupled and even if realizable [i.e., the desired values satisfy
Eqs. (2)–(5)], the source they describe may not be simulatable using the complex screen approach.
The question of whether a desired 3D EGSM source is simulatable is addressed in the next
section.

2.1. Ti generation

A complex screen Ti can be generated using the Monte Carlo spectral method (MCSM) [23,24,
29, 30]. Using the MCSM (not reviewed here), a realization of Ti takes the form

Ti [i, j, k] =
∑
l,m,n

ri [l,m, n]
√
Φii [l,m, n]
2LxLyLz

exp
(
j
2π
Lx

li
)

exp
(
j
2π
Ly

mj
)

exp
(
j
2π
Lz

nk
)
, (10)

where i, j, k are discrete spatial indices, l,m, n are discrete spatial frequency indices, ri is a 3D
matrix of zero-mean, unit-variance circular complex Gaussian random numbers, Lx, Ly, Lz are
the physical sizes of the grid in the x, y, and z directions, respectively, and Φii is the spatial
power spectrum of the screen:

Φii ( f ) =
∭ ∞

−∞
exp

(
− r2

2δ2
ii

)
exp (−j2π f · r) d3r

=
(
2πδ2

ii

)3/2
exp

(
−2π2δ2

ii f 2
) . (11)

Note that Eq. (10) is in the form of a discrete inverse Fourier transform; thus, Ti can be generated
quickly using the fast Fourier transform algorithm.

Generating Ti using Eq. (10) will produce a screen with the desired δii and, via Eq. (6), a 3D
EGSM source with the desired Wii . To produce a 3D EGSM source with the desired Wi j requires
examination of the cross-correlation of the Ti and Tj screens, namely,

〈Ti [i1, j1, k1]T∗j [i2, j2, k2]〉 =
∑

l1,m1,n1

∑
l2,m2,n2

〈ri [l1,m1, n1] r∗j [l2,m2, n2]〉

×
√
Φii [l1,m1, n1]Φj j [l2,m2, n2]

2LxLyLz
exp

[
j
2π
Lx
(l1i1 − l2i2)

]
exp

[
j
2π
Ly
(m1 j1 − m2 j2)

]
× exp

[
j
2π
Lz
(n1k1 − n2k2)

] . (12)

The moment in Eq. (12) is 2Γi jδ [l1 − l2] δ [m1 − m2] δ [n1 − n2], where δ is the discrete Dirac
delta function and 0 ≤ Γi j ≤ 1 is the correlation coefficient between the 3D matrices of Gaussian
random numbers ri and rj . Substituting in the expressions for the spatial power spectra [recall
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Eq. (11)] and simplifying yields

〈Ti [i1, j1, k1]T∗j [i2, j2, k2]〉 =
∑
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The expression in the braces must equal the spatial cross-power spectrum,
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to produce the desired 3D EGSM source. Comparing the braced expression in Eq. (13) with
Eq. (14), it is clear that

δi j =
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2
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Thus, the relationships between the 3D EGSM source and complex screen parameters are

Ai = |Ci | (16)

arg
(
Bi j

)
= arg

(
CiC∗j

)
(17)

δi j =

√
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ii + δ

2
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�� = Γi j 2δiiδj j
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ii + δ

2
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2δiiδj j
δ2
ii + δ

2
j j

. (19)

These expressions are very similar to the 2D EGSM source complex screen relations given in
Ref. [24]—the only difference being the square root term in Eq. (19). Note that the values of δi j
are set by the values of the corresponding “self” correlation radii exactly the same as in the 2D
case [see Eq. (18)]. Equation (18) always satisfies the δi j realizability condition in Eq. (4).

Examining Eq. (19), it initially appears, like in the 2D case, that one is generally free to choose
the values of

��Bi j

�� granted 0 ≤ Γi j ≤ 1. This, however, is not the case. Returning to the
��Bi j

��
realizability condition given in Eq. (5) and substituting in Eqs. (18) and (19) yields

Γ
2
xy + Γ

2
xz + Γ

2
yz + 2ΓxyΓxzΓyz − 1 ≤ 0. (20)

A 3D plot of this simulatability condition is shown in Fig. 1. Figure 1(a) shows a view of the
volume’s surface with the interior removed and (b) shows a view of the surface from a different
angle. The volume intersects each primary plane in a quarter circle. Any Γi j combination that
results in a point within the volume (underneath the surface in Fig. 1) is both a realizable and
simulatable 3D EGSM source. If Γxz = Γyz = 0, implying that |Bxz | =

��Byz

�� = 0 (physically
reducing a 3D EGSM source to a 2D one, assuming that Wzz = 0), then Eq. (20) reduces to
Γxy ≤ 1 which is always true. Thus, satisfying Eq. (20) guarantees realizability and simulatability
of that particular 3D EGSM source as well as all 2D EGSM sources which can be derived from it.
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Fig. 1. Complex screen 3D EGSM source simulatability condition given in Eq. (20)—(a)
view of volume’s surface with interior removed and (b) different view of surface.

2.2. Summary of 3D EGSM source simulation process

Before proceeding to the simulation results, a step-by-step description of the complex screen 3D
EGSM source simulation process is warranted:

1. Choose values for the free source parameters σi and Ai , which are related to the screen
parameters |Ci | via Eq. (16).

2. Choose values for the phase angles arg
(
Bi j

)
= θi j , which are related to arg

(
CiC∗j

)
via

Eq. (17). Recall that θxy + θyz − θxz = 0. The pseudoinverse of the matrix in Eq. (9) can
be used to find simulatable phase angles which are closest (minimum Euclidean norm) to a
set of three desired phase angles.

3. Choose values for the coupled source parameters δi j and
��Bi j

��. Recall that δi j is set by the
values of δii and δj j [see Eq. (18)].

4. Ensure source realizability [see Eqs. (2)–(5)] and simulatability [see Eq. (20)]. Steps 3
and 4 can be combined into a single step where the desired coupled parameters are inputs
into a constrained nonlinear optimization routine that returns the screen parameters δii , δj j ,
and Γi j which yield realizable and simulatable source parameters closest (by minimizing a
user specified norm) to the desired parameters.

5. Generate 3 3D matrices of correlated, zero-mean, unit-variance circular complex Gaussian
random numbers ri . The covariance matrix is formed from the values of Γi j found in step 4.

6. Generate a Ti realization using Eq. (10).

7. Form 3D EGSM source instance Ei using Eq. (6).
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3. Simulation

3.1. Simulation details

Table 1. 3D EGSM Source Parameters
Ax 1
Ay 1.5
Az 2
σx 4 cm
σy 5 cm
σz 10 cm
δxx 2 cm
δyy 3 cm
δzz 5 cm
δxy 2.55 cm
δxz 3.81 cm
δyz 4.12 cm
Bxy 0.222 exp (jπ/2)
Bxz 0.286 exp (jπ/3)
Byz 0.539 exp (−jπ/6)

To validate the above analysis, a 3D EGSM source was simulated using the complex screen
technique. The EGSM source parameters are listed in Table 1. The computational volume was
discretized using 512 points per side with a sample spacing equal to 1.37 mm, making the total
physical size of the grid 0.7 m × 0.7 m × 0.7 m. The component spectral densities Si and spectral
degrees of correlation µi j ,

Si (r) = Wii (r, r) = 〈|Ei (r)|2〉

µi j (r1, r2) =
Wi j (r1, r2)√
Si (r1) Sj (r2)

, (21)

were computed from 500 complex screen field instances. The simulated Si and µi j were then
compared to the corresponding theoretical quantities to verify that the desired 3D EGSM source
had been realized.

3.2. Results

3.2.1. Spectral densities Si

Figures 2 and 3 show spectral density S results. To give the reader an understanding of what
a complex screen 3D EGSM source looks like, Fig. 2 shows two views of the spectral density
volume computed from a single realization of the 3D EGSM source whose parameters are given
in Table 1. Figure 2(a) shows a view of the volume’s surface, while Fig. 2(b) shows the x-y, x-z,
and y-z planar slices through the volume.
Figure 3 shows the theoretical (solid traces) and simulated (circles) (a) x, (b) y, and (c) z

spectral densities, respectively. The agreement between the simulated and theoretical results is
excellent. These results verify that the complex screens, on average, are producing a 3D EGSM
source with the desired shape. To verify that the resulting source has the desired coherence
properties, the spectral degrees of correlation µi j must be examined.

3.2.2. Spectral degrees of correlation µi j

Figures 4 and 5 show spectral degree of correlation results. Figure 4 shows the theoretical (solid
traces) and simulated (circles) (a) µxx , (b) µyy , and (c) µzz results, respectively; Fig. 5 shows the
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Fig. 2. Single realization spectral density volume of the complex screen 3D EGSM source
whose parameters are given in Table 1—(a) surface view and (b) x-y, x-z, and y-z planar
slices.
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Fig. 3. Spectral densities theory (solid traces) versus simulation (circles) in the (a) x, (b) y,
and (c) z directions.
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Fig. 4. Spectral degrees of correlation theory (solid traces) versus simulation (circles)—(a)
real and imaginary parts of µxx , (b) real and imaginary parts of µyy , and (c) real and
imaginary parts of µzz .
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Fig. 5. Spectral degrees of correlation theory (solid traces) versus simulation (circles and
squares)—(a) real and imaginary parts of µxy and µ∗yx , (b) real and imaginary parts of µxz
and µ∗zx , and (c) real and imaginary parts of µyz and µ∗zy .
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theoretical (solid traces) and simulated (circles and squares) (a) µxy and µ∗yx , (b) µxz and µ∗zx ,
and (c) µyz and µ∗zy , respectively. In Figs. 4 and 5, both the real and imaginary parts of µi j are
plotted.

Again, the agreement between the simulated and theoretical results is excellent. These results
combined with the spectral density results in Fig. 3 validate the complex screen simulation
procedure developed in Section 2.

4. Conclusion

In this paper, the simulation of a 3D EGSM source using the complex screen technique was
investigated. Relationships between the source parameters (Ai , Bi j , σi , and δi j) and the complex
screen parameters were derived and discussed. Using these expressions and the recently published
3D EGSM source realizability conditions [22] yielded a new, single simulatability criterion.
When satisfied, this condition guaranteed both realizability and simulatability of the desired 3D
EGSM source using the complex screen method.

To validate the analysis, a 3D EGSM source was simulated using the complex screen technique.
The simulated directional spectral densities and spectral degrees of correlation were compared to
those of the true 3D EGSM source. The agreement between the simulated and theoretical results
was excellent.

Although no device or method for physically realizing a desired 3D EGSM source yet exists,
this paper provides the basic recipe for generating such a source if or when the technology
becomes available. In the meantime, the technique and procedure for simulating 3D EGSM
sources developed here will find use in optical simulations involving non-paraxial, partially
coherent EM fields, e.g., in simulations where a random field is observed in the near zone of a
scatterer or in the vicinity of a tight focus, or caustic.

A. Phase screen 3D EGSM Sources

An instance of the ith component of a phase screen 3D EGSM source is

Ei (r) = Ci exp

(
− r2

4σ2
i

)
exp [jφi (r)] , (22)

where φi is the random 3D phase screen. The relationships between the 3D EGSM source and
phase screen parameters are

Ai = |Ci | (23)

arg
(
Bi j

)
= arg

(
CiC∗j

)
(24)

δii =
`φiφi√
2σφi

(25)

δi j =
1
√

2

`2
φiφi
+ `2

φ jφ j√
4Γφiφ jσφiσφ j `φiφi `φ jφ j

(
`2
φiφi
+ `2

φ jφ j

2`φiφi `φ jφ j

)1/4

(26)

��Bi j

�� = exp

[
−1

2

(
σ2
φi
−

4Γφiφ jσφiσφ j `φiφi `φ jφ j

`2
φiφi
+ `2

φ jφ j

√√
2`φiφi `φ jφ j

`2
φiφi
+ `2

φ jφ j

+ σ2
φ j

)]
(27)

σφi , σφ j ≥ π, (28)

where 0 ≤ Γφiφ j ≤ 1 is the correlation coefficient between the ith and j th component phase
screens and σ2

φi
and `φiφi are the variance and spatial correlation radius of the ith component

phase screen, respectively.
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Via the MCSM, a phase screen instance can be generated by using

φi [i, j, k] = Re

{ ∑
l,m,n

ri [l,m, n]

√
Φφiφi [l,m, n]

LxLyLz
exp

(
j
2π
Lx

li
)

exp
(
j
2π
Ly

mj
)

exp
(
j
2π
Lz

nk
)}
,

(29)
where Φφiφi is the spatial power spectrum of the ith component screen, namely,

Φφiφi ( f ) =
∭ ∞

−∞
σ2
φi

exp

(
− r2

`2
φiφi

)
exp (−j2π f · r) d3r

= σ2
φi

(
π`2
φiφi

)3/2
exp

(
−π2`2

φiφi
f 2

) (30)

and ri is a 3D matrix of zero-mean, unit-variance circular complex Gaussian random numbers.
The steps for generating a phase screen 3D EGSM source instance are generally the same as

the complex screen steps listed above. Because of the complicated nonlinear equations relating
the source parameters to the phase screen parameters [see Eqs. (25)–(28)], steps 3 and 4 of the
source simulation process are much more difficult than in the complex screen case.
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