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A clamped dual-ridged waveguide measurement system
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[1] A novel two-port probe which uses dual-ridged waveguides for the nondestructive,
broadband characterization of sheet materials is presented. The new probe is shown to
possess approximately 2 to 3 times the bandwidth of traditional coaxial and
rectangular/circular waveguide probe systems while maintaining the structural robustness
characteristic of rectangular/circular waveguide probe systems. The theoretical
development of the probe is presented, namely, by applying Love’s equivalence theorem
and enforcing the continuity of transverse fields at the dual-ridged waveguide apertures, a
system of coupled magnetic field integral equations is derived. The system of coupled
magnetic field integral equations is solved using the method of moments to yield
theoretical expressions for the reflection and transmission coefficients. The complex
permittivity and permeability of the unknown material under test are then found by
minimizing the root-mean-square difference between the theoretical and measured
reflection and transmission coefficients. Experimental results of two magnetic absorbing
materials are presented to validate the new probe. The probe’s sensitivity to measured
scattering parameter, sample thickness, and flange-plate thickness errors is
also investigated.
Citation: Hyde, M. W., IV, and M. J. Havrilla (2013), A clamped dual-ridged waveguide measurement system for the broadband,
nondestructive characterization of sheet materials, Radio Sci., 48, 628–637, doi:10.1002/rds.20044.

1. Introduction
[2] Radio frequency waveguide probes have been the

subject of extensive research for the past half century.
Their applications are numerous with nondestructive inspec-
tion/evaluation and material characterization applications
being the most popular. The most common types of waveg-
uide probes are coaxial [Folgerø and Tjomsland, 1996; Wu
et al., 2000; Boybay and Ramahi, 2011; Shin and Eom, 2003;
Olmi et al., 2004; Li and Chen, 1995; De Langhe et al.,
1993; Baker-Jarvis and Janezic, 1996; Bird, 2004] and rect-
angular/circular waveguide [Sanadiki and Mostafavi, 1991;
Ganchev et al., 1992; Bois et al., 1999; Chang et al., 1997;
Maode et al., 1998; Hyde et al., 2009b; Hyde and Havrilla,
2008; Tantot et al., 1997] probe systems. Coaxial probe
systems provide the potential for broadband measurements;
however, utilizing them for this purpose can be difficult.
In general, small-aperture coaxial probes are most effective
when used to characterize high-loss materials. Biological
materials are often discussed in the literature, whose loss is
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driven by water content. On the other hand, large-aperture
coaxial probes are required to measure low-loss materials
[De Langhe et al., 1993, 1994]. This implies that broadband
measurements using coaxial probes are only possible when
the material under test (MUT) is known a priori to possess
high loss. Rectangular/circular waveguide probes, generally,
do not suffer from the coaxial probe “coupling” problem just
described and are more structurally robust than their coax-
ial counterparts; however, they are naturally bandlimited (in
some cases, severely).

1.1. One-Port Probe Systems
[3] Both coaxial and rectangular/circular waveguide

probe one-port (single) and two-port (dual or clamped) sys-
tems have been developed. A great majority of the published
waveguide probe research involves one-port probe devices
[Folgerø and Tjomsland, 1996; Wu et al., 2000; Boybay and
Ramahi, 2011; Shin and Eom, 2003; Olmi et al., 2004; Li
and Chen, 1995; De Langhe et al., 1993, 1994; Sanadiki and
Mostafavi, 1991; Ganchev et al., 1992; Bois et al., 1999;
Chang et al., 1997; Maode et al., 1998; Tantot et al., 1997].
These systems are very well suited for determining the com-
plex permittivity "r of a MUT yet suffer when one desires to
fully characterize a material, i.e., determine unambiguously
the complex permeability �r as well as "r, because of the
lack of a second independent measurement.

[4] Several one-port-probe techniques have been devel-
oped to address this shortcoming by making a second
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“different” reflection S11 measurement, most notably, two-
thickness method [Chen et al., 2005; Stewart and Havrilla,
2006; Maode et al., 1998; Chang et al., 1997], two-layer
method [Baker-Jarvis et al., 1994; Dester et al., 2010;
Maode et al., 1998; Tantot et al., 1997], frequency-varying
method [Wang et al., 1998; Maode et al., 1998], short/free-
space-backed method [Baker-Jarvis et al., 1994; Li and
Chen, 1995; Tantot et al., 1997], and two-iris method [Dester
et al., 2012]. However, these techniques typically require
some prior knowledge of the MUT (two-thickness method
and frequency-varying method), are numerically unstable
(two-layer method), are physically difficult to measure
(short/free-space-backed method), or require two waveguide
probes (two-iris method).

1.2. Two-Port Probe Systems
[5] Two-port probe devices do not suffer from the afore-

mentioned one-port-probe shortcoming because they are
able to simultaneously collect two independent measure-
ments, namely, S11 and the transmission measurement S21,
from which "r and �r can be unambiguously determined.
Two two-port probe geometries currently exist (in both
coaxial and rectangular waveguide form)—the dual-probe
geometry [Bird, 2004; Hyde et al., 2009b] and the clamped-
probe geometry [Baker-Jarvis and Janezic, 1996; Hyde and
Havrilla, 2008].

1.3. Overview
[6] In this paper, a novel two-port probe system (clamped-

probe geometry) is presented, which uses dual-ridged
waveguides (DRWGs) to provide broadband measurements
(approximately 2 to 3 times the bandwidth of coaxial
and rectangular/circular waveguide probe systems discussed
in the literature) while maintaining the structural robust-
ness characteristic of rectangular/circular waveguide probe
systems. A schematic of the proposed two-port system
(clamped DRWG probe) is shown in Figure 1. The struc-
ture consists of two DRWGs attached to Perfect Electric
Conductor (PEC) flanges sandwiching the MUT.

[7] The derivation of the theoretical reflection Sthy
11 and

transmission Sthy
21 coefficient expressions (theoretical S-

parameters) necessary to determine "r and �r of the MUT
is presented in section 2. Expressions for the theoretical S-
parameters are derived using Love’s equivalence theorem
[Collin, 1991; Peterson et al., 1998], in which the DRWG
apertures are replaced with equivalent magnetic currents.
These currents excite modes in the DRWG and parallel-plate
regions of the structure. Expressions for the magnetic field in
the MUT are found using the parallel-plate Green’s function.
Enforcing transverse field continuity at the DRWG aper-
tures produces a system of coupled magnetic field integral
equations (MFIEs), which when solved using the method of
moments (MoM) [Harrington, 1993; Peterson et al., 1998]
yields the desired theoretical S-parameters. While the ana-
lytical approach is very similar to that of other published
waveguide probe research, the complex nature of the DRWG
fields greatly complicates the theoretical development and,
combined with the substantial gain in measurement band-
width, represents a significant contribution to waveguide
probe research. Note that only the contribution from the
dominant DRWG mode is considered here due to the theo-
retical and computational complexity of the problem.

Figure 1. Clamped DRWG probe measurement geome-
try. The parallel-plate/MUT region is filled with the MUT
of unknown permittivity " and permeability �; the DRWG
regions are free-space-filled.

[8] The system is experimentally validated in section 3,
where measurement results of two magnetic absorbing mate-
rials obtained using the clamped DRWG probe are compared
to results obtained using the traditional Nicolson-Ross-Weir
technique [Nicolson and Ross, 1970; Weir, 1974]. Last, this
paper is concluded with a summary of the work presented.

2. Methodology
[9] In this section, theoretical expressions for the reflec-

tion and transmission coefficients are derived for the
clamped DRWG probe depicted in Figure 1. The form of
the transverse fields in the DRWG regions of the appara-
tus is detailed first, followed by the form of the transverse
fields in the parallel-plate/MUT region. A system of cou-
pled MFIEs is then derived by enforcing the continuity of
the DRWG and parallel-plate region transverse fields at the
DRWG apertures (z = 0 and z = d in Figure 1). The solution
of the coupled MFIEs via the MoM is then detailed with a
final brief discussion on the computation of the impedance
matrix elements.

2.1. DRWG Fields
[10] The DRWG field derivation follows the methodology

used by Montgomery [1971] and Elliot [1993] because it is
the most applicable approach to the problem of interest. Note
that several other methods for analyzing the field behavior in
DRWGs exist [Sun and Balanis, 1993; Cho and Eom, 2001;
Hopfer, 1955; Pyle, 1966; Utsumi, 1985; Helszajn, 2000].

[11] To arrive at expressions for the fields in the DRWG
regions of the clamped DRWG probe, each DRWG sub-
region (i.e., the gap subregion and the two trough subre-
gions) is expanded in a set of TEz or TMz modes [Collin,
1991]. Note that since the DRWG dominant mode is a
TEz mode, only the TEz mode development is relevant
here. The mode-matching technique [Wexler, 1967] is then
used to enforce the continuity of the transverse electric and
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magnetic fields at x = –�x, �x resulting in a coupled pair of
matrix equations:
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where A11, A12, A21, and A22 are N � N submatrices with A12
and A21 being diagonal.

[12] The cutoff wave number kc is found by forcing an
eigenvalue of A(kc) to equal zero via numerical root search;�
˛ ˇ

�T is then the associated eigenvector of that zero eigen-
value. There are an infinite number of wave numbers which
satisfy (3), each corresponding to a distinct TEz DRWG
mode. The kc which corresponds to the first zero of (3) is the
dominant DRWG mode cutoff wave number.
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in the x < –�x (left) trough subregion. In the above field
expressions, ZTE = !�0/kz is the TEz wave impedance and
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Note that modes which have even Ey and Hx distributions
about the origin possess the relationship that ˛n = ˇn for
n = 0, 2, 4, � � � and ˛n = ˇn = 0 for n = 1, 3, 5, � � � . This
class of modes includes the DRWG dominant mode. A plot
of the dominant DRWG mode is shown in Figure 2. The
DRWG fields for z < 0 are
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and for z > d are
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where � = Sthy
11 and T = Sthy

21 are the desired theoretical
reflection and transmission coefficients.
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Figure 2. Dominant DRWG mode: (a) Ey field distribution and (b) Ex field distribution. This depiction
of the dominant DRWG mode was generated using one gap mode and 20 trough modes.

2.2. Parallel-Plate Region Fields and Coupled MFIEs
[14] The transverse magnetic field in the parallel-plate

region of the clamped DRWG structure is found by replac-
ing the DRWG apertures with equivalent magnetic currents,
M1 and M2, which emanate in the presence of the back-
ground structure [Collin, 1991; Peterson et al., 1998]. The
transverse magnetic field is given by

Hpp
t (�, z) =

1
j!�"

(k2 + rtr�)F(�, z), (10)

where the electric vector potential F is

F(�, z) =
“
S
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+
“
S

G(�, z|�0, d) � "M2(�0)dS 0, (11)

G is the dyadic magnetic-current-excited parallel-plate
Green’s function [Hanson and Yakovlev, 2001], � = Oxx + Oyy
is the observation vector, �0 = Oxx0 + Oyy0 is the source vector,
and S represents the DRWG aperture cross sections.

[15] Based upon the expressions for the transverse fields
in the DRWG and parallel-plate regions of the structure in

Figure 1, a system of coupled MFIEs can be derived by
enforcing the continuity of the transverse magnetic fields at
z = 0 and z = d:

1
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(12)

where k = !p"� and " and � are the permittivity and per-
meability of the material filling the parallel-plate region (i.e.,
the MUT). The unknowns in the above MFIEs are M1, M2,
� , and T.
2.3. MoM Solution and Computation of Impedance
Matrix Elements

[16] Solving (12) for � and T is accomplished using the
MoM [Harrington, 1993; Peterson et al., 1998]. The first
step in the MoM is to choose suitable basis functions to rep-
resent the unknown currents, M1 and M2. Since M1 and
M2 are related to the transverse DRWG aperture electric
fields, it makes physical and mathematical sense to expand
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M1 and M2 using the electric field distributions given
in (4)–(6), namely,

M1(�0) = – On � E = –Oz � (1 + �)
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where On, the unit normal vector, points into the MUT region.
Substitution of (13) into (12) and subsequent testing (the
final step in the MoM) using the transverse magnetic field
distributions given in (4)–(6) yields a 2 � 2 matrix equation:

A
�
�

T

	
=
�

a11 a12
a21 a22

	�
�

T

	
= b, (14)

where A is the impedance matrix and b is a vector contain-
ing the incident field excitation. Impedance matrix elements
a11 and a22 are the “self” terms. They model how a source
located at port 1 affects an observer located at port 1 and vice
versa. Elements a12 and a21 are the “coupling” terms. They
model how a source at port 1 affects an observer at port 2
and vice versa. Note that a11 = a22 because of the symme-
try of the clamped DRWG probe and a12 = a21 because of
reciprocity.

[17] Computing the elements of A can be accomplished
by directly computing the convolution integrals in (11). This
approach requires the numerical evaluation of four inte-
grals (two basis and two testing integrals) for each integral
in (11). It is numerically advantageous to apply the convo-
lution theorem and perform the required integrations in the
spectral domain [Hyde et al., 2012]. This approach permits
all the basis and testing integrals to be computed in closed
form yielding spectral domain integrals which, in the worst
computational cases, are given by

X
n,m

X
Qn, Qm

et
yn,met

yQn, Qm

1Z
–1

(k2 – �2)fm, Qm(�)
1Z

–1

cosh(pd)
p sinh(pd)

gm, Qm(�)d�d� ,

(15)
where p =

p
�2 + �2 – k2 is the spectral domain wave

number and

fm, Qm(�) =
a/2Z
�x

sin
h
kt

xm

�a
2

– x0
i

cos(�x0)dx0

�

a/2Z
�x

sin
h
kt

x Qm

�a
2

– x
i

cos(�x)dx

gm, Qm(�) =
b/2Z

–b/2

cos
�

kt
ym

�
y0 –

b
2

	

e–j�y0dy0 P

�

b/2Z
–b/2

cos
�

kt
y Qm

�
y –

b
2

	

ej�ydy

(16)

[18] The � integral can be evaluated using complex-plane
analysis yielding a pole-series representation. The remaining
� integral contains irremovable branch cuts and is there-
fore most easily computed numerically [Hyde and Havrilla,

2008; Hyde et al., 2009b; Stewart and Havrilla, 2006]. It
should be noted that due to the summations in the basis and
testing functions, special care must be taken when comput-
ing the spectral domain integrals. For optimal computational
efficiency, it is best to bring the summations inside the �
integral, evaluate the � integral via complex-plane analysis,
evaluate the resulting summations, and lastly, calculate the �
integral numerically. Note that there are a total of 32 distinct
spectral domain integrals which must be evaluated.

[19] It should be stated that one could use a commer-
cial EM solver to perform the theoretical work presented
here. However, to yield theoretical S-parameters of sufficient
accuracy to obtain accurate "r and �r values would require
a very high-density mesh of the measurement structure,
especially in the vicinity of the DRWG apertures and the
parallel-plate/MUT region. This would significantly affect
the computation time. The fact that iteration is required
to find "r and �r only makes computation time more pro-
hibitive. On the other hand, the method of analysis utilized
here, being based on the equivalence theorem, only requires
discretization of the unknown aperture surface currents. This
produces a significant reduction in the size of the problem
and computational burden when compared to finite element
and finite difference time domain solvers. Also, by utiliz-
ing the approach presented here, significant physical insight
into the field behavior in the structure is gained. One of
the drawbacks of the proposed approach is that the effects
of higher-order DRWG modes generated at the DRWG
apertures are not included. These effects are included in
commercial solvers. Future research will include the effects
of higher-order DRWG modes in this technique.

3. Experimental Validation
[20] In this section, the technique introduced above is

experimentally validated. Before progressing to the analysis
of the experimental results, discussions of the experimental
apparatus and procedure are warranted.

3.1. System Description and Measurement Procedure
[21] In this experiment, material characterization mea-

surements were made at 6–18 GHz (as opposed to
8–12 GHz for traditional X-band rectangular waveguide
probes) of two lossy silicon-based magnetic absorbing
materials, ECCOSORB® FGM-125 (d = 3.12 mm) and
ECCOSORB® SF-3 (d = 1.85 mm) manufactured by
Emerson & Cuming Microwave Products [2012, 2007],
using an Agilent E8362B vector network analyzer
[Agilent Technologies, 2008]. The clamped DRWG appa-
ratus consisted of two WRD650 DRWGs (a = 18.29 mm,
b = 8.15 mm, �x = 2.20 mm, and �y = 1.28 mm) con-
nected via screws to two aluminum flange plates. On the side
of the flange plates which were connected to the DRWGs,
3.18 mm alignment holes were machined to ensure pre-
cision alignment between the DRWG and the flange-plate
apertures. To ensure good alignment of the port 1 and port 2
apertures, i.e., the flange-plate apertures in contact with the
MUT, 3.18 mm alignment holes were also machined on the
outer edges of the flange plates. Locking pliers were used
in the areas around the DRWG/flange-plate apertures to
ensure good contact between the flange plates and the MUT.
A photograph of the apparatus is shown in Figure 3. Note
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Figure 3. Photograph of the clamped DRWG apparatus
with parts labeled.

that square and circular aluminum flange plates of several
different dimensions were machined: 15.24 cm � 15.24 cm
� 0.95 cm, 10.16 cm � 10.16 cm � 0.95 cm, and 3.81 cm
� 3.81 cm � 0.95 cm (square) and 15.24 cm diameter �
0.95 cm and 10.16 cm diameter � 0.95 cm (circular).

[22] Before the material measurements were made, the
apparatus was calibrated using a thru-reflect-line (TRL) cali-
bration [Engen and Hoer, 1979]. Two custom-made DRWG
line standards were used in the calibration—one 6.98 mm
thick to cover 6–12 GHz and one 3.40 mm thick to cover
12–18 GHz. These line standards can be seen in the pho-
tograph in Figure 3. The TRL calibration placed the port 1
and port 2 calibration planes at the DRWG apertures. These
calibration planes were then phase shifted to their desired
locations, i.e., the front (desired port 1 calibration plane loca-
tion) and back (desired port 2 calibration plane location)
faces of the MUT, by

Smeas
mn = STRL

mn exp(2jkzh), (17)

where m, n = 1, 2 and h = 0.95 cm is the flange-plate
thickness.

[23] The "r and�r of the MUTs were found by minimizing
the root-mean-square difference between the theoretical Sthy

and measured Smeas S-parameters using Broyden’s method
[Broyden, 1965], namely,

�
O"r
O�r

	
= arg min
"r ,�r2C

��Sthy(f; "r,�r) – Smeas(f)
��

2, (18)

Figure 4. ECCOSORB® FGM-125 material characterization results. (a) Relative complex permittivity
of FGM-125 using the clamped DRWG probe (blue bars) and the traditional Nicolson-Ross-Weir tech-
nique (solid black traces). (b) Relative complex permeability of FGM-125 using the clamped DRWG
probe (blue bars) and the traditional Nicolson-Ross-Weir technique (solid black traces). The widths of
the bars in the plots represent the errors in the "r and �r measurements (˙2�"r and ˙2��r, respec-
tively) considering the S-parameter measurement uncertainties specified in the vector network analyzer
data sheet and ˙0.1 mm measurement uncertainties in d and h.
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Figure 5. ECCOSORB® SF-3 material characterization results. (a) Relative complex permittivity of
SF-3 using the clamped DRWG probe (blue bars) and the traditional Nicolson-Ross-Weir technique (solid
black traces). (b) Relative complex permeability of SF-3 using the clamped DRWG probe (blue bars)
and the traditional Nicolson-Ross-Weir technique (solid black traces). The widths of the bars in the plots
represent the errors in the "r and �r measurements (˙2�"r and ˙2��r, respectively) considering the S-
parameter measurement uncertainties specified in the vector network analyzer data sheet and ˙0.1 mm
measurement uncertainties in d and h.

where S =
�

S11 S21 S12 S22
�T and f is the frequency.

Note that Sthy
11 = Sthy

22 and Sthy
21 = Sthy

12 because of measure-
ment geometry symmetry and electromagnetic reciprocity,
respectively.

3.2. Experimental Results
[24] Figures 4 and 5 show the relative "r (Figures 4a and

5a) and �r (Figures 4b and 5b) results for ECCOSORB®
FGM-125 and ECCOSORB® SF-3, respectively. The
clamped DRWG results are demarcated by the blue bars. The
destructive Nicolson-Ross-Weir results, provided to serve as
a reference, are demarcated by the solid black traces. Note
that the Nicolson-Ross-Weir results were obtained by mea-
suring FGM-125 and SF-3 samples which were carefully
machined to uniformly fill the WRD650 DRWG aperture.
Ensuring the samples uniformly fill the DRWG aperture is
very difficult and paramount because the presence of air
gaps, especially in the vicinity of the DRWG gap subre-
gion where the dominant-mode fields are the strongest (see
Figure 2), can cause very large variations in the extracted "r
and �r values. To the authors’ knowledge, this is the first
time that DRWGs have been used to characterize materials
via the Nicolson-Ross-Weir technique.

[25] The widths of the bars in the figures represent the
errors in the clamped DRWG probe "r and �r measure-
ments (˙2�"r and ˙2��r, respectively) considering the
S-parameter measurement uncertainties

�
�Smeas

mn
�

specified
in the vector network analyzer data sheet [Agilent Technolo-
gies, 2008] and ˙0.1 mm measurement uncertainties in d
and h (�d and �h) [Baker-Jarvis et al., 1990]:

�
�"r

r
�2 =

2X
m=1

2X
n=1

�
@"r

r
@Smeas, r

mn
�Smeas, r

mn

	2

+
2X

m=1

2X
n=1

�
@"r

r

@Smeas, i
mn

�Smeas, i
mn

	2

,

+
�
@"r

r
@d
�d
	2

+
�
@"r

r
@h
�h
	2

(19)

where the superscripts “r” and “i” denote the real and imag-
inary parts, respectively. The values for �"i

r, ��r
r, and ��i

r
are calculated in a similar manner as above. Note that the
partial derivatives in (19) were calculated numerically using
the forward difference approximation. The "r and �r errors
calculated using (19) are worst case estimates [Baker-Jarvis
et al., 1990]. Because some of the bar widths in the figures
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Table 1. Mean, Maximum, and Minimum of �"r and ��r for
FGM-125 and SF-3

FGM-125

Mean Max Min

�"r
r 0.3301 0.5407 0.1638

�"i
r 0.1608 0.5762 0.0356

��r
r 0.0411 0.0527 0.0351

��i
r 0.0630 0.1100 0.0446

SF-3

Mean Max Min

�"r
r 0.5118 0.7390 0.3457

�"i
r 0.0967 0.1852 0.0382

��r
r 0.0940 0.1140 0.0673

��i
r 0.1490 0.2276 0.1268

are hard to discern, a summary of the �"r and ��r values
obtained for FGM-125 and SF-3 is provided in Table 1.

[26] Overall, there is fairly good agreement between the
clamped DRWG probe and reference Nicolson-Ross-Weir
traces. The main discrepancy between the two occurs in the

results for magnetic loss with the clamped DRWG probe
generally over-predicting the amount of loss. This over-
prediction of magnetic loss has precedent in the literature
for similar probe geometries [Hyde et al., 2011; Hyde and
Havrilla, 2008; Hyde et al., 2009b]. In all cases cited, the
problem is alleviated when higher-order modes are included
in the analytical model (recall that only the dominant
DRWG mode is considered here). While including higher-
order modes in rectangular waveguide probe systems is a
relatively straightforward process and has been accom-
plished by many researchers [Stewart and Havrilla, 2006;
Bois et al., 1999; Chang et al., 1997; Hyde and Havrilla,
2008; Hyde et al., 2009b; Maode et al., 1998; Seal et al.,
2012; Hyde et al., 2012], because of the complexity of
DRWG fields, including higher-order modes in the clamped
DRWG probe analysis is a very difficult theoretical and
computational problem. Including higher-order modes in the
clamped DRWG probe is left to future work. Note that other
lossy materials were measured as part of this analysis, in par-
ticular, resistive cards (R-cards) [Hyde et al., 2009a; Costa,
2013; Glover et al., 2008; Massman et al., 2010]. The results
were similar to those just presented and therefore are not
shown here for the sake of brevity.

Figure 6. |S11| time-domain plots of a 6.43 mm thick sample of 99.5% Al2O3 ("r � 9 – j0, �r � 1 – j0)
using 15.24 cm � 15.24 cm (solid blue traces), 10.16 cm � 10.16 cm (dashed black traces), and 3.81 cm �
3.81 cm (dash-dotted red traces) square flange plates. (a) Time-domain |S11| traces using the full 12 GHz
WRD650 DRWG measurement bandwidth. (b) Time-domain |S11| traces using a 4 GHz measurement
bandwidth, i.e., representative of X-band rectangular waveguide probe systems. The flange-plate edge
reflections, port 2 flange-plate reflection, and the main MUT reflection are clearly resolved for all flange-
plate sizes using the full DRWG bandwidth. Using the representative X-band rectangular waveguide
bandwidth, only the main MUT reflection and the flange-plate edge reflections using the 15.24 cm �
15.24 cm and 10.16 cm � 10.16 cm are resolved.
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3.3. Discussion on Characterizing Low-Loss MUTs
[27] While the presented experimental results focused on

the characterization of lossy materials, the clamped DRWG
apparatus can also be used to characterize low-loss MUTs.
Characterization results of low-loss MUTs are not presented
here for the sake of brevity; however, a brief discussion of
the measurement procedure follows.

[28] For low-loss MUTs as opposed to lossy MUTs,
reflections from the flange-plate edges can corrupt the
measured S-parameters. These reflections must either be
accounted for analytically (a very difficult problem) or
removed from the measured S-parameters via time-domain
gating [Hyde et al., 2011] to effectively model flange plates
of infinite dimensions.

[29] To use the latter technique, the characterization mea-
surement must possess sufficient bandwidth to resolve the
flange-plate edge reflections. The criterion is

B =
c

2�p"r�r
, (20)

where B is the minimum required measurement bandwidth,
c/p"r�r is the speed of light in the MUT, and � is the radius
of the flange plate [Hyde et al., 2011]. Since in most charac-
terization experiments the measurement bandwidth is known
a priori, it is more useful to solve (20) for �. In this con-
text, � represents the minimum flange-plate radius in which
the edge reflections will be resolvable and thus removable
via time-domain gating. In other words, � is the probe’s
measurement footprint [Hyde et al., 2011]. Note that special
care must be taken when using this relation. Common signal
processing techniques, like frequency-domain windowing
used to suppress side lobes in the time-domain response,
will affect the resolution. It should also be mentioned that
time-domain gating can introduce unwanted effects at the
measurement frequency band edges thereby reducing the
“usable” measurement bandwidth [Hyde et al., 2011]. For
the DRWGs used in the research, the usable measurement
bandwidth after time-domain gating will be reduced by
2–4 GHz.

[30] Nevertheless, the much broader bandwidth of the
clamped DRWG probe compared to other waveguide probes
means that much smaller flange plates (sizes / 1/B) can
be used to characterize materials. This is demonstrated in
Figure 6. The figure shows measured time-domain |S11| plots
of a 6.43 mm thick sample of 99.5% Al2O3 ("r � 9–j0, �r �
1 – j0) using 15.24 cm � 15.24 cm (solid blue traces),
10.16 cm � 10.16 cm (dashed black traces), and 3.81 cm �
3.81 cm (dash-dotted red traces) square flange plates. Note
that the S11 frequency-domain data were windowed using
a Kaiser window (ˇ = 6) prior to Fourier transforming
to arrive at the plotted time-domain responses [Oppenheim
and Schafer, 2010]. Figure 6a shows the time-domain |S11|
traces when the full 12 GHz WRD650 DRWG measurement
bandwidth is used; Figure 6b shows the same traces when
a 4 GHz bandwidth (representative of X-band rectangular
waveguide probe systems) is used.

[31] It is clear from the results presented in the figure
that the bandwidth of the clamped DRWG probe is suf-
ficient to resolve the flange-plate edge reflections (labeled
on the figure) for all three flange-plate sizes, while an X-
band rectangular waveguide probe is only able to resolve
the edge reflections for the 15.24 cm � 15.24 cm and
10.16 cm � 10.16 cm flange plates. Indeed, the bandwidth

of the clamped DRWG probe is large enough to resolve
the reflection from the port 2 flange plate, located on the
backside of the MUT approximately 6.43 mm from the
port 1 DRWG aperture. The additional bandwidth inherent
in the clamped DRWG probe allows for the use of small
flange plates making it especially attractive for nondestruc-
tive inspection/evaluation applications in the field or for the
nondestructive characterization of small specimens.

4. Conclusion
[32] In this paper, a novel two-port probe system was

presented which used DRWGs to provide nondestructive,
broadband characterization of planar MUTs. The probe pos-
sessed approximately 2 to 3 times the bandwidth of tra-
ditional coaxial and rectangular/circular waveguide probe
systems in the literature while maintaining the structural
robustness characteristic of rectangular/circular waveguide
probe systems. The theoretical development of the probe
was discussed in section 2. Theoretical expressions for
the reflection and transmission coefficients, necessary for
extracting "r and �r of the MUT via numerical inver-
sion, were derived by applying Love’s equivalence theorem,
enforcing transverse field continuity at the DRWG aper-
tures, and solving the resulting coupled MFIEs via the MoM.
Section 3 presented experimental characterization results of
two magnetic absorbing materials using the new two-port
probe. The probe’s errors in determining "r and �r consider-
ing measured S-parameter, MUT thickness, and flange-plate
thickness uncertainties were also examined. It was found
that the results using the probe compared well with the
destructive, traditional Nicolson-Ross-Weir results with the
exception of magnetic loss; this discrepancy is due to con-
sidering only the dominant DRWG mode in the presented
analysis. Last, measured reflection coefficient time-domain
data of a low-loss material were analyzed. It was shown
and discussed how the much larger bandwidth inherent with
the new DRWG probe allows for the use of smaller flange
plates making it an especially attractive option for nonde-
structive inspection/evaluation applications in the field or for
the nondestructive characterization of small specimens.

[33] Acknowledgments. The views expressed in this paper are those
of the authors and do not reflect the official policy or position of the U.S.
Air Force, the Department of Defense, or the U.S. Government.
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