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A generalized Schur-Horn theorem and optimal frame completions

Matthew Fickusa, Justin Marksb, Miriam J. Poteeta

aDepartment of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA
bDepartment of Mathematics, Bowdoin College, Brunswick, ME04011, USA

Abstract

The Schur-Horn theorem is a classical result in matrix analysis which characterizes the existence of positive semi-
definite matrices with a given diagonal and spectrum. In recent years, this theorem has been used to characterize the
existence of finite frames whose elements have given lengthsand whose frame operator has a given spectrum. We
provide a new generalization of the Schur-Horn theorem which characterizes the spectra of all possible finite frame
completions. That is, we characterize the spectra of the frame operators of the finite frames obtained by adding new
vectors of given lengths to an existing frame. We then exploit this characterization to give a new and simple algorithm
for computing the optimal such completion.

Keywords: Schur-Horn, frame, completion
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1. Introduction

The Schur-Horn theorem [16, 25] is a classical result in matrix analysis which characterizes the existence of
positive-semidefinite matrices with a given diagonal and spectrum. To be precise, letF be either the real fieldR or
the complex fieldC, and let{λn}

N
n=1 and {µn}

N
n=1 be any nonincreasing sequences of nonnegative real scalars. The

Schur-Horn theorem states that there exists a positive semidefinite matrixG ∈ FN×N with eigenvalues{λn}
N
n=1 and with

G(n, n) = µn for all n = 1, . . . ,N if and only if {λn}
N
n=1 majorizes{µn}

N
n=1, that is, precisely when

N
∑

n=1

µn =

N
∑

n=1

λn,

j
∑

n=1

µn ≤

j
∑

n=1

λn, ∀ j = 1, . . . ,N, (1)

denoted{µn}
N
n=1 � {λn}

N
n=1. The first part of (1) is simply a trace condition: the sum of the diagonal entries ofG must

equal the sum of its eigenvalues. The second part of (1) is less intuitive. To understand it better, it helps to have some
basic concepts from finite frame theory.

For any finite sequence of vectors{ϕn}
N
n=1 in F

M, the correspondingsynthesis operatoris the M × N matrix
whosenth column isϕn, namelyΦ : FN → FM, Φy :=

∑N
n=1 y(n)ϕn. Its N × M adjoint is theanalysis operator

Φ
∗ : FM → FN, (Φ∗x)(n) := 〈ϕn, x〉. The vectors{ϕn}

N
n=1 are afinite framefor FM if they spanFM, which is equivalent

to having theirM × M frame operatorΦΦ∗ =
∑N

n=1ϕnϕ
∗
n be invertible. Here,ϕ∗n is 1 × M adjoint of theM × 1

column vectorϕn, namely the linear operatorϕ∗nx = 〈ϕn, x〉. The least and greatest eigenvaluesα andβ of ΦΦ∗ are
called thelower andupper frame boundsof {ϕn}

N
n=1, and their ratioβ/α is thecondition numberof ΦΦ∗. Inspired by

applications involving additive noise, finite frame theorists often seek frames that are as well-conditioned as possible,
the ideal case beingtight framesin whichΦΦ∗ = αI for someα > 0. They also care about the lengths of the frame
vectors, often requiring that‖ϕn‖

2 = µn for some prescribed sequence{µn}
N
n=1. These lengths weight the summands of

the linear-least-squares objective function‖Φ∗x − y‖2 =
∑N

n=1 |〈ϕn, x〉 − y(n)|2, and adjusting them is closely related
to the linear-algebraic concept ofpreconditioning. That is, we often want to control both the spectrum of the frame
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operator as well as the lengths of the frame vectors. For example, much attention has been paid to finite tight frames
whose vectors are unit norm [2, 5, 14, 15].

In this context, the reason we care about the Schur-Horn theorem is that it provides a simple characterization
of when there exists a finite frame whose frame operator has a given spectrum and whose frame vectors have given
lengths. To elaborate, the earliest reference which brieflymentions the Schur-Horn theorem in the context of finite
frames seems to be [26], which stems from even earlier, closely related work on synchronous CMDA systems [27, 28].
An in-depth analysis of the connection between frame theoryand the Schur-Horn theorem is given in [1]. There as
here, the main idea is to apply the Schur-Horn theorem to theGram matrixof a given sequence of vectors{ϕn}

N
n=1,

namely theN × N matrixΦ∗Φ whose (n, n′)th entry is (Φ∗Φ)(n, n′) = 〈ϕn,ϕn′〉. Indeed, suppose there exists{ϕn}
N
n=1

in F
M whose frame operatorΦΦ∗ has spectrum{λm}

M
m=1 and whose frame vectors have squared-norms‖ϕn‖

2 = µn for
all n = 1, . . . ,N. The diagonal entries ofΦ∗Φ are{(Φ∗Φ)(n, n)}Nn=1 = {‖ϕn‖

2}Nn=1 = {µn}
N
n=1 which, by reordering the

frame vectors if necessary, we can assume are nonincreasing. Meanwhile, the spectra of the Gram matrixΦ∗Φ and
the frame operatorΦΦ∗ are zero-padded versions of each other. Since adjoining vectors of squared-lengthµn = 0
to a sequence{ϕn}

N
n=1 does not change itsM × M frame operatorΦΦ∗ we further assume without loss of generality

that M ≤ N, implying that the spectrum ofΦ∗Φ is {λm}
M
m=1 appended withN − M zeros. Applying the Schur-Horn

theorem toΦ∗Φ then implies that{λm}
M
m=1 ∪ {0}

N
m=M+1 necessarily majorizes{µn}

N
n=1, with (1) reducing to

N
∑

n=1

µn =

M
∑

m=1

λm,

j
∑

n=1

µn ≤

j
∑

m=1

λm, ∀ j = 1, . . . ,M. (2)

Conversely, for anyM ≤ N and any nonnegative nonincreasing sequences{λm}
M
m=1 and{µn}

N
n=1 that satisfy (2), the

Schur-Horn theorem also implies that there exists a positive semidefinite matrix with spectrum{λm}
M
m=1 ∪ {0}

N
m=M+1

and with diagonal entries{µn}
N
n=1. Since the rank ofG is at mostM, taking the singular value decomposition ofG

allows it to be written asG = Φ∗ΦwhereΦ ∈ FM×N has singular values{λ1/2
m }

M
m=1. Letting{ϕn}

N
n=1 denote the columns

of this matrixΦ, we see that there existsN vectors inFM whose frame operatorΦΦ∗ has spectrum{λm}
M
m=1 and where

‖ϕn‖
2 = µn for all n = 1, . . . ,N.

In summary, for anyM ≤ N and any nonnegative nonincreasing sequences{λm}
M
m=1 and{µn}

N
n=1, the Schur-Horn

theorem gives that there exists{ϕn}
N
n=1 in FM whereΦΦ∗ has spectrum{λm}

M
m=1 and where‖ϕn‖

2 = µn for all n if and
only if (2) holds. Note that in theM = N case, this statement reduces the classical Schur-Horn theorem and as such,
is an equivalent formulation of it. This equivalence allowsthe Schur-Horn and finite frame theory communities to
contribute to each other. For example, the Schur-Horn theorem gives frame theorists another reason why there exists
a unit norm tight frame ofN vectors inFM for any M ≤ N: the sequence{λm}

M
m=1 = {

N
M }

M
m=1 ∪ {0}

N
m=M+1 majorizes

the constant sequence{µn}
N
n=1 = {1}

N
n=1. In the other direction, techniques originally developed to characterize the

existence of finite frames, such as the Givens-rotation-based constructions of [6] and the optimization-based methods
of [4], are meaningful contributions to the existing “proofof Schur-Horn” literature [7, 8, 9, 10, 17, 18].

Frame theory also provides the Schur-Horn community with a geometric interpretation of the inequalities in (1)
and (2). To be precise, for any vectors{ϕn}

N
n=1 in FM and anyj = 1, . . . ,M, the quantity

∑ j
n=1 µn is the trace of thejth

partial frame operatorΦ jΦ
∗
j , whereΦ j denotes the synthesis operator of{ϕn}

j
n=1:

j
∑

n=1

µn =

j
∑

n=1

‖ϕn‖
2 =

j
∑

n=1

ϕ∗nϕn =

j
∑

n=1

Tr(ϕ∗nϕn) =
j

∑

n=1

Tr(ϕnϕ
∗
n) = Tr

( j
∑

n=1

ϕnϕ
∗
n

)

= Tr(Φ jΦ
∗
j ). (3)

Here, thenth summand ofΦ jΦ
∗
j =

∑ j
n=1ϕnϕ

∗
n is the orthogonal projection operator onto the line spannedbyϕn, scaled

by a factor of‖ϕn‖
2 = µn. Since the vectors{ϕn}

j
n=1 span at most aj-dimensional space, all butj of the eigenvalues

of Φ jΦ
∗
j are zero. As such, Tr(Φ jΦ

∗
j ) =

∑ j
n=1 µn is the sum of thej largest eigenvalues ofΦ jΦ

∗
j . Moreover, as we

add the remaining scaled-projections{ϕnϕ
∗
n}

N
n= j+1 toΦ jΦ

∗
j in order to formΦΦ∗, thesej largest eigenvalues will only

grow larger, leading to thejth inequality in (2); formally this follows from the rules ofeigenvalue interlacing, as
detailed in the next section.

The remarkable fact about the Schur-Horn theorem is that these relatively easy-to-derive necessary conditions (2)
are also sufficient. Many of the traditional proofs of the sufficiency of (2) involve explicit constructions. And, of
these, only the recently-introducedeigenstep-based construction method of [3, 13] is truly general in thesense that
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for a given{λm}
M
m=1 and{µn}

N
n=1 it can construct every finite frame of the corresponding type. In this paper, we further

exploit the power of the eigensteps method, generalizing the Schur-Horn theorem so that it applies to another type of
problem in finite frame theory.

In particular, in this paper we derive a generalized Schur-Horn theorem that addresses theframe completion
problem: given an initial frame, which new vectors should be appended to it in order to make it a better frame? More
precisely, given an initial sequence of vectors whose frameoperator is someM × M positive semidefinite matrixA,
how should we choose{ϕn}

N
n=1 so that the frame operator of the entire collection, namelyA +

∑N
n=1ϕnϕ

∗
n, is optimally

well-conditioned? Finite frames have been used to model sensor networks [24]; from that perspective, the completion
problem asks what sensors should we add to an existing sensornetwork so that the new network is as robust as possible
against measurement error and noise.

The frame completion problem was first considered in [11]. There, the authors characterized the smallest number
N of new vectors that permitsA +

∑N
n=1ϕnϕ

∗
n to be tight, provided{ϕn}

N
n=1 can be arbitrarily chosen. They also gave

a lower bound on the smallest suchN in the case where eachϕn is required to have unit norm. Shortly thereafter
in [19], the classical Schur-Horn theorem was used to completely characterize the smallest suchN in the case where
the squared-norms of{ϕn}

N
n=1 are some arbitrary nonnegative nonincreasing values{µn}

N
n=1. This prior work naturally

leads to several new problems, a couple of which we solve in this paper. It helps here to introduce some terminology:

Definition 1. Given nonnegative nonincreasing sequencesα = {αm}
M
m=1 andµ = {µn}

N
n=1, we say a nonnegative nonin-

creasing sequenceλ = {λm}
M
m=1 is an (α, µ)-completionif λ is the spectrum of some operator of the formA +

∑N
n=1ϕnϕ

∗
n

whereA is a self-adjoint matrix with spectrumα and where‖ϕn‖
2 = µn for all n = 1, . . . ,N.

Our first main result characterizes all (α, µ)-completions via a generalized Schur-Horn theorem.

Theorem 1. For any nonnegative nonincreasing sequencesα = {αm}
M
m=1 andµ = {µn}

N
n=1, a nonnegative nonincreas-

ing sequence{λm}
M
m=1 is an(α, µ)-completion if and only ifλm ≥ αm for all m and:

M
∑

m=1

(λm− αm) =
N

∑

n=1

µn,

M
∑

m= j

(λm− αm− j+1)+ ≤
N

∑

n= j

µn, ∀ j = 1, . . . ,M. (4)

Here,x+ := max{0, x} denotes the positive part of a real scalarx. Moreover, note here we have made no assumption
that M ≤ N; in the case whereN < j ≤ M, the sums on the right-hand side of (4) are taken over an emptyset of
indices and, like all other empty sums in this paper, are defined by convention to be zero. This convention is consistent
with definingµn := 0 for all n > N, though we choose not to interpret this particular result inthis way in order to
facilitate its proof. Note that under this convention, (4) holds for a givenj such thatN < j ≤ M if and only if
λm ≤ αm− j+1 for all m = j, . . . ,M. We also remark on an aspect of Theorem 1 that one of the anonymous reviewers
kindly pointed out: the condition thatαm ≤ λm for all m is superfluous, being implied by (4). Indeed, combining the
equality condition of (4) with the inequality condition when j = 1 gives

∑M
m=1(λm−αm)+ ≤

∑N
n=1 µn =

∑M
m=1(λm−αm).

Sinceλm − αm ≤ (λm − αm)+ for all m, this is only possible ifλm − αm = (λm− αm)+ for all m, that is, whenλm ≥ αm

for all m. Nevertheless, we explicitly retain this condition in the statement of Theorem 1, as it facilitates the intuition
and proof techniques we develop below.

The traditional Schur-Horn theorem is a special case of Theorem 1 whenαm = 0 for all m. Indeed, a nonnegative
nonincreasing sequence{λm}

M
m=1 is a (0, µ)-completion precisely when it is the spectrum of some frameoperator

∑N
n=1ϕnϕ

∗
n where‖ϕn‖

2 = µn for all n. Meanwhile, in this same case, the conditions of (4) reduce to

M
∑

m=1

λm =

N
∑

n=1

µn,

M
∑

m= j

λm ≤

N
∑

n= j

µn, ∀ j = 1, . . . ,M.

Subtracting these inequalities from the equality, we see these conditions are a restatement of (2).
The next section is devoted to the proof of Theorem 1. The proof of the necessity of (4) follows quickly from

the classical principle of eigenvalue interlacing. On the other hand, the proof of its sufficiency relies on a nontrivial
generalization of the eigensteps method of [3, 13].

In Section 3, we then use this new characterization of all (α, µ)-completions to find the optimal such completion;
this problem was first posed in [20], a generalization of one given in [12]. In particular, in contrast to [11, 19] which
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characterize whatα’s andµ’s permit a tight (constant) completion{λm}
M
m=1, we take an arbitraryα andµ and compute

the tightest (α, µ)-completion. Here, one naturally asks how we should quantify tightness. Should we make the
condition numberλ1/λM as small as possible? If so, how is this related to makingλM andλ1 as large and small as
possible, respectively? Alternatively, should we maybe minimize the mean squared reconstruction error

∑N
n=1 1/λn

of [15] or the frame potential
∑N

n=1 λ
2
n of [2]? Surprisingly, there exists a single completion thatdoes all these things

and more.
The key idea, as similarly exploited in [20, 21, 22, 28], is that majorization itself yields a partial order on the set

of all (α, µ)-completions. To be precise, note that by the equality condition of Theorem 1, any two such completions
{βm}

M
m=1 and{λm}

M
m=1 have the same sum, namely

∑M
m=1 βm =

∑M
m=1αm +

∑N
n=1 µn =

∑M
m=1 λm. Thus,{βm}

N
m=1 � {λm}

M
m=1

when
j

∑

m=1

βm ≤

j
∑

m=1

λm, ∀ j = 1, . . . ,M. (5)

Being only a partial order on the set of all (α, µ)-completions, there is no immediate guarantee that a minimal comple-
tion with respect to this order exists. Nevertheless, we show that one does in fact exist, by constructing it explicitly:

Theorem 2. Letα = {αm}
M
m=1 andµ = {µn}

N
n=1 be nonnegative and nonincreasing with M≤ N. For any k= 1, . . . ,M,

given{βm}
M
m=k+1 define

βk := max

{

t ∈ R :
k

∑

m= j

(t − αm− j+1)+ +
M
∑

m=k+1

(βm − αm− j+1)+ ≤
N

∑

n= j

µn, ∀ j = 1, . . . , k

}

.

Then{βm}
M
m=1 is a well-defined(α, µ)-completion and moreover is the minimal such completion with respect to ma-

jorization: if {λm}
M
m=1 is any(α, µ)-completion then{βm}

M
m=1 � {λm}

M
m=1.

Here, we have assumedM ≤ N since it makes the proof of Theorem 2 slightly cleaner; to apply the result in the
case whereN < M, simply defineµn := 0 for all n = N + 1, . . . ,M.

Note that the minimal completion{βm}
M
m=1 given by Theorem 2 is obviously unique. Indeed, if both{βm}

N
m=1 and

{λm}
M
m=1 are minimal completions then{βm}

N
m=1 � {λm}

M
m=1 and{λm}

N
m=1 � {βm}

M
m=1. Thus,

∑ j
m=1 βm =

∑ j
m=1 λm for all

j = 1, . . . ,M, implying βm = λm for all m. To see why this minimal completion is optimally tight, notethat letting
j = 1 in (5) givesβ1 ≤ λ1 for all (α, µ)-completions{λm}

M
m=1, meaning that of all possible such completions, the

maximum value of{βm}
M
m=1 is as small as possible. At the same time, the minimum value of{βm}

M
m=1 is as large as

possible: subtracting the inequalities in (5) from the equality
∑M

m=1 βm =
∑M

m=1 λm gives the equivalent inequalities:

M
∑

m= j

λm ≤

M
∑

m= j

βm, ∀ j = 1, . . . ,M.

In the special case wherej = M, we see that any (α, µ)-completion{λm}
M
m=1 necessarily satisfiesλM ≤ βM, as claimed.

Together, these facts imply thatβ1/βM ≤ λ1/λM for any such{λm}
M
m=1, meaning{βm}

M
m=1 has the smallest condition

number of any (α, µ)-completion. Moreover,{βm}
M
m=1 is optimal in an even stronger sense. To be clear, using some

of the techniques of this paper, one can show that there sometimes exists other (α, µ)-completions{λm}
M
m=1 that have

the same condition number as{βm}
M
m=1, havingλ1 = β1 andλM = βM but notλm = βm for all m = 2, . . . ,M − 1.

Nevertheless,{βm} is a better completion than these: being a minimum with respect to majorization (5), the classical
theory ofSchur-convexitytells us that

∑M
m=1 f (βm) ≤

∑M
m=1 f (λm) for any convex functionf . In particular, letting

f (x) = x2 we see that{βm}
M
m=1 has minimal frame potential. Moreover, ifβM > 0 then lettingf (x) = 1/x gives that

{βm}
M
m=1 has minimal mean squared reconstruction error.
Before moving on to the proofs of Theorems 1 and 2, we take a moment to put Theorem 2 in the context of the

literature, specifically the recent work of [22]. To be clear, the problem addressed by Theorem 2—to provide an
algorithm for computing the (α, µ)-completion of a given frame which is optimal with respect to majorization—was
first posed in [20]. This same paper contained a partial solution to this problem. An even better partial solution was
given in a follow-up paper by these same authors [21]. Shortly thereafter, they wrote a second follow-up paper [22]
that provides a complete solution to this problem; it is against this most recent work that we compare our own.
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The algorithm given in [22] for computing the optimal (α, µ)-completion is completely different from Theorem 2.
Moreover, it is proven in a completely different way. This is not surprising: [22] derives its algorithm directly without
having access to the succinct and powerful characterization of (α, µ)-completions given in Theorem 1. To be precise,
Theorem 3.7 of [22] shows their algorithm—given in Proposition 3.6 of that same paper—indeed computes optimal
(α, µ)-completions. To understand their algorithm in detail, the interested reader must also consider Remark 2.13,
Remark 3.2 and Theorem 3.4. By comparison, the algorithm of Theorem 2 is much shorter as a statement, and is
self-contained. This is one advantage of Theorem 2. A secondadvantage is the nature of its proof: though the proofs
of both Theorem 2 and Theorem 3.7 of [22] are very technical, the former has a nice geometric motivation. Indeed, as
discussed in Section 3, we construct an optimal completion by water filling—a well-known spectral technique from
the theory of communications—subject to the constraints ofTheorem 1. In other respects, neither algorithm has a
clear advantage. Both algorithms are computing the same spectrum since, as noted above, the optimal completion is
unique. Moreover, it is hard to determine exactly which algorithm is more computationally efficient: at the end of this
paper, we give an explicit example which illustrates exactly how we implement Theorem 2, and then discuss how we
implement it in general; no example is given in [22], and we were not able to find or determine a decent operation
count for that algorithm. Nevertheless, both algorithms seem very fast, and can be performed by hand in spaces of
sufficiently low dimension. And, moving forward, we believe thatboth our proof techniques as well as those of [22]
will be useful in future research.

2. Characterizing all completions: Proving Theorem 1

In this section we characterize the spectra of all possible completions of a positive semidefinite matrixA ∈ FM×M

with vectors{ϕn}
N
n=1 of given lengthsµ = {µn}

N
n=1. To be precise, letα = {αm}

M
m=1 denote the nonnegative spectrum

of A and assume without loss of generality that both{αm}
M
m=1 and{µn}

N
n=1 are arranged in nonincreasing order. We

characterize all possible (α, µ)-completions, that is, the spectra{λm}
M
m=1 of all operators of the formA +

∑N
n=1ϕnϕ

∗
n

where{ϕn}
N
n=1 are vectors inFM that satisfy‖ϕn‖

2 = µn for all n. Here, note that by conjugating by a unitary matrix
whose columns are eigenvectors ofA we may assume without loss of generality thatA is diagonal. In particular, our
characterization of{λm}

M
m=1 will not depend onA per se, but rather, on its spectrumα.

To obtain some necessary conditions, fix any{ϕn}
N
n=1 in FM with ‖ϕn‖

2 = µn for all n, and let{λm}
M
m=1 be the

nonnegative nonincreasing spectrum ofA +
∑N

n=1ϕnϕ
∗
n. The key idea is that for any givenP = 0, . . . ,N we also

consider the nonnegative nonincreasing spectrum{λP;m}
M
m=1 of the Pth partial completionA +

∑P
n=1ϕnϕ

∗
n. Letting

P = 0 andP = N givesλ0;m = αm andλN;m = λn for all m, respectively. Moreover, the trace of thePth partial
completion is necessarily

M
∑

m=1

λP;m = Tr

(

A +
P

∑

n=1

ϕnϕ
∗
n

)

= Tr(A) +
P

∑

n=1

Tr(ϕ∗nϕn) =
M
∑

m=1

αm +

P
∑

n=1

‖ϕn‖
2 =

M
∑

m=1

αm +

P
∑

n=1

µn.

Finally, for anyP = 1, . . . ,N, the Pth partial completion is obtained by adding the rank-one self-adjoint operator
ϕPϕ

∗
P to the (P − 1)th partial completion and so a well-known classical result from matrix analysis implies that

{λP;m}
M
m=1 necessarilyinterlaces over{λP−1;m}

M
m=1 in the sense thatλP;m+1 ≤ λP−1;m ≤ λP;m for all m = 1, . . . ,M,

under the convention thatλP;M+1 := 0. To elaborate on this last condition, note that for anyP = 0, . . . ,N we have
A +

∑P
n=1ϕnϕ

∗
n = XPX∗P whereXP is theM × (M+P) matrix obtained by concatenating theM×M matrixA

1
2 with the

P column vectors{ϕn}
P
n=1. SinceM + P ≥ M, the spectrum of the corresponding Gram matrixX∗PXP is a zero-padded

version of the spectrum ofXPX∗P. That is,X∗PXP has spectrum{λP;m}
M+P
m=1 provided we defineλP;m := 0 whenm> M.

Moreover, for anyP = 1, . . . ,N the Gram matrixX∗P−1XP−1 is the first principal (P− 1)× (P− 1) submatrix ofX∗PXP.
At this point, the famous Cauchy interlacing theorem implies the eigenvalues ofX∗P−1XP−1 interlace in those ofX∗PXP,
namely thatλP;m+1 ≤ λP−1;m ≤ λP;m for all m = 1, . . . ,M + P− 1. This is precisely the interlacing condition we gave
above, provided we realize it is superfluous for allm> M, requiring 0≤ 0 ≤ 0.

Together, any sequence of spectra{λP;m}
M
m=1 that satisfies these conditions is known as a sequence ofeigensteps:

Definition 2. For any nonnegative nonincreasing sequencesα = {αm}
M
m=1, λ = {λm}

M
m=1 andµ = {µn}

N
n=1, a sequence of

nonincreasing sequences{{λP;m}
M
m=1}

N
P=0 is asequence of eigensteps fromα to λ with lengthsµ if

(i) λ0;m = αm for all m= 1, . . . ,M,
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(ii) λN;m = λm for all m= 1, . . . ,M,
(iii)

∑M
m=1 λP;m =

∑M
m=1αm +

∑P
n=1 µn for all P = 0, . . . ,N,

(iv) λP;m+1 ≤ λP−1;m ≤ λP;m for all m= 1, . . . ,M, P = 1, . . . ,N; hereλP;M+1 := 0.

In the special case whereαm = 0 for all m, the above definition reduces to the definition of eigenstepsthat was
introduced in [3]. Having that any (α, µ)-completionλ yields eigensteps, we can quickly prove the “only if” direction
of Theorem 1, namely thatλm ≥ αm for all m and that (4) holds:

Proof of the (⇒) direction of Theorem 1.Let {λm}
M
m=1 be any (α, µ)-completion, meaning there exists a positive semi-

definite matrixA ∈ FM×M whose spectrum is{αm}
M
m=1 as well as a sequence of vectors{ϕn}

N
n=1 in FM with ‖ϕn‖

2 = µn

for all n = 1, . . . ,N such that{λm}
M
m=1 is the spectrum ofA +

∑N
n=1ϕnϕ

∗
n. As noted above, for anyP = 0, . . . ,N let-

ting {λP;m}
M
m=1 denote the nonnegative nonincreasing spectrum ofA +

∑P
n=1ϕnϕ

∗
n yields a sequence of eigensteps,

cf. Definition 2. In particular, eigenstep conditions (i) and (ii) as well as (possibly repeated) use of (iv) gives
αm = λ0;m ≤ λN;m = λm for all m = 1, . . . ,M, as claimed. Next, the equality condition of (4) follows immedi-
ately from lettingP = N in (iii):

M
∑

m=1

λm =

M
∑

m=1

λN;m =

M
∑

m=1

αm +

N
∑

n=1

µn.

To prove the inequality conditions in (4), note that for anyj = 1, . . . ,N, subtracting theP = j − 1 instance of (iii)
from theP = N instance of (iii) gives

M
∑

m=1

(λm− λ j−1;m) =
M
∑

m=1

λN;m −

M
∑

m=1

λ j−1;m =

( M
∑

m=1

αm +

N
∑

n=1

µn

)

−

( M
∑

m=1

αm +

j−1
∑

n=1

µn

)

=

N
∑

n= j

µn, 1 ≤ j ≤ N.

Continuing, note that the upper bounds in (iv) giveλ j−1;m ≤ λN;m = λm for all j = 1, . . . ,N andm= 1, . . . ,M, and so

M
∑

m= j

(λm − λ j−1;m) ≤
M
∑

m=1

(λm− λ j−1;m) =
N

∑

n= j

µn, 1 ≤ j ≤ min{M,N}.

Meanwhile, the lower bound in (iv) givesλ j−1;m ≤ λ j−2;m−1 ≤ · · · ≤ λ0;m−( j−1) = αm− j+1 for all m = j, . . . ,M. To
summarize, for anym= j, . . . ,M we have both 0≤ λm− λ j−1;m andλm− αm− j+1 ≤ λm− λ j−1;m, implying

M
∑

m= j

(λm− αm− j+1)+ =
M
∑

m= j

max{0, λm− αm− j+1} ≤

M
∑

m= j

(λm− λ j−1;m) ≤
N

∑

n= j

µn, 1 ≤ j ≤ min{M,N}. (6)

In the case whereM ≤ N, (6) yields all the claimed inequality conditions of (4). Inthe case whereN < M, (6) still
implies the inequalities in (4) hold for allj = 1, . . . ,N. What remains is the case whereN < j ≤ M; for such j,
the right-hand side of the inequality in (4) is defined to be zero, being an empty sum. As such, the corresponding
inequality can only hold provided (λm−αm− j+1)+ = 0 for all m= j, . . . ,M. This follows from repeatedly applying the
lower bound in (iv): sinceN ≤ j − 1 ≤ m− 1 we haveλm = λN;m ≤ λN−1;m−1 ≤ · · · ≤ λ0;m−N = αm−N ≤ αm− j+1.

Our proof of the “if” direction of Theorem 1 is substantiallymore involved, and requires several technical lemmas.
The first lemma is a strengthening of one of the main results of[3]:

Lemma 1. For any nonnegative nonincreasing sequencesα = {αm}
M
m=1, λ = {λm}

M
m=1 andµ = {µn}

N
n=1, λ is an(α, µ)-

completion (Definition 1) if and only if there exists a sequence of eigensteps fromα to λ with lengthsµ (Definition 2).

Proof. The reasons why eigensteps necessarily exist for any (α, µ)-completion were discussed above:{λP;m}
M
m=1 is

defined to be the nonincreasing spectrum ofA +
∑P

n=1 ϕnϕ
∗
n. Conversely, suppose there exists a sequence of eigensteps

{{λP;m}
M
m=1}

N
P=0 from α to λ with lengthsµ. To constructA and{ϕn}

N
n=1 we exploit Theorem 2 of [3] which constructs

frame vectors from eigensteps whose initial spectrum is identically zero.
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In particular, taking any fixedβ ≥ max{0, µ1 − αM}, we claim defining{{κP;m}
M
m=1}

M+N
P=0 and{νn}M+N

n=1 by

κP;m :=



















0, P < m,
αm+ β, m≤ P ≤ M,
λP−M;m + β, M < P,

νn =

{

αn + β, n ≤ M,
µn−M , M < n,

(7)

yields a sequence of eigensteps from{0}Mm=1 to {λm+ β}
M
m=1 with lengths{νn}M+N

n=1 ; here the choice ofβ ensures that
{νn}

M+N
n=1 is nonnegative and nonincreasing. Indeed,κ0;m = 0 andκM+N;m = λN;m + β = λm + β for all m = 1, . . . ,M

and so these sequences satisfy conditions (i) and (ii) of Definition 2. Next, in this setting condition (iii) becomes
∑M

m=1 κP;m =
∑P

n=1 νn for all P = 0, . . . ,M + N. ForP ≤ M this holds since
∑M

m=1 κP;m =
∑P

m=1(αm + β) =
∑P

n=1 νn. For
P > M, recall our assumption that{{λP;m}

M
m=1}

N
P=0 is a sequence of eigensteps fromα to λ with lengthsµ; condition

(iii) of this assumption gives

M
∑

m=1

κP;m =

M
∑

m=1

(λP−M;m + β) =

( M
∑

m=1

αm +

P−M
∑

n=1

µn

)

+ Mβ =
M
∑

m=1

(αm+ β) +
P

∑

n=M+1

µn−M =

P
∑

n=1

νn.

Finally, we prove (iv), namely thatκP;m+1 ≤ κP−1;m ≤ κP;m for all P = 1, . . . ,M + N andm = 1, . . . ,M. For P ≤ M,
this inequality holds for different reasons depending on the relationship betweenm andP: for m ≤ P− 1 it becomes
αm+1 + β ≤ αm+ β ≤ αm+ β, which follows from the fact that{αm}

M
m=1 is nonnegative and nonincreasing; form= P it

becomes 0≤ 0 ≤ αm + β which holds sinceβ ≥ 0; for m> P it becomes 0≤ 0 ≤ 0. Meanwhile, (iv) also holds in the
case whereP > M since we are simply addingβ to our assumed version of (iv):κP−1;m = λP−1−M;m+β ≤ λP−M;m+β =

κP;m for all m= 1, . . . ,M andκP;m+1 = λP−M;m+1 + β ≤ λP−1−M;m + β = κP−1;m for all m= 1, . . . ,M − 1.
Having that (7) defines a sequence of eigensteps from{0}Mm=1 to {λm+ β}

M
m=1 with lengths{νn}M+N

n=1 , Theorem 2
of [3] gives the existence of a sequence of vectors{ψn}

M+N
n=1 with ‖ψn‖

2 = νn for all n which also has the property
that{κP;m}

M
m=1 is the spectrum of thePth partial frame operatorΨPΨ

∗
P =

∑P
n=1ψnψ

∗
n for any givenP = 1, . . . ,M + N.

Let A = ΨMΨ
∗
M − βI which has spectrum{κM;m − β}

M
m=1 = {αm}

M
m=1. Let ϕn := ψM+n for all n = 1, . . . ,N, meaning

‖ϕn‖
2 = ‖ψM+n‖

2 = νM+n = µn for all suchn. Moreover, the operator

A +
N

∑

n=1

ϕnϕ
∗
n = (ΨMΨ

∗
M − βI ) +

N
∑

n=1

ψM+nψ
∗
M+n =

M
∑

n=1

ψnψ
∗
n − βI +

M+N
∑

n=M+1

ψnψ
∗
n = ΨM+NΨ

∗
M+N − βI

has spectrum{κM+N;m − β}
M
m=1 = {λm}

M
m=1, meaning{λm}

M
m=1 is an (α, µ)-completion.

To summarize, if we want to show a given spectrum{λm}
M
m=1 is an (α, µ)-completion it suffices to construct a

corresponding sequence of eigensteps. In the remainder of this section, we discuss how condition (4) of Theorem 1
lends itself to an iterative construction of such eigensteps. Here, the main idea is a nontrivial generalization of theTop
Kill algorithm of [13].

Following [13], we visualize a nonnegative nonincreasing spectra{λm}
M
m=1 as a pyramid: each eigenvalueλm is

represented as a horizontal stone block of lengthλm and height 1 that provides a foundation for the block of length
λm+1 that lies on top of it. In order to take one eigenstep backwards, we want a nonnegative nonincreasing spectrum
{κm}

M
m=1 such that

∑M
m=1 κm =

∑M
m=1 λm − µN and such that{λm}

M
m=1 interlaces over{κm}Mm=1. In terms of pyramids, the

trace condition means we form{κm}Mm=1 by chipping awayµN units of stone from{λm}
M
m=1. Moreover, the interlacing

condition means we can only remove the portion of aλm block that is not covered by the correspondingλm+1 block.
Moving beyond the intuition of [13] so as to address the completion problem, we now further envision that these

pyramids encase a pyramidal foundation corresponding to the initial spectrum{αm}
M
m=1. Our goal is to reveal this

foundation via anN-stage excavation of{λm}
M
m=1; each stage converts eigensteps{λP,m}

M
m=1 into {λP−1,m}

M
m=1 for some

P = 1, . . . ,N. It turns out that accomplishing this goal requires carefulplanning. Indeed, one might be tempted to first
completely excavate the highest level of the foundation, then proceed onto the second-highest level, etc.; it turns out
that this approach sometimes fails to reveal the entire foundation inN stages, even when the conditions of Theorem 1
are satisfied [23]. A better method—one we can prove always works—is to always prioritize the removal of stone that
buries the foundation most deeply. In particular, in the next lemma, for anym = 1, . . . ,M andp = 1, . . . ,M + 1, we
consider thepth “chopped spectrum” obtained by removing the portion ofλm that is not covered byλm+1 and which
lies at leastp layers above its foundation{αm}

M
m=1. To take one eigenstep backwards from{λm}

M
m=1, we then choose a

spectrum{κm}Mm=1 that lies between two consecutive “chops” and has the requisite trace.
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Lemma 2. Let M and N be positive integers and let{αm}
M
m=1, {λm}

M
m=1 and{µn}

N
n=1 be any nonnegative nonincreasing

sequences withαm ≤ λm for all m that also satisfy(4). For any p= 1, . . . ,M + 1, define the pth chopped spectrum
{ηp;m}

M
m=1 of {λm}

M
m=1 with respect to{αm}

M
m=1 as

ηp;m := max{λm+1,min{λm, αm−p+1}}, ∀m= 1, . . . ,M, (8)

under the conventions thatλM+1 := 0 andαm := ∞ for all m ≤ 0. For any m= 1, . . . ,M, the sequence{ηp:m}
M+1
p=1

is nondecreasing withη1;m = max{λm+1, αm} andηM+1;m = λm. Moreover, there exists an index p= 1, . . . ,M and a
sequence{κm}Mm=1 such that

M
∑

m=1

κm =

M
∑

m=1

αm +

N−1
∑

n=1

µn, ηp:m ≤ κm ≤ ηp+1;m, ∀m= 1, . . . ,M. (9)

Proof. For anym = 1, . . . ,M, the fact that{ηp:m}
M+1
p=1 is nondecreasing follows from the fact that{αm}

M
m=−∞ is non-

increasing:αm−p+1 ≤ αm−p and thusηp;m = max{λm+1,min{λm, αm−p+1}} ≤ max{λm+1,min{λm, αm−p}} = ηp+1;m for all
p = 1, . . . ,M. Next, sinceαm ≤ λm for all m, thep = 1 case of (8) reduces to

η1;m = max{λm+1,min{λm, αm}} = max{λm+1, αm}, ∀m= 1, . . . ,M,

as claimed. Similarly, since{λm}
M+1
m=1 is nonincreasing andαm := ∞ for all m≤ 0, thep = M + 1 case of (8) becomes

ηM+1;m = max{λm+1,min{λm, αm−M}} = max{λm+1,min{λm,∞}} = max{λm+1, λm} = λm, ∀m= 1, . . . ,M.

To prove there existsp and {κm}Mm=1 such that (9) holds, consider the traceτp :=
∑M

m=1 ηp;m of each chopped
spectrum. Since{ηp:m}

M+1
p=1 is nondecreasing for eachm = 1, . . . ,M we know that{τp}

M+1
p=1 is also nondecreasing.

Moreover, the equality condition in our assumption (4) along with the fact thatµN ≥ 0 imply thatτM+1 is an upper
bound for the quantityσ :=

∑M
m=1αm +

∑N−1
n=1 µn, which is intended to be the trace of our desired spectrum{κm}Mm=1:

τM+1 =

M
∑

m=1

ηM+1;m =

M
∑

m=1

λm =

M
∑

m=1

αm +

N
∑

n=1

µn ≥

M
∑

m=1

αm +

N−1
∑

n=1

µn = σ.

We further claimσ is bounded below byτ1. To see this, first note that

τ1 =

M
∑

m=1

η1;m =

M
∑

m=1

max{λm+1, αm} =

M
∑

m=1

max{λm+1 − αm, 0} +
M
∑

m=1

αm =

M
∑

m=1

(λm+1 − αm)+ +
M
∑

m=1

αm.

Next, recall thatλM+1 := 0 and so (λM+1 − αM)+ = 0, implying

τ1 =

M−1
∑

m=1

(λm+1 − αm)+ +
M
∑

m=1

αm =

M
∑

m=2

(λm− αm−1)+ +
M
∑

m=1

αm.

Invoking our assumption (4) in thej = 2 case and then using the fact thatµ1 ≥ µN then gives our claim:

τ1 =

M
∑

m=2

(λm− αm−1)+ +
M

∑

m=1

αm ≤

N
∑

n=2

µn +

M
∑

m=1

αm ≤

N−1
∑

n=1

µn +

M
∑

m=1

αm = σ.

A technicality: usingj = 2 in (4) implicitly assumes thatM ≥ 2; fortunately, the above inequality also holds when
M = 1 since in that case

∑M
m=2(λm− αm−1)+ = 0 ≤

∑N
n=2 µn.

Having that{τp}
M+1
p=1 is nondecreasing withτ1 ≤ σ ≤ τM+1, there exists at least one indexp with 1 ≤ p ≤ M

and such thatτp ≤ σ ≤ τp+1. Fixing such an indexp, let {κm}Mm=1 be any sequence such that (9) holds. Such a
sequence always exists: sinceτp ≤ σ ≤ τp+1, there existst ∈ [0, 1] such thatσ = τp + (τp+1 − τp)t and we can let
κm := ηp;m + (ηp+1;m − ηp;m)t, for example.
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To recap, our goal for the rest of this section is to prove the (⇐) direction of Theorem 1. Here,{λm}
M
m=1, {αm}

M
m=1

and{µn}
N
n=1 are nonnegative nonincreasing sequences that satisfy (4) with λm ≥ αm for all m. In light of Lemma 1,

it suffices to construct a corresponding sequence of eigensteps from {αm}
M
m=1 to {λm}

M
m=1. Inspired by the Top Kill

algorithm of [13], we construct these eigensteps iteratively, working backwards from{λm}
M
m=1 to {αm}

M
m=1. Here, what

we really need is a good strategy for “excavating” a spectrum{κm}Mm=1 from {λm}
M
m=1. In Lemma 2 we propose one

such strategy, choosing{κm}Mm=1 to lie between two chopped spectra of{λm}
M
m=1. In the next result, we show that any

{κm}
M
m=1 chosen in this way is indeed one backwards-eigenstep from{λm}

M
m=1, having the requisite trace and interlacing

properties. Most importantly, we show that choosing{κm}Mm=1 in this way ensures that it, like{λm}
M
m=1, satisfies the

generalized majorization condition (4), albeit for{µn}
N−1
n=1 instead of{µn}

N
n=1. As detailed at the end of this section,

this allows us to repeatedly use the method of Lemma 2, that is, to repeatedly take backwards eigensteps, to arrive at
{αm}

M
m=1.

Lemma 3. Let M and N be positive integers and let{αm}
M
m=1, {λm}

M
m=1 and{µn}

N
n=1 be any nonnegative nonincreasing

sequences withαm ≤ λm for all m that also satisfy(4). Then, for any index p= 1, . . . ,M and sequence{κm}Mm=1 that
satisfy(9), we have{κm}Mm=1 is nonincreasing withκm ≥ αm for all m. Moreover,{λm}

M
m=1 interlaces over{κm}Mm=1 and

M
∑

m=1

(κm− αm) =
N−1
∑

n=1

µn,

M
∑

m= j

(κm− αm− j+1)+ ≤
N−1
∑

n= j

µn, ∀ j = 1, . . . ,M. (10)

Moreover, when N= 1 we necessarily haveκm = αm for all m = 1, . . . ,M.

Proof. Fix any indexp = 1, . . . ,M and sequence{κm}Mm=1 that satisfy (9); by Lemma 2, we know at least one such
index and spectrum exist. Note Lemma 2 also gives max{λm+1, αm} = η1;m ≤ ηp;m ≤ κm ≤ ηp+1;m ≤ ηM+1;m = λm for
all m = 1, . . . ,M. In particular,{κm}Mm=1 satisfiesκm ≥ αm for all m. This same inequality implies{κm}Mm=1 satisfies
the interlacing conditionλm+1 ≤ κm ≤ λm for all m = 1, . . . ,M, which in turn implies that{κm}Mm=1 is nonincreasing.
Moreover, the equality in (10) is simply a rewriting of the equality in our assumption (9). Note that whenN = 1, this
equality becomes

∑M
m=1(κm− αm) = 0; when combined with the fact thatκm ≥ αm, this implies that in this special case

we necessarily haveκm = αm for all m.
The remainder of this proof is devoted to showing that{κm}Mm=1 satisfies the inequality conditions in (10). The

argument is complicated; for a geometric motivation of it, we refer the interested reader to the alternative, longer
presentation given in [23]. The key idea is to recognize thatfor anyγ ≥ 0 and anyj,m = 1, . . . ,M with j ≤ m,
the quantity (γ − αm− j+1)+ corresponds to the length of the intersection of the intervals [0, γ) and [αm− j+1,∞) and
moreover, that this intersection can be decomposed according to the partition [αm− j+1,∞) = ⊔m− j

i=0 [αi+1, αi); here, we
continue the convention of definingαM+1 := 0 andα0 := ∞. In particular, for any nonnegative sequence{γm}

M
m=1 and

any j = 1, . . . ,M,

M
∑

m= j

(γm− αm− j+1)+ =
M
∑

m= j

ℓ
{

[0, γm) ∩ [αm− j+1,∞)
}

=

M
∑

m= j

m− j
∑

i=0

ℓ
{

[0, γm) ∩ [αi+1, αi)
}

.

Making the change of variablesk = m− i and then interchanging sums gives

M
∑

m= j

(γm− αm− j+1)+ =
M
∑

m= j

m
∑

k= j

ℓ
{

[0, γm) ∩ [αm−k+1, αm−k)
}

=

M
∑

k= j

M
∑

m=k

ℓ
{

[0, γm) ∩ [αm−k+1, αm−k)
}

. (11)

We now compare the value of
∑M

m=k ℓ
{

[0, γm) ∩ [αm−k+1, αm−k)
}

whenγm = κm to the value of this same sum when
γm = λm. This comparison will depend on the relationship betweenk and p, where recallp was chosen so thatσ
satisfies (9). For example, we now show these two sums are equal in the case wherek ≤ p− 1.

To be precise, take anyk such that 1≤ k ≤ p− 1; note this part of the argument is vacuous in thep = 1 case. The
construction of{κm}Mm=1 in (9) along with the definition of the chopped spectra (8) gives

κm ≥ ηp;m = max{λm+1,min{λm, αm−p+1}} ≥ min{λm, αm−p+1}. (12)
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Moreover, since{λm}
M
m=1 interlaces over{κm}Mm=1, we also haveκm ≤ λm. Note that ifκm < λm ≤ αm−p+1, the previous

two facts together implyλm = min{λm, αm−p+1} ≤ κm < λm, a contradiction. In particular, ifκm < λm we necessarily
haveλm > αm−p+1 at which point (12) givesκm ≥ min{λm, αm−p+1} = αm−p+1. To summarize, for anym = 1, . . . ,M
we either have thatκm = λm or thatαm−p+1 ≤ κm < λm. Further note that for anym= k, . . . ,M the fact thatk ≤ p− 1
impliesm− k ≥ m− p+ 1 and soαm−k ≤ αm−p+1. Thus, for any suchm we either have that the intervals [0, κm) and
[0, λm) are equal or that both contain the interval [αm−k+1, αm−k). This implies

M
∑

m=k

ℓ
{

[0, κm) ∩ [αm−k+1, αm−k)
}

=

M
∑

m=k

ℓ
{

[0, λm) ∩ [αm−k+1, αm−k)
}

, 1 ≤ k ≤ p− 1. (13)

Next consider anyk with p+ 1 ≤ k ≤ M; this is vacuous whenp = M. Here (8) and (9) give

κm ≤ ηp+1;m = max{λm+1,min{λm, αm−(p+1)+1}} = max{λm+1,min{λm, αm−p}}. (14)

Since{λm}
M
m=1 interlaces over{κm}Mm=1 we also haveκm ≥ λm+1. If κm > λm+1 ≥ min{λm, αm−p} these facts imply

λm+1 > λm+1, a contradiction. In particular, ifκm > λm+1 we necessarily haveλm+1 < min{λm, αm−p} at which point (14)
givesκm ≤ min{λm, αm−p}. Thus, for anym = 1, . . . ,M we either haveκm = λm+1 or λm+1 < κm ≤ min{λm, αm−p}.
Moreover, for anym= k, . . . ,M the fact thatp+1 ≤ k givesm−k+1 ≤ m− p and soαm−k+1 ≥ αm−p ≥ min{λm, αm−p}.
As such, for anym= k, . . . ,M we either have the intervals [0, κm) and [0, λm+1) are equal or that both are disjoint from
the interval [αm−k+1, αm−k), implying

M
∑

m=k

ℓ
{

[0, κm) ∩ [αm−k+1, αm−k)
}

=

M
∑

m=k

ℓ
{

[0, λm+1) ∩ [αm−k+1, αm−k)
}

, p+ 1 ≤ k ≤ M. (15)

With (13) and (15) in hand, we now consider (11) in the cases where{γm}
M
m=1 is {κm}Mm=1 and{λm+1}

M
m=1, respectively.

In particular, for anyj such thatp + 1 ≤ j ≤ M note thatk ≥ p + 1 for all k ≥ j. As such, in this case we can let
γm = κm in (11) and apply (15) for everyk:

M
∑

m= j

(κm− αm− j+1)+ =
M
∑

k= j

M
∑

m=k

ℓ
{

[0, κm) ∩ [αm−k+1, αm−k)
}

=

M
∑

k= j

M
∑

m=k

ℓ
{

[0, λm+1) ∩ [αm−k+1, αm−k)
}

, p+ 1 ≤ j ≤ M.

To further simplify this expression we letγm = λm+1 in (11), recall thatλM+1 := 0, and replace “m” with m− 1:

M
∑

m= j

(κm− αm− j+1)+ =
M
∑

m= j

(λm+1 − αm− j+1)+ =
M−1
∑

m= j

(λm+1 − αm− j+1)+ =
M
∑

m= j+1

(λm− αm− j)+, p+ 1 ≤ j ≤ M. (16)

Independent from this line of reasoning, note that replacing “ j” with j + 1 in our assumption (4) gives

M
∑

m= j+1

(λm− αm− j)
+ ≤

N
∑

n= j+1

µn, 1 ≤ j + 1 ≤ M. (17)

Moreover,
∑N

n= j+1 µn ≤
∑N−1

n= j µn for all j ≥ 1: if j + 1 > N the left-hand side is zero, while ifj + 1 ≤ N the fact that
{µn}

N
n=1 is nonincreasing gives

∑N−1
n= j µn = (µ j − µN) +

∑N
n= j+1 µn ≥

∑N
n= j+1 µn. Combining this fact with (16) and (17)

then gives our claimed inequality in (10) in the special casewherep+ 1 ≤ j ≤ M − 1:

M
∑

m= j

(κm − αm− j+1)+ ≤
N

∑

n= j+1

µn ≤

N−1
∑

n= j

µn, p+ 1 ≤ j ≤ M − 1.

Furthermore, (10) immediately holds ifp+ 1 ≤ j = M since in this case (16) gives
∑M

m=M(κm− αm−M+1)+ = 0.
To summarize, we are in the process of showing that the inequality in (10) holds for all j = 1, . . . ,M and so far,

we have shown that it indeed does wheneverp + 1 ≤ j ≤ M. Since 1≤ p ≤ M by assumption, what remains are
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the cases wherep = M, j = 1, . . . ,M and wherep + 1 ≤ M, j < p + 1; together these correspond to simply when
1 ≤ j ≤ p. To prove the inequality in (10) holds for anyj = 1, . . . , p, we again letγm = κm in (11):

M
∑

m= j

(κm− αm− j+1)+ =
M

∑

k= j

M
∑

m=k

ℓ
{

[0, κm) ∩ [αm−k+1, αm−k)
}

, 1 ≤ j ≤ M. (18)

Note that in thej = 1 case, the fact thatκm ≥ αm along with the equality in (9) gives

N−1
∑

n=1

µn =

M
∑

m=1

(κm− αm) =
M
∑

m=1

(κm− αm)+ =
M
∑

k=1

M
∑

m=k

ℓ
{

[0, κm) ∩ [αm−k+1, αm−k)
}

. (19)

Subtracting (18) from (19) then gives

N−1
∑

n=1

µn −

M
∑

m= j

(κm− αm− j+1)+ =
j−1
∑

k=1

M
∑

m=k

ℓ
{

[0, κm) ∩ [αm−k+1, αm−k)
}

, 1 ≤ j ≤ M.

In particular, for anyj = 1, . . . , p we havek ≤ p− 1 whenever 1≤ k ≤ j − 1 and so we may use (13) to rewrite the
right-hand side of the above equation:

N−1
∑

n=1

µn −

M
∑

m= j

(κm− αm− j+1)+ =
j−1
∑

k=1

M
∑

m=k

ℓ
{

[0, λm) ∩ [αm−k+1, αm−k)
}

, 1 ≤ j ≤ p. (20)

We now repeat this same process, starting withλm instead ofκm. To be precise, subtracting (11) from thej = 1 case
of itself, then lettingγm = λm and using the equality assumption of (4) gives

N−1
∑

n=1

µn −

M
∑

m= j

(λm− αm− j+1)+ =
M
∑

m=1

(λm− αm− j+1)+ −
M
∑

m= j

(λm− αm− j+1)+ =
j−1
∑

k=1

M
∑

m=k

ℓ
{

[0, λm) ∩ [αm−k+1, αm−k)
}

(21)

for all j = 1, . . . ,M. For any j = 1, . . . , p, equating (20) and (21) and simplifying then gives

M
∑

m= j

(κm− αm− j+1)+ =
M
∑

m= j

(λm− αm− j+1)+ − µN, 1 ≤ j ≤ p,

at which point, our assumption (4) gives thejth desired inequality of (10) in the remaining case wherej = 1, . . . , p:

M
∑

m= j

(κm− αm− j+1)+ =
M
∑

m= j

(λm− αm− j+1)+ − µN ≤

N
∑

n= j

µn − µN =

N−1
∑

n= j

µn, 1 ≤ j ≤ p.

Though obvious in the case wherej ≤ N, the final equality above has a subtle justification in the case wherej > N:
here we have 0≤

∑M
m= j(κm−αm− j+1)+ ≤ −µN which requiresµN = 0, implying

∑N
n= j µn−µN = 0−0 = 0 =

∑N−1
n= j µn.

We now use Lemmas 1, 2 and 3 to prove the “if” direction of Theorem 1.

Proof of the (⇐) direction of Theorem 1.Assumeα = {αm}
M
m=1, λ = {λm}

M
m=1 andµ = {µn}

N
n=1 are nonnegative non-

increasing sequences withαm ≤ λm for all m which satisfy (4). To show thatλ is an (α, µ)-completion, it suffices
by Lemma 1 to construct a sequence of eigensteps{{λP;m}

M
m=1}

N
P=0 from α to λ with lengthsµ, cf. Definition 2. We

construct these eigensteps iteratively: letλN;m := λm for all m as required by condition (i) of Definition 2; for any
givenP = 1, . . . ,N, apply Lemma 2 with “N”, “ {λm}

M
m=1” and “{µn}

N
n=1” being P, {λP;m}

M
m=1 and{µn}

P
n=1, respectively,

and define{λP−1;m}
M
m=1 to be the resulting sequence{κm}Mm=1. This construction is well-defined. Indeed, our assump-

tion (4) means that{λN;m}
M
m=1 = {λm}

M
m=1 and {µn}

N
n=1 satisfy the hypotheses of Lemma 2. Moreover, for any given

P = 1, . . . ,N, if {λP;m}
M
m=1 and{µn}

P
n=1 satisfy the hypotheses of Lemma 2, then Lemma 3 guarantees that {λP−1;m}

M
m=1

and{µn}
P−1
n=1 also satisfy these same hypotheses. In particular, we necessarily have

∑M
m=1(λP;m − αm) =

∑P
n=1 µn for all
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P = 1, . . . ,N, meaning condition (iii) of Definition 2 holds for suchP. Further note that in theP = 1 case, Lemmas 2
and 3 imply{λ0;m}

M
m=1 can and must be defined as{αm}

M
m=1 meaning we have satisfied both condition (i) as well as

the P = 0 case of condition (iii). Finally, for anyP = 1, . . . ,N, Lemma 3 guarantees that{λP;m}
M
m=1 interlaces over

{λP−1;m}
M
m=1, namely condition (iv).

We conclude this section with a brief discussion of how we should combine the above arguments with those in the
existing literature in order to explicitly compute the actual vectors{ϕn}

N
n=1 of an (α, µ)-completion of a given positive

semidefinite operatorA. To be clear, this process requires an explicit knowledge ofthe eigenvalues{αm}
M
m=1 of A as

well as their corresponding eigenvectors. It does not depend on the particular initial vectors whose frame operator is
A, nor is that information useful to this process.

Given the initial spectrum{αm}
M
m=1 as well as the sequence{µn}

N
n=1 of desired squared-lengths, the first step is to

determine the spectrum{λm}
M
m=1 that we wish to achieve in the completionA +

∑N
n=1ϕnϕ

∗
n. As we have just finished

showing,{λm}
M
m=1 can be any nonnegative nonincreasing sequence that satisfies (4) withλm ≥ αm for all m. A natural

choice for{λm}
M
m=1 is the optimal such spectrum; as shown in the next section, this can be computed using the algorithm

of Theorem 2. Once such a spectrum{λm}
M
m=1 has been chosen, the next step is to form a sequence of eigensteps

{{λP;m}
M
m=1}

N
P=0 from {αm}

M
m=1 to {λm}

M
m=1. There may be many different ways to do this. It is not hard to see that the set

of all such sequences of eigensteps forms a convex polytope inR
M(N+1). However, to date, an explicit parametrization

of this polytope has only been found in the special case whereαm = 0 for all m [13]. Nevertheless, we do now know
that one such sequence always exists: by Lemmas 2 and 3, we canform a suitable spectrum{λP−1;m}

M
m=1 by choosing

it to have trace
∑M

m=1αm+
∑P−1

n=1 µn and lie between two consecutive chopped spectra of{λP;m}
M
m=1. Once the eigensteps

{{λP;m}
M
m=1}

N
P=0 have been constructed, we then use them along with the techniques of [3] to explicitly construct the

completion’s vectors{ϕn}
N
n=1. To do this, the best approach is to not go through the proof ofLemma 1 itself, but rather

verify that the arguments behind Theorems 2 and 7 of [3] are still valid when the intial spectrum of zero is generalized
to any nonnegative nonincreasing sequence{αm}

M
m=1. To be precise, for any eigenvalueλ ∈ {λP−1;m}

M
m=1 of the operator

A +
∑P−1

n=0 ϕnϕ
∗
n, the squared-norm of the component ofϕn that lies in the corresponding eigenspace is given by

− lim
x→λ

(x− λ)

∏M
m=1(x− λP;m)

∏M
m=1(x− λP−1;m)

.

The interested reader should see [23] for examples of this entire process.

3. Constructing optimal completions: Proving Theorem 2

In this section, we exploit the characterization of (α, µ)-completions given in Theorem 1 to provide a simple
recursive algorithm—explicitly given in Theorem 2—for computing the optimal such completion. We begin with a
brief motivation of the algorithm, then prove it indeed computes the optimal (α, µ)-completion, and conclude with a
low-dimensional example of its application.

Our algorithm is recursive. It computes the optimal completion {βm}
M
m=1 by computingβM, thenβM−1, thenβM−2,

etc. Following the intuition behind [13] and the previous section, we visualize{βm}
M
m=1 as a pyramid with its smallest

blocks at the top, each eigenvalueβk providing a foundation for the levels{βm}
M
m=k+1 above it. From this perspective,

the goal of our algorithm is to build a pyramid that is as steepas possible.
To better understand our approach, assume for the moment that for any givenk = 1, . . . ,M we have already

computed the parts of this pyramid that lie above levelk, namely{βm}
M
m=k+1. To be clear, in thek = M case, we make

no assumptions. For anyt ∈ R, we define thekth intermediate optimal spectrum{γk;m(t)}Mm=1 as

γk;m(t) :=

{

βm, k+ 1 ≤ m≤ M,
max{αm, t}, 1 ≤ m≤ k.

(22)

Essentially, the top of{γk;m(t)}Mm=1 corresponds to the parts of the optimal spectrum{βm}
M
m=1 that we have already

computed, whereas the bottom is obtained bywater filling, a technique borrowed from the theory of communications;
turning our pyramid on its side, values of the initial spectrum {αm}

M
m=1 that lie below the “water level”t are subsumed

by t, whileαm’s that lie above it remain unchanged. To computeβk, we keep increasing this water levelt until we get
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to a point where increasing it any more would result in an invalid completion. That is, we letβk be the largest value
of t for which thekth intermediate spectrum{γk;m(t)}Mm=1 satisfies the firstk inequality constraints of Theorem 1:

βk = max

{

t ∈ R :
M

∑

m= j

(γk;m(t) − αm− j+1)+ ≤
N

∑

n= j

µ j , ∀ j = 1, . . . , k

}

. (23)

Note here that in thek iterate we do not need to explicitly require{γk;m(t)}Mm=1 to satisfy the lastM−k such constraints;
using some of the analysis given below in the proof of Theorem2, the curious reader can verify that they are automat-
ically satisfied, though we omit this work and remain completely rigorous. To simplify this expression forβk, note
that for anyj, k = 1, . . . ,M with j ≤ k, (22) allows us to rewrite the constraint functions in (23) as

k
∑

m= j

(γm(t) − αm− j+1)+ +
M

∑

m=k+1

(γm(t) − αm− j+1)+ =
k

∑

m= j

(

max{αm, t} − αm− j+1
)+
+

M
∑

m=k+1

(βm− αm− j+1)+.

To simplify the first of these two sums, note that for anym= j, . . . , k,

(

max{αm, t} − αm− j+1
)+
=

(

max{αm − αm− j+1, t − αm− j+1}
)+
= max{0, αm− αm− j+1, t − αm− j+1}.

Since{αm}
M
m=1 is nonincreasing,αm − αm− j+1 ≤ 0, meaning this further simplifies to

(max{αm, t} − αm− j+1)+ = max{0, t − αm− j+1} = (t − αm− j+1)+.

In summary, for anyj, k = 1, . . . ,M with j ≤ k,

M
∑

m= j

(γm(t) − αm− j+1)+ =
k

∑

m= j

(t − αm− j+1)+ +
M

∑

m=k+1

(βm − αm− j+1)+.

Combining this observation with (23) leads to the “official” definition of βk given in Theorem 2. The proof of Theo-
rem 2 is complicated, and as such, we write two components of it as separate lemmas. In the first lemma, we provide
an alternative perspective on the algorithm of Theorem 2 which allows us to prove that the spectrum{βm}

M
m=1 is a

well-defined (α, µ)-completion, and also lays the groundwork for our subsequent results.

Lemma 4. Letα = {αm}
M
m=1 andµ = {µn}

N
n=1 be nonnegative and nonincreasing with M≤ N. For any k= 1, . . . ,M,

assume we have already constructed{βm}
M
m=k+1 according to the algorithm of Theorem 2. For any j= 1, . . . , k let

fk; j(t) :=
k

∑

m= j

(t − αm− j+1)+ +
M
∑

m=k+1

(βm− αm− j+1)+, ν j :=
N

∑

n= j

µn. (24)

Letting f−1
k; j (−∞, ν j] denote the preimage of the interval(−∞, ν j] under the function fk; j : R→ R, there exists bk; j ∈ R

such that f−1
k; j (−∞, ν j] = (−∞, bk; j]. Also, the numberβk given by Theorem 2 can be expressed as

βk = max
{

t ∈ R : fk; j(t) ≤ ν j , ∀ j = 1, . . . , k
}

= max

{ k
⋂

j=1

f −1
k; j (−∞, ν j]

}

= min{bk; j}
k
j=1. (25)

In particular, {βm}
M
m=1 is a well-defined(α, µ)-completion. Moreover, fk; j(βk+1) = fk+1; j(βk+1) whenever1 ≤ j ≤ k < M.

Proof. Our first step in proving that{βm}
M
m=1 is the optimal (α, µ)-completion is to show that it is well-defined. We

prove this by induction. In particular, for anyk = 1, . . . ,M, we assume we have already constructed{βm}
M
m=k+1

according to (25), and show that the maximum that definesβk in (25) exists. We take care to note that our argument
will even be valid in thek = M case; there, we make no assumptions whatsoever about{βm}

M
m=1. Having already

constructed{βm}
M
m=k+1, note that for anyj = 1, . . . , k, the correspondingfk; j function (24) is well-defined.
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At this point, note that under this notation, the expressionfor βk given in Theorem 2 reduces to:

βk = max
{

t ∈ R : fk; j(t) ≤ ν j , ∀ j = 1, . . . , k
}

= max

{ k
⋂

j=1

f −1
k; j (−∞, ν j]

}

,

namely the first part of (25). To prove this set indeed has a maximum, we investigate the properties of the sets
{ f −1

k; j (−∞, ν j]}kj=1. Our first claim is thatf −1
k; j (−∞, ν j] is nonempty for anyj = 1, . . . , k. That is, for any suchj, we

claim there exists somet ∈ R such thatfk; j(t) ≤ µ j . Indeed, whenk = M we can taket = αM: since{αm}
M
m=1 is

nonincreasing and{µn}
N
n=1 is nonnegative, (24) givesfM; j(αM) =

∑M
m= j(αM − αm− j+1)+ = 0 ≤ ν j for any j = 1, . . . ,M.

If on the other handk < M, we can taket = βk+1. To see this, note that for anyj = 1, . . . , k, considering (24) when
“k” is k+ 1 gives

fk; j(βk+1) =
k

∑

m= j

(βk+1 − αm− j+1)+ +
M
∑

m=k+1

(βm− αm− j+1)+ =
k+1
∑

m= j

(βk+1 − αm− j+1)+ +
M
∑

m=k+2

(βm− αm− j+1)+ = fk+1; j(βk+1),

as claimed in the statement of the lemma. Looking at our inductive hypothesis (25) where “k” is k + 1, we see that
βk+1; j is the maximum of the intersection of the sets{ f −1

k+1; j(−∞, ν j]}k+1
j=1. In particular, it is a member of each of these

sets, implying via the previous equation thatfk; j(βk+1) = fk+1; j(βk+1) ≤ ν j for any j = 1, . . . , k. Thus, for any suchj,
βk+1 ∈ f −1

k; j (−∞, ν j] and sof −1
k; j (−∞, ν j] , ∅ as claimed.

Having that f −1
k; j (−∞, ν j] is nonempty for anyj = 1, . . . , k, we next note that for any suchj there existsbk; j ∈ R

such thatf −1
k; j (−∞, ν j] = (−∞, bk; j]. Indeed, for any suchj the correspondingfk; j function (24) is clearly continuous,

piecewise linear and nondecreasing with limt→∞ fk; j(t) = ∞. This last fact implies thatf −1
k; j (−∞, ν j ] is bounded

above which, coupled with its nonemptiness, implies its supremumbk; j exists. Moreover, sincefk; j is continuous
this set is closed and this supremum is, in fact, a maximum. Atthis point the monotonicity offk; j implies that
f −1
k; j (−∞, ν j] = (−∞, bk; j]. Putting all of this together gives the rest of (25), which among other things, ensuresβk is

well-defined:

βk = max

{ k
⋂

j=1

f −1
k; j (−∞, ν j]

}

= max

{ k
⋂

j=1

(−∞, bk; j]

}

= max
(

−∞,min{bk; j}
k
j=1

]

= min{bk; j}
k
j=1.

In particular, the iterative process given in the theorem statement will indeed produce a sequence{βm}
M
m=1. Moreover,

recall from above that ifk < M thenβk+1 ∈ f −1
k; j (−∞, ν j] for all j = 1, . . . , k. Thus,βk+1 ∈ ∩

k
j=1 f −1

k; j (−∞, ν j] and so
βk+1 ≤ max{∩k

j=1 f −1
k; j (−∞, ν j]} = βk. As such,{βm}

M
m=1 is nonincreasing.

We now claim that{βm}
M
m=1 is an (α, µ)-completion, namely that it satisfiesαm ≤ βm for all m = 1, . . . ,M and

moreover the conditions (4) given in Theorem 1. To showαk ≤ βk for any k = 1, . . . ,M, recall that{αm}
M
m=1 is

nonincreasing. As such, for anyj = 1, . . . , k and anym= j, . . . , k we havem+ 1 ≤ k+ j, implying m− j + 1 ≤ k and
soαm− j+1 ≥ αk. In particular, (αk − αm− j+1)+ = 0 ≤ (βk − αm− j+1)+ for all suchm and so evaluatingfk; j (24) att = αk

andt = βk gives

fk; j(αk) =
k

∑

m= j

(αk − αm− j+1)+ +
M
∑

m=k+1

(βm− αm− j+1)+ ≤
k

∑

m= j

(βk − αm− j+1)+ +
M
∑

m=k+1

(βm − αm− j+1)+ = fk; j(βk).

Moreover, recall from (25) thatβk lies in the set∩k
j=1 f −1

k; j (−∞, ν j] being its maximum. Thus,fk; j(αk) ≤ fk; j(βk) ≤ ν j

for all j = 1, . . . , k, meaningαk also lies in∩k
j=1 f −1

k; j (−∞, ν j], and is therefore no greater than its maximum. That is,
αk ≤ βk for all k = 1, . . . ,K, as claimed. Moreover, note that lettingj = k in the above discussion givesfk;k(βk) ≤ νk.
Considering (24) whenj = k, this inequality becomes thekth necessary inequality of Theorem 1:

M
∑

m=k

(βm− αm−k+1)+ =
k

∑

m=k

(βk − αm−k+1)+ +
M
∑

m=k+1

(βm− αm−k+1)+ = fk;k(βk) ≤ νk =
N

∑

n=k

µn.

Finally, to prove that{βm}
M
m=1 also satisfies the equality condition of Theorem 1, consider(25) whenk = 1, namely that

β1 is defined to beβ1 = max
{

t ∈ R : f1;1(t) ≤ ν1
}

. Being a member of this set,β1 necessarily satisfiesf1;1(β1) ≤ ν1.
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Moreover, if f1;1(β1) < ν1 then sincef1;1 is continuous, we would havef1;1(β1+ε) < ν1 for all sufficiently smallε > 0,
contradicting the definition ofβ1. Thus, f1;1(β1) = ν1 and considering (24) whenj = k = 1 gives our desired equality:

M
∑

m=1

(βm − αm) =
M
∑

m=1

(βm− αm)+ = (β1 − α1)+ +
M
∑

m=2

(βm− αm)+ = f1;1(β1) = ν1 =
N

∑

n=1

µn.

Having that{βm}
M
m=1 is a well-defined (α, µ)-completion, all that remains to be shown is that{βm}

M
m=1 is minimal.

That is, letting{λm}
M
m=1 be any (α, µ)-completion we show that{βm}

M
m=1 � {λm}

M
m=1. Since both sequences sum to

∑M
m=1αm+

∑N
n=1 µn by definition, this reduces to demonstrating that

M
∑

m= j

λm ≤

M
∑

m= j

βm, ∀ j = 1, . . . ,M. (26)

Before proving (26) itself, we first develop a better understanding of{βm}
M
m=1. For any givenk = 1, . . . ,M, recall

from earlier in this proof that for anyj = 1, . . . , k, there existsb j,k ∈ R such thatf −1
k; j (−∞, ν j] = (−∞, bk; j]. This led

to (25), namely thatβk = min{bk; j}
k
j=1. Some members of the sequence{bk; j}

k
j=1 will equal this minimum, while others

will not; in the following result, we prove some special properties of the smallest indexj that does.

Lemma 5. Following the same hypotheses and notation as Lemma 4, let

j(k) := minJ (k), J (k) := { j = 1, . . . , k : bk; j = βk} =
{

j = 1, . . . , k : max
{

f −1
k; j (−∞, ν j]

}

= βk

}

. (27)

The setJ (k) and index j(k) have the following three properties:

(a) fk; j(βk) = ν j for all j ∈ J (k).
(b) αk− j(k)+1 ≤ βk for all k = 1, . . . ,M.
(c) j(k) ≤ j(k+ 1) for all k = 1, . . . ,M − 1.

Proof. From (25), note thatβk is the largest value oft for which fk; j(t) ≤ ν j for all j = 1, . . . , k, namely for which the
kth intermediate spectrum (22) will satisfy the firstk inequality conditions of (α, µ)-completions given in Theorem 1.
That is,J (k) consists of those indicesj for which even slightly increasingt beyondβk will violate fk; j(t) ≤ ν j .
Indeed, for anyj = 1, . . . , k we havej ∈ J (k) if and only if f −1

k; j (−∞, ν j] = (−∞, βk]; since preimages preserve set
complements this happens precisely whenf −1

k; j (ν j,∞) = (βk,∞), meaning (27) can be equivalently expressed as

j(k) = minJ (k), J (k) = { j = 1, . . . , k : fk; j(t) > ν j , ∀t > βk}. (28)

Note that for anyj ∈ J (k), (27) gives fk; j(βk) ≤ ν j while (28) givesfk; j(t) > ν j for all t > βk. Since eachfk; j is
continuous, this impliesfk; j(βk) = ν j for all such j, namely (a).

We next prove (b). This claim can be viewed as a strengtheningof theαk ≤ βk inequality we proved earlier. To
prove it, recall that for anyk = 1, . . . ,M we haveβk ≥ βM ≥ αM. Since{αm}

M
m=1 is nonincreasing, there thus exists a

unique indexm(k) such that 1≤ m(k) ≤ M and such thatαm(k) ≤ βk < αm(k)−1, provided we adopt the convention of
definingα0 := ∞. To prove (b), we first show thatk, j(k) andm(k) are all related by the following inequality:

j(k) ≤ k−m(k) + 1, ∀k = 1, . . . ,M. (29)

Note that sincej(k) ≤ k by definition (27), it suffices to consider the case wherem(k) ≥ 2. Assume to the contrary
thatk −m(k) + 1 < j(k), and note that for allm = j(k), . . . , k we havem−m(k) + 2 ≤ k −m(k) + 2 ≤ j(k), implying
m− j(k) + 1 ≤ m(k) − 1 and soαm(k)−1 ≤ αm− j(k)+1. In particular, for allm = j(k), . . . , k we have (t − αm− j(k)+1)+ = 0
for all t ≤ αm(k)−1. Thus, considering (24) atj = j(k), we see that for anyt ≤ αm(k)−1,

fk; j(k)(t) =
k

∑

m= j(k)

(t − αm− j(k)+1)+ +
M
∑

m=k+1

(βm− αm− j+1)+ =
M

∑

m=k+1

(βm − αm− j+1)+.

15



That is, the functionfk; j(k) is necessarily constant over allt ≤ αm(k)−1. Since this includesβk by the definition of
m(k), we have fk; j(k)(αm(k)−1) = fk; j(k)(βk) ≤ ν j(k), meaningαm(k)−1 ∈ f −1

k; j(k)(−∞, µ j(k)]. But by (27), j(k) ∈ J (k)
meaningβk = max

{

f −1
k; j(k)(−∞, ν j(k)]

}

≥ αm(k)−1, a contradiction of the fact thatβk < αm(k)−1. Thus (29) is indeed true.
Rewriting (29) asm(k) ≤ k − j(k) + 1, claim (b) follows immediately from the definition ofm(k) and the fact that
{αm}

M
m=1 is nonincreasing:αk− j(k)+1 ≤ αm(k) ≤ βk.

Finally, we prove (c). Our argument relies on a more basic fact, namely thatfk;i − fk; j is nondecreasing for any
k = 1, . . . ,M and anyi ≤ j ≤ k. Indeed, for any suchi, j andk, (24) gives

fk;i(t) − fk; j(t) =
k

∑

m=i

(t − αm−i+1)+ +
M
∑

m=k+1

(βm− αm−i+1)+ −
k

∑

m= j

(t − αm− j+1)+ −
M
∑

m=k+1

(βm− αm− j+1)+

=

j−1
∑

m=i

(t − αm−i+1)+ +
k

∑

m= j

[(t − αm−i+1)+ − (t − αm− j+1)+] +
M
∑

m=k+1

[(βm− αm−i+1)+ − (βm− αm− j+1)+],

where all summands are nondecreasing: the summands of the first and third sum are clearly nondecreasing and, since
i ≤ j impliesαm−i+1 ≤ αm− j+1, the summands of the second sum, namely

(t − αm−i+1)+ − (t − αm− j+1)+ =



















0, t ≤ αm−i+1,

t − αm−i+1, αm−i+1 ≤ t ≤ αm− j+1,

αm− j+1 − αm−i+1, αm− j+1 ≤ t,

are nondecreasing as well. Returning to the claim (c) thatj(k) ≤ j(k + 1) for anyk = 1, . . . ,M − 1, assume to the
contrary thatj(k+ 1) < j(k), implying fk; j(k+1) − fk; j(k) is nondecreasing. In particular, for anyt > βk we can evaluate
fk; j(k+1) − fk; j(k) atβk andt to obtain fk; j(k+1)(βk) − fk; j(k)(βk) ≤ fk; j(k+1)(t) − fk; j(k)(t) or equivalently, that

fk; j(k+1)(βk) + fk; j(k)(t) ≤ fk; j(k+1)(t) + fk; j(k)(βk), ∀t > βk.

At this point, recall that sincej(k) ∈ J (k), (a) givesfk; j(k)(βk) = ν j(k) while (28) givesfk; j(k)(t) > ν j(k) for all t > βk.
Thus, the previous inequality implies that

fk; j(k+1)(βk) + ν j(k) < fk; j(k+1)(βk) + fk; j(k)(t) ≤ fk; j(k+1)(t) + fk; j(k)(βk) = fk; j(k+1)(t) + ν j(k), ∀t > βk,

namely thatfk; j(k+1)(βk) < fk; j(k+1)(t) for all t > βk. Moreover, sincefk; j(k+1) is a nondecreasing function andβk+1 ≤ βk

we know fk; j(k+1)(βk+1) ≤ fk; j(k+1)(βk). Also, sincej(k+1) < j(k) ≤ k we can let “j” be j(k+1) in the final conclusion of
Lemma 4 to obtainfk; j(k+1)(βk+1) = fk+1; j(k+1)(βk+1). And, sincej(k+1) ∈ J (k+1), (a) givesfk+1; j(k+1)(βk+1) = µ j(k+1).
Putting this all together, we see that

µ j(k+1) = fk+1; j(k+1)(βk+1) = fk; j(k+1)(βk+1) ≤ fk; j(k+1)(βk) < fk; j(k+1)(t), ∀t > βk.

Since fk; j(k+1)(t) > µ j(k+1) for all t > βk, (28) givesj(k+ 1) ∈ J (k) and soj(k+ 1) ≥ minJ (k) = j(k), a contradiction
of the assumption thatj(k+ 1) < j(k).

Having Lemmas 4 and 5, we prove our second main result:

Proof of Theorem 2.Recall from Lemma 4 that the algorithm of Theorem 2 produces awell-defined (α, µ)-completion
{βm}

M
m=1. As noted above, all that remains to be shown is that{βm}

M
m=1 � {λm}

M
m=1 for any (α, µ)-completion{λm}

M
m=1,

namely (26). In light of the iterative definition of{βm}
M
m=1, we prove (26) by induction, beginning withj = M and

working backwards toj = 1. In particular, for anyk = 1, . . . ,M, assume we have already shown (26) holds whenever
k + 1 ≤ j ≤ M; we show that it also holds forj = k. As with our inductive argument for Lemma 4, our techniques
below will even be valid in thej = M case; in that case, we assume nothing about the optimality of{βm}

M
m=1.

Note that ifλk ≤ βk, the case of (26) withj = k immediately follows from thej = k+ 1 case:

M
∑

m=k

λm = λk +

M
∑

m=k+1

λm ≤ βk +

M
∑

m=k+1

βm =

M
∑

m=k

βm.
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As such, assumeλk > βk. Since{λm}
M
m=1 is an (α, µ)-completion, Theorem 1 and (24) imply

M
∑

m= j

(λm− αm− j+1)+ ≤
N

∑

n= j

µn = ν j ,

for any j = 1, . . . ,M. Consider this inequality in the case wherej is the indexj(k) given in (27). In this case, recall
that sincej(k) ∈ J (k), Lemma 5(a) givesfk; j(k)(βk) = ν j(k). Putting these facts together with the explicit formula (24)
for fk; j(k)(βk) gives

M
∑

m= j(k)

(λm− αm− j(k)+1)+ ≤ ν j(k) = fk; j(k)(βk) =
k

∑

m= j(k)

(βk − αm− j(k)+1)+ +
M

∑

m=k+1

(βm − αm− j(k)+1)+.

Rewriting the right-hand side above by grouping them= k term with the second sum instead of the first gives

M
∑

m= j(k)

(λm− αm− j(k)+1)+ =
k−1
∑

m= j(k)

(βk − αm− j(k)+1)+ +
M

∑

m=k

(βm − αm− j(k)+1)+.

To continue, note that since{λm}
M
m=1 is nonincreasing,βk < λk ≤ λm for all m= 1, . . . , k. In particular, for anym such

that j(k) ≤ m≤ k− 1 we know (βk − αm− j(k)+1)+ ≤ (λm− αm− j(k)+1)+ and so the previous equality implies

M
∑

m= j(k)

(λm− αm− j(k)+1)+ ≤
k−1
∑

m= j(k)

(λm − αm− j(k)+1)+ +
M
∑

m=k

(βm− αm− j(k)+1)+.

Subtracting common terms from both sides of this inequalityand then notingx ≤ x+ for all x ∈ R gives

M
∑

m=k

(λm− αm− j(k)+1) ≤
M
∑

m=k

(λm− αm− j(k)+1)+ ≤
M
∑

m=k

(βm − αm− j(k)+1)+. (30)

To continue, recall from Lemma 5(b) thatαm− j(m)+1 ≤ βm for all m = 1, . . . ,M. Further recalling that{ j(k)}Mk=1 is
nondecreasing, for anym = k, . . . ,M we havej(k) ≤ j(m) implying m− j(m) + 1 ≥ m− j(k) + 1 and soαm− j(k)+1 ≤

αm− j(m)+1. Together, these facts about{ j(k)}Mk=1 imply αm− j(k)+1 ≤ βm for all m= k, . . . ,M, implying (30) can be further
simplified as

M
∑

m=k

(λm− αm− j(k)+1) ≤
M
∑

m=k

(βm − αm− j(k)+1)+ =
M
∑

m=k

(βm− αm− j(k)+1).

Subtracting common terms from both sides gives that the inductive hypothesis is also true atj = k:

M
∑

m=k

λm ≤

M
∑

m=k

βm. (31)

Thus, (26) indeed holds for allk = 1, . . . ,M, meaning{βm}
M
m=1 � {λm}

M
m=1 for any (α, µ)-completion{λm}

M
m=1. To be

clear, in the initial case wherej = M, the above inductive argument assumes nothing about{βm}
M
m=1. In this case, it

shows that ifλM > βM then (31) holds fork = M, namely thatλM ≤ βM. As such, in the initial case, this argument
reduces to a proof by contradiction thatλM ≤ βM.

To highlight the utility of Theorem 2, we now use it to computean example of an optimal completion.

Example 1. Consider a 4× 4 self-adjoint matrixA whose spectrum is

α = {α1, α2, α3, α4} = {
7
4 ,

3
4 ,

1
2 ,

1
2}.
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From [13], we know thatA is the frame operator for infinitely many frames forR4 orC4 consisting of 4 or more frame
vectors. Regardless of what particular frame led toA, suppose we can add anyN = 5 additional vectors to this frame,
the only restriction being that they have squared-norms of

µ = {µ1, µ2, µ3, µ4, µ5} = {2, 1, 1
4 ,

1
4 ,

1
4}.

How should we pick these vectors so that the resulting frame is as tight as possible? Or so that it has minimal frame
potential, or alternatively, minimal mean squared reconstruction error? As discussed in the introduction, Theorem 2
shows that all of these questions have the same answer; we explicitly construct an (α, µ)-completion{βm}

M
m=1 that

is majorized by all other (α, µ)-completions. To be precise, for anyk = 1, . . . ,M we computeβk from {βm}
M
m=k+1

by defining fk; j(t) =
∑k

m= j(t − αm− j+1)+ +
∑4

m=k+1(βm − αm− j+1)+ for all j = 1, . . . , k and t ∈ R and lettingβk :=
min{t : fk; j(t) ≤

∑5
n= j µn, ∀ j = 1, . . . , k}. In particular,β4 is the largest value oft that satisfies the four constraints:

f4;1(t) = (t − 7
4)+ + (t − 3

4)+ + (t − 1
2)+ + (t − 1

2)+ ≤ 15
4 ,

f4;2(t) = (t − 7
4)+ + (t − 3

4)+ + (t − 1
2)+ ≤ 7

4 ,

f4;3(t) = (t − 7
4)+ + (t − 3

4)+ ≤ 3
4 ,

f4;4(t) = (t − 7
4)+ ≤ 1

2 .

Here, each of the constraints can be explicitly written in terms of a piecewise linear function. For example,

f4;1(t) =







































0, t < 1
2 ,

2t − 1, 1
2 ≤ t < 3

4 ,

3t − 7
4

3
4 ≤ t < 7

4 ,

4t − 7
2 ,

7
4 ≤ t,

at which point basic arithmetic reveals that the interval (−∞, 29
16] is the set of pointst such thatf4;1(t) ≤ 15

4 . Similarly,
the second, third and fourth constraints above correspond to the intervals (−∞, 3

2], (−∞, 3
2], and (−∞, 9

4], respectively.
The largest point that lies in all four intervals isβ4 := 3

2. Note that here, as in general, it is possible thatβk achieves
several constraints simultaneously; while this has no effect on the algorithm, this phenomenon is the source of some
of the technicalities of the proof of Theorem 2 related to theindex j(k) defined in (27).

Havingβ4 =
3
2 allows us to definef3;1, f3;2 and f3;3 and moreover computeβ3 as the largestt such that

f3;1(t) = (t − 7
4)+ + (t − 3

4)+ + (t − 1
2)+ + 1 ≤ 15

4 ,

f3;2(t) = (t − 7
4)+ + (t − 3

4)+ + 1 ≤ 7
4 ,

f3;3(t) = (t − 7
4)+ + 3

4 ≤
3
4 ,

namelyβ3 := max{(−∞, 23
12] ∩ (−∞, 3

2] ∩ (−∞, 7
4]} = 3

2. Since{β3, β4} = {
3
2 ,

3
2} we next have

f2;1(t) = (t − 7
4)+ + (t − 3

4)+ + 1+ 1 ≤ 15
4 ,

f2;2(t) = (t − 7
4)+ + 3

4 + 1 ≤ 7
4 ,

and soβ2 := max{(−∞, 17
8 ] ∩ (−∞, 7

4]} = 7
4. Finally, since{β2, β3, β4} = {

7
4 ,

3
2 ,

3
2},

β1 := max{t : f1;1(t) = (t − 7
4)+ + 1+ 1+ 1 ≤ 15

4 } = max(−∞, 5
2] = 5

2 .

To summarize, in this example the optimal (α, µ)-completion is the spectrum{β1, β2, β3, β4} = {
5
2 ,

7
4 ,

3
2 ,

3
2}. Note

Theorem 2 alone does not tell us how to explicitly construct the completion’s corresponding frame vectors, namely
vectors{ϕn}

5
n=1 in F4 with ‖ϕn‖

2 = µn for all n and such thatA +
∑5

n=1ϕnϕ
∗
n has spectrum{βm}

4
m=1. To do that, we

can employ the techniques of the previous section, repeatedly applying Lemma 3 to take eigensteps backwards from
{βm}

4
m=1 to {αm}

4
m=1, and then apply the main results of [3] to construct{ϕn}

5
n=1 from these eigensteps; see [23] for

examples of this process.
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We conclude by briefly discussing a way to implement the algorithm of Theorem 2 in general, and in so doing,
obtain an upper bound on its computational complexity. We first compute

∑N
n= j µn for all j = 1, . . . ,M. This can be

done usingO(N) operations: first find
∑N

n=M µn and then
∑N

n= j µn = µ j +
∑N

n= j+1 µn for all j = M − 1, . . . , 1. Next, for
any givenk = M, . . . , 1, assume we have already computed{βm}

M
m=k+1; we assume nothing in the case wherek = M.

For any givenj = 1, . . . , k, we use at mostO(M) operations to computeδk, j :=
∑N

n= j µn −
∑M

m=k+1(βm− αm− j+1)+.
For this particulark and j, we then compute the largest value oft for which

∑k
m= j(t − αm− j+1)+ ≤ δk, j. A naı̈ve

implementation of this step involvesO(M2) operations, yieldingO(M4 + N) operations overall.
For a more computationally efficient alternative, note that making the change of variablesl = m− j + 1 gives

∑k
m= j(t − αm− j+1)+ =

∑k− j+1
l=1 (t − αl)+. Indeed, as seen in the previous example, the same piecewiselinear functions

used in thek = 4 step reappear in thek = 3, 2, 1 steps. We can exploit this redundancy by performing an out-
of-loop computation that evaluatesgm(t) :=

∑m
l=1(t − αl)+ at t = αi for all i,m = 1, . . . ,M. This has a one-time

cost of onlyO(M2) operations. And, returning to our loop, it allows us to quickly find the largestt for which
gk− j+1(t) =

∑k
m= j(t − αm− j+1)+ ≤ δk, j. To be precise, notegk− j+1 is nondecreasing, continuous and piecewise linear.

Further note that it only transitions between pieces at points that lie in the nonincreasing sequence{αi}
M
i=1. As such,

taking the smallest indexi for which the precomputed valuegk− j+1(αi) is at mostδk, j, we know thet we seek lies in the
interval [αi , αi−1), whereα0 := ∞. Moreover, fort ∈ [αi , αi−1) the fact that{αm}

M
m=1 is nonincreasing impliest ≥ αm− j+1

precisely whenm≥ i+ j−1. Thus, for allt ∈ [αi , αi−1) we havegk− j+1(t) =
∑k

m= j(t − αm− j+1)+ =
∑k

m=i+ j−1(t − αm− j+1).
In this form, it only takesO(M) operations to find the uniquet ∈ [αi , αi−1) such thatgk− j+1(t) = δk, j.

To summarize, if we are willing to spendO(M2) operations up front, then for eachk = 1, . . . ,M and every
j = 1, . . . , k, finding the largest value oft such that

∑k
m= j(t − αm− j+1)+ ≤ δk, j only requires at mostO(M) operations.

As such, for eachk = 1, . . . ,M, finding βk as the minimum of these values oft over all choices ofj = 1, . . . , k
requires at mostO(Mk) operations. Summing these over allk = 1, . . . ,M, we see an optimal (α, µ)-completion can
be computed in at mostO(M3 + N) operations.
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