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Broadband, non-destructive characterisation of
PEC-backed materials using a dual-ridged-waveguide
probe
Milo W. Hyde IV, Michael J. Havrilla

Department of Electrical and Computer Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH,

45433, USA

E-mail: milo.hyde@afit.edu

Abstract: A new probe which utilises a dual-ridged waveguide to provide broadband, non-destructive (ND) material
characterisation measurements of a perfect electric conductor (PEC)-backed material is introduced. The new probe possesses a
bandwidth similar to existing coaxial probes and is structurally robust like rectangular waveguide probes. The combinations
of these two qualities make it especially attractive for ND inspection/evaluation applications in the field. The theoretical
development of the dual-ridged-waveguide probe is discussed. A magnetic field integral equation is derived by applying
Love’s equivalence theorem and enforcing the continuity of transverse fields at the dual-ridged-waveguide aperture. The
magnetic field integral equation is then solved for the theoretical reflection coefficient using the method of moments. The
permittivity and permeability of the material under test are found by minimising the root-mean-square difference between the
theoretical and measured reflection coefficients using non-linear least squares. To validate the new probe, experimental results
are presented of a magnetic absorbing material comparing results obtained using the new probe with those obtained using a
traditional, destructive technique. The probe’s sensitivity to sample thickness, flange-plate thickness, cutoff wavenumber and
measured S-parameter uncertainties is also investigated.

1 Introduction

Waveguide probes have been used for non-destructive (ND)
material characterisation applications with great success for
over 30 years. Although some two-port waveguide probes
have been developed [1–5], a majority of the published
waveguide probe research deals with one-port or
single-probe geometries because of their more widespread
applicability [6–24]. Both coaxial [7, 10–12, 15, 18, 19,
21, 24] and rectangular/circular [6, 8, 9, 13, 14, 16, 17,
20, 22, 23] waveguide probes have been developed. The
main advantage of using a coaxial probe is the potential
for broadband material characterisation measurements;
however, utilising coaxial probes for this purpose is
difficult. In general, small aperture coaxial probes are
most effective when used to characterise high-loss
materials. Biological materials are often discussed in the
literature, whose loss is driven by water content [19, 25–
30]. On the other hand, large aperture probes are required
to measure low-loss materials [10, 11]. This implies that
broadband measurements using coaxial probes are only
possible when the material under test (MUT) is known a
priori to possess high loss. Rectangular/circular waveguide
probes do not suffer from the coaxial probe problem just
described and are more structurally robust than their
coaxial counterparts making them especially useful for

ND measurements in the field; however, they are naturally
bandlimited.
In this paper, a new one-port waveguide probe is

introduced which utilises a dual-ridged waveguide (DRWG)
to provide ND, broadband (much like coaxial probes)
material characterisation measurements of PEC-backed
MUTs while maintaining the structural robustness of
rectangular/circular waveguide probes. A schematic of the
measurement geometry is shown in Fig. 1 – a DRWG
attached to an infinite PEC flange plate is placed in contact
with a PEC-backed magnetic material of unknown complex
relative permittivity εr and permeability μr.
In the next section, the theoretical expression for the

reflection coefficient Sthy11 , necessary to characterise the
MUT, is derived. This is achieved by replacing the DRWG
aperture with an equivalent magnetic current which
maintains the fields in the parallel-plate/MUT region in
accordance with Love’s equivalence theorem [31–34].
Enforcing the continuity of the transverse magnetic fields at
the DRWG aperture results in a magnetic field integral
equation (MFIE), which when solved using the method of
moments (MoM) [34, 35], yields Sthy11 . The εr and μr of the
MUT are then found by minimising the root-mean-square
difference between the theoretical Sthy

11 and measured
Smeas
11 reflection coefficients using the trust-region-reflective

method [36] subject to the constraints for passive materials, viz.
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1̂r
m̂ r

( )
= argmin

1r ,mr[C

Sthy
11 (f ; 1r, mr)− Smeas

11 (f )
∥∥∥ ∥∥∥

2

Re(1r) . 0, Im(1r) , 0
Re(mr) . 0, Im(mr) , 0

(1)

where S11 = (S11, 1, S11, 2, …, S11, n)
T and f is the frequency.

At a minimum, n = 2 independent reflection measurements
are required to unambiguously characterise the MUT. Several
single-probe techniques have been developed to provide at
least two independent reflection methods – most notably,
two-layer method [16, 23, 37–39], two-iris method [40],
frequency-varying method [16, 41], short/free-space-backed
method [15, 23, 37] and two-thickness method [9, 16, 22,
42]. Of these, the two-layer and two-iris methods are the
most universally applicable techniques for the ND
characterisation of PEC backed MUTs. However, because
of the analytical complexities involved in using the
two-layer method (Green’s function with off-diagonal
elements combined with complex DRWG field expressions)
and the additional hardware required to use the two-iris
method, two-thickness method is utilised in this research.
Note that this choice is only for convenience. Each of the
techniques listed above can be used with the single DRWG
probe presented in this paper.
Last, to experimentally verify the new probe, broadband

material characterisation results of a magnetic absorbing
material are presented and compared with those obtained
using the traditional, destructive Nicolson–Ross–Weir
(NRW) [43, 44] technique. The new probe’s sensitivity to

sample thickness, flange-plate thickness, cutoff wavenumber
and measured S11 uncertainties is also presented.

2 Methodology

In this section, an expression for Sthy11 is derived for the single
DRWG probe shown in Fig. 1. The forms of the fields in the
DRWG and parallel-plate/MUT regions of the probe are
detailed first. A MFIE is derived by enforcing the
continuity of the transverse DRWG and parallel-plate/MUT
region magnetic fields at the DRWG aperture, that is, z = 0.
This MFIE is subsequently solved using the MoM.

2.1 DRWG and parallel-plate region field
distributions

The fields in the DRWG region of Fig. 1 are found using the
technique outlined by Montgomery [45] and later by Elliot
[46]. First, the electric and magnetic fields in each DRWG
subregion (i.e. the gap subregion, |x| < Δx ∩ |y| < Δy, and the
two trough subregions, Δx < |x| < a/2 ∩ |y| < b/2) are
expanded in a set of TEz and, if applicable, TMz modes
[32]. Note that only the dominant DRWG mode, commonly
termed a TEz

10 hybrid mode [45, 47], is considered in this
research. Thus, only the TEzmode development is reported here.
The mode-matching technique [48] is then used to enforce

the continuity of the transverse electric and magnetic fields at
x =− Δx and Δx producing the following homogeneous
matrix equation

A(kc)
a
b

( )
= A11(kc) A12(kc)

A21(kc) A22(kc)

( )
a
b

( )
= 0 (2)

where kc is the cutoff wavenumber and A11, A12, A21 and A22

are N ×N submatrices whose ñth row and nth column entries
are given by

A11
ñn(kc) = A22

ñn(kc) =
tan kgxñDx

( )− cot kgxñDx
( )

2kgxñ
dñn

−
∑
m

cmncmñ cot k
t
xm (a/2)− Dx
( )[ ]

k txm(b/2) 1+ dm0
( )

Dy(1+ dñ0)

A12
ñn(kc) = A21

ñn(kc) =
tan kgxñDx

( )− cot kgxñDx
( )

2kgxñ
dñn

(3)

respectively. Here, n and ñ represent basis and testing indices,
respectively; δij is the Kronecker delta; k tym = mp/b and
kgyn = np/ 2Dy

( )
are the y-directed DRWG wavenumbers in

the trough and gap subregions, respectively; k txm =












k2c − (k tym)

2
√

and kgxn =













k2c − (kgyn)

2
√

are the unknown
x-directed DRWG wavenumbers in the trough and gap
subregions, respectively; αn and βn are the unknown
complex TEz modal amplitudes; and

cmn =
1

2

1

kgyn − k tym
− 1

kgyn + k tym

( )
sin k tym

b

2
− Dy

( )[ ]{

− (− 1)n sin k tym
b

2
+ Dy

( )[ ]} (4)

The cutoff wavenumber kc is found by forcing an eigenvalue

Fig. 1 Single DRWG probe measurement geometry

The top and bottom figures show the xz-plane (side) and xy-plane (aperture)
views of the probe geometry, respectively
In the xz-plane view, the parallel-plate/MUT region is filled with the MUT
(thickness d ) of unknown complex relative permittivityεr and permeability μr
The DRWG region is free-space filled
In the xy-plane view, the DRWG sub regions (the gap, left trough and right
trough) are labelled for the reader’s convenience
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of A(kc) to zero via numerical root search. The vector
containing the complex modal amplitudes, (α β)T, is the
associated eigenvector of that zero eigenvalue. There are an
infinite number of wavenumbers which satisfy (2) each
corresponding to a distinct TEz DRWG mode. The kc which
corresponds to the first zero of (2) is the dominant DRWG
mode cutoff wavenumber.
After kc and (α β)T have been found, expressions for the

TEz transverse DRWG fields can be obtained. The
transverse fields in the DRWG region (z < 0) are

Et = e−jkzz + Gejkzz
( ) egt (r) x| | , Dx

eltt (r) x , −Dx

ertt (r) x . Dx

⎧⎪⎨
⎪⎩

H t = e−jkzz − Gejkzz
( ) hgt (r) x| | , Dx

hltt (r) x , −Dx

hrtt (r) x . Dx

⎧⎪⎨
⎪⎩

(5)

Here kz =










k20 − k2c

√
, where k0 = 2pf








10m0

√
; G = Sthy11 is the

desired theoretical reflection coefficient; and egt , h
g
t , e

extrt
t ,

hrtt , e
lt
t , and hltt are the DRWG dominant-mode transverse

electric and magnetic field distributions in the gap and
trough subregions, respectively. The analytical forms for
these field distributions can be found in [4] and are not
provided here for the sake of brevity.
The transverse magnetic field in the parallel-plate/MUT

region of Fig. 1 is found by replacing the DRWG aperture
with an equivalent transverse magnetic current M in
accordance with Love’s equivalence theorem [31–34]. The
transverse magnetic field is given by

Hpp
t (r, z) = 1

jvm1
�I t k

2 + ∇t∇
( ) · F(r, z) (6)

where the electric vector potential F is

F(r, z) =
∫ ∫

S

�G(r, z
∣∣r′, 0) · 1M(r′) dS′ (7)

where �G is the dyadic magnetic-current-excited parallel-plate
Green’s function [49], �I t = x̂x̂+ ŷŷ, ∇t = x̂(∂/∂x)+ ŷ(∂/∂y),
r = x̂x+ ŷy is the observation vector, r′ = x̂x′ + ŷy′ is the
source vector, S represents the DRWG aperture cross
section and k = 2pf






1m

√
.

2.2 MFIE and MoM solution

A MFIE can be derived by enforcing the continuity of the
transverse magnetic fields in the DRWG and parallel-plate/
MUT regions at z = 0, namely

1

jvm1
(�I tk

2 + ∇t∇) · F(r, 0)

= (1− G)

hgt (r) x| | , Dx

hltt (r) x , −Dx

hrtt (r) x . Dx

⎧⎪⎨
⎪⎩ r [ S

(8)

where the unknowns in the above MFIE are M and Γ.
Expanding M using the transverse DRWG electric field
distribution given in (5) and testing the resulting expression
with the transverse DRWG magnetic field distribution also
given in (5) yields the desired Sthy11 .

It is possible to calculate the convolution integral in (7)
directly. This approach requires the numerical evaluation of
four integrals – two basis and two testing integrals. It is
numerically advantageous to apply the convolution theorem
and perform the required integrations in the spectral domain
[39]. This approach permits all the basis and testing
integrals to be computed in closed form yielding spectral
domain integrals which, in the worst computational cases,
are given by

∑
n,m

∑
ñ,m̃

etyn,me
t
yñ,m̃

�1
−1 (k2 − j2) fm,m̃(j)

�1
−1

cosh (pd)

p sinh (pd)
gm,m̃ (h) dh dj

(9)

where p =















j2 + h2 − k2

√
is the spectral domain wavenumber

and

fm,m̃(j) =
∫a/2
Dx

sin k txm
a

2
− x′

( )[ ]
cos (jx′) dx′

×
∫a/2
Dx

sin k txm̃
a

2
− x

( )[ ]
cos (jx) dx

gm,m̃(h) =
∫b/2
−b/2

cos k tym y′ − b

2

( )[ ]
e−jhy′ dy′

×
∫b/2
−b/2

cos k tym̃ y− b

2

( )[ ]
e jhy dy

(10)

The η integral can be evaluated using complex-plane analysis
yielding a pole-series representation. The remaining j integral
contains irremovable branch cuts and is therefore most easily
computed numerically [3, 5, 22].
It should be noted that because of the summations in the

basis and testing functions, special care must be taken when
computing the spectral domain integrals. For optimal
computational efficiency, it is best to bring the summations
inside the j integral, evaluate the η integral via
complex-plane analysis, evaluate the resulting summations
and lastly, calculate the j integral numerically. Note that
there are a total of 16 distinct spectral domain integrals
which must be evaluated.

3 Experimental verification

3.1 Apparatus description and experimental
procedure

To validate the new ND broadband probe, material
measurements were made of ECCOSORB® SF-3 (d = 1.85 mm)
[50] using an Agilent E8362B vector network analyzer
(VNA) [51]. The data were collected from 6 to 18 GHz
using the apparatus shown in Fig. 2. The DRWG probe
apparatus consisted of a single Microwave Engineering
Corporation WRD650 DRWG (a = 18.29 mm, b = 8.15 mm,
Δ x = 2.20 mm and Δy = 1.28 mm) [52] connected via
screws to a 15.24 cm × 15.24 cm × h = 0.95 cm aluminium
flange plate. On the side of the flange plate which
connected to the DRWG, 3.18 mm alignment holes were
machined to ensure precision alignment between the
DRWG and the flange-plate apertures.
Before the material measurements were made, the

apparatus was calibrated using a thru-reflect-line (TRL)
calibration [53]. Two custom made DRWG line standards
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were used in the calibration – one 6.98 mm thick to cover
6–12 GHz and one 3.40 mm thick to cover 12–18 GHz.
These line standards can be seen in the photograph in
Fig. 2. The TRL calibration placed the port 1 calibration
plane at the DRWG aperture. This calibration plane was
then phase shifted to the front face of the MUT by

Smeas
11 = STRL11 e2jkzh (11)

The εr and μr of SF-3 were found by solving (1) to within a
tolerance of 10−6 using the trust-region-reflective method
[36]. As discussed above, two-thickness method [9, 16, 22,
42] was utilised to provide the second independent S11
measurement necessary to find εr and μr unambiguously.
This method was chosen for analytical and computational
convenience.
The new probe’s sensitivity to measurement errors was also

investigated. Uncertainty analysis was performed on the
extracted εr and μr values taking into account errors in
Smeas
11 (sS11

given in [51]), flange-plate thickness h (σh =
0.05 mm), MUT thickness d (σd1 = σd2 = 0.05 mm) and
cutoff wavenumber kc

(
skc

= 0.03kc
)
. Note that skc

arises
mainly from uncertainties in DRWG aperture dimensions,
in particular, errors because of gap width Δx and gap height
Δy as well as errors because of rounded aperture corners
[54]. Recent work has shown that the value of kc varies by
approximately 3% when these factors are considered [54].
To the authors’ knowledge, this is the first time that the
effect of this error on the εr and μr extracted using a
waveguide probe has been quantified.
One error source which was not considered in this analysis

was probe lift-off or air-gap error [37]. To minimise the
impact of this error, four vise-grip clamps were used to
securely hold the flange plate, MUT and PEC-backing plate
together. The clamps were placed surrounding and as close
as possible to the DRWG aperture where the field
concentration and therefore the impact of possible air gaps
was the strongest. Quantifying probe lift-off error requires
the two-layer magnetic-current-excited parallel-plate Green’s
function, which when combined with the complex
analytical form of the DRWG fields, represents a significant
theoretical and computational challenge beyond the scope

of the work presented here. Quantifying probe lift-off error
is therefore left to future work.
The following expression was used to calculate the

measurement uncertainty in the real part of εr [55]

s2
1rr
= ∂1rr

∂Sr11, 1
sSr11, 1

( )2

+ ∂1rr
∂Sxti11, 1

sSi11, 1

( )2

+ ∂1rr
∂Sr11, 2

sSr11, 2

( )2

+ ∂1rr
∂Si11, 2

sSi11, 2

( )2

+ ∂1rr
∂d1

sd1

( )2

+ ∂1rr
∂d2

sd2

( )2

+ ∂1trr
∂h

sh

( )2

+ ∂1rr
∂kc

skc

( )2

(12)

where the superscripts ‘r’ and ‘i’ denote the real and
imaginary parts and ‘11, 1’ and ‘11, 2’ denote the first and
second S11 measurements (i.e. thickness 1 and thickness 2
mm), respectively. The partial derivatives in the above
expression were estimated using the forward difference
approximation. The values for s1ir

, smr
r

and smi
r

were
calculated in a similar manner as above. Note that the error
values provided by (12) are worst case estimates [55].

3.2 ECCOSORB® SF-3 results

Fig. 3 shows the SF-3 εr (Fig. 3a) and μr (Fig. 3b) results
using the single DRWG probe (blue bars) introduced in this
work. The solid black traces are the traditional, destructive
NRW technique results using an SF-3 sample which
uniformly fills the cross section of the DRWG. These
results are provided to serve as a reference. Additional
information about these DRWG NRW measurements,
including descriptions of measurement procedures and
sources of error, can be found in [54]. The widths of the
blue bars in the plots represent the errors in εr and μr, that
is, +2s1r

and +2smr
, respectively, because of the

measurement errors discussed above.
Overall, the SF-3 εr and μr reference results generally lie

within the margins of error of the DRWG probe results.
The major discrepancy between the two occurs in the mi

r
results, where the DRWG probe overestimates the amount
of magnetic loss. Although the quality of the DRWG probe
mi
r estimate presented here is poor, it is consistent with

those reported in the literature for similar ND single probe
measurement geometries [15, 16, 22, 23, 38, 40–42].

3.3 Flange-plate size

Before concluding, it is worth discussing flange-plate size as
this directly affects the probe’s applicability for field
measurements. Because of the possibility that reflections
from the edges of the flange plate would corrupt the
reflection measurements (recall that in the theoretical
development, the flange plate is assumed to be infinite in
extent), waveguide probes have traditionally been applied to
lossy materials. In these cases, the flange plate needs to be
large enough such that the unwanted edge reflected wave is
attenuated to a degree less than the noise floor of the VNA.
This condition is easily met for SF-3 and the 15.24 cm ×
15.24 cm flange plate used in the experimental results
discussed above. The traditional approach to determining

Fig. 2 Photograph of the DRWG measurement apparatus with all
parts labelled
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flange size works well when one knows that the MUT is
lossy; however, it stipulates an unrealistic flange size when
the MUT is low loss. A simple technique to overcome this
limitation is to remove the unwanted edge reflections via
time-domain gating the measured reflection coefficient [56].
To use this approach, the characterisation measurement
must possess sufficient bandwidth such that the edge
reflections can be resolved. This criterion is

B = c

2r






1rmr

√ (13)

where B is the minimum required bandwidth, c/






1rmr

√
is the

speed of light in the MUT and ρ is the radius of the flange

plate [56]. Solving (13) for ρ yields the minimum
flange-plate radius in which the edge reflections can be
resolved and thus removed via time-domain gating. Since a
vast majority of materials at microwave frequencies possess
slower phase velocities than c, (13) can still be used to
determine an acceptable flange-plate size even if εr and μr
are unknown by assuming the MUT is free space. Applying
this criterion for the DRWG probe presented here results in
a minimum flange-plate radius ρ = 1.25 cm. This is
significantly smaller than that stipulated by the traditional
flange-size calculation, in which the minimum flange-plate
radius is approximately 3 m.

4 Conclusion

In this paper, a new waveguide probe which utilised a DRWG
to provide broadband, ND material characterisation results of
PEC-backed materials was introduced. The new probe
possessed two qualities – broad bandwidth similar to
coaxial probes and structure robustness characteristic of
rectangular waveguide probes – which made it especially
attractive for NDI/NDE applications in the field. The
theoretical development of the DRWG probe was discussed
in Section 2. This involved the derivation of the theoretical
reflection coefficient necessary to characterise the MUT.
This was achieved by utilising Love’s equivalence theorem
to replace the DRWG aperture with an equivalent magnetic
current. The continuity of transverse magnetic fields at the
DRWG aperture was then enforced yielding a MFIE, which
was subsequently solved for the theoretical reflection
coefficient using the MoM. The εr and μr of the MUT were
then found by minimising the root-mean-square difference
between the theoretical and measured reflection coefficients
using the trust-region-reflective method. To experimentally
verify the new probe, material characterisation results of
ECCOSORB® SF-3 were presented and compared with
those obtained using the traditional, destructive NRW
technique. The probe’s sensitivity to sample thickness,
flange-plate thickness, cutoff wavenumber and measured
reflection coefficient uncertainties was also discussed. It
was observed that the 1rr, 1

i
r and mr

r values returned by the
probe were consistent with the reference results; however,
there was a significant discrepancy between the probe and
reference mi

r results. Although the new probe performed
poorly in this regard, mi

r results of this quality are reported
elsewhere in the literature for similar ND single probe
measurement geometries. It should be noted that in the
analysis presented here, only the contribution from
the dominant DRWG mode was considered because of the
theoretical and computational complexity of the problem.
Incorporating higher-order DRWG modes into the analysis
is future work.
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