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Abstract. Extending existing scalar Schell-model source work, we derive the M2 factor for a general electro-
magnetic or vector Schell-model source to assess beam quality. In particular, we compute theM2 factors for two
vector Schell-model sources found in the literature. We then describe how to synthesize vector Schell-model
beams in terms of specified, desired M2 and present Monte Carlo simulation results to validate our analysis.
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In the early 1990s, Siegman proposed theM2 factor as a met-
ric to assess laser beam quality.1 Siegman defined the M2

factor as the ratio of a test beam’s space-beamwidth product
to that of an ideal Gaussian TEM00 beam. In so doing, he
showed that the test beam’s spot size WxðzÞ (in the x direc-
tion as a function of range z) obeyed the quadratic propaga-
tion formula:

EQ-TARGET;temp:intralink-;e001;63;444W2
xðzÞ ¼ W2

xðz0Þ þM4
x

λ2

π2W2
xðz0Þ

ðz − z0Þ2; (1)

where λ is the wavelength, z0 is the z location of the waist
plane, and Wxðz0Þ is the test beam’s spot size in the waist
plane, i.e., Wxðz0Þ is the test beam’s waist. Expressed in this
form, the physical interpretation ofM2 becomes clear:M2 ≥
1 is the test beam’s far-zone (FZ) beam spread relative to an
ideal Gaussian beam with a waist equal to that of the test
beam.

Siegman’sM2 quickly gained acceptance and became the
laser industry’s standard for assessing beam quality. It was
soon extended to include hard-aperture,2,3 vortex,4 and sto-
chastic, or partially coherent beams.5–8 The latter, which are
germane to this work, focus exclusively on scalar partially
coherent beams. There have been several papers that derived
the M2 factors for specific electromagnetic (EM) or vector
partially coherent beams, e.g., EM Gaussian Schell-model
(EGSM) beams.9–12 However, none to date have derived
an expression for the M2 factor of a general EM Schell-
model beam.

This analysis is useful considering the wide-spread use of
M2 to assess beam quality and a large number of vector
Schell-model sources that have been developed for applica-
tions, such as free-space/underwater optical communica-
tions, directed energy, optical trapping/tweezers, etc.13–26

For directed energy, in particular, the use of M2 to describe
beam quality is pervasive, and there has been recent work in
modeling dynamic, stochastic, noncommon-path phase
errors in high-energy-laser systems in terms of M2.27 Most

importantly, having a relation for the M2 factor of a general
EM Schell-model source allows one to consider beam qual-
ity in the design of new vector Schell-model beams.

For the reasons stated above, here, we extend the scalar
partially coherent source M2 analysis presented in Refs. 5
and 6 to vector Schell-model beams. Starting with Siegman’s
M2 definition, we derive an expression for the M2 factor of
a vector partially coherent source in terms of the vector
component beam quality factors. We then apply the results
in Refs. 5 and 6 to derive a simple and physical relation for
the M2 factor of a general vector Schell-model beam. We
present examples, where we calculateM2 for two EM Schell-
model sources using our M2 relation and describe how to
synthesize vector Schell-model beams in terms of specified,
desired M2.

In Sec. 2, we present Monte Carlo simulations, where
we generate two examples of EM Schell-model sources in
terms of M2 to validate our analysis. We then study the
convergence of the stochastic vector field realizations to the
specified, desired M2. Last, we conclude this paper with
a summary of the work presented herein.

1 Theory
In this section, we first review the scalar M2 theory found in
Refs. 5 and 6. Next, we calculate the M2 factors for two
example vector Schell-model sources. We then describe how
to generate vector Schell-model beams in terms of specified,
desired M2.

1.1 Siegman’s M2

As defined by Siegman,1 theM2 factor in the x direction M2
x

is as follows:

EQ-TARGET;temp:intralink-;e002;326;158M2
x ¼ 4πσxσfx ; (2)

with a similar definition for M2
y. The normalized beam

widths σx and σfx are as follows:*Address all correspondence to Milo W. Hyde IV, E-mail: milo.hyde@us.af.mil

Optical Engineering 074101-1 July 2019 • Vol. 58(7)

Optical Engineering 58(7), 074101 (July 2019)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 20 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.OE.58.7.074101
https://doi.org/10.1117/1.OE.58.7.074101
https://doi.org/10.1117/1.OE.58.7.074101
https://doi.org/10.1117/1.OE.58.7.074101
https://doi.org/10.1117/1.OE.58.7.074101
https://doi.org/10.1117/1.OE.58.7.074101
mailto:milo.hyde@us.af.mil
mailto:milo.hyde@us.af.mil
mailto:milo.hyde@us.af.mil
mailto:milo.hyde@us.af.mil


EQ-TARGET;temp:intralink-;e003;63;752

σ2x ¼
RR

∞
−∞ ðx − hxiÞ2Tr½Wðρ; ρÞ�d2ρRR∞

−∞ Tr½Wðρ; ρÞ�d2ρ

¼
RR

∞
−∞ ðx − hxiÞ2SxðρÞd2ρRR∞

−∞ SxðρÞd2ρþ
RR∞

−∞ SyðρÞd2ρ

þ
RR∞

−∞ ðx − hxiÞ2SyðρÞd2ρRR∞
−∞ SxðρÞd2ρþ

RR∞
−∞ SyðρÞd2ρ

σ2fx ¼
RR

∞
−∞ ðfx − hfxiÞ2Tr½W̃ðf; fÞ�d2fRR∞

−∞ Tr½W̃ðf; fÞ�d2f

¼
RR∞

−∞ ðfx − hfxiÞ2S̃xðfÞd2fRR∞
−∞ S̃xðfÞd2f þ RR∞

−∞ S̃yðfÞd2f

þ
RR

∞
−∞ ðfx − hfxiÞ2S̃yðfÞd2fRR∞

−∞ S̃xðfÞd2f þ RR∞
−∞ S̃yðfÞd2f

; (3)

where W is the cross-spectral density (CSD) matrix17,28,29 of
the beam at its waist location, Tr is the trace, and SαðρÞ ¼
Wααðρ; ρÞ are the spectral densities (SDs)17,28,29 of the
beam’s α ¼ x; y polarization components.

Continuing to define the symbols in Eq. (3), W̃ is the
Fourier transform of W, i.e.:
EQ-TARGET;temp:intralink-;e004;63;492

W̃ðf1; f2Þ ¼
ZZZZ

∞

−∞
Wðρ1; ρ2Þ exp½−j2πðρ1 · f1 − ρ2 · f2Þ�

× d2ρ1 d
2ρ2; (4)

where ~Sα is as follows:
EQ-TARGET;temp:intralink-;e005;63;419

S̃αðfÞ ¼
ZZZZ

∞

−∞
Wααðρ1; ρ2Þ exp½−j2πðρ1 − ρ2Þ · f�

× d2ρ1 d
2ρ2; (5)

where ρ ¼ x̂xþ ŷy and f ¼ x̂fx þ ŷfy. Note that the
denominators of σ2x and σ2fx are equal due to Parseval’s theo-
rem. As such, we define and use the symbol P ¼ Px þ Py

hereafter to represent this normalization factor.
Last, hxi and hfxi are the normalized beam “first

moments” at the beam’s waist location and in the spatial
frequency domain, respectively, such that
EQ-TARGET;temp:intralink-;e006;63;277

hxi ¼
RR

∞
−∞ xSxðρÞd2ρ
Px þ Py

þ
RR∞

−∞ xSyðρÞd2ρ
Px þ Py

hfxi ¼
RR

∞
−∞ fxS̃xðfÞd2f
Px þ Py

þ
RR∞

−∞ fxS̃yðfÞd2f
Px þ Py

: (6)

Following the scalar partially coherent source analysis
presented in Refs. 5 and 6, we choose the z axis—the mean
propagation direction of the random beam—such that
hxi ¼ hfxi ¼ 0. This permits us to write Eq. (3) as follows:
EQ-TARGET;temp:intralink-;e007;63;155

σ2x ¼
Px

Px þ Py
σ2x;x þ

Py

Px þ Py
σ2x;y

σ2fx ¼
Px

Px þ Py
σ2fx;x þ

Py

Px þ Py
σ2fx;y; (7)

where σ2x;α and σ2fx;α are as follows:

EQ-TARGET;temp:intralink-;e008;326;752σ2x;α ¼
1

Pα

ZZ
∞

−∞
x2SαðρÞd2ρ σ2fx;α ¼

1

Pα

ZZ
∞

−∞
f2xS̃αðfÞd2f:

(8)

Substituting Eq. (7) into Eq. (2) and simplifying produce as
follows:
EQ-TARGET;temp:intralink-;e009;326;683

M4
x ¼

Px

ðPx þ PyÞ2
�
Px þ

σ2x;y
σ2x;x

Py

�
½4πσx;xσfx;x�2

þ Py

ðPx þ PyÞ2
�
Py þ

σ2x;x
σ2x;y

Px

�
½4πσx;yσfx;y�2: (9)

The bracketed quantities in Eq. (9) are the vector component
beam quality factors, and therefore,
EQ-TARGET;temp:intralink-;e010;326;583

M4
x ¼

1

Px þ Py

�
Px

Px þ Py
σ2x;x þ

Py

Px þ Py
σ2x;y

�

×
�
Px

σ2x;x
M4

x;x þ
Py

σ2x;y
M4

x;y

�
; (10)

where M2
x;α ¼ 4πσx;ασfx;α are the beam quality factors for

the α ¼ x; y vector components.

1.2 Prior M2
x Scalar Analysis

Through extensive analysis and clever mathematics, Refs. 5
and 6 showed thatM2

x for a scalar beam of any state of coher-
ence is as follows:

EQ-TARGET;temp:intralink-;e011;326;424M4
x ¼ 16π2σ2xσ

2
fx
− J2; (11)

where σ2x is given in Eq. (8) but computed in the source
plane, σ2fx is as follows:

EQ-TARGET;temp:intralink-;e012;326;366σ2fx ¼
1

4π2P

ZZ
∞

−∞

∂2Wðρ1; ρ2Þ
∂x1∂x2

����
ρ;ρ

d2ρ (12)

and J is

EQ-TARGET;temp:intralink-;e013;326;308J ¼ 1

P
Im

�ZZ
∞

−∞
fx

∂W̃ðf1; f2Þ
∂f1x

����
f;f
d2f

�
: (13)

The jρ;ρ and jf;f denote that ρ1 ¼ ρ2 ¼ ρ and f1 ¼ f2 ¼ f
after computing the partial derivatives, respectively.

For Schell-model sources,17,28 Ref. 6 showed that Eq. (11)
further reduces to

EQ-TARGET;temp:intralink-;e014;326;216M4
x ¼ ðMc

xÞ4 − 4σ2x
∂2aðρdÞ
∂x2d

����
ρd¼0

; (14)

where ðMc
xÞ2 is the beam quality factor of the corresponding

coherent source, ρd ¼ x̂xd þ ŷyd ¼ x̂ðx1 − x2Þ þ ŷðy1 − y2Þ,
and aðρdÞ is related to the source’s spectral autocorrelation
function by

EQ-TARGET;temp:intralink-;e015;326;124μðρdÞ ¼ aðρdÞ exp½jψðρdÞ�: (15)

Both a and ψ are real functions. Since μð0Þ ¼ 1 and
μð−ρdÞ¼ μ�ðρdÞ, að0Þ ¼ 1, ψð0Þ ¼ 0, að−ρdÞ ¼ aðρdÞ, and
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ψð−ρdÞ ¼ −ψðρdÞ. If μ is real, then a ¼ μ, and μ can be
substituted directly into Eq. (14).

1.3 New M2
x Vector Analysis

Substituting in Eq. (14) for the vector component beam qual-
ity factors in Eq. (10) and simplifying produce as follows:
EQ-TARGET;temp:intralink-;e016;63;681

M4
x ¼

1

Px þ Py

�
Px

Px þ Py
σ2x;x þ

Py

Px þ Py
σ2x;y

�

×

(
Px

σ2x;x

"
ðMc

x;xÞ4 − 4σ2x;x
∂2axxðρdÞ

∂x2d

����
ρd¼0

#

þ Px

σ2x;y

�
ðMc

x;yÞ4 − 4σ2x;y
∂2ayyðρdÞ

∂x2d

����
ρd¼0

��
: (16)

Because M2
x in Eq. (16) is expressed in terms of vector com-

ponent quantities (i.e., Mc
x;α, σ2x;α, Pα, and aαα), it is easy to

use, in practice, to calculate the beam quality factor. It is not,
however, the most simplified or physical form. Noting that
the bracketed quantity on the first line of Eq. (16) is equal to
σ2x via Eq. (7), expanding, and then simplifying Eq. (16)
yields as follows:
EQ-TARGET;temp:intralink-;e017;63;492

M4
x¼σ2x

�
Px

PxþPy

ðMc
x;xÞ4

σ2x;x
þ Py

PxþPy

ðMc
x;yÞ4

σ2x;y

�

−4σ2x
�

Px

PxþPy

∂2axxðρdÞ
∂x2d

����
ρd¼0

þ Py

PxþPy

∂2ayyðρdÞ
∂x2d

����
ρd¼0

�
:

(17)

Last, substituting in ðMc
x;αÞ2 ¼ 4πσx;ασ

c
fx;α

, recalling Eq. (7),
and simplifying, the desired result is obtained as follows:
EQ-TARGET;temp:intralink-;e018;63;374

M4
x ¼ð4πσxÞ2

�
Px

PxþPy
ðσcfx;xÞ2þ

Py

PxþPy
ðσcfx;yÞ2

�

−4σ2x

"
Px

PxþPy

∂2axxðρdÞ
∂x2d

����
ρd¼0

þ Py

PxþPy

∂2ayyðρdÞ
∂x2d

����
ρd¼0

#

¼ðMc
xÞ4−4σ2x

"
Px

PxþPy

∂2axxðρdÞ
∂x2d

����
ρd¼0

þ Py

PxþPy

∂2ayyðρdÞ
∂x2d

����
ρd¼0

#
: (18)

Equation (18)—in particular, the last line of Eq. (18)—is
the main analytical result of this paper and generalizes the
scalar result presented in Ref. 6. Its form is very similar
to the scalar result in that M2

x depends on the coherence
of the source only through the second derivatives of the
vector correlation functions evaluated at ρd ¼ 0. Rather
intuitively, it differs in the fact that the “coherence contribu-
tions,” σx and σcfx , are weighted by the fraction of power
in the associated vector component. This being the case,
one is tempted to try to manipulate Eq. (18) into the
sum of weighted, component, beam quality factors M2

x;α.
Unfortunately, this simple, physical form for M2

x is spoiled
by cross terms, which are evident in Eq. (16).

1.4 Examples

Here, we calculate the M2
x for two example, vector Schell-

model sources. We then simulate them in terms of M2
x in

Sec. 2.

1.4.1 EM Gaussian Schell-model source

The elements of the CSD matrix for an EGSM source are as
follows:
EQ-TARGET;temp:intralink-;e019;326;655

Wαβðρ1; ρ2Þ ¼ Aα exp

�
−

ρ21
4σ2α

�
Aβ exp

�
−

ρ22
4σ2β

�

× Bαβ exp

�
−
jρ1 − ρ2j2

2δ2αβ

�
; (19)

where α; β ¼ x; y, Aα is the amplitude of the α field compo-
nent, and σα is the RMS width of the α component SD.
Also in Eq. (19), Bαβ is the complex correlation coefficient
between the α and β field components and δαβ is the RMS
width of the cross-correlation function μαβ, i.e., the cross-
correlation function of the α and β field components.17,29

The EGSM source parameters—Aα, σα, δαβ, and Bαβ—must
satisfy the realizability conditions derived in Refs. 17 and 30.
Since only the diagonal elements of the CSD matrix are
required to compute M2

x, the Bαα ¼ 1 criterion is the most
relevant here.

To compute M2
x, we use Eq. (16). The normalized beam

widths of the x and y components of the EGSM source, com-
puted using Eq. (8), are σx;α ¼ σα. The powers in the x and y
components of the source are computed using the denomi-
nators in Eq. (3) and are Pα ¼ 2πσ2αA2

α. The corresponding
coherent source to the EGSM source defined in Eq. (19) is
as follows:

EQ-TARGET;temp:intralink-;e020;326;377Wc
αβðρ1; ρ2Þ ¼ AαAβBαβ exp

�
−

ρ21
4σ2α

�
exp

�
−

ρ22
4σ2β

�
: (20)

This CSD function describes a vector source composed of
horizontally and vertically polarized, spatially coherent,
correlated, Gaussian beams. Since the x and y vector com-
ponents of the source are Gaussian beams, the component
beam quality factors are ðMc

x;αÞ2 ¼ 1. Last, the component
spectral correlation functions μαα are real; therefore,
aαα ¼ μαα and the second derivatives in Eq. (16) evaluate to

EQ-TARGET;temp:intralink-;e021;326;256

∂2aααðρdÞ
∂x2d

����
ρd¼0

¼ ∂2

∂x2d
exp

�
−

ρ2d
2δ2αα

�����
ρd¼0

¼ −
1

δ2αα
: (21)

Substituting the quantities discussed in the previous para-
graph into Eq. (16) and simplifying produce as follows:
EQ-TARGET;temp:intralink-;e022;326;186

M2
x¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
xσ

4
xþA2

yσ
4
y

ðA2
xσ

2
xþA2

yσ
2
yÞ2

s �
A2
x

�
1þ4

σ2x
δ2xx

�
þA2

y

�
1þ4

σ2y
δ2yy

��
1∕2

:

(22)

This expression is equal to the M2
x for an EGSM source

derived in Refs. 9–12 using different methods. Note that let-
ting either Ax ¼ 0 or Ay ¼ 0 yields theM2

x for a scalar GSM
source first derived in Ref. 6. We generate an EGSM source
with a specified M2

x in Sec. 2.
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1.4.2 Vector optical coherence lattices

Another popular and relatively new example of a vector
partially coherent source is the so-called vector optical
coherence lattice (VOCL).14 The CSD matrix elements for
a VOCL take the form:
EQ-TARGET;temp:intralink-;e023;63;693

Wαβðρ1;ρ2Þ¼Aα exp

�
−

ρ21
4σ2α

�
Aβ exp

�
−

ρ22
4σ2β

�

×Bαβjinc

�jρ1−ρ2jffiffiffi
2

p
δαβ

�
1

N

XN
n¼1

exp½−jvn ·ðρ1−ρ2Þ�;

(23)

where jincðxÞ ¼ 2J1ðxÞ∕x, J1 is a first-order Bessel function
of the first kind, and vn ¼ x̂vnx þ ŷvny is a vector that points
from the origin to the n’th node of the “coherence lattice.”
The other symbols have been defined previously and gener-
ally have the same physical interpretation as the EGSM
source. One should immediately recognize that the spectral
cross-correlation function in Eq. (23) is equivalent to the FZ
pattern (spatial Fourier transform) of an array of circular
transmitters.

To find the beam quality factor, we again use Eq. (16).
The σx;α ¼ σα, Pα ¼ 2πσ2αA2

α, and ðMc
x;αÞ2 ¼ 1 are the same

as in the EGSM source example. The second derivative of
aαα is much more difficult. Here, for analytical convenience,
we assume that the lattice nodes are symmetric about the
origin. This assumption means that μαα is real, and thus,
aαα ¼ μαα. After much calculus and algebra (details in
Sec. 4 Appendix A), the second derivatives in Eq. (16)
evaluate to
EQ-TARGET;temp:intralink-;e024;63;395

∂2aααðρdÞ
∂x2d

����
ρd¼0

¼ ∂2

∂x2d

�
jinc

�
ρdffiffiffi
2

p
δαα

�
1

N

XN
n¼1

expð−jvn ·ρdÞ
�����

ρd¼0

¼−
1

8δ2αα
−
1

N

XN
n¼1

v2nx: (24)

Substituting σx;α ¼ σα, Pα ¼ 2πσ2αA2
α, ðMc

x;αÞ2 ¼ 1;
Eq. (24) into Eq. (16); and simplifying produce as follows:

EQ-TARGET;temp:intralink-;e025;326;752

M2
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
xσ

4
x þ A2

yσ
4
y

ðA2
xσ

2
x þ A2

yσ
2
yÞ2

s

×
	
A2
x

�
1þ 1

2

σ2x
δ2xx

�
1þ 8

N

XN
n¼1

δ2xxv2nx

��

þ A2
y

�
1þ 1

2

σ2y
δ2yy

�
1þ 8

N

XN
n¼1

δ2yyv2nx

���1∕2

: (25)

We generate and analyze a VOCL, in terms of M2
x, in Sec. 2.

1.5 Generating Stochastic Vector Fields in
Terms of M2

x

An instance of a Schell-model source can be generated by
filtering a two-dimensional (2-D) array of circular complex
Gaussian random numbers. For computational efficiency, it
is best to perform the filtering in the spectral domain using
the convolution theorem. This process has been described in
the literature many times.31–37 Here, we present the necessary
equations to implement the technique.

Any type of vector Schell-model source can be formed by
the following optical field realization:31,33

EQ-TARGET;temp:intralink-;e026;326;494EαðρÞ ¼ Cα exp

�
−

ρ2

4σ2α

�
TαðρÞ; (26)

where Cα is the complex amplitude and Tα is the stochastic
complex transmittance screen for the α ¼ x; y component of
the field, respectively. Tα is formed from correlated, circular
complex Gaussian random numbers. Here, we have assumed
a Gaussian shape for the source, considering that Sec. 1.4
examples also have Gaussian shapes. In general, the source
can take any shape.

Hereafter, we specialize the mathematics to generate the
sources discussed in Sec. 1.4. The procedure for synthesizing
any other type of vector Schell-model source is the same as
presented here, only the mathematical details change.

Taking the cross-correlation of Eq. (26) with Eβ and com-
paring the resulting expression to Eqs. (19) and (23) yields
the following equalities: jCαj ¼ Aα, argðCαÞ − argðCβÞ ¼
argðBαβÞ, and

EQ-TARGET;temp:intralink-;e027;63;271hTαðρ1ÞT�
βðρ2Þi ¼

8<
:

jBαβj exp


− jρ1−ρ2j2

2δ2αβ

�
EGSM source

jBαβjjinc


jρ1−ρ2jffiffi

2
p

δαβ

�
1
N

P
N
n¼1 exp½−jvn · ðρ1 − ρ2Þ� VOCL

: (27)

Because potentially jBxyj > 0, Tx and Ty, in general, must
be generated from correlated Gaussian random numbers. To
see this and reveal the conditions on the values of jBxyj and
δxy, we note that an instance of Tα is generated by31,32

EQ-TARGET;temp:intralink-;e028;63;165

Tα½i; j� ¼
X
m

X
n

rα½m; n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦTα

½m; n�
2LxLy

s
exp

�
j
2π

Nx
mi

�

× exp

�
j
2π

Ny
nj

�
; (28)

where Nx, Ny are the numbers of grid points in the x, y direc-
tions, Lx ¼ NxΔ, Ly ¼ NyΔ are the lengths of the grid in

the x, y directions in meters, and Δ is the grid spacing. In
Eq. (28), rα is an Ny × Nx grid of zero-mean, unit-variance
circular complex Gaussian random numbers and ΦTα

is the
spatial power spectrum of Tα, i.e., the Fourier transform of
the autocorrelation of Tα. For the examples discussed in
Sec. 1.4:

EQ-TARGET;temp:intralink-;e029;326;144ΦTα
ðfÞ

¼
(
2πδ2αα expð−2π2δ2ααf2Þ EGSMsource

8πδ2αα
1
N

P
N
n¼1 circ


 ffiffiffi
8

p
πδαα

���f þ vn
2π

���� VOCL
;

(29)

Optical Engineering 074101-4 July 2019 • Vol. 58(7)

Hyde and Spencer: M2 factor of a vector Schell-model beam

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 20 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



where circðxÞ is the circle function defined in Ref. 38. We
note that Eq. (28) is in the form of a discrete, inverse
Fourier transform; thus, Tα can be generated quickly and
efficiently using the fast Fourier transform algorithm.

Using Eqs. (28) and (29), a Tα with a specified δαα is pro-
duced. Physically, this leads to an EGSM source or VOCL
with the correct, diagonal, CSD matrix elements. Recall that
M2

x depends only on these elements, and therefore, one could
ignore any correlation between the x and y vector compo-
nents (i.e., produce instances of Tx and Ty from independent
Gaussian random numbers) and still produce a beam with the
desired M2

x. Doing this step results in a beam that is ran-
domly, partially, or fully linearly polarized.

To generate a vector Schell-model source with a general
polarization state, one must control the off-diagonal elements
of the CSD matrix as well. This requires examination of the
cross-correlation of Tx with Ty, namely,

EQ-TARGET;temp:intralink-;e030;63;565

hTx½i1;j1�T�
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X
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X
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X
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2LxLy

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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½m1;n1�ΦTy
½m2;n2�

q
× exp
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j
2π

Nx
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�
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�
j
2π

Ny
n1j1

�

× exp

�
−j

2π

Nx
m2i2

�
exp

�
−j

2π

Ny
n2j2

�
:

(30)

The moment hrx½m1; n1�r�y½m2; n2�i ¼ 2Γδ½m1 − m2�
δ½n1 − n2�, where Γ is the correlation coefficient between
the rx and ry random numbers and δ½n� is the discrete Dirac
delta function. Substituting this into Eq. (30) and simplifying
produce as follows:

EQ-TARGET;temp:intralink-;e031;63;353
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n

Γ
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�
: (31)

The Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦTx

ΦTy

p
must equal the cross-power spectra, or the

Fourier transforms of the expressions in Eq. (27), viz.,

EQ-TARGET;temp:intralink-;e032;63;251ΦTxTy
ðfÞ¼8<

:
jBxyj2πδ2xy expð−2π2δ2xyf2Þ EGSMsource
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n¼1 circ
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����fþ vn
2π

����
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(32)

This step produces the following relation for EGSM sources:
EQ-TARGET;temp:intralink-;e033;63;151

Γδxxδyy exp

�
−2π2

�
δ2xx þ δ2yy

2

�
f2
�

¼ jBxyjδ2xy expð−2π2δ2xyf2Þ: (33)

From here, it is quite clear that

EQ-TARGET;temp:intralink-;e034;326;752δxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2xx þ δ2yy

2

s
jBxyj ¼ Γ

2δxxδyy
δ2xx þ δ2yy

; (34)

where 0 ≤ Γ ≤ 1. These conditions were first derived in
Ref. 31.

The VOCL conditions on jBxyj and δxy are derived from

EQ-TARGET;temp:intralink-;e035;326;675
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XN
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circ
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¼ jBxyjδ2xy
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circ

� ffiffiffi
8

p
πδxy

����f − vn
2π

����
�
: (35)

Because of this expression, it is not likely that conditions
similar to Eq. (34) can be derived for a VOCL. Two rather
trivial, but physically important conditions can be derived by
letting Γ ¼ jBxyj:

1. If Bxy ¼ 0, δxy is physically meaningless and its value
is irrelevant, Tx and Ty are statistically independent,
and δαα can be chosen freely. This produces a VOCL
with a diagonal CSD matrix and the beam is randomly,
partially, or fully linearly polarized.

2. If jBxyj ≠ 0, then δxx ¼ δyy ¼ δxy, and Tx and Ty are
correlated to some degree. This produces a VOCL
with a full CSD matrix and the beam is, most gener-
ally, elliptically partially polarized.

These same conditions apply to many other vector Schell-
model sources, e.g., EM multi-Gaussian Schell-model17,21

and EM Bessel-Gaussian Schell-model sources.22,32

The last step is to express the EGSM source and VOCL
conditions derived above in terms of M2

x. The EGSM source
and VOCL component beam quality factors are as follows:

EQ-TARGET;temp:intralink-;e036;326;360M4
x;α ¼

8<
:

1þ 4 σ2α
δ2αα

EGSM source

1þ 1
2
σ2α
δ2αα

�
1þ 8

N

P
N
n¼1 δ

2
ααv2nx

�
VOCL

:

(36)

Referring back to Eqs. (22) and (25), substituting Eq. (36)
into those expressions and inverting produces as follows:

EQ-TARGET;temp:intralink-;e037;326;263M4
x
ðA2

xσ
2
x þ A2

yσ
2
yÞ2

A2
xσ

4
x þ A2

yσ
4
y

¼ A2
xM4

x;x þ A2
yM4

x;y: (37)

We assume that Aα and σα are given. This makes sense
as we would expect the on-axis intensity A2

α and size of the
source to be known. In addition, since generallyM2

x;x ≠ M2
x;y

(or equivalently, δxx ≠ δyy), one of those must be given.
Without loss of generality, we assume M2

x;y is known.
Simplifying Eq. (37) further produces as follows:

EQ-TARGET;temp:intralink-;e038;326;146M4
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x
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yσ
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yÞ2

A2
xσ

4
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yσ
4
y

− A2
yM4

x;y

�
: (38)

Last, substituting Eq. (36) into Eq. (38) and simplifying
yields
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EQ-TARGET;temp:intralink-;e039;63;752
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for an EGSM source, and
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(40)

for a VOCL. We note that the locations of the coherence
lattice nodes vn must be known to find δxx.

In summary, to produce an EGSM source or VOCL with
a desired M2

x:

1. Specify Ax, σx, Ay, σy, M2
x, M2

x;y and for a VOCL, vn.
Recall that jCαj ¼ Aα. The values of M2

x;y, σy, and vn
(for a VOCL) determine δyy [see Eq. (36)].

2. Use Eq. (39) for an EGSM source or Eq. (40) for
a VOCL to find δxx. For both sources, this effectively
sets δxy [see Eq. (34) and VOCL conditions immedi-
ately following Eq. (35)].

3. Specify argðCxÞ, argðCyÞ, and jBxyj. Recall that
argðCxÞ − argðCyÞ ¼ argðBxyÞ. For both sources, the
value of jBxyj determines Γ [see Eq. (34) and for a
VOCL, Γ ¼ jBxyj].

4. Use a multivariate Gaussian random number generator
to produce correlated rx and ry. The means and covari-
ance matrix are as follows:

EQ-TARGET;temp:intralink-;e041;63;343hrrxi ¼ hrixi ¼ hrryi ¼ hriyi ¼ 0

Σ ¼

2
66664
hðrrxÞ2i hrrxrixi hrrxrryi hrrxriyi
hrixrrxi hðrixÞ2i hrixrryi hrixriyi
hrryrrxi hrryrixi hðrryÞ2i hrryriyi
hriyrrxi hriyrixi hriyrryi hðriyÞ2i

3
77775

¼

2
66664
1 0 Γ 0

0 1 0 Γ
Γ 0 1 0

0 Γ 0 1

3
77775;

rx ¼ rrx þ jrix

ry ¼ rry þ jriy (41)

where the superscripts “r” and “i” stand for real and
imaginary parts, respectively.

5. Use Eqs. (28) and (29), the values of δxx, δyy, and vn
(for a VOCL), and the rx and ry from step 4 to generate
instances of Tx and Ty.

6. Use Eq. (26), the values of Cx, Cy, σx, σy, and the Tx
and Ty generated in step 5 to create an EGSM or
VOCL field instance.

Since the generated fields are stochastic, this procedure
will produce an EGSM source or VOCL with a desired,
“on-average” M2

x.

2 Simulation
Here, we present simulation results to validate the analysis in
the previous section. We also examine the convergence of the
stochastic vector fields to the desired M2

x. Before presenting
the results, we discuss the details of the setup.

2.1 Setup

For these Monte Carlo simulations, we used computational
grids with Ny ¼ Nx ¼ 512 points per side. The grid spacings
were chosen such that Δ ¼ minfσx; σyg∕10 resulting in 3
and 0.97 mm for the EGSM source and VOCL simulations,
respectively. These spacings easily satisfied the Nyquist
sampling criterion derived for Gaussian signals in Ref. 39.
The EGSM source and VOCL parameters are given in
Table 1. For the VOCL, the coherence lattice was rectangular
with 5 rows and 4 columns of nodes spaced 500 m−1 apart.

We generated 20,000 EGSM source and VOCL field
instances. From these, we computed the near-zone (NZ)
(i.e., source plane) and FZ Stokes parameters, M2

x, and M2
y.

The Stokes parameters in terms of the CSD matrix elements
are as follows:17,29

EQ-TARGET;temp:intralink-;e042;326;426

S0ðρÞ ¼ Wxxðρ; ρÞ þWyyðρ; ρÞ
S1ðρÞ ¼ Wxxðρ; ρÞ −Wyyðρ; ρÞ
S2ðρÞ ¼ Wxyðρ; ρÞ þWyxðρ; ρÞ
S3ðρÞ ¼ j½Wyxðρ; ρÞ −Wxyðρ; ρÞ�: (42)

Table 1 EGSM source and VOCL parameters.

EGSM VOCL

Ax 1.3 1

Ay 1 1.7

σx 5 cm 1 cm

σy 3 cm 0.97 cm

Bxy 0.15 expð−jπ∕6Þ 0

M2
x 10 11.4

M2
y 10 14.2028

M2
x;x 11 12.5

M2
x;y 5.1446 10.9880

δxx 0.9129 cm 0.1286 cm

δyy 1.1889 cm 0.4707 cm

δxy 1.0599 cm N/A
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Fig. 1 EGSM source results—(a) SNZ
0 Thy, (b) SNZ

0 Sim, (c) SFZ
0 Thy, (d) SFZ

0 Sim, (e) SNZ
1 Thy,

(f) SNZ
1 Sim, (g) SFZ

1 Thy, (h) SFZ
1 Sim, (i) SNZ

2 Thy, (j) SNZ
2 Sim, (k) SFZ

2 Thy, (l) SFZ
2 Sim, (m) SNZ

3 Thy
(n) SNZ

3 Sim, (o) SFZ
3 Thy, (p) SFZ

3 Sim, and (q) convergence of simulatedM2
x andM2

y to the corresponding
theoretical values versus trial number.
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Fig. 2 VOCL results—(a) SNZ
0 Thy, (b) SNZ

0 Sim, (c) SFZ
0 Thy, (d) SFZ

0 Sim, (e) SNZ
1 Thy, (f) SNZ

1 Sim,
(g) SFZ

1 Thy, (h) SFZ
1 Sim, (i) SNZ

2 Thy, (j) SNZ
2 Sim, (k) SFZ

2 Thy, (l) SFZ
2 Sim, (m) SNZ

3 Thy (n) SNZ
3 Sim,

(o) SFZ
3 Thy, (p) SFZ

3 Sim, and (q) convergence of simulated M2
x and M2

y to the corresponding theoretical
values versus trial number.
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For M2
x and M2

y, the σx, σfx , σy, and σfy [see Eq. (3)] were
computed using trapezoidal numerical integration.

To verify that, we produced a source with the correct NZ
and FZ polarization properties, we compared the simulated
Stokes parameters with the corresponding theoretical quan-
tities. The theoretical expressions for the EGSM source and
VOCL NZ Stokes parameters were computed using Eqs. (19)
and (23) and the values in Table 1, respectively. We com-
puted the theoretical FZ Stokes parameters using those same
equations and the Fourier transform in Eq. (4) resulting in
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:

(43)

The integral in the VOCL ~Wαβ can be evaluated in closed
form using Mellin transform techniques.40 The resulting
expression is an infinite series of hypergeometric functions.41

Computing the result using this analytical relation is very
slow; therefore, we evaluated the integral directly using
numerical quadrature.

2.2 Results

Figures 1 and 2 show the EGSM source and VOCL results,
respectively. The figures are organized as follows: the Stokes
parameters are displayed in the first four rows—S0, S1, S2,
and S3, respectively. The first two columns show the NZ
results, with column 1 (the left column) showing the theo-
retical (Thy) results and column 2 (the right column) show-
ing the simulated (Sim) results. Columns 3 and 4 show the
FZ results, with an identical left-right arrangement of Thy
(column 3) and Sim (column 4) results. Note that we have
added row and column headings to Figs. 1 and 2 to aid the
reader. Last, the fifth rows [Figs. 1(q) and 2(q)] show the
convergence of the simulated M2

x and M2
y to the correspond-

ing theoretical values versus Monte Carlo trial number.
Overall, the agreement between simulation and theory is

excellent. We note that the visually conspicuous differences
between the S2 and S3 Thy and Sim VOCL results in Fig. 2
are in fact quantitatively small (see the associated color bars
above the subfigures). These discrepancies arise because of
our choice of color scale and Thy S2 ¼ S3 ¼ 0. Running
more Monte Carlo trials would reduce these errors; however,
S2 and S3 Sim will never be identically zero for that would
require an infinite number of trials.

The simulated M2
x and M2

y converge to the desired values
in approximately 1,000 trials. This finding is consistent with
the scalar Schell-model beam results in Ref. 27. Figures 1
and 2 validate the theoretical analysis presented in Sec. 1.

3 Conclusion
Here, we derived the M2 factor for a general vector Schell-
model beam. Starting with Siegman’s M2 definition, we
found an expression for the M2 factor of a vector partially
coherent beam in terms of its vector component beam quality
factors. Then, applying the prior scalar analysis, we derived

a physical expression for the M2 factor of a general vector
Schell-model source. As an example, we computed the beam
quality factors for two EM Schell-model beams found in the
literature using our new M2 relation and described how to
synthesize vector Schell-model beams in terms of specified,
desired M2.

To validate our analysis, we performed Monte Carlo sim-
ulations, where we generated two partially coherent sources.
The simulated results were found to be in excellent agree-
ment with the corresponding theory, and convergence to
the specified, desired M2 occurred within approximately
1000 vector field realizations. Although not performed here
because of equipment availability, experimental synthesis
and subsequent measurement of the M2 factor for vector
Schell-model sources can be performed using optical setups
described in Refs. 15–18, 32, and 42–44.

The analysis presented in this paper will be useful in the
design of vector Schell-model sources for applications from
optical communications and directed energy to atomic optics
and optical tweezers.

4 Appendix A: Derivation of Eq. (24)
Starting with
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we apply the derivative multiplication rule twice to yield as
follows:
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The first derivatives in Eq. (45) are odd functions of xd;
therefore, evaluating them at ρd ¼ 0 is trivially zero.
Simplifying Eq. (45) produces as follows:
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We now evaluate the second derivatives in Eq. (46) sep-
arately. We begin with the second derivative of the coherence
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lattice term. Bringing the derivatives inside the summation
and evaluating the second derivative of the exponential
yields as follows:
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To evaluate the second derivative of the jinc function and
argument, we first let the argument ρd∕ð

ffiffiffi
2

p
δααÞ ¼ u. The

associated second derivative becomes

EQ-TARGET;temp:intralink-;e048;63;600

∂2

∂x2d

�
jinc

�
ρdffiffiffi
2

p
δαα

��
¼ ∂

∂xd

	
∂u
∂xd

∂
∂u

�
2J1ðuÞ

u

��
: (48)

We now use the Bessel function identity:

EQ-TARGET;temp:intralink-;e049;63;543

2n
x
JnðxÞ ¼ Jn−1ðxÞ þ Jnþ1ðxÞ (49)

to simplify Eq. (48) to

EQ-TARGET;temp:intralink-;e050;63;493

∂2

∂x2d

�
jinc

�
ρdffiffiffi
2

p
δαα

��
¼ ∂

∂xd

	
∂u
∂xd

½J0 0 ðuÞ þ J2 0 ðuÞ�
�
:

(50)

Equation (50) can be further simplified by using the Bessel
function identity:

EQ-TARGET;temp:intralink-;e051;63;4122J 0
nðxÞ ¼ Jn−1ðxÞ − Jnþ1ðxÞ; (51)

yielding

EQ-TARGET;temp:intralink-;e052;63;370

∂2

∂x2d

�
jinc

�
ρdffiffiffi
2

p
δαα

��
¼ ∂

∂xd

	
∂u
∂xd

�
1

2
J−1ðuÞ −

1

2
J3ðuÞ

��

¼ −
∂
∂xd

	
∂u
∂xd

�
1

2
J1ðuÞ þ

1

2
J3ðuÞ

��

¼ −
∂
∂xd

	
∂u
∂xd

2J2ðuÞ
u

�
: (52)

In going from line 1 to 2 in Eq. (52), we used the Bessel
function identity J−nðxÞ ¼ ð−1ÞnJnðxÞ, and in going from
line 2 to 3, we used Eq. (49).

Continuing, we apply the derivative multiplication and
chain rules producing

EQ-TARGET;temp:intralink-;e053;63;214

∂2

∂x2d

�
jinc

�
ρdffiffiffi
2

p
δαα

��
¼−

2J2ðuÞ
u

∂2u
∂x2d

−
�
∂u
∂xd

�
2 ∂
∂u

�
2J2ðuÞ

u

�
:

(53)

The derivative of 2J2ðuÞ∕u can be found by applying
Eqs. (49) and (51), such that

EQ-TARGET;temp:intralink-;e054;326;752

∂2

∂x2d

�
jinc

�
ρdffiffiffi
2

p
δαα

��
¼ −

2J2ðuÞ
u

∂2u
∂x2d

−
�
∂u
∂xd

�
2
�
1

4
J0ðuÞ −

1

4
J4ðuÞ

�
: (54)

We now evaluate the first and second derivatives of u.
The first derivative of u is found by applying the chain rule,
namely,
EQ-TARGET;temp:intralink-;e055;326;653

∂u
∂xd

¼ 1ffiffiffi
2

p
δαα

∂ρd
∂xd

¼ 1ffiffiffi
2

p
δαα

∂
∂xd

ðx2d þ y2dÞ1∕2

¼ 1ffiffiffi
2

p
δαα

xdρ−1d : (55)

The second derivative of u is found by applying the multi-
plication and chain rules:

EQ-TARGET;temp:intralink-;e056;326;558

∂2u
∂x2d

¼ ∂
∂xd

�
1ffiffiffi
2

p
δαα

xdρ−1d

�
¼ 1ffiffiffi

2
p

δαα
ρ−1d −

1ffiffiffi
2

p
δαα

x2dρ
−3
d :

(56)

Substituting Eqs. (55) and (56) into Eq. (54) and simplifying
produce as follows:
EQ-TARGET;temp:intralink-;e057;326;477

∂2

∂x2d

�
jinc

�
ρdffiffiffi
2

p
δαα

��
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ρ2d
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x2d
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J2

�
ρdffiffiffi
2

p
δαα

�

−
1

8δ2αα

x2d
ρ2d
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�
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2

p
δαα

�
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p
δαα

��
: (57)

Last, evaluating Eq. (57) at ρd ¼ 0 yields as follows:

EQ-TARGET;temp:intralink-;e058;326;389

∂2

∂x2d

�
jinc

�
ρdffiffiffi
2

p
δαα

������
ρd¼0

¼ −
1

8δ2αα
: (58)

We obtain the second line of Eq. (24)—the desired
result—by substituting Eqs. (58) and (47) into Eq. (46), i.e.:

EQ-TARGET;temp:intralink-;e059;326;320

∂2aααðρdÞ
∂x2d

����
ρd¼0

¼ −
1

8δ2αα
−

1

N

XN
n¼1

v2nx: (59)
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