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Polyphase equiangular tight frames and abelian generalized quadrangles

Matthew Fickusa, John Jasperb, Dustin G. Mixona, Jesse D. Petersona, Cody E. Watsona

aDepartment of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
bDepartment of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221

Abstract

An equiangular tight frame (ETF) is a type of optimal packing of lines in a finite-dimensional
Hilbert space. ETFs arise in various applications, such as waveform design for wireless communi-
cation, compressed sensing, quantum information theory and algebraic coding theory. In a recent
paper, signature matrices of ETFs were constructed from abelian distance regular covers of com-
plete graphs. We extend this work, constructing ETF synthesis operators from abelian generalized
quadrangles, and vice versa. This produces a new infinite family of complex ETFs as well as a new
proof of the existence of certain generalized quadrangles. This work involves designing matrices
whose entries are polynomials over a finite abelian group. As such, it is related to the concept of
a polyphase matrix of a finite filter bank.

Keywords: equiangular tight frame, generalized quadrangle, filter bank
2010 MSC: 42C15, 05E30

1. Introduction

An equiangular tight frame is a type of optimal packing of n lines in a d-dimensional (real or
complex) Hilbert space Hd, where n ≥ d. To be precise, Welch [44] gives the following lower bound
on the coherence of any sequence {ϕi}ni=1 of n nonzero equal-norm vectors in Hd:

max
i 6=j

|〈ϕi,ϕj〉|
‖ϕi‖‖ϕj‖

≥
[

n− d

d(n − 1)

]
1

2

. (1)

It is well-known [38] that nonzero equal-norm vectors {ϕi}ni=1 achieve equality in this Welch bound
if and only if they form an equiangular tight frame (ETF) for Hd, namely when there exist constants
w and a > 0 such that

|〈ϕi,ϕj〉| = w, ∀i, j = 1, . . . , n, i 6= j, ax =
n
∑

i=1

〈ϕi,x〉ϕi, ∀x ∈ Hd.

Having minimal coherence, ETFs arise in a number of applications, including waveform design
for wireless communication [38], compressed sensing [3, 4], quantum information theory [35, 48] and
algebraic coding theory [27]. They also seem to be rare, and only a few methods for constructing
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infinite families of them are known. With the exception of orthonormal bases and regular simplices,
each of these methods involve some type of combinatorial design.

Real ETFs in particular are equivalent to a subclass of strongly regular graphs (SRGs) [26, 43],
and this subject has a rich literature [9, 10, 13]. See [39] for necessary conditions on the d and
n parameters of real ETFs. Conference matrices, Hadamard matrices, Paley tournaments, and
quadratic residues are interrelated, and they lead to infinite families of ETFs whose redundancy
n
d
is either nearly or exactly 2 [38, 26, 34, 37]. Other constructions allow d and n to be chosen

independently, and almost arbitrarily, up to an order of magnitude. For example, this flexibility is
offered by the harmonic ETFs of [38, 45, 16], which are obtained by restricting the Fourier basis
on a finite abelian group to a difference set for that group. Another flexible construction is the
Steiner ETFs of [21], which arise from a tensor-like product of a simplex and the incidence matrix
of a certain type of finite geometry.

To be clear, many of these ideas are rediscoveries or reimaginings of more classical results.
In particular, see [29, 36] for early studies of the relationship between real ETFs and SRGs, and
see [33], [41] and [25] for precursors of the Welch bound, harmonic ETFs and Steiner ETFs,
respectively. That said, much recent progress has been made. For example, new infinite families
of ETFs are given in [17, 20]. Some of the ETFs in [17] are real, and these have led to new
SRGs. Other new SRGs have recently arisen from a new relation [46] between certain real ETFs
and SRGs [18]. Until recently, the existence of real ETFs with (d, n) parameters (19, 76) and
(20, 96) were longstanding open problems. Both have now been ruled out with computer-assisted
arguments [1, 2, 47]. Notably, [20] shows how to construct complex ETFs of these sizes.

In this paper, we extend the results of yet another recent development in the field, namely the
construction of an ETF from an abelian distance regular cover of a complete graph (DRACKN) [14].
Though DRACKNs have been studied for a long time [24], only a few explicit methods for con-
structing infinite families of them are known. Moreover, only some of these families are known to
possess the abelian structure that yields ETFs via the method of [14]. Also, as detailed in the next
section, it is unclear whether any of the ETFs produced in [14] are new: their (d, n) parameters
match those of other known ETFs, meaning they might arise by rearranging and/or phasing the
frame vectors of those ETFs. Nevertheless, this construction is remarkable since it has a partial
converse: for any prime p, (n, p, c)-DRACKNs are equivalent to ETFs whose Gram matrices con-
tain only pth roots of unity [14]. In particular, for any prime p, a construction of [6, 5] yields ETFs
that are equivalent to (p2, p, p)-DRACKNs. More recently, [17] used this equivalence to construct
a new family of DRACKNs from a new family of ETFs.

In this paper, we discuss the connections between [14] and certain incidence structures known
as generalized quadrangles (GQs). See [31] for an overview of GQs, and [32] for details. It has
long been known that every GQ produces a DRACKN [8, 24]. We show that a certain type of GQ
produces an abelian DRACKN and thus an ETF. As we shall see, each of these so-called abelian
GQs will be a cover of a balanced incomplete block design (BIBD). Paralleling [14], we show that
under certain conditions, the existence of abelian GQs is equivalent to existence of certain types
of ETFs. Much of this work involves matrices whose entries lie in the group ring CG of some finite
abelian group G. We choose to follow the conventions of the wavelet literature and regard such
matrices as polyphase matrices whose entries are polynomials over G. Such matrices are a standard
tool for the analysis of filter banks [42], in particular their frame properties [15, 7].

In the next section, we present the background material on ETFs, polyphase matrices and
DRACKNs that we will need in order to prove our main results. In Section 3, we show how the
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incidence matrix of a BIBD can sometimes be phased so as to produce a matrix whose columns
form an ETF for their span. In Theorems 3.4 and 3.5 we provide various characterizations and
necessary conditions on such phased BIBD ETFs. This construction is novel: unlike other known
constructions of ETFs, the vectors span a space of much smaller dimension than the ambient
space. In particular, in contrast to harmonic and Steiner ETFs, it is easy to see that the vectors
in a phased BIBD ETF are equiangular, but difficult to see that they form a tight frame for their
span.

From Section 4 onward, we focus on polyphase BIBD ETFs, which are polynomial-valued
versions of phased BIBD ETFs. As shown in Theorems 4.2 and 4.3, polyphase BIBD ETFs yield
abelian DRACKNs and in a special case correspond to abelian GQs. In Theorem 4.5, we further
show that under certain conditions, the existence of certain types of ETFs implies the existence of
abelian GQs. We conclude in Section 5 with several constructions of abelian GQs. In particular,
for any prime power q, Theorem 5.1 gives a construction of an abelian GQ(q − 1, q + 1) while
Theorem 5.2 shows that a construction attributed to Brouwer in [23] yields an abelian GQ(q, q2).
This latter construction yields ETFs with parameters

d = q(q2 − q + 1), n = q3 + 1, n− d = q2 − q + 1. (2)

As detailed in Section 5, when q is odd, these ETFs are real and correspond to a known infinite
family of SRGs constructed in [23]; when q is even, these ETFs are complex and are verifiably
new whenever q − 1 is not an odd prime power, which occurs infinitely often. We note that the
redundancy n

n−d
of these ETFs is unbounded, a property only known to be shared by some special

families of harmonic ETFs [45, 16] and Steiner ETFs [21], as well as by those ETFs arising from
hyperovals in finite projective planes [20].

2. Background

This paper leverages insights from three different areas of research, namely equiangular tight
frames, polyphase representations of filter banks, and distance regular graphs. In this section, we
discuss concepts and notation from each of these areas that we use later on. The reader who is
already familiar with these areas may advance to Section 3, where we begin to introduce new ideas.

2.1. Equiangular tight frames and signature matrices

Throughout, let d ≤ n be positive integers, let the field of scalars F be either R or C, and let Hd

be a d-dimensional subspace of Fm. The synthesis operator of a finite sequence of vectors {ϕi}ni=1

in Hd is Φ : Fn → Hd, Φy :=
∑n

i=1 y(i)ϕi. Since Hd is a subspace of Fm, this operator can be
regarded as the m × n matrix whose ith column is ϕi. The adjoint of Φ is the n × m analysis
operator Φ∗ : Fm → F

n, (Φ∗x)(n) = 〈ϕn,x〉, where the inner product on F
m is taken to be the

standard dot product, chosen to be conjugate-linear in its first argument. Composing these two
operators gives the m×m frame operator ΦΦ∗ : Hd → Hd, ΦΦ∗x =

∑n
i=1〈ϕi,x〉ϕi as well as the

n× n Gram matrix Φ∗Φ whose (i, j)th entry is 〈ϕi,ϕj〉.
Such a sequence of vectors {ϕi}ni=1 is a tight frame for Hd if there exists a > 0 such that

ΦΦ∗x = ax for all x ∈ Hd. When a is specified, it is an a-tight frame. It is equal norm if there
exists r > 0 such that ‖ϕi‖2 = r for all i, and is equiangular if it is equal norm and there exists w
such that |〈ϕi,ϕj〉| = w for all i 6= j. When {ϕi}ni=1 is both equiangular and a tight frame, it is
an equiangular tight frame (ETF).
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As mentioned in the introduction, the ETFs we construct in this paper are unusual in that their
synthesis operators Φ are most naturally represented as m×n matrices that are “tall, skinny” and
rank-deficient, that is, d < n < m. The equiangularity of these vectors will follow immediately
from the particular manner in which they are constructed. However, it will be far from obvious that
they form a tight frame for their span. Here, our main tool will be the following result from [20]:

Lemma 2.1 (Lemma 1 of [20]). For any vectors {ϕi}ni=1 in F
m, let Φ be the m× n matrix whose

ith column is ϕi for all i. For any a > 0, the following are equivalent:

(i) {ϕi}ni=1 forms an a-tight frame for its span,

(ii) ΦΦ∗Φ = aΦ,

(iii) (ΦΦ∗)2 = aΦΦ∗,

(iv) (Φ∗Φ)2 = aΦ∗Φ.

Also, if {ϕi}ni=1 is contained in a d-dimensional subspace Hd of Fm, then it forms an a-tight
frame for Hd if and only if ΦΦ∗ = aΠ where Π is the m ×m orthogonal projection matrix onto
Hd. As such, {ϕi}ni=1 forms an ETF for its span if and only if (ii)–(iv) hold and {ϕi}ni=1 is
equiangular. In this case, letting r = ‖ϕi‖2, the dimension d can be computed from either the tight
frame constant or the equiangularity constant:

a =
rn

d
, w = r

[

n− d

d(n − 1)

]
1

2

. (3)

Alternatively, equal norm vectors {ϕi}ni=1 in a subspace Hd of Fm of dimension d form an ETF
for Hd if and only if they achieve equality in (1).

One consequence of this lemma is that if the columns of Φ form an ETF for their span, then so
do the columns of Φ∗Φ. Indeed, it is well known that in this case the columns of Φ∗Φ are simply
an alternative representation of the columns of Φ. Conversely, if G is any self-adjoint matrix
whose diagonal entries are some constant r, whose off-diagonal entries have constant modulus w,
and which satisfies G2 = aG for some a > 0, then the columns of G form an ETF for their span.
This fact is also well known, and can be proven by taking the singular value decomposition of G,
or alternatively, taking Φ to be G in Lemma 2.1.

Any ETF has an associated signature matrix, that is, a self-adjoint matrix S whose diagonal
entries are zero and whose off-diagonal entries are unimodular. In particular, if G is the Gram
matrix of an ETF then S := 1

w
(G − rI) is a signature matrix which (since G2 = aG) satisfies a

quadratic equation:

S2 =
a− 2r

w
S+

r(a− r)

w2
I =

(n
d
− 2)

√
n− 1

√

n
d
− 1

S+ (n− 1)I. (4)

Here, the coefficient δ = a−2r
w

of S determines the dimension d of the span of the ETF’s vectors:

δ =
(n
d
− 2)

√
n− 1

√

n
d
− 1

⇐⇒ d =
n

2

[

1− δ
√

δ2 + 4(n− 1)

]

. (5)

Conversely, if S is any signature matrix that satisfies S2 = δS+ (n− 1)I for some δ, then defining
d according to (5) and then defining a and w from (3) for an arbitrary choice of r > 0, the
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matrix G := rI+ wS satisfies G2 = aG and so is the Gram matrix of an n-vector ETF for some
d-dimensional Hilbert space.

Thus, ETFs are equivalent to signature matrices which satisfy quadratic equations. One imme-
diate consequence of this equivalence is that if there exists an n-vector ETF for a space of dimension
d then there also exists an n-vector ETF for a space of dimension n− d: if S2 = δS+(n− 1)I then
(−S)2 = −δ(−S)+(n−1)I, and the d parameters (5) arising from δ and −δ clearly sum to n. Two
ETFs whose signature matrices are the negatives of each other are called Naimark complements.

2.2. Convolution algebras over finite abelian groups and polyphase matrices

For any finite abelian group G, the convolution algebra over G is the group ring CG, namely the
vector space C

G := {x : G → C} of all G-indexed complex vectors equipped with the convolution
product (x1 ∗ x2)(g) :=

∑

g′∈G x1(g
′)x2(g − g′). This product naturally arises from regarding each

x ∈ CG as a formal polynomial over G, namely as its z-transform x(z) :=
∑

g∈G x(g)z
g :

∑

g∈G

x1(g)z
g
∑

g∈G

x2(g)z
g :=

∑

g∈G

(x1 ∗ x2)(g)z
g =

∑

g1∈G

∑

g2∈G

x1(g1)x2(g2)z
g1+g2 .

Under this product, CG is a commutative ring with multiplicative identity δ0, where {δg}g∈G
denotes the standard basis in C

G. This multiplicative identity has z-transform 1 := z0 = δ0(z).
To more explicitly justify this polynomial notation, note that since G is a finite abelian group,

there exists a group isomorphism of the form η : G → ⊕j
i=1Zqi for some positive integers {qi}ji=1.

This then implies
∑

g∈G x(g)z
g 7→ ∑

g∈G x(g)
∏j

i=1 z
η(g)i
i is an isomorphism from CG into the alge-

bra of complex polynomials in j variables C[z1, . . . , zj ] modulo the ideal generated by {zqi − 1}ji=1.
That is, we can identify zg with (z1, . . . , zj)

(g1,...,gj) := (zg11 , . . . , z
gj
j ) where zqii ≡ 1 for each

i = 1, . . . , j.
For any x ∈ CG, the corresponding filter is the linear operator L : CG → CG, Ly = x ∗ y.

That is, L =
∑

g∈G x(g)T
g , where for each g ∈ G, Tg is the translation operator Tg : CG → CG,

(Tgy)(g′) := y(g − g′). Note that writing elements of CG as z-transforms, we see the mapping

x(z) =
∑

g∈G

x(g)zg 7→ x(T) :=
∑

g∈G

x(g)Tg, (6)

is an isomorphism from CG onto the algebra of all such filters. In particular, identifying G with
⊕j

i=1Zqi, this mapping sends zg = (zg11 , . . . , z
gj
j ) to Tg = Tg1

1 ⊗· · ·⊗T
gj
j where, for each i = 1, . . . , j,

Ti is a circulant permutation matrix of order qi. Since translation operators are unitary, the adjoint
of x(T) is [x(T)]∗ = x̃(T) where x̃(g) := x(−g) is the involution of x. In light of (6), this suggests
we define the conjugate of any z-transform x(z) as x(z) := x̃(z).

We often identify a linear operator L : CG → C
G with the matrix in C

G×G := {L : G × G → C}
that represents it with respect to the standard basis. That is, we let L(g′, g′′) := 〈δg′ ,Lδg′′〉 for all
g′, g′′ ∈ G, where this inner product is the complex dot product over CG, taken to be conjugate-linear
in its first argument. Under this identification, each translation operator is a permutation matrix,
and a matrix L ∈ C

G×G is a filter if and only if it is circulant, namely when L(g′, g′′) = L(g′−g′′, 0)
for all g′, g′′ ∈ G.

A character of G is a homomorphism γ : G → T := {z ∈ C : |z| = 1}. Any given character
naturally extends to the linear functional γ : CG → C, γ(x) :=

∑

g∈G x(g)γ(g). Each extended
character γ satisfies γ(x1∗x2) = γ(x1)γ(x2) for all x1,x2 ∈ CG and so is a ring homomorphism from
CG to C. Regarding each x ∈ CG as a polynomial x(z), we have γ(x1(z)x2(z)) = γ(x1(z))γ(x2(z)).
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To improve this clunky notation, let x(γ) := γ(x) be the “evaluation” of x(z) at γ. Under this
notation, the homomorphism from CG to C given by γ becomes

x(z) =
∑

g∈G

x(g)zg 7→ x(γ) :=
∑

g∈G

x(g)γ(g). (7)

Writing G ∼= ⊕j
i=1Zqi and regarding x(z) as a member of C[z1, . . . , zj ]/〈{zqi − 1}ji=1〉, x(γ) indeed

corresponds to evaluating x(z) at (z1, . . . , zj) where each zi is a qith root of unity obtained by
applying γ to some fixed generator of Zqi , regarded as a subgroup of G. This notation is also
consistent with conjugation: γ(g) = γ(−g) for all g ∈ G, and so the complex conjugate of the
scalar x(γ) is x(γ) = x̃(γ), namely the evaluation of the conjugate polynomial x(z) = x̃(z) at γ.

The set Γ of all characters of G is itself an abelian group under pointwise multiplication. In
fact, writing G ∼= ⊕j

i=1Zqi and identifying each γ ∈ Γ with a unique j-tuple of qith roots of unity,
we see that Γ ∼= G. Regarded as vectors in C

G , the characters form an orthogonal basis for C
G .

Since 〈γ,x〉 = x(γ−1), this implies that x1(z) = x2(z) if and only if x1(γ) = x2(γ) for all γ. The
mapping x 7→ {x(γ−1)}γ∈Γ is the discrete Fourier transform over G.

Much of our work here involves matrices Φ whose entries lie in CG. When regarding these
entries as polynomials, we denote such a matrix as Φ(z) and, following the wavelets literature, call
it a polyphase matrix. Applying (6) to each entry of Φ(z) yields a block matrix with circulant
blocks, namely the corresponding filter bank Φ(T). Meanwhile, applying (7) to each entry of Φ(z)
yields the scalar matrix Φ(γ).

Two polyphase matrices Φ(z) andΨ(z) can be summed or multiplied in the usual way, provided
they are of the appropriate size and their entries lie in the same group ring CG. Since (6) is a ring
isomorphism, these correspond to usual sums and products of Φ(T) and Ψ(T) as block matrices.
Similarly, the fact that (7) is a ring homomorphism implies that evaluating a sum or product of
Φ(z) and Ψ(z) at γ is equivalent to just summing or multiplying the scalar matrices Φ(γ) and
Ψ(γ). Moreover, since (6) and (7) preserve conjugation, [Φ(T)]∗ = Φ∗(T) and [Φ(γ)]∗ = Φ∗(γ)
provided the (j, i)th entry of Φ∗(z) is defined as the conjugate (involution) of the (i, j)th entry of
Φ(z). Further note that since the characters form an orthonormal basis for C

G , Φ(z) = Ψ(z) if
and only if Φ(γ) = Ψ(γ) for all γ ∈ Γ.

These ideas give elegant proofs for some of the fundamental results of discrete wavelet trans-
forms. For example, a square filter bank matrix Φ(T) is unitary if and only if Φ(T)[Φ(T)]∗ = I,
namely when its polyphase matrix satisfies Φ(z)Φ∗(z) = I, namely when Φ(γ)[Φ(γ)]∗ = I for all γ.
The advantage here is that Φ(γ) is substantially smaller than Φ(T), and thus easier to design and
analyze. In traditional wavelets, for example, Φ(T) is a 2 × 2 array of circulant blocks, meaning
Φ(γ) is just a 2× 2 scalar matrix for each γ ∈ Γ. As we now discuss, a similar application of these
ideas was recently used to construct ETFs.

2.3. Strongly regular graphs and abelian distance regular antipodal covers of complete graphs

Since ETF signature matrices satisfy (4), it is not surprising that they are related to graphs
whose adjacency matrices satisfy certain quadratic-like equations. For instance, an SRG(v, k, λ, µ)
is a graph with v vertices, each having k neighbors, with the property that any two neighbors have
λ neighbors in common, while any two nonadjacent vertices have µ neighbors in common. That
is, a graph is strongly regular if and only if its adjacency matrix A satisfies

A2 = (λ− µ)A+ (k − µ)I+ µJ, i.e. A2(i, j) =







k, i = j,
λ, i 6= j, A(i, j) = 1,
µ, i 6= j, A(i, j) = 0,

(8)
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where J is an all-ones matrix. An SRG’s parameters are interrelated: conjugating (8) by an all-ones
vector 1 gives k(k− λ− 1) = (v− k− 1)µ. It is well-known that real n-vector ETFs are equivalent
to SRGs on v = n − 1 vertices where k = 2µ; see [43, 22] for details. Recently, it was also shown
that real ETFs whose Gram matrices have 1 as an eigenvector are equivalent to SRGs on v = n
vertices where v = 4k − 2λ− 2µ [18]. Every SRG is distance regular, meaning that the number of
vertices at given distances from vertex i and j depends only on those distances and the distance
between i and j.

Recently, a second type of distance regular graph was used to construct ETFs [14], namely a
distance regular antipodal cover of a complete graph (DRACKN). To elaborate, let Kn denote the
complete graph on n vertices. For a given integer f ≥ 2, an f -fold cover of Kn is a graph whose
vertex set can be partitioned into n subsets of size f , dubbed fibers, so that no two vertices in
the same fiber are adjacent and so that there exists a perfect matching between any two distinct
fibers [14]. That is, a graph is an f -fold cover of Kn if it has an nf ×nf adjacency matrix A which
is an n × n array of blocks of size f × f whose (i, j)th block A(i, j) is zero when i = j and is a
permutation matrix when i 6= j.

Now suppose that a given f -fold cover of Kn has the property that any two nonadjacent vertices
from distinct fibers have exactly c neighbors in common, where c is some positive constant. By
Lemma 3.1 of [24], any such graph has diameter 3 and is antipodal : fibers are equivalence classes,
provided two vertices are equated when the distance between them is three (or zero). This same
lemma shows that any such graph is distance regular. In fact, its proof shows that any two adjacent
vertices have (n−1)−1− (f −1)c neighbors in common. Altogether, these facts imply the number
of two-step paths from the xth vertex of the ith fiber to the yth vertex of the jth fiber is

A2(i, j;x, y) =















n− 1, i = j, x = y,
0, i = j, x 6= y,
c, i 6= j,A(i, j;x, y) = 0,

(n − 1)− 1− (f − 1)c, i 6= j,A(i, j;x, y) = 1,

that is,
A2 = (n− fc− 2)A+ (n − 1)In ⊗ If + c(Jn − In)⊗ Jf . (9)

The first component of these tensor products refers to the base and the second one to the fiber.
For positive integers n, f and c with f ≥ 2, a graph is said to be an (n, f, c)-DRACKN if it has

an (n× n)× (f × f) block adjacency matrix A whose diagonal blocks are zero, whose off-diagonal
blocks are permutations, and which satisfies (9). See [24] for a thorough discussion of various types
of DRACKNs. Our work here focuses on (n, f, c)-DRACKNs that happen to be abelian, namely
when the off-diagonal blocks of A all arise as translation operators over some abelian group G of
order f . As discussed in Section 7 of [24], this means each off-diagonal block of A may be regarded
as a standard basis element of the group ring CG. Under this identification, quantities In and Jn

that appear in (9) become δ0 and
∑

g∈G δg, respectively. Writing these as formal polynomials of G
leads to our following restatement of their definition:

Definition 2.2. For positive integers n, f and c with f ≥ 2 and an abelian group G of order f ,
an abelian (n, f, c)-DRACKN is a self-adjoint n×n polyphase matrix A(z) whose diagonal entries
are zero, whose off-diagonal entries are monomials (z-transforms of standard basis elements) over
G, and which satisfies

[A(z)]2 = (n− fc− 2)A(z) + (n− 1)I+ c1(z)(J − I), (10)

7



where 1(z) :=
∑

g∈G z
g is the geometric sum over G.

To be clear, the entries of all matrices here lie in the ring CG. In particular, the diagonal entries
of I and the off-diagonal entries of J− I are the multiplicative identity in CG, namely 1 := δ0(z).

As indicated by Theorems 3.2 and 4.1 of [14], abelian DRACKNs are intimately related to ETFs.
To elaborate, let A(z) be any n× n self-adjoint polyphase matrix whose diagonal entries are zero
and whose off-diagonal entries are monomials over some abelian group G of order f ≥ 2. If A(z)
is an abelian (n, f, c)-DRACKN for some positive integer c, then evaluating (10) at any nontrivial
character γ of G gives [A(γ)]2 = (n− fc− 2)A(γ) + (n− 1)I, implying that A(γ) is the signature
matrix of an ETF for a space whose dimension d is given by (5) where δ = n−fc−2. Conversely, if
A(γ) is such a signature matrix for every nontrivial character γ of G, then since the only members
of CG that vanish at every nontrivial character are scalar multiples of 1(z), there necessarily exists
some n × n scalar-valued matrix B such that [A(z)]2 = (n − fc− 2)A(z) + (n − 1)I + 1(z)B. In
this case, evaluating this equation at the trivial character gives

(n − 2)J + I = (J− I)2 = (n − fc− 2)(J − I) + (n− 1)I+ fB,

namely that B = c(J− I), meaning A(z) satisfies (10) and so is an abelian (n, f, c)-DRACKN. We
summarize these facts as follows:

Lemma 2.3. For positive integers n, f and c with f ≥ 2 and an abelian group G of order f ,
let A(z) be an n× n self-adjoint polyphase matrix whose diagonal entries are zero and whose off-
diagonal entries are monomials. Then A(z) is an abelian (n, f, c)-DRACKN if and only if A(γ)
is the signature matrix of an n-vector ETF for a space of dimension

d =
n

2

[

1− δ
√

δ2 + 4(n − 1)

]

, δ = n− fc− 2, (11)

for all nontrivial characters γ of G.

In [14], this idea is used to produce ETFs from known algebro-combinatorial constructions of
abelian DRACKNs, as well as to derive necessary conditions on the existence of abelian DRACKNs
from known necessary conditions on the existence of ETFs. Nearly all of the examples of abelian
(n, f, c)-DRACKNs given in [14] have n = fc. In this case, (11) simplifies to d = 1

2 (n +
√
n ).

This might be disappointing to researchers focused on finding new ETFs, since other ETFs with
these same d and n parameters are already well known. Indeed, for any integer v > 3, the Steiner
ETF [21] arising from all 2-element subsets of {1, . . . , v} consists of v2 vectors which span a space of
dimension 1

2v(v− 1); a special case of these are Steiner ETFs arising from an affine geometry over
the field Z2, which themselves contain an infinite family of harmonic ETFs arising from a certain
type of McFarland difference set [16, 27]. In particular, whenever n is a perfect square, there exists
a Steiner ETF whose Naimark complements have parameters (d, n) where d = 1

2 (n+
√
n ). The only

abelian (n, f, c)-DRACKN mentioned in [14] that does not have n = fc is a (45, 3, 12)-DRACKN
from [28]. By (11), this DRACKN yields an ETF of n = 45 vectors in a space of dimension
d = 12. A harmonic ETF with these same parameters was already known to exist, arising from a
McFarland difference set [16].

To be clear, it is difficult to determine whether the ETFs given in [14] are new. The signature
matrices of two ETFs are usually considered equivalent when one can be obtained from the other
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by conjugation by a phased permutation matrix. As such, determining whether two ETFs are
equivalent can be harder than determining whether two graphs are isomorphic.

In the coming sections, we use Lemma 2.3 to construct an infinite family of complex ETFs
that is demonstrably new, having new d and n parameters. The main idea is to show that some
members of a previously known class of DRACKNs happen to be abelian, namely those that arise
from abelian covers of BIBDs.

3. Phased BIBD ETFs

A BIBD is a type of finite geometry. There is a well-known way to construct ETFs from
BIBDs, namely the Steiner ETFs of [21]. In this section, we present a new way to construct ETFs
from BIBDs. As we shall see in the coming sections, this new construction is related to polyphase
matrices and DRACKNs.

To be precise, for positive integers v > k ≥ 2 and λ, a BIBD(v, k, λ) is a v-element vertex set
V along with a collection B of subsets of V called blocks such that every block contains exactly
k vertices, and every pair of distinct vertices is contained in exactly λ blocks. Letting b denote
the number of blocks, this means its b × v incidence matrix X satisfies X1 = k1 and that the
off-diagonal entries of XTX are all λ. As such, for any j = 1, . . . , v, the number rj of blocks that
contains jth vertex satisfies

(v − 1)λ =

v
∑

j′=1
j′ 6=j

(XTX)(j, j′) =

b
∑

i=1

X(i, j)

v
∑

j′=1
j′ 6=j

X(i, j′) =

b
∑

i=1

{

k − 1, X(i, j) = 1
0, X(i, j) = 0

}

= rj(k − 1).

That is, this number rj = r := λ v−1
k−1 is independent of j. At this point, summing all entries of X

gives bk = vr and so b = λ v(v−1)
k(k−1) is also uniquely determined by v, k and λ. Moreover, since v > k

we have r > λ and so XTX = (r − λ)I + λJ has full rank, implying X has rank v, and so b ≥ v;
this fact is known as Fisher’s inequality.

We focus on BIBDs where λ = 1, which are also known as (2, k, v)-Steiner systems. In this
case, the above facts about BIBDs can be summarized as

bk = vr, v − 1 = r(k − 1), b ≥ v, X1 = k1, 1TX = r1T, XTX = (r − 1)I + J. (12)

In a BIBD(v, k, 1), any two distinct vertices determine a unique block. This in turn implies that
any two distinct blocks have at most one vertex in common. One classical example of such a design
is an affine plane of order q, namely a BIBD(q2, q, 1) where q is a prime power.

Now let Φ be any matrix whose entrywise squared-modulus |Φ|2 equals the incidence matrix
X of a BIBD(v, k, 1). (Here, squaring the modulus is unnecessary; we simply do it to be more
consistent with theory introduced in the next section.) That is, let Φ be a phased BIBD(v, k, 1).
Since any two columns of X have only one row index of common support, the columns {ϕi}ni=1 of
Φ are equiangular with ‖ϕi‖2 = r and |〈ϕi,ϕj〉| = 1 for all i 6= j. This naturally leads one to ask
when these columns also form a tight frame for their span:

Definition 3.1. If |Φ|2 is the incidence matrix of a BIBD(v, k, 1) and the columns of Φ form a
tight frame for their span, we say they form a phased BIBD ETF.
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Much of our work here is geared towards necessary conditions and explicit constructions of
phased BIBD ETFs. Since b ≥ v, any phased BIBD Φ is a “tall, skinny” matrix. In order for the
columns of Φ to form an ETF for their span, this means the rows of Φ should not be designed to be
orthogonal (as is the case with harmonic ETFs and Steiner ETFs), but rather, so that Φ satisfies
the criteria of Lemma 2.1. To see that this is even possible, consider the following examples.

Example 3.2. For any v ≥ 3, the collection of all 2-element subsets of the vertex set {1, . . . , v}
forms a BIBD(v, 2, 1). Here, r = v − 1 and b =

(

v
2

)

. Since k = 2, each row of a corresponding
incidence matrix X contains exactly two 1’s. Let Φ be obtained from X by negating one 1 in each
row of X. For example, when v = 3, we can take

X =





1 1 0
1 0 1
0 1 1



 , Φ =





1 −1 0
1 0 −1
0 1 −1



 . (13)

Then Φ∗Φ = vI − J and so satisfies (Φ∗Φ)2 = (vI − J)2 = v2I − vJ = vΦ∗Φ, implying by
Lemma 2.1 that the columns of Φ form an ETF for their span of dimension d = rv

a
= r = v − 1.

Thus, the columns of Φ are a v-vector regular simplex. In particular, the columns of the matrix
Φ given in (13) are a “high”-dimensional representation of the famous Mercedes-Benz ETF.

Example 3.3. Consider the following matrix obtained by phasing the incidence matrix of a
BIBD(9, 3, 1) with a cube root of unity z, as well as its corresponding Gram matrix:

Φ(z) =











































1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 z2 0 0 z 0
0 0 1 0 0 z 0 0 z2

1 0 0 0 0 z2 0 z2 0
0 1 0 z 0 0 0 0 1
0 0 1 0 1 0 z 0 0
1 0 0 0 z 0 0 0 z
0 1 0 0 0 1 z2 0 0
0 0 1 z2 0 0 0 1 0











































, Φ∗(z)Φ(z) =





























4 1 1 1 z z2 1 z2 z
1 4 1 z z2 1 z2 z 1
1 1 4 z2 1 z z 1 z2

1 z2 z 4 1 1 1 z z2

z2 z 1 1 4 1 z z2 1
z 1 z2 1 1 4 z2 1 z
1 z z2 1 z2 z 4 1 1
z z2 1 z2 z 1 1 4 1
z2 1 z z 1 z2 1 1 4





























. (14)

Since the above expression for the Gram matrix is valid for any complex z such that z3 = 1, we
can regard the entries of Φ(z) and Φ∗(z)Φ(z) as members of the ring of polynomials C[z]/〈z3 − 1〉,
namely as the z-transforms of members of the group ring CZ3. A direct calculation reveals the
product of the polyphase matrices in (14) is

Φ(z)Φ∗(z)Φ(z) = 6Φ(z) + (1 + z + z2)(J−X), (15)

where X is the incidence matrix of the underlying BIBD(9, 3, 1). Applying the three characters
to this expression equates to evaluating these polynomials at cube roots of unity. In particular,
evaluating (15) at γ = 1 gives XXTX = 6X + 3(J −X) = 3X+ 3J, a fact that also immediately
follows from the properties of a BIBD given in (12). Meanwhile, since γ = exp(2πi3 ) and its
conjugate are roots of the geometric sum 1+ z+ z2, evaluating (15) at either of these points gives
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Φ(γ)Φ∗(γ)Φ(γ) = 6Φ(γ), implying by Lemma 2.1 that the columns of Φ(γ) form an ETF for a
subspace of C12 of dimension 6.

We note that our (d, n) = (6, 9) ETF Gram matrix Φ∗(γ)Φ(γ) here seems essentially the same
as one constructed in [6]. In [5], that construction was generalized to yield Gram matrices of ETFs
with parameters (d, n) = (12q(q + 1), q2) whose off-diagonal elements are qth roots of unity, where
q ≥ 2 is an arbitrary integer. That level of generalization seems unlikely here, since the requisite
BIBD(q2, q, 1) are affine planes of order q, which are famously conjectured to only exist when q is
a prime power.

Later on, we will revisit this example to gain greater insight into the relationship between
certain ETFs, abelian DRACKNs and abelian GQs. For now, having seen that phased BIBD
ETFs indeed exist, we now state and prove what we were able to discover about them in general:

Theorem 3.4. If the columns of Φ form an ETF for their span and |Φ|2 is the b × v incidence
matrix of a BIBD(v, k, 1) then the rank of Φ is necessarily

d =
vr

r + k − 1
, (16)

where r = v−1
k−1 . The redundancy v

d
of such an ETF is less than 2. Moreover, if Φ is a matrix such

that |Φ|2 is the b× v incidence matrix of a BIBD(v, k, 1), then the columns of Φ form an ETF for
their span if and only if

b
∑

i′=1

v
∑

j′=1

Φ(i, j′)Φ(i′, j′)Φ(i′, j) = 0 for all i and j such that Φ(i, j) = 0. (17)

Proof. Since n = v, ‖ϕi‖2 = r for all i, and |〈ϕi,ϕj〉| = 1 = w for all i 6= j, (3) gives

v

d
=

n− d

d
+ 1 =

(n− 1)w2

r2
+ 1 =

v − 1

r2
+ 1 =

r + k − 1

r
,

and so (16). Moreover, v ≤ b and so k ≤ r, implying v
d
= k−1

r
+ 1 < 1 + 1 = 2, as claimed. For

the final conclusion, note that by Lemma 2.1, the columns of Φ form an ETF for their span if and
only if ΦΦ∗Φ = aΦ where a = rn

d
= r v

d
= r + k − 1. That is, the columns of Φ form an ETF for

their span if and only if

(r + k − 1)Φ(i, j) = (ΦΦ∗Φ)(i, j) =

b
∑

i′=1

v
∑

j′=1

Φ(i, j′)Φ(i′, j′)Φ(i′, j), (18)

for all i and j. We claim this equation is automatically satisfied for those i and j for which
|Φ(i, j)| = 1. Indeed, for any such i and j, the only nonzero summands of (18) occur when
|Φ(i, j)|, |Φ(i, j′)|, |Φ(i′, j′)| and |Φ(i′, j)| are all one, namely when the ith and i′th vertices are
contained in both the jth and j′th blocks. Since two distinct vertices determine a unique block
while any two distinct blocks have at most one vertex in common, this happens precisely when
either i = i′ or j = j′. That is, when |Φ(i, j)| = 1, the sum in (18) simplifies to

Φ(i, j)Φ(i, j)Φ(i, j) +

v
∑

j′=1
j′ 6=j

Φ(i, j′)Φ(i, j′)Φ(i, j) +

b
∑

i′=1
i′ 6=i

Φ(i, j)Φ(i′, j)Φ(i′, j) = (r + k − 1)Φ(i, j),
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as claimed. As such, the columns of Φ form a tight frame for their span if and only if (18) holds
for those i and j for which Φ(i, j) = 0.

Note that only k of the summands in (17) are nonzero: since |Φ|2 is the incidence matrix of a
BIBD(v, k, 1) and Φ(i, j) = 0, there are exactly k choices of j′ 6= j such that Φ(i, j′) 6= 0, and for
each such j′, there is a unique choice of i′ such that Φ(i′, j) 6= 0 6= Φ(i′, j′). As such, (17) means
that whenever Φ(i, j) = 0, the k nonzero values of Φ(i, j′)Φ(i′, j′)Φ(i′, j) are equally distributed
about the origin.

Further note that in order for a phased BIBD ETF to exist, the dimension (16) of their span is
necessarily an integer. In the next result, we relate this fact to other known necessary conditions
on the existence of ETFs. Some of these conditions only apply when the ETF in question is real,
such as the regular simplices discussed in Example 3.2. In particular, Theorem A of [39] states
that if there exists a real n-vector ETF for a space of dimension d and 1 < d < n− 1 with n 6= 2d
then both

[

d(n − 1)

n− d

]
1

2

,

[

(n− d)(n − 1)

d

]
1

2

are necessarily odd integers. This follows from a delicate analysis of the spectrum of its signature
matrix. Besides this, the only known necessary conditions on the existence of ETFs are the Gerzon
bounds, which state that if an n-vector ETF for a d-dimensional Hilbert space Hd exists where d > 1,
then n ≤

(

d+1
2

)

if the ETF is real and n ≤ d2 if the ETF is complex. Indeed, for any noncollinear
equiangular vectors {ϕi}ni=1, the corresponding operators {ϕiϕ

∗
i }ni=1 lie in the real space of all self-

adjoint operators from Hd to itself, which is a Hilbert space under the Frobenius-Hilbert-Schmidt
inner product 〈A,B〉 := Tr(A∗B); this space has dimension

(

d+1
2

)

or d2 depending on whether
these vectors are real or complex, and these operators are linearly independent since their Gram
matrix |Φ∗Φ|2 = (r2 − w2)I + w2J is invertible. Since any phased BIBD ETF has v ≤ 2d, the
Gerzon bounds are best applied to its Naimark complements: if v > d + 1, a phased BIBD ETF
has v ≤

(

v−d+1
2

)

if it is real and v ≤ (v − d)2 if it is complex.

Theorem 3.5. If the columns of Φ form an ETF for their span and |Φ|2 is the b × v incidence
matrix of a BIBD(v, k, 1) then

u :=
k(k − 1)2(k − 2)

v + k(k − 2)
(19)

is a nonnegative integer that divides both k(k− 1)(k− 2) and r(k− 1)(k− 2) where r = v−1
k−1 . Also,

u ≤ 1
2(k − 1)(k − 2). Moreover, under these assumptions,

[

d(v − 1)

v − d

]
1

2

= r,

[

(v − d)(v − 1)

d

]
1

2

= k − 1, (20)

where d is given by (16). In particular, if k > 2 and Φ is real then v and k are even, and r is odd.
Finally, various types of phased BIBD ETFs are characterized by the value of their u parameter:

(a) u = 0 ⇔ k = 2 ⇔ v = d+ 1,

(b) u = 1 ⇔ v = k2(k − 2)2 ⇔ v = (v − d)2,

(c) u = 2 ⇔ v =
(

k(k−2)
2

)

⇔ v =
(

v−d+1
2

)

,

(d) u = 1
2(k − 1)(k − 2), k > 2 ⇔ v = k2, k > 2 ⇔ v − d = 1

2(v − v
1

2 ), v > 4.
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The proof of this result is given in Appendix A. One consequence of it is that for any fixed
k > 2, there are only a finite number of choices of v for which a phased BIBD(v, k, 1) ETF exists.
In Table 1, we list the BIBD ETF parameters that meet the necessary conditions of Theorem 3.5
for 3 ≤ k ≤ 9. We also list the dimension v − d of the span of a Naimark complement of a
corresponding phased BIBD ETF, should it exist. We list this dimension instead of d since phased
BIBD ETFs have v < 2d, cf. Theorem 3.4, whereas other tables of ETFs such as [19] assume
v > 2d. As seen in the proof above, these necessary conditions ensure that r = v−1

k−1 and b = v
k
r

are integers and that Fisher’s inequality (v ≤ b) is satisfied. These necessary conditions do not
take into account other known necessary conditions on the existence of BIBD(v, k, 1), such as the
Bruck-Ryser-Chowla Theorem. This is why this table lists the parameters (v, k) = (36, 6) despite
the fact that no affine plane of order 6 exists; this means that known ETFs with (d, n) = (21, 36)
cannot be realized as a phased BIBD(36, 6, 1).

Note that u = 1 meets all the necessary conditions of Theorem 3.5 for any k ≥ 3. As seen
in (b) of Theorem 3.5, this choice of u corresponds to ETFs whose Naimark complements achieve
the complex Gerzon bound. As such, this approach might lead to new constructions of ETFs
with v = d2, called symmetric, informationally complete, positive operator–valued measures (SIC-
POVMs) in the quantum information theory literature [35, 48]. Little seems to be known about
BIBDs with v = k2(k− 2)2 in general, and so the only Naimark complement of a SIC-POVM that
we were able to construct as a phased BIBD ETF is given in Example 3.3. Similarly, u = 2 meets
all necessary conditions for any k ≥ 4, and by (c) any real phased BIBD with v =

(

k(k−2)
2

)

would
achieve the real Gerzon bound; such ETFs are equivalent to tight spherical 5-designs [19].

In the coming sections, we show how to construct a phased BIBD(k2, k, 1) ETF whenever k is
the power of a prime. Unfortunately, by Theorem 3.5(d), these ETFs are not necessarily new, since
they are of the same size of Naimark complements of Steiner ETFs arising from BIBD(k, 2, 1) [21].
We also show how to construct a phased BIBD(q3+1, q+1, 1) ETF for any prime power q. Here, (19)
becomes u = q−1, which clearly divides k(k−1)(k−2) = q(q2−1) and r(k−1)(k−2) = q3(q−1) and
is no more than 1

2(k−1)(k−2) = 1
2q(q−1). The Naimark complement of the resulting ETF consists

of n = v = q3+1 vectors that span a space of dimension v − d = (k − 1)2 − u = q2 − q + 1 = q3+1
q+1 .

Whenever q is an odd prime power, real ETFs of this size are already known to exist, since they
correspond to known SRGs constructed in [23]. We show how the synthesis operator of such an
ETF can be represented as a phased BIBD(q3+1, q+1, 1). Moreover, we show that whenever q is an
even prime power, this same construction produces a complex phased BIBD ETF with n = q3 +1,
n− d = q3+1

q+1 . As we shall explain, these complex ETFs are new whenever q is an even prime
power with the property that q− 1 is not an odd prime power, which happens infinitely often. For
both of these constructions, the key idea is to not regard the entries of a phased BIBD as complex
numbers, but rather as polynomials over some finite abelian group, as done in Example 3.3.

4. Polyphase BIBD ETFs

In this section, we lay the foundation for two new constructions of phased BIBD ETFs. Like
Example 3.3, we actually construct a polyphase matrix Φ(z) that gives an ETF when evaluated
at any nontrivial character γ:

Definition 4.1. Let G be an abelian group of order f . We say a polyphase matrix Φ(z) whose
entries are either monomials over G or zero is a (v,k,f)-polyphase BIBD ETF if both:

(i) |Φ(z)|2 is the incidence matrix of a BIBD(v, k, 1),
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v − d v k r b u ETF? BIBD? PBETF?

3 9 3 4 12 1 C Y C

6 16 4 5 20 3 R Y R

7 28 4 9 63 2 R Y R

8 64 4 21 336 1 C Y

10 25 5 6 30 6 C Y C

12 45 5 11 99 4 C Y
13 65 5 16 208 3 C Y C

14 105 5 26 546 2 Y
15 225 5 56 2520 1 C

15 36 6 7 42 10 R N N
17 51 6 10 85 8
19 76 6 15 190 6 C Y
20 96 6 19 304 5 C Y
21 126 6 25 525 4 R Y R

23 276 6 55 2530 2 R

24 576 6 115 11040 1 C

21 49 7 8 56 15 C Y C

26 91 7 15 195 10 C Y
30 175 7 29 725 6 C Y
31 217 7 36 1116 5 C Y
33 385 7 64 3520 3
34 595 7 99 8415 2
35 1225 7 204 35700 1 C

28 64 8 9 72 21 R Y R

35 120 8 17 255 14 R Y
42 288 8 41 1476 7 Y
43 344 8 49 2107 6 R Y R

46 736 8 105 9660 3
47 1128 8 161 22701 2
48 2304 8 329 94752 1 C

36 81 9 10 90 28 C Y C

50 225 9 28 700 14 C

56 441 9 55 2695 8 C

57 513 9 64 3648 7 C Y C

60 945 9 118 12390 4
62 1953 9 244 52948 2
63 3969 9 496 218736 1

Table 1: The parameters of all BIBD(v, k, 1) with 3 ≤ k ≤ 9 that meet the necessary conditions on phased BIBD ETFs
given in Theorem 3.5. BIBDs with k = 2 are not listed since they correspond to regular simplices, cf. Example 3.2
and Theorem 3.5(a). For each v and k, we list the r and b BIBD parameters as well as the u parameter (19). We
also list the dimension v− d of the span of the Naimark complements of a corresponding phased BIBD ETF, should
it exist. The “ETF?” column lists whether any v-vector real or complex ETF for a space of dimension v−d is known
to exist; see [19] and also see [20] for the (v − d, v) = (19, 76) case. The “BIBD?” column indicates whether such a
BIBD is known to exist [12, 30]. The “PBETF?” column indicates whether a real or complex phased BIBD ETF
with these parameters is known; all known examples are constructed in this paper. Blank entries are unknown to us.
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(ii) for all nontrivial characters γ of G, the columns of Φ(γ) form an ETF for their span.

Here, the entrywise modulus squared |Φ(z)|2 of any polyphase matrix Φ(z) is defined as the
matrix whose (i, j)th entry is |x(z)|2 = x(z)x(z) = x̃(z)x(z) where x(z) is the (i, j)th entry of
Φ(z). We now characterize polyphase BIBD ETFs and relate them to abelian DRACKNs.

Theorem 4.2. Let G be an abelian group of order f , and let Φ(z) be a polyphase matrix whose
entries are either monomials over G or zero with the property that X = |Φ(z)|2 is the incidence
matrix of a BIBD(v, k, 1). Letting r := v−1

k−1 , 1(z) :=
∑

g∈G zg and letting Φ(z; i, j) denote the
(i, j)th entry of Φ(z), the following are equivalent:

(i) Φ(z) is a polyphase BIBD ETF, cf. Definition 4.1.

(ii) Φ(z)Φ∗(z)Φ(z) = (r + k − 1)Φ(z) + k
f
1(z)(J −X).

(iii)

b
∑

i′=1

v
∑

j′=1

Φ(z; i, j′)Φ(z; i′, j′)Φ(z; i′, j) = k
f
1(z) for all i and j such that Φ(z; i, j) = 0.

(iv) For all i and j such that Φ(z; i, j) = 0, the cardinality of

{(i′, j′) : zg = Φ(z; i, j′)Φ(z; i′, j′)Φ(z; i′, j)}

is constant over all g ∈ G.
In this case f necessarily divides k and A(z) = Φ∗(z)Φ(z) − rI is an abelian (v, f, c)-DRACKN

with c = k(r−1)
f

, cf. Definition 2.2. Moreover, if f is even then γ can be chosen so that Φ(γ) is a
real ETF.

Proof. (i ⇒ ii) Let γ0 denote the trivial character of G. For any γ 6= γ0, applying Lemma 2.1
to Φ(γ) gives Φ(γ)Φ∗(γ)Φ(γ) = aγΦ(γ) for some aγ = vr

dγ
, where dγ is the rank of Φ(γ). From

Theorem 3.4, we know dγ = d = vr
r+k−1 and so aγ = r + k − 1 for all γ 6= γ0. As such, evaluating

Φ(z)Φ∗(z)Φ(z)− (r+k−1)Φ(z) at any γ 6= γ0 gives 0. Now note that a z-transform x(z) satisfies
x(γ) = 0 for all γ 6= γ0 precisely when x(z) is a scalar multiple of the geometric sum 1(z). This
is because the characters form an orthonormal basis for C

G , and so 〈γ,x〉 = 0 for all γ 6= γ0 if
and only if x is a scalar multiple of γ0. As such, there exists a matrix X0 with scalar (constant
polynomial) entries such that Φ(z)Φ∗(z)Φ(z) = (r + k − 1)Φ(z) + 1(z)X0. Here, X0 is uniquely
determined by evaluating this equation at γ0: since Φ(γ0) = X while 1(γ0) = f , (12) gives

(r + k − 1)X+ fX0 = XXTX = X[(r − 1)I + J] = (r − 1)X+ kJ,

namely that X0 =
k
f
(J−X). Thus Φ(z)Φ∗(z)Φ(z) = (r+ k− 1)Φ(z) + k

f
1(z)(J−X), as claimed.

(ii ⇒ iii) For any (i, j) such that Φ(z; i, j) = 0, simply compute the (i, j)th entry of (ii).
(iii ⇒ i) For any γ 6= γ0, 1(γ) = 0 and so Φ = Φ(γ) is a phased BIBD which satisfies (17), and

so Theorem 3.4 gives that its columns form an ETF for their span.
(iii ⇔ iv) Since |Φ(z)|2 is a BIBD(v, k, 1), for any (i, j) such that Φ(i, j) = 0, there are exactly

k choices of (i′, j′) such that Φ(z; i, j′)Φ(z; i′, j′)Φ(z; i′, j) is nonzero: there are k choices of j′ such
that Φ(z; i, j′) 6= 0, and for each there is a unique choice of i′ such that Φ(i′, j) 6= 0 6= Φ(i′, j′).
Moreover, each Φ(z; i, j′)Φ(z; i′, j′)Φ(z; i′, j) is a monomial zg over our group of order f , being the
product of three monomials. As such, (iii) holds precisely when each monomial zg appears as one
of the k nonzero values Φ(z; i, j′)Φ(z; i′, j′)Φ(z; i′, j) exactly k

f
times, namely (iv).
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Now assume (i)–(iv) hold. Note f divides k since k
f
is the cardinality of the sets in (iv). To

show A(z) = Φ∗(z)Φ(z) − rI is an abelian DRACKN, note that A(z) is self-adjoint. Moreover,
the BIBD structure of X implies that the diagonal entries of A(z) are zero while its off-diagonal
entries are monomials, being the product of two monomials. What remains to be shown is that
A(z) satisfies the quadratic-like equation given in Definition 2.2. To do so, note that multiplying
(ii) by Φ∗(z) gives

[Φ∗(z)Φ(z)]2 = (r + k − 1)Φ∗(z)Φ(z) + k
f
1(z)Φ∗(z)(J −X).

To simplify, note that for any formal polynomial x(z) over G, x(z)1(z) = [
∑

g∈G x(g)]1(z). Thus,

1(z)Φ∗(z) = 1(z)XT. Since (12) gives XT(J−X) = rJ− [(r− 1)I+J] = (r− 1)(J− I), the above
equation simplifies to

[Φ∗(z)Φ(z)]2 = (r + k − 1)Φ∗(z)Φ(z) + k(r−1)
f

1(z)(J− I).

Replacing Φ∗(z)Φ(z) with A(z) + rI and simplifying then gives

[A(z)]2 = −(r − k + 1)A(z) + (v − 1)I + k(r−1)
f

1(z)(J − I).

Letting c = k(r−1)
f

and comparing the above expression to Definition 2.2, we observe that

n− fc− 2 = (v − 1)− k(r − 1)− 1 = r(k − 1)− k(r − 1)− 1 = −(r − k + 1), (21)

and so conclude that A(z) is a (v, f, c)-DRACKN. For the final conclusion, note that if f is even,
then G has a real-valued character γ, meaning Φ(γ) is real.

We remark that the DRACKN parameter δ = n − fc − 2 = −(r + k + 1) computed in (21)
appears frequently in [24, 14]. In particular, as summarized in Lemma 2.3, A(γ) is the signature
matrix of an ETF for a space whose dimension is determined by n = v and δ:

d =
v

2

[

1− δ
√

δ2 + 4(v − 1)

]

=
v

2

[

1 +
r − k + 1

r + k − 1

]

=
vr

r + k − 1
.

This expression for d also follows from Theorem 3.4 since A(γ) is the signature matrix of the
phased BIBD ETF Φ(γ).

Many of the known constructions of DRACKNs have δ ∈ {−2, 0, 2} [24]. For DRACKNs
produced by Theorem 4.2, recall Fisher’s inequality gives r ≥ k and so δ = −(r − k + 1) is
negative. In fact, as explained in the proof of Theorem 3.5, the only phased BIBD(v, k, 1) ETFs
with r = k have (v, k) = (3, 2), such as (13). Thus, excluding this case, the DRACKNs produced
by polyphase BIBD ETFs have δ ≤ −2. Moreover, δ = −2 precisely when r = k+1, namely when
Theorem 3.5(d) applies to Φ(γ) for all nontrivial γ.

Some of the deepest results of [14] provide necessary conditions on when an ETF arising from
an abelian DRACKN can possibly achieve the real or complex Gerzon bounds. In particular, since
polyphase BIBD ETFs have δ < 0, Theorem 6.5 and Corollary 6.7 of [14] imply that any polyphase
BIBD ETF for which v = (v − d)2 necessarily has (v, f, c) = (9, 3, 3), namely (v, k, f) = (9, 3, 3).
That is, Example 3.3 is essentially the only polyphase BIBD ETF whose Naimark complements
achieve the complex Gerzon bound. Meanwhile, Theorems 6.5 and 6.6 of [14] imply that any
(v, k, f)-polyphase BIBD ETF for which v =

(

v−d+1
2

)

and f > 2 necessarily has (v, f, c) = (28, 4, 8),

16



namely (v, k, f) = (28, 4, 4); later on, we show how to explicitly construct such a polyphase BIBD
ETF over the group G = Z4. We note that [14] also gives necessary conditions on DRACKNs with
δ > 0 that attain the Gerzon bounds, and these conditions are much less restrictive than those
given in the δ < 0 case.

We also remark that from the perspective of [24, 14], a polyphase BIBD(v, k, 1) ETFΦ(z) can be
naturally interpreted as an “abelian cover” of that BIBD. To elaborate, under the isomorphism (6)
between polynomials and circulant matrices over G, the filter bank Y = Φ(T) is a b× v array of
f × f blocks. When Φ(z; i, j) = 0, the corresponding (i, j)th block of Y is Y(i, j) = 0f . When
Φ(z; i, j) = zg, Y(i, j) = Tg is a circulant permutation matrix, namely a “perfect matching”
between the vertices in the ith “vertex fiber” and the jth “block fiber.” This implies Y is a bf×vf
incidence matrix. Moreover, 1(z) becomes 1(T) = Jf under (6), and the characterization of
Theorem 4.2(ii) becomes

YYTY = (r + k − 1)Y + k
f
(Jb×v −X)⊗ Jf .

This implies that if a given vertex does not lie on a given block nor on any other block in its fiber
then there are exactly k

f
projections from that vertex onto that block. As we now explain, this

means that polyphase BIBD ETFs with f = k are closely related to combinatorial designs known
as generalized quadrangles.

4.1. Polyphase BIBD ETFs from abelian generalized quadrangles

Given positive integers s and t, a corresponding generalized quadrangle GQ(s, t) is a set of
vertices and a set of blocks (subsets of the vertex set) such that:

(i) every block contains exactly s+ 1 vertices,

(ii) every vertex is contained in exactly t+ 1 blocks,

(iii) two distinct blocks intersect in at most one vertex,

(iv) two distinct vertices are contained in at most one block,

(v) if vertex i does not lie in block j, then there exists a unique (i′, j′) such that vertex i′ is
contained in block j and j′ while block j′ contains both vertex i and i′.

In particular, the first two axioms mean the GQ’s incidence matrix Z satisfies Z1 = (s + 1)1 and
ZT1 = (t + 1)1. The next two axioms state that all off-diagonal entries of ZZT and ZTZ are
{0, 1}-valued. The final axiom means every vertex not on a block has a unique “projection” onto
that block. This implies a GQ contains no triangles. To express (v) in terms of Z, note

(ZZTZ)(i, j) =
∑

i′

∑

j′

Z(i, j′)Z(i′, j′)Z(i′, j)

counts the number of vertex-block pairs (i′, j′) such that Z(i, j′) = Z(i′, j′) = Z(i′, j) = 1. Thus,
(v) states that if Z(i, j) = 0 then (ZZTZ)(i, j) = 1. If we instead have Z(i, j) = 1, the first four
axioms imply there are exactly s+ t+1 choices of (i′, j′) such that Z(i, j′) = Z(i′, j′) = Z(i′, j) = 1,
namely those s+1 choices of (i, j′) such that Z(i, j′) = 1 and those t+1 choices of (i′, j) such that
Z(i, j′), both of which include (i′, j′) = (i, j). Overall, we see that a GQ(s, t) is equivalent to an
incidence matrix Z that satisfies

Z1 = (s+ 1)1, ZT1 = (t+ 1)1, ∀i, j, (22)

(ZZT)(i, i′), (ZTZ)(j, j′) ∈ {0, 1}, ∀i 6= i′, j 6= j′, (23)

ZZTZ = (s+ t)Z+ J. (24)
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This formulation leads to several well-known results about GQs that we will need later on. For
example, we see that the dual of a GQ(s, t) (obtained by transposing Z) is a GQ(t, s). Also, letting
Z be b × v, multiplying ZZTZ = (s + t)Z + J by 1 gives v = (s + 1)(st + 1), at which point the
dual result gives b = (t+ 1)(st+ 1). Next, (22) and (24) immediately gives

(ZTZ)2 = (s+ t)ZTZ+ (t+ 1)J, (25)

implying the adjacency matrix ZTZ−(t+1)I of its collinearity graph is an SRG (8) with parameters

(v, k, λ, µ) =
(

(s + 1)(st+ 1), s(t+ 1), s − 1, t+ 1
)

. (26)

One of the eigenvalues of this adjacency matrix thus has multiplicity 1
s+t

st(s+ 1)(t+ 1), and so s+t
necessarily divides st(s+ 1)(t+ 1). See [31, 32] for more necessary conditions on GQ parameters,
such as the fact that s ≤ t2 when t 6= 1 and t ≤ s2 when s 6= 1.

In light of these restrictions, it is not surprising that relatively few examples of GQs are known:
they are only known to exist for (s, t) or (t, s) of the form

(1, r), (q, q), (q, q2), (q2, q3), (q − 1, q + 1) (27)

for any r ≥ 1 and any prime power q [31]. These known constructions all involve special algebro-
combinatorial structures over finite fields. The existence of GQ(s, t) remains unresolved for many
values of (s, t), such as (s, t) = (4, 11).

In certain GQs, there is a collection of blocks that partition the vertex set. Such a collection
is called a spread [11]. Since any spread necessarily consists of st+ 1 disjoint blocks, this happens
precisely when the GQ has an incidence matrix (and resulting collinearity adjacency matrix) of
the form

Z =

[

Ist+1 ⊗ 1Ts+1

Y

]

, ZTZ− (t+ 1)I = (YTY − tI) + Ist+1 ⊗ (Js+1 − Is+1).

The corresponding SRG can thus be partitioned into cliques of size s + 1. As noted in [8, 24],
deleting the edges in these cliques produces the adjacency matrix YTY − tI of a DRACKN with
parameters (n, f, c) = (st + 1, s + 1, t − 1). As we now explain, under certain conditions this
DRACKN is guaranteed to be abelian and thus yields ETFs. In fact, each of these GQs corresponds
to a (v, k, f)-polyphase BIBD ETF with the special property that f = k.

Theorem 4.3. If Φ(z) is a (v, k, k)-polyphase BIBD ETF (Definition 4.1) then

Z =

[

Iv ⊗ 1Tk
Φ(T)

]

(28)

is the incidence matrix of a GQ(k − 1, r) that contains a spread where r = v−1
k−1 . Conversely, if

Z =

[

Ist+1 ⊗ 1Ts+1

Y

]

(29)

is the incidence matrix of a GQ(s, t) that contains a spread, and there exists an abelian group G of
order s+ 1 such that Y is a t(st+1)

s+1 × (st+ 1) array of (s+ 1)× (s+ 1) of blocks that are either a
G-circulant permutation matrix or the zero matrix, then there exists an (st+1, s+1, s+1)-polyphase
BIBD ETF Φ(z) such that Y = Φ(T).
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In this case, the resulting ETFs Φ(γ) have parameters

d =
t(st+ 1)

s+ t
, n = st+ 1, n− d =

s(st+ 1)

s+ t
. (30)

Moreover, when s+ 1 is even, γ can be chosen so that Φ(γ) is a real ETF.
Also, Φ∗(z)Φ(z)− tI is an abelian (st+ 1, s + 1, t− 1)-DRACKN.

Proof. (⇒) Let Φ(z) be a (v, k, k)-polyphase BIBD ETF over some abelian group G of order k. The
matrix Φ(T) is obtained by identifying each entry of Φ(z) with a G-circulant matrix according to
the isomorphism (6). Thus, Φ(T) is a b× v array of blocks of size k× k, where each block is either
zero or a G-circulant permutation matrix. In particular, the matrix Z given in (28) is a well-defined
incidence matrix. Moreover, since X := |Φ(z)|2 is the incidence matrix of a BIBD(v, k, 1), each
row of Φ(T) contains exactly k ones, while each column of Φ(T) contains exactly r ones. Letting
s = k − 1 and t = r, this implies the rows and columns of Z contain exactly s + 1 ones and t+ 1
ones, respectively. That is, Z satisfies (22).

We next show Z also satisfies (23). To do so, note

ZZT =

[

Iv ⊗ 1Tk
Φ(T)

]

[

Iv ⊗ 1k Φ∗(T)
]

=

[

kIv (Iv ⊗ 1T
k )Φ

∗(T)
Φ(T)(Iv ⊗ 1k) Φ(T)Φ∗(T)

]

. (31)

Since X is the incidence matrix of a BIBD(v, k, 1), any two of its blocks intersect in at most one
vertex. This means that the off-diagonal entries of Φ(z)Φ∗(z) are either monomials or zero while
its diagonal entries are k. Thus, Φ(T)Φ∗(T) is a block matrix whose diagonal k × k blocks are
kI and whose off-diagonal blocks are either permutation matrices or zero. In particular, the off-
diagonal entries of the lower-right term in (31) are {0, 1}-valued. Meanwhile, the lower-left term
in (31) is a (b× v)× (k × 1) block matrix whose (i, j)th block is

[Φ(T)(Iv ⊗ 1k)](i, j) =

v
∑

j′=1

Φ(T; i, j′)(Iv ⊗ 1k)(j
′, j) = Φ(T; i, j)1k,

which is either 1k or 0k depending on whether Φ(T; i, j) is a permutation matrix or is the zero
matrix. This means

Φ(T)(Iv ⊗ 1k) = X⊗ 1k, (32)

which is {0, 1}-valued. Thus, Φ(T) satisfies the first half of (23). For the second half of (23),
note that since X is a BIBD(v, k, 1), the off-diagonal entries of Φ∗(z)Φ(z) are monomials while its
diagonal entries are r. Thus, Φ∗(T)Φ(T) is a block matrix whose diagonal k× k blocks are rI and
whose off-diagonal blocks are permutation matrices. In particular, the off-diagonal entries of

ZTZ =
[

Iv ⊗ 1k Φ∗(T)
]

[

Iv ⊗ 1T
k

Φ(T)

]

= Iv ⊗ Jk +Φ∗(T)Φ(T) (33)

are {0, 1}-valued.
Having (22) and (23) we turn to (24). Multiplying (33) by Z gives

ZZTZ =

[

Iv ⊗ 1Tk
Φ(T)

]

{

Iv ⊗ Jk +Φ∗(T)Φ(T)
}

=

[

(Iv ⊗ 1Tk )
[

Iv ⊗ Jk +Φ∗(T)Φ(T)
]

Φ(T)
[

Iv ⊗ Jk +Φ∗(T)Φ(T)
]

]

. (34)
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Both the top and bottom terms of (34) can be simplified with (32). Specifically,

(Iv ⊗ 1Tk )
[

Iv ⊗ Jk +Φ∗(T)Φ(T)
]

= k(Iv ⊗ 1Tk ) +
[

Φ(T)(Iv ⊗ 1k)
]T

Φ(T)

= k(Iv ⊗ 1Tk ) + (X⊗ 1k)
TΦ(T).

To continue simplifying this term, note the (j, j′)th block of size 1× k of (X⊗ 1k)
TΦ(T) is

[(X⊗ 1k)
TΦ(T)](j, j′) =

b
∑

i=1

X(i, j)1T
kΦ(T; i, j′) =

b
∑

i=1

X(i, j)X(i, j′)1T
k = (XTX)(j, j′)1T

k .

Thus, (X⊗ 1k)
TΦ(T) = (XTX)⊗ 1T

k = [(r − 1)Iv + Jv]⊗ 1Tk = (r − 1)Iv ⊗ 1Tk + Jv×vk and so

(Iv ⊗ 1Tk )
[

Iv ⊗ Jk +Φ∗(T)Φ(T)
]

= (r + k − 1)(Iv ⊗ 1Tk ) + Jv×vk. (35)

To simplify the bottom term of (34), note that since Φ(z) is a (v, k, k)-polyphase BIBD ETF,
Theorem 4.2.(ii) gives Φ(z)Φ∗(z)Φ(z) = (r+k−1)Φ(z)+1(z)(J−X). Under the isomorphism (6),
1(z) becomes 1(T) = Jk and so this equation becomes

Φ(T)Φ∗(T)Φ(T) = (r + k − 1)Φ(T) + (Jb×v −X)⊗ Jk.

Using this along with (32) we can write the bottom term in (34) as

Φ(T)
[

Iv ⊗ Jk +Φ∗(T)Φ(T)
]

= Φ(T)(Iv × 1k)(Iv × 1T
k ) +Φ(T)Φ∗(T)Φ(T)

= X⊗ Jk + (r + k − 1)Φ(T) + (Jb×v −X)⊗ Jk

= (r + k − 1)Φ(T) + Jbk×vk. (36)

Combining (34), (35), (36) and the fact that r + k − 1 = s+ t, we see that Z satisfies (24):

ZZTZ =

[

(r + k − 1)(Iv ⊗ 1Tk ) + Jv×vk

(r + k − 1)Φ(T) + Jbk×vk

]

= (r + k − 1)

[

Iv ⊗ 1Tk
Φ(T)

]

+ J = (r + k − 1)Z+ J.

(⇐) Now assume we have a GQ(s, t) whose incidence matrix Z is of form (29) where Y is a
block matrix whose blocks are either zero or permutation matrices that are circulant with respect
to some given abelian group G of order s + 1. Since Z is (t + 1)(st + 1) × (s + 1)(st + 1), Y is
t(st+ 1) × (s + 1)(st + 1). Thus, Y is a b× v array of k × k blocks where k = s + 1, v = st+ 1,
r = t and b = v

k
r = t(st+1)

s+1 . Let X and Φ(z) be the b × v incidence matrix and polyphase matrix
corresponding to Y, respectively:

X(i, j) =

{

1, Y(i, j) 6= 0,
0, Y(i, j) = 0,

Φ(z; i, j) =

{

zg, Y(i, j) = Tg,
0, Y(i, j) = 0.

Clearly, the entries of Φ(z) are either monomials or zero and |Φ(z)|2 = X. To show Φ(z) is a
(st+ 1, s+ 1, s+ 1) = (v, k, 1)-polyphase BIBD ETF, we show that X is the incidence matrix of a
BIBD(v, k, 1) and that Φ(z) satisfies Theorem 4.2(ii).

To show that X is the incidence matrix of a BIBD(v, k, 1), note that since any row of Y contains
exactly k = s + 1 ones, each block-row of Y contains k permutation matrices, meaning each row
of X contains k ones. As such, what remains is to show that any two distinct columns of X
have exactly one row index of common support. For any j = 1, . . . , st + 1 let Yj denote the jth
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submatrix of Y of size t(st+ 1)× (s+ 1). That is, Y = [Y1 · · ·Yst+1]. Under this notation, Z
TZ

is an (st+ 1)× (st+ 1) array of blocks of size (s+ 1)× (s+ 1) whose (j, j′)th block is

(ZTZ)(j, j′) =

[

δj ⊗ 1Tk
Yj

]T [

δj′ ⊗ 1T
k

Yj′

]

=

{

tI+ J, j = j′,
YT

j Yj′ , j 6= j′.
(37)

By (23), this implies YT
j Yj′ is {0, 1}-valued for any j 6= j′.

We claim that YT
j Yj′ is a permutation matrix for all j 6= j′. To prove this claim, we borrow

a relevant idea from [8]. In particular, recall from (25) that ZTZ − (t + 1)I is an SRG (8) with
parameters (26). In particular, each of the (s + 1)(st + 1) vertices of this graph has s(t + 1)
neighbors, and any two adjacent vertices have s− 1 neighbors in common. Further note that (37)
implies this SRG is partitioned into st+1 cliques of size s+1 corresponding to the diagonal blocks
of ZTZ. Together, these facts imply that if two vertices are in a common clique, then their common
neighbors are precisely the remaining s − 1 vertices in that clique. That is, any vertex can have
at most one neighbor from each of the st cliques it does not belong to. At the same time, it has
s(t + 1) neighbors overall, including s from its own clique, meaning each vertex has exactly one
neighbor from each of the st cliques to which it does not belong. In particular, for any j 6= j′, each
row and column of YT

j Yj′ contains exactly one 1, meaning it is a permutation matrix, as claimed.
Having this claim, note Yj is a vertical concatenation of the matrices {Y(i, j)}bj=1 which are

either permutation matrices or zero. Moreover, for any j 6= j′ the permutation matrix YT
j Yj′ is a

sum of products of such matrices

YT
j Yj′ =

b
∑

i=1

Y(i, j)Y(i, j′).

Since a permutation matrix cannot be written as a sum of two or more permutation matrices,
this means there is exactly one value of i = i(j, j′) such that Y(i, j) 6= 0 6= Y(i, j′). Thus, any
two distinct columns of X have exactly one index of common support, meaning it is indeed the
incidence matrix of a BIBD(v, k, 1).

To show that Φ(z) satisfies the condition of Theorem 4.2(ii), note that since v = st+1, k = s+1
and Y = Φ(T), our matrix (29) is of form (28) where X = |Φ(z)|2 is the incidence matrix of a
BIBD(v, k, 1). This means that certain facts from the proof of the converse direction, such as (32)
and (34) are also valid here. In particular, using (34) we can rewrite our assumption (24) as

[

(Iv ⊗ 1Tk )
[

Iv ⊗ Jk +Φ∗(T)Φ(T)
]

Φ(T)
[

Iv ⊗ Jk +Φ∗(T)Φ(T)
]

]

=

[

(r + k − 1)(Iv ⊗ 1T
k ) + Jv×vk

(r + k − 1)Φ(T) + Jbk×vk

]

.

By (32), the bottom half of this equation becomes

X⊗ Jk +Φ(T)Φ∗(T)Φ(T) = (r + k − 1)Φ(T) + Jbk×vk = (r + k − 1)Φ(T) + Jb×v ⊗ Jk,

that is, Φ(T)Φ∗(T)Φ(T) = (r + k − 1)Φ(T) + (J − X) ⊗ Jk. Under the isomorphism (6), Jk

becomes 1(z) and this equation becomes Φ(z)Φ∗(z)Φ(z) = (r+ k− 1)Φ(z)+1(z)(J−X), namely
the condition of Theorem 4.2 in the special case where f = s+ 1 = k.

For (30), note that in this case, Theorem 4.2 gives that Φ(z) is a polyphase BIBD ETF with
parameters (v, k, k) = (st+ 1, s + 1, s + 1), meaning Φ(γ) is a phased BIBD(st+ 1, s + 1, 1) ETF
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for any nontrivial character γ. By Theorem 3.4, this means the st + 1 columns of Φ(γ) form an
ETF for their span which has dimension

d =
vr

r + k − 1
=

t(st+ 1)

s+ t
,

which in turn implies n− d = s(st+1)
s+t

. Also, if the order s+1 of G is even, then it has a real-valued
character γ, meaning in that case Φ(γ) is real.

Finally, since Φ(z) is a (st + 1, s + 1, s + 1)-polyphase BIBD ETF whose underlying BIBD
has k = s + 1 and r = t, Theorem 4.2 also immediately gives that Φ∗(z)Φ(z) − tI is an abelian

(st+ 1, s+ 1, c)-DRACKN where c = k(r−1)
f

= (s+1)(t−1)
s+1 = t− 1.

In light of the previous result, we make the following definition:

Definition 4.4. We say a generalized quadrangle GQ(s, t) is abelian if it has an incidence matrix
of the form (28) where Φ(z) is an (st+ 1, s+ 1, s + 1)-polyphase BIBD ETF, cf. Definition 4.1.

Note that in order for a GQ(s, t) to be abelian, applying Fisher’s inequality to the underlying
BIBD(st+ 1, s + 1, 1) gives s = k − 1 < r = t. This means that of the parameters (27) of known
constructions of GQ(s, t) we should only consider (s, t) of the form (1, r) for some r ≥ 2 or (q, q2),
(q2, q3), (q − 1, q + 1) for some prime power q. Note Theorem 4.3 also implies that both s+ 1 and
s+ t necessarily divide t(st+ 1). This is more restrictive than having s+ t divide st(s+ 1)(t+ 1),
which is a known necessary condition on the parameters of any GQ(s, t). For example, though
there exists a GQ(q2, q3) for a prime power q, this GQ cannot be abelian since

t(st+ 1)

s+ 1
=

q3(q5 + 1)

q2 + 1
= q6 − q4 + q2 + q − 1− q − 1

q2 + 1

is not an integer for any q ≥ 2. Altogether, we see that the only known constructions of GQ(s, t)
that might be abelian are those whose (s, t) parameters are of the form

(1, r), (q, q2), (q − 1, q + 1), (38)

where r ≥ 2 and q is a prime power. In the next section, we produce explicit constructions of
abelian GQ(s, t) for all three of these types of parameters. To be clear, other abelian GQs may
exist. For example, any GQ(s, t) with s ≥ 3 and t = s2 − s− 1 has s < t and

t(st+ 1)

s+ 1
= (s − 1)2(s2 − s− 1),

t(st+ 1)

s+ t
= (s− 1)(s2 − s− 1).

However, with the exception of (s, t) = (3, 5) (which is constructed by letting (s, t) = (q − 1, q +1)
when q = 4), no constructions of GQ(s, t) with t = s2 − s − 1 are known. To the best of our
knowledge, the existence of GQs with these parameters is an open question. For example, the
existence of a GQ(4, 11) is open [31]. We note that by Theorem 4.3, if a GQ(s, s2− s− 1) did exist
the resulting ETF would have

n = st+ 1 = (s− 1)2(s+ 1), d = (s− 1)(s2 − s− 1), n− d = s(s− 1).

That is, a Naimark complement of an ETF arising from a GQ(s, s2−s−1) has the same parameters
as a Steiner ETF arising from an affine plane of order s − 1. This suggests we let q = s − 1 be
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a prime power and seek an abelian GQ(q + 1, q2 + q − 1). In such a GQ, any block contains
q + 1 vertices. As such, an abelian GQ(q + 1, q2 + q − 1) might lie as a subincidence structure
of a projective geometry over the field Fq of q elements. We leave a deeper investigation of this
question for future work.

The above line of reasoning begs the following question: by Theorem 4.3, the existence of an
abelian GQ implies the existence of a phased BIBD ETF; is the converse ever true? That is, does
the existence of a phased BIBD ETF imply the existence of an abelian GQ? By borrowing the
proof technique of Theorem 5.1 of [14], we see the answer to this question is yes:

Theorem 4.5. Suppose Φ is a phased BIBD(v, k, 1) ETF whose nonzero entries are pth roots of
unity where p is prime. Then p divides k and there exists a (v, k, p)-polyphase BIBD ETF Φ(z)
over Zp such that Φ = Φ(γ) for some character γ.

In particular, if k = p then (28) is the incidence matrix of a GQ(k − 1, r) where r = v−1
k−1 .

Proof. Let ω = exp(2πi
p
) and let Φ(z) be the b× v polyphase matrix whose (i, j)th entry is

Φ(z; i, j) =

{

zl, Φ(i, j) = ωl,
0, Φ(i, j) = 0,

(39)

regarded as a polynomial over Zp, that is, as a member of Zp[z]/〈zp − 1〉. Note |Φ(z)|2 = X = |Φ|2
is the incidence matrix of a BIBD(v, k, 1). For any (i, j) such that Φ(i, j) = 0, (17) gives

b
∑

i′=1

v
∑

j′=1

Φ(i, j′)Φ(i′, j′)Φ(i′, j) = 0. (40)

As noted in our discussion following the proof of Theorem 3.4, only k of these summands are
nonzero. Here, these nonzero summands are all pth roots of unity, being the product of three pth
roots of unity. Since p is prime, the pth cyclotomic polynomial is

∑p−1
l=0 zl. This implies that if

{cl}p−1
l=0 are rational numbers such that

∑p−1
l=0 clω

l = 0 then c1 = · · · = cp. In particular, the k
nonzero summands of (40) consist of k

p
copies of each pth root of unity, that is,

#{(i′, j′) : ωl = Φ(i, j′)Φ(i′, j′)Φ(i′, j)} = k
p
.

By (39), this implies #{(i′, j′) : zl = Φ(z; i, j′)Φ(z; i′, j′)Φ(z; i′, j)} = k
p
is independent of l, and so

Theorem 4.2(iv) gives Φ(z) is a (v, k, p)-polyphase BIBD ETF over Zp. In particular, if p = k then
Theorem 4.3 implies (28) is the incidence matrix of a GQ(k − 1, r) where r = v−1

k−1 .

Combining Theorems 4.3 and 4.5, we see that if s+1 is prime then an abelian GQ(s, t) exists if
and only if there exists a phased BIBD(st+1, s+1, 1) ETF whose nonzero entries are (s+1)th roots
of unity. In particular, returning to the line of reasoning given immediately before Theorem 4.5,
we see that when s + 1 is prime, an abelian GQ(s, s2 − s − 1) exists if and only if there exists a
phased BIBD((s− 1)2(s+1), s+1, 1) ETF whose nonzero entries are (s+1)th roots of unity. This
is intriguing since, as mentioned earlier, the existence of GQ(s, s2 − s− 1) seems to be unresolved
for all s > 3 [31], while BIBD((s− 1)2(s+1), s+1, 1) are known to exist whenever 3 ≤ s ≤ 7 [30].
For example, perhaps a GQ(4, 11) can be obtained by phasing a known example of a BIBD(45, 5, 1)
with fifth roots of unity.
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5. Explicit constructions of abelian generalized quadrangles

In this section, we construct abelian generalized quadrangles with parameters (38) for any r ≥ 2
and prime power q, cf. Definition 4.4. By Theorem 4.3, each of these produces an ETF.

The first of these constructions is an abelian GQ(1, r), which is a trivial type of GQ known as
a dual grid [32]. They correspond to trivial ETFs, namely regular simplices. To be precise, for
any r ≥ 2, an abelian GQ(1, r) can be obtained by letting v = r + 1 and applying Theorem 4.5 to
the phased BIBD(v, 2, 1) ETF Φ given in Example 3.2 whose nonzero entries lie in {±1}, namely
pth roots of unity where p = 2 is prime. For example, for the phased BIBD Mercedes-Benz ETF
given in (13), the method of Theorem 4.5 gives the following (3, 2, 2)-polyphase BIBD ETF (whose
entries are polynomials in C[z]/〈z2 − 1〉) as well as the incidence matrix Z of a GQ(1, 2):

Φ(z) =





1 z 0
1 0 z
0 1 z



 , Z =

[

I3 ⊗ 1T2
Φ(T)

]

=































1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

1 0 0 1 0 0
0 1 1 0 0 0

1 0 0 0 0 1
0 1 0 0 1 0

0 0 1 0 0 1
0 0 0 1 1 0































.

Constructions of abelian GQ(q − 1, q + 1) and GQ(q, q2) are far less obvious. In particular, we
were not able to deduce an abelian structure on known constructions of GQ(q − 1, q + 1) [31, 32].
Instead, we construct an abelian GQ(q − 1, q + 1) from scratch.

5.1. Constructing an abelian GQ(q − 1, q + 1)

For any prime power q, let G be the (abelian) additive group of the finite field Fq. Note the
(q2, q, q)-polyphase BIBD ETF produced by Theorem 4.3 from any abelian GQ(q − 1, q + 1) over
this group has parameters

d =

(

q + 1

2

)

, n = q2 n− d =

(

q

2

)

. (41)

In particular, a Naimark complement of this ETF has the same size as a Steiner ETF arising
from a BIBD(q, 2, 1). Such Steiner ETFs are well understood. Also, the underlying BIBDs have
parameters (v, k, 1) = (q2, q, 1) and can be constructed, for example, as affine planes over Fq.
Together, these facts led us to the (9, 3, 3)-polyphase BIBD ETF over Zq given in Example 3.3, as
well as to the following generalization of it over the additive group of Fq:

Theorem 5.1. For any prime power q, let Φ(z) be a [(q + 1) × q] × (q × q) block matrix whose
entries are polynomials over the additive group of Fq. Specifically, for any x, y, j ∈ Fq and any
i ∈ Fq ∪ {∞}, let Φ(z) be the matrix whose (x, y)th entry of its (i, j)th block is

Φ(z; i, j;x, y) :=







zj(x+y), x− y = ij, i 6= ∞,
1, x = j, i = ∞,
0, else.

(42)

Then Φ(z) is a (q2, q, q)-polyphase BIBD ETF. As such:
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(a) For any nontrivial character γ, Φ(γ) is a phased BIBD ETF with parameters (41).

(b) When q = 2j , γ can be chosen so that Φ(γ) is a real ETF.

(c) Φ(z)∗Φ(z)− (q + 1)I is an abelian (q2, q, q)-DRACKN.

(d) The matrix (28) is the incidence matrix of an abelian GQ(q − 1, q + 1).

Proof. Let X = |Φ(z)|2. We claim X is the incidence matrix of a BIBD(q2, q, 1), namely an affine
plane of order q. (A remark on notation: the index i here corresponds to the “slope” of a parallel
class of affine lines, with “∞” corresponding to vertical lines.) Indeed, for any (i, x) there are
exactly q choices of (j, y) such that X(i, j;x, y) = 1: when i 6= ∞, y = x− ij where j is arbitrary;
when i = ∞, j = x and y is arbitrary. Moreover, if (j, y) 6= (j′, y′) then there exists exactly one
choice of (i, x) such that X(i, j;x, y) = 1 = X(i, j′;x, y′): when j 6= j′ we have x = y+ ij = y′+ ij′

where i = −(y − y′)(j − j′)−1; when j = j′ and y 6= y′ we have x = j and i = ∞.
Having that X is a BIBD(q2, q, 1), we use Theorem 4.2(ii) to show Φ(z) is a (q2, q, q)-polyphase

BIBD ETF. For any j, j′, y, y′ ∈ Fq, the (y, y′)th entry of the (j, j′)th block of [Φ(z)]∗Φ(z) is

[Φ∗(z)Φ(z)](j, j′; y, y′) =
∑

i∈Fq∪{∞}

∑

x∈Fq

Φ(z; i, j;x, y)Φ(z; i, j′;x, y′). (43)

By (42), the “i = ∞” part of this sum is

∑

x∈Fq

Φ(z;∞, j;x, y)Φ(z;∞, j′;x, y′) =
∑

x∈Fq

{

1, x = j = j′

0, else

}

=

{

1, j = j′,
0, else.

(44)

Meanwhile, the remaining part of (43) is

∑

i∈Fq

∑

x∈Fq

Φ(z; i, j;x, y)Φ(z; i, j′;x, y′) =
∑

i∈Fq

∑

x∈Fq

{

z−j(x+y)+j′(x+y′), x− y = ij, x− y′ = ij′

0, else

}

.

The summands above are thus nonzero only when x = y+ij and x = y′+ij′. When y+ij 6= y′+ij′,
there is no such x. When y+ ij = y′+ ij′, there is exactly one such x, and in this case the exponent
of the summand simplifies to

−j(x+ y) + j′(x+ y′) = −j(y′ + ij′ + y) + j′(y + ij + y′) = −(j − j′)(y + y′).

That is, the “i 6= ∞” part of (43) is

∑

i∈Fq

∑

x∈Fq

Φ(z; i, j;x, y)Φ(z; i, j′;x, y′) =
∑

i∈Fq

{

z−(j−j′)(y+y′), y + ij = y′ + ij′

0, else

}

.

To simplify this even further, note y+ ij = y′ + ij′ precisely when y− y′ = i(j′ − j). When j′ 6= j,
there is exactly one such value of i, namely i = −(y − y′)(j − j′)−1. Meanwhile, when j′ = j but
y 6= y′, no i ∈ Fq gives y + ij = y′ + ij′; when j = j′ and y = y′, all i ∈ Fq do. Thus,

∑

i∈Fq

∑

x∈Fq

Φ(z; i, j;x, y)Φ(z; i, j′;x, y′) =







q, j = j′, y = y′,
0 j = j′, y 6= y′,

z−(j−j′)(y+y′), j 6= j′.

(45)
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Summing (44) and (45) gives the following expression for (43):

[Φ∗(z)Φ(z)](j, j′ ; y, y′) =







q + 1, j = j′, y = y′,
1 j = j′, y 6= y′,

z−(j−j′)(y+y′), j 6= j′.

This can be nicely summarized as Φ∗(z)Φ(z) = qI +Ψ(z) where Ψ(z; j, j′, y, y′) = z−(j−j′)(y+y′).
As such, Φ(z)Φ∗(z)Φ(z) = qΦ(z) +Φ(z)Ψ(z). Here, for any i, j, y, z ∈ Fq,

[Φ(z)Ψ(z)](i, j;x, y) =
∑

j′∈Fq

∑

y′∈Fq

Φ(z; i, j′;x, y′)Ψ(z; j′, j; y′, y)

=
∑

j′∈Fq

∑

y′∈Fq

{

zj
′(x+y′)z(j−j′)(y+y′), x− y′ = ij′

0, else

}

= zj(x+y)
∑

j′∈Fq

zj
′(x−y−ij)

=

{

qzj(x+y), x− y = ij,
1(z), else,

(46)

where 1(z) =
∑

l∈Fq
zl is the geometric sum over Fq. Meanwhile, for i = ∞ and j, x, y ∈ Fq,

[Φ(z)Ψ(z)](∞, j;x, y) =
∑

j′∈Fq

∑

y′∈Fq

Φ(z;∞, j′;x, y′)Ψ(z; j′, j; y′, y)

=
∑

j′∈Fq

∑

y′∈Fq

{

z(j−j′)(y+y′), x = j′

0, else

}

= z(j−x)y
∑

y′∈Fq

z(j−x)y′

=

{

q, x = j,
1(z), else.

(47)

Comparing (46) and (47) against (42), we thus have Φ(z)Ψ(z) = qΦ(z) + 1(z)(J −X) and so

Φ(z)Φ∗(z)Φ(z) = qΦ(z) +Φ(z)Ψ(z) = 2qΦ(z) + 1(z)(J −X).

By Theorem 4.2(ii), this means Φ(z) is a (q2, q, q)-polyphase BIBD ETF. Having this, (a), (b), (c)
and (d) follow quickly from Theorems 4.2 and 4.3.

To put Theorem 5.1 into context, ETFs with parameters (41), abelian (q2, q, q)-DRACKNs, and
GQ(q−1, q+1) were already known to exist [6, 5, 21, 14, 32]. The novelty here is that we now know
there are GQ(q−1, q+1) which are abelian, and so there is an ETF with parameters (41) that arises
as the columns of a phased BIBD(q2, q, 1). Moreover, the construction technique itself seems to be
new, being quite different from all other known proofs of the existence of a GQ(q−1, q+1) [31, 32].

This construction accounts for half of the known phased BIBD ETFs given in Table 1, namely
those with u = 1

2 (k − 1)(k − 2), cf. Theorem 3.5(d). As we now discuss, the other half arise from
abelian GQ(q, q2).
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5.2. Constructing an abelian GQ(q, q2)

For any prime power q, there are several known constructions of GQ(q, q2) [31, 32]. We show
one of these is abelian, cf. Definition 4.4. Our main tool is the group action introduced in the
appendix of [23] that Godsil attributes to Brouwer. There as here, we actually construct the dual
of a GQ(q, q2), namely a GQ(q2, q).

This construction involves 4-tuples whose entries lie in the field Fq2 of q2 elements, namely
vectors in F

4
q2
. Every x ∈ Fq2 has the property that xq

2

= x. Moreover, x lies in the subfield Fq

of q elements if and only if xq = x. That is, Fq is the fixed field of the Galois group {id, σ} where
σ(x) := xq is the Frobenius endomorphism. If drawing an analogy between Fq2 over Fq and C over
R, xq plays the role of the complex conjugate of x. In particular, the “modulus squared” of x ∈ Fq2

is its field norm xq+1 = xqx ∈ Fq. Note xq+1 = 0 if and only if x = 0. Also, xq+1 = y has q + 1
distinct solutions for any nonzero y ∈ Fq: letting α be a generator of the multiplicative group F

×
q2

of Fq2 , we have F
×
q = {αi}q−2

i=0 ; writing y = αi(q+1) we can take x = αi+j(q−1) for any j = 0, . . . , q.
This “complex conjugate” analogy also suggests the following “dot product” on F

4
q2
:

x · y = (x1, x2, x3, x4) · (y1, y2, y3, y4) := xq1y1 + xq2y2 + xq3y3 + xq4y4. (48)

Here, unlike the complex setting, there are many nonzero vectors that are “orthogonal” to them-
selves. Indeed, −(xq+1

2 + xq+1
3 + xq+1

4 ) ∈ Fq for any x2, x3, x4 ∈ Fq2 and so we can take x1 to be any
(q+ 1)th root of it. The vertices in our GQ(q2, q) are projective versions of lines (one-dimensional
subspaces) of F4

q2
that consist entirely of self-orthogonal vectors. Specifically, let [x] = [x1, x2, x3, x4]

denote the set of all nonzero scalar multiples of a given nonzero vector x = (x1, x2, x3, x4) ∈ F
4
q2

and consider the vertex set

V := {[x] : x ∈ F
4
q2 , x 6= 0, x · x = 0}. (49)

This set is well-defined since the dot product (48) is sesquilinear. Meanwhile, the blocks in our
GQ(q2, q) are projective versions of planes (two-dimensional subspaces) of F4

q2
that consist entirely

of self-orthogonal vectors. To be precise, let [y, z] := {[x] : x ∈ span{y, z}} for any y, z ∈ F
4
q2

and
note that for any self-orthogonal y, z ∈ F

4
q2
,

(ay + bz) · (ay + bz) = aqb(y · z) + bqa(z · y) = aqb(y · z) + bqa(y · z)q. (50)

Thus, if y · z = 0 then all elements in span{y, z} are self-orthogonal. Conversely, if (50) is zero
for all a, b ∈ Fq2 then y · z = 0 since otherwise we can take b = 1 and rearrange (50) to give
aq−1 + (y · z)q−1 = 0 for all a ∈ Fq2 , a 6= 0, meaning this polynomial of degree q − 1 has q2 − 1
roots. This means our set of blocks is

B := {[y, z] : y, z ∈ F
4
q2 , y, z 6= 0, [y] 6= [z], y · y = z · z = y · z = 0}. (51)

Note that if x = (ay+ bz) where y and z are self-orthogonal then y ·x = a(y ·y) + b(y · z) = 0
and z · x = a(z · y) + b(z · z) = 0. Thus, span{y, z} is a two-dimensional subspace of

{y, z}⊥ :=

{

x ∈ F
4
q2 :

y · x = 0
z · x = 0

}

= Null

([

yq1 yq2 yq3 yq4
zq1 zq2 zq3 zq4

])

.

If y and z are linearly independent, the above matrix has rank two, implying {y, z}⊥ is also two-
dimensional and so span{y, z} = {y, z}⊥. In particular, we see that a vertex [x] is contained in a
block [y, z] if and only if y · x = z · x = 0.
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As mentioned above, it is known that the vertices (49) and blocks (51) form a GQ(q2, q) [32].
For those researchers primarily interested in new ETF constructions, we have included a short,
self-contained and elementary proof of this fact in Appendix B.

To show the dual of this GQ(q2, q) is abelian, let β := αq−1. Then β has order q + 1, and its
powers are the (q + 1)th roots of 1 in Fq2 . Let the cyclic group Zq+1 act on F

4
q2

by defining

jx = j(x1, x2, x3, x4) := (x1, β
jx2, β

jx3, β
jx4), ∀j ∈ Zq+1, x ∈ F

4
q2 .

Since this action commutes with scalar-vector multiplication on F
4
q2
, we can regard it as an action

on the corresponding projective space. That is, j[x] := [jx] is well-defined. Also note that since
βq+1 = 1, this action is unitary with respect to the dot product (48), that is, (jx) · (jy) = x · y.
Together, these facts imply that this action naturally applies to our GQ’s vertices and blocks: for
any j ∈ Zq+1, [x] ∈ V and any [y, z] ∈ B,

j[x] := j[x1, x2, x3, x4] = [x1, β
jx2, β

jx3, β
jx4] = [β−jx1, x2, x3, x4] ∈ V,

j[y, z] := {j[x] : [x] ∈ [y, z]} = {[x] : x ∈ [jy, jz]} = [jy, jz] ∈ B.

We denote the orbit of any [x] ∈ V under this action as orb[x] := {j[x]}j∈Zq+1
. Note that if

x = (x1, x2, x3, x4) where x1 = 0, this orbit is just the single vertex [x]. If instead x1 6= 0, the
fact that x is self-orthogonal implies (x2, x3, x4) 6= (0, 0, 0) and so the vertices {j[x]}j∈Zq+1

are all
distinct. In particular, the only fixed points of the group action are the vertices

O := {[x] ∈ V : x1 = 0}. (52)

Now recall that in order to satisfy Definition 4.4, our GQ(q, q2) necessarily contains a spread.
This means its dual (V,B) necessarily contains an ovoid, namely a set of vertices O with the
property that any block contains exactly one of them. As we now explain, the set (52) is an ovoid.
Indeed, every block [y, z] contains a member of O, namely either [y] or [ay+ z] for some choice of
a ∈ Fq2 . Moreover, this member is unique: no self-orthogonal vector can have support of size one,
meaning if [y], [z] ∈ O are distinct but lie in a common block, performing Gaussian elimination on
them produces a basis for span{y, z} of the form {(0, 1, 0, a), (0, 0, 1, b)} where aq+1 = bq+1 = −1;
however, since they are a basis for span{y, z}, they are also necessarily orthogonal, a contradiction.

Since there are (t + 1)(st + 1) = (q + 1)(q3 + 1) blocks total, each containing a unique vertex
in O, and since each vertex is contained in t + 1 = q + 1 blocks, the number of vertices in O is
q3 +1. The vertices in V ∩Oc are of the form [1, x1, x2, x3] where xq+1

1 + xq+1
2 + xq+1

3 = −1. Since
the total number of vertices in V is (s+ 1)(st+ 1) = (q2 + 1)(q3 + 1), there are exactly q2(q3 + 1)
vertices in V ∩Oc. Moreover, since the orbits of a group action form a partition of the set on which
it acts, and since any orbit generated from a nonovoid vertex has cardinality q + 1, the nonovoid
vertices V ∩ Oc are partitioned into q2(q2 − q + 1) orbits of size q + 1. From each such orbit, pick
a representative vertex [x]. This arbitrary choice establishes an ordering amongst the vertices in
this orbit: we regard [1, βix1, β

ix2, β
ix3] as the ith vertex in orb[x].

We order the blocks as well. In particular, for any of the q3 + 1 ovoid vertices y, fix any
z = (1, z2, z3, z4) that is orthogonal to y. Since y is a fixed point of the group action, [y, jz] is a
valid block for any j ∈ Zq+1. Moreover, these blocks are all distinct since

0 = (jz) · (j′z) = 1 + βj′−j(zq+1
1 + zq+1

2 + zq+1
3 ) = 1− βj′−j
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if and only if j = j′. This means every block that contains y is of this form, and we regard [y, jz]
as the jth block that contains y.

Now let Y be a q2(q2 − q+1)× (q3 +1) array of (q+1)× (q+1) matrices, where the rows and
columns of this array are indexed by our nonovoid orbit representatives [x] and ovoid vertices [y],
respectively. For any such [x] and [y] and any i, j ∈ Zq+1, let the (i, j)th entry of (q +1)× (q +1)
matrix Y([x], [y]) be 1 if the ith vertex in orb[x] lies in the jth block that contains [y], that is, if
ix ∈ span{y, jz}, and otherwise be 0. This happens if and only if both x · y = 0 and

0 = (ix) · (jz) = 1 + βj−i(xq2z2 + xq3z3 + xq4z4),

which requires j − i to be some fixed constant in Zq+1. As such, Y([x], [y]) is either zero or a
permutation matrix which is circulant over Zq+1. At the same time, note the matrix

Z =

[

I
q3+1 ⊗ 1T

q+1

Y

]

is an incidence matrix for the dual of our GQ(q2, q); each of the first q3 + 1 rows of Z corresponds
to a vertex [y] in O, and the top of Z has this form since [y] ∈ [y, jz] for all j ∈ Zq+1. Thus, by
Theorem 4.3, the dual of our GQ(q2, q) is indeed an abelian GQ(q, q2). Putting this together with
other facts from Theorems 4.2 and 4.3 then immediately gives the following result:

Theorem 5.2. For any prime power q, there exists an abelian GQ(q, q2) over Zq+1. As such,
letting Φ(z) be the corresponding (q3 + 1, q + 1, q + 1)-polyphase BIBD ETF:

(a) For any nontrivial character γ, Φ(γ) is a phased BIBD ETF with parameters (2).

(b) When q is odd, γ can be chosen so that Φ(γ) is a real ETF.

(c) Φ(z)∗Φ(z)− (q + 1)I is an abelian (q3 + 1, q + 1, q2 − 1)-DRACKN.

For q odd, the existence of real ETFs with parameters (2) was already known. In fact, the
existence of the corresponding SRGs was proven in [23], and it was this realization that started our
investigation into this line of research a few years ago. For q even, the situation is more interesting.
In particular, complex ETFs with parameters (2) do arise as Naimark complements of Steiner
ETFs arising from finite projective planes of order q − 1 [21]. However, finite projective planes
are only known to exist when their order is a power of a prime. This means the complex ETFs
given by Theorem 5.2 are new whenever q = 2j but q− 1 is not an odd prime power, such as when
q = 16. This happens infinitely often. For example, since 2j − 1 ≡ (−1)j − 1 ≡ 0 mod 3 whenever
j is even but 2j − 1 ≡ 0 mod 9 only when j ≡ 0 mod 6, this means 2j − 1 is divisible by 3 but not
by 9 whenever j ≡ 2, 4 mod 6, implying it is not a prime power for any such j greater than 2.

Theorem 5.2 accounts for half of the constructions of phased BIBD ETFs given in Table 1; the
other half arise from Theorem 5.1. Comparing against the constructions given in [14], we also note
that the abelian DRACKNs given by Theorem 5.2 also seem to be new for all prime powers q > 2,
having parameter δ = n− fc− 2 = −q(q − 1).

An example of a (28, 4, 4)-polyphase BIBD ETF arising from Theorem 5.2 when q = 3 is
given in Figure 1. As discussed earlier, from [14] we know that polyphase BIBD ETFs with these
parameters are the only ones capable of generating real ETFs whose Naimark complements achieve
the real Gerzon bound. We also point out that in this example the underlying BIBD(28, 4, 1) is
nicely arranged, with its top seven rows corresponding to a parallel class, namely a set of blocks
in the BIBD that partition its vertex set. This was accomplished by arranging our q3 + 1 ovoid
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1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 z2 0 0 0 0 z2 0 0 0 0 z2 0 0 0 0 z2 0 0 0 0

0 0 0 0 0 0 0 0 0 z 0 0 0 0 z 0 0 0 0 z z 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 z3 z3 0 0 0 0 z3 0 0 0 0 z3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 z2 0 0 0 z3 0 0 0 1 0 0 0 z 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 z2 0 0 0 z3 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 z 0 0 0 z2 0 0 0 z3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 z3 0 0 0 1 0 0 0 z 0 0 0 z2 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 z 0 0 0 0 1 0 0 0 0 0 0 0

z3 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0

z2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 z 0 0 0 0 0 0

z 0 0 0 0 0 1 0 0 0 z 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 z3 0 0 0 1 0 0 0 0 z3 0 0 0 0 0 0 0 0 0 0 0

0 z3 0 0 z3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 z3 0 0 0 0 0 0

0 z2 0 0 0 z3 0 0 0 0 z3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 z 0 0 0 0 z3 0 0 0 0 0 0 0 0 z3 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 z2 0 0 0 0 z2 0 0 0 0 0 0 0 0 0 0 z3 0 0 0 0

0 0 z3 0 z2 0 0 0 z3 0 0 0 0 0 0 0 0 z2 0 0 0 0 0 0 0 0 0 0

0 0 z2 0 0 z2 0 0 0 0 0 0 0 z3 0 0 0 0 0 0 0 0 z2 0 0 0 0 0

0 0 z 0 0 0 z2 0 0 0 0 z2 0 0 0 0 0 0 z3 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 z z 0 0 0 0 0 0 0 0 0 0 z2 0 0 0 0 0 0 0 0

0 0 0 z3 z 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 z2 0 0 0 0 0 0 0

0 0 0 z2 0 z 0 0 0 z2 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 0

0 0 0 z 0 0 z 0 0 0 0 0 0 0 z2 0 0 0 0 0 0 0 0 z 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 z3 0 z 0 0 0 0 0 0 1 0 0 0

0 0 0 z3 0 0 0 0 0 0 0 0 0 0 0 0 z3 0 0 0 0 0 z 0 0 1 0 0

0 0 0 z2 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 0 z3 0 0 0 0 1 0

0 0 0 z 0 0 0 0 0 0 z3 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 z3 0 0 z2 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 z2 0 0 0 0 0 0 0 0 0 0 0 0 z3 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 z3 0 0 z2 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 z3 0 0 0 0 0 0 z2 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 z2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

z3 0 0 0 0 0 0 0 0 0 0 0 z2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z2 0 0 0 0 0 1 0 1 0 0

z 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 z2 0 0 0 1 0

0 0 0 0 0 0 z3 0 0 0 0 0 0 z2 0 0 z 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 z3 0 0 0 0 0 0 0 0 0 0 z2 0 0 z 0 0 0 0 0 1

0 0 0 0 z3 0 0 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 z2 1 0 0 0

0 0 0 0 0 z3 0 0 z2 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 z3 0 0 0 0 0 0 0 0 0 0 0 0 0 z 0 0 1 0

0 z3 0 0 0 0 0 0 z 0 0 0 0 0 z3 0 0 0 0 0 0 0 0 0 0 0 0 1

0 z2 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 z3 0 0 0 0 1 0 0 0

0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z 0 z3 0 0 0 0 1 0 0

0 0 0 0 0 0 z2 0 0 z 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 z2 0 0 0 0 0 0 z 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z 0 0 1 0 0 0 0 1

0 0 0 0 0 z2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 z 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 z2 0 0 0 1 0 0

0 0 z3 0 0 0 0 0 0 0 z2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 z2 0 0 0 0 0 0 1 0 0 0 0 0 z2 0 0 0 0 0 0 0 0 0 0 0 1

0 0 z 0 0 0 0 0 0 0 0 0 0 0 1 0 z2 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 z 0 z3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 z 0 0 1 0 0 z3 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 z 0 0 0 0 0 0 0 0 0 0 1 0 0 z3 0 0 0 0 0 0 0 1 0

0 0 0 0 0 z 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 z3 0 0 0 1





































































































































































































































































Figure 1: A (28, 4, 4)-polyphase BIBD ETF Φ(z) produced according to Theorem 5.2. By Theorem 4.2, letting
z = 1 gives the incidence matrix of a BIBD(28, 4, 1), while letting z be either i, −1 or −i produces an ETF Φ(γ) with
(d, n) = (21, 28). When z = −1, this ETF is real. By Theorem 4.3, the 252 × 112 filter bank matrix Φ(T) obtained
by identifying each entry of the 63 × 28 matrix Φ(z) with a 4 × 4 circulant matrix via (6) is the incidence matrix
of the incidence structure obtained from removing a spread from an abelian GQ(3, 9). More generally, Theorem 5.2
gives (q3+1, q+1, q+1)-polyphase BIBD ETFs for any prime power q. These ETFs are demonstrably new whenever
q is an even prime power with the property that q − 1 is not an odd prime power, which happens infinitely often.
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vertices into q2− q+1 subsets of size q+1 according to which member of a special set of q2− q+1
nonovoid orbit representatives they form a block with.

To be precise, one can show that all blocks in (51) are either of the form

[a, b; j] :=
{

[x] : x ∈ span{(1, 0, a, b), (0, 1,−βj bq, βjaq)}
}

, j = 0, . . . , q,

where aq+1 + bq+1 = −1 or of the form

[a; j] :=
{

[x] : x ∈ span{(1, a, 0, 0), (0, 0, 1, βja)}
}

, j = 0, . . . , q,

where aq+1 = −1. Under this organization of our blocks, the BIBD(q3 + 1, q + 1, 1) will always
have an immediately identifiable parallel class provided we choose as many orbit representatives
as possible of the form [1, 0, a, b] and [1, a, 0, 0].

This was not done for purely cosmetic reasons. One benefit to writing our blocks in this way is
that it naturally parameterizes the q2 +1 vertices that any given block contains, thereby speeding
up our MATLAB implementation of this ETF construction technique. For example, a vertex
[c, d, e, f ] lies in [a, b; j] if and only if

(c, d, e, f) = c(1, 0, a, b) + d(0, 1,−βjbq, βjaq), i.e.

[

e
f

]

=

[

a −βjbq

b βjaq

] [

c
d

]

.

The above matrix is invertible since its determinant is βj(aq+1+ bq+1) = −βj 6= 0. Since (c, d, e, f)
is nonzero and only unique up to scalar multiples, this implies (c, d) is necessarily nonzero and
only unique up to scalar multiples. Taking (c, d) = (0, 1) gives the ovoid vertex while taking
(c, d) = (1, d) where d ∈ Fq2 is arbitrary gives the q2 remaining vertices in this block. Similarly,
[c, d, e, f ] lies in [a; j] if and only if

(c, d, e, f) = c(1, a, 0, 0) + e(0, 0, 1, βja), i.e.
d = ac,
f = βjae,

and taking (c, e) = (0, 1) gives the ovoid vertex while taking (c, e) = (1, e) where e ∈ Fq2 gives the
q2 nonovoid vertices.

Writing our blocks in this way also benefits our theory: whenever the columns of Φ form an
ETF for their span and |Φ|2 is the incidence matrix of a BIBD(v, k, 1) that contains a parallel class,
we can multiply these columns by unimodular scalars so as to assume, without loss of generality,
that the all-ones vector lies in the row space of Φ. As discussed in [18], this means these ETFs have
axial symmetry, meaning 1 is an eigenvector for the Gram matrix with a nonzero eigenvalue. If we
further know that Φ is real, applying Theorem 4.2 of [18] to it produces an SRG with parameters

vSRG = v, kSRG = 1
2 (v + k − 2), λSRG = 1

4(v + 3k − r − 7), µSRG = 1
4(v + k + r − 1).

In particular, whenever q is an odd prime power, applying this fact to the real ETFs produced by
Theorem 5.2 gives SRGs with parameters (q3 + 1, 12q(q

2 + 1), 14(q − 1)(q2 + 3), 14(q + 1)(q2 + 1)).
By consulting [9, 10], we see that SRGs with these parameters were already known [40].

Appendix A. Proof of Theorem 3.5

We first show that u is a nonnegative integer. By (16), the dimension of the span of any
Naimark complement of the columns of Φ is

v − d = v − vr

r + k − 1
=

v(k − 1)

r + k − 1
.
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By (12) and (19) we thus have

v − d =
v(k − 1)2

v + k(k − 2)
= (k − 1)2 − k(k − 1)2(k − 2)

v + k(k − 2)
= (k − 1)2 − u. (A.1)

Thus, u is an integer. Moreover, since k ≥ 2 then u ≥ 0.
We next show that u divides k(k − 1)(k − 2) and r(k − 1)(k − 2). When k = 2, u = 0 and this

is immediate. For k ≥ 3, u > 0 and solving for v in (19) gives

v =
1

u
k(k − 1)2(k − 2)− k(k − 2). (A.2)

In particular, v − 1 = 1
u
k(k − 1)2(k − 2)− (k − 1)2 and so

r =
v − 1

k − 1
=

1

u
k(k − 1)(k − 2)− (k − 1). (A.3)

Since k and r are integers, this implies u divides k(k − 1)(k − 2). Moreover, combining (A.2)
and (A.3) gives the following expression for v

k
:

v

k
=

1

u
(k − 1)2(k − 2)− (k − 2) = r + 1− 1

u
(k − 1)(k − 2),

which in turn implies

b =
v

k
r =

[

r + 1− 1

u
(k − 1)(k − 2)

]

r = r(r + 1)− 1

u
r(k − 1)(k − 2).

Since b and r are integers, this implies u also divides r(k − 1)(k − 2).
We next show u ≤ 1

2(k − 1)(k − 2). Fisher’s inequality states v ≤ b. Since bk = vr, this can be
restated as k ≤ r. If r = k then v = r(k − 1) + 1 = k2 − k + 1 and so (16) becomes

d =
vr

r + k − 1
=

k(k2 − k + 1)

2k − 1
=

1

8
(4k2 − 2k + 3) +

3

8(2k − 1)
,

which is only an integer when k = 2, at which point u = 0 = 1
2(k − 1)(k − 2). As such, it suffices

to consider the case where r ≥ k + 1. Here, (A.3) implies

k + 1 ≤ r =
1

u
k(k − 1)(k − 2) − (k − 1),

and so u ≤ 1
2(k − 1)(k − 2), as claimed.

Next note (16) implies v
d
− 1 = k−1

r
, and multiplying and dividing v − 1 = r(k − 1) by it

gives (20). To prove the stated necessary conditions on real Φ, it helps to first prove (a).
For (a), note that since k ≥ 2, u as defined in (19) is zero if and only if k = 2. Moreover, in

this case (A.1) becomes v − d = 1, that is, v = d + 1. Conversely, if v ≤ d + 1 then (A.1) gives
1 ≥ (k − 1)2 − u, that is, u ≥ k(k − 2), which violates the necessary condition u ≤ 1

2(k − 1)(k − 2)
unless k = 2. That is, we have v ≥ d+ 1 in general, and moreover v = d+ 1 if and only if k = 2.

Further note that in general, (A.1) and Fisher’s inequality (r ≥ k) imply that d ≥ 2:

d = v − (k − 1)2 + u = (r − k + 1)(k − 1) + 1 + u ≥ k + u ≥ 2.
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(This also follows immediately from the fact that the columns of a phased BIBD are not collinear.)
When taken together with Theorem 3.4, we see that the v and d parameters of a phased BIBD
ETF satisfy 1 ≤ d ≤ v− 1 with v < 2d, where d = v− 1 if and only if k = 2. In particular, if k > 2
and Φ is real, then its columns satisfy the hypotheses of Theorem A of [39], implying the numbers
in (20) are odd. That is, k is even and r is odd, which in turn implies v = r(k − 1) + 1 is even.

What remains to be shown are the equivalences stated in (b), (c) and (d). To be clear, in
each we are assuming that a phased BIBD ETF arising from a BIBD(v, k, 1) exists, and are simply
identifying relationships between its parameters. We omit the proof of (b) since it is similar to,
but less difficult than, the proof of (c). For (c), note (19) immediately implies that u = 2 if and
only if v =

(

k(k−2)
2

)

. Moreover, in this case, (A.1) gives

(

v − d+ 1

2

)

=

(

(k − 1)2 − u+ 1

2

)

=

(

k(k − 2)

2

)

= v.

Conversely, if v =
(

v−d+1
2

)

then letting s = k − 1, (A.1) and (19) give

v =

(

v − d+ 1

2

)

=

(

s2 − u+ 1

2

)

=
1

2

[

s2 + 1− s2(s2 − 1)

v + (s2 − 1)

][

s2 − s2(s2 − 1)

v + (s2 − 1)

]

.

Multiplying by [v + (s2 − 1)]2 and simplifying gives 0 = (v − 1)[2v − (s2 − 1)(s2 − 2)]. Since we

assume v > k ≥ 2, this implies v =
(

s2−1
2

)

=
(

k(k−2)
2

)

.
For (d), if v = k2 then (19) gives u = 1

2(k − 1)(k − 2). Conversely, if u = 1
2(k − 1)(k − 2)

where k > 2 then (A.2) gives v = k2. (If k = 2, (A.2) is invalid, and indeed the conclusion is false
since for any v ≥ 3 there exists a phased BIBD(v, 2, 1) ETF, cf. Example 3.2). Next, if k > 2 then
taking v = k2 we have v > 4 and (A.1) gives

v − d = (k − 1)2 − u = (k − 1)2 − 1
2(k − 1)(k − 2) = 1

2 (k
2 − k) = 1

2 (v − v
1

2 ).

Conversely, if v − d = 1
2(v − v

1

2 ) with v > 4 then (A.1) and (19) gives

1
2(v − v

1

2 ) = v − d = (k − 1)2 − u = (k − 1)2 − k(k − 1)2(k − 2)

v + k(k − 2)
.

Multiplying by v + k(k − 2) and simplifying then gives

0 = v
3

2 − v − (k2 − 2k + 2)v
1

2 − k(k − 2) = (v
1

2 − k)(v
1

2 + 1)[v
1

2 + (k − 2)]

and so v = k2. Since v > 4, k > 2.

Appendix B. A proof that (49) and (51) define a GQ(q2, q).

Here, we give an elementary proof that (49) and (51) form a GQ(q2, q). We do so by verifying
they satisfy properties (i)–(v) of a GQ given at the beginning of Subsection 4.1. Note any two
distinct blocks have at most one vertex in common, since the intersection of two distinct planes in
F
4
q2

is either {0} or a line. Any two distinct vertices [y], [z] are contained in at most one block:
the lines spanned by y and z determine a unique plane, and the projective version of this plane is
a member of B if and only if y · z = 0. Also, block [y, z] contains exactly q2 + 1 vertices, namely
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[z] and [y + az] for any a ∈ Fq2 . Thus, (V,B) satisfies (i), (iii) and (iv). For (v), note that if
[x] /∈ [y, z] then there is a unique line in span{y, z} that is orthogonal to x: since x /∈ {y, z}⊥, we
have 0 = x · (ay + bz) = a(x · y) + b(x · z) if and only if (a, b) is a multiple of (−x · z,x · y).

This leaves (ii). Take any [x] ∈ V. Since the support of any nonzero self-orthogonal vector is at
least two, we may permute the indices of our vectors so as to assume without loss of generality that
x = (1, a, b, c) where a 6= 0 and aq+1 + bq+1 + cq+1 = −1. Every block contains a unique member
of the ovoid O = {[y] ∈ V : y1 = 0}. As such, the number of blocks [y, z] that contain [x] equals
the cardinality of {[y] ∈ O : x · y = 0}. We want to show this number is q + 1. Equivalently, since
[y] consists of all nonzero scalar multiples of y, we want to show that the cardinality of

{(0, d, e, f) ∈ F
4
q2 : (0, d, e, f) 6= (0, 0, 0, 0), aqd+ bqe+ cqf = 0, dq+1 + eq+1 + f q+1 = 0}

is (q + 1)(q2 − 1). To do so, note that since a 6= 0, d = −[( b
a
)qe + ( c

a
)qf ] is uniquely determined

by e and f . As such, if (e, f) = (0, 0) then (0, d, e, f) = (0, 0, 0, 0). Thus, we wish to compute the
number of (e, f) ∈ F

2
q2
, (e, f) 6= (0, 0) such that 0 = [( b

a
)qe+( c

a
)qf ]q+1+eq+1+f q+1. By multiplying

by aq+1, distributing and then using the fact that aq+1 + bq+1 + cq+1 = −1, we equivalently are
counting the number of (e, f) 6= (0, 0) such that

0 = (bqe+ cqf)q+1 + aq+1eq+1 + bq+1f q+1

= (aq+1 + bq+1)eq+1 + (aq+1 + cq+1)f q+1 + bqcef q + (bqcef q)q

= −(1 + cq+1)eq+1 − (1 + bq+1)f q+1 + bqcef q + bcqeqf. (B.1)

In the case where 1 + b−1 6= 0 note this equation implies that if e = 0 then f = 0. As such, in
this case, every nonzero solution (e, f) to (B.1) has e 6= 0, meaning we can divide by −(1+bq+1)eq+1

to obtain the equivalent equation

0 = xq+1 − bqc

1 + bq+1
xq − bcq

1 + bq+1
x+

1 + cq+1

1 + bq+1

where x := f
e
. Completing the “square” and noting that yq+1 = y2 for all y ∈ Fq then gives

0 =

(

x− bqc

1 + bq+1

)q+1

− bq+1cq+1

(1 + bq+1)2
+

1 + cq+1

1 + bq+1
=

(

x− bqc

1 + bq+1

)q+1

− aq+1

(1 + bq+1)2
.

There are exactly q+1 such x, each obtained by adding bqc
1+bq+1 to the q+1 distinct (q+1)th roots

of aq+1

(1+bq+1)2 . For each such x, there are q2 − 1 corresponding nonzero solutions (e, f) = (e, ex) to
(B.1), one for each e ∈ F

×
q2
, giving exactly (q + 1)(q2 − 1) solutions total, as claimed.

By the symmetry of (B.1), a similar argument holds in the case where 1+cq+1 6= 0. As such, all
that remains is to consider the case where 1+ bq+1 = 1+ cq+1 = 0. Here, (B.1) becomes y+ yq = 0
where y = bqcef q. In general, the equation y + yq = 0 has q distinct solutions, namely y = 0 and
the (q− 1)th roots of −1, which can be explicitly obtained by writing both y and −1 as exponents
of the generator of F×

q2
. When y = 0, we either have e = 0 where f ∈ F

×
q2

is arbitrary, or f = 0
where e ∈ F

×
q2

is arbitrary. For any of the remaining q− 1 values of y, we have f ∈ F
×
q2

is arbitrary
and e = 1

bqcfq y. Altogether, we again have (q + 1)(q2 − 1) nonzero solutions (e, f) to (B.1).
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