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Abstract

Intent protection is a model of software obfuscation which, among other crite-

ria, prevents an adversary from understanding the program’s function for use with

contextual information. Relating this framework for obfuscation to malware detec-

tion, if a malware detector can perfectly normalize a program P and any obfuscation

(variant) of the program O(P ), the program is not intent protected. The problem of

intent protection on programs can also be modeled as intent protection on combina-

tional logic circuits. If a malware detector can perfectly normalize a circuit C and

any obfuscation (variant) O(C) of the circuit, the circuit is not intent protected.

In this effort, the research group set the primary goal as determining if a malware

detector based upon the mechanisms of term rewriting theory can perfectly normalize

circuits transformed by a sub-circuit selection and replacement algorithm, even when

the transformation algorithm is known. The research group set the secondary goal

as relating this result on circuit transformations to the realm of software obfuscation.

The transformation rules of the sub-circuit selection and replacement algorithm are

identified and modeled as rewrite rules in a term rewriting system. These rewrite rules

are examined for critical overlaps which cannot be resolved by a widely used com-

pletion algorithm known as Knuth-Bendix. The research group performs an analysis

of the critical overlaps found within the rewrite rules and successfully relates these

results to the instruction-substitution obfuscations of a software obfuscator.

iv



Acknowledgements

I would first like to thank the Lord for giving me the opportunity to attend

the Air Force Institute of Technology and complete this Masters program. I would

like to thank my parents for all their support and for encouraging me to finish my

education as soon as possible. I would also like to thank my fiance for putting up with

my I’ve-been-up-for-seventy-two-hours-straight-coding-o’clock shadow, as well as for

supporting me from a few hundred miles away. I would like to thank my advisor and

committee members for their guidance throughout the entire research effort as well

as for introducing me to Lebanese food. I would also like to thank Arun Lakhotia

for his insight and collaboration in this research area. Finally, I would like to thank

Nate for letting me muse on and on about term rewriting systems each afternoon and

Matt for pretending that all my scribblings on the whiteboard made any sense at all.

Eric D. Simonaire

v



Table of Contents
Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Goals and Hypothesis . . . . . . . . . . . . . . 2

1.3 Document Overview . . . . . . . . . . . . . . . . . . . . 3

II. Software Obfuscation and Metamorphic Malware . . . . . . . . . 4

2.1 General Obfuscation . . . . . . . . . . . . . . . . . . . . 4
2.2 Program Encryption . . . . . . . . . . . . . . . . . . . . 6

2.3 Metrics Relating to Random Programs . . . . . . . . . . 9

2.4 Metamorphic Malware and Software Obfuscation . . . . 12

2.5 Background Summary . . . . . . . . . . . . . . . . . . . 18

III. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . 19
3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 System Boundaries . . . . . . . . . . . . . . . . . . . . . 20

3.4 Evaluation Technique . . . . . . . . . . . . . . . . . . . 23

3.4.1 Enumerate Transformation Rules . . . . . . . . 23
3.4.2 Model Transformation Rules as a TRS . . . . . 25
3.4.3 Reversing the Rule Set . . . . . . . . . . . . . . 26

3.4.4 Counting Critical Overlaps . . . . . . . . . . . . 26

3.4.5 Completing the Rule Set . . . . . . . . . . . . . 27

3.5 Methodology Summary . . . . . . . . . . . . . . . . . . . 28

IV. Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . 30

4.2 Capabilities of the CGE . . . . . . . . . . . . . . . . . . 30

4.3 Results of Experiments and Literature Comparison . . . 30

4.3.1 1 Gate Selection with 2 Gate Replacement . . . 30

4.3.2 2 Gate Selection with 3 Gate Replacement . . . 39

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



Page

V. Conclusions and Recommendations . . . . . . . . . . . . . . . . . 52
5.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . 52

5.2 Significance of Research . . . . . . . . . . . . . . . . . . 52

5.3 Recommendations for Future Research . . . . . . . . . . 54
5.4 Conclusions of Research . . . . . . . . . . . . . . . . . . 55

Appendix A. Circuit Family Counts . . . . . . . . . . . . . . . . . . . 57

Appendix B. Circuit Rewrite Rules . . . . . . . . . . . . . . . . . . . 71

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index-1

vii



List of Figures
Figure Page

3.1 Circuit Transformation Analysis System . . . . . . . . . . . . . 21

3.2 Circuit Generation Engine . . . . . . . . . . . . . . . . . . . . 22

4.1 Number of Circuits (1 to 2 Gates) . . . . . . . . . . . . . . . . 31

4.2 Number of Rules (1 to 2 Gates) . . . . . . . . . . . . . . . . . . 32

4.3 Circuits which can be Selected (1 to 2 Gates) . . . . . . . . . . 34

4.4 Replacement Circuits (1 to 2 Gates) . . . . . . . . . . . . . . . 35

4.5 Number of Circuits (2 to 3 Gates) . . . . . . . . . . . . . . . . 40

4.6 Number of Circuits (2 to 3 Gates) (Logarithmic Scale) . . . . . 41

4.7 Number of Rules (2 to 3 Gates) . . . . . . . . . . . . . . . . . . 42

4.8 Circuits which can be Selected (2 to 3 Gates) . . . . . . . . . . 44

4.9 Replacement Circuits (2 to 3 Gates) . . . . . . . . . . . . . . . 46

viii



List of Tables
Table Page

3.1 Example signature of a truth table . . . . . . . . . . . . . . . . 22

3.2 Example transformation rule . . . . . . . . . . . . . . . . . . . 25

3.3 Example Reduction Relation . . . . . . . . . . . . . . . . . . . 25

4.1 Sub-circuit count (1 to 2 Gates) . . . . . . . . . . . . . . . . . 31

4.2 Transformation rules count (1 to 2 Gates) . . . . . . . . . . . . 32

4.3 Subset of rewrite rules (1 to 2 Gates) . . . . . . . . . . . . . . 33

4.4 Circuit Selection Counts (1 to 2 Gates) . . . . . . . . . . . . . 33

4.5 Sub-circuit Selection Statistics (1 to 2 Gates) . . . . . . . . . . 34

4.6 Circuit Replacement Counts (1 to 2 Gates) . . . . . . . . . . . 35

4.7 Sub-circuit Replacement Statistics (1 to 2 Gates) . . . . . . . . 36

4.8 Unique Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Term Frequency (1 to 2 Gates) . . . . . . . . . . . . . . . . . . 37

4.10 Critical Overlaps (1 to 2 Gates) . . . . . . . . . . . . . . . . . 37

4.11 Critical Overlap Example (1 to 2 Gates) . . . . . . . . . . . . . 38

4.12 Sub-circuit count (2 to 3 Gates) . . . . . . . . . . . . . . . . . 40

4.13 Transformation rules count (2 to 3 Gates) . . . . . . . . . . . . 42

4.14 Subset of reduction relations (2 to 3 Gates) . . . . . . . . . . . 43

4.15 Circuit Selection Counts (2 to 3 Gates) . . . . . . . . . . . . . 44

4.16 Sub-circuit Selection Statistics (2 to 3 Gates) . . . . . . . . . . 45

4.17 Circuit Replacement Counts (2 to 3 Gates) . . . . . . . . . . . 45

4.18 Sub-circuit Selection Statistics (2 to 3 Gates) . . . . . . . . . . 47

4.19 Term Frequency (2 to 3 Gates) . . . . . . . . . . . . . . . . . . 47

4.20 Critical Overlaps (2 to 3 Gates) . . . . . . . . . . . . . . . . . 47

4.21 Critical Overlap Example (2 to 3 Gates) . . . . . . . . . . . . . 48

4.22 Example transformation . . . . . . . . . . . . . . . . . . . . . . 48

ix



Table Page

4.23 Correct normalization example . . . . . . . . . . . . . . . . . . 49

4.24 Incorrect normalization example . . . . . . . . . . . . . . . . . 49

A.1 The number of sub-circuits containing 1, 2, 3, and 4 gates . . . 57

A.2 The number of sub-circuits containing 5 and 6 gates . . . . . . 59

A.3 The number of sub-circuits containing 7 and 8 gates . . . . . . 61

A.4 The number of sub-circuits containing 1, 2, 3, and 4 gates . . . 64

A.5 The number of sub-circuits containing 5 and 6 gates . . . . . . 66

A.6 The number of sub-circuits containing 7 and 8 gates . . . . . . 68

B.1 Circuit Transformation Rules . . . . . . . . . . . . . . . . . . . 71

x



Sub-circuit Selection and Replacement

Algorithms Modeled as

Term Rewriting Systems

I. Introduction

1.1 Background

Metamorphic malware are programs which contain two components: a metamor-

phic engine and a malicious payload. Metamorphic engines using instruction-

substitution obfuscations modify the instructions of a malware during replication

causing new generations of the same malware to contain different segments of code.

Walenstein et al. [14] provide several approaches malware detectors use to detect these

metamorphic malware. One such approach is to map the instructions or syntax of

a program to certain signatures which can be used to detect a malware. However,

metamorphic malware modifies its own code during replication creating different sig-

natures. In order for a malware detector to detect all possible variants of a malware, it

must contain all possible signatures matching what a malware can become, a number

which may quickly become unusable. A second approach given to detect metamorphic

malware is pattern matching or more general signatures. Patterns may abstract out

specific syntactical differences between signatures to match larger classes of metamor-

phic variants. However, the problem of creating patterns to match many variants is

difficult and the number of patterns needed to match all possible variants may also

become unusable.

Walenstein et al. [14] offer a third approach to malware detection: program nor-

malization. They claim that program normalization removes unimportant variations

between generations of metamorphic malware, and combined with pattern matching,

may become an effective means of malware detection. Lakhotia et al. [6] developed

a “generic” normalizer for C programs which, though it could not perfectly nor-

1



malize malware, significantly reduced the number of variants of generic C programs.

Walenstein et al. [14] then address the following research question: “When are perfect

normalizers possible?” They define a restricted normalization problem and claim that

perfect normalization is possible for some malware when the metamorphic engine is

known.

Intent protection as defined by McDonald and Yasinsac [7] is a form of software

obfuscation which, among other criteria, prevents an adversary from understanding

the program’s function for use with contextual information. If an adversary can

perfectly normalize both a program P and an obfuscated version of the program

O(P ) to one normal form, the adversary has identified O(P ) as P and assuming

the adversary can understand the function of P , the adversary also understands the

function of O(P ). Therefore, if a malware detector can perfectly normalize a program

P and any obfuscation (variant) O(P ) of the program, the program is not intent

protected.

McDonald and Yasinsac [7] then narrow the problem of intent protection to the

obfuscation of combinational logic circuits and provide positive results in the realm of

software obfuscation by modeling an instruction-substitution obfuscation algorithm as

a sub-circuit selection and replacement algorithm. Based on the requirements of intent

protection and modeling software obfuscation as the problem of circuit obfuscation, if

a malware detector can perfectly normalize a circuit C and any obfuscation (variant)

O(C) of the circuit, the circuit is not intent protected.

1.2 Research Goals and Hypothesis

The primary goal of this research effort is to determine if a malware detector

based upon the mechanisms of term rewriting theory can perfectly normalize circuits

transformed by a sub-circuit selection and replacement algorithm if the transformation

algorithm is previously known. This goal is met when the transforming rules of a

sub-circuit selection and replacement algorithm are modeled as rewrite rules in term

2



rewriting theory and it is determined if there exist critical overlaps within these rewrite

rules that cannot be resolved thereby preventing this rule set from converging.

The secondary goal of this research effort is to determine the properties of a sub-

circuit selection and replacement algorithm which prevent the rule set from converging

and to determine their effectiveness in the realm of software obfuscation. This goal is

met when the cause of critical overlaps within the rule set is identified and related to

the obfuscating transformations of instruction-substitution algorithms. We hypothesis

and test whether a malware detector, based upon the mechanisms of term rewriting

theory, can perfectly normalize circuits transformed by a sub-circuit selection and

replacement algorithm, even when the transformation algorithm is known.

1.3 Document Overview

Chapter II provides an overview of relevant positive and negative results in the

realm of software obfuscation as well as malware detection. Chapter III defines the

methodology used in this research effort. Chapter IV presents the data collected as

a result of exercising the experimental framework defined in Chapter III and gives us

foundation to answer the questions posed by this research effort. Chapter V presents

the conclusions of this research result and their significance as well as future areas of

research.

3



II. Software Obfuscation and Metamorphic Malware

This chapter examines several positive and negative results related to the field

of software obfuscation. Section 2.1 reviews well-known impossibility results of

general obfuscation based upon the virutal black-box and best-possible obfuscation

models. Section 2.2 summarizes an alternative model for obfuscation known as pro-

gram encryption based upon the Random Program Model. Section 2.3 discusses past

work on metrics and measures related to entropy and randomness. Section 2.4 relates

the fields of software obfuscation with malware detection highlighting positive results

in malware detection relevant to deobfuscation.

2.1 General Obfuscation

Barak et al. [2] provide a negative result proving that no 2-Turing Machine

(2-TM) or 2-Circuit obfuscator exists. Informally, they define a obfuscator O as an

efficient, probabilistic “compiler” which takes a program P as input and produces an

obfuscated version of the program O(P ) as the output. They claim that an obfuscator

must meet the following criteria:

1. functionality, which requires that O(P ) compute the same function as P ,

2. polynomial slowdown, which requires that O(P ) is at most polynomially

slower than P ,

3. virtual black-box (VBB) property, which requires that any information

which can be efficiently computed from O(P ) can also be computed given oracle

access to P .

Barak et al. reach their impossibility result by constructing a family F of

functions with the property π : F → 0, 1 under the following conditions:

1. π(f) can be efficiently computed given any program with a function f ∈ F ,

2. Given oracle access to a randomly selected function f ∈ F , no efficient algorithm

can compute π(f) much better than by random guessing.

4



These conditions show that no general obfuscator (under the VBB security con-

dition) exists for programs which compute these functions, as the obfuscator cannot

hide π(f). Therefore Barak et al. conclude that a different security condition, apart

from the VBB property, must be presented in order to construct a general obfuscator.

In another study, Goldwasser and Rothblum [4] present a different notion of

software obfuscation known as best-possible obfuscation. Best-possible obfuscation

guarantees that whatever information is leaked by an obfuscated program O(P ), the

same information is also leaked by any other program P which computes the same

functionality. While this model of obfuscation provides no guarantee to hide any

specific information in program P , it does guarantee that O(P ) is the best possible

obfuscation of P .

1. Indistinguishability Obfuscation. An algorithm O which takes a circuit C

as an input and outputs a new circuit is said to be a best-indistinguisability

obfuscator for the family C, if it both preserves functionality and exhibits a

polynomial slowdown along with the following property:

• Computationally/Statistically/Perfectly Indistinguishable Obfus-

cation. For large input lengths, for any circuit C1 ∈ Cn and for any circuit

C2 ∈ Cn that compute the same function as C1 and |C1| = |C2|, O(C1) and

O(C2) are computationally/statistically/perfectly indistinguishable.

2. Best-Possible Obfuscation. An algorithm O which takes a circuit C as an

input and outputs a new circuit is said to be a best-possible obfuscator for the

family C, if it both preserves functionality and exhibits a polynomial slowdown

along with the following property:

• Computationally/Statistically/Perfectly Best-Possible Obfusca-

tion. For large input lengths, for any polynomial size circuit adversary

A, there exists a polynomial size simulator circuit S such that for any cir-

cuit C1 ∈ Cn and for any circuit C2 ∈ Cn that compute the same function

5



as C1 and |C1| = |C2|, A(O(C1)) and S(C2) are computationally/statisti-

cally/perfectly indistinguishable.

This definition guarantees that any information an adversary A can compute

from O(C1) can also be computed from a simulator S on any program C2 of the same

size and function.

Goldwasser and Rothblum further prove that if O is an efficient indistinguisha-

bility obfuscator for a program P , then it is also an efficient best-possible obfuscator

for C. If ∆ is the distance measure in the guarantee of the obfuscator, then for any

two circuits C1 and C2 of the same size and functionality, ∆(O(C1), S(C2)) ≤ ǫ, and

∆(O(C2), S(C2)) ≤ ǫ therefore:

∆(O(C1), O(C2)) ≤ 2ǫ (2.1)

Finally, Goldwasser and Rothblum prove that if the family of 3−CNF formulas

can be statistically best-possible obfuscated, even in non-polynomial time, then there

is a collapse in the polynomial hierarchy.

2.2 Program Encryption

After proving that general obfuscators satisfying the functionality, polynomial

slowdown, and VBB property do not exist, Barak et al. refer to the VBB property

as “inherently flawed”. McDonald [9] considers the two questions posed by Barak et

al. in determining whether an alternative security property of obfuscation exists:

1. Are there weaker or alternative methods for obfuscation that provide meaningful

results?

2. Can we construct obfuscators for restricted but non-trivial/interesting classes

of programs?

Based upon these questions, [7–9] provide an alternative model of obfuscation

and show that general obfuscators do exist in a random program model which are not

6



subject to Barak’s impossibility proof. The following definitions formalize the ideas

of understandability, obfuscation, and intent protection in this model.

Definition 1. Black-Box Understandable/Obfuscated Program P → X,Y is

black-box understandable if and only if given an arbitrarily large set of pairs

IO = xi, yi such that yi = P (xi) and yj an arbitrary element of Y (not an

element of IO), an adversary can guess xj such that yj = P (xj) in polynomial

time on the length of P with probability > ǫ.

Definition 2. White-Box Understandable/Obfuscated, Informal Program P

is white-box understandable if it is understandable through static or dynamic

analysis of P or a collaboration of the two. Otherwise, we say P is white-box

obfuscated.

Definition 3. Intent Protected Program P is intent protected if and only if it is

black-box protected, white-box protected, and protected from any composition

of the two.

McDonald and James [7] summarize three properties which form the basis of

the majority of theoretical and practical models of obfuscation:

1. Semantic Equivalence. ∀x ∈ 0, 1n : P (x) = P ′(x), where n is the input size

of P and P ′ = O(P ).

2. Efficiency. There is a polynomial l such that for every circuit P , |O(P )| ≤

l(|P |).

3. Security. A property that expresses some notion of information “hiding” or

security guaranteed by O(·) for every possible circuit under consideration. The

expression and measurement of the property varies from model to model.

Considering these definitions and properties, [8] define a model of obfuscation.

In order to make concrete statements applicable to software obfuscation, they claim

that researchers have based general representations of programs as either Turing ma-

chines or circuits. McDonald and Yasinsac chose to define obfuscation transformations
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on circuits. [7] shows that they can simulate a Turing machine TM on inputs having

length n with a single n-input circuit with size O((|TM | + n + t(n))2) where t(n)

bounds the running time of TM for inputs of length n. More precisely, they base

their results on combinational logic circuits and subsequent references in this section

to circuits refer to combinational logic circuits.

In order for a program P to be intent protected, P must be black-box pro-

tected, white-box protected, and protected from any composition of the two. In order

to achieve a useful black-box transformation, McDonald and Yasinsac provide the

following two requirements:

1. Change in Black-Box Behavior. The functional behavior changes for some ma-

jority of the values in the domain x, P (x) 6= P ′(x).

2. Recovery of Black-Box Behavior. In order to recover the original functional

output of P , some function S(·) must allow inversion: ∀(x) : P (x) = S(P ′(x)).

Following these two requirments, McDonald and Yasinsac provide two black-

box transformations which achieve stronger guarantees of security, black-box refine-

ment and semantic transformation. They refer to black-box refinement as any of the

following modifications to a circuit:

1. Adding a random number of input bits

2. Randomly permuting the input bits

3. Introducing intermediate gates which take inputs from each of the new gates

and some random number of the original input signals of P

4. Adding a random number of output bits

5. Randomly permuting the output bits

McDonald and Yasinsac refer to semantic transformations as transformations

which compose a circuit with a semantically strong encryption algorithm. The algo-

rithm t(p, k) = (p′, r) is a process that creates a circuit p′ so that it has a strongly

8



one-way input/output relationship with an original circuit p. While there may be

many possible semantic transformations possible, they explore transformations which

compose the output of the original circuit p with the input of a strong data encryption

circuit. This procedure is illustrated in figure 1.

Finally, intent protection also requires the most traditional form of obfuscation,

white-box obfuscation. A white-box transformation w(p, k) = p′ takes as input a

circuit p and some information embodied in a key k producing a circuit p′ which is

a functionally equivalent yet more confused variant of p. McDonald and Yasinsac

state that while there are possibly an unlimited number of white-box obfuscation

algorithms, they have implemented an algorithm based on sub-circuit selection and

replacement. The algorithm selects a small (1 − 5 gates) candidate subcircuit with i

inputs, o outputs, and computes its truth table TT . The algorithm then uniformly

and randomly selects a replacement circuit from the set of circuits with i inputs,

o outputs, and TT truth table. The algorithm is run iteratively until the security

property of intent protection is satisfied.

As Barak et al. have shown that no general obfuscator exists under the VBB

model, Yasinsac and McDonald [15] provide an alternative model known as the Ran-

dom Program Model. Under this model, a random program oracle transforms any

program P into an alternate version P ′. After an adversary knows any n pairs of orig-

inal and encrypted programs {(P1, P
′

1), (P2, P
′

2), (Pn−1, P
′

n−1), (Pn, P ′

n)} and supplies a

program Pn+1, the adversary will receive P ′

n+1 which is either: a random program

(PR) or the obfuscated version of the program O(Pn+1). The program O(P ) provides

intent protection if and only if the probability that an adversary is able to distin-

guish the obfuscated version (P ′

n+1) from a random program (PR) is 1
2

+ ǫ where ǫ is

negligible.

2.3 Metrics Relating to Random Programs

This section will now consider additional related works on metrics of entropy

and randomness related to circuits. Rajgopal [12] presents spatial entropy as an infor-

9



mation theoretic basis metric. According to [12], the information theoretic definition

of entropy is a measure of information content in a system, which he says can be

viewed as the measure of disorder in a system. He then defines spatial entropy as the

measure of spatial disorder in a system which captures the spatial distance between

inputs and outputs in a system. As a system computes data, data is propogating from

the inputs to the outputs thus reducing the spatial disorder (entropy) in the system.

Rajgopal then defines spatial entropy relating to circuits. As spatial entropy

is the communication effort required to compute the circuit, both gates and wires

contribute to this effort. Gates compute Boolean values and wires propogate these

values. He notes that while it is the wires that determine how the bits travel across

the circuit, the gates determine the distribution of Boolean values and together one

can measure the dynamic communication effort required in the circuit.

Rajgopal defines a circuit as a directed weighted graph G = 〈V,E, L〉 where

each primary input, primary output, and logic gate are represented by a node v ∈ V

and each wire is represented as an edge (v, w) ∈ E with a length attribute l(v,w) ∈ L

which is the wire length. L : E → ℜ where ℜ is the set of real numbers. v is the

source node and w is the destination node for each edge.

Rajgopal provides the classical entropy function defined in information theory:

H(pi) =
N∑

i=1

pi log(
1

pi

) (2.2)

N is the total number of possible values in a given system.

The following is the equation to compute the distribution of the Boolean values

computed at node w by the binary entropy function H(p1
w, p0

w):

H(p1
w, p0

w) = p0
w log(

1

p0
w

) + p1
w log(

1

p1
w

) (2.3)

Rajgopal now defines the spatial entropy S for a circuit:
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• The spatial entropy S at the output node of a single output circuit is the

information-distance product over all the nodes in the circuit.

S =
∑

v∈V

∑

w∈V

Hv ∗ l(v,w) (2.4)

• Hv is the information computed at the node v over its input probability distri-

bution and l(v,w) is the length of the fanout edge (v, w) ∈ E from node v to node

w.

The spatial entropy of a multi-output circuit is defined as follows:

S =
m∑

i=1

Soi
(2.5)

m is the number of outputs and Soi
is the spatial entropy at output oi.

In order to compute spatial entropy for individual gate types, (assuming unit

edge length) Rajgopal next defines local spatial entropy at a gate node g ∈ V as:

δSg =
∑

g′∈V

Hg ∗ lg,g′ (2.6)

Hg is the information computed at the gate node g and l(g,g′) is the length of

the fanout edge from node g to node g′. As Rajgopal assumed l(g,g′), this equation is

now an approximation δSg = Hg.

For example, a 2-input AND gate with the 1-probabilities p1
x, p

1
y at its inputs

x, y has a 1-probability of p1
and = p1

x ∗ p1
y as the only event yielding an output of 1 is

p1
x ∗ p1

y. The local spatial entropy of a 2-input AND gate, δSand, is the following:

Hand = p0
and log

1

p0
and

+ p1
and log

1

p1
and

(2.7)
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Finally, as a second example a 2-input XOR gate with the 1-probability p1
xor =

p1
y(1− p1

x) + p1
x(1− p1

y) as there is a one at the outputs with inputs p1
x ∗ p0

y or p0
x ∗ p1

y.

Therefore, the local spatial entropy of a 2-input XOR gate, δSxor, is the following:

Hxor = p0
xor log

1

p0
xor

+ p1
xor log

1

p1
and

(2.8)

McDonald [15] refers to the properties of confusion and diffusion as being useful

measures of intent protection under the Random Program Model. As with data

encryption, the program encryption techniques must confuse or scramble the original

program statements. Common implementations of confusion include selection and

replacement algorithms. Not only must the program statements be confused, but

they must also be distributed across the original program with operations that move

confused code unpredictably, known as diffision.

2.4 Metamorphic Malware and Software Obfuscation

As shown by Dalla Preda et al. [10,11], the field of malware detection is closely

related to the field of software obfuscation. Dalla Preda discusses software piracy,

malicious reverse engineering, and software tampering as known attacks that one

attacker can use to gain an advantage over another. While software developers may

rely on legal measures (copyrights, patents, and licenses) to protect their software,

software obfuscation is an attractive technical solution.

Dalla Preda defines an obfuscator as a program which transforms programs in a

way that the obfuscated code is functionally equivalent to the original code yet more

difficult to understand. She also states that any attacker who has enough time, effort,

and determination can reverse engineer any application and that the goal of software

obfuscation is to delay the release of “confidential information” for a sufficient time.

Dalla Preda then shows that advances made in the field of software obfuscation

closely relate to the field of malware detection. While there are many different forms

of malware (viruses, worms, trojan horses, back-doors, and spyware) there are two
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major approaches to malware detection, anomaly detection and misuse detection.

Anomaly detection assumes that behaviours of malicious code will differ from those

normally observed on a system. While this approach has the advantage that no specific

knowledge of a malware is required to detect an attack, it has the disadvantage that

not all abnormal behaviours are malicious. Conversely, misuse detection, also known

as signature or pattern-based detection, detects attacks by searching for patterns of

known malware. While the disadvantages of misuse detection include the fact this

system is not able to detect new attacks; the advantages are a low false positive rate

and ease of use.

As malware writers attempt to avoid detection by these systems, obfuscated

malware are becoming more prevalent. Dalla Preda defines two forms of obfuscated

malware:

1. Polymorphic malware. Malware which changes its syntatic representation

by encrypting its payload and decrypting during execution. This form of mal-

ware can be detected by techniques such as running it on a virtual system and

observing its runtime behavior. As all forms of polymorphic malware look alike

after decryption, misuse detection systems can be used.

2. Metamorphic malware. Malware which changes the syntax of each succes-

sive generation while leaving the semantics unchanged. The important point is

that obfuscating transformations can easily defeat misuse detection systems. In

order to detect metamorphic malware, standard misuse detection systems would

have to keep a signature for all possible (which could be an unlimited number)

mutations of the malware.

This background provides us a relationship between software obfuscation and

metamorphic malware. Let us define the goal of software obfuscation as intent protec-

tion (described in section 2.2). Let us also define the goal of metamorphic malware as

detection avoidance. If a program is intent protected, that is to say that it is black-

box obfuscated, white-box obfuscated, and a protected against any composition of
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the two, then it also satisfies the property of detection avoidance. Conversely, if an

intrusion detection system is able to detect a obfuscated metamorphic malware, then

this malware is not intent protected as either black-box information, white-box infor-

mation, or information from a combination of the two was leaked. This observation

makes the study of advanced metamorphic malware detectors interesting as it may

aid in defining useful and secure metrics for software obfuscation.

Walenstein et al. [14] claim that using term rewriting theory, they are able

to provide approximate solutions to metamorphic malware detection. The approach

the authors take to detecting metamorphic generations of malware is to normalize

the malware in order to remove the changes that defeat misuse detection systems.

They argue that the “perfect” normalizer would transform all variants of a specific

malware to one normal form and call the problem of creating a normalizer for a specific

metamorphic malware the “normalizer construction problem” (NCP).

Walenstein et al. form a version of the NCP, which they term “NCP=”, using

term rewriting theory which is restricted by the following conditions:

1. An accurate model of the metamorphic engine is represented as a term rewriting

system TRS

2. The metamorphic engine makes only semantic-preserving transformations

They show that while NCP= is undecidable (no procedure can exist which

is guaranteed to halt and produce a correct normalizing transformation), approxi-

mations exist which are successful on certain interesting classes of programs. The

approximations which they suggest are: (1) using “incomplete” rule sets, (2) using a

priority scheme, and (3) ignoring conditions in the rule set.

Previous to this work, Lakhotia et al. [6] developed a C program normalizer

which did not require a model of the metamorphic engine. This normalizer was able

to remove transformations such as expression reshaping and constant propogation,

as well as impose variable renaming, variable reordering, and instruction reordering.

While their approach was not able to reduce general C programs to a normal form
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(due to transformations such as equivalent instruction substitutions), they did report

a large reduction in the total number of possible normalized forms.

Walenstein et al. then provide different reduction stratagies in order to obtain

a reduced form of a metamorphic program. If P is the metamorphic program, M

is the metamorphic engine of P , T = m1,m2, ...,m3 is the set of transfomations

performed upon P , then S(P ) is the set of all possible variants of P that can be

produced through the transformations of M . It follows then that if one knows M ,

then one naive approach would be to “reverse” the rules to produce a normalization.

For example, if one transformation is A → B (statements A are transformed into

statements B), then perhaps reversing the rule and applying B → A would correctly

normalize the program. However, this strategy is not sufficient as the system is not

guaranteed to follow the correct reversal of T and a different strategy, i.e. a TRS, is

needed.

The following is a brief summation of the definitions of term rewriting theory

which Walenstein et al. provide, though more detail can be found in [1, 14].

• Terms, subterms, atomic, and ground. Terms are constants, variables,

functions, or functions on terms. A term t may contain other terms known as

subterms of t. An atomic term does not contain any subterms. A ground term

does not contain variables.

• Term rewriting system (TRS). A TRS is a set of rewrite rules, s → t.

Rewrite rules may be conditional, denoted by p|R where rule R is to be applied

only when condition p is true.

• Reduction relation (→T ). Given terms s and t, (→T ) is defined as follows:

s →T t holds iff for some rewrite rule s′ → t′, s has, as a subterm, an instance

of s′ which if replaced with it’s corresponding instance of t′, turns s into t.

• Equivalence relation (
∗

↔). The → relation on terms induces an equivalence

relation (
∗

↔) defined by the reflexive symmetric transitive closure of →. (
∗

↔)
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partitions the set of terms into equivalence classes. [t]T denotes the equivalence

class of term t under (
∗

↔).

• Normal form. A term t is in normal form if it is not related to any other term

under →T . NormT (x) is the set of terms [x]T which are in normal form.

• Termination. A TRS T terminates if there exists no infinite chains of reduc-

tions (t1 → t2 → t3...).

• Confluence. If x, y, and z are arbitrary terms and there is a sequence of rules

such that x → y and x → z, then the system is confluent if every such y and z

are joinable. Two terms y and z are joinable if there exists a set of rewrite rules

such that y and z reduce to some arbitrary term w. The problem of converting

an arbitrary TRS into an equivalent one that is confluent is undecidable [14].

• Convergence. A TRS is convergent if it is confluent and terminating. A con-

vergent TRS T can be used to determine membership in any of the equivalence

classes defined by
∗

↔ by applying the rules of T in any arbitrary order to any

given input x. This process guarantees a unique normal form unique to x’s

equivalence class.

Therefore, if a TRS T is convergent, then given any variant of a program P , T

is guaranteed to extract a unique normal form which will match any other variant of

P .

As previously mentioned, Walenstein et al. show NCP= to be undecidable,

though they define procedures which attempt to solve the problem. One procedure

involves two phases: reorientation and completion. The reorientation phase reverses a

rule’s application direction and assigns orientations of the rules such that the reduction

procedure is guaranteed to terminate by imposing some reduction order on terms

[1, 14]. One frequently used reduction order used in term rewriting systems is the

well-founded length-lexicographic ordering. This reduction order reorients rule in M

whose right hand sides are length-lexicographically greater than their left hand sides.

Unless there are rules of the form x → x then the resulting system M t is terminating
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because any rule application decreases the length-lexicographic size of the reduced

term. The reader is referred to [14] for detailed examples of reorientation.

After the procedure solving NCP= reorients the TRS, it must then complete

the rule set. Walenstein et al. state again that while completing a TRS is in general

undecidable, algorithms exist which attempt the completion. They select the Knuth-

Bendix (KB) completion procedure to use in their examples as it is the most prevalent

method used in term rewriting theory. The KB completion algorithm essentially works

to resolve critical overlaps by adding certain rules. A critical overlap occurs either

when the suffix of one term x on the right hand side is identical to the prefix of

another term y or when one term s on the right hand side is a prefix of another term

t. In these cases, the KB completion algorithm attempts to resolve this conflict by

adding rules which eventually drive the reduction to the same term, independant of

which rule is selected. A detailed explanation of the algorithm can be found in [5].

An important observation that Walenstein et al. make is that while a meta-

morphic engine which contained (non-preserving) semantic transformations may still

be modeled as a TRS, doing so may make it difficult to reason about the problem of

malware detection. They provide as an example a metamorphic engine with a rule

P → B where P is the entire program and B is a known benign program. According

to this ruleset, with respect to [t]M+, B is equivalent to the original malware P since

there is a rule which makes them equivalent. In the practical world, this scenario

would introduce false positives into the TRS. Conversely, if the rule set is semantic

preserving, a perfect normalized form is both complete and sound.

Finally, as completing a TRS in general is undecidable, Walenstein et al. provide

several approximations for malware detection using a TRS T . The first approximation

considered is if the completion procedure on T does not complete or is too large for

normalization purpose, a non-completed (and non-confluent) rule set may be used.

With this approximation, normalizers without a complete rule set may not reduce all

variants of a malware P to one unique normal form, yet they will reduce all variants
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of P to a set of normal forms. The size of this set depends on the specifics of the

non-completed ruleset and P . It is important to note that while variants of P may

reduce to different normal forms, once again, no version of another program Q will

reduce to any of these forms.

2.5 Background Summary

Several authors have published negative proofs for general obfuscation. Barak

et al. prove that no general obfuscator exists which satisfies the VBB property.

Goldwasser and Rothblum also prove that no best possible general obfuscators exist.

Conversely, McDonald and Yasinsac provide alternate definitions of obfuscation which

are not subject to the VBB property. They provide a model for obfuscation known

as the Random Program Model and provide a test for general obfuscation within

that model. Several metrics, such as spatial entropy, confusion, and diffusion have

been related to circuits and may be useful in measuring circuit obfuscation. Dalla

Preda relates the fields of software obfuscation and malware detection and provides

examples of different forms of obfuscated malware. Finally, Walenstein et al. define

a malware detector based upon the theory of term rewriting which may be able to

perfectly normalize some forms of metamorphic malware.
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III. Methodology

3.1 Problem Definition

The primary goal of this research effort is to determine if a malware detector

based upon the mechanisms of term rewriting theory can perfectly normalize

circuits transformed by a sub-circuit selection and replacement algorithm if the trans-

formation algorithm is previously known. The research group meets this goal when

the transforming rules of a sub-circuit selection and replacement algorithm are mod-

eled as rewrite rules in term rewriting theory and the research group determines if

there exist critical overlaps within these rewrite rules that cannot be resolved. If

this reseach effort shows there exist rewrite rules which cannot be resolved, this will

prevent a program normalizer from converging this rule set.

The secondary goal of this research effort is to determine the properties of

a sub-circuit selection and replacement algorithm which prevent the rule set from

converging and to relate their effectiveness to the realm of software obfuscation. The

research group meets this goal when the cause of critical overlaps within the rule set

is identified and related to the obfuscating transformations of instruction-substitution

algorithms.

3.2 Approach

The approach this research group used to accomplish the primary goal is to

model the sub-circuit selection algorithm as a malware detector based on a term

rewriting system TRS and determine if there exist any critical overlaps within the

transforming rules modeled as a rule set. A critical overlap occurs when the prefix

of one rewrite rule in the TRS matches the suffix of another rule, or when one term

in a rewrite rule is a subterm of another rewrite rule. If critical overlaps do exist,

then the next step is to determine if a completion procedure is able to resolve the

critical overlaps, creating a convergent rule set. As the problem of completing a TRS is

undecidable in the general case [14], attempts to complete rule sets are not guaranteed

to terminate. If the completion procedure is shown to produce a cycle, preventing
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termination of the algorithm, then it is shown that the rule set is non-convergent and

therefore the transforming rules of the sub-circuit selection and replacement algorithm

cannot be normalized using that completion procedure.

The approach used to accomplish the secondary goal is to utilize the malware de-

tector modeling the sub-circuit selection and replacement algorithm in term rewriting

theory and examine the factors contributing to the number of critical overlaps within

the rule set. The approach is to then determine the relationship between rewrite

rules utilized by a TRS and equivalent command substitution utilized by a software

obfuscator and to draw relevant conclusions in the field of software obfuscation.

3.3 System Boundaries

To meet the goals of this research effort, the research group built the Circuit

Transformation Analysis System CTAS. As shown in Figure 3.1, this system takes

the following as inputs:

• Circuit Generation Engine CGE. An engine capable of producing circuits

with I inputs, O outputs, and G gates which can be used by a sub-circuit

selection and replacement algorithm.

• Number of selected gates. The number of selected gates NSG used by the

sub-circuit selection and replacement algorithm to create transformation rules.

• Number of returned gates. The number of returned gates NRG used by the

sub-circuit selection and replacement algorithm to create transformation rules.

Also shown in Figure 3.1, the CTAS provides the following two outputs:

• Number of Rewrite Rules. The number NRR of rewrite rules found within

the rule sets of the CGE.

• Number of Critical Overlaps. The number NCO of critical overlaps found

within the rewrite rules.
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Figure 3.1: Circuit Transformation Analysis System

The CGE is a input of the sub-circuit selection and replacement algorithm. As

shown in Figure 3.2, the CGE takes the following inputs:

• Number of inputs. The number of inputs I the generated circuits will contain.

This input guarantees that when the CGE is utilized in a sub-circuit selection

and replacement algorithm, the replacement circuits the CGE produces will

contain the exact number of inputs necessary to properly replace the selected

sub-circuit.

• Number of outputs. The number of outputs O the generated circuits will

contain. This input guarantees that when the CGE is utilized in a sub-circuit

selection and replacement algorithm, the replacement circuits the CGE pro-

duces will contain the exact number of outputs necessary to properly replace

the selected sub-circuit.

• Number of gates. The number of gates G the generated circuits will contain.

This input guarantees that the CGE will only produce sub-circuits which contain

G gates.

As shown in Figure 3.2, the CGE provides the following as an output:

• List of circuits. This is a list of circuits L with I number of inputs, O number

of outputs, and G number of gates.

It is important to note that while all sub-circuits generated by the CGE contain

I inputs, not all sub-circuits utilize each of the I inputs. If these types of circuits are
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Figure 3.2: Circuit Generation Engine

Table 3.1: The signature of this truth table is the value of the output column O1.

I1 I2 O1

0 0 0
0 1 0
1 0 0
1 1 1

then returned as replacements in a sub-circuit selection and replacement algorithm,

it may introduce intermediate gates whose output is neither an output of the circuit

nor an input of any gate, otherwise known as a dangling gate.

A sub-circuit selection and replacement algorithm may use a CGE to generate

replacement sub-circuits, which either preserve or transform semantics, for selected

sub-circuits. If a sub-circuit selection and replacement algorithm selects sub-circuits

containing G1 gates and replaces them with sub-circuits containing G2 gates, the

sub-circuit selection and replacement algorithm will determine the input parameters

I and O of the CGE based upon the number of inputs and outputs of the selected

sub-circuit and it will initialize the input parameter G of the CGE to the value G2.

The CGE will then return the list of sub-circuits L which contain I inputs, O outputs,

and G2 gates. The sub-circuit selection and replacement algorithm can then choose a

replacement sub-circuit from L. If the sub-circuit selection and replacement algorithm

only considers semantic preserving transformations, then the algorithm must choose

a replacement from L which contains the same signature, or output values, as the

selected circuit.
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3.4 Evaluation Technique

3.4.1 Enumerate Transformation Rules. The CTAS provides results to meet

the goals of this research effort by performing measurements on a CGE used by a sub-

circuit selection algorithm. In order to meet the first research goal, the CTAS first

determines the total number of critical overlaps between rewrite rules in a malware

detector using the transformation rules of a sub-circuit selection and replacement

algorithm in each iteration.

In order to accomplish this first step, the CTAS enumerates all possible trans-

forming rules a sub-circuit selection algorithm using a CGE may apply to a circuit.

In this research effort, two sets of transformation rules are evaluated. During the first

iteration, the CTAS examines all possible transformation rules that a sub-circuit se-

lection and replacement algorithm may contain when selecting sub-circuits containing

1 gate and replacing them with sub-circuits containing 2 gates. During the second

iteration, the CTAS examines all possible transformation rules when selecting sub-

circuits containing 2 gates and replacing them with sub-circuits containing 3 gates.

In order to enumerate all possible transformation rules during each iteration,

the CTAS determines the maximum number of possible unique inputs I and outputs

O when selecting NSG two-input gates. The maximum number of possible inputs of

a selected sub-circuit with NSG is the following:

NI = 2 ∗ NSG (3.1)

For example, the CTAS determines the maximum number of inputs a sub-circuit

containing 3 two-input gates is 6. The maximum number of possible unique outputs

of a selected sub-circuit with NSG is the following:

NO = NSG (3.2)
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For example, the maximum number of outputs a sub-circuit containing 2 gates

is 2.

As previously stated, the research group exerices the CTAS twice. During both

executions, the CGE input remains the same and the I and the O inputs change.

During a single execution, the CTAS iteratively executes the CGE with the input

parameter I ranging from 1 to NI , the output parameter O ranging from 1 to NO,

and the gates parameter G set to both NSG and NRG. During each iteration, the

CTAS stores two lists of circuits. The first list, the list of selected gates LS, is the list

of gates generated by the CGE which contain NSG gates. The second list, the list of

replacement gates LR, is the list of gates generated by the CGE which contain NRG

gates. Each circuit is stored with its signature S and the circuits stored in the list of

selected gates LS are also stored with a boolean value B, indicating the ability of a

circuit to be selected within that circuit family.

The CTAS sets the value B to true when the circuit utilizes each of its inputs

and the circuit is of size NSG; the CTAS sets B to false otherwise. It is possible for

the CGE to return circuits which do not use all of their possible inputs. These circuits

are not valid sub-circuits which could be selected within the i-o-g family of circuits.

It is necessary for the CTAS to determine this boolean value in order to determine

the set of transformation rules.

After the CTAS creates the lists of selected and replacement circuits containing

all possible circuits with up to NI inputs and NO outputs, and NSG and NRG gates,

their signatures, and a boolean value indicating the ability to be selected, the CTAS

is then able to create the list of transformations rules LTR. A transformation rule R

contains two variables: a circuit which can be selected CS and a replacement circuit

CR. For each circuit Ci in the selected circuit list LS which can be selected (B is set

to true), the CTAS creates a rule for each circuit Cj in the replacement circuit list

LR where the signatures of Ci and Cj are equal, such that the selected circuit CS is
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Table 3.2: An example of a transformation rule in which the circuit CS can be
transformed to the circuit CR.

Selected Circuit CS Replacement Circuit CR

0 = AND(-1, -2)
0 = AND(-1, -2)

1 = AND(0, 0)

Table 3.3: An example of a reduction relation in which the circuit li can be rewritten
as the circuit ri in a TRS.

Rule

Label Condition li → ri Reorient?

Mi

0 = AND(-1, -2) → 0 = AND(-1, -2)

1 = AND(0, 0)
y

Ci and the replacement circuit CR is Cj. The CTAS then adds each of these rules to

the list of transformation rules LTR.

The list of transformation rules LTR is now the complete list of semantic-

preserving transformation rules possible which can be used in a sub-circuit selection

and replacement algorithm using the CGE provided to the CTAS. Once this list is

created, the first step of accomplishing the first goal of this research effort is accom-

plished.

3.4.2 Model Transformation Rules as a TRS. The second step of accom-

plishing the goals of this research is to model the transformation rules generated by

a sub-circuit selection and replacement algorithm as a TRS. In order to accomplish

this step, the transformation rules must be represented as rewrite rules within a TRS.

Table 5 gives an example of a transformation rule with a 1 gate circuit being replaced

by a functionally equivalent 2 gate circuit. The transformation rule from figure 5 can

then be represented as a rewrite rules described in [14] as shown in figure 6.

As displayed in figure 6, the transformation rule of figure 5 maps into a rewrite

rule of a term rewriting system. More specifically, I1, I2, O1, and 1 are equivalent to

variables, and both = and AND() are equivalent to functions on terms. The Label in a

rewrite rule is simply a unique identifier for each transformation rule. The Condition
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for each rewrite rule of a sub-circuit selection and replacement algorithm is always

empty because there are no conditions checked (such as checking for live registers)

when substituting equivalent sub-circuits. And finally, Reorient is set to yes if the

number of gates on the left hand side (selectable gates) is less than the number of gates

on the right hand side and it is set to no otherwise. As each transformation rule can

be represented as a rewrite rule, once the CTAS has created the list of transfomation

rules LTR, it can then view these transformation rules as a set of rewrite rules and

the second step is complete.

3.4.3 Reversing the Rule Set. The third step in determining if the rule

set can be normalized is to create a malware detector M t based upon the reoriented

(reversed) rules of LR. Rules can be reoriented by reversing the application direc-

tion. In the original rule set, terms on the left hand side (the sub-circuits which

could be selected) could be rewritten as terms on the right hand side (replacement

circuits). In the reoriented rule set, M t, terms on the right hand side can be rewritten

as terms on the left hand side, thereby reversing the sub-circuit selection and replace-

ment transformations. This step is trivially accomplished by acknowledging that the

replacement sub-circuits CR now function as circuits which can be selected, and the

selected sub-circuits now function as sub-circuits which can be replacements; thereby

reversing the rule set.

3.4.4 Counting Critical Overlaps. For the fourth step to accomplish the

goals of this research effort, the research group determines if there exist any critical

overlaps as described in section 2.4. According to [14], a critical overlap occurs when

the prefix of a rule x in the replacement sub-circuits matches the suffix of a rule y

in the replacement circuits or when the suffix of a rule s in the replacement circuits

matches the prefix of a rule t in the replacement circuits.

In order to determine the number of critical overlaps, the CTAS takes the prefix

of each replacement circuit CR within the list of transformation rules LTR and records

the replacement circuits, whose suffixes match the prefix, within a list of conflicting
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rules LC . The prefix of a circuit represented as term in term rewriting theory is the

first gate listed within that circuit. The suffix of a circuit represented as a term is the

last gate of the circuit. The prefix and suffix match if the terms are equivalent. The

fourth step is accomplished once the CTAS has created a list of conflicting rules LC .

3.4.5 Completing the Rule Set. If the CTAS determines at this point that

there are no critical overlaps, then the rule set is convergent and a perfect normal-

izer for the sub-circuit selection and replacement algorithm exists. If the CTAS does

contain critical overlaps, then the rule set is not convergent and a perfect normalizer

does not yet exist. However, completion procedures, such as the widely used Knuth

Bendix completion procedure, are algorithms which attempt to resolve critical over-

laps by adding additional rules which may cause a TRS to become convergent. If

the rule set can be completed by a completion procedure, then the system is conver-

gent and a perfect normalizer for the sub-circuit selection and replacement algorithm

exists.

According to [14] the problem of completing a TRS is in general undecidable

and is not guaranteed to terminate. By adding additional rules to LTR to resolve

critical overlaps, a procedure may be creating additional critical overlaps in CR. In

some cases, a completion procedure enters into a cycle, preventing the procedure from

converging the rule set.

However, this research group notes that even if one completion procedure, such

as the Knuth-Bendix completion procedure, is unable to complete the rule set, this

does not imply that no completion procedure is able to complete the rule set. It is

possible to complete rule sets through several different methods, even adding rules ad-

hoc. It is not correct to assume that the failure of one completion procedure implies

that a rule set cannot be completed by any procedure, though it may be reasonable

to discuss the complexity of such other algorithms.

The CTAS accomplishes the first goal by counting the set of critical overlaps

which exist after a completion procedure terminates or enters into a cycle. If the
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procedure terminates, then there are no critical overlaps remaining within the rule

set M t, therefore M t is convergent and a malware detector using the set of rules found

within M t is able to perfectly normalize any circuit C and any obfuscated form of the

circuit O(C) to one normal form thereby discovering the identity of the circuit.

Conversely, if the completion procedure enters into a cycle and fails to termi-

nate, then the rule set is non-convergent and a perfect normalizer for the sub-circuit

selection and replacement algorithm does not yet exist. However, it is important to

realize that another completion procedure may exist which can complete the rule set.

In this case, it is necessary to determine the cost of other completion procedures which

may terminate to determine their effectiveness.

3.5 Methodology Summary

In this effort, the research group set the primary goal as determining if a mal-

ware detector based upon the mechanisms of term rewriting theory can perfectly

normalize circuits transformed by a sub-circuit selection and replacement algorithm if

the transformation algorithm is previously known. The secondary goal is to determine

the properties of a sub-circuit selection and replacement algorithm which prevent the

rule set from converging and to determine their effectiveness in the realm of software

obfuscation.

The approach is to model the sub-circuit selection and replacement algorithm

in term rewriting theory and determine if there are irresolvable critical overlaps which

prevent the transformation rule set from converging. If the transformation rule set

is non-converging, then the causes should be identified and related to the realm of

software obfuscation.

The Circuit Transformation Analysis System is the system built to accomplish

the goals of this research interest. The CTAS takes the Circuit Generation Engine as

an input and computes the transformation rule set. The CTAS then models this rule

set as a set of rewrite rules in a term rewriting system and determines if there exist
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any critical overlaps. If there exist irresolvable critical overlaps which prevent the

transformation set from converging, the CTAS provides the total number of critical

overlaps. The causes of these critical overlaps should be identified and related to the

realm of software obfuscation.
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IV. Analysis and Results

4.1 Chapter Overview

In this chapter, we present and interpret the results of the research effort outlined

in Chapter III. As a primary goal of this research effort, this research group deter-

mines if a malware detector based upon the mechanisms of term rewriting theory can

perfectly normalize circuits transformed by a sub-circuit selection and replacement

algorithm. To fulfill the secondary goal of this research effort, this reserach group

determines the properties of a sub-circuit selection and replacement algorithm which

prevent the rule set from converging and determine their effectiveness in software ob-

fuscation. The research group represents the data of this experiment in tabular and

graph form and interprets the data to accomplish the research goals.

4.2 Capabilities of the CGE

During the experiments, the CTAS executes the CGE with the number of inputs

I, the number of outputs O, and the number of gates G. Unless otherwise stated, all

circuits generated by the CGE are created from the six gate basis Ω = {AND, NAND,

NOR, NXOR, OR, XOR}. This chapter contains data on the circuit families being

enumerated in this experiment. However, Appendix B provides tables which contain

the cardinality of each circuit family δI−O−G with up to ten inputs, five outputs, and

eight gates.

4.3 Results of Experiments and Literature Comparison

4.3.1 1 Gate Selection with 2 Gate Replacement. During the first execution

of the CTAS, as outlined in Chapter III, the research group sets the number of selected

gates NSG to 1 and the number of returned gates NRG is set to 2. This will allow

the CTAS to enumerate all possible transformation rules utilized by a sub-circuit

selection and replacement algorithm selecting sub-circuits containing one gate and

replacing them with functionally equivalent sub-circuits containing two gates.
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Table 4.1: The count of all sub-circuits which are able to be used by a sub-circuit
selection and replacement algorithm selecting sub-circuits containing 1 gate and re-
placing them with sub-circuits containing 2 gates.

1 Gate 2 Gates

1 Input - 1 Output 6 72
2 Inputs - 1 Output 6 324

Subtotals 12 396

Figure 4.1: Number of Circuits (1 Gate Selection and 2 Gate Replacement)

In order to accomplish the first goal of the research effort, to determine if a

malware detector can perfectly normalize the transformation rules of a sub-circuit

selection and replacement algorithm which selects 1 gate and replaces it with 2 func-

tionally equivalent gates, the CTAS first enumerates two lists. The first list LS is

the list of all possible 1 gate sub-circuits which can be selected within any circuit.

The second list LR is the list of all possible 2 gate sub-circuits which can be used

for replacements. As shown in Table 4.1, the CTAS enumerates the list LS of all

possible sub-circuits, which can be selected within any circuit, containing only 1 gate

and generates 12 unique sub-circuits. Also shown in Table 4.1, the CTAS enumerates

the list LR of all possible sub-circuits containing 2 gates and generates 396 possible

replacements. Figure 4.1 provides a plot of these data.
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Table 4.2: The count of all transformation rules possible in a sub-circuit selection
and replacement algorithm selecting sub-circuits containing 1 gate and replacing them
with sub-circuits containing 2 gates.

1 Gate to 2 Gates

1 Input - 1 Output 104
2 Inputs - 1 Output 72

Total 176

Figure 4.2: Number of Transformation Rules(1 Gate Selection and 2 Gate Re-
placement)

To accomplish the next step of the primary research goal, the research group de-

termines all possible transformation rules for a sub-circuit selection and replacement

algorithm selecting sub-circuits containing 1 gate and replacing them with sub-circuits

containing 2 gates. As shown in Table 4.2, the CTAS enumerates all possible trans-

formation rules from sub-circuits containing 1 gate to sub-circuits containing 2 gates

and generates a total of 176 rules with a majority coming from the circuit family δ1−1.

Figure 4.2 provides a plot of this data.

The research group represents all 176 transformation rules generated by the

CTAS as rewrite rules in term rewriting theory. Table 4.3 provides a subset of the
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Table 4.3: A subset of the reduction relations used by a sub-circuit selection and
replacement algorithm selecting sub-circuits containing 1 gate and replacing them
with sub-circuits containing 2 gates.

Rule

Label Condition li → ri Reorient?
...

M2
0 = AND(-1, -1) → 0 = NOR(-1, -1)

y
1 = NAND(0, 0)

M3
0 = AND(-1, -1) → 0 = AND(-1, -1)

y
1 = AND(-1, 0)

M4
0 = AND(-1, -1) → 0 = NAND(-1, -1)

y
1 = NOR(0, 0)

...

Table 4.4: The number of 1 gate sub-circuits which can be replaced by functionally
equivalent 2 gate sub-circuits.

Partic. Circuits Total Circuits Percentage

1 Input - 1 Output 6 6 100.00%
2 Inputs - 1 Output 6 6 100.00%

Total 12 12 100.00%

transformation rules displayed as rewrite rules. Appendix A contains the full list of

all 176 rewrite rules.

The left-hand side of these reduction relations include the 12 sub-circuits as

shown in Table 4.1. Table 4.4 provides interesting results on these left-hand sides. As

shown, all 12 sub-circuits participate in reduction relations. That is to say that all 12

sub-circuits containing only 1 gate can be replaced by functionally equivalent 2 gate

sub-circuits. Figure 4.3 provides a plot of this data.

Table 4.5 provides data on the frequency of the sub-circuits which participate

as left-hand sides in the reduction relations. The Min and Max columns shows that

each sub-circuit participates in a minimum of 12 and a maximum of 20 reduction

relations. Table 4.5 also provides the means, standard deviations, and variances for

the frequency of sub-circuits participating in the reduction relations.
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Figure 4.3: Replaceable Circuits (1 Gate Selection and 2 Gate Replacement)

Table 4.5: Circuit Selection Statistics (left-hand sides of the reduction relations).

Mean Std. Dev. Variance Min Max

1 Input - 1 Output 17.3333 1.8856 3.5556 16 20
1 Input - 2 Outputs 12.0000 0.0000 0.0000 12 12

Total 14.6667 2.9814 8.8889 12 20
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Table 4.6: The number of 2 gate sub-circuits which can replace functionally equiv-
alent 1 gate sub-circuits.

Partic. Circuits Total Circuits Percentage

1 Input - 1 Output 72 72 100.00%
2 Inputs - 1 Output 72 324 22.22%

Total 144 396 36.36%

Figure 4.4: Replacement Circuits (1 Gate Selection and 2 Gate Replacement)

The right-hand side of these reduction relations include the 144 of the 396 sub-

circuits shown in Table 4.1. Table 4.6 provides interesting results on the right-hand

sides of the reduction rules. As shown, only 144 of the 396 sub-circuits containing

2 gates can be used for replacements of functionally equivalent 1 gate sub-circuits.

Figure 4.4 provides a plot of this data.

Table 4.7 provides data on the frequency of the sub-circuits which participate

in as left-hand sides in the reduction relations. The Min and Max columns shows

that each sub-circuit participates in a minimum of 1 and a maximum of 2 reduction

relations. Table 4.7 also provides the means, standard deviations, and variances for

the frequency of sub-circuits participating in the reduction relations.
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Table 4.7: Circuit Replacement Statistics (left-hand sides of the reduction rela-
tions).

Mean Std. Dev. Variance Min Max

1 Input - 1 Output 1.4444 0.4969 0.2469 1 2
1 Input - 2 Outputs 1.0000 0.0000 0.0000 1 1

Total 1.2222 0.4157 0.1728 1 2

Table 4.8: All possible unique terms found within the sub-circuit selection and
replacement algorithm.

Term

z = AND(x, x)

z = AND(x, y)

z = OR(x, x)

z = OR(x, y)

z = NAND(x, x)

z = NAND(x, y)

z = NOR(x, x)

z = NOR(x, y)

z = NXOR(x, x)

z = NXOR(x, y)

z = XOR(x, x)

z = XOR(x, y)

The next step required for the CTAS to determine if a malware detector can

perfectly normalize the transformation rules of a sub-circuit selection and replacement

algorithm which selects 1 gate and replaces it with 2 functionally equivalent gates

is to determine if there exist any critical overlaps within the list of rewrite rules.

Critical overlaps occur when the prefix of one rewrite rules matches the suffix of

another rewrite rule. In a sub-circuit selection and replacement algorithm with a basis

Ω = {AND, OR, NAND, NOR, NXOR, XOR} there are 12 unique, single gate terms shown in

Table 4.8.

As shown in Table 4.9, each unique term of the sub-circuit selection and re-

placement algorithm participates in rewrite rules as both prefixes and suffixes.

The CTAS examines all possible rewrite rules for critical overlaps between

prefixes and suffixes and determines that 2, 558 critical overlaps exist as shown in
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Table 4.9: The frequency of terms in reduction relations of 1 to 2 gate transforma-
tions.

Term Prefix Suffix

z = AND(x, x) 32 16
z = AND(x, y) 8 17
z = OR(x, x) 32 16
z = OR(x, y) 8 17
z = NAND(x, x) 20 16
z = NAND(x, y) 4 17
z = NOR(x, x) 20 16
z = NOR(x, y) 4 17
z = NXOR(x, x) 16 6
z = NXOR(x, y) 8 16
z = XOR(x, x) 16 6
z = XOR(x, y) 8 16

Subtotals 176 176

Table 4.10: The frequency of terms in reduction relations of 1 to 2 gate transfor-
mations.

Critical Overlaps

1 Gate Selection with 2 Gate Replacement 2, 558

Table 4.10. Table 4.11 provides an example of one of the critical overlaps between

rewrite rules M2 and M21 at the term: z = NAND (x, y).

As critical overlaps exist within this rule set it is by definition non-convergent

and a perfect normalizer for a sub-circuit selection and replacement algorithm based

on this rule set does not yet exist. However, if a completion algorithm such as the

Knuth-Bendix completion procedure, the most widely used completion procedure in

term rewriting literature, can complete the rule set then the rule set is convergent

and an attacker can create a perfect normalizer for this sub-circuit selection and

replacement algorithm.

In order to complete the rule set, the KB completion procedure iterates through

each critical overlap and adds a new rule, using existing terms, to resolve the overlap.

If the algorithm terminates without an error it completes the rule set and the rule set
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Table 4.11: An example of a critical overlap within the reduction relations. The
overlap exists between the suffix of M2 and the prefix of M21.

Rule

Label Condition li → ri Reorient?
...

M2
0 = AND(-1, -1) → 0 = NOR(-1, -1)

y
1 = NAND(0, 0)

...

M21
0 = NOR(-1, -1) → 0 = NAND(-1, -1)

y
1 = AND(0, 0)

...

is convergent. However, completion algorithms are not gauranteed to terminate and

may fall into a cycle of adding rules.

When the KB completion algorithm adds rules to the rule set containing the

prefixes and suffixes displayed in Table 4.9, it immediately falls into a cycle. This is

due to the fact that in order to resolve critical overlaps, the KB completion procedure

adds rules using only prexisting terms. If every unique term of the TRS is used as a

prefix and suffix at least twice, then for every rule the KB completion procedure adds,

it will resolve one critical overlap while always creating at least two more. The new

prefix will conflict with another suffix and the new suffix will conflict with another

prefix.

As every unique term in this TRS initially participates in at least two overlaps

as both a prefix and a suffix (e.g., every term z = NAND(x, y) as a suffix participates

in a critical overlap with each of the four equivalent prefixes as shown in Table 4.9),

the KB procedure fails to terminate and the resulting rule set is non-convergent.

However, it is not possible to prove that a malware detector cannot perfectly

normalize circuits obfuscated by this algorithm because even if one completion pro-

cedure, such as the Knuth-Bendix completion procedure, fails to terminate it may be

the case that another completion procedure exists which can terminate the rule set.

In the case of the rewrite rules based upon the transformation rules of the sub-circuit
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selection and replacement algorithm selecting sub-circuits containing one gate and re-

placing them with sub-circuits containing two gates, Knuth Bendix enters into a cycle

because every term in the TRS is used more than once as both a prefix and a suffix.

Therefore every rule which was added to the rule set conflicted with another rule,

producing a cycle. However, it may be possible to construct a completion procedure

which introduces completely new terms into the TRS which do not conflict with the

current rule set. If it is possible to create such a completion procedure, then it would

be possible to normalize the rule set.

4.3.2 2 Gate Selection with 3 Gate Replacement. This section displays the

outputs generated by the CTAS when the number of selected gates NSG = 2 and the

number of returned gates NRG = 3.

In this second experiment the CTAS again enumerates two lists. The first list

LS is the list of all possible 2 gate sub-circuits which can be selected within any

circuit. The second list LR is the list of all possible 3 gate sub-circuits which can be

used for replacements. As shown in Table 4.12, the CTAS enumerates the list LS of

all possible sub-circuits, which can be selected within any circuit, containing only 2

gates and generates a total of 1, 656 unique sub-circuits. Also shown in Table 4.12,

the CTAS enumerates the list LR of all possible sub-circuits containing 3 gates and

generates 634, 824 possible replacement sub-circuits. Figure 4.5 provides a plot of this

data in in a linear scale while Figure 4.6 provides a plot of this data in a logarithmic

scale.

One interesting result is that the CTAS determines that there are 0 sub-circuits

which can be selected in the δ4−1−2 circuit family. This is intuitive as any circuit

which is generated using all 4 inputs and having only 2 gates will have 2 mandatory

outputs. Mandatory outputs are outputs of gates which are not connected to any

other inputs. As it is not possible to generate any circuit containing 4 inputs, 2 gates,

and only 1 (mandatory) output, there are 0 circuits which can be selected within the
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Table 4.12: The count of all sub-circuits which are able to be used by a sub-
circuit selection and replacement algorithm selecting sub-circuits containing 2 gates
and replacing them with sub-circuits containing 3 gates.

2 Gates 3 Gates

1 Input - 1 Output 72 1, 512
1 Input - 2 Outputs 108 3, 240
2 Inputs - 1 Output 180 9, 720
2 Inputs - 2 Outputs 432 27, 216
3 Inputs - 1 Output 108 33, 696
3 Inputs - 2 Outputs 540 116, 640
4 Inputs - 1 Output 0 86, 400
4 Inputs - 2 Outputs 216 356, 400

Subtotals 1, 656 634, 824

Figure 4.5: Number of Circuits (2 Gate Selection and 3 Gate Replacement)
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Figure 4.6: Number of Circuits (2 Gate Selection and 3 Gate Replacement) (Log-
arithmic Scale)

δ4−1−2 family. Therefore, analysis throughout this chapter will relect that the δ4−1−2

circuit family does not participate in any rewrite rules.

To accomplish the next step of the primary research goal, the research group de-

termines all possible transformation rules for a sub-circuit selection and replacement

algorithm selecting a sub-circuit containing 2 gates and replacing it with a sub-circuit

containing 3 gates. As shown in Table 4.13, the CTAS enumerates all possible trans-

formation rules from sub-circuits containing 2 gates to sub-circuits containing 3 gates

and generates a total of 374, 532 rules with a majority coming from the circuits con-

taining 2 inputs. Figure 4.7 provides a plot of this data.

All 374, 532 rules generated by the CTAS can be represented as rewrite rules

in term rewriting theory. Table 4.14 provides a subset of the transformation rules

displayed as rewrite rules.

The left-hand side of these reduction relations include all possible 1, 656 2 gate

sub-circuits as shown in autoreftab:numCircuits1to2. Table 4.15 provides interesting

results on these left-hand sides. As shown, all 1, 656 sub-circuits participate in reduc-
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Table 4.13: The count of all transformation rules possible in a sub-circuit selection
and replacement algorithm selecting sub-circuits containing 2 gates and replacing
them with sub-circuits containing 3 gates.

1 Gate to 2 Gates

1 Input - 1 Output 27, 744
1 Input - 2 Outputs 37, 188
2 Inputs - 1 Output 112, 656
2 Inputs - 2 Outputs 119, 892
3 Inputs - 1 Output 8, 016
3 Inputs - 2 Outputs 58, 668
4 Inputs - 1 Output 0
4 Inputs - 2 Outputs 10, 368

Total 374, 532

Figure 4.7: Number of Transformation Rules (2 Gate Selection and 3 Gate Re-
placement)
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Table 4.14: A subset of the reduction relations used by a sub-circuit selection and
replacement algorithm selecting sub-circuits containing 2 gates and replacing them
with sub-circuits containing 3 gates.

Rule

Label Condition li → ri Reorient?
...

M233,157

0 = XOR(-2, -1) → 0 = NXOR(-1, -1)

y1 = NOR(-2, -2) 1 = XOR(0, -2)

2 = XOR(1, -1)

M233,158

0 = XOR(-2, -1) → 0 = AND(-2, -1)

y1 = NOR(-2, -2) 1 = XOR(-2, -1)

2 = NOR(0, -2)

M233,159

0 = XOR(-2, -1) → 0 = OR(-1, -1)

y1 = NOR(-2, -2) 1 = XOR(-2, -1)

2 = NXOR(1, 0)

M233,160

0 = XOR(-2, -1) → 0 = OR(-1, -1)

y1 = NOR(-2, -2) 1 = NOR(-2, -2)

2 = XOR(0, -2)
...

tion relations. That is to say that all 1, 656 sub-circuits containing only 2 gates can

be replaced by functionally equivalent 3 gate sub-circuits. Figure 4.8 provides a plot

of this data.

Table 4.16 provides data on the frequency of the sub-circuits which participate

in as left-hand sides in the reduction relations. The Min and Max columns shows that

each sub-circuit participates in a minimum of 20 and a maximum of 1, 756 reduction

relations (excluding the sub-circuits from the δ4−1 circuit family). Table 4.16 also

provides the means, standard deviations, and variances for the frequency of sub-

circuits participating in the reduction relations.

Table 4.17 provides interesting results on these right-hand sides. As shown, only

73, 696 sub-circuits participate in reduction relations. That is to say that only 73, 696

of the 634, 824 sub-circuits containing 3 gates can replace the functionally equivalent

2 gate sub-circuits. Figure 4.9 provides a plot of this data.
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Table 4.15: The number of 2 gate sub-circuits which can be replaced by functionally
equivalent 3 gate sub-circuits.

Partic. Circuits Total Circuits Percentage

1 Input - 1 Output 72 72 100.0000%
1 Input - 2 Outputs 108 108 100.0000%
2 Inputs - 1 Output 180 180 100.0000%
2 Inputs - 2 Outputs 432 432 100.0000%
3 Inputs - 1 Output 108 108 100.0000%
3 Inputs - 2 Outputs 540 540 100.0000%
4 Inputs - 1 Output 0 0 100.0000%
4 Inputs - 2 Outputs 216 216 100.0000%

Total 1, 656 1, 656 100.0000%

Figure 4.8: Circuits which can be Selected (2 Gate Selection and 3 Gate Replace-
ment)

44



Table 4.16: Circuit Selection Statistic (left-hand sides of the reduction relations).

Mean Std. Dev. Variance Min Max

1 Input - 1 Output 385.3333 65.5913 4, 302.2222 312 444
1 Input - 2 Outputs 344.3333 87.8583 7, 719.0741 176 476
2 Inputs - 1 Output 625.8667 503.3623 253, 373.5822 256 1, 756
2 Inputs - 2 Outputs 277.5278 279.9564 78, 375.6103 61 1, 668
3 Inputs - 1 Output 74.2222 42.6296 1, 817.2840 44 156
3 Inputs - 2 Outputs 108.6444 114.1173 13, 022.7625 20 410
4 Inputs - 1 Output 0.0000 0.0000 0.0000 0 0
4 Inputs - 2 Outputs 48.0000 0.0000 0.0000 48 48

Total 226.1667 288.5435 83, 257.3466 20 1, 756

Table 4.17: The number of 2 gate sub-circuits which can be replaced by functionally
equivalent 3 gate sub-circuits.

Partic. Circuits Total Circuits Percentage

1 Input - 1 Output 1, 512 1, 512 100.00%
1 Input - 2 Outputs 3240 3, 240 100.00%
2 Inputs - 1 Output 9, 720 9, 720 100.00%
2 Inputs - 2 Outputs 22, 468 27, 216 82.55%
3 Inputs - 1 Output 4, 752 33, 696 14.10%
3 Inputs - 2 Outputs 26, 820 116, 640 22.99%
4 Inputs - 1 Output 0 86, 400 0.00%
4 Inputs - 2 Outputs 5, 184 356, 400 1.45%

Total 73, 696 634, 824 11.61%
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Figure 4.9: Replacement Circuits (2 Gate Selection and 3 Gate Replacement)

Table 4.16 provides data on the frequency of the sub-circuits which participate

in as left-hand sides in the reduction relations. The Min and Max columns shows that

each sub-circuit participates in a minimum of 20 and a maximum of 1, 756 reduction

relations. Table 4.18 also provides the means, standard deviations, and variances for

the frequency of sub-circuits participating in the reduction relations.

The next step required for the CTAS to determine if a malware detector can

perfectly normalize the transformation rules of a sub-circuit selection and replacement

algorithm which selects 1 gate and replaces it with 2 functionally equivalent gates is

to determine if there exist any critical overlaps within the list of rewrite rules. As

shown in Table 4.19, each unique term of the sub-circuit selection and replacement

algorithm participates in rewrite rules as both prefixes and suffixes.

The CTAS examines all possible rewrite rules for critical overlaps between pre-

fixes and suffixes and determines that 10, 007, 353, 112 critical overlaps exist as shown

in Table 4.20.

Table 4.21 provides an example of one of the critical overlaps between rewrite

rules M27,788 and M233,160 at the term: z = OR(x, x).
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Table 4.18: Circuit Replacement Statistic (right-hand sides of the reduction rela-
tions).

Mean Std. Dev. Variance Min Max

1 Input - 1 Output 18.3492 1.9693 3.8781 16 20
1 Input - 2 Outputs 11.4778 4.2406 17.9828 5 20
2 Inputs - 1 Output 11.5901 2.4098 5.8073 8 14
2 Inputs - 2 Outputs 5.3361 1.9900 3.9600 1 8
3 Inputs - 1 Output 1.6869 1.2999 1.6898 1 6
3 Inputs - 2 Outputs 2.1875 0.8243 0.6794 1 4
4 Inputs - 1 Output 0.0000 0.0000 0.0000 0 0
4 Inputs - 2 Outputs 2.0000 0.0000 0.0000 2 2

Total 5.0821 4.3216 18.6760 1 20

Table 4.19: The frequency of terms in reduction relations of 2 to 3 gate transfor-
mations.

Term Prefix Suffix

z = AND(x, x) 48, 266 17, 888
z = AND(x, y) 19, 528 42, 382
z = OR(x, x) 48, 266 17, 888
z = OR(x, y) 19, 528 42, 382
z = NAND(x, x) 40, 518 18, 960
z = NAND(x, y) 16, 262 44, 024
z = NOR(x, x) 40, 518 18, 960
z = NOR(x, y) 16, 262 44, 024
z = NXOR(x, x) 43, 418 20, 298
z = NXOR(x, y) 19, 274 43, 714
z = XOR(x, x) 43, 418 20, 298
z = XOR(x, y) 19, 274 43, 714

Subtotals 374, 532 374, 532

Table 4.20: The frequency of terms in reduction relations of 2 to 3 gate transfor-
mations.

Critical Overlaps

2 Gate Selection with 3 Gate Replacement 10, 007, 353, 112
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Table 4.21: An example of a critical overlap within the reduction relations. The
overlap exists between the suffix of M27,788 and the prefix of M233,160.

Rule

Label Condition li → ri Reorient?
...

M27,788

0 = NOR(-1, -1) → 0 = AND(-1, -1)

y1 = AND(-1, -1) 1 = NOR(0, -1)

2 = OR(-1, -1)
...

M233,160

0 = XOR(-2, -1) → 0 = OR(-1, -1)

y1 = NOR(-2, -2) 1 = NOR(-2, -2)

2 = XOR(0, -2)
...

Table 4.22: An example transformation of C1 to CT by applying the reduction
relation M27,788.

Original Circuit C1 Rule Transformed Circuit CT

2 = NOR(0, 0) M27,788 → 2 = AND(0, 0)

3 = AND(0, 0) 3 = NOR(1, 1)

4 = NOR(1, 1) 4 = OR(0, 0)

5 = XOR(2, 1) 5 = NOR(1, 1)

6 = XOR(2, 1)

Table 4.22 provides an example of a circuit C1 which cannot be perfectly nor-

malized because of the critical overlap between the reduction relations M27,788 and

M233,160. The circuit is transformed to the circuit CT by the rule M27,788.

Table 4.23 provides one normalization of the circuit based on the reversal of rule

M27,788, known as N27,788. This reversal results in the original circuit C1.

Table 4.24 provides a second (incorrect) normalization of the circuit based on

the reversed rule N233,160 which results in circuit C2.

If there existed no other rules which could reduce C1 and C2, then this critical

overlap would prevent a malware detector from perfectly reducing CT to one normal

form.
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Table 4.23: An example of the correct normalization of CT into C1.
Transformed Circuit CT Rule Normalized Circuit C2

2 = AND(0, 0) N27,788 → 2 = NOR(0, 0)

3 = NOR(1, 1) 3 = AND(0, 0)

4 = OR(0, 0) 4 = NOR(1, 1)

5 = NOR(1, 1) 5 = XOR(2, 1)

6 = XOR(2, 1)

Table 4.24: An example of an incorrect normalization of CT into C2.
Transformed Circuit CT Rule Normalized Circuit C2

2 = AND(0, 0) N233,160 → 2 = AND(0, 0)

3 = NOR(1, 1) 3 = NOR(2, 0)

4 = OR(0, 0) 4 = XOR(1, 0)

5 = NOR(1, 1) 5 = NOR(1, 1)

6 = XOR(2, 1)

Once again, as critical overlaps exist within this rule set it is by definition

non-convergent and a perfect normalizer for a sub-circuit selection and replacement

algorithm based on this rule set does not yet exist. However, if a completion algorithm

such as the Knuth-Bendix completion procedure can complete the rule set then the

rule set is convergent and an attacker can create a perfect normalizer for this sub-

circuit selection and replacement algorithm.

In order to complete the rule set, the KB completion procedure iterates through

each critical overlap and adds a new rule, using existing terms, to resolve the overlap.

If the algorithm terminates without an error it completes the rule set and the rule set

is convergent. However, completion algorithms are not gauranteed to terminate and

may fall into a cycle of adding rules.

When the KB completion algorithm adds rules to the rule set containing the

prefixes and suffixes displayed in Table 4.19, it immediately falls into a cycle. This is

due to the fact that in order to resolve critical overlaps, the KB completion procedure

adds rules using only prexisting terms. If every unique term of the TRS is used as a

prefix and suffix at least twice, then for every rule the KB completion procedure adds,

it will resolve one critical overlap while always creating at least two more. The new
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prefix will conflict with another suffix and the new suffix will conflict with another

prefix.

As every unique term in this TRS initially participates in at least two overlaps

as both a prefix and a suffix (e.g., every term z = NAND(x, y) as a suffix participates

in a critical overlap with each of the four equivalent prefixes as shown in Table 4.19),

the KB procedure fails to terminate and the resulting rule set is non-convergent.

However, once again, this research does not prove that a malware detector

cannot perfectly normalize circuits obfuscated by this algorithm. Even though one

completion procedure, the Knuth-Bendix completion procedure, fails to terminate it

may be the case that another completion procedure exists which can terminate the

rule set. In the case of the rewrite rules based upon the transformation rules of

the sub-circuit selection and replacement algorithm selecting sub-circuits containing

one gate and replacing them with sub-circuits containing two gates, Knuth-Bendix

enters into a cycle because every term in the TRS is used more than once as both a

prefix and a suffix. Therefore every rule which was added to the rule set conflicted

with another rule, producing a cycle. However, it may be possible to construct a

completion procedure which introduces completely new terms into the TRS which do

not conflict with the current rule set. If it is possible to create such a completion

procedure, then it would be possible to normalize the rule set.

4.4 Summary

The primary goal of this research effort is to determine if a malware detector

based upon the mechanisms of term rewriting theory can perfectly normalize circuits

transformed by a sub-circuit selection and replacement algorithm if the transformation

algorithm is previously known. The results of this chapter have accomplished this

goal by determining that it is not possible to prove that a malware detector cannot

perfectly normalize the circuits transformed by a sub-circuit selection and replacement

algorithm. While the Knuth-Bendix completion procedure is not able to complete the

rule sets generated by the sub-circuit selection and replacement algorithm, there may
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exist another completion procedures which would terminate and complete the rule

sets.

The secondary goal of this research effort is to determine the properties of a sub-

circuit selection and replacement algorithm which prevent the rule set from converging

and determine their effectiveness in software obfuscation. While the transforming

rules of the sub-circuit selection and replacement algorithm contain critical overlaps,

this does not guarantee that a completion procedure cannot complete the rule set.

However, the strength of the rule set is that all possible terms are both prefixes and

suffixes of rules which causes the KB procedure to cycle preventing the convergence.

In order to prevent a malware detector from normalizing an obfuscated program, a

software obfuscator based on command substitution must contain a rule set which

cannot be completed by a completion procedure.

While it is not possible to prove that no completion procedures exist which

can complete these rule sets, it may be possible to increase the cost of performing

this analysis to an acceptable amount. For instance, before the completion procedure

begins, an attacker must be able to first enumerate the entire rule set. If the cost of

enumerating the rule set is too high (whether it would take a certain amount of time or

space), this may be an effective way to prevent the attacker from normalizing the rule

set for a certain amount of time. One possible way to accomplish this goal is to choose

replacement sub-circuits from a random subset of a large circuit family δi−o−g. If the

obfuscator is able to select replacements uniformly from the set of all replacements

in a circuit family, without having to enumerate the entire family, it may be possible

to utilize replacement families which will take the attacker an acceptable amount of

time or space to fully enumerate. The key is that in order for an attacker to model

the obfuscator as a TRS and attempt to complete the rule set, the attacker must

fully enumerate all circuit families used in a sub-circuit selection and replacement

algorithm in order to create the rule set.
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V. Conclusions and Recommendations

5.1 Chapter Overview

The primary purpose of this chapter is to provide conclusions based on the results

given in Chapter IV. This chapter will also highlight the significance of this

research effort and provide recommendations for future research in the realms of

software obfuscation and malware detection.

5.2 Significance of Research

There are two significant results of this research effort. This research establishes

that while it is not possible to prove that a malware detector based upon the mech-

anisms of term rewriting thoery cannot perfectly normalize a circuit obfuscated by a

sub-circuit selection and replacement algorithm, it may be possible to create a rule

set which drives the runtime or storage cost of a malware detector to a high cost,

preventing the attacker from obtaining a solution for an acceptable amount of time.

While Chess and White [3] suspect that perfect detection of all metamorphic

malware is impossible, Walenstein et al. [14] claim that restricted versions of the

normalization problem are solvable. Specifically, they claim that perfect normalization

may be possible when an accurate model of the metamorphic engine of a malware is

known. As a sub-circuit selection and replacement algorithm can be modeled as

a metamorphic engine, then it is an interesting result to determine if a malware

detector can perfectly normalize circuits obfuscated by this algorithm. If a malware

detector can perfectly normalize a circuit, then the malware detector can reduce the

original circuit as well as all all possible obfuscations of the circuit, based upon the

transformation rules of the sub-circuit selection and replacement algorithm, to the

same normal form.

This research effort has determined that there exist critical overlaps within

the transformation rules of a sub-circuit selection and replacement algorithm which

prevent a malware detector based on the mechanisms of term rewriting theory from

perfectly normalizing obfuscated circuits. This is a significant result because even if a
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malware detector has an accurate model of the sub-circuit selection and replacement

algorithm, this research effort shows perfect normalization of circuits obfuscated by

this algorithm is not possible using an existing completion procedure.

However, it is not possible to prove that a malware detector cannot perfectly

normalize circuits obfuscated by this algorithm because even if one completion proce-

dure, such as the Knuth-Bendix completion procedure, fails to terminate, it may be

the case that another completion procedure exists which can terminate the rule set.

In the case of the rewrite rules based upon the transformation rules of the sub-circuit

selection and replacement algorithm, Knuth Bendix enters into a cycle because every

term in the TRS is used more than once as both a prefix and a suffix. Therefore every

rule which was added to the rule set conflicted with another rule, producing a cycle.

However, it may be possible to construct a completion procedure which introduces

completely new terms into the TRS which do not conflict with rules. If it is possible

to create such a completion procedure, then it would be possible to normalize the rule

set.

This research provides significant results for the field of software obfuscation.

Firstly, in order for a software obfuscator based upon command substitution to pre-

vent perfect normalization of obfuscated programs, it must contain transformation

rules which prevent known completion procedures, such as the most widely used

Knuth-Bendix, from converging the rule set. This can be accomplished by inserting

transformation rules which cause completion procedures such as Knuth-Bendix to cy-

cle, thereby forcing the malware detector to use an approximation to the normalization

problem such as using an incomplete rule set.

Secondly, while it is not possible to prove that no completion procedures exist

which can complete a rule set, it may be possible to create a rule set which would be

too costly for an attacker to analyze with a TRS. Before a completion procedure is

run on a rule set, the malware detector must be able to enumerate all possible trans-

formation rules that a metamorphic engine can use. One strength of a sub-circuit
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selection and replacement algorithm is that it is able to generate rules, rather than

simply using stored rules. If a sub-circuit selection and replacement algorithm can

dynamically create replacement circuits, without enumerating the entire i-o-g family,

but rather only a random subset of the family, the sub-circuit selection and replace-

ment algorithm may be able to use replacement circuits which exist in familys that

are far too costly to generate exhaustively. In order for a malware detector based

upon term rewriting theory to perfectly normalize original and obfuscated circuits,

it must be able to generate all possible rules before executing a completion proce-

dure. Therefore, a sub-circuit selection and replacement algorithm which is able to

dynamically create transformation rules may be able to greatly increase the cost of a

malware detector’s analysis to prevent the attacker from completing the rule set (if it

is even possible) for an acceptable amount of time.

5.3 Recommendations for Future Research

The primary recommendation for future research would be to create selection

and replacement algorithms which can select replacement circuits from δi−o−g families

with a uniform distribution without enumerating all possible sub-circuits within that

family. If this is possible, then it may be possible to prevent any TRS from reducing

the rule set for a certain amount of time and cost to the attacker.

Future analysis of the sub-circuit selection and replacement algorithm modeled

as a TRS is also possible. While this research effort inspected the rewrite rules

and critical overlaps of 1 to 2 gate and 2 to 3 gate transformations, inspecting the

capabilities of other transformation combinations such as 3 to 4 gates may also provide

interesting results.

Another interesting research area would be examining the effects of a sub-circuit

selection and replacement algorithm which contained transformation rules that re-

duced the size of the circuit. Transformation rules which contain selected sub-circuits

that are length-lexicographically larger than their replacement sub-circuits cannot be
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reoriented in a malware detector. This property of a instruction-substitution algo-

rithm might also prevent perfect normalization.

Finally, future researchers may discover more efficient methods of generating

functionally equivalent replacement sub-circuits. During this effort, the research group

examined the size of the circuit families, searching for previously published integer

sequences. The research group found that the integer series containing the cardi-

nalities of the circuit families containing one input and one output with a one gate

basis, as enumerated in Appendix A, are isomorphic to the integer series A000366

enumerated in the ATT Research Online Encyclopedia of Integer Series [13]. This

integer series is known as the Genocchi medians divided by 2n−1. Furthermore, D.

E. Knuth described the Genocchi medians as “the number of Boolean functions of n

variables whose ROBDD (reduced ordered binary decision diagram) contains exactly

n branch nodes, one for each variable” [13]. Considering that this research effort has

uncovered a relationship between the cardinalities of the generated circuit families

and ROBDDs, future research may provide more efficient algorithms for generating

replacement sub-circuits based on operations to ROBDDs.

5.4 Conclusions of Research

The primary goal of this research effort is to determine if a malware detector

based upon the mechanisms of term rewriting theory can perfectly normalize circuits

transformed by a sub-circuit selection and replacement algorithm, even when the

transformation rule set (metamorphic engine) is previously known. This goal is met

when the transformation rules of a sub-circuit selection and replacement algorithm are

modeled as rewrite rules in term rewriting theory and it is determined if there exist

critical overlaps within these rewrite rules that cannot be resolved thereby preventing

a program normalizer from converging this rule set.

The secondary goal of this research effort is to determine the properties of a sub-

circuit selection and replacement algorithm which prevent the rule set from converging

and to determine their effectiveness in the realm of software obfuscation. This goal is
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met when the cause of critical overlaps within the rule set is identified and related to

the obfuscating transformations of instruction-substitution algorithms.

The primary goal of this research effort was accomplished by determining that

it is not possible to prove that a malware detector based upon the mechanisms of term

rewriting theory cannot perfectly normalize circuits transformed by a sub-circuit se-

lection and replacement algorithm, even when the transformation rule set is previously

known. While the Knuth-Bendix completion procedure is not able to complete the

rule sets generated by the sub-circuit selection and replacement algorithm, there may

be other completion procedures which would terminate and complete the rule sets.

The secondary goal of this research effort is accomplished through an analysis

of the critical overlaps found within the rewrite rules in Tables 6-8 and 13-14. As the

rewrite rules contain properties that prevent the Knuth-Bendix completion procedure

from succesfully converging the rule set, these properties can also be used in the

realm of software obfuscation. Also, this research has determined that it may be

possible to dynamically create transformation rules which would prevent an attacker

from completing the rule set (if it was possible) with a different completion procedure

for a certain acceptable amount of time. Therefore, this research effort successfully

accomplishes both research goals through an analysis of the data collected through

experimentation.
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Appendix A. Circuit Family Counts

1 GATE BASIS (the 1-1 family is the Genocchi Medians divided by 2n−1).

Table A.1: The number of sub-circuits containing 1, 2,

3, and 4 gates

1 Gate 2 Gates 3 Gates 4 Gates

1 In. - 1 Out. 1 2 7 38

1 In. - 2 Out. 3 15 111

1 In. - 3 Out. 18 162

1 In. - 4 Out. 180

1 In. - 5 Out.

2 In. - 1 Out. 3 9 45 333

2 In. - 2 Out. 18 126 1, 242

2 In. - 3 Out. 180 2, 160

2 In. - 4 Out. 2, 700

2 In. - 5 Out.

3 In. - 1 Out. 6 24 156 1, 464

3 In. - 2 Out. 60 540 6, 660

3 In. - 3 Out. 900 13, 500

3 In. - 4 Out. 18, 900

3 In. - 5 Out.

4 In. - 1 Out. 10 50 400 4, 550

4 In. - 2 Out. 150 1, 650 24, 450

4 In. - 3 Out. 3, 150 56, 700

4 In. - 4 Out. 88, 200

4 In. - 5 Out.

5 In. - 1 Out. 15 90 855 11, 430

5 In. - 2 Out. 315 4, 095 70, 875
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Table A.1 – continued from previous page

1 Gate 2 Gates 3 Gates 4 Gates

5 In. - 3 Out. 8, 820 185, 220

5 In. - 4 Out. 317, 520

5 In. - 5 Out.

6 In. - 1 Out. 21 147 1, 617 24, 843

6 In. - 2 Out. 588 8, 820 174, 636

6 In. - 3 Out. 21, 168 508, 032

6 In. - 4 Out. 952, 560

6 In. - 5 Out.

7 In. - 1 Out. 28 224 2, 800 48, 608

7 In. - 2 Out. 1, 008 17, 136 382, 032

7 In. - 3 Out. 45, 360 1, 224, 720

7 In. - 4 Out. 2, 494, 800

7 In. - 5 Out.

8 In. - 1 Out. 36 324 4, 536 87, 804

8 In. - 2 Out. 1, 620 30, 780 763, 020

8 In. - 3 Out. 89, 100 2, 673, 000

8 In. - 4 Out. 5, 880, 600

8 In. - 5 Out.

9 In. - 1 Out. 45 450 6, 975 148, 950

9 In. - 2 Out. 2, 475 51, 975 1, 418, 175

9 In. - 3 Out. 163, 350 5, 390, 550

9 In. - 4 Out. 12, 741, 300

9 In. - 5 Out.

10 In. - 1 Out. 55 605 10, 285 240, 185

10 In. - 2 Out. 3, 630 83, 490 2, 486, 550

10 In. - 3 Out. 283, 140 10, 193, 040
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Table A.1 – continued from previous page

1 Gate 2 Gates 3 Gates 4 Gates

10 In. - 4 Out. 25, 765, 740

10 In. - 5 Out.

Table A.2: The number of sub-circuits containing 5 and

6 gates

5 Gates 6 Gates

1 In. - 1 Out. 295 3, 098

1 In. - 2 Out. 1, 131 15, 123

1 In. - 3 Out. 1, 998 32, 022

1 In. - 4 Out. 2, 520 46, 080

1 In. - 5 Out. 2, 700 54, 000

2 In. - 1 Out. 3, 393 45, 369

2 In. - 2 Out. 16, 254 271, 458

2 In. - 3 Out. 34, 020 675, 540

2 In. - 4 Out. 48, 600 1, 101, 600

2 In. - 5 Out. 56, 700 1, 417, 500

3 In. - 1 Out. 18, 516 301, 704

3 In. - 2 Out. 106, 740 2, 145, 060

3 In. - 3 Out. 259, 200 6, 156, 000

3 In. - 4 Out. 415, 800 11, 264, 400

3 In. - 5 Out. 529, 200 15, 876, 000

4 In. - 1 Out. 68, 800 1, 323, 950

4 In. - 2 Out. 464, 250 10, 921, 650

4 In. - 3 Out. 1, 285, 200 35, 569, 800
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Table A.2 – continued from previous page

5 Gates 6 Gates

4 In. - 4 Out. 2, 293, 200 72, 324, 000

4 In. - 5 Out. 3, 175, 200 111, 132, 000

5 In. - 1 Out. 201, 195 4, 468, 050

5 In. - 2 Out. 1, 556, 415 41, 983, 515

5 In. - 3 Out. 4, 842, 180 153, 124, 020

5 In. - 4 Out. 9, 525, 600 342, 921, 600

5 In. - 5 Out. 14, 288, 400 571, 536, 000

6 In. - 1 Out. 499, 065 12, 566, 883

6 In. - 2 Out. 4, 355, 316 132, 559, 308

6 In. - 3 Out. 15, 050, 448 535, 529, 232

6 In. - 4 Out. 32, 387, 040 1, 310, 722, 560

6 In. - 5 Out. 52, 390, 800 2, 357, 586, 000

7 In. - 1 Out. 1, 097, 488 30, 905, 504

7 In. - 2 Out. 10, 667, 664 361, 701, 648

7 In. - 3 Out. 40, 551, 840 1, 603, 838, 880

7 In. - 4 Out. 94, 802, 400 4, 261, 118, 400

7 In. - 5 Out. 164, 656, 800 8, 232, 840, 000

8 In. - 1 Out. 2, 201, 256 68, 555, 484

8 In. - 2 Out. 23, 585, 580 881, 686, 620

8 In. - 3 Out. 97, 831, 800 4, 258, 089, 000

8 In. - 4 Out. 246, 985, 200 12, 208, 125, 600

8 In. - 5 Out. 458, 686, 800 25, 227, 774, 000

9 In. - 1 Out. 4, 105, 575 140, 125, 050

9 In. - 2 Out. 48, 076, 875 1, 964, 558, 475

9 In. - 3 Out. 216, 112, 050 10, 266, 057, 450

9 In. - 4 Out. 586, 099, 800 31, 598, 424, 000
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Table A.2 – continued from previous page

5 Gates 6 Gates

9 In. - 5 Out. 1, 159, 458, 300 69, 567, 498, 000

10 In. - 1 Out. 7, 219, 465 267, 981, 725

10 In. - 2 Out. 91, 733, 730 4, 068, 072, 030

10 In. - 3 Out. 444, 246, 660 22, 872, 332, 340

10 In. - 4 Out. 1, 288, 287, 000 75, 235, 960, 800

10 In. - 5 Out. 2, 705, 402, 700 175, 851, 175, 500

Table A.3: The number of sub-circuits containing 7 and

8 gates

7 Gates 8 Gates

1 In. - 1 Out. 42, 271 726, 734

1 In. - 2 Out. 256, 335 5, 364, 471

1 In. - 3 Out. 643, 518 15, 797, 862

1 In. - 4 Out. 1, 055, 520 29, 432, 880

1 In. - 5 Out. 1, 363, 500 42, 012, 000

2 In. - 1 Out. 769, 005 16, 093, 413

2 In. - 2 Out. 5, 620, 806 141, 116, 202

2 In. - 3 Out. 16, 441, 380 480, 124, 260

2 In. - 4 Out. 30, 488, 400 1, 007, 607, 600

2 In. - 5 Out. 43, 375, 500 1, 584, 481, 500

3 In. - 1 Out. 6, 133, 476 151, 845, 144

3 In. - 2 Out. 52, 659, 540 1, 547, 754, 660

3 In. - 3 Out. 176, 482, 800 5, 994, 356, 400

3 In. - 4 Out. 366, 357, 600 14, 037, 710, 400
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Table A.3 – continued from previous page

7 Gates 8 Gates

3 In. - 5 Out. 571, 536, 000 24, 195, 024, 000

4 In. - 1 Out. 31, 441, 000 900, 414, 950

4 In. - 2 Out. 310, 618, 650 10, 480, 182, 450

4 In. - 3 Out. 1, 175, 542, 200 45, 605, 359, 800

4 In. - 4 Out. 2, 705, 976, 000 118, 110, 384, 000

4 In. - 5 Out. 4, 604, 040, 000 221, 867, 100, 000

5 In. - 1 Out. 121, 482, 495 3, 954, 428, 190

5 In. - 2 Out. 1, 358, 636, 895 51, 800, 283, 675

5 In. - 3 Out. 5, 736, 078, 180 250, 476, 366, 420

5 In. - 4 Out. 14, 517, 014, 400 711, 619, 473, 600

5 In. - 5 Out. 26, 790, 750, 000 1, 448, 843, 760, 000

6 In. - 1 Out. 385, 111, 041 14, 050, 856, 379

6 In. - 2 Out. 4, 811, 989, 140 204, 699, 391, 596

6 In. - 3 Out. 22, 434, 502, 608 1, 089, 574, 515, 792

6 In. - 4 Out. 61, 958, 312, 640 3, 371, 715, 668, 160

6 In. - 5 Out. 123, 380, 334, 000 7, 402, 034, 178, 000

7 In. - 1 Out. 1, 054, 199, 440 42, 624, 538, 208

7 In. - 2 Out. 14, 559, 579, 216 683, 866, 611, 792

7 In. - 3 Out. 74, 319, 003, 360 3, 975, 100, 103, 520

7 In. - 4 Out. 222, 516, 201, 600 13, 314, 967, 142, 400

7 In. - 5 Out. 475, 858, 152, 000 31, 370, 413, 536, 000

8 In. - 1 Out. 2, 576, 504, 376 114, 373, 655, 964

8 In. - 2 Out. 38, 983, 386, 780 2, 004, 290, 035, 020

8 In. - 3 Out. 216, 286, 864, 200 12, 635, 838, 210, 600

8 In. - 4 Out. 698, 050, 742, 400 45, 562, 982, 889, 600

8 In. - 5 Out. 1, 596, 230, 064, 000 114, 715, 275, 246, 000
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Table A.3 – continued from previous page

7 Gates 8 Gates

9 In. - 1 Out. 5, 753, 550, 375 278, 220, 779, 550

9 In. - 2 Out. 94, 658, 109, 975 5, 288, 297, 585, 175

9 In. - 3 Out. 567, 282, 370, 050 35, 947, 141, 911, 450

9 In. - 4 Out. 1, 963, 689, 156, 000 138, 864, 625, 614, 000

9 In. - 5 Out. 4, 782, 765, 487, 500 372, 186, 114, 300, 000

10 In. - 1 Out. 11, 936, 234, 365 624, 591, 267, 905

10 In. - 2 Out. 212, 175, 834, 090 12, 800, 169, 906, 150

10 In. - 3 Out. 1, 366, 107, 745, 860 93, 334, 292, 534, 340

10 In. - 4 Out. 5, 049, 569, 725, 200 384, 621, 175, 738, 800

10 In. - 5 Out. 13, 053, 568, 027, 500 1, 093, 591, 406, 407, 500
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6 GATE BASIS (Same as 1 gate basis, but multiplied by 6n where n is the

number of gates):

Table A.4: The number of sub-circuits containing 1, 2,

3, and 4 gates

1 Gate 2 Gates 3 Gates 4 Gates

1 In. - 1 Out. 6 72 1, 512 49, 248

1 In. - 2 Out. 108 3, 240 143, 856

1 In. - 3 Out. 3, 888 209, 952

1 In. - 4 Out. 233, 280

1 In. - 5 Out.

2 In. - 1 Out. 18 324 9, 720 431, 568

2 In. - 2 Out. 648 27, 216 1, 609, 632

2 In. - 3 Out. 38, 880 2, 799, 360

2 In. - 4 Out. 3, 499, 200

2 In. - 5 Out.

3 In. - 1 Out. 36 864 33, 696 1, 897, 344

3 In. - 2 Out. 2, 160 116, 640 8, 631, 360

3 In. - 3 Out. 194, 400 17, 496, 000

3 In. - 4 Out. 24, 494, 400

3 In. - 5 Out.

4 In. - 1 Out. 60 1, 800 86, 400 5, 896, 800

4 In. - 2 Out. 5, 400 356, 400 31, 687, 200

4 In. - 3 Out. 680, 400 73, 483, 200

4 In. - 4 Out. 114, 307, 200

4 In. - 5 Out.

5 In. - 1 Out. 90 3, 240 184, 680 14, 813, 280

5 In. - 2 Out. 11, 340 884, 520 91, 854, 000
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Table A.4 – continued from previous page

1 Gate 2 Gates 3 Gates 4 Gates

5 In. - 3 Out. 1, 905, 120 240, 045, 120

5 In. - 4 Out. 411, 505, 920

5 In. - 5 Out.

6 In. - 1 Out. 126 5, 292 349, 272 32, 196, 528

6 In. - 2 Out. 21, 168 1, 905, 120 226, 328, 256

6 In. - 3 Out. 4, 572, 288 658, 409, 472

6 In. - 4 Out. 1, 234, 517, 760

6 In. - 5 Out.

7 In. - 1 Out. 168 8, 064 604, 800 62, 995, 968

7 In. - 2 Out. 36, 288 3, 701, 376 495, 113, 472

7 In. - 3 Out. 9, 797, 760 1, 587, 237, 120

7 In. - 4 Out. 3, 233, 260, 800

7 In. - 5 Out.

8 In. - 1 Out. 216 11, 664 979, 776 113, 793, 984

8 In. - 2 Out. 58, 320 6, 648, 480 988, 873, 920

8 In. - 3 Out. 19, 245, 600 3, 464, 208, 000

8 In. - 4 Out. 7, 621, 257, 600

8 In. - 5 Out.

9 In. - 1 Out. 270 16, 200 1, 506, 600 193, 039, 200

9 In. - 2 Out. 89, 100 11, 226, 600 1, 837, 954, 800

9 In. - 3 Out. 35, 283, 600 6, 986, 152, 800

9 In. - 4 Out. 16, 512, 724, 800

9 In. - 5 Out.

10 In. - 1 Out. 330 21, 780 2, 221, 560 311, 279, 760

10 In. - 2 Out. 130, 680 18, 033, 840 3, 222, 568, 800

10 In. - 3 Out. 61, 158, 240 13, 210, 179, 840
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10 In. - 4 Out. 33, 392, 399, 040

10 In. - 5 Out.

Table A.5: The number of sub-circuits containing 5 and

6 gates

5 Gates 6 Gates

1 In. - 1 Out. 2, 293, 920 144, 540, 288

1 In. - 2 Out. 8, 794, 656 705, 578, 688

1 In. - 3 Out. 15, 536, 448 1, 494, 018, 432

1 In. - 4 Out. 19, 595, 520 2, 149, 908, 480

1 In. - 5 Out. 20, 995, 200 2, 519, 424, 000

2 In. - 1 Out. 26, 383, 968 2, 116, 736, 064

2 In. - 2 Out. 126, 391, 104 12, 665, 144, 448

2 In. - 3 Out. 264, 539, 520 31, 517, 994, 240

2 In. - 4 Out. 377, 913, 600 51, 396, 249, 600

2 In. - 5 Out. 440, 899, 200 66, 134, 880, 000

3 In. - 1 Out. 143, 980, 416 14, 076, 301, 824

3 In. - 2 Out. 830, 010, 240 100, 079, 919, 360

3 In. - 3 Out. 2, 015, 539, 200 287, 214, 336, 000

3 In. - 4 Out. 3, 233, 260, 800 525, 551, 846, 400

3 In. - 5 Out. 4, 115, 059, 200 740, 710, 656, 000

4 In. - 1 Out. 534, 988, 800 61, 770, 211, 200

4 In. - 2 Out. 3, 610, 008, 000 509, 560, 502, 400

4 In. - 3 Out. 9, 993, 715, 200 1, 659, 544, 588, 800
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4 In. - 4 Out. 17, 831, 923, 200 3, 374, 348, 544, 000

4 In. - 5 Out. 24, 690, 355, 200 5, 184, 974, 592, 000

5 In. - 1 Out. 1, 564, 492, 320 208, 461, 340, 800

5 In. - 2 Out. 12, 102, 683, 040 1, 958, 782, 875, 840

5 In. - 3 Out. 37, 652, 791, 680 7, 144, 154, 277, 120

5 In. - 4 Out. 74, 071, 065, 600 15, 999, 350, 169, 600

5 In. - 5 Out. 111, 106, 598, 400 26, 665, 583, 616, 000

6 In. - 1 Out. 3, 880, 729, 440 586, 320, 493, 248

6 In. - 2 Out. 33, 866, 937, 216 6, 184, 687, 074, 048

6 In. - 3 Out. 117, 032, 283, 648 24, 985, 651, 848, 192

6 In. - 4 Out. 251, 841, 623, 040 61, 153, 071, 759, 360

6 In. - 5 Out. 407, 390, 860, 800 109, 995, 532, 416, 000

7 In. - 1 Out. 8, 534, 066, 688 1, 441, 927, 194, 624

7 In. - 2 Out. 82, 951, 755, 264 16, 875, 552, 089, 088

7 In. - 3 Out. 315, 331, 107, 840 74, 828, 706, 785, 280

7 In. - 4 Out. 737, 183, 462, 400 198, 806, 740, 070, 400

7 In. - 5 Out. 1, 280, 371, 276, 800 384, 111, 383, 040, 000

8 In. - 1 Out. 17, 116, 966, 656 3, 198, 524, 661, 504

8 In. - 2 Out. 183, 401, 470, 080 41, 135, 970, 942, 720

8 In. - 3 Out. 760, 740, 076, 800 198, 665, 400, 384, 000

8 In. - 4 Out. 1, 920, 556, 915, 200 569, 582, 307, 993, 600

8 In. - 5 Out. 3, 566, 748, 556, 800 1, 177, 027, 023, 744, 000

9 In. - 1 Out. 31, 924, 951, 200 6, 537, 674, 332, 800

9 In. - 2 Out. 373, 845, 780, 000 91, 658, 440, 209, 600

9 In. - 3 Out. 1, 680, 487, 300, 800 478, 973, 176, 387, 200

9 In. - 4 Out. 4, 557, 512, 044, 800 1, 474, 256, 070, 144, 000
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9 In. - 5 Out. 9, 015, 947, 740, 800 3, 245, 741, 186, 688, 000

10 In. - 1 Out. 56, 138, 559, 840 12, 502, 955, 361, 600

10 In. - 2 Out. 713, 321, 484, 480 189, 799, 968, 631, 680

10 In. - 3 Out. 3, 454, 462, 028, 160 1, 067, 131, 537, 655, 040

10 In. - 4 Out. 10, 017, 719, 712, 000 3, 510, 208, 987, 084, 800

10 In. - 5 Out. 21, 037, 211, 395, 200 8, 204, 512, 444, 128, 000

Table A.6: The number of sub-circuits containing 7 and

8 gates

7 Gates 8 Gates

1 In. - 1 Out. 11, 833, 174, 656 1, 220, 634, 054, 144

1 In. - 2 Out. 71, 757, 394, 560 9, 010, 251, 323, 136

1 In. - 3 Out. 180, 143, 854, 848 26, 534, 341, 780, 992

1 In. - 4 Out. 295, 478, 046, 720 49, 435, 936, 174, 080

1 In. - 5 Out. 381, 692, 736, 000 70, 564, 027, 392, 000

2 In. - 1 Out. 215, 272, 183, 680 27, 030, 753, 969, 408

2 In. - 2 Out. 1, 573, 465, 948, 416 237, 021, 030, 738, 432

2 In. - 3 Out. 4, 602, 534, 151, 680 806, 424, 389, 084, 160

2 In. - 4 Out. 8, 534, 800, 742, 400 1, 692, 393, 846, 681, 600

2 In. - 5 Out. 12, 142, 363, 968, 000 2, 661, 320, 479, 104, 000

3 In. - 1 Out. 1, 716, 980, 737, 536 255, 041, 533, 384, 704

3 In. - 2 Out. 14, 741, 300, 989, 440 2, 599, 633, 491, 010, 560

3 In. - 3 Out. 49, 403, 889, 100, 800 10, 068, 216, 919, 142, 400

3 In. - 4 Out. 102, 556, 681, 113, 600 23, 577, 962, 991, 206, 400
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3 In. - 5 Out. 159, 993, 501, 696, 000 40, 638, 349, 430, 784, 000

4 In. - 1 Out. 8, 801, 467, 776, 000 1, 512, 351, 356, 659, 200

4 In. - 2 Out. 86, 953, 342, 406, 400 17, 602, 682, 125, 939, 200

4 In. - 3 Out. 329, 076, 581, 299, 200 76, 599, 492, 005, 836, 800

4 In. - 4 Out. 757, 500, 097, 536, 000 198, 380, 090, 732, 544, 000

4 In. - 5 Out. 1, 288, 836, 541, 440, 000 372, 651, 531, 033, 600, 000

5 In. - 1 Out. 34, 007, 323, 720, 320 6, 641, 920, 858, 775, 040

5 In. - 2 Out. 380, 331, 377, 838, 720 87, 004, 585, 265, 068, 800

5 In. - 3 Out. 1, 605, 734, 781, 396, 480 420, 704, 112, 660, 895, 000

5 In. - 4 Out. 4, 063, 834, 943, 078, 400 1, 195, 247, 453, 770, 140, 000

5 In. - 5 Out. 7, 499, 695, 392, 000, 000 2, 433, 501, 160, 796, 160, 000

6 In. - 1 Out. 107, 806, 444, 373, 376 23, 600, 043, 187, 870, 500

6 In. - 2 Out. 1, 347, 048, 991, 895, 040 343, 816, 373, 314, 907, 000

6 In. - 3 Out. 6, 280, 224, 922, 073, 090 1, 830, 066, 789, 916, 500, 000

6 In. - 4 Out. 17, 344, 362, 207, 191, 000 5, 663, 187, 583, 692, 230, 000

6 In. - 5 Out. 34, 538, 597, 178, 624, 000 12, 432, 575, 037, 915, 600, 000

7 In. - 1 Out. 295, 108, 374, 435, 840 71, 592, 856, 366, 768, 100

7 In. - 2 Out. 4, 075, 750, 367, 410, 180 1, 148, 633, 303, 031, 630, 000

7 In. - 3 Out. 20, 804, 564, 524, 585, 000 6, 676, 641, 735, 473, 850, 000

7 In. - 4 Out. 62, 290, 295, 411, 097, 600 22, 364, 031, 851, 849, 300, 000

7 In. - 5 Out. 133, 209, 827, 638, 272, 000 52, 690, 248, 501, 682, 200, 000

8 In. - 1 Out. 721, 256, 328, 999, 936 192, 103, 822, 535, 630, 000

8 In. - 2 Out. 10, 912, 853, 361, 646, 100 3, 366, 437, 611, 460, 150, 000

8 In. - 3 Out. 60, 546, 479, 616, 691, 200 21, 223, 356, 031, 935, 100, 000

8 In. - 4 Out. 195, 409, 532, 624, 486, 000 76, 528, 315, 069, 098, 400, 000

8 In. - 5 Out. 446, 842, 259, 195, 904, 000 192, 677, 611, 747, 586, 000, 000
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9 In. - 1 Out. 1, 610, 625, 877, 776, 000 467, 304, 072, 864, 653, 000

9 In. - 2 Out. 26, 498, 212, 673, 961, 600 8, 882, 309, 236, 821, 290, 000

9 In. - 3 Out. 158, 802, 757, 542, 317, 000 60, 377, 394, 708, 742, 000, 000

9 In. - 4 Out. 549, 707, 287, 574, 016, 000 233, 239, 247, 015, 284, 000, 000

9 In. - 5 Out. 1, 338, 868, 239, 508, 800, 000 625, 129, 752, 556, 109, 000, 000

10 In. - 1 Out. 3, 341, 381, 703, 200, 640 1, 049, 073, 487, 033, 520, 000

10 In. - 2 Out. 59, 395, 654, 291, 818, 200 21, 499, 370, 177, 088, 000, 000

10 In. - 3 Out. 382, 422, 737, 945, 065, 000 156, 765, 771, 089, 358, 000, 000

10 In. - 4 Out. 1, 413, 556, 350, 593, 590, 000 646, 015, 880, 709, 700, 000, 000

10 In. - 5 Out. 3, 654, 163, 619, 346, 240, 000 1, 836, 813, 623, 664, 540, 000, 000
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Appendix B. Circuit Rewrite Rules

This is the table of rewrite rules used by a sub-circuit selection and replacement

algorithm selecting sub-circuits containing one gate and replacing them with

sub-circuits containing two gates:

Table B.1: Circuit Transformation Rules

Rule

Label li → ri Reorient?

M1

0 = AND(-1, -1) → 0 = NOR(-1, -1)
y

1 = NOR(0, 0)

M2

0 = AND(-1, -1) → 0 = NOR(-1, -1)
y

1 = NAND(0, 0)

M3

0 = AND(-1, -1) → 0 = AND(-1, -1)
y

1 = AND(0, -1)

M4

0 = AND(-1, -1) → 0 = NAND(-1, -1)
y

1 = NOR(0, 0)

M5

0 = AND(-1, -1) → 0 = NAND(-1, -1)
y

1 = NAND(0, 0)

M6

0 = AND(-1, -1) → 0 = AND(-1, -1)
y

1 = OR(0, -1)

M7

0 = AND(-1, -1) → 0 = AND(-1, -1)
y

1 = AND(0, 0)

M8

0 = AND(-1, -1) → 0 = AND(-1, -1)
y

1 = OR(0, 0)

M9

0 = AND(-1, -1) → 0 = NXOR(-1, -1)
y

1 = AND(0, -1)
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Rule

Label li → ri Reorient?

M10

0 = AND(-1, -1) → 0 = NXOR(-1, -1)
y

1 = NXOR(0, -1)

M11

0 = AND(-1, -1) → 0 = OR(-1, -1)
y

1 = AND(0, -1)

M12

0 = AND(-1, -1) → 0 = OR(-1, -1)
y

1 = OR(0, -1)

M13

0 = AND(-1, -1) → 0 = OR(-1, -1)
y

1 = AND(0, 0)

M14

0 = AND(-1, -1) → 0 = OR(-1, -1)
y

1 = OR(0, 0)

M15

0 = AND(-1, -1) → 0 = XOR(-1, -1)
y

1 = XOR(0, -1)

M16

0 = AND(-1, -1) → 0 = XOR(-1, -1)
y

1 = OR(0, -1)

M17

0 = NOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = AND(0, 0)

M18

0 = NOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = OR(0, 0)

M19

0 = NOR(-1, -1) → 0 = AND(-1, -1)
y

1 = NOR(0, -1)

M20

0 = NOR(-1, -1) → 0 = AND(-1, -1)
y

1 = NAND(0, -1)

M21

0 = NOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = AND(0, 0)
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M22

0 = NOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = OR(0, 0)

M23

0 = NOR(-1, -1) → 0 = AND(-1, -1)
y

1 = NOR(0, 0)

M24

0 = NOR(-1, -1) → 0 = AND(-1, -1)
y

1 = NAND(0, 0)

M25

0 = NOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = NAND(0, -1)

M26

0 = NOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = XOR(0, -1)

M27

0 = NOR(-1, -1) → 0 = OR(-1, -1)
y

1 = NOR(0, -1)

M28

0 = NOR(-1, -1) → 0 = OR(-1, -1)
y

1 = NAND(0, -1)

M29

0 = NOR(-1, -1) → 0 = OR(-1, -1)
y

1 = NOR(0, 0)

M30

0 = NOR(-1, -1) → 0 = OR(-1, -1)
y

1 = NAND(0, 0)

M31

0 = NOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = NOR(0, -1)

M32

0 = NOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = NXOR(0, -1)

M33

0 = NAND(-1, -1) → 0 = NOR(-1, -1)
y

1 = AND(0, 0)
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Label li → ri Reorient?

M34

0 = NAND(-1, -1) → 0 = NOR(-1, -1)
y

1 = OR(0, 0)

M35

0 = NAND(-1, -1) → 0 = AND(-1, -1)
y

1 = NOR(0, -1)

M36

0 = NAND(-1, -1) → 0 = AND(-1, -1)
y

1 = NAND(0, -1)

M37

0 = NAND(-1, -1) → 0 = NAND(-1, -1)
y

1 = AND(0, 0)

M38

0 = NAND(-1, -1) → 0 = NAND(-1, -1)
y

1 = OR(0, 0)

M39

0 = NAND(-1, -1) → 0 = AND(-1, -1)
y

1 = NOR(0, 0)

M40

0 = NAND(-1, -1) → 0 = AND(-1, -1)
y

1 = NAND(0, 0)

M41

0 = NAND(-1, -1) → 0 = NXOR(-1, -1)
y

1 = NAND(0, -1)

M42

0 = NAND(-1, -1) → 0 = NXOR(-1, -1)
y

1 = XOR(0, -1)

M43

0 = NAND(-1, -1) → 0 = OR(-1, -1)
y

1 = NOR(0, -1)

M44

0 = NAND(-1, -1) → 0 = OR(-1, -1)
y

1 = NAND(0, -1)

M45

0 = NAND(-1, -1) → 0 = OR(-1, -1)
y

1 = NOR(0, 0)
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M46

0 = NAND(-1, -1) → 0 = OR(-1, -1)
y

1 = NAND(0, 0)

M47

0 = NAND(-1, -1) → 0 = XOR(-1, -1)
y

1 = NOR(0, -1)

M48

0 = NAND(-1, -1) → 0 = XOR(-1, -1)
y

1 = NXOR(0, -1)

M49

0 = NXOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = NAND(0, -1)

M50

0 = NXOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = XOR(0, -1)

M51

0 = NXOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = OR(0, -1)

M52

0 = NXOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = NXOR(0, 0)

M53

0 = NXOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = NAND(0, -1)

M54

0 = NXOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = XOR(0, -1)

M55

0 = NXOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = OR(0, -1)

M56

0 = NXOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = NXOR(0, 0)

M57

0 = NXOR(-1, -1) → 0 = AND(-1, -1)
y

1 = NXOR(0, -1)
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M58

0 = NXOR(-1, -1) → 0 = AND(-1, -1)
y

1 = NXOR(0, 0)

M59

0 = NXOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = OR(0, -1)

M60

0 = NXOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = AND(0, 0)

M61

0 = NXOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = NXOR(0, 0)

M62

0 = NXOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = OR(0, 0)

M63

0 = NXOR(-1, -1) → 0 = OR(-1, -1)
y

1 = NXOR(0, -1)

M64

0 = NXOR(-1, -1) → 0 = OR(-1, -1)
y

1 = NXOR(0, 0)

M65

0 = NXOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = NAND(0, -1)

M66

0 = NXOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = NOR(0, 0)

M67

0 = NXOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = NAND(0, 0)

M68

0 = NXOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = NXOR(0, 0)

M69

0 = XOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = AND(0, -1)
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M70

0 = XOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = NOR(0, -1)

M71

0 = XOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = NXOR(0, -1)

M72

0 = XOR(-1, -1) → 0 = NOR(-1, -1)
y

1 = XOR(0, 0)

M73

0 = XOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = AND(0, -1)

M74

0 = XOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = NOR(0, -1)

M75

0 = XOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = NXOR(0, -1)

M76

0 = XOR(-1, -1) → 0 = NAND(-1, -1)
y

1 = XOR(0, 0)

M77

0 = XOR(-1, -1) → 0 = AND(-1, -1)
y

1 = XOR(0, -1)

M78

0 = XOR(-1, -1) → 0 = AND(-1, -1)
y

1 = XOR(0, 0)

M79

0 = XOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = NOR(0, -1)

M80

0 = XOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = NOR(0, 0)

M81

0 = XOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = NAND(0, 0)
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M82

0 = XOR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = XOR(0, 0)

M83

0 = XOR(-1, -1) → 0 = OR(-1, -1)
y

1 = XOR(0, -1)

M84

0 = XOR(-1, -1) → 0 = OR(-1, -1)
y

1 = XOR(0, 0)

M85

0 = XOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = AND(0, -1)

M86

0 = XOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = AND(0, 0)

M87

0 = XOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = XOR(0, 0)

M88

0 = XOR(-1, -1) → 0 = XOR(-1, -1)
y

1 = OR(0, 0)

M89

0 = OR(-1, -1) → 0 = NOR(-1, -1)
y

1 = NOR(0, 0)

M90

0 = OR(-1, -1) → 0 = NOR(-1, -1)
y

1 = NAND(0, 0)

M91

0 = OR(-1, -1) → 0 = AND(-1, -1)
y

1 = AND(0, -1)

M92

0 = OR(-1, -1) → 0 = NAND(-1, -1)
y

1 = NOR(0, 0)

M93

0 = OR(-1, -1) → 0 = NAND(-1, -1)
y

1 = NAND(0, 0)
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M94

0 = OR(-1, -1) → 0 = AND(-1, -1)
y

1 = OR(0, -1)

M95

0 = OR(-1, -1) → 0 = AND(-1, -1)
y

1 = AND(0, 0)

M96

0 = OR(-1, -1) → 0 = AND(-1, -1)
y

1 = OR(0, 0)

M97

0 = OR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = AND(0, -1)

M98

0 = OR(-1, -1) → 0 = NXOR(-1, -1)
y

1 = NXOR(0, -1)

M99

0 = OR(-1, -1) → 0 = OR(-1, -1)
y

1 = AND(0, -1)

M100

0 = OR(-1, -1) → 0 = OR(-1, -1)
y

1 = OR(0, -1)

M101

0 = OR(-1, -1) → 0 = OR(-1, -1)
y

1 = AND(0, 0)

M102

0 = OR(-1, -1) → 0 = OR(-1, -1)
y

1 = OR(0, 0)

M103

0 = OR(-1, -1) → 0 = XOR(-1, -1)
y

1 = XOR(0, -1)

M104

0 = OR(-1, -1) → 0 = XOR(-1, -1)
y

1 = OR(0, -1)

M105

0 = AND(-2, -1) → 0 = AND(-1, -1)
y

1 = AND(0, -2)
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M106

0 = AND(-2, -1) → 0 = OR(-1, -1)
y

1 = AND(0, -2)

M107

0 = AND(-2, -1) → 0 = AND(-2, -1)
y

1 = AND(0, -1)

M108

0 = AND(-2, -1) → 0 = AND(-2, -1)
y

1 = AND(0, -2)

M109

0 = AND(-2, -1) → 0 = AND(-2, -1)
y

1 = AND(0, 0)

M110

0 = AND(-2, -1) → 0 = AND(-2, -1)
y

1 = OR(0, 0)

M111

0 = AND(-2, -1) → 0 = NAND(-2, -1)
y

1 = NOR(0, 0)

M112

0 = AND(-2, -1) → 0 = NAND(-2, -1)
y

1 = NAND(0, 0)

M113

0 = AND(-2, -1) → 0 = NXOR(-2, -1)
y

1 = AND(0, -1)

M114

0 = AND(-2, -1) → 0 = NXOR(-2, -1)
y

1 = AND(0, -2)

M115

0 = AND(-2, -1) → 0 = AND(-2, -2)
y

1 = AND(0, -1)

M116

0 = AND(-2, -1) → 0 = OR(-2, -2)
y

1 = AND(0, -1)

M117

0 = NOR(-2, -1) → 0 = AND(-1, -1)
y

1 = NOR(0, -2)
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Rule

Label li → ri Reorient?

M118

0 = NOR(-2, -1) → 0 = OR(-1, -1)
y

1 = NOR(0, -2)

M119

0 = NOR(-2, -1) → 0 = NOR(-2, -1)
y

1 = AND(0, 0)

M120

0 = NOR(-2, -1) → 0 = NOR(-2, -1)
y

1 = OR(0, 0)

M121

0 = NOR(-2, -1) → 0 = XOR(-2, -1)
y

1 = NOR(0, -1)

M122

0 = NOR(-2, -1) → 0 = XOR(-2, -1)
y

1 = NOR(0, -2)

M123

0 = NOR(-2, -1) → 0 = OR(-2, -1)
y

1 = NOR(0, -1)

M124

0 = NOR(-2, -1) → 0 = OR(-2, -1)
y

1 = NOR(0, -2)

M125

0 = NOR(-2, -1) → 0 = OR(-2, -1)
y

1 = NOR(0, 0)

M126

0 = NOR(-2, -1) → 0 = OR(-2, -1)
y

1 = NAND(0, 0)

M127

0 = NOR(-2, -1) → 0 = AND(-2, -2)
y

1 = NOR(0, -1)

M128

0 = NOR(-2, -1) → 0 = OR(-2, -2)
y

1 = NOR(0, -1)

M129

0 = NAND(-2, -1) → 0 = AND(-1, -1)
y

1 = NAND(0, -2)
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Rule

Label li → ri Reorient?

M130

0 = NAND(-2, -1) → 0 = OR(-1, -1)
y

1 = NAND(0, -2)

M131

0 = NAND(-2, -1) → 0 = AND(-2, -1)
y

1 = NAND(0, -1)

M132

0 = NAND(-2, -1) → 0 = AND(-2, -1)
y

1 = NAND(0, -2)

M133

0 = NAND(-2, -1) → 0 = AND(-2, -1)
y

1 = NOR(0, 0)

M134

0 = NAND(-2, -1) → 0 = AND(-2, -1)
y

1 = NAND(0, 0)

M135

0 = NAND(-2, -1) → 0 = NAND(-2, -1)
y

1 = AND(0, 0)

M136

0 = NAND(-2, -1) → 0 = NAND(-2, -1)
y

1 = OR(0, 0)

M137

0 = NAND(-2, -1) → 0 = NXOR(-2, -1)
y

1 = NAND(0, -1)

M138

0 = NAND(-2, -1) → 0 = NXOR(-2, -1)
y

1 = NAND(0, -2)

M139

0 = NAND(-2, -1) → 0 = AND(-2, -2)
y

1 = NAND(0, -1)

M140

0 = NAND(-2, -1) → 0 = OR(-2, -2)
y

1 = NAND(0, -1)

M141

0 = NXOR(-2, -1) → 0 = NOR(-1, -1)
y

1 = XOR(0, -2)
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Rule

Label li → ri Reorient?

M142

0 = NXOR(-2, -1) → 0 = AND(-1, -1)
y

1 = NXOR(0, -2)

M143

0 = NXOR(-2, -1) → 0 = NAND(-1, -1)
y

1 = XOR(0, -2)

M144

0 = NXOR(-2, -1) → 0 = OR(-1, -1)
y

1 = NXOR(0, -2)

M145

0 = NXOR(-2, -1) → 0 = XOR(-2, -1)
y

1 = NOR(0, 0)

M146

0 = NXOR(-2, -1) → 0 = XOR(-2, -1)
y

1 = NAND(0, 0)

M147

0 = NXOR(-2, -1) → 0 = NXOR(-2, -1)
y

1 = AND(0, 0)

M148

0 = NXOR(-2, -1) → 0 = NXOR(-2, -1)
y

1 = OR(0, 0)

M149

0 = NXOR(-2, -1) → 0 = NOR(-2, -2)
y

1 = XOR(0, -1)

M150

0 = NXOR(-2, -1) → 0 = AND(-2, -2)
y

1 = NXOR(0, -1)

M151

0 = NXOR(-2, -1) → 0 = NAND(-2, -2)
y

1 = XOR(0, -1)

M152

0 = NXOR(-2, -1) → 0 = OR(-2, -2)
y

1 = NXOR(0, -1)

M153

0 = XOR(-2, -1) → 0 = NOR(-1, -1)
y

1 = NXOR(0, -2)
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Rule
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M154

0 = XOR(-2, -1) → 0 = AND(-1, -1)
y

1 = XOR(0, -2)

M155

0 = XOR(-2, -1) → 0 = NAND(-1, -1)
y

1 = NXOR(0, -2)

M156

0 = XOR(-2, -1) → 0 = OR(-1, -1)
y

1 = XOR(0, -2)

M157

0 = XOR(-2, -1) → 0 = XOR(-2, -1)
y

1 = AND(0, 0)

M158

0 = XOR(-2, -1) → 0 = XOR(-2, -1)
y

1 = OR(0, 0)

M159

0 = XOR(-2, -1) → 0 = NXOR(-2, -1)
y

1 = NOR(0, 0)

M160

0 = XOR(-2, -1) → 0 = NXOR(-2, -1)
y

1 = NAND(0, 0)

M161

0 = XOR(-2, -1) → 0 = NOR(-2, -2)
y

1 = NXOR(0, -1)

M162

0 = XOR(-2, -1) → 0 = AND(-2, -2)
y

1 = XOR(0, -1)

M163

0 = XOR(-2, -1) → 0 = NAND(-2, -2)
y

1 = NXOR(0, -1)

M164

0 = XOR(-2, -1) → 0 = OR(-2, -2)
y

1 = XOR(0, -1)

M165

0 = OR(-2, -1) → 0 = AND(-1, -1)
y

1 = OR(0, -2)
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M166

0 = OR(-2, -1) → 0 = OR(-1, -1)
y

1 = OR(0, -2)

M167

0 = OR(-2, -1) → 0 = NOR(-2, -1)
y

1 = NOR(0, 0)

M168

0 = OR(-2, -1) → 0 = NOR(-2, -1)
y

1 = NAND(0, 0)

M169

0 = OR(-2, -1) → 0 = XOR(-2, -1)
y

1 = OR(0, -1)

M170

0 = OR(-2, -1) → 0 = XOR(-2, -1)
y

1 = OR(0, -2)

M171

0 = OR(-2, -1) → 0 = OR(-2, -1)
y

1 = OR(0, -1)

M172

0 = OR(-2, -1) → 0 = OR(-2, -1)
y

1 = OR(0, -2)

M173

0 = OR(-2, -1) → 0 = OR(-2, -1)
y

1 = AND(0, 0)

M174

0 = OR(-2, -1) → 0 = OR(-2, -1)
y

1 = OR(0, 0)

M175

0 = OR(-2, -1) → 0 = AND(-2, -2)
y

1 = OR(0, -1)

M176

0 = OR(-2, -1) → 0 = OR(-2, -2)
y

1 = OR(0, -1)
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