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Abstract

The advent of the global positioning system (GPS) has provided worldwide

high-accuracy position measurements. However, GPS may be rendered unavailable

by jamming, disruption of satellites, or simply by signal shadowing in urban environ-

ments. Thus, this thesis considers fusion of Inertial Navigation Systems (INS) and

Orthogonal Frequency Division Multiplexed (OFDM) signals of opportunity (SOOP)

for navigation. Typical signal of opportunity navigation involves the use of a refer-

ence receiver and uses time difference of arrival (TDOA) measurements. However, by

exploiting the block structure of OFDM communication signals, the need for the ref-

erence receiver is reduced or possibly removed entirely. This research uses a Kalman

Filter (KF) to optimally combine INS measurements with the OFDM TDOA mea-

surements. A proof of concept in two dimensions is shown, and effects of the number

of transmitters, sampling rate, multipath, and clock errors are investigated.
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Fusion of Inertial Sensors and

Orthogonal Frequency Division Multiplexed (OFDM)

Signals of Opportunity

for Unassisted Navigation

I. Introduction

This chapter describes the problem to be addressed by this research. Background

of the problem and goals for this research are given, as well as assumptions used

to limit the scope of the research. Previous related research is provided as well as the

organization for the rest of the thesis.

1.1 Background

The Global Positioning System (GPS) has emerged all over the world as the

number one system used for precise navigation. However, there are many places where

the use of GPS may be denied or its accuracy may be degraded. Such areas include

urban cities, where tall buildings may block a line of sight path to the satellites;

while others include hostile battlefield areas where an enemy may employ a GPS

jamming device. With these potential problems with GPS a reliable backup precision

navigation system is needed. While Inertial Navigation Systems (INS) have been

researched thoroughly, high accuracy systems remain much too expensive for use in

many applications. Lower quality INS systems exist but are only accurate for a short

time, thus an additional system must be used to improve the quality during extended

use.

One potential type of non-GPS navigation is navigation via Signals of Oppor-

tunity (SOOP). SOOP are defined as radio frequency signals that were not originally

intended to be used for navigation, but could be exploited and used to aid navigation.

Such signals include but are not limited to AM and FM radio, broadcast television
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signals, cellular communications, and broadcast multicarrier systems. While cellu-

lar communication towers are often very dense in urban areas yielding many SOOPs,

many of these systems use GPS for time synchronization. This means that when GPS

is unavailable, precise navigation using these signals may not be possible [6]. Previous

research has investigated AM, FM, and television signals for their navigation poten-

tial and found promising results [6], [9], [11]. However, these systems employ single

carrier modulation and could be subject to unwanted multipath effects (see Section

2.3). Given that one of the major areas of concern is urban areas, another option

needs to be found.

One subset of multicarrier systems is Orthogonal Frequency Division Multiplexed

(OFDM) systems. OFDM signals are used in systems such as Digital Video Broadcast

(DVB), Digital Audio Broadcast (DAB), and wireless Local Area Networks (LAN) [19]

making them very abundant in urban areas. In addition to being very widespread,

OFDM systems have many advantages that make them suitable for use in navigation.

Many OFDM systems are broadcast from the Earth’s surface as opposed to being

broadcast from a satellite in space. To ensure the signals reach everyone intended

many groundstations broadcast the same signal. Finally the OFDM signal has a well

defined block structure. This structure may allow for the removal of the reference

receiver typically needed when calculating a receiver’s position.

1.2 Research Goals

The primary goal of this research is to prove the concept that OFDM signals

can be used to aid an Inertial Navigation System (INS) through the use of a Kalman

Filter (KF). The use of OFDM signals will also be shown to reduce the bandwidth

needed by a Reference Receiver (RR) or possibly remove the reference receiver en-

tirely. Furthermore effects of the number of transmitters used, oversampling of the

transmitters, multipath, and transmitter clock errors are investigated.
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1.3 Assumptions

For this research, the following assumptions were made:

• The OFDM signals have an established infrastructure around the area of interest

• The signals operate within the frequency range of the receivers

• The signals possess a known modulation and signal structure (OFDM)

• Signal transmitter locations are known

• The INS can be initialized (i.e. initial position is known)

• Initial transmitter locations with respect to the receiver are known

1.4 Related Research

This section describes Time Difference of Arrival (TDOA) navigation sysems,

as well as several non-TDOA navigation systems including Received Signal Strength

(RSS), Time of Arrival (TOA), and Angle of Arrival (AOA). Finally some previous

work using OFDM signals of opportunity for navigation is presented.

1.4.1 TDOA-based Navigation Systems. TDOA measurements can be taken

two ways. First, two transmitters can transmit the same signal at the same time. One

receiver can then calculate the difference in arival times for each signal. The other

way uses one transmitter and two receivers. One receiver is refered to as the reference

and is at a known location and does not move. The other known as the mobile moves

and is the receiver whose position needs to be found. The receivers each calculate the

arival time of the signal from the transmitter. The reference receiver then sends the

arrival time it calculated to the mobile receiver. The mobile receiver can then find

a TDOA measurement between the two and calculate its position. This technique is

more common, because in most cases two transmitters broadcasting the same signal

simultaneously are not available. This technique is illustrated in Figure 1.1 [16]. The

Long Range Navigation (Loran) system currently uses this type of measurement [12].

3



Figure 1.1: TDOA measurement using a reference receiver. [16]

1.4.2 Non-TDOA-based Navigation Systems. Typical non-TDOA-based po-

sition estimation methods include:

• RSS

• TOA

• AOA

RSS This method uses a known mathematical model describing the path loss

attenuation with distance [5]. This will estimate a distance D between the transmitter

and receiver. This distance gives a circle with radius D around the transmitter,

which the receiver must be on. With multiple transmitters an intersection of multiple

circles can be found thus giving the position of the receiver. Multipath errors are

the dominant source of errors in this type of measurement, but the use of more

measurements may help position accuracy.
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Figure 1.2: TOA measurement. The position is calculated by finding the distance
between transmitter and receiver. [16]

TOA This method finds the distance between the transmitter and receiver by

finding the one way propogation time between the transmitter and receiver [5]. As in

RSS this puts the receiver on a circle around the transmitter. Position is then found

in the same way as RSS. Errors can occur when the transmitters are not synchronized.

When the transmitters are synchronized the receiver clock error is the same for all

measurements and be calculated, thus giving accurate measurements. This technique

is illustrated in Figure 1.2 [16].

AOA This method uses antenna arrays to measure the angle to a transmitter

with a known location [5]. This puts the receiver on a line passing through the

transmitter. With additional measurements an intersection of multiple lines can be

5



Figure 1.3: AOA measurement. The position is calculated by finding the direction
to the transmitter. [16]

found thus giving position. Using more than two sources can increase accuracy, but

AOA measurements are much less accurate over long distances. As a receiver moves

farther away from the transmitters the position accuracy will decrease. This technique

is illustrated in Figure 1.3 [16].

1.4.3 Previous OFDM SOOP Research. Previous research using OFDM

signals of opportunity has shown that the inherent block structure of the signal can

be exploited to obtain TDOA measurements [16]. Exploiting this block structure also

allows for smaller bandwidth requirements between the reference and mobile receivers.

The block structure allows for individual symbols to be distinguished. Statistics such

as mean or variance for each symbol can be calculated at the reference receiver.

These statistics can then be transmitted from the reference to the mobile receiver and

correlated with statistics calculated at the mobile receiver. By correlating the string

6



of statistics a TDOA can be found. In non-OFDM systems, the entire signal must

be retransmitted from the reference to the mobile and then correlated. A significant

amount of bandwidth is saved by only transmitting one statistic per symbol rather

than the entire symbol.

1.5 Thesis Organization

Chapter II provides a description of the OFDM signal structure, TDOA calcula-

tion algorithms, multipath, INS model, and Kalman Filter. Chapter III explains the

methodology used in this research, and various simulations conducted. Chapter IV

details the results from the simulations described in Chapter III. Finally, Chapter V

gives a summary of the research and lists conclusions of the thesis as well as potential

follow-on research areas.
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II. Background

This chapter provides the technical background necessary for understanding the

overall concepts of this research. A description of the OFDM signal structure

is provided along with the TDOA computation algorithm. An overview of multipath

is presented, and an explanation of a basic INS is given. Finally the operation of a

Kalman Filter is presented.

2.1 OFDM Signals

OFDM is a communication technique where multiple subcarriers are chosen so

that each subcarrier is orthogonal to every other subcarrier. For the subcarriers to

be orthogonal the following must be true:

∫ n·T

0

x1 (f) · x∗
2 (f) · df = 0, n = 1, 2, 3, . . . (2.1)

where T is the period of the signal, x1 and x2 are input signals, and ∗ represents the

complex conjugate operation.

A block diagram of an OFDM transmitter is shown in Figure 2.1. The first step

in OFDM transmission occurs at the bit level. Information bits are encoded and then

go through an interleaving process. This is followed by constellation mapping then

an Inverse Fast Fourier Transform (IFFT) is performed. This output goes through

a Parallel to Serial (P/S) converter , and finally a cyclic prefix (CP) is added.

2.1.1 Coding. Channel coding refers to the class of signal transformations

designed to improve communications performance by enabling the transmitted signals

to better withstand the effects of various channel impairments, such as noise, inter-

ference, and fading [14]. OFDM systems such as LANs typically use convolutional

encoding [1] while trellis coded modulation along with frequency and time interleaving

has been proven to be very effective [20].
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Figure 2.1: OFDM transmitter block diagram. After coding and interleaving, bits
to be transmitted are mapped using a signal constellation onto multiple carrier fre-
quencies. An IFFT is then performed on the carrier frequencies. Once in the time
domain a cyclic prefix is added and the symbol is transmitted over the channel.

2.1.2 Interleaving. When coding is used to improve bit error rate in com-

munication systems they typically only work for up to a specified number of errors

per symbol. For example a system may be able to correct all bit errors as long as

there are no more than 3 bit errors per symbol. However, if the communication chan-

nel is temporarily degraded significantly, this may cause a string of errors back to

back. This could potentially cause more errors than the coding can correct, resulting

in incorrect decoding. By interleaving bits the errors are spread out among multiple

symbols. If spread out enough the total number of errors per symbol will be within

the correction threshold of the code. Thus correct decoding of the bits will occur.

2.1.3 Constellation Mapping. Once coding and interleaving are finished

the serial bit stream is divided into N parrallel bit streams, where N is the symbol

length. Once in parallel, bits from each stream are mapped onto a signal constellation.

Typical modulation types are Binary Phase Shift Keying (BPSK), Quadriture Phase

Shift Keying (QPSK), and M-ary Quadriture Amplitude Modulation (M-QAM). For

this research the data was mapped to a QPSK constellation which can be seen in

figure 2.2.

2.1.4 IFFT. After encoded bits are mapped to a signal constellation an

IFFT is performed. An IFFT takes the modulated data (which is in the frequency

9
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Figure 2.2: QPSK Signal Constellation

domain) and transforms it to the time domain. This operation is accomplished via

the formula

xs (n) =
1

N
·

N−1∑

k=0

Ss (k) · W−k·n
N , n = 0, 1, . . . , N − 1 (2.2)

where

WN = e−
j·(2π)

N (2.3)

and Ss (k) is the kth sample of the sth frequency domain data symbol, and xs (n) is

the nth sample of the sth time domain symbol. Variables n and k range from 0 to

N − 1. Once the IFFT is performed there will be N parallel time domain samples.
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Figure 2.3: Insertion of Cyclic Prefix. v samples are copied from the end of each
symbol and appended to the front of the symbol.

These samples must be taken from parallel to a serial sample stream. Once in serial,

the CP is added.

2.1.5 Cyclic Prefix. After the IFFT is performed, the last v samples of

the symbol are copied and appended to the beginning of the symbol. This makes

the symbol to be transmitted N + v samples long. This is graphically represented in

figure 2.3. This is done in order to mitigate the effects of Inter Symbol Interference

(ISI), and Inter Channel Interference (ICI). The CP can be viewed as a guard band,

and as long as any multipath delays are smaller than the CP length any distortion of

the signal will be contained in the CP. This distortion can later be removed by the

OFDM receiver [18].

2.2 TDOA Calculation

In this section we discuss how TDOA measurements are obtained from the

OFDM signals. The geometry for this problem is shown in figure 2.4. Unlike the

two methods of TDOA calculation described in section (1.4), this TDOA calculation

method uses a single transmitter and a single receiver to take a self TDOA measure-

ment. An example of the self TDOA measurement is shown in figure 2.5

In order to perform a self TDOA measurement, the first step is to estimate

an initial block boundary within the signal. This is a common method of blind

11



Figure 2.4: TDOA calculation model used in this research. Block boundries are
estimated at two different times. TDOA is calculated by differencing the block bound-
ries.

block synchronization and is derived in [2]. Once block boundaries are estimated an

average boundary estimate over multiple symbols formulated in [16] is taken. Thus

given a received signal yrx the maximum likelihood (ML) estimate of the initial block

boundary δinitial position is

δ̂initial = arg max
0≤m≤M−1

ℜ{γavg(m)} (2.4)

where

γavg(m) =
K−1∑

k=0

m+v∑

i=m+1

yrx(Mk + i)y∗
rx(Mk + i + N) (2.5)

and ℜ is the real operator, K is the number of blocks averaged over, M is the symbol

length, k is the index of the OFDM block, and i is the index of the sample within

12



Figure 2.5: A pictoral example of the self TDOA computation. Block boundary
times are predicted and compared to actual block boundary times.

the OFDM block. Once the initial block boundary is found the system can then

predict when a block boundary should occur in the future. Because there are an

integer number of symbols between each time a measurement is taken the predicted

block boundary is the same as δinitial. As the receiver moves time goes by and the

receiver will encounter these boundaries. However, because the receiver has moved the

actual boundary position will be slightly earlier if the receiver has moved toward the

transmitter, or slightly later if the receiver has moved away from the transmitter. This

new measured block boundary position δ̂ML,rx is calculated the same way as δinitial.

Finally, once δ̂ML,rx is obtained the TDOA can be calculated using the formula

TDOA = (δ̂ML,rx − δinitial) · Ts (2.6)

where Ts is the sampling interval. Note that in these simulations δinitial is always zero,

and all TDOA measurements are measured from the initial point (0,0).

13



2.3 Multipath

Multipath occurs when there is more than one path for the signal between trans-

mitter and receiver [4]. In an urban environment these multiple paths are typically

caused by reflection from buildings and other structures in the environment or even

reflection from the atmosphere. Typically the line of sight path from the transmitter

to the receiver is the strongest and most dominant path, but that is not always the

case. If the line of sight path is obscured a multipath signal may become dominant.

Typically many multipath signals with different delays are experienced and these sig-

nals may add constructively or destructively. The impact these multipath signals may

have depends on many factors such as their power relative to that of the dominant

path, and range of delays.

2.4 Inertial Navigation Systems

This section describes the operation of a simple two dimensional INS system

used in this research. A more rigorous three dimensional model can be found in [15].

An INS uses two types of measurement devices: accelerometers to measure specific

force, and gyroscopes to measure rotation angle, or angular rotation rate. These

measurements are then resolved into the navigation frame and integrated to obtain

position information.

2.4.1 Accelerometers. Accelerometers are used to measure specific force.

Specific force is usually defined as the sum of acceleration (a) and gravity (g). Einstein

theorized that these two forces are indistinguishable and thus can only be measured

together [7]. In this research the effects of gravity are neglected and the accelerometers

are assumed to measure only acceleration. Units of this measurement are meters
second2 . Two

accelerometers were used; one initially pointing in the X direction (fxb) and the other

initially pointing in the Y direction (fyb). Accelerometer measurements are affected

by various types of errors including but not limited to: bias, alignment errors, and

14



Figure 2.6: INS model used in the simulation. A two dimensional model with two
accelerometers and one gyroscope. Position is obtained in the X and Y directions.

noise. To simulate some of these effects Additive White Gaussian Noise (AWGN) was

added to all simulated measurements which will be discussed in Chapter 3.

2.4.2 Gyroscopes. Gyroscopes are used to measure rotation angle or angular

rotation rate. For this research gyroscopes were used to measure angular rate. Units

of this measurement are radians
second

. One gyroscope was used with the rotation axis in

the Z direction (Θ̇). Gyroscope measurements are affected by various types of errors

including but not limited to: bias, alignment errors, and noise. To simulate some of

these effects AWGN was added to all simulated measurements which will be discussed

in Chapter 3.

2.4.3 Obtaining Position. The full system used to obtain position informa-

tion is shown in figure 2.6. The body accelerations were resolved in the X and Y

directions using the formulas found in [15] which are:
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Θ (t) =

∫ t

0

Θ̇ (τ) + w1dτ + Θ (o) (2.7)

fxi = (fxb + w2) · cos(Θ) + (fyb + w3) · sin(Θ) (2.8)

fyi = − (fxb + w2) · sin(Θ) + (fyb + w3) · cos(Θ) (2.9)

where fxb and fyb are measured acceleration in the Xb and Yb body frame. Acceler-

ations fxi and fyi are resolved in the X and Y directions. Varibles w1, w2, and w3

are AWGN noise sources discussed in detail in Chapter 3. INS measurements for this

research were taken at 50Hz. X and Y position were then obtained via the formulas:

vxi (t) =

∫ t

0

fxi (τ) dτ + vxi (0) (2.10)

vyi (t) =

∫ t

0

fyi (τ) dτ + vyi (0) (2.11)

X (t) =

∫ t

0

vxi (τ) dτ + X (0) (2.12)

Y (t) =

∫ t

0

vyi (τ) dτ + Y (0) (2.13)

Although the AWGN added to the simulated measurements was zero mean,

these errors cause an error drift due to the fact that they are integrated twice. This

causes errors in INS position solution to grow over time. Because of these continuously

growing errors, INS systems are typically aided by some sort of measurement system.

Here we will use OFDM signals of opportunity to aid the INS system through the use

of a Kalman filter.
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Figure 2.7: Kalman Filter. Recursive data processing algorithm.

2.5 Kalman Filter

A Kalman Filter is an optimal recursive data processing algorithm [10]. More

simply it provides optimal estimates of a system state. This recursive process is shown

in Figure 2.7 [3]. Because inputs to the KF are all time varying and contain errors

a perfect estimate is unobtainable. Instead the Kalman filter provides a probability

density function of the output. Because the KF assumes all errors have a Gaus-

sian distribution, this can be done by keeping track of two things: the state mean

and covariance. This operation has two steps: state propogation and measurement

updating.

2.5.1 State Propogation. Given a stochastic difference equation

xk = Φk−1xk−1 + Bk−1uk−1 + wk−1 (2.14)

where x is a state vector, Φ is the state transition matrix, B is the input matrix, and

w is the additive noise vector, state estimates can be propogated with the formulas:
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x̂−
k = Φk−1x̂

+
k−1 + Bk−1uk−1 (2.15)

P−
k = Φk−1P

+
k−1Φ

T
k−1 + Qk−1 (2.16)

where P is the covariance matrix, Q is the covariance of w, a superscript − denotes

time just prior to a measurement update, and a superscript + denotes time just after

a measurement update.

2.5.2 Measurement Update. Once the state estimate and covariance have

been propogated the measurement update step occurs. If there is in fact no measure-

ment at that time the updates are simply:

x̂+
k = x̂−

k (2.17)

P+
k = P−

k (2.18)

However, if a measurement is taken at time k given the measurement model

zk = Hkxk + vk (2.19)

where Z is the measurement taken by a sensor, H is the observation matrix relating

the state vector to the measurement, and v is a zero mean noise vector with covariance

R, the measurement update equations become:

x̂+
k = x̂−

k + Kk

(
Zk − Hkx̂

−
k

)
(2.20)

P+
k = (I − KkHk) P−

k (2.21)
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where

Kk = P−
k HT

k

[
HkP

−
k HT

k + Rk

]−1
(2.22)

The matrix product Hkx̂
−
k is the predicted measurement based on the current

state of the filter. The difference between this and the actual measurement Z is

known as the residual. The Kalman Gain K relates how accurate the measurements

are as opposed to the propogated states. If K is large, the filter will weight the

measurements high, while a small K will weight measurements low.

2.5.3 Extended Kalman Filter. The Kalman filter described in the previous

section assumes a linear model driven by white Gaussian noise. However, sometimes

systems are non-linear and an extended Kalman filter must be used. An extended

Kalman filter still has the same two operations as the regular Kalman filter: state

propogation and measurement update. The state propogation step uses the system

model

ẋ (t) = f [x (t) , u (t) , t] + Gw (t) (2.23)

With this new model the F , B, and G matrices may need to be calculated at

each propogation step. Matrix multiplication cannot be used. Once these matrices

have been calculated the propogation step occurs in the same manner as the regular

Kalman filter.

The new measurement update model is

Zk = h (xk) + vk (2.24)

The extended Kalman filter assumes that over a small region of operation that

the measurement model can be linearized. To linearize Equation (2.24) the partial

derivitive of H with respect to each state is taken. This is effectively a first order
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Taylor Series expansion of H. These partial derivitives evaluated at the current state

vector then become elements of the H matrix used in Equation (2.20) through (2.22).

Because of the non linearity, the predicted measurement Hkxk cannot be ob-

tained with matrix multiplication. Instead the function h (xk) must be used to calcu-

late the predicted measurement. Once the predicted measurement has been calculated

and the actual measurement Z has been taken, equations (2.20) through (2.22) are

used to update the state estimates. Now that the measurement update has occured,

the filter will continue to propogate the state estimates until another measurement

occurs.
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III. Research Methodology

This chapter describes the process used to perform proof of concept simulations.

All simulations were developed using MATLAB. Simulating the INS measure-

ments is presented along with the formulation of a truth reference. Obtaining the

position estimate from the INS is described followed by a description of how the

OFDM signals and TDOAs were generated. Derivation of the equations used by the

Kalman Filter is presented followed by several different error sources that were in-

corported in later simulations. The final section describes different simulations that

were conducted. These results will be the subject of chapter 4.

3.1 Simulating INS Measurements

In order to simulate INS measurements, first the time length for the simulation

T was set. T = 120s was used for all simulations. Using the model from figure 2.6, two

body acceleration profiles fxb and fyb and one angular rate profile Θ̇ were generated.

These profiles were generated at both 50 Hz and 1000 Hz. The 50 Hz profile would

later be used for simulated INS measurements, while the much finer 1000 Hz would

be used for a truth reference. The 50 Hz profiles can be seen in figure 3.1.

3.2 Truth Reference

In order to ensure that the Kalman filter was working a truth reference was

needed. The 1000 Hz acceleration and angular rate profiles were used to generate

this reference. First the rotation angle Θ had to be found. To do this numerical

integration was performed on Θ̇ using the cumtrapz function. Once Θ was found the

body accelerations could be resolved in the X and Y directions using equations (2.8)

and (2.9). Once accelerations were resolved in the navigation frame they could be

double integrated to obtain positions in the X and Y directions. These integrations

were performed again using the cumtrapz function. The truth reference trajectory

plot is shown in figure 3.2.
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Figure 3.1: 50 Hz profiles for fxb, fyb and Θ̇

3.3 Obtaining Position Estimate from INS Measurements

The simulated INS was set to run at 50 Hz. In order to simulate INS mea-

surements AWGN was added to fxb, fyb, and Θ̇. Noise for the accelerometers was

zero mean with a standard deviation of 0.1 m
sec2

and noise for the gyroscope was zero

mean with a standard deviation of 0.1 rad
sec

. The accelerometer standard deviation

value used here is similar to that of the Microbotics, Inc MIDG II INS/GPS system

noise standard deviation of 0.196 m
sec2

which is used by the Air Force Institute of Tech-

nology’s Advanced Navigation Technology Center for various tests. The gycoscope

standard deviation value is significantly larger than that of the same system whos

noise standard deviation is only 0.0087 rad
sec

[17]. Once AWGN was added, the INS

estimated position was then calculated in the same way as the truth reference. The

INS estimated trajectory is also shown in figure 3.2.
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Figure 3.2: Truth reference trajectory and INS estimated trajectory

3.4 Simulating OFDM Signals, Movement and Calculating TDOA Mea-

surements

Because INS position errors grow over time, they are typically aided by another

system in order to improve position accuracy. For this research OFDM SOOP are

used. Three transmitters were used simulating three seperate SOOPs. Because the

receiver initial position was assumed known and the position of the transmitters were

assumed known the initial relative position between the receiver and transmitters is

known. Therefor the navigation frame could be centered anywhere. For ease the

navigation frame was chosen to be centered at the receiver initial position, and the

initial receiver coordinates were (0,0). Three OFDM transmitters were then aranged

in a triangular fashion around the receiver. This model is shown in figure 3.3.
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poition coordinates are in meters from the reference.

To generate simulated OFDM signals, a function developed in [16] was modified

and used. This function was capable of using QPSK, 16-QAM, or 64-QAM. For

this research QPSK was used. This function produced a length L string of OFDM

symbols. Each OFDM symbol had N = 64 information samples, and v = 16 cyclic

prefix samples for a total of 80 samples in each OFDM Symbol. Bandwidth for each

transmitter was 20 MHz, leaving the sampling interval at 50 nsec. This meant that

each sample of the signal corresponded to a duration of approximately 15 meters.

TDOA measurements were taken once per second. It has been shown in [16] that

window size or the number of symbols used to calculate a TDOA can affect accuracy.

If too large a window size is used the TDOA will not be approximately constant over
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the window which can cause errors, while if too small a window size is used noise can

affect accuracy more easily. For this research a total measurement time of 1 msec

or L = 250 OFDM symbols was used each time a TDOA measurement was taken.

TDOA measurements were taken once per second. The TDOA over this interval will

be approximately constant and should combat noise effects.

Because there was no actual movement by the receiver, movement had to be

simulated. To do this the truth reference (see section 3.2) was used to calculate

how far the receiver had moved at each second where a TDOA measurement was

taken. This could then be used to calculate the actual distance between the receiver

and the transmitter at each second. By subtracting this from the initial distance to

the transmitters the distance moved was found. Note that all these distances are in

meters.

Once the amount of actual movement was known, the corresponding signal delay

had to be simulated. To do this 1 extra OFDM symbol would have to be generated

leaving L = 251. This string of OFDM symbols was then interpolated using the interp

command. The string was interpolated by a factor of 15 so that each sample now

corresponded to a duration of 1 meter. This string of OFDM symbols would then

be circshifted a number of samples corresponding the amount of movement needing

to be simulated. So to simulate movement each OFDM string of symbols with each

sample corresponding to 1 meter was circshifted by floor (distance moved in meters).

By interpolating and then circshifting a finer movement can be simulated. If

only the original 15 meter spaced samples were used, simulated movement resolution

would only be 15 meters. Now simulated movement resolution is 1 meter. Using all

the samples also allowed for a more accurate TDOA measurement. This is in effect

a sampling frequency of 300 MHz. Simulations using this sampling frequency were

conducted to determine the effect of oversampling the OFDM signals. However, this

sampling frequency is very high and may not be feasible on a receiver. It was decided

to see how well a lower sampling rate and less accurate TDOA measurements would
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work. In order to simulate a 20 MHz sampling frequency only every fifteenth sample

was used.

Finally once the OFDM signals were generated the TDOA was calculated using

the process in section 2.2.

3.5 Aiding the INS through a Kalman Filter

This section describes the Kalman Filter propogation and measurement update

steps.

3.5.1 Propogation. Once a TDOA was obtained, a Kalman Filter was used

to aid the INS and increase position accuracy. First, in order to obtain a difference

equation to be used in the propogation step, a linear stochastic differential equation

based on the INS model must be obtained in the form:

ẋ = Fx + B (t) u + G (t) w (3.1)

where F is the system dynamics matrix, B (t) is the input matrix, u is the input

vector, G (t) is the noise transformation matrix, and w is a vector of white noise.

Note that B (t) and G (t) are time varying. Based on equations (2.8) through (2.13)

the stochastic differential equation turns out to be
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Ẋ

Ẏ
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Once the stochastic differential equation has been formulated the stochastic

difference equation can be obtained. First Φk from equation (2.14) is obtained by

computing the matrix exponential of F

Φk = eF ·dt (3.2)

where dt is the sampling interval for the INS. Because the INS sampling rate is 50

Hz, dt = 0.02. Bk can then be calculated symbolically using the equation

Bk =

∫ dt

0

eF ·(dt−τ) · Bdτ (3.3)

Once calculated symbolically, 0.02 is substituted for dt. Note that Bk changes

every sample because of the dependence on Θ and must be calculated at every pro-

pogation step, while Φk is constant. Because the simulated INS measurements were
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discrete, the variance of the AWGN added to the INS measurements is also the val-

ueson each diagonal element of the Qk from equation 2.16 matrix leaving

Qk =




0.01 0 0

0 0.01 0

0 0 0.01




Now that Φk, Bk, and Qk are known, the propogation step of the Kalman Filter

can occur using equations (2.15) and (2.16). This step will continue to occur fifty

times per second until a discrete TDOA measurement is taken.

3.5.2 Measurement Update. In order to incorporate a TDOA update a mea-

surement model must first be obtained. To do this the state vector x derived earlier

must be related to the TDOA measurement ∆R. Because all the TDOA measure-

ments are measuring the difference from the initial position, ∆R is the difference of

the initial distance to the transmitter RI and the current distance to the transmitter

Rn where n is the transmitter number.

∆Rn = RI,n − Rn (3.5)

Because locations of the receiver initial position and transmitter are known RI

can be calculated [8].

RI,n =

√
(Xn − XI)

2 + (Yn − YI)
2 (3.6)

where (XI , YI) are the receiver initial coordinates, and (Xn, Yn) refer to the transmitter

coordinates. Because the navigation frame was chosen to be centered at the receiver

initial position this simplifies the equation to
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RI,n =

√
(Xn)2 + (Yn)2 (3.7)

Rn can also be found using the formula [8]

Rn =

√
(Xn − Xi)

2 + (Yn − Yi)
2 (3.8)

where (Xi, Yi) refer to the receiver coordinates at the time the measurement was

taken. Note that in a perfect system with no errors (Xi, Yi) is the state X and Y of

the Kalman filter. Equations (3.7) and (3.8) can then be substituted into equation

(3.5) yielding

∆R =

√
(Xn)2 + (Yn)2 −

√
(Xn − Xi)

2 + (Yn − Yi)
2 (3.9)

It is evident because of the quadratic and square root portions of ∆R that this

equation is non-linear. The measurement model in equation (2.24) must be used.

Taking the partial derivative of equation (3.9) yields an H matrix of the form

H =




0 0 0 X1−X̂√
(X1−X̂)

2
+(Y1−Ŷ )

2

Y1−Ŷ√
(X1−X̂)

2
+(Y1−Ŷ )

2

0 0 0 X2−X̂√
(X2−X̂)

2
+(Y2−Ŷ )

2

Y2−Ŷ√
(X2−X̂)

2
+(Y2−Ŷ )

2

...
...

...
...

...

0 0 0 Xn−X̂√
(Xn−X̂)

2
+(Yn−Ŷ )

2

Yn−Ŷ√
(Xn−X̂)

2
+(Yn−Ŷ )

2




The final piece needed to perform the measurement update step is the covariance

of the measurement R. Typically this is always assumed to be AWGN added to the

measurement, but in this case the only noise that affects the measurement is added

to the OFDM signal directly. Because simulations average over multiple symbols the

effect of this noise at higher SNR values does not impact the actual measurement
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taken therefor this noise is not used in the calculation of the R matrix. The error

that does affect the measurement comes from the fact that the TDOA measurements

are not exact and can only be as accurate as the resolution defined by the sampling

frequency. This means that a sampling frequency of 20 MHz yields a sample resolution

of approximately 15 meters, and a sampling frequency of 300 MHz yields a sample

resolution of approximately 1 meter.

When a measurement is taken the actual measurement must lie between the

measurment taken and the next measurement posible. This distribution is assumed

to be linear between the measurements and thus its variance can be calculated as the

variance of a uniform distribution using the formula found in [13]

σ2 =
1

12
(a − b)2 (3.11)

where a and b are any two consecutive possible measurements. Therefor with a sam-

pling frequency of 20 MHz and measurement resolution of 15 meters the variance

would be σ2 = 152

12
and with a sampling frequency of 300 MHz and measurement reso-

lutin of 1 meter the variance would be σ2 = 12

12
. Because all transmitters are considered

independent of each other, all TDOA measurements are independent yielding

R =




σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σ2
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3.6 Adding Noise

Initial simulations assumed a perfect channel. In reality this is not the case, and

in fact there will be noise added to the signal. To simulate this AWGN was added to

the OFDM signals. A wide range of Signal to Noise Ratios (SNR) were examined.

3.7 Adding Multipath

Noise is not the only thing that can affect TDOA accuracy. Although OFDM

signals are designed to combat the effects of multipath, it may still cause incorrect

TDOA measurements. The TDOA measurement works under the assumption that

the Line of Sight (LOS) path magnitude of the signal is higher than any non LOS

path. Typically this is true, but in an urban situation where many reflections and

path interferences are common it is possible for a non LOS path signal to become

stronger than the LOS signal. In order to simulate these effects a virtual water tower

was added to the simulation. The OFDM signals would reflect off the water tower and

be received at the receiver with a time delay based on the additional signal travel time

it took for the signal to reach the tower, and reflect to the receiver. The magnitude

of this reflection was modeled as a two dimensional random variable with a Ricean

distribution with a Probability Density Function (PDF) [13]

pR (r) =
r

σ2
e−(r2+s2)/2σ2

I0

(rs

σ2

)
, r ≥ 0 (3.13)

where R =
√

X2
1 + X2

2 and s2 = m2
1 + m2

2. X1 and X2 are statistically independent

Gaussian random variables with means m1 and m2 and common variance σ2. For this

research m1 = 0.33, m2 = 0, and σ2 = 0.0625 ralative to a unit-magnitude LOS path.

The position of the water tower is shown in figure 3.3.

Once the delay amount and reflection magnitude were calculated, a channel

model for each signal was convolved with the signal received by the receiver. This

essentially introduced a multipath reflection with a random magnitude and phase.
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Figure 3.4: Model used to represent GPS clock

3.8 Adding Clock Errors

Systems using time measurements for navigation are suseptible to large error in

position due to clock errors. Because the signals travel at the speed of light, a small

error in timing can cause a large error in calculated distance and thus in position. To

see these effects, clock errors were introduced to the transmitters. The model used

was that typically used for modeling GPS clocks and is shown in Figure 3.4 [3]. wc1

and wc2 are independent zero mean white Gaussian noise sources with variances equal

to 0.036 m2

s2 and 0.141 m2

s4 respectively.

To simulate the effects of the errors the OFDM signals were circshifted addition-

ally by the amount of error induced by the clock. This will cause inaccurate TDOA

measurements. In order to combat these effects a reference receiver was introduced.

The reference receiver did not move. It used the same OFDM signals as the mobile.

Because there was no movement by the reference, the circshift amount was based only

on the clock errors. An actual TDOA of the mobile receiver could then be calculated

by

TDOAactual = TDOAmobile − TDOAreference (3.14)
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Note that because the reference is calculating a time difference, and is not

moving; the initial position does not need to be known. The reference can be stationed

anywhere as long as it does not move. Also note that the signal from the reference is

not used in any cross-correlations; only the clock data is used.
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IV. Results and Analisys

This chapter details results from the simulations described in Chapter 3. Sec-

tion 4.1 illustrates correct operation of the Kalman filter as well as effects of the

number of transmitters and oversampling of the transmitters. Section 4.2 discusses

the RMS errors over time comparing the TDOA aided systems to a system using

only an INS. Section 4.3 illustrates the effects of AWGN when added to the OFDM

signals, while Section 4.4 discusses the effects of multipath reflections on the system.

Finally Section 4.5 details the effects of clock errors on the system and a mitigation

technique for these errors. Table 4.1 outlines the figures in this chapter including

their parameters and metrics.

Table 4.1: Table of experiments
Figure TX Samp Freq (MHz) Noise Multipath clock err Metric (m)

4.1 3 20 No No No X & Y errors
4.2 3 300 (oversampled) No No No X & Y errors
4.3 1 20 No No No X & Y errors
4.4 1 300 No No No X & Y errors
4.5 3 20 & 300 No No No RMS error
4.6 1 20 & 300 No No No RMS error
4.7 3 20 & 300 Yes No No Average error
4.8 3 20 No 2-Ray No X & Y errors
4.9 3 300 No 2-Ray No X & Y errors
4.10 3 20 No 2-Ray No X & Y errors
4.11 3 300 No 2-Ray No X & Y errors
4.12 3 20 No 2-Ray No X & Y errors
4.13 3 300 No 2-Ray No X & Y errors
4.14 3 20 & 300 No No Yes RMS error
4.15 3 20 & 300 No No Yes w Ref RMS error

4.1 Effects of the Number of Transmitters and Oversampling

The purpose of the first set of simulations was to ensure that the TDOA compu-

tation algorithm was working properly, and to ensure the Kalman filter was working

properly as well. These simulations also investigated the effects of oversampling the

OFDM signal as well as the effects of using multiple OFDM transmitters as opposed
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Figure 4.1: X and Y errors versus time compared to one standard deviation of the
errors for three transmitters with a 20 MHz sampling frequency.

to a single OFDM transmitter. This simulation used a perfect channel with no noise

or infinite SNR. There were also no multipath effects or clock errors incorporated into

the simulation. To ensure the Kalman filter was working properly, a plot of the X

and Y position errors over time were plotted along with the filter estimated standard

deviation of those errors over time. The filter estimated standard deviation of these

errors was obtained by taking the square root of the diagonal entries in the P matrix

at each time instant calculated using equations (2.16) and (2.21). If the errors in

position are within one standard deviation approximately 66 % of the time then the

filter is working properly. If position errors frequently lie far outside one standard

deviation then the filter may not be operating properly. The error plots for three

transmitters using both 20 MHz and 300 MHz sampling frequencies are shown in Fig-

ures 4.1 and 4.2, respectively. The error plots for one transmitter using both 20 MHz

and 300 MHz sampling frequencies are shown in Figures 4.3 and 4.4, respectively.

Several things can be noted from Figures 4.1 through 4.4. The first of which is

that errors using three transmitters are much smaller than those from using only one
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Figure 4.2: X and Y errors versus time compared to one standard deviation of the
errors for three transmitters with a 300 MHz sampling frequency.
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Figure 4.3: X and Y errors versus time compared to one standard deviation of the
errors for one transmitter with a 20 MHz sampling frequency.
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Figure 4.4: X and Y errors versus time compared to one standard deviation of the
errors for one transmitter with a 300 MHz sampling frequency.

transmitter. This is expected because more transmitters provide more measurements.

More measurements provide more information to the Kalman filter. More information

to the filter yields a more accurate position estimate, and a more accurate position

estimate means smaller error. The second thing that can be noticed (more so from

the three transmitter plots) is that oversampling the OFDM signals provides smaller

errors. Oversampling of the OFDM signal provides for a finer TDOA measurement,

meaning this measurement can be much more precise. A more precise measurement

gives better information to the Kalman filter and thus a better position estimate can

be obtained. Note however, that this oversampling assumes all errors in the OFDM

signal are independent. If oversampled too much, an actual system may start to have

time-correlated errors which could degrade performance.

4.2 RMS Error Versus time

The next set of simulations used one and three transmitters at both 20 MHz

and 300 MHz sampling frequencies. Again no multipath effects, noise or clock errors
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Figure 4.5: RMS error with 3 transmitters. The above simulations were run 10
times each and RMS errors were calculated.

were added. All four simulations were run ten times with ten different realizations of

noise on the INS measurements. The object was to compute the Root Mean Square

(RMS) error over time for each system and compare it to the error when only the INS

system was used without TDOA aiding. This will allow the accuracy of the aided

system to be compared to the INS only over time. RMS error for each time instance

i was calculated using the formula

ERMSi =

√√√√ 1

10

10∑

k=1

(
X̂ki − XT i

)2

+
(
Ŷki − YT i

)2

(4.1)

where (XT i, YT i) is the truth reference position at each time instance i, and k refers

to the kth run of the simulation. RMS errors for the three transmitter system are

shown in Figure 4.5 and RMS errors for the single transmitter system are shown in

Figure 4.6.
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Figure 4.6: RMS error with 1 transmitter. The above simulations were run 10 times
each and RMS errors were calculated.

Because measurements taken by an INS are integrated twice, errors in the mea-

surements tend to grow over time. This error can potentially grow without bound

as seen in Figures 4.5 and 4.6. Aiding the INS with the TDOA measurements keeps

the errors bounded as can be seen from the Figures. Also, again when looking at the

errors in Figure 4.5 It is clear that oversampling with more than one transmitter can

provide better position accuracy.

4.3 Effects of Noise

The next set of simulations incorporated AWGN added to the OFDM signal.

No multipath effects or clock errors were introduced to the system. This test sought

to attain the breaking point of the system in terms of noise. This simulation used

SNR values ranging from -40 dB to +10 dB. This test used three transmitters with

sampling frequencies of 20 MHz and 300 MHz. The average error over time for each

SNR value was calculated and plotted versus SNR. This is shown in Figure 4.7.
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Figure 4.7: Average error over time versus SNR. The TDOA system does not
produce accurate TDOA estimates at SNR values lower than -10 dB.

Figure 4.7 shows that at approximately -10 dB the noise added to the OFDM

signal becomes too strong, and the TDOA system cannot calculate a correct TDOA.

The oversampled system continues to work at a slightly smaller SNR value. This limit

could possibly be decreased if the number of symbols averaged over were increased.

However, if increased too much the TDOA would not be constant over the symbols,

and this could decrease accuracy.

4.4 Effects of Multipath

To investigate the effects of multipath, simulations using three transmitters at

sampling frequencies of 20 MHz and 300 MHz were run. These simulations incor-

porated the multipath model presented in Section 3.7. These simulations were run

without noise or clock errors so that all effects could be attributed to multipath. A

plot of X and Y errors versus time for the 20 MHz simulation is shown in Figure 4.8.

A plot of X and Y errors versus time for the 300 MHz simulation is shown in Figure

4.9.
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Figure 4.8: X and Y errors versus time for the 20 GHz simulation. Multipath
effects cause large errors in the position solution.
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Figure 4.9: X and Y errors versus time for the 300 GHz simulation. Multipath
effects cause large errors in the position solution.
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Figure 4.10: Zoomed in X and Y errors versus time for the 20 GHz simulation.
Multipath effects cause large errors in the position solution.

In Figure 4.8 a large increase in the error magnitude occurs at time T = 76. This

error occured when the randomly generated magnitude of the multipath reflection was

greater than the magnitude of the line of sight path. This caused an incorrect TDOA

measurement to be taken. This faulty information input to the Kalman filter caused

large position errors. Comparing Figures 4.8 and 4.9 also shows that when errors

due to multipath occur in an oversampled system, the resulting position errors are

larger than those in a less frequently sampled system. They also tend to correct

themselves quicker once correct measurements are taken. Note the fact that some

of the multipath reflections were at delays longer than the CP length. In OFDM

communication systems bit errors due to multipath cannot be corrected if the delay

is longer than the CP length. Because this system does not decode the transmitted

bits this longer delay does not cause a problem. Figures 4.10 and 4.11 show a zoomed

in version of Figures 4.8 and 4.9. These plots show that the system is working correctly

until the multipath reflection is higher than that of the LOS path.
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Figure 4.11: Zoomed in X and Y errors versus time for the 300 GHz simulation.
Multipath effects cause large errors in the position solution.

In a normal system that uses only a TDOA measurement to obtain position

there would be no way to know if an error due to multipath occured, and thus no

way to correct the position error. However, because an INS is being combined with

the TDOA using a Kalman filter a technique called residual monitoring can be used

to combat these effects. While operating the Kalman filter computes the difference

in the actual measurement and the predicted measurement. This value is known

as the residual. If this value is extremely high an error has typically occured. A

simulation was run monitoring the residual. If the residual was higher than three

times the TDOA resolution (i.e. 45 m for the 20 MHz sampled system and 3 m for

the 300 MHz sampled system) the Kalman filter would disregard the measurement

and essentially only propogate the state estimate instead of using the measurement

update step. Results from these simulations are shown in Figures 4.12 and 4.13.

By monitoring the residuals inside the Kalman filter large errors due to mul-

tipath effects are able to be mitigated. The filter recognizes the presence of a bad
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Figure 4.12: X and Y errors versus time for the 20 GHz simulation. Residual
Monitoring can combat the effects of multipath reflections.
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Figure 4.13: Zoomed in X and Y errors versus time for the 300 GHz simulation.
Residual Monitoring can combat the effects of multipath reflections.
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measurement and does not use the measurement and will propogate the system until

the next measurement occurs.

4.5 Effects of Clock Errors

To investigate the effects of clock errors on the system, simulations using three

transmitters at both 20 MHz and 300 MHz sampling frequencies were run. These

simulations incorporated the clock errors without a reference receiver described in

Section 3.8. This simulation was run without multipath or noise errors so that all

effects could be attributed to the clock errors. Each simulation was run ten times

and the RMS error versus time was computed. This can be seen in Figure 4.14. Note

that the clock errors only affect the transmitter clocks. Receiver clock errors were not

introduced because they can be estimated in a way similar to what is done in current

GPS systems, i.e. included as an additional variable in the state vector.

Because the clock errors driven by noise are integrated twice, this produces an

accuracy drift similar to that of the INS sytem. Because of this the same unbounded

error drift behavior is seen. In order to combat this drift a reference receiver was added

to the system. This system used the same OFDM signals as the mobile receiver.

The reference receiver did not move and therefor any TDOA measurement taken

was the result of transmitter clock drift. The reference TDOA measurement was

then sent to the mobile receiver at every time a measurement was taken or once per

second. From observing the effect of clock errors in Figure 4.14 clock errors grow much

quicker than errors from the INS. Because of this the reference TDOA measurement

should be used each time a mobile TDOA measurement is taken. If not the errors

from the transmitter clocks could be larger than those using only the INS. Then by

using equation (3.14) a true TDOA measurement could be calculated. The previous

simulation was run using the reference system and results are shown in Figure 4.15.

Figure 4.15 shows that using a reference receiver can negate the effects of clock

errors in the system. By comparing Figure 4.15 to Figure 4.5 the system works as

good as it did when no clock errors were introduced.
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Figure 4.14: RMS errors over 10 runs versus time for both 20 MHz and 300 MHz
sampling frequencies. Clock errors have been introduced and cause the error to grow
over time.
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Figure 4.15: RMS errors over 10 runs versus time for both 20 MHz and 300 MHz
sampling frequencies. Reference receiver has been added to correct clock errors.
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V. Conclusions and Future Work

This Section details conclusions that were drawn from the results of this research.

Future research potential is also presented here.

5.1 Conclusions

First it can be noted that this system works in simulation. OFDM signals of

opportunity can be used to aid an inertial navigation system. The position accuracy

of a TDOA aided system is much better than that of an INS only system. The

system also benefits from the use of more transmitters. It is expected that adding

more than three transmitters may increase the position accuracy even more. Also

it has been shown that oversampling the OFDM signals will result in an increase of

position accuracy.

Several potential causes of error were investigated. The effects of noise were

found to be negligable at higher SNR values, while the system does not work at

SNRs lower than -10 dB. Multipath errors were also found to be negligable unless the

multipath reflection magnitude was greater than the LOS magnitude.

Finally the effects of clock errors were investigated. The GPS quality clock

errors showed an even larger increase in errors than the INS. If unmitigated these

errors would cause very large position errors. A reference receiver was used to mitigate

these errors. The reference receiver was used to calculate a self TDOA in the same

was as the mobile receiver. This TDOA measurement was then sent to the mobile to

update the clock error of the system. No cross correlation techniques for calculating

TDOAs were used. With the use of the reference receiver position accuracy was shown

to be approximately the same as when no errors were introduced.

5.2 Future Work

The first area of future work should include the use of multiple mobile receivers

to mitigate clock errors instead of one dedicated reference receiver. It has been hy-
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pothesized that if more transmitters were used that multiple mobile receivers could

cooperatively estimate transmitter clock errors.

Next a more realistic INS model should be investigated. The INS model used

in this research was very simplified and did not take into account effects of gravity

and Earth rotation. An actual hardware INS system could also be used to take actual

INS measurements. Differential GPS could be used as a truth reference, and the

OFDM signal of opportunity TDOA measurements could be simulated in a similar

way. To do this an INS capable of measureing specific force and angular rate in three

dimensions would be needed. They system would also need to be equiped with a

differential GPS system to be used as a truth reference. Matlab could then be used to

simulate the TDOA measurements in a manner similar to that used in this research.

A more rigorous Kalman filter could then use the simulated measurements to aid the

INS.

Finally once more realistic INS simulations are conducted, a receiver capable

of using OFDM signals for TDOA measurements should be investigated. This would

allow for a full hardware system to be used. This hardware system would give a better

idea of the position accuracy that could be expected in an actual fielded system. This

system would use the previous stated equipment in addition to a receiver capable of

receiving OFDM signals and performing the TDOA measurements. The transmission

source would need to be an actual OFDM signal. WiFi could be used for indoor tests

or another OFDM source such as satelite radio ground stations or clearwire could also

be used.
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The advent of the global positioning system (GPS) has provided worldwide high-accuracy position measurements.
However, GPS may be rendered unavailable by jamming, disruption of satellites, or simply by signal shadowing in urban
environments. Thus, this thesis considers fusion of Inertial Navigation Systems (INS) and Orthogonal Frequency Division
Multiplexed (OFDM) signals of opportunity (SOOP) for navigation. Typical signal of opportunity navigation involves
the use of a reference receiver and uses time difference of arrival (TDOA) measurements. However, by exploiting the
block structure of OFDM communication signals, the need for the reference receiver is reduced or possibly removed
entirely. This research uses a Kalman Filter (KF) to optimally combine INS measurements with the OFDM TDOA
measurements. A proof of concept in two dimensions is shown, and effects of the number of transmitters, sampling rate,
multipath, and clock errors are investigated.
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