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Abstract

The Spectrally Modulated, Spectrally Encoded (SMSE) fraiat& provides an ef-
fective means for implementing Orthogonal Frequency ovisMultiplexing (OFDM)
signals — a bedrock technology for future fourth generafff®) communication systems
based on Cognitive Radio (CR) and Software Defined Radio (SDR) itpedsn As 4G
SMSE communications emerge they must coexist with oth@esyswhile competing for
available communication resources. Given a lack of ingstesn orthogonality and limited
available bandwidth, these signals must be designed tdrafigcoexist while inducing
“manageable” levels of mutual interference. The reseaceth was to demonstrate a struc-
tured means for SMSE waveform design using two techniquasranly employed in

operations researckaenetic Algorithn{GA) andResponse Surface Methodold&RSM).

The design process is demonstrated herein for a coexistemago containing SMSE
and Direct Sequence Spread Spectrum (DSSS) signals. Goex@&VISE-DSSS designs
are addressed under batbrfectandimperfectDSSS code tracking conditions using a non-
coherent delay-lock loop (DLL). Under both conditions, thenber of SMSE subcarriers
Ny and subcarrier spacindy f are the optimization variables of interest. parfectDLL
code tracking conditions, the GA and RSM optimization preessare considered inde-
pendently with the objective function being end-to-end B3 error rateP,. A hybrid
GA-RSM optimization process is used under more realistigerfectDLL code tracking
conditions. In this case, optimization is accomplisheaulgh a correlation degradation
metric with the GA process being first applied to generateoaf'se” solution followed by

RSM processing which provides the final optimized solution.

For all perfect and imperfect DLL code tracking scenariassigered, the optimized
DSSSPF, minimizationresults yielded SMSE waveform designs andperformance that
was consistent with scenarios having no coexistent SMSkakigresent (best-case co-

existent performance). For the optimized DSBSmaximizationsolutions, worst-case



SMSE-DSSS coexistence was achieved for SMSE waveformretigt were spectrally
“matched” to the DSSS signal, i.e., greatéstdegradation was experienced when the re-
sultant SMSE subcarrier spacidgf was an integer multiple of the spectral line spacing
A fenip Of the DSSS spreading code.

This work has successfully expanded the practical utilitg previously developed
tool, the original SMSE framework, by demonstrating a mdfieient, structured means for
coexistent waveform design that replaces previous tridlemor methods. The research
objective has been achieved in the sense that 4G commumoagisign engineers now
have one additional tool at their disposal and its signifieahas been acknowledged —
the technical community is one step closer to actuallyrgtthe bedrock of OFDM-based
signaling using the SMSE framework. It is also important dberthat the particular DLL
implementation used here, and the metrics used to chamt@rious tracking conditions
(perfect and imperfect), are sufficiently general such thatoptimization demonstrations
herein are broadly applicable to other non-communicatigplieations employing DLL

tracking, e.g., precision navigation, timing, geolocafietc.
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APPLICATION OFOPTIMIZATION TECHNIQUES TO
SPECTRALLY MODULATED, SPECTRALLY ENCODED

WAVEFORM DESIGN

|. Introduction

A quick glance at the US frequency allocation chart [33] shithat the radio spec-
trum between 9 KHz and 300 GHz is fulllocated However, this provides no indication
as to howefficientlythe allocated spectrum is being utilized. As the need foreasing
data rates, the number of users, and overall network cgpagirovement has grown, the
issue of spectrum efficiency versus spectrum allocationgaased much attention. This
is highlighted by the following relevant sampling of recétérature addressing spectrum

efficiency:

1. [39] indicates there is an “underutilization of the ragjpectrum as revealed by

extensive measurements of actual spectrum usage” in [12].

2. [38] cites measurements in [12] as well and conclude thiaafly given time much
of the prized spectrum lies idle ... spectrum shortage tefum the spectrum man-

agement policy rather than the physical scarcity of usablguencies.”

3. [9] cites measurements in [12] as well and indicate thaat.any time roughly 10%

of the unlicensed frequency spectrum is actively in use/iiep90% unused)”

4. [8] provides an overview of the Defense Advanced ReseajR@s Agency (DARPA)
Next Generation (XG) Communication Program and indicatas94% of the spec-

trum was unused worldwide at the time of a 2002 study.

5. [1] indicates that “temporal and geographical variationthe utilization of assigned
spectrum ranges from 15% to 85% with a high variance in tinred eite [25] in

support of their conclusion.



While there may be some uncertainty of the current value oftspa efficiency, as well
as its terminology (percentage used, unused, underusededyutilized, etc.), the overall
consensus is that spectrum efficiency is much poorer than egmabe achieved, and the

technical community is unified in its quest to improve it.

To some degree, the technical community has unified undexathespt of Dynamic
Spectrum Access (DSA) which is highlighted through recesinés such as the IEEE’s
Dynamic Spectrum Access Networks (DySPAN) symposiums [R§EPAN has grown to
be “the preeminent event to gather international econairesigineers, network architects,
researchers and academic scholars together to sharegcertige research on and demon-
strations of emerging wireless technology.” The origingiPAN symposium was held in
2005 and activities since then have continued to have signifinternational influence on
policy, technology, research and development of next geioerwireless systems. From a
technology focused perspective, the ability to effectiverhploy DSA techniques is highly
linked to Software Defined Radio (SDR) and Cognitive Radio (CR) epts

1.1 Research Motivation

The fundamental DSA concept provides one means for fountlergéion (4G) and
subsequent communication systems to improve spectruneeffic while minimizing ad-
verse coexistence effects. This is done by monitoring argtaey to changing channel
conditions, traffic requirements, coexisting signals, apdctrum availability by generat-
ing waveforms that dynamically respond to these conditiolke coding, modulation,
and multiple access techniques of emerging systems williredhis type of adaptivity, as
enabled at the physical layer through SDR techniques. THe &flvantages are obvious
given that the radio can be easily upgraded with changeamlatds, frequency allocation,
security practices and real-time environmental changesome degree, these advantages
have been successfully exploited in some systems [13, 18423However, these systems
are somewhat restricted in the decision stage of adaptatenthe “brain” that controls

the adaptation based on observed environmental factoosnewhat limited.



To address this limitation, CR techniques have been propmsehvestigated to in-
crease a given radio’s autonomy by increasing its abilitplieerve, “think”, and decide
the next best course of action. This represents one formrafrflempowered communica-
tions” referred to by Haykin [17]. In this context, CR prinkgp are considered a means for
enhancing and advancing SDR functionality and capabHifyway of maintaining consis-
tency with previous work in [26, 30] that forms the basis faistresearch, the synergistic
union between CR and SDR will be referred to her€&sbased SDRn this context, the
SDR is a software controlled waveform generator that isrotletl by CR principles de-
signed to improve environmental assessment and spectrage afficiency. In the context
of achieving smarter communications, Haykin identifieshOgonal Frequency Division
Multiplexing (OFDM) as a bedrock technology for CR-based Sbfplementation [17];
as with previous work in [26, 30], this continues to provitle tmotivation for the research

presented here.

While the concept of OFDM is relatively simple, the abilitygenerate OFDM sig-
nals has only recently become practical from a hardwargpetse. The speed of modern
digital processors now allows waveform characteristidseaefined in the frequency do-
main, with conversion to time domain waveforms via an Ingdfast Fourier Transform
(IFFT) occurring at rates that enable high-speed commtiaita As such, OFDM has
proven to be very flexible and has generated significantestahroughout the research
community [11, 20, 34-37, 40]. The rapidly expanding pookaferging OFDM-based
techniques, as illustrated in the cloud region of Fig. 1rtyd the need to develop a unified
framework to encapsulate OFDM variants. Elements of theltes framework are cap-
tured in the analytic expression in Fig. 1.1 which effedf{iembodies a class of what are

now called Spectrally Modulated, Spectrally Encoded (SW8&veforms [26—30].

Researchers continue to investigate expanded roles foyiagphe original SMSE
framework. Some of the more recent efforts are focusing @mlay, underlay and hybrid
overlay/underlay waveform implementations [5, 6]. In tlfentext of an overlay wave-
form architecture where interference to primary users tgyatied by avoiding their spec-

tral regions, these latest SMSE developments suggesthibairiginal SMSE framework



SDR-OFDM

F1{S=Ac@oF} = s, (1)

CR-Based
1 [decwoaul

Unifying SMSE Framework

Figure 1.1:  Unifying SMSE framework for OFDM-based signglusing
a CR-based SDR architecture. Waveform adaptivity is provitieough
variation in design variables denoted by c w 0 a u | [26].

is best characterized as applyihgrd decisioncriteria to spectral usage. By accounting
for possible implementation of both overlay and underlahteques, these recent activi-
ties have demonstrated preliminary success with what isgbealledsoft decisiolSMSE
(SD-SMSE). While the research focus in this dissertatiomishe original SMSE frame-
work and its optimization for coexistence with other systemmergence of SD-SMSE
techniques certainly warrants future investigation gitieat the methods considered here

should to be directly applicable.

1.2 Research Assumptions

Definitions of mathematical symbols and terminology arevigled throughout the
document as they are introduced. Results of all work predesfiteuld be interpreted within
limits and constraints imposed by the assumptions that baea made. The following

summarizes the assumptions that made for the research.

1.2.1 Coexistent SMSE-DSSS Scenario.

e For all scenarios considered, the coexistent SMSE and D®®8Is are spectrally
coexistent (same center frequency) and are operating av&dditive White Gaus-

sian Noise (AWGN) channel. However, given the focus of theei@m design



demonstrations are @rocessthe procedures used are valid for other channel mod-

els.

For coexistent and interference scenarios, the relatimepratios between the signal
of interest, the interfering signal, and the channel norgetlhe dominant factors.
Therefore, the research assumes these relative powes Eneeket such that SMSE

parametric changes within can impact DSSS receiver pedoce

Except for spreading code tracking, the DSSS receiver wdsqtly synchronized
to the transmitted DSSS signal in terms of carrier trackinggiency and phase)
and communication symbol tracking. In addition, final résydresented in Sec-
tion 4.1 are based operfectspreading code tracking while the results presented

in Section 4.2 are based anperfectspreading code tracking.

1.2.2 Optimization Techniques.

Less-than-global optimal solutions were deemed accepfabldemonstration pur-
poses. The optimal responses to SMSE variable changes tWeastocally optimal
and accepted given the research goal was to find “good” paeawveduesvithoutre-

quiring exhaustive testing.

All GA experiments were designed to ensure that all possitaebinations of SMSE
parameters/{; ,A f) were allowed, i.e., all combinations were in the optimizat

feasibility region.

All RSM experiments used a second-orgemodel for optimization. The experi-
ments consisted of a two-factor, three-level, full-faitbdesign with four additional
center runs. The SMSE parameters were optimized usingebpest ascent/descent
process until the response surface fit the second-order|masidetermined by an
ANOVA.
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|I. Background
2.1 Digital Communications

Electronic communications can occur using either analatjgtal waveforms. Ana-
log communication applications include television (TV)\MAadio, FM radio, and early
cellular telephones. Digital communication techniquetedifrom analog techniques in
that information is sent using a set of predefined quantizdaleg that are commonly rep-
resented by either a binary value of 0 or 1. Digital commumcaapplications include
modern cellular telephone systems, high definition telemigHDTV) and a multitude
of wireless computer network implementations [31]. The® many reasons why mod-
ern communication system designers prefer digital teatesq First, the digital receiver
must only decide between a finite number of transmit conasticommunication sym-
bols). Thus, digital techniques perform very well in noisywieonments since the original
signal does not have to be reconstructed. Second, diggahter systems may be imple-
mented as regenerative receive-transmit nodes. They Erécateceive, estimate symbols,
perform error correction and duplicate information befpassing it on, allowing reliable
long distance communications. Also, digital hardware temfess expensive to manufac-

ture than analog equipment [31].

A basic digital communications system model is shown in Eifj. The digital input
sequencddy }, d, € {0,1} , is mapped to a waveforg(t) for transmission. This process
of mapping information to a transmitted waveform is calleddulation The transmitted
signal propagates through the channel, or transmissiotumednd is corrupted by noise.
The channel may be a transmission line, such a telephonetimeaxial cable, or the
open airwaves as assumed for this research. Thertersedescribes the combined effect
of interference from many sources, including the combirféeteof additional signals in
the channel, atmospheric effects and thermal effects nvitie receiver itself. Additive
white Gaussian noise (AWGN) is a common channel model useddsigning and ana-
lyzing electronic communications systems. As used forrisgarch, the AWGN channel

assumption provides a reasonable starting point for sydesign.



—| Mod —<|  AWGN Channel  [>—{Demod—

Figure 2.1:  Basic digital communication system model shgwans-
mitter modulation and receiver demodulation functions.AAMGN propa-
gation channel is illustrated.

M-ary Phase Shift Keying (MPSK) is one type of digital datadulation whereby

the input data bits are mapped to a series of transmitted coneation symbols given by

s(t) = Acos2nfet + ¢ (t)] (2.1)

where0 < t < Ty, Tsym is the symbol duration, and phase valt(¢) is determined by
the input bit values. The special case where each symbasepts\/ = 2 bits, is known
as Binary Phase Shift Keying (BPSK) which is the basis for tradyes in this dissertation.
In this casep = 0° (d, = 1) or ¢; = 180° (d,. = 0) and the expression in (2.1) can be

rewritten as

s(t) = (—=1)™ Acos (2 f.t) . (2.2)

The plot in Fig. 2.2 shows a representative BPSK waveformrapgriwo symbol periods
having different modulation values (eithéy = 0 or d,, = 1). This bit difference causes

the 180° phase shift occurring &t;,,,, in the plot.

To use the available communication resources efficienitytad waveforms are of-
ten multiplexedwithin or across specific signaling domains (time, freqyespace, po-
larization and/or code). Several multiplexing schemestetkiat allow multiple users to
effectively share communication resources, includiiige Division(TDM), Frequency
Division (FDM), Space Divisior{SDM), Polarization Division(PDM) andCode Division



\
Tsym

Time

Figure 2.2: Representative Binary Phase Shift Keyed (BPSKgfoam
spanning to symbol periods having different data modutatialues. The
instantaneous$80° phase change dt,,,, is due to this difference [31].

(CDM) [31]. Of particular interest to this research are FDMI&DM, each of which is

introduced and discussed in greater detail where apptepria

2.1.1 Spectrally Modulated, Spectrally Encoded (SMSEesaork. One method
to allow more data through a given channel involves dividimgallocated frequency band
into several narrower subbands, allowing multiple indidbtsignals to coexist. This tech-
nigue is known as Frequency Division Multiplexing (FDM) [31A representative FDM
spectrum is illustrated in Fig. 2.3 for three subbands sd#pdrbyAf. The receiver for
a particular signal in this scheme is able to extract therddsignal using an appropri-
ate band pass filter centered on the subband of interest amghe bandwidth that is a
fraction of Af, sayWgp = Af/2. In this case, a “manageable” amount of interfering
signal power from the other two subbands passes throughtdreaind impacts demodula-
tion [31]. Given that the signals are separated in frequaheymportant design parameters

for FDM include frequency separatiahf andWgp.

One particularly efficient way to space FDM subcarrier frengies is to assign f

such that the individual subband center frequencies amdrsilg coincident with the first



null of adjacent signal [34]. For this to occur, the symbalation and subcarrier separation
are related such thdt,,, = 1/Af, i.e., the individual subcarrier frequencies are harmon-
ics of the fundamental frequencyf. This particular subcarrier spacing is illustrated in
Fig. 2.4. Ideally, this process results in individual sigrizeing mathematically orthogonal
with no mutual interference. This type of FDM scheme is kn@as©rthogonal Frequency

Division Multiplexing (OFDM) [34].

While the concept of OFDM is relatively simple, the abilitygenerate OFDM sig-
nals has only recently become practical from a hardwarepetse. The speed of modern
digital processors now allows waveform characteristidseaefined in the frequency do-
main, with conversion to time domain waveforms via an Ingdfast Fourier Transform
(IFFT) occurring at speeds that enable high-speed commtions. As such, OFDM has
proven to be very flexible and has generated significantestahroughout the research
community [11, 20, 34-37, 40]. The rapidly expanding pookaferging OFDM-based
techniques drove the need to develop a unified frameworkdapsulate OFDM variants.
The resultant framework effectively embodies a class oftveina now called Spectrally
Modulated, Spectrally Encoded (SMSE) waveforms [27-30].

Researchers continue to investigate expanded roles foyiagphe original SMSE
framework, with some of the more recent efforts focusingyorid overlay/underlay wave-
form implementations [5, 6]. In the context of an overlay efmrm architecture where
interference to primary users is mitigated by avoiding rtlspiectral regions, these latest
SMSE developments suggest that the original SMSE framevgoblest characterized as
applyinghard decisioncriteria to spectral usage. By accounting for possible imele-
tation of both overlay and underlay techniques, these teadivities have demonstrated
preliminary success with what is being callsaft decisiorSMSE (SD-SMSE). While the
research focus in this dissertation is on the original SM@Eeéwork and its optimization
for coexistence with other systems, emergence of SD-SM8thigues certainly warrants
future investigation given that the methods considered Bhould be directly applicable.

For completeness, the following SMSE development is pexviand is based on the orig-
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Figure 2.3: Representative Frequency Division Multiplef€dM) spec-
trum for three subcarriers separated in frequency\ly[34].
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Figure 2.4: Representative SMSE signal spectrum for thrbeastiers
separated in frequency kyf = 1/7,,,, an integer multiple of the symbol
interval [34].

11



inal SMSE framework presented in [30]. The reader is reteteethe original SMSE

framework documentation if additional details are requlire

Accounting for all SMSE waveform design variables, the o SMSE framework
provides a unified approach for generating and charaatgraihost of OFDM-based sig-
nals. Using® to denote Hadamard product (element-by-element muléipbo), the spec-

tral representation of the’” SMSE symbol is given by [28, 30]

Sk:CQdeWQOk, (23)
where the design variables are defined as follo@edingc = [cy, ¢, . .. ,cNf],ci e C;
Data Modulationd = [dy, dy, ..., dy,],d; € C; Windowingw = [w1, ws, ..., wy,], w; €

C; Orthogonalityo = [01,0,...,0n,], 0; € C, |0/ = 1V i. Each of these terms are
introduced to functionally incorporate various waveforasigin characteristics commonly

employed in communications.

All that remains to completely specify the SMSE waveformhis frequency compo-
nent selection and symbol duration of the resulting wavafofhe frequency component
defines the number of carrier components that are spectmaltiulated and encoded. As-
suming anNN,-point inverse fast Fourier transform (IFFT), there ardiafly N, possible
carrier components available. Use of components from tb@ pf frequencies is con-
trolled through frequencgssignmenandusevariables. For example, a system may elect
to assign a subset d¥; carriers to a given user. Thassignmenbf frequencies is ac-
counted for through variable = [a4, as, . . . ,aNf], a; € {0,1}, where zeros indicate unas-
signed carriers. From this assigned pool of carriers, somebe unused due to excessive
interference, system design, etc. The remainisgdcarriers are accounted for through
variableu = [uy, us, . . . ,uNf], u; € {0, 1}, where zeros indicate unused carriers and there
are total of P used carriers® < Ny). Thus,u is a subset ok (u C a) and only assigned
carrier components exist SMSE symbols. The frequency mss&gt and use variables are

incorporated into (2.3) as follows

12



sr=a®uecoOd, OwWo oy, (2.4)

where then!" carrier component of;, is given by

(0 6 % 6
Sk[m] = CLmumCmdm,kwmej( e F0em +um +bor, 1) . (25)

There arem = 0,1,..., Ny — 1 frequency components witt,,, 0.,., dm, 04, . Wi,
0., @andd, . being the corresponding magnitudes and phases of the desigibles. As
indicated by the subscripteld and m indices in the righthand side of (2.5), the coding
and windowing terms only vary with frequency index whereas the data modulation and

orthogonality terms vary with symbol indéxas well.

The block diagram in Fig. 2.5 illustrates the functionalgesses that are commonly
used to generate OFDM signals. Input data Bjt& {0, 1} are mapped to discrete BPSK
coefficients according tb, = (—1)%. The BPSK coefficients are first grouped using a
serial-to-parallel (S/P) conversion process and thenhtedyby vectos, prior to the IFFT
operation. Following the IFFT operation, the grouped bits@nverted back to a stream
stream via parallel-to-serial (P/S) conversion. The tastiicomplex discrete samples are
then converted to in-phase and quadrature baseband diyrditgital-to-analog conversion
(DAC). Finally, the complex components are combined in a catade modulator and up-
converted to the desired carrier frequerfeyor transmission. For the coexistence analysis
in this work, the key SMSE waveform design variables incltrdenumber of IFFT points

Ny, the subcarrier frequency spacidg’ and the inter-subcarrier complex weightiwg.

2.1.2 Direct Sequence Spread Spectrum (DSSS) Syst&pread spectrum com-
munications are a class of signals that employ Code DivisiaitiMe Access (CDMA).
As a mechanism for enabling multiple access, CDMA providesdthility to increase the
number of users within a finite allocation of spectrum. Imrterof multiple access perfor-
mance, CDMA has an inherent advantage over Time Division iplaltAccess (TDMA)

given there is no need for precise timing between users ingheork. Two other desirable
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d, = BPSK| S/P IFFT > P/S | DAC Re(-) —<]

Wik €j27rfct

Figure 2.5:  Block diagram illustrating functional process®mmonly
used for OFDM symbol generation and transmission [34].

characteristics of CDMA when implemented with spread specttechniques, include:
1) users enjoy some degree of privacy from unintended eewggers given that the code is
only shared with intended receivers, 2) spreading of infdrom across a wide band of fre-
guencies provides some inherent protection against fadiagnel effects, and 3) the initial
despreading operation in the DSSS receiver provides somkbdiprotection against coex-
isting interferers or jammers [25, 31]. Spectral spreading DSSS is generally achieved
using a psuedorandom noise (PN) code. The PN code is actietlyministic but pos-
sesses some properties that are similar to random noiseatdsenved without knowledge
of the code [31].

A typical DSSS waveform generation process is illustrate&ig. 2.6. For BPSK
data modulation, the generation process first begins by mgyipe sequence of input data

bits {d}.} to waveform values to created the data modulated siginabiven by

d(t) = (=1)%p(t) , (2.6)
where
1, t € (0, Tsym]
p(t) = -
0, otherwise

The resultant data modulated wavefaft) modulates the carrier signal cos (27 f..t),

wheref, is the carrier frequency. The carrier modulated signales tspectrally spread by
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d(t) Ad(t) cos (2 f.t) Ad(t)c(t) cos (2m f.t) <]

A cos (2 f.t) c(t)

Figure 2.6:  Typical DSSS signal generation process. Theecararrier
fe is first modulated by data dependent wavefattt) and then spectrally
spread by coded wavefora(t) [25].

the PN coded waveform(t). Although not a requirement, the spreading wavefo(ty is
generally created using the same BPSK technique as useldtjorThus, given a binary
PN spreading sequence df. elements{c} = {ci, ¢, ...,cn.}, One period of spreading

waveforme(t) containsV, chip intervals of duratior,. and is given by

c(t) = (=1)*p(t) , (2.7)

where

0, otherwise '

p(t) = { 1, te€(0,7,]

The plots in Fig. 2.7 graphically illustrate the DSSS wawef@onstruction process.
The plots in Fig. 2.7a and Fig. 2.7b represent the basebaaddzadulated and PN coded
signalsd(t) andc(t), respectively. These signals were generated using the BRS#&-b
waveform mapping processes detailed in (2.6) and (2.7)viBaal clarity, only four chip
intervals per symbol duration were uséd,(, = 1/R,,,, = 4 x T, = 4/R.). The signal
in Fig. 2.7c is the result of multiplying the data modulatéghal d(t) with the RF carrier
Acos (2m ft). For visual clarity, only eight carrier frequency cycles pgmbol duration
were usedT,,,, = 8/f.). The carrier phase transitions in modulated carrier aael-re

ily apparent and correspond directly with phase transstion/(¢). Finally, the signal in
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Figure 2.7:  Waveform construction process for BPSK DSSSeayst
(a) baseband data modulated wavefai(t), (b) baseband spreading modu-
lation waveforme(t), (c) carrier modulated waveford(t) cos (27 f.t), and
(d) final DSSS waveform(t)d(t) cos (27 f.t) [25].

Fig. 2.7c is modulated by the PN coded sign@) to create the transmitted signal shown
in Fig. 2.7d.

The spectral spreading resulting from this process istittisd in Fig. 2.8 which
shows power spectral density (PSD) plots for the unspretdrdadulated carrier (dashed
line with peak valuePzpsr) and the final spread waveform (solid line with peak value
Ppsss). Given thatl,,, = 4 x T, was used in this illustration, the spread signal PSD oc-
cupies four times more bandwidth than the unspread signahwieasured between nulls.
This bandwidth expansion is equivalent to what is commoalied the DSS$rocessing
gain which is given byG, = R./Rs,, for BPSK data modulation. It is also important
to note that the peak value éf,5s5 one-fourth {/G,) the value ofPzpsk (—6 dB on a
decibel scale). Thus, the DSSS signal power is effectiyalgad across a wider bandwidth

than the original unspread signal.

The DSSS receiver essentially despreads and estimateswuooation symbols by
repeating transmitter functions in reverse order. Thismetionally illustrated in the block

diagram shown in Fig. 2.9. The received DSSS signal entersytstem and is first despread
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Frequency

Figure 2.8: PSD comparison of unspread data modulatececédashed
line) and final spread DSSS waveform (solid line). The amadfispectral
spread is dictated by processing géi#, = T,,,/1. [25].

by mixing it with an estimate of the transmitted spreadingefarmc(t). To be effective
when there is geographic separation between the transanittireceiver, the receiver must
have some priori knowledge of the transmitted spreading code and thus the caanot
be purely random. The despread signal is bandpass filtedethaicommunication symbols
estimated using techniques that are identical to systenmdoging no spread spectrum

techniques.

> »()—»{ BPF —»(X—»{ LPF — Dem —>»

cp(t)T TA cos (2 f.t)

Figure 2.9: lllustration of typical DSSS receiver architee [25].

17



During DSSS receiver processing, the noise and other arteg signal components
can be thought of as beirgpreadversusdespreadgiven they do not contain the original
spreading modulation. Thus, the composiespreadwaveform consists of two terms:
1) one due to the desired transmitted signal which returits twriginal spectral shape and
bandwidth, and 2) undesired noise and interfering signatrdmtions that are spectrally
spread with reduced peak power levels. After post-despilitadng, a majority of the
desired signal power remains (70% to 90% depending of tlee EEndwidth) while only a
fraction of the unwanted noise and interfering power remaire portion of desired signal
power that remains and the percentage of undesired powdstiggected is a function of
the DSSS processing gaii,. In general, the SNR improvement due to the despreading
and filtering operation is proportional @, [25].

For a DSSS system to optimally estimate communication sysntiee DSSS receiver
must have some knowledge of the received signal charaaterecross the signaling do-
mains: time, frequency, space, polarization, and code.ebdipg on the system, some
of these parameters are knoarpriori while others must be estimated. In addition, the
estimated parameters may change over time and must be etiystacked and updated.
For example, a communication system often operates at dgiezmined center frequency
f.. However, frequency variation in the received signal, du®oppler frequency shift
fa resulting from relative transmitter-receiver motion angperfect local oscillator behav-
ior in both the transmitter and receiver, dictates that doeiver employ frequency and/or
phase tracking which is typically accomplished with a PHasek Loop (PLL). Next to
PLL tracking stability, the next most important trackingjugement is perhaps the abil-
ity to reliably generate a local estimate of the receive@ag@ing code. The next section

describes one common tracking method used for DSSS codengac

2.1.3 Delay-Lock Loop (DLL) Code Tracking. Spreading code tracking is per-
haps the most important aspect in a DSSS system. While thentisiad code and code
parameters are generally knoaipriori by the receiver, the relative time offset or delay of

the code (sometimes called it phase) and chip-to-chipvaterriation must be estimated
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and tracked — this is referred to esde tracking In a communication system, a lack of ef-
fective code tracking generally results in inefficient deggling of the received signal. This
results in a lower SNR at the demodulator input and pooregrbitr performance [15, 16].
In applications other than communications that also emptoye form of code tracking,
e.g., spread spectrum based navigation or radar systegfiedtive code tracking may

result in poor delay estimates which ultimately lead to pog@osition estimates [21].

To track the received PN coded waveform, the DSSS receivest finst search and
find the relative code position using a process called aitounis This process provides
an initial course estimate of the code’s temporal positiod & used as a starting point
for more accurate tracking by the code tracking loop. Onegttéicking loop receives an
initial temporal estimate of code position, it undergoes@cess called pull-in, where it
fine-tunes the estimated code position. Once it has adjtiséeldop enters a state known
a tracking, where it is providing a sufficiently accurate e@dtimate, in terms of temporal
position, to effectively despread the received DSSS wamefd he required code tracking

accuracy varies with system requirements.

Code tracking is generally performed using PLL techniquese most commonly
used architecture employs two parallel branches, inctudime representing an early (ad-
vanced) version of the current code estimate and the otlpeegenting a late (delayed)
version of the current code estimate. This architecturensna as a Delay-Lock Loop
(DLL) [32] and is the focus of this research. DLL implemermdas can be categorized
as being either coherent or non-coherent. A coherent DLk ksewledge of the received
signal carrier frequency and phase to perform trackingrdfoee, the signal may be down-
converted with the code tracking occurring at baseband.adewyin many situations it can
be difficult to estimate and track the carrier phase withasgt fracking the code for ef-
fective despreading. For this reason, the analysis in tisgedation concentrated on the
non-coherent DLL, which typically operates at an intermagelil frequency (IF) and does

not require or assume knowledge of the carrier phase.
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Figure 2.10: Typical elements of non-coherent Delay-Lookp (DLL) [25].

The typical elements for implementing a non-coherent DL& sttown in Fig. 2.10.
The two distinct parallel branches following the RF BPF aremeid to as thearly and
late gate branches. These two branches are functionally egaivaéginning with the left-
most despreading mixer and ending with the right-most LPFaMdistinguishes the two
branches is that the estimated code from the code genesatiher delayed (arrives late)
or advanced (arrives early) by some fixed amount before tsgipgied to the despreading
mixer. One intuitive way to understand DLL functionalitytts observe how the time and
frequency domain responses of a given input signal are nedd#fs the signal progresses
through the DLL. Given the early and late gate branches aeifunally equivalent except
for a code timing offset, the process is illustrated usingt) to represent either the early

or late gate code.

Received signas, (t) = d(t)c(t)cos [2m(f. + fa)t], wheref, is the transmitted car-
rier frequency and, is Doppler frequency shift, is first passed through the DLL RFFBP
Given an RF BPF bandwidth & zr = 2R,,;, and an arbitrary portion of,.(¢) that spans
two chip intervals, the DLL RF BPF produces the filtered time ft|rduency domain re-
sponsess; (t) andS;(f), shown in Fig. 2.11 and Fig. 2.12, respectively. Selectibthe

RF BPF bandwidth is usually related to the main spectral respohthe received signal.
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This allows the filter to pass most of the desired signal gneigile blocking undesired
signal and noise responses falling outside the band ofasteNotice in Fig. 2.11 that less
than ideal filtering removes the ideal rectangular shapesadhe chip boundary and that

only the main spectral response remains in Fig. 2.12.

The remaining signal is then multiplied by an offset versabthe baseband PN code.
The time domain resul;(¢) is shown in Fig. 2.13 and the frequency domain reSultf)
is in Fig. 2.14. The important observation at this point ssaa the frequency domain,
where one can see that spectral lines are created at hasyajriite code repetition rate,
R.. The magnitude of the spectral lingfais used for code tracking. If the code is perfectly
tracked, this spectral line will have the same magnitudeoih the early and late branches
of the DLL. If it is not perfectly tracked, then the magnitualethis spectral line in the two

branches will differ.

To recover the desired spectral line faf the signal is passed through the IF BPF.
The bandwidth of this filter should be as narrow as possibtertmve unwanted noise and
harmonic effects, while being wide enough to ensure suffidesired signal energy passes
given that received signal frequency. & f,) is not precisely known. The resultant time
and frequency domain responses of the DSSS signal at the PBPF outputss(¢) and
S3(f) are shown in Fig. 2.15 and Fig. 2.16, respectively.

The magnitude (envelope) of the DLL IF BPF output effectivelgresents a measure
of correlation between the received PN coded waveform am@®ttL estimate of the same.
The envelope is extracted using a basic energy detectiaregsacomprised of a squaring
operation(e)? followed by lowpass filtering (LPF). The result of applyirdg operation to
the signal in Fig. 2.15 yields the time and frequency domegponses shown in Fig. 2.17
and Fig. 2.18, respectively.

The filtered difference between the early and late gate graetector outputs, or
discriminator output, provides a measure of relative cdtkebbetween the received and
internally generated codes. The loop filter design is higigplication specific and aims

to maximize overall DLL stability. The discriminator outpeontrols the numerically con-
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BPF output.

22



S9 (t)
e}

k Tchip
Time
Figure 2.13: Unfilteredtime domain response adfespreadDSSS signal
after multiplication byc(¢) under perfect code tracking conditions.
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Figure 2.14: Unfiltered frequency domain response déspreadDSSS
signal after multiplication by:(¢) under perfect code tracking conditions.
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Figure 2.15: Filtered time domain response diespreadDSSS signal at
DLL IF BPF output under perfect code tracking conditions.
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Figure 2.16: Filtered frequency domain response aéspreaddSSS sig-
nal at DLL IF BPF output under perfect code tracking condgion
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trolled oscillator (NCO) which drives the PN code generatdrthe current state of the
internal code generator perfectly matches the received,db@ discriminator output is
zero and no change occurs in the NCO. Whenever the internalgmusrator state does
not perfectly match the received code, a non-zero signexdichismator output is produced
and the DLL code generator advances or delays its output@ogly (changes the code
phase). For example, if the early gate correlates morelgl@agth the received signal the
discriminator output becomes positive and the NCO frequammgases. Likewise, if the
late gate correlates more closely with the received sidmatltscriminator output becomes
negative and the NCO frequency decreases. Thus, the DLL staaty adapting to signal
and channel conditions. This adaptation is desirable whempensating for actual varia-
tions ins,(t) such as changes in carrier frequerfcyand Doppler frequency,. However,
DLL tracking variation due to noise and/or interfering saégis generally undesirable. The
DLL output discriminator response for changing signal abods is generally described as
anS-curve An ideal S-curveresponse is shown in Fig. 2.19 for the case where no channel

noise or interfering signals are present.
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Figure 2.17: Time domain response of DSSS signal at the guetgc-
tor output showing that double frequency and higher-or@emionics have
been suppressed.
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Figure 2.18: Frequency domain response of DSSS signal aribey
detector output showing that double frequency and highéerdharmonics

have been suppressed.
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Figure 2.19: Ideal S-curve response: DLL discriminatorpatitversus
code phase offset between the received and DLL estimatexs¢ad].
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2.2 Optimization Techniques

Optimization techniques attempt to maximize or minimize tesponse of a math-
ematical model that represents a given physical system.niditkematical function to be
maximized or minimized is called thabjective functionwhich represents the system re-
sponse to a particular set decision variables The relationship between the objective
function and the decision variables is described by mpdehmetersandconstraints In
general, there may be many combinations of decision vasathiat satisfy the constraints,
the collection of which is known as tHeasibility region Therefore, an optimized solution
for the system is the “best choice” of decision variablesfddawithin the feasibility region

— the particular definition of “best choice” is problem-sihied18].

2.2.1 Genetic Algorithm (GA). There are many optimization techniques which
may be applied to a particular problem, with each havingvts strengths and weaknesses.
One large class of techniques is knowrhasristic methodg/hich generally attempt to find
a “good” solution without necessarily striving to guarantptimality [18]. While heuristic
techniques tend to be very problem-specific, there are aftlaofdmetaheuristianethods
which may be applied to a broader range of problems. The GAéspmpular class of
metaheuristics which simulate the biological evolutiongass by describing the decision
parameters using a binary string calledene The GA process essentialigatesgenes
from an available population and retains the strongéfspringfor subsequent mating in
the new population. Son@arentsare retained in the new population and the possibility of

mutationwithin offspring permitted [18]. The GA process can be sumnpeal as follows:

1. The initial GA population is randomly generated and géagsed using the process
illustrated in Fig. 2.20. The fitness of each generated getieen calculated to ensure
itis in the feasibility region. If in the feasibility regiahis retained, else, itis rejected

and another gene replaces it.

2. Some number of most fitr{) and least fit {) genes, for(l + m) a multiple of two,
are selected from the population to serve as parents. Thetsdlparents are then

randomly paired for mating to create: + 1) /2 parent pairs.
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Parameter A E————) | 00 1 1

Parameter B =) 0 1 0 1

V

Gene m———) | 01010011

Figure 2.20:  GA genes assembled for the initial populatisimgi two
parameters with randomly generated binary digit values.

3. The binary digits of the parent genes are compared to geneffspring as shown
in Fig. 2.21. When binary digits in the parents match, theiresponding values are
passed directly to the offspring. When the binary digitsediffindicated by thex
elements in the figure), the offspring digit values are ranigcassigned with equal

probability.

4. In addition, each digit in the selected offspring is satgd to some likelihood of
mutation, i.e., there is some chance that its final valuensptemented as illustrated

in Fig. 2.22.

5. A new gene population is formed by retaining some of thegiptsly mated parents

and their offspring.

6. The selection-mating-selection process in Step 2 thir@&@igp 5 is repeated for sev-

eral iterations (generations) until an exit criterion istme
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Gene 1 m——)-| 0 1(0|1 00 1|1

Gene 2 m—)p>| 0 1|11 00 1|0

Offspring ——— - 0 1(X[1 00 1[X

t ®

Choose Randomly

Figure 2.21:  GA offspring generation process using a chpaeent gene
pair from the population. The boxed columns denote disainparent val-
ues where offspring values are randomly assigned. Matghangnt values
in unboxed columns are assigned directly to the offspring.

Offspring n———)-| 0 1(0{10010

Offspring m———p-| 01(1(10010

t

10% Random Bit Change

Figure 2.22:  GA offspring mutation process. Each offspdigjt is sub-
jected to some likelihood of mutation.
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2.2.2 Response Surface Methodology (RSM)RSM is a statistically-based al-
ternative to GA optimization and proven itself in industeaperimentation and typically
involves quality control. However, it is believed that tksme approach may be useful in
other types of engineering applications, including wauefaesign. Given it has a solid
foundation in linear systems theory, it is readily accdsditr communications design and

consists of the following components [22]:

1. Design of Experiments (DOE), Section 2.2.2.1: A processétting up experiments
to ensure proper collection of data. If designed corretlly, experiment provides
data that may be used for linear regression modeling anddaity&is of Variance

(ANOVA) processing [7,22].

2. Linear Regression Modeling, Section 2.2.2.2: Used in RShttonate the shape of
a response surface. If the response surface contains ere\ater the tested region,
the surface model may be used to solve for an optimal poitthelsurface does not
contain curvature, the regression model may still be usegaoch for a region that

is quadratic [22].

3. Analysis of Variance (ANOVA), Section 2.2.2.3: A statisi analysis tool used to
statistically compare the mean values of collected datae ANOVA process is
closely related to linear regression modeling and may be tsealidate a given
regression model, or to determine the significance of varimodel elements, in-
cluding the presence of curvature in the response surfacecl@ions drawn from
the ANOVA process are based on the assumption that the edsidta is normally

distributed and that the population variances are equaPb]7,

4. Residual Testing, Section 2.2.2.4 through Section Z.2xovides methods for test-
ing ANOVA residual data distributions to verify whether ootrthe normality as-
sumptions are satisfied. If the assumptions are not satisfenbus transformation

techniques can be applied to remedy violations [14,22].

5. Comparative Testing, Section 2.2.2.8: The ANOVA null hyysis is that the mean

values of the tested populations are equal. If the null Hyg&is is rejected (means
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are not equal), at least one of the population means iststatig different. In and
of itself, the ANOVA process does not provide insight as tachlpopulation(s) are
different. Thus, additional comparative testing is regdito make this determina-
tion [14,22].

2.2.2.1 Design of Experiments (DOE).DOE is a process that allows exper-
imenters to craft trials that can statistically charazeor optimize a process or a system.

The system under test may often be modeled as a linear prgiwessby [22],

Y =X3+e, (2.8)

whereY is the system responsk, is a matrix representing combinations of input parame-
ters, is the system model, ards random error. Several goals may be accomplished with
a design such as this. First, one may determine if the systedel adequately describes
true system behavior. Second, one may be able to establisitlel @stimate3. Third, if

/3 can be determined, one can gain knowledge to optimize respprgiven parametric

variation inX [22].

The input parameters in matrX are often expressed in terms of coded variables [22].
This is done by mapping between natural variables and codedeters iX. The input
variables in this dissertation will generally be the SMSEvefarm design variabled/s
andAf. Given these variables, a representative mapping from Sp&meters (natural

units) to DOE coded units is shown in Table 2.1.

Table 2.1: Representative mapping from SMSE variables
(Ny, Af)to DOE coded variables:(, z5).

Factor Level| Ny | o1 | Af |

Low [ -1 17 | -1
High 321 1| 15 1
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By way of illustrating the use of (2.8) with the mapping in T@BL1, consider a first-
order model with interaction. In this case, each elementéwectorY can be expressed

as

yo1 = Bo + i1 + Boxo + Sraxiza + €. (2.9)

Using this model to test the conditioW; = 32 andA f = 17, the corresponding mapped

values ofr; = 1 andz, = —1 from Table 2.1 are used such that (2.9) is expressed as

y = FBo+ Bi(1) + Ba(=1) + Br2(1)(—1) +e.

A design that would test all possible combinations &% ( A f) as given in Table 2.1 is

called afull factorial design[22] and would include all elemen® given by

yiu = Bo+ i(—1) + Fo(—1) + Bra(—1)(—1) +e¢
yiz = SBo+ Bi(—1) + Bo(1) + fra(—=1)(1) + e
yor = Bo+ (1) + Go(—1) + Bra(1)(—1) + e

(

Y22 = Bo+ Fi(1) + Ba(1) + Br2(1)(1) +e.
This set of equations may be expressed in the matrix forrndiyg2.8) using

Y1

vy | (2.10)

Y21

Y22
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1 -1 -1 1
1 -1 1 -1
Xpp = , (2.11)
1 1 -1 -1
1 1 1 1
and
Bo
s | | (2.12)
B,
X

where subscript values ¥ and( correspond to ordered coded variables (x2) andXgg

denotes a full factorial design.

If experimental replication is desired for statistical gsés, which is often the case

for optimization, the input parametersXgr may be repeated. This is accounted for using

XFF
X
o (2.13)

XFF

whereX now represents the total experiment &g represents one repetition of the full
factorial design [22]. As provided, the expressions in)23.10), (2.11), and (2.12) pro-
vide a full experimental description that may be used diydctanalyze system response
Y [22].

2.2.2.2 Linear Regression Modeling. Once an experiment has been com-

pleted according to (2.8), the system respovigeollected data) may be used to generate a
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model estimate’. This may be done usinglimear regressiorprocess by solving the least

squares normal equation given by [22]

A=(X"X)X"Y, (2.14)

with the predicted values & then given by

Y =X3. (2.15)

The resultantesidualse (error) are then calculated as the difference between tlected

and predicted values a&f according to [22]

e=Y-Y. (2.16)

If the model estimaté provides a good prediction of resporigaiven inputX, then
the residual elements iwill be normally distributed random variables. Furthermadhe
variance ofe under each condition iiX should be approximately equal [22]. Tests for
guantifying normality and variance equality among thedeal elements are described in
Section 2.2.2.5 and Section 2.2.2.6, respectively. If thelehestimate? indicates there
is curvature in the response surfa¥eit may be used to optimiz¥, i.e., 5 may be used
to specify optimal input parametersXito either maximize or minimize response surface
Y [22].

Two 3 models are particularly useful for RSM: the second-orderehadd the first-

order model [22]. The second-order model is given by

y = Bo + Bix1 + Boma + Broz1T2 + Bix; + Poos . (2.17)

If the estimated model parameters from (2.17) adequatalyribes the data (as determined

by the ANOVA), then the surface is assumed to contain cureand optimal input param-
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etersz; andx, may be calculated. Using elements expressed by (2.17)etiond-order

model may be expressed in matrix form as

Y = 6o+ XTb + XTBX (2.18)
where
x=|"1,
T
b= ﬁ ,
B
and
po | %
B

A stationary pointfor the second-order model is given by [22]

1
Xs=—3B7'b. (2.19)

The derivation of stationary poifX is accomplished by setting the derivative of the es-
timated model3 to zero and solving foX [22]. Therefore, the stationary point must be
tested to determine if it creates a maximum, minimum, or Eagldint in response surface

Y. This is done using Eigenvalue analysis. If all EigenvaloieB are positive X mini-
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mizesY. If all Eigenvalues are negativiX, maximizesY. If the Eigenvalues signs fd

differ, the pointXy corresponds to a saddle point ¥n[22].

If, however, when using the second-order model of (2.17jekaltant ANOVA does
not determine the response surfaCeontains curvature, a first-order model of the follow-

ing form may be used [22]

y = Po + b1 + o . (2.20)

In this case, the path of steepest ascent/descent, given by

AIl _ AZL‘Q (2 21)

e B2

may be followed in subsequent experiments until the searddr model becomes appro-

priate. Then, a stationary point may be found by (2.19) [22].

2.2.2.3 Analysis of Variance (ANOVA). The ANOVA process is the heart
of DOE optimization. ANOVA is a statistical technique whiakes the sample variances
of a data set to test the impact of input parameters on an brgpponse variable. Specif-
ically, given an experimental desigd and mode|3, the ANOVA process uses the sample
variances to test the null hypothesis, i.e., “Are the medmsfi@rent conditions described
by the model equal?” Thus, rejection of the null hypothesiglies that at least one of the

means are different [22].

There are many ways to interpret a null hypothesis rejectiarthis analysis, the
ANOVA is primarily used in two ways. First, rejecting the hbypothesis with respect to
the entire regression model signifies thadequately describes the process [22]. Second,
the ANOVA is used to evaluate the individual input parametdiX. In this case, rejecting
the null hypothesis for an given input parameter indicates parameter has a significant
effect on response surfadand should be included in the model for optimization [22]. As

a result, ANOVA provides insight into the response surfdwgpe by including appropriate
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model terms while eliminating those that are inapproprifitee ANOVA process begins by
assuming a model for the test data [7]. For this illustratibe assumed model scond-

order and expressed as [22]

Yijk = Lo+ Bz, + PaTa, + [raT1, T2,

+ 511561. + 522963]. + €ijk » (2.22)

wherey is the response variabléy;, z,) are coded input variables, thieterms represent
regression coefficients amdepresents the error. Thand; subscripts correspond to index
values ofz; andx,, respectively. Thé& subscript represents the experimental run number.

The expression in (2.22) may be expressed more compacthainxform as

Y =XB+e. (2.23)

Essentially, the ANOVA process performs a least-squared fite data to the model by
applying [7,22]

4= (XTX) ' XTY . (2.24)

Substituting this estimate fgt into (2.23) yields a regression model of the form

Y =X3=X(X"X) ' XTY, (2.25)

with the resultant error given by

e=Y-Y. (2.26)

After the least-squares fit to the data, the sample variaagaurtitioned into sub-

spaces corresponding to the main effects, interactioneand The main effects variance
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and interaction variances are compared to the error vaiaa@art of a significance test
to determine their relative importance to the model. Morecdrally, assuming that the
underlying model error is Gaussian, the ratio of a givendigstsample variance to the
error's sample variance will be distributed according te fhdistribution. Tabulated”
distribution values may then be used to provide probaddithat the given factor under
test is significant and should be included in the model. Trgelathe value of test statis-
tic F, the more reasonable it becomes to reject the null hypaldsqual means. An
alternative approach usegaalue which represents the probability that the stati&gics
the result of a population that corresponds to the null Hygsis. If thep-value is small, it
casts doubt on the null hypothesis. Therefore, ANOVA presid tool for deciding which
factors and interactions are most important in a given syst®del, a task which is often
left to intuition [7,22]. More detailed information regamd ANOVA processing can be

found in [22].

2.2.2.4 Normality and Variance. The normality and equal variance as-
sumptions that were noted in Section 2.2.2.2 and Sectio@.3.3re important to both lin-
ear regression modeling and ANOVA processing [22]. Theofalhg subsections address

each of these conditions.

2.2.2.5 Normality Testing. The residuals are assumed to be normally
distributed [22] in linear regressing modeling and ANOVAeessing. A visual test such
as a probability plot, or a numerical method such as the $odfiilks test, can be used for

testing normality [14].

A representative normal probability plot of residuals iswh in Fig. 2.23. This is
essentially a plot of the residuals-éxis) versus the cumulative probability of the normal
distribution (/-axis). If the residuals appear to lie on a straight line they distributed

approximately normally [14, 22].

The Shapiro-Wilks test provides a significance test for radity[14]. In this case,

the null hypothesis is that the data is normally distribufBalexecute the test, the residuals
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Figure 2.23:  Normality test using residuals versus cunudairobability
of normal distribution. If residuals lie along a straightdithe data may be
considered normally distributed [22].

e are ordered such that < e; < --- < ey, WhereN, represents the total number of

residuals. Test statistid” is then calculated using

Ne
SP=> (e;—2)?, (2.27)
=1
%=, N.even
k= (2.28)
Nzl N, odd,
k
b= Z AN, —i+1 (eNe—H—l - €z‘) ) (2.29)
=1
bQ
W=, (2.30)

whereg in (2.27) is the residual mean and tabulated values,of; , ; in (2.29) are provided
in [14]. The resultant value dfiV from (2.30) is then mapped to a tabulatedalue which
can be found in [14]. Given that the null hypothesis is notyndilstributed data, a smah
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value from the Shapiro-Wilks casts doubt on this assumpgti@hcauses the null hypothesis

to be rejected [14].

2.2.2.6 Variance Testing. Variance equality testing can be done using a
Bartlett’s significant test. In this case, the null hypotkéasithat the residual variances

under all experimental conditions are equal.

Assuming there are variances to compare with each havingsamples, the total

number of sampled/, is given by

Ne=> n;. (2.31)
=1
To test the null hypothesis that = o3 = - - - = 02, the test statistig? is calculated by
1 a

= —1)S? 2.32
b e UL (2:32)

_ 2 : 2
q = (Ne —a)logy, (Sp) - Z(nz — 1) logy, (Sz) , (2.33)

=1

1 : -1 -1
— 1 DT (V=17 2.34
X2 = 2.3026 %, (2.35)

whereS? represents the sample variance of tiecondition in the experiment [22]. The
test statisticy? is used to find a tabulatggvalue from ay?_, distribution. If thep-value
obtained from a2 _, distribution is small, this suggests that the null hypoithebould be

rejected and the data does not meet the variance equalityticon[22].

2.2.2.7 Statistical Transformation. If the normality conditions and/or vari-

ance equality conditions in Section 2.2.2.5 and Sectior2Bare not satisfied, it may be
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possible to transform the data so the conditions are met.BbixeCox transformation is
one common transformation for accomplishing this. The Box-Cansformation is given
by [22]

A70 (2.36)
In(Y) A=0,
where) € R. As indicated, dat&” may be transformed using a range)ofalues. If a
value of \ exists such that the residuals of the transformed @ataeet the requirements
for normality and equality of variance, then linear regr@ssand/or the ANOVA may be
performed on the transformed dai&a[22]. However, if the residuals frork' still does not
satisfy normality and variance equality conditions, theksaof the data can be analyzed as
part of the ANOVA process. When ranks are used, the test is Rrasnthe Kruskal-Wallis
test [22].

2.2.2.8 Comparative Testing. The ANOVA process is a hypothesis test
that provides information about the statistical data mdansonditions under test. The
null hypothesis is that all means are equal and its rejeatidicates that at least one mean
differs from the others. However, in and of itself the ANOVAopess does not provide
an indication of which mean(s) is different. Comparativditgscan be performed to de-
termine this. In addition to providing information abouetANOVA results, comparative

testing is also important to quantify results of the optiatian process [22].

One visual tool for comparing population statistics fordam variables is the box
and whisker plot as illustrated in Fig. 2.24 [22]. This plbbg/s statistical properties of
the correlation degradation metiig,., under various SMSE parameter combinations. The
box and whisker plot is interpreted as follows for a given 3Vf&rameter combination:
2) the box midline represents the median value, 2) the toattdm box edges represent
quartiles for the25'" and75*" percentiles of the populations, and 3) the extreme “whisker
ends represent the minimum and maximum population valuas bdx and whisker repre-

sentation reveals general trends about the data means @nspdead [22].
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Figure 2.24:  Representative box and whisker plot showinguladion
medians (box midline), quartiles fas'* and 75" percentiles (box top and
bottom), and population extreme values (whisker ends) [22]

To formally compare the means of two normally distributeglja variance popula-
tions, at-test may be used according to the following [22]. Given ¢haren; samples in
thei*" population, withy, being the mean value for the ti#é population, test statistit

for the two mean case can be calculated as follows:

ng

=S g =12, (2.37)

k=1

(ny —1) St + (ny — 1) 53

2
_ 2.
S p— , (2.38)
f= Y2 (2.39)
Sp 1 + 1
ny n9

Test statistid, from (2.39) is used to find a tabulatgdvalue from &, ,,,, > distri-
bution. If thep-value obtained from thg,, .., o distribution is small, this suggests that the

null hypothesis should be rejected and the megarendy, do indeed differ [22].
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To compare means for more than two populations, the Leasiffs@nt Difference
(LSD) test may be used. Assuming there atetal means to compare with each based on

n; samples, the total number of sampl€sis given by

N, = Zn . (2.40)
=1

In this case, the LSD test for a full-factorial design is givey

2ele

LSD =t . ot] —eo
2Ne n(N. — a)

(2.41)

whereq is the significance level and= N, — a is the number of degrees of freedom [22].
When comparing any two populations in the experiment, thehyplothesis of equal means

(; = y,) would be rejected if the means differ by more than the LS0.[22
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[11. Methodology

In many respects, the goal of this dissertation is to devatapdemonstrate a set of tools
that waveform design engineers can use to design efficiantremication waveforms.
One of the basic tools adopted for this research is the SglgcModulated, Spectrally
Encoded (SMSE) framework as described in Section 2.1.1. SM8E framework has
been successfully used to mathematically describe vatymes of Orthogonal Frequency
Division (OFDM) waveforms. The quantitative nature of thRISE framework makes
it well-suited for applying design techniques from disgipk outside of communications
and/or signal processing. More specifically, the SMSE fraork enables a systematic
approach to waveform design frooperations researchk a field of study dedicated to the

various forms of optimization [18].

Coexistent interference occurs when two or more commumwicatystems operate
without orthogonality in frequency, time, space, polatia, and/or coding. With limited
available bandwidth, it is often necessary for signals &xsjally coincide while inducing
“manageable” levels of mutual interference. When user requents dictate fundamentally
different waveform modulations, the system design procedtten involves trial and error
to find waveforms which canoexist[25, 31]. As commonly employed in the operations
research field, th&enetic Algorithm(GA) and Response Surface Methodolo@@SM)
techniques, as described in Section 2.2.1 and Section 2ept&sent two approaches that
can be considered for waveform desmptimizationto provide a more structured, optimal

means for determining waveform design parameters [3, 4].

Each of these optimization techniques are employed hereetaodstrate SMSE
waveform design in a coexistent scenario containing an SKig§&al and a Direct Se-
guence Spread Spectrum (DSSS) system operating over ativedtfihite Gaussian Noise
(AWGN) channel. The DSSS system employs a non-coherent Eelaly Loop (DLL)
as described in Section 2.1.3 for code tracking prior to dataodulation. It is important
to note that the particular DLL implementation used herel e metric introduced in
Section 3.2.3 to characterize various tracking condit{pesfect and imperfect), are suffi-

ciently general such that the optimization demonstrattwerein are broadly applicable to
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other non-communication applications employing DLL triagk e.g., precision navigation,

timing, geolocation, etc.

The coexistent SMSE-DSSS waveform design process is deratets under two
conditions, including: 1perfectDLL code tracking as described in Section 3.1 anth®)
perfectDLL code tracking as described in Section 3.2. UngerfectDLL code tracking
conditions, the GA and RSM optimization processes are cersitindependently in Sec-
tion 3.1.3 and Section 3.1.4, respectively. In both casespptimization goal is to deter-
mine SMSE parameter values for the number of IFFT paWtand subcarrier spaciny f
such that DSSS bit error rafg is optimized (minimized or maximized). Undenperfect
DLL code tracking conditions in Section 3.2, the GA and RSMhteques are sequentially
combined into a hybrid optimization process that includEsthe GA process being ap-
plied in Section 3.2.4 to generate a “coarse” solution farahRSM processing, and 2) the
RSM process providing the final optimized solution in Sec8dh5. As in the perfect code
tracking case, the end goal is to determine(tNg, A f) pair that optimizes?,. However,
P, optimization (minimization or maximization) is actuallg@mplished through a Corre-
lation Degradation metri€’p., as introduced in Section 3.2.3. The statistical behavior of

Cpey is used to capture and characterize overall DLL code tracg@rformance.

3.1 Perfect DLL Code Tracking

3.1.1 Coexistent SMSE-DSSS ScenarioThe following signal conditions were

used for coexistent SMSE-DSSS scenario umpaefectDLL code tracking conditions.

The SMSE signal was generated according to the framewodkited in Section 2.1.1.
Two SMSE factors (design parameters) were varied for theraxents, including: 1) the
total number of IFFT pointsV,; and 2) the subcarrier frequency separatibfi. The re-
maining SMSE design parameters in (2.4) were fixed such thratentional OFDM was
implemented [34], i.essx = dx. The complex baseband OFDM symbols were generated
using independent BPSK data modulation on all subcarriet€arrier modulated tg, for
coexistent demonstrations. The carrier modulated SMSEfeaw occupies a total band-

width of We55 = 2 X Nf X Af and has a duration &fprpy = l/ROFDM = I/Af
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The SMSE data bits were randomly generated with equal priitlgabTherefore,
every transmitted SMSE symbol was random and there wereawatbit sequences used
to simulate frames, packets, etc. Finally, there was nacpeefix used for the waveform

design demonstrations and analysis.

The coexistent DSSS system used BPSK for both data and spgemadidulations.
For demonstration purposes, the spreading code wag. an 32-bit Hadamard sequence
with exactly one code period (32 chip intervals) occurrirgg data symbol. The DSSS
symbol duration wad,,, = 1 sec, and the symbol rate waB,,,,, = 1/Ts,, = 1 Hz.
Consequently, the chip rate w&sy,;, = N, X Ry, = 32 Hz. The DSSS receiver waer-
fectly synchronizetb the transmitted DSSS signal in terms of carrier trackingg{uency
and phase), spreading code tracking, and communicatiobayracking. An ideal RF fil-
ter was used and communication symbols were estimated asimgle channel correlation

receiver under Maximum Likelihood (ML) conditions.

3.1.2 Optimization Metric.  The optimization metric under perfect DLL code
tracking tracking conditions was end-to-end DSSS systgmas determined by Monte
Carlo simulation of a physics-based analytic model. The haskimed that the coexistent
SMSE and DSSS signals were spectrally coincident (samercéeiguency) and were
operating over an AWGN channel. Therefore, the resultant®BiSerrors are due to a
combination of channel noise and the coexistent SMSE sigt@aliever, the channel noise
power was fixed during both the minimization and maximizatemonstrations. Thus, the
DSSSP, curves in Section 3.1 correspond to bit error change as difumof interfering
signal power and optimized input SMSE parameters. The @sage not due to differing

noise power.

3.1.3 Genetic Algorithm (GA). Each combination of the two optimization input
parameters{;, A f) were represented using eight binary digits in a gene. Eurtbre,
the number of SMSE subcarriers was constrained to be aremnpegver of two withV; €
[1,128]. Similarly, the SMSE subcarrier spacing was assigned agéntvalue satisfying

Af € [1,33]. The feasibility region for optimization included all pdsie combinations
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of Ny and A f within these ranges. For the special caséVpf= 1, the resultant SMSE
waveform is equivalent to a single BPSK modulated subcaamerhas an RF bandwidth
of Wsnse = 2/Torpy = 2/Af, whereAf is used here and in presenting subsequent
Ny = 1 results to more appropriately refer to waveform bandwidid aot subcarrier

spacing. Finally, the objective function was end-to-en&BE&P,).

Consistent with the process described in Section 2.2.1, fprGcess proceeded as

follows:

1. The initial GA population consisted of ten randomly gexted genes.

2. Using Monte Carlo simulation of a physics-based analyticieh, the DSSS, was

calculated for each case to judge each gefiegss

3. For mating, four of the five most fit genes and two of the I&agenes were chosen
as parents. The resulting six parents were randomly askifgmemating, creating

three pairs of parents.

4. To mate, the binary digits of the parents’ genes were coedpdVhen the binary val-
ues of parent genes matched, the same values were passedftsgring. Where
the values differed, the offspring values were randomlysenowith equal probabil-

ity. Each pair of parents created two offspring.

5. After mating, each binary digit in the offspring’s genesgaibjected to a 10% chance

of mutation, or complementing the bit value.

6. The next population of ten genes included the six childred the four most fit
parents. The GA process then proceeded as it did with thalipievious population
of ten genes. For design demonstrations in this dissentatice GA process was

repeated for 100 generations.

The GA optimization process was used to both minimize andinmag DSSSP,.
Minimizing P, creates what could be called “peaceful” coexistence whag&imizing P,
creates worst-case coexistence conditions. Results forgifization undeperfectcode

tracking conditions are provided in Section 4.1.2.
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3.1.4 Response Surface Methodology (RSMJhe RSM process was also used to
optimize SMSE parameterd/{, A f) such that coexistent DSS§ performance was both
maximized and minimized. The RSM experiments assumed a damoler model as de-
scribed in (2.17). As a result, the experimental designistetsof a two-factor, three-level,
full-factorial design with four additional center runs. dleorresponding system model

from (2.8) for this demonstration is expressed as

1 -1 =1 111
1 =1 0 010
1 -1 1 =111
1 0 -1 00 1|, -
1 0 0 000 Po
1 0 1 001 P
Y=|1 1 -1 —-111 < (3.1)
1 1 0 010 Pro
1 1 1 111 P
1 0 0 000|L%2]
1 0 0 000
1 0 0 000
1 0 0 00 0]

The SMSE parameters were optimized using the steepesttasaent process described
in (2.21) until the response surface fit the second-ordermad determined by the ANOVA.
Once the second-order model detected curvature, (2.19ugextsto solve for the SMSE
parameters in terms of their coded variables. Results foR@BK! optimization process

underperfectcode tracking conditions are provided in Section 4.1.3.

3.2 Imperfect DLL Code Tracking

3.2.1 Coexistence Scenario. The following signal conditions were used for co-

existent SMSE-DSSS scenario undaperfectDLL code tracking conditions.
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The SMSE coexistent signal remained unchanged from thdtingbe perfect DLL
code tracking demonstration in Section 3.1.1. Once gam[B8SS system used BPSK
for both data and spreading modulations. However, the dprgaode used for demon-
stration was anV, = 1023-chip Gold code sequence with exactly one code period (1023
chip intervals) occurring per data symbol. The symbol rass wet toR,,,, = 1 kHz,
and therefore the chip rate was,;, = 1.023 M Hz. The DSSS receiver wgserfectly
synchronizedo the transmitted DSSS signal in terms of carrier trackinggiency and

phase) and communication symbol tracking.

The DSSS receiver used the non-coherent DLL described itiofez. 1.3 for code
tracking. A non-coherent DLL was chosen for demonstrative @ is suitable for gen-
eral purpose DSSS receivers without requiring preciseasdracking [25]. The DLL RF
filter was ang*-order Butterworth filter having a bandwidth equal to twice thip rate,
Wrr = 2Rcnip, = 2.046 M Hz. The bandpass filter following the despreading mixer in
the early/late DLL branches was a&ff:-order Butterworth filter having a bandwidth of
Wgpr = 5 kHz. The low-pass filter in the DLL energy detectors uself’aorder Butter-
worth filter with a bandwidth oV, pr = 2.5 M Hz. The loop filter was a first-order filter
with F,.,(s) = 1. The mapping between the discriminator output and the NCQinees,
such that a maximum response from the discriminator rasiuttea NCO code generation
rate of2R,,;,. Finally, the early (advanced) and late (delayed) code® weparated by

A._; = 1chip.
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3.2.2 Hybrid Optimization. The perfect DLL code tracking demonstration in
Section 3.1 only accounted for a portion of the errors assediwith coexistent interfer-
ence. Under more realistic conditions, imperfect DLL codeking due to interfering
signals will further degrade DSSE, performance [15, 16]. The imperfect code tracking
demonstration is designed to help isolate code trackiray effects resulting from a coex-

istent SMSE waveform being received by the DSSS system.

Unlike the perfect DLL code tracking demonstration in SattB.1, the GA and
RSM optimization processes are not performed independenter imperfect tracking
conditions. Rather, they are used to complement each otimeg ashybrid optimization
approach. In this process, the GA process is first used todete an initial “coarse” solu-
tion that is then passed to the RSM process which determiedatl optimized solution.
This approach is advantageous for several reasons. Rirsty that GA is naturally a dis-
crete process, it performs best at describing and optiQi3MSE design parameters that
are discrete as well, e.g., the number of IFFT poiNis Second, GA solutions are less
accurate when the gene mapping is for continuous variables) as subcarrier spacing
Af. In this respect, the RSM process is most advantageous d&/eplutions are based
on a modeled surface response and the resultant optimikeitbeds not necessarily part
of the input test matrix. However, one limitation of the RSMb@ess is that it requires a
good starting point or the search process may become toonged. Therefore, the final
hybrid approach for optimizing/\(;, A f) selection exploits the strength of each process
and consists of 1) using GA first to determine the most appatgN; value, followed by

2) the RSM process to find the optimizedf value associated with the GX value.
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3.2.3 Optimization Metric. To isolate the impact of a coexistent SMSE signal
on DSSS code tracking performance, an optimization medriotroduced. In this case,
optimization is based on DLL code tracking performancewgend-to-end DSS8B,. The

DSSS Correlation Degradation metric is defined here as

NCTC
Cpeg =1— / ci(t)e,(t)dt (3.2)
0

wherec,(t) is the DLL prompt code estimate shown in Figure 2.4Q¢) is incident re-
ceived code and integration is carried out over one full queteod N7, (N. 1. = Tym =
1 msec for this demonstration). The minimum value ©f., = 0 indicatesperfectcode
tracking, a value of) < Cp., < 1 indicatesimperfectcode tracking, and a maximum
value of Cp., = 1 indicates a DLL break-lock condition. Representative lgsims for
Cpeg in (3.2) under imperfeananageablend imperfecseverely degradeBLL tracking

conditions are shown in Fig. 3.1 and Fig. 3.2, respectively.

3.2.4 Genetic Algorithm (GA). Each combination of the two optimization input
parameters {;, A f) were represented using nine binary digits in a gene. Intiadi
the parameters were constrainedNe € {16,32,64,128} andAf € [6,133] NZ. The
feasibility region was defined such that the total SMSE digaadwidth was less than the
DLL RF filter bandwidth (V;A f < 2.046 M H z). The optimization objective function was

the the correlation metri€p., given in (3.2).

Consistent with the process described in Section 2.2.1, fprGcess proceeded as

follows:
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1. The initial population consisted of ten randomly gerextagenes.

2. Using a physics-based analytic modg},., was calculated for each case to judge

the genesfitness

3. For mating, four of the five most fit genes and two of the I&agenes were chosen
as parents. The resulting six parents were randomly assifgmanating, creating

three pairs of parents.

4. To mate, the binary digits of the parents’ genes were coathbdVhen the binary val-
ues of parent genes matched, the same values were passedfésgiing. Where
the values differed, the offspring values were randomlyselmowvith equal probabil-

ity. Each pair of parents created two offspring.

5. After mating, each binary digit in the offspring’s genesgaibjected to a 10% chance

of mutation, or complementing the bit value.

6. The next population of ten genes included the six childied the four most fit
parents. The GA process then proceeded as it did with thalipievious population
of ten genes. For design demonstrations in this dissentatice GA process was

repeated for 1000 generations.

The GA process was used to both minimize and maximize the @$SS Minimiz-
ing C'p., corresponds to “peaceful” coexistence while maximiziyg., creates a worst-
case coexistence scenario. The GA output included ten SMSEXf) parameter com-

binations for both the minimization and maximization caddgese final populations were
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compared using multi-comparison tests from Section B2 Qptimization results for this

process are found in Section 3.2.4.

3.2.5 Response Surface Methodology (RSM)Given that the GA process pro-
vided a “coarse” solution that maximized and minimizeg.,, the RSM was next used to
obtain final optimization results. Sin¢é, is a discrete parameter and every value is tested
in the GA process, the GA-optimized values féf were accepted. The RSM process was

then applied to find corresponding optimized valuesAgr.

As in the perfect code tracking case, the RSM experiments thhge8NOVA with a
second-order model to detect curvature in the responsacgurHowever, there was only
one input variable in the modet;. Consequently, the experimental design consisted of a
one-factor, five-level, full-factorial design. The matform of the system model from (2.8)

is then expressed as

1 -2 4
1 -1 1 5o

Y=|1 00 G (3.3)
11 Bt
1 2 4

The SMSE parameters were optimized using the steepesttaiasaent process de-
scribed in (2.21) until the response surface fit the secaddranodel, as determined by the
ANOVA. Once the second-order model detected curvatur@9f2vas used to solve for the
SMSE parameters in terms of their coded variables. Finaltefor the RSM optimization

process undemperfectcode tracking conditions are provided in Section 4.2.3.
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V. Resultsand Analysis

The SMSE waveform design procedure is demonstrated in tapter under two code
tracking conditions, including perfect code tracking amgbérfect code tracking. In both
cases, the SMSE waveform is introduced into the DSSS systdmeaultant DSSS bit error
rate (P,) performance characterized as the SMSE parameters aeel vaimdeperfect code
tracking conditions in Section 4.1, the DSSS receiver is assumed totana perfect code
tracking such that the DLL produces an ideal prompt cgd# for despreading. Optimal
SMSE parameter selection is addressed using independaetiGalgorithm (GA) and
Response Surface Methodology (RSM) approaches. Ungmrfect code trackingondi-
tions in Section 4.2, DLL code tracking is incorporated teess performance under more
realistic channel conditions using a less than idggl) estimate. Optimal SMSE parame-
ter selection under these conditions is addressed usingradif3A-RSM technique. The
reader should exercise caution when comparing optimizagsults across various sec-
tions in this chapter. This is especially important whensidering perfect and imperfect
DSSS code tracking results, given they were generated dssgnilar SMSE and DSSS
parameter values as well as different objective functiorsfaasibility region constraints

during optimization.

4.1 Perfect Code Tracking

4.1.1 Demonstration Procedure. The SMSE waveform design procedure is first
demonstrated in a coexistent environment urfectDSSS code tracking conditions.
In this case, the estimated DLL prompt cogl¢t) is considered to be ideal such that the
DSSS receiver despreading code perfectly matches theniied spreading code. Opti-
mal SMSE parameter selection is addressed using indepe@deand RSM approaches.
The goal is to find SMSE parameter values that optimize DS8&wer performance in

terms of end-to-end bit error raté&).

4.1.1.1 Coexistent SMSE Signal. The coexisting SMSE signal was gen-
erated using the framework described in Section 2.1.1 altveo of the parameters fixed

to implement conventional OFDM [34]. Performance of an SM3EDM implementa-
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tion is dictated by two design parameters, including thaltotimber of IFFT pointsVy,
which dictates the number of individual SMSE subcarrierg] the subcarrier frequency
spacingA f. Together, the value of these two parameters determinas/édrall waveform
bandwidth.

4.1.1.2 Overall DSSS System. The DSSS system considered here uses
BPSK for both data and spreading modulations. The spreadidg was aV, = 32 bit
Hadamard sequence with exactly one code period occurringgia symbol. The DSSS
P, performance is evaluated over an Additive White GaussiarséNOAWGN) channel.
The DSSS receiver employs an ideal RF filter prior to the desjing mixer. Following
the despreading mixer, the communication symbols are astnusing a single channel

correlation process under maximum likelihood conditions.

4.1.2 Genetic Algorithm (GA). The analytic SMSE framework enables paramet-
ric optimization of OFDM waveforms using a GA process. Aseatbpreviously, the two
SMSE optimization parameters included, 1) the number oT Ip&ints in the SMSE wave-
form generation §), and 2) the subcarrier frequency separatidry). Each GA gene
used eight binary digits to represent the possible SMSEnpetier values. Furthermore,
the value ofN; was constrained to be an integer power of two in the rang&8§l., 1For
representation in the GA gend,f was assigned an integer value in the range [1,33]. The
objective function to be optimized was DSSS bit error i3teFor demonstration purposes,
the GA optimization process was carried out for two case3MiimizingDSSSPF, which
represents best-case SMSE-DSSS coexistence perfornaac@3)MaximizingDSSSP,
which represents worst-case SMSE-DSSS coexistence penfice.

For both cases, the initial GA population consisted of temcemly generated genes.
Using Monte Carlo simulation of a physics-based analytic ehotthe DSSSP, was cal-
culated for each case to judge the gerfésess with the DSSS systen®, value being
the fitness statistic. Tabulated GA results for the two ojz@tion cases are presented in
Table 4.1 and Table 4.2 [3]. Each table includes the iniaaldom population values and
the final optimized values. Table 4.1 shows the GA optimizadmeter values thatin-
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imize DSSSP, (best-case SMSE-DSSS coexistence) and Table 4.2 shows BAi zgul

parameter values thataximizeDSSSF, (worst-case SMSE-DSSS coexistence).

Corresponding bit error curves for the data presented ineTéldl and Table 4.2 are
shown in Fig. 4.1 and Fig. 4.2, respectively [3]. In both sagke signal powery) and
the noise powerl) in the DSSS system remained fixed while the interfering SN&&er
(7) was varied to achieve the indicated Signal-to-Interfeeeplus-Noise Rati®/ N R =
S/(I+ N).

GA optimized results for Minimum DSS®, are shown in Fig. 4.1. The upper
curve (unfilled boxes) is provided for comparison and shdveshighest resultan®, per-
formance obtained from the initial non-optimized parametgpulation. The lower curve
(filled boxes) is the resultarit, performance using the final GA-optimized parameters from
Table 4.1 (V; = 64, Af =11 Hz, Wsysp = 1.41 K H~z) and represents best-case coex-
istence. In this case, tH&'s),sx bandwidth greatly exceed¥rr = 2 X R = 64 Hz
and minimal received SMSE power actually enters the DSS&:ttet Consequently, the
P, results approach the noise limited case, i.e., the reduliais the same as if there were
no SMSE signal present. This result is a direct consequédribe deasibility region being
loosely constrained and allowing solutions whére,,;sz > Wgrr. As such, there are ad-
ditional GA solutions in Table 4.1 that were analyzed anddpo®d similar noise limited
results, e.g., thel\; = 128, Af = 11 Hz, Wsnse = 2.82 K Hz) solution uses the same

subcarrier spacing with more carriers and an even widervoitial.

GA optimized results for Maximum DSSB, degradation are shown in Fig. 4.2. The
lower curve (unfilled boxes) is provided for comparison ahaves the lowest resultarf,
performance obtained from the initial non-optimized pagtan population (noise limited
performance). The upper curve (filled boxes) is the resufaperformance using the final
GA-optimized parameters from Table 4X (=1, f = 16 Hz, Wsysg = 32 Hz). Thisis
the special case df; = 1 (single BPSK modulated subcarrier centered.aind produces
worst-case coexistence. Given the resultant bandwidtiVef;sr = 32 Hz, all SMSE

power is withinWzr = 64 Hz and contributes to degraded performance. In addition to
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Table 4.1: Initial and optimized SMSE parametric value gapons us-
ing the GA process tMINIMIZE DSSS probability of bit error#,) — Best-
Case SMSE-DSSS Coexistence Performance [3].

Ny Af (kHz)
Initial | Optimized| Initial | Optimized
128 64 20 10
2 128 28 11
16 128 28 4
8 64 29 22
128 8 5 1
64 64 4 8
8 128 21 11
1 128 5 11
64 64 19 23
8 64 18 11

Table 4.2: Initial and optimized SMSE parametric value gapons us-
ing the GA process tMAXIMIZE DSSS probability of bit error /) —
Worst-Case SMSE-DSSS Coexistence Performance [3].

Ny Af (kHz)
Initial | Optimized| Initial | Optimized

128 1 20 16
2 4 28 16
168 32 28 13
8 1 29 16
128 1 5 32
64 1 4 16
8 1 21 16
1 1 5 16
64 1 19 16
8 1 18 16
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power, theP, degradation is also attributable to the spectral §ff)c= sin (f) /f response

of the SMSE waveform and the spectral structure of the DS$&dmg signal. More
specifically, the discrete spectral lines in thig= 32-chip DSSS spreading code are spaced
fenip = Renip/N. = 1 Hz apart [25] and there ard’rr/ foni, = 64 total lines inWgp =

2 X Repyp = 64 Hz, or 32 total lines inVgy s = Wrrp/2 = 32 Hz. The impact of this

is illustrated by considering the power spectrum at the kgpng mixer output (DSSS
detector input) in the DSSS receiver, which is the convotutf the spreading code spectral
lines and the SMSE subcarriers. For the shift-multiplygrate operations of the spectral
convolution process that occur ne@ythere are 32 contributing products in the correlation
result. As aresult, the amount of power in the “despreadtspkresponse that falls within
the DSSS detector bandwidti(., = 2 x R,,,,, = 2 Hz) is maximum and the interfering

SMSE signal has maximum impact on DS8Sperformance.

4.1.3 Response Surface Methodology (RSMJhe RSM was the second approach
considered to optimize SMSE parameter selection undee@efSSS code tracking con-
ditions. In this case, the experiments assumediheesponse surface fit a second-order

model given by

Y = o + bix1 + [axXa + [r2X1Xe + f11X11 + [22X22 (4.1)

To properly characterize this model, the experimentalgresonsidered a two-factor, three-
level, full-factorial design with four additional centarns. The matrix form of the experi-

mental design is given by
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The mapping from SMSE parameter variablég (A f) to coded variablesr, x;)

for the initial and final RSM experiments is shown in Table 4@ &able 4.4, respec-

tively [4]. The final results were obtained using the methbsteepest descent.

Table 4.3:  Mapping from SMSE parametei$;( A f) to coded variables

(z1, ) for theinitial RSM experiment [4].

Factor Level| Ny | o1 | Af | 2
Low 23 1 -1 17 | -1
Medium 2210|1610
High 21115 ] 1

Table 4.4:  Mapping from SMSE parameteis;( A f) to coded variables

(z1, x2) for thefinal RSM experiment after applying the method of steepest

descent [4].
Factor Level| Ny |z | Af |z,
Low 2t | -11]16.37 | -1
Medium 2210|1587 0
High 231 1]1536 | 1
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Table 4.5:

ANOVA table for initial and final RSM trials [4]

Source of| Degrees of Initial Final
Variation | Freedom | p-value p-value
Model 5 3.8x 1076 | 2.1 x 10~*
T 1 1.6 x 1078 | 1.0 x 1075
To 1 1.0x 107" | 1.4 x 107!
129 1 3.1x 1071 | 2.5 x 1072
72 1 6.6 x 1073 | 1.5 x 107°
3 1 3.8x 1071 | 1.2 x 1072
Error 7

Table 4.5 shows ANOVA results for the initial and final RSM esipeents [4], with
the table rows representing main effects and interactiaosrding to the experimental
model. Thep-value indicates the significance for each factor. The smdlie p-value,
in a given row, the more likely that term is significant. Foe ttnials illustrated here, a
p-value < 0.05 was considered significant, and results in rejection of tiNOXA null

hypothesis of equal means.

As one may observe, results for first RSM trial indicate thatr'sponse surface was
not quadratic given thg-value > 0.05. After moving to the final region, both of the’
andz2 quadratic terms are significant and the stationary peinfound using (2.19), is
determined to béV; = 2 andA f = 15.87 Hz. However, additional Eigenvalue analysis
of the resulting regression coefficients revealed that thBosary pointz, is neither a
minimum nor a maximum, but rather a saddle point. If a globigimum or maximum is
desired, the RSM process would need to be repeated usingeeediffstarting point. For

purposes of this research, the saddle point solution iggritito demonstrate the practical

utility of the RSM process.

To illustrate consistency between the RSM saddle pointisola@nd physical wave-
form level modeling, an end-to-end simulation was run fa&r 8MSE-DSSS coexistent

scenario. Simulation results are shown in Fig. 4.3 for Bheorresponding to the RSM
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Figure 4.3:  SINR vs DSS®, performance for RSM optimized SMSE
parameters. Unfilled boxes represent Best-Case SMSE-DSS$soee
and filled boxes represent Worst-Case SMSE-DSSS Coexistéce [

stationary point (unfilled circles) [4]. Additional besase (unfilled boxes) and worst-case

(filled boxes) results are also shown and were obtained fidofitianal RSM searches.

As indicated in Fig. 4.3, the saddle point solution in Tablk df (N, = 4, Af =
15.87 Hz, Wsyse = 127 Hz) has approximately one-half of its power withifigr =
2 X Repip = 64 Hz and is indeed non-optimal (neither maximum nor minimum degr
tion) given that its resultan®, performance consistently fall between the two extremes of
maximum degradation folN; = 1,Af = 8 Hz, Wsyse = 16 Hz) and minimum noise
limited performance for{/; = 8, Af =2 Hz, Wgnsp = 32 Hz). As with GA maximiza-
tion results in Section 4.1.2, worst-case coexistenceopadnce is once again achieved
for the special case af; = 1 (single BPSK modulated subcarrier centered.atand the

physical interpretation as to why this occurs is as expthinghat section.

Results in Section 4.1.2 and Section 4.1.3 suggest that thar@ARSM techniques
are applicable for rigorous coexistence analysis of comveal, DSSS and OFDM-based

SMSE waveforms. In applying both techniques, the indepeathgeptimized results con-
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Figure 4.4: Imperfect code tracking scenario for SMSE-D$6&xis-
tent optimization. SMSE parameters impact DLL performasce impact
prompt code,(t) estimation.

sistently migrated toward expected system performancetlaare were valuable “lessons
learned” regarding how to best address more realistic caingd and conditions. As pre-
sented in the next section, these lessons learned droveve®gdment a hybrid GA-RSM

optimization process to address imperfect code trackinglitions.

4.2 |Imperfect Code Tracking

The SMSE waveform design procedure is next demonstrateccoesistent envi-
ronment undeimmperfectcode tracking conditions. As discussed in Section 2.1&kiver
code tracking is critical to successful demodulation. Tifiecés of code tracking are incor-
porated here to assess SMSE-DSSS coexistence performasheennore realistic channel
conditions. In this case, a less than ideal prompt code aim(¢) is used and optimal
SMSE parameter selection is addressed using a hybrid GA-RShigue. The hybrid
technique first uses the GA process in Section 4.2.2 to findarse” optimization solu-
tion. The course GA solution is then used as the initial stgpoint in the RSM process

of Section 4.2.3 which provides the final, more precise ojgh solution.

4.2.1 Demonstration Procedure. The imperfect code tracking scenario for SMSE-
DSSS optimization is depicted in Fig. 4.4 which shows thexistent SMSE and DSSS
transmitters. As shown, both signals are present while theiDthe DSSS receiver tracks

the received spreading code.
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Figure 4.5: Coexistent SMSE signal generation architecture

The DLL prompt code output,(t) in Fig. 4.4 represents the PN spreading code
estimate that is used to despread the received signal pridernodulation. In this sce-
nario, the received DSSS waveform is corrupted by the SMSEfeam which causes the
prompt code estimate to be an imperfect representationeofrtie spreading code. As a
result, the incoming DSSS signal of interest is not perfeddspread and demodulated
P, performance is degraded. Demonstration details with rdpehe coexistent SMSE
signal, the overall DSSS system, and DLL code tracking aesegnted in Section 4.2.1.1,
Section 4.2.1.2 and Section 4.2.1.3, respectively.

4.2.1.1 Coexistent SMSE Signal. The SMSE signal was generated using
the architecture shown in Fig. 4.5. The sequence of inpuat b d;, are randomly gen-
erated with equal probability of being either a 0 or 1. The lite then modulated using

antipodal BPSK such that thié” bit b, is mapped tael, € {—1, 1} according to

dp = (=1) .

Using a serial-to-parallel (S/P) conversion process, gsoof N; modulated bits
passed to the IFFT operation after 1) element-by-elemeightieg by complex vector
wy and 2) zero padding. The first weighting coefficient is setfo= 0 and the remain-
ing Ny — 1 coefficients are set to unity such that = [011 --- 1]. This is consistent

with common practice when implementing OFDM and effectivehsures that the resul-
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tant SMSE waveform does not include a DC component. In thelaiion, the resultant
weighted vector ofV; elements is then zero padded with a totalfofA f — N, zeros.
This ensures that the resultant time domain SMSE symbaiiilg the IFFT process is
sampled at the same effective rdteas other signals in the simulation. In the simulation,
this operation effectively replaces the Digital-to-Armgloonverter (DAC) in a real-world

communication system.

Each IFFT operation creates one time domain SMSE symbol ieetpof N, carri-
ers and having a symbol durationdf,,, = 1/A f and sample frequencf. The resultant
SMSE symbols are complex baseband signals. The receivadeinhg SMSE waveform

was taken as real part of the carrier modulated signal, egptkeas

ssmse(t) = Re [U(t)eﬁwfct} 7

wheref, is the carrier frequencyy(t) is the complex baseband SMSE signal, andsz(t)

is the resultant coexisting SMSE signal.

The optimized SMSE variables used for the imperfect codsking demonstration
included: 1) the number of IFFT poinfg; and 2) the subcarrier frequency separatiofy
which were allowed to take on values 8f € {16, 32,64, 128} andAf € [6, 132] kHz.

4.2.1.2 Overall DSSS SystemThe transmitted DSSS signal was generated
using the architecture shown in Fig. 4.6. The input data rfaadd waveformi(¢) is based
on BPSK modulation using randomly generated bits having lgopadability of being a
0 or 1. The baseband data modulated wavefd(ty is then carrier modulated tfi. and

spread by:(t) prior to transmission. Spreading wavefoe(n) is generated according to

Ne

c(t) =Y (=) p(t = mTonp) ,

m=1

wherec,, is an N, length binary spreading code afit},;, is the chip duration. For the

imperfect code tracking demonstration being considered:he) ¢,, was an/N, = 1023
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Figure 4.6: DSSS signal generation architecture.

length Gold code, 2) the code period was set equal to the dyshioation (V. x T, =
Tsym), 3) the chip rate waR.;, = 1/T.4;, = 1023 x 10° chips/sec, and 4) the code period

start/stop boundaries were synchronous Wit}, transition boundaries.

4.2.1.3 Delay-Lock Loop (DLL) Code Tracking. The DLL architecture
used for the imperfect code tracking demonstration is shaviAig. 4.7. The RF bandpass
filter was implemented as &i"-order Butterworth filter having a-3 dB bandwidth of
Wap = 2 X Ry = 2.046 MHz.

The prompt code,(t) is generated using the same spreading code sequence used by
the DSSS transmitter but with its timing characteristicsagby the NCO in accordance
with the DLL error voltage. The early code(t) is advanced,;,/2 relative to the prompt

code while the late code(t) is delayedl.,,/2 relative to the prompt code.

The IF bandpass filters serves to remove all but the fundahleatmonic after mul-
tiplication by eitherc,.(t) or ¢;(t). The IF filters were implemented 84$-order Butterworth
filters having a—3 dB bandwidth ofi¥ zp = 5 kHz. This bandwidth is somewhat wider
than necessary to track the code of interest, but a widergzasdwvas chosen for consis-

tency with real-world conditions where Doppler shift is poécisely known or not tracked.

The squaring operation following the IF bandpass filterind aubsequent low pass
filtering comprise an envelope detector. The low pass fikeesdesigned to remove dou-
ble frequency terms resulting from the squaring operatimhwaere implemented heré-
order Chebychev filters having-e3 dB bandwidth oV, = 2.5 MHz. The early and late

gate low pass filter outputs are summed and filtered to prdtigleontrol signal (discrim-
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inator voltage) to the Numerically Controlled Oscillator@®). For simulation purposes,
the NCO maintains its own time reference to generate the PH. déhen the discrimina-
tor voltage is zero, the NCO sample rate matches the simusateqble rate off, and the
estimated prompt codg(¢) perfectly matches the received code. When the signed discrim
inator value deviates positive/negative from zero, the N&@Qyde rate increases/decreases
accordingly and the estimated prompt cegle) is altered. Ideally, the discriminator value
varies linearly between its extremes. When viewed in reaéfian accordion-like effect is
observed in:,(t) on a chip-by-chip basis, i.e., there is a clear compressidrdédation of

the chip intervals throughout the code period.

Perfect DLL tracking results in a prompt code estimate thaini exact replica (code
phase and chip duration) of the received DSSS spreadingfavave The presence of a
coexisting SMSE signal causes the estimated prompt codaryoitv both phase and chip
duration as the DLL compensates. This degradation is cteaiaed and quantified using

the cross-correlation metriCy., introduced in Section 3.2.3.

The correlation metric introduced in Section 3.2.3 is gateat as follows to charac-
terize DLL code tracking performance. The DSSS waveforneégived by the DLL with
an initial code phase difference of 20% between the promgé @nd the true spreading
code. The DLL processes this signal for two code cycles witlagaptation to allow the
DLL to stabilize to an accurate initial phase estimate. Anrtapbegins after two code pe-
riods. After five code periods the coexistent SMSE signapiad to the loop along with
the DSSS signal for five additional code periods. The prorage@and true spreading code
from the five additional code periods are correlated per) (sthg an integration interval
of one code period. The mean value from the correlation pcemprises one sample of
the correlation metric;'r_ p. For clarity, the data is presented is terms of a normalined a
shifted version ofr_ p, termedCp.,, Which represents the amount of tracking degradation

caused by the coexistent SMSE signal.

Representative histograms of thg,., metric are shown in Fig. 3.1 and Fig. 3.2 for

moderately and severely degraded DLL code tracking pedon®, respectively. Recall
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that values ot”,., approaching zero indicate better DLL tracking performanbéde val-

ues near one indicate poorer, more degraded tracking peafare.

In addition, observations af'p., behavior in many such figures indicates that the
SMSE waveform impact on DLL performance is highly dependentSR. Thus, care was
taken to choose appropriate ISR values for subsequent aravefesign demonstrations.
For example, if the chosen ISR value is too high all of the pié¢ SMSE waveform
designs can cause the DLL to break lock. Likewise, if the ehd$SR value is too low,
many of the potential waveform designs will have minimal aop Observations af'p.,
for 15dB < ISR < 35 dB showed that the metric behaved best for optimization geep
at /SR = 20 dB. At that value, all of the SMSE parameter combinations aegd DLL

code tracking performance, but none consistently causeDlth to break lock.

4.2.2 Hybrid Optimization Step 1: GA Process.The hybrid optimization tech-
nigue first uses the GA process in Section 3.2.4 to find a “edagtimized SMSE solution.
For demonstration purposes, 1000 generations were uskdptimization variables being
the number of IFFT pointéV; € {16,32,64,128} and the subcarrier frequency spacing
Af € [1,33] NZ. The feasibility region was defined such th&tA f < 1/7,,.

The GA process was used to both minimize and maxiizg, under imperfect DLL
tracking conditions. Table 4.6 shows the initial random &ndl optimized populations
using the GA process tminimizeC’., . Box and whisker plots of';,., for the initial and

final optimized populations are shown in Fig. 4.8 and Fig, AeSpectively.

Table 4.7 shows the initial random and final optimized popores using the GA
process tanaximizeC'p.,. Box and whisker plots af'p., for the initial and final optimized

populations are shown in Fig. 4.10 and Fig. 4.11, respdygtive

The parameter combinations in Table 4.6 and Table 4.7 werpared via the LSD
test described in Section 2.2.2.8. The SMSE paramet®is= 16, Af = 6 kHz), pro-
videdC'p., means which were statistically lower than all other par@amedmbinations ex-
cept for (V; = 16, Af = 7 kHz). These two SMSE parameter combinations were statisti-

cally indistinguishable. The combinatioV{ = 16, A f = 6 kHz) was chosen as the start-
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Table 4.6: Initial random and final optimized SMSE parancetalue
populations using the GA process MINIMIZE correlation degradation
Cpey — Best-Case Tracking and SMSE-DSSS Coexistence.

Ny Af (kHz) Figs. 4.8 & 4.9
Initial | Optimized| Initial | Optimized| Combination
32 16 23 10 1
64 16 8 38 2
16 32 53 6 3
16 16 17 6 4
32 16 14 6 5
16 32 24 6 6
64 16 11 6 7
16 16 7 6 8
16 16 34 6 9
16 16 63 6 10

Table 4.7:  Initial random and final optimized SMSE parancetalue
populations using the GA process MAXIMIZE correlation degradation
Cpey — Worst-Case Tracking and SMSE-DSSS Coexistence.

Ny Af (kHz) Figs. 4.10 &4.11
Initial | Optimized| Initial | Optimized| Combination
16 32 48 25 1
16 32 20 24 2
16 32 24 28 3
64 32 13 24 4
32 32 29 24 5
32 32 27 24 6
32 32 31 24 7
16 32 33 24 8
32 32 22 24 9
16 32 29 24 10
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Figure 4.8:  Box and whisker plot @f,., results forinitial random pop-
ulation using the GA process MINIMIZE Cp,.
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Table 4.8:  Hybrid Optimization Process: GA Optimized SMSgm-
etersN; and A f maximizing and minimizing the correlation degradation

metric, Cpe,.
Minimized Cp,, | 16 6 0.19
MaximizedCp., | 32 24 1.54

ing point for the RSM minimization process instead &% (= 16, A f = 7 kHz), because it
was the result of GA convergence. However, the parameteesdV, = 16, A f = 7 kHz)
were also explored with the RSM process, because of its pryxto (NV; = 16, Af =
6 kHz).

The SMSE parameters\V; = 32, Af = 24 kHz) providedC)., means that were
not statistically lower than any other parameter combometi Eleven SMSE parame-
ter combinations from Table 4.6 and Table 4.7 providésl, means which were statis-
tically indistinguishable from that of N; = 32, Af = 24 kHz). The other parameter
combinations were similar taN; = 32, Af = 24 kHz) with respect to their relatively
high bandwidths Vsyse = Ny x Af). The bandwidth range for these signals was
512kHz < Wense < 992 kHz. For comparison purposes, the bandwidth of the mini-
mization solution, V; = 16,Af = 6 kHz) wasWsy sz = 96 kHz. The combination
(Ny = 32,Af = 24 kHz) was chosen as the starting point for the RSM maximization
process instead of the other, similarly performing SMSEpeter combinations, because

it was the result of GA convergence.

The resultant GA-optimized SMSE parameters are shown iheTal8, and their

corresponding histograms fofy,, are shown in Fig. 4.12 and Fig. 4.13.

4.2.3 Hybrid Optimization Step 2: RSM ProcessGiven the “coarse” optimiza-
tion solution from the GA process in Section 4.2.2, the RSMcess in Section 3.2.5 is
next applied to perform final minimization and maximizatiohcorrelation degradation

Cpeg- This hybrid GA-RSM approach addressed two issues that edéngSection 4.1.3.
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Figure 4.12:  Histogram showing behavior©f,,, for severely degraded
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Table 4.9:  Hybrid Optimization Process: SMSE parameteareited vari-
able (A f-to-x) mapping for initial RSMMINIMIZATION experiment under
imperfect code tracking conditions.

x | Af (kHz)
-2 6.00
-1 6.23
0 6.47
1 6.71
2 6.94

The first issue had to do with answering the question, “Whatge@d starting point for
the RSM process?” Given GA is the first step in the hybrid precasystematic approach
is now used to choose the RSM starting point. The second isssienply related to the
number of dimensions used in the optimization process.rGive GA solution effectively
identifies the appropriat®’; value, the RSM optimization process is reduced to a one di-
mensional search for the appropridtg¢ value. This is a desirable outcome given that RSM
attempts to optimize on a continuous surface, whileis inherently discrete. Thus, resul-
tant RSM design matrix has one factor with five levels. The nemub SMSE subcarriers

was set taV,; = 16 as determined by the initial GA process.

4.2.3.1 Minimizing DLL Tracking Degradation. Final RSM optimization
is first considered for the case whetg,, is to be minimized for the coexistent SMSE-
DSSS scenario. The values used fof are shown in Table 4.9 along with their coded

counterparts in variable.

The RSM design matrix was run with 1000 repetitions and tha tlahsformed using
the Box-Cox transformation with a value &f= 54.78. This resulted in each condition in
the trial being properly classified as normal according ®oS$hapiro-Wilks test described
in Section 2.2.2.5.

The data was then fit to linear, pure quadratic, and quadraiitels as described in

Section 2.2.2.2. The resultapvalue test for all three models yielded< 10~2 indicating
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Table 4.10:  Hybrid Optimization Process: SMSE parametareded
variable (A f-to-z) mapping for initial RSMMAXIMIZATION experiment
under imperfect code tracking conditions.

x | Af (kHz)
-2 23.03
-1 23.52
0 24.00
1 24.48
2 24.97

a good fit. The pure quadratic model provided the best fit baseds F' statistic and
p-value. However, the solutions for all three models werewdated since all were deemed

to be statistically significant.

Based on these results, the final solution for a coexistenttS$ighal that is least dis-
ruptive to DSSS system performance, as indicated by mind&8S code tracking degra-
dation, isNy = 16 andA f = 6.47 kHz. This was accomplished by finding a coarse GA

solution followed by fine-tuning with the RSM process.

4.2.3.2 Maximizing DLL Tracking Degradation. Final RSM optimization
is first considered for the case whetg., is to be maximized for the coexistent SMSE-
DSSS scenario. The values used fof are shown in Table 4.10 along with their coded

counterparts in variable.

The RSM design matrix was run with 1000 repetitions and the tlahsformed using
the Box-Cox transformation with a value &f= 10.88. This resulted in each condition in

the trial as being properly classified as normal accordiniggdshapiro-Wilks test described
in Section 2.2.2.5.

The data was then fit to linear, pure quadratic, and quadnabidels as described
in Section 2.2.2.2. The resultaptvalue test for the quadratic model yieldpd< 1073

indicating a good fit.
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Table 4.11:  Hybrid Optimization Process: RSM Optimized SM&E
rametersV; and A f maximizing and minimizing the correlation degrada-
tion metric,Cpe,.

Minimized Cp,, | 16 6.47 0.2
MaximizedCp., | 32 25.02 1.6

Based on these results, the final solution for a coexistentESBI§nal that is the
most disruptive to DSSS system performance, as indicateddxymal DSSS code track-
ing degradation, isV; = 32 andAf = 25.02 kHz, as shown in Table 4.11. This was
accomplished by finding a coarse GA solution followed by tuneing with the RSM pro-
cess. To visually compare the final solutions of the RSM pdeistograms of the final

minimized and maximized'p., values are provided in Fig. 4.14 and Fig. 4.15, respectively

Given the resultantl’s,,; sz for each optimized case in Table 4.11, all SMSE power
is contained withinVzr = 2.046 M Hz and thus the RF filtering effects contribute min-
imally to the performance difference. The performanceed#hce is most attributable to
the relationship between SMSE subcarrier spacing and #&rsp structure of the DSSS
spreading signal, i.e., the degree of SMSE-DSSS spectnatidence. For parameters
used in these imperfect tracking scenarios, the spectaahcteristics of the DSSS spread-

ing signal and received SMSE signals can be summarizedlawfol

1. The spectral lines for th&¥. = 1023-chip DSSS spreading code are spadefd,;, =
Renip/N. = 1 K Hz apart[25]. There aré/rr/A fenip = 2,046 total lines inWgzp =
2 X Repip = 2.046 M H = that are power weighted according to [25]

NLC% f:fc

va? sinc [(f — fo) Tenip] , Elsewhere

Sc(f_fC) =

where sin€¢f) = sin(f)/f. The central line is located gt and remaining lines

uniformly spaced on either side ¢f at intervals ofA f.;;, = 1 K Hz.
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2. The coexisting SMSE signal spectrum is centerefd aith an even number of BPSK
data modulated subcarrierd’{/2) uniformly spaced on either side ¢f. The two
centrally located SMSE subcarriers are’at on either side off. and all remaining
subcarriers spaced at uniform intervalsXof from these. By design, the total SMSE

power! is equally distributed across all subcarriers.

The degree of spectral coincidence between the DSSS spgeaatie, as used in the
DSSS receiver to “despread” the received signals, andvet&MSE signals dictates,
performance. This is best characterized by consideringelagonship between the DSSS
spectral line spacing\ f..;, and the SMSE subcarrier spacidgf, or more directly, by
considering the resultant power spectrum at the desprgaixer output (DSSS detector
input) in the DSSS receiver. The “despread” spectral respas the convolution of the
uniformly spaced DSSS spectral linesA&f.,;,, = 1 KHz with the uniformly spaced
SMSE subcarriers spaceday.

For the least disruptive solution in Table 4.11 the optidizebcarrier spacing of
Af = 6.47 KHz is a non-integer multiple oA f.;;,, = 1 KH=z. Therefore, for a given
shift-multiply-integrate operation of the spectral colwimn process there is a most one
DSSS spectral line that is aligned with an SMSE subcarridrtha peak response of all
other SMSE subcarriers falls approximately midway betweaer spectral lines—minimal
SMSE-DSSS spectral coincidence. As a result, the amounbweépin the “despread”
spectral response that falls within the DSSS detector bahldviV ., = 2 X Rgym =
2 K H>z) is relatively low and the interfering SMSE signal has mialimpact on DSS$,

performance.

On the other hand, for the most disruptive solution in Tabld 4the optimized sub-
carrier spacing oA f = 25.02 K Hz is approximately an integer multiple & f.,;, =
1 KHz. Therefore, for a given shift-multiply-integrate opeaatiof the spectral convolu-
tion process the peak responses of all SMSE subcarriers radigr perfectly with specific
DSSS spectral lines—maximum SMSE-DSSS spectral coincgdeks a result, the amount

of power in the “despread” spectral response that fallsiwitie DSSS detector bandwidth
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(Wpet = 2 X Rgym = 2 KHz) is maximum and the interfering SMSE signal has maxi-
mum impact on DSS$, performance. Alternately stated, this SMSE solution is tase

is more spectrally “matched” to the DSSS signal which cagseater degradation.

4.2.4 Optimal SMSE Parameter Demonstration. Two additional metrics were
calculated to demonstrate waveform optimization effesisgithe final RSM optimized
solutions from Section 4.2. First, DSSS end-to-end bitrerate P, was calculated to
demonstrate the communication system applicability. Béceelative timing jitter,J..qe,
between the DLL-generated prompt cagé) and the incident DSSS codgt) was calcu-

lated to demonstrate applicability to DSSS-based nawigatnd precision timing system.

Communication system, results are shown in Table 4.12. These results were gen-

erated using the physics-based analytic DSSS receiverlwitieMonte Carlo simulation

as shown in Section 4.1. The ideal results are provided forpewison and represent per-
fect code tracking conditions, i.e., the best that can beew®ol. The minimization and
maximization results were obtained using the SMSE paramnsetations from the hybrid
optimization process. For the degraded cases, the SMSHavaveffects on the DSSS
receiver were isolated to DLL tracking performance only;3MSE signal was present in
the DSSS demodulator.

Timing jitter J..4. results are shown in Table 4.13. For this analysis, was defined
as the the time difference between the coded pulse tramgitints inc;(¢) andc,(t), with
negative values foy... indicating thatc,(¢) transitioned before,(¢) and positive values
indicating that,(¢) transitioned aftet,(t). Table 4.13 shows the standard deviation of the

Jeode MeEtric.
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Table 4.12: Communication system bit error rag) for ideal code track-
ing and degraded code tracking using final SMSE parametems Hiybrid
GA-RSM optimization process in Section 4.2.

Cpeg Optimization| Ny | Af(kHz) P,
Ideal N/A N/A 1.0 x 1073
Minimized 16 6.47 5.6 x 1072
Maximized 32 25.02 | 22x 10!

Table 4.13:  Timing jitter standard deviatiop,,. for degraded code track-
ing using final SMSE parameters from hybrid GA-RSM optimiaatpro-
cess in Section 4.2.

Cpeg Optimization| Ny | Af(kHz) | Jeode (s€C)

Minimized 16 6.47 1.83 x 107
Maximized 32 25.02 1.94 x 1077
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V. Conclusion
5.1 Research Summary

The Spectrally Modulated, Spectrally Encoded (SMSE) fraork provides an ef-
fective means for implementing Orthogonal Frequency Davidultiplexing (OFDM) sig-
nals and the ability to efficiently generate them has onlgmég become practical from a
hardware perspective. As such, OFDM technology has beetifiee as a bedrock tech-
nology for fourth generation (4G) communications based ogntive Radio (CR) and
Software Defined Radio (SDR) techniques [17]. The inherentbiley of OFDM has
generated significant research interest [11, 20, 34—-3a@dthe expanding pool of OFDM
variants drove the need for a unified framework. As utilizeder this research, the resul-

tant SMSE framework effectively embodies the class of OFBé&ded signals [27-30].

As 4G SMSE communications emerge they must coexist withraystems while
competing to use available communication resources. Téuexistent interference be-
comes a concern, especially when these systems operateutvitithogonality in fre-
guency, time, space, polarization, and/or coding. Giveath bf orthogonality and limited
available bandwidth, these signals must be designed tdrapigcoincide while induc-
ing “manageable” levels of mutual interference. This beesmarticularly challenging
when fundamentally different waveform modulations andwlaeeform design procedure
often resorts to trial and error design methods [25, 31]. gb& of this research was to
demonstrate a more structured, optimal means for SMSE wawvedlesign using tech-
nigues commonly employed in the operations research fieklinéey of general optimiza-
tion techniques revealed that two methods were partigubgwplicable to the coexistent
SMSE waveform design scenario, includi@gnetic Algorithm(GA) and Response Sur-
face MethodologyRSM) optimization techniques.

Each of these optimization techniques are used to demtaSMSE waveform de-
sign in a coexistent scenario containing an SMSE signal abétext Sequence Spread
Spectrum (DSSS) system operating over an Additive White SandNoise (AWGN) chan-
nel. The DSSS system employs a non-coherent Delay-Lock (Dbp) for code track-

ing. The specific DLL implementation used here, along witfirdl correlation metrics
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that characterize code tracking conditions, is sufficiegéneral such that the optimization
demonstrations herein are broadly applicable to otherammnmunication applications em-

ploying DLL tracking, e.g., precision navigation, timirggolocation, etc.

The coexistent SMSE-DSSS waveform design process is deratatsherein under
bothperfectandimperfectDLL code tracking conditions. Under both conditions the Arum
ber of subcarriers/; and subcarrier spacinyy f are the SMSE design variables of interest.
Under perfectDLL code tracking conditions, the GA and RSM optimization ggsses
are considered independently with the objective functmbe optimized (minimized and
maximized) being DSSS bit error rakg. A hybrid GA-RSM optimization process is used
under more realistionperfectDLL code tracking conditions. In this casi, optimization
is accomplished through a correlation degradation metitic the GA process being first
applied to generate a “coarse” solution followed by RSM pssegg to provide the final

optimized solution.

For all perfect and imperfect DLL code tracking scenariasstdered, the optimized
DSSSP, minimizationresults yielded SMSE waveform designs aidperformance that
was consistent with scenarios having no coexistent SMSkakigresent (best-case co-
existent performance). For the optimized DS8Smaximizationsolutions, worst-case
SMSE-DSSS coexistence was achieved for SMSE waveformrie#igt were spectrally
“matched” to the DSSS signal, i.e., greatéstdegradation was experienced when the re-
sultant SMSE subcarrier spacidgf was an integer multiple of the spectral line spacing
A fenip Of the DSSS spreading code.

The research objective has been achieved in the sense traim@unications de-
sign engineers now have one additional tool at their didpddas work has successfully
expanded the practical utility of a previously developedl tthe original SMSE frame-
work [26, 28, 30], by demonstrating a more efficient, struetmeans for coexistent wave-
form design that replaces previous trial and error methddssuch, the communications
community is one step closer to actually hitting the bedrotlkOFDM-based signaling

using the SMSE framework. The significance of this has beknadedged through ac-
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ceptance of the independent GA [3] and RSM [4] optimizatisults undeperfectDLL
code tracking conditions. Applicability of the hybrid GA-RiSrocessing technique under

imperfectDLL code tracking conditions has been acknowledged as &gl |

5.2 Recommendationsfor Future Research

Given that applicability of optimization techniques to SEH%aveform design has
been demonstrated and well-received by the technical contyndhere are many addi-
tional research topics that could be investigated. Somkeoffrtost evident future research

avenues include:

e The research assumptions in Chapter | could be removed aredéxed and the
research process repeated. In some cases, this would @epeesomewhat triv-
ial exercise and produce results that might be expected.e¥xamnple, the coexis-
tent SMSE-DSSS demonstration results in Chapter V couldyeasiexpanded by
considering alternative OFDM-based communication vasi&dl-OFDM, COFDM,
MC-CDMA, etc.). In other cases, relaxing the research assongtould prove to

be far more challenging and could produce results whicharmbre significant.

e The demonstrations here focused on SMSE waveform designghrappropriate
selection of two variablesV; and Af. For all cases, the total SMSE power was
equally distributed across all selected subcarriers. Relseauld be conducted that
maintains the same coexistent SMSE-DSSS scenarios and GAGR8mMization
objective functions but with additional considerationanvto incorporating the se-
lection of SMSE weight vectow,. By treating each element af, as a model
parameter, the ANOVA process could provide insight intoithpact that individual
subcarriers are having on the objective function. Assurthegptimization goalis to
achieve best-case coexistence, the practical implicaitrat insignificant subcarri-
ers (those inducing minimal interference) could transmépgpreciable power levels
while power levels in significant subcarriers (those indganaximum interference)

could be reduced or set to zero (shut off).
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e The approach to shutting off significant subcarriers is gpshbest characterized as
being ahard decisionprocess. Recent efforts have introduced overlay, underlay
and hybrid overlay/underlay waveform design using theinalgSMSE framework
with subcarrier selection and power distribution basedafhdecisiorcriteria [5, 6].
Given the inherent structure of the original SMSE framewsrinaintained in these
efforts, the emergence of these new SD-SMSE techniquesamiarfuture investi-
gation given that the optimization methods demonstratetlisiwork should to be

directly applicable.

e Demonstrations in this work are basediaternally observable knowledge of how
the coexistent DSSS system, and in particular its DLL codeking, is respond-
ing to various SMSE parameter changes. This internal kraydewill generally
be unavailable and thus alternatives need to be investigdi®o potential alterna-
tives could be considered. First, cooperative exchanggstés performance status
among coexistent system(s) through communication backnegis. While this ap-
proach generally requires additional communication reses) which may result in
fewer resources being available for the primary functiamilar techniques have
been employed in communication networks. Second, the tgeftinction behav-
ior could be determined passively without any aid from cstxit systems. While
this approach is technically more challenging, it is camesis with envisioned 4G
communication goals for CR-based SDR communications thatusd externally

observable knowledge to adapt and optimize performance.

e The specific non-coherent DLL implementation used hereygieith defined cor-
relation metrics for characterizing code tracking comdi, are sufficiently gen-
eral such that the optimization processes considered aegllyrapplicable to other
non-communication applications employing DLL trackingg.e precision naviga-
tion, timing, geolocation, etc. Therefore, a similar SMSiexistence analysis and

demonstration could be conducted within each of these egipin areas.
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