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Abstract

The Spectrally Modulated, Spectrally Encoded (SMSE) framework provides an ef-

fective means for implementing Orthogonal Frequency Division Multiplexing (OFDM)

signals – a bedrock technology for future fourth generation(4G) communication systems

based on Cognitive Radio (CR) and Software Defined Radio (SDR) techniques. As 4G

SMSE communications emerge they must coexist with other systems while competing for

available communication resources. Given a lack of inter-system orthogonality and limited

available bandwidth, these signals must be designed to spectrally coexist while inducing

“manageable” levels of mutual interference. The research goal was to demonstrate a struc-

tured means for SMSE waveform design using two techniques commonly employed in

operations research:Genetic Algorithm(GA) andResponse Surface Methodology(RSM).

The design process is demonstrated herein for a coexistent scenario containing SMSE

and Direct Sequence Spread Spectrum (DSSS) signals. Coexistent SMSE-DSSS designs

are addressed under bothperfectandimperfectDSSS code tracking conditions using a non-

coherent delay-lock loop (DLL). Under both conditions, thenumber of SMSE subcarriers

Nf and subcarrier spacing∆f are the optimization variables of interest. ForperfectDLL

code tracking conditions, the GA and RSM optimization processes are considered inde-

pendently with the objective function being end-to-end DSSS bit error ratePb. A hybrid

GA-RSM optimization process is used under more realisticimperfectDLL code tracking

conditions. In this case, optimization is accomplished through a correlation degradation

metric with the GA process being first applied to generate a “coarse” solution followed by

RSM processing which provides the final optimized solution.

For all perfect and imperfect DLL code tracking scenarios considered, the optimized

DSSSPb minimizationresults yielded SMSE waveform designs andPb performance that

was consistent with scenarios having no coexistent SMSE signal present (best-case co-

existent performance). For the optimized DSSSPb maximizationsolutions, worst-case
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SMSE-DSSS coexistence was achieved for SMSE waveform designs that were spectrally

“matched” to the DSSS signal, i.e., greatestPb degradation was experienced when the re-

sultant SMSE subcarrier spacing∆f was an integer multiple of the spectral line spacing

∆fChip of the DSSS spreading code.

This work has successfully expanded the practical utility of a previously developed

tool, the original SMSE framework, by demonstrating a more efficient, structured means for

coexistent waveform design that replaces previous trial and error methods. The research

objective has been achieved in the sense that 4G communication design engineers now

have one additional tool at their disposal and its significance has been acknowledged –

the technical community is one step closer to actually hitting the bedrock of OFDM-based

signaling using the SMSE framework. It is also important to note that the particular DLL

implementation used here, and the metrics used to characterize various tracking conditions

(perfect and imperfect), are sufficiently general such thatthe optimization demonstrations

herein are broadly applicable to other non-communication applications employing DLL

tracking, e.g., precision navigation, timing, geolocation, etc.
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APPLICATION OFOPTIMIZATION TECHNIQUES TO

SPECTRALLY MODULATED, SPECTRALLY ENCODED

WAVEFORM DESIGN

I. Introduction

A quick glance at the US frequency allocation chart [33] shows that the radio spec-

trum between 9 KHz and 300 GHz is fullyallocated. However, this provides no indication

as to howefficientlythe allocated spectrum is being utilized. As the need for increasing

data rates, the number of users, and overall network capacity improvement has grown, the

issue of spectrum efficiency versus spectrum allocation hasgained much attention. This

is highlighted by the following relevant sampling of recentliterature addressing spectrum

efficiency:

1. [39] indicates there is an “underutilization of the radiospectrum as revealed by

extensive measurements of actual spectrum usage” in [12].

2. [38] cites measurements in [12] as well and conclude that “at any given time much

of the prized spectrum lies idle ... spectrum shortage results from the spectrum man-

agement policy rather than the physical scarcity of usable frequencies.”

3. [9] cites measurements in [12] as well and indicate that “... at any time roughly 10%

of the unlicensed frequency spectrum is actively in use (leaving 90% unused)”

4. [8] provides an overview of the Defense Advanced Research Projects Agency (DARPA)

Next Generation (XG) Communication Program and indicates that 94% of the spec-

trum was unused worldwide at the time of a 2002 study.

5. [1] indicates that “temporal and geographical variations in the utilization of assigned

spectrum ranges from 15% to 85% with a high variance in time” and cite [25] in

support of their conclusion.
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While there may be some uncertainty of the current value of spectrum efficiency, as well

as its terminology (percentage used, unused, underused, underutilized, etc.), the overall

consensus is that spectrum efficiency is much poorer than what can be achieved, and the

technical community is unified in its quest to improve it.

To some degree, the technical community has unified under theconcept of Dynamic

Spectrum Access (DSA) which is highlighted through recent events such as the IEEE’s

Dynamic Spectrum Access Networks (DySPAN) symposiums [10]. DySPAN has grown to

be “the preeminent event to gather international economists, engineers, network architects,

researchers and academic scholars together to share cutting edge research on and demon-

strations of emerging wireless technology.” The original DySPAN symposium was held in

2005 and activities since then have continued to have significant international influence on

policy, technology, research and development of next generation wireless systems. From a

technology focused perspective, the ability to effectively employ DSA techniques is highly

linked to Software Defined Radio (SDR) and Cognitive Radio (CR) concepts.

1.1 Research Motivation

The fundamental DSA concept provides one means for fourth generation (4G) and

subsequent communication systems to improve spectrum efficiency while minimizing ad-

verse coexistence effects. This is done by monitoring and adapting to changing channel

conditions, traffic requirements, coexisting signals, andspectrum availability by generat-

ing waveforms that dynamically respond to these conditions. The coding, modulation,

and multiple access techniques of emerging systems will require this type of adaptivity, as

enabled at the physical layer through SDR techniques. The SDR advantages are obvious

given that the radio can be easily upgraded with changes in standards, frequency allocation,

security practices and real-time environmental changes. To some degree, these advantages

have been successfully exploited in some systems [13,19,23,24]. However, these systems

are somewhat restricted in the decision stage of adaptation, i.e., the “brain” that controls

the adaptation based on observed environmental factors is somewhat limited.
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To address this limitation, CR techniques have been proposedand investigated to in-

crease a given radio’s autonomy by increasing its ability toobserve, “think”, and decide

the next best course of action. This represents one form of “brain empowered communica-

tions” referred to by Haykin [17]. In this context, CR principles are considered a means for

enhancing and advancing SDR functionality and capability.By way of maintaining consis-

tency with previous work in [26, 30] that forms the basis for this research, the synergistic

union between CR and SDR will be referred to here asCR-based SDR. In this context, the

SDR is a software controlled waveform generator that is controlled by CR principles de-

signed to improve environmental assessment and spectrum usage efficiency. In the context

of achieving smarter communications, Haykin identifies Orthogonal Frequency Division

Multiplexing (OFDM) as a bedrock technology for CR-based SDR implementation [17];

as with previous work in [26,30], this continues to provide the motivation for the research

presented here.

While the concept of OFDM is relatively simple, the ability togenerate OFDM sig-

nals has only recently become practical from a hardware perspective. The speed of modern

digital processors now allows waveform characteristics tobe defined in the frequency do-

main, with conversion to time domain waveforms via an Inverse Fast Fourier Transform

(IFFT) occurring at rates that enable high-speed communications. As such, OFDM has

proven to be very flexible and has generated significant interest throughout the research

community [11, 20, 34–37, 40]. The rapidly expanding pool ofemerging OFDM-based

techniques, as illustrated in the cloud region of Fig. 1.1, drove the need to develop a unified

framework to encapsulate OFDM variants. Elements of the resultant framework are cap-

tured in the analytic expression in Fig. 1.1 which effectively embodies a class of what are

now called Spectrally Modulated, Spectrally Encoded (SMSE) waveforms [26–30].

Researchers continue to investigate expanded roles for applying the original SMSE

framework. Some of the more recent efforts are focusing on overlay, underlay and hybrid

overlay/underlay waveform implementations [5, 6]. In the context of an overlay wave-

form architecture where interference to primary users is mitigated by avoiding their spec-

tral regions, these latest SMSE developments suggest that the original SMSE framework

3
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Figure 1.1: Unifying SMSE framework for OFDM-based signaling using
a CR-based SDR architecture. Waveform adaptivity is providedthrough
variation in design variables denoted by[ d c w o a u ] [26].

is best characterized as applyinghard decisioncriteria to spectral usage. By accounting

for possible implementation of both overlay and underlay techniques, these recent activi-

ties have demonstrated preliminary success with what is being calledsoft decisionSMSE

(SD-SMSE). While the research focus in this dissertation is on the original SMSE frame-

work and its optimization for coexistence with other systems, emergence of SD-SMSE

techniques certainly warrants future investigation giventhat the methods considered here

should to be directly applicable.

1.2 Research Assumptions

Definitions of mathematical symbols and terminology are provided throughout the

document as they are introduced. Results of all work presented should be interpreted within

limits and constraints imposed by the assumptions that havebeen made. The following

summarizes the assumptions that made for the research.

1.2.1 Coexistent SMSE-DSSS Scenario.

• For all scenarios considered, the coexistent SMSE and DSSS signals are spectrally

coexistent (same center frequency) and are operating over an Additive White Gaus-

sian Noise (AWGN) channel. However, given the focus of the waveform design

4



demonstrations are onprocess, the procedures used are valid for other channel mod-

els.

• For coexistent and interference scenarios, the relative power ratios between the signal

of interest, the interfering signal, and the channel noise are the dominant factors.

Therefore, the research assumes these relative power levels are set such that SMSE

parametric changes within can impact DSSS receiver performance.

• Except for spreading code tracking, the DSSS receiver was perfectly synchronized

to the transmitted DSSS signal in terms of carrier tracking (frequency and phase)

and communication symbol tracking. In addition, final results presented in Sec-

tion 4.1 are based onperfectspreading code tracking while the results presented

in Section 4.2 are based onimperfectspreading code tracking.

1.2.2 Optimization Techniques.

• Less-than-global optimal solutions were deemed acceptable for demonstration pur-

poses. The optimal responses to SMSE variable changes were at least locally optimal

and accepted given the research goal was to find “good” parameter valueswithoutre-

quiring exhaustive testing.

• All GA experiments were designed to ensure that all possiblecombinations of SMSE

parameters (Nf ,∆f ) were allowed, i.e., all combinations were in the optimization

feasibility region.

• All RSM experiments used a second-orderβ model for optimization. The experi-

ments consisted of a two-factor, three-level, full-factorial design with four additional

center runs. The SMSE parameters were optimized using the steepest ascent/descent

process until the response surface fit the second-order model, as determined by an

ANOVA.

5



1.3 Research Sponsorship

This research was sponsored in part by the Sensors Directorate of the Air Force Re-

search Laboratory (AFRL/RY), Wright-Patterson AFB, Ohio. Thework performed and

results obtained directly support their vision of providing sensor and countermeasure tech-

nology to enable complete freedom of air and space operations for the military warfighter

and for civilian agencies supporting homeland security. The work most closely aligns with

the discovery and development aspects of AFRL/RY’s mission which is targeted toward

producing affordable sensor and countermeasure technologies.
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II. Background

2.1 Digital Communications

Electronic communications can occur using either analog ordigital waveforms. Ana-

log communication applications include television (TV), AM radio, FM radio, and early

cellular telephones. Digital communication techniques differ from analog techniques in

that information is sent using a set of predefined quantized values that are commonly rep-

resented by either a binary value of 0 or 1. Digital communication applications include

modern cellular telephone systems, high definition television (HDTV) and a multitude

of wireless computer network implementations [31]. There are many reasons why mod-

ern communication system designers prefer digital techniques. First, the digital receiver

must only decide between a finite number of transmit conditions (communication sym-

bols). Thus, digital techniques perform very well in noisy environments since the original

signal does not have to be reconstructed. Second, digital repeater systems may be imple-

mented as regenerative receive-transmit nodes. They are able to receive, estimate symbols,

perform error correction and duplicate information beforepassing it on, allowing reliable

long distance communications. Also, digital hardware is often less expensive to manufac-

ture than analog equipment [31].

A basic digital communications system model is shown in Fig.2.1. The digital input

sequence{dk}, dk ∈ {0, 1} , is mapped to a waveforms(t) for transmission. This process

of mapping information to a transmitted waveform is calledmodulation. The transmitted

signal propagates through the channel, or transmission medium, and is corrupted by noise.

The channel may be a transmission line, such a telephone lineor coaxial cable, or the

open airwaves as assumed for this research. The termnoisedescribes the combined effect

of interference from many sources, including the combined effect of additional signals in

the channel, atmospheric effects and thermal effects within the receiver itself. Additive

white Gaussian noise (AWGN) is a common channel model used fordesigning and ana-

lyzing electronic communications systems. As used for thisresearch, the AWGN channel

assumption provides a reasonable starting point for systemdesign.
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AWGN ChannelMod Demod

Figure 2.1: Basic digital communication system model showing trans-
mitter modulation and receiver demodulation functions. AnAWGN propa-
gation channel is illustrated.

M-ary Phase Shift Keying (MPSK) is one type of digital data modulation whereby

the input data bits are mapped to a series of transmitted communication symbols given by

s(t) = A cos [2πfct + φ (t)] , (2.1)

where0 ≤ t ≤ Tsym, Tsym is the symbol duration, and phase valueφ(t) is determined by

the input bit values. The special case where each symbol representsM = 2 bits, is known

as Binary Phase Shift Keying (BPSK) which is the basis for the analysis in this dissertation.

In this case,φ = 0◦ (dk = 1) or φi = 180◦ (dk = 0) and the expression in (2.1) can be

rewritten as

s(t) = (−1)dk A cos (2πfct) . (2.2)

The plot in Fig. 2.2 shows a representative BPSK waveform spanning two symbol periods

having different modulation values (eitherdk = 0 or dk = 1). This bit difference causes

the180◦ phase shift occurring atTsym in the plot.

To use the available communication resources efficiently, digital waveforms are of-

ten multiplexedwithin or across specific signaling domains (time, frequency, space, po-

larization and/or code). Several multiplexing schemes exist that allow multiple users to

effectively share communication resources, includingTime Division(TDM), Frequency

Division (FDM), Space Division(SDM), Polarization Division(PDM) andCode Division

8
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Figure 2.2: Representative Binary Phase Shift Keyed (BPSK) waveform
spanning to symbol periods having different data modulation values. The
instantaneous180◦ phase change atTsym is due to this difference [31].

(CDM) [31]. Of particular interest to this research are FDM and CDM, each of which is

introduced and discussed in greater detail where appropriate.

2.1.1 Spectrally Modulated, Spectrally Encoded (SMSE) Framework. One method

to allow more data through a given channel involves dividingthe allocated frequency band

into several narrower subbands, allowing multiple individual signals to coexist. This tech-

nique is known as Frequency Division Multiplexing (FDM) [31]. A representative FDM

spectrum is illustrated in Fig. 2.3 for three subbands separated by∆f . The receiver for

a particular signal in this scheme is able to extract the desired signal using an appropri-

ate band pass filter centered on the subband of interest and having a bandwidth that is a

fraction of ∆f , sayWBP = ∆f/2. In this case, a “manageable” amount of interfering

signal power from the other two subbands passes through the filter and impacts demodula-

tion [31]. Given that the signals are separated in frequency, the important design parameters

for FDM include frequency separation∆f andWBP .

One particularly efficient way to space FDM subcarrier frequencies is to assign∆f

such that the individual subband center frequencies are spectrally coincident with the first

9



null of adjacent signal [34]. For this to occur, the symbol duration and subcarrier separation

are related such thatTsym = 1/∆f , i.e., the individual subcarrier frequencies are harmon-

ics of the fundamental frequency∆f . This particular subcarrier spacing is illustrated in

Fig. 2.4. Ideally, this process results in individual signals being mathematically orthogonal

with no mutual interference. This type of FDM scheme is knownas Orthogonal Frequency

Division Multiplexing (OFDM) [34].

While the concept of OFDM is relatively simple, the ability togenerate OFDM sig-

nals has only recently become practical from a hardware perspective. The speed of modern

digital processors now allows waveform characteristics tobe defined in the frequency do-

main, with conversion to time domain waveforms via an Inverse Fast Fourier Transform

(IFFT) occurring at speeds that enable high-speed communications. As such, OFDM has

proven to be very flexible and has generated significant interest throughout the research

community [11, 20, 34–37, 40]. The rapidly expanding pool ofemerging OFDM-based

techniques drove the need to develop a unified framework to encapsulate OFDM variants.

The resultant framework effectively embodies a class of what are now called Spectrally

Modulated, Spectrally Encoded (SMSE) waveforms [27–30].

Researchers continue to investigate expanded roles for applying the original SMSE

framework, with some of the more recent efforts focusing on hybrid overlay/underlay wave-

form implementations [5, 6]. In the context of an overlay waveform architecture where

interference to primary users is mitigated by avoiding their spectral regions, these latest

SMSE developments suggest that the original SMSE frameworkis best characterized as

applyinghard decisioncriteria to spectral usage. By accounting for possible implemen-

tation of both overlay and underlay techniques, these recent activities have demonstrated

preliminary success with what is being calledsoft decisionSMSE (SD-SMSE). While the

research focus in this dissertation is on the original SMSE framework and its optimization

for coexistence with other systems, emergence of SD-SMSE techniques certainly warrants

future investigation given that the methods considered here should be directly applicable.

For completeness, the following SMSE development is provided and is based on the orig-
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∆f−∆f 0

Frequency

Figure 2.3: Representative Frequency Division Multiplexed(FDM) spec-
trum for three subcarriers separated in frequency by∆f [34].

∆f−∆f 0

Frequency

Figure 2.4: Representative SMSE signal spectrum for three subcarriers
separated in frequency by∆f = 1/Tsym, an integer multiple of the symbol
interval [34].
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inal SMSE framework presented in [30]. The reader is referred to the original SMSE

framework documentation if additional details are required.

Accounting for all SMSE waveform design variables, the original SMSE framework

provides a unified approach for generating and characterizing a host of OFDM-based sig-

nals. Using⊙ to denote Hadamard product (element-by-element multiplication), the spec-

tral representation of thekth SMSE symbol is given by [28,30]

sk = c ⊙ dk ⊙ w ⊙ ok , (2.3)

where the design variables are defined as follows:Codingc = [c1, c2, . . . , cNf
], ci ∈ C;

Data Modulationd = [d1, d2, . . . , dNf
], di ∈ C; Windowingw = [w1, w2, . . . , wNf

], wi ∈

C; Orthogonalityo = [o1, o2, . . . , oNf
], oi ∈ C, |oi| = 1 ∀ i. Each of these terms are

introduced to functionally incorporate various waveform design characteristics commonly

employed in communications.

All that remains to completely specify the SMSE waveform is the frequency compo-

nent selection and symbol duration of the resulting waveform. The frequency component

defines the number of carrier components that are spectrallymodulated and encoded. As-

suming anNf -point inverse fast Fourier transform (IFFT), there are initially Nf possible

carrier components available. Use of components from this pool of frequencies is con-

trolled through frequencyassignmentandusevariables. For example, a system may elect

to assign a subset ofNf carriers to a given user. Thisassignmentof frequencies is ac-

counted for through variablea = [a1, a2, . . . , aNf
], ai ∈ {0, 1}, where zeros indicate unas-

signed carriers. From this assigned pool of carriers, some may be unused due to excessive

interference, system design, etc. The remainingusedcarriers are accounted for through

variableu = [u1, u2, . . . , uNf
], ui ∈ {0, 1}, where zeros indicate unused carriers and there

are total ofP used carriers (P ≤ Nf ). Thus,u is a subset ofa (u ⊆ a) and only assigned

carrier components exist SMSE symbols. The frequency assignment and use variables are

incorporated into (2.3) as follows

12



sk = a ⊙ u ⊙ c ⊙ dk ⊙ w ⊙ ok , (2.4)

where themth carrier component ofsk is given by

sk[m] = amumcmdm,kwmej(θdm,k
+θcm+θwm+θom,k

) . (2.5)

There arem = 0, 1, . . . , Nf − 1 frequency components withcm, θcm
, dm,k, θdm,k

, wm,

θwm
andθom,k

being the corresponding magnitudes and phases of the designvariables. As

indicated by the subscriptedk andm indices in the righthand side of (2.5), the coding

and windowing terms only vary with frequency indexm, whereas the data modulation and

orthogonality terms vary with symbol indexk as well.

The block diagram in Fig. 2.5 illustrates the functional processes that are commonly

used to generate OFDM signals. Input data bitsdk ∈ {0, 1} are mapped to discrete BPSK

coefficients according tobk = (−1)dk . The BPSK coefficients are first grouped using a

serial-to-parallel (S/P) conversion process and then weighted by vectorwk prior to the IFFT

operation. Following the IFFT operation, the grouped bits are converted back to a stream

stream via parallel-to-serial (P/S) conversion. The resultant complex discrete samples are

then converted to in-phase and quadrature baseband signalsby digital-to-analog conversion

(DAC). Finally, the complex components are combined in a quadrature modulator and up-

converted to the desired carrier frequencyfc for transmission. For the coexistence analysis

in this work, the key SMSE waveform design variables includethe number of IFFT points

Nf , the subcarrier frequency spacing∆f and the inter-subcarrier complex weightingwk.

2.1.2 Direct Sequence Spread Spectrum (DSSS) System.Spread spectrum com-

munications are a class of signals that employ Code Division Multiple Access (CDMA).

As a mechanism for enabling multiple access, CDMA provides the ability to increase the

number of users within a finite allocation of spectrum. In terms of multiple access perfor-

mance, CDMA has an inherent advantage over Time Division Multiple Access (TDMA)

given there is no need for precise timing between users in thenetwork. Two other desirable
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Figure 2.5: Block diagram illustrating functional processes commonly
used for OFDM symbol generation and transmission [34].

characteristics of CDMA when implemented with spread spectrum techniques, include:

1) users enjoy some degree of privacy from unintended eavesdroppers given that the code is

only shared with intended receivers, 2) spreading of information across a wide band of fre-

quencies provides some inherent protection against fadingchannel effects, and 3) the initial

despreading operation in the DSSS receiver provides some level of protection against coex-

isting interferers or jammers [25, 31]. Spectral spreadingin a DSSS is generally achieved

using a psuedorandom noise (PN) code. The PN code is actuallydeterministic but pos-

sesses some properties that are similar to random noise whenobserved without knowledge

of the code [31].

A typical DSSS waveform generation process is illustrated in Fig. 2.6. For BPSK

data modulation, the generation process first begins by mapping the sequence of input data

bits{dk} to waveform values to created the data modulated signald(t) given by

d(t) = (−1)dkp(t) , (2.6)

where

p(t) ≡







1, t ∈ (0, Tsym]

0, otherwise
.

The resultant data modulated waveformd(t) modulates the carrier signalA cos (2πfct),

wherefc is the carrier frequency. The carrier modulated signal is then spectrally spread by
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A cos (2πfct) c(t)

d(t) A d(t) cos (2πfct) A d(t)c(t) cos (2πfct)

Figure 2.6: Typical DSSS signal generation process. The carrier carrier
fc is first modulated by data dependent waveformd(t) and then spectrally
spread by coded waveformc(t) [25].

the PN coded waveformc(t). Although not a requirement, the spreading waveformc(t) is

generally created using the same BPSK technique as used ford(t). Thus, given a binary

PN spreading sequence ofNc elements,{c} = {c1, c2, ..., cNc
}, one period of spreading

waveformc(t) containsNc chip intervals of durationTc and is given by

c(t) = (−1)ckp(t) , (2.7)

where

p(t) ≡







1, t ∈ (0, Tc]

0, otherwise
.

The plots in Fig. 2.7 graphically illustrate the DSSS waveform construction process.

The plots in Fig. 2.7a and Fig. 2.7b represent the baseband data modulated and PN coded

signalsd(t) andc(t), respectively. These signals were generated using the BPSK bit-to-

waveform mapping processes detailed in (2.6) and (2.7). Forvisual clarity, only four chip

intervals per symbol duration were used (Tsym = 1/Rsym = 4 × Tc = 4/Rc). The signal

in Fig. 2.7c is the result of multiplying the data modulated signal d(t) with the RF carrier

A cos (2πfct). For visual clarity, only eight carrier frequency cycles per symbol duration

were used (Tsym = 8/fc). The carrier phase transitions in modulated carrier are read-

ily apparent and correspond directly with phase transitions in d(t). Finally, the signal in
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Figure 2.7: Waveform construction process for BPSK DSSS system:
(a) baseband data modulated waveformd(t), (b) baseband spreading modu-
lation waveformc(t), (c) carrier modulated waveformd(t) cos (2πfct), and
(d) final DSSS waveformc(t)d(t) cos (2πfct) [25].

Fig. 2.7c is modulated by the PN coded signalc(t) to create the transmitted signal shown

in Fig. 2.7d.

The spectral spreading resulting from this process is illustrated in Fig. 2.8 which

shows power spectral density (PSD) plots for the unspread data modulated carrier (dashed

line with peak valuePBPSK) and the final spread waveform (solid line with peak value

PDSSS). Given thatTsym = 4 × Tc was used in this illustration, the spread signal PSD oc-

cupies four times more bandwidth than the unspread signal when measured between nulls.

This bandwidth expansion is equivalent to what is commonly called the DSSSprocessing

gain which is given byGp = Rc/Rsym for BPSK data modulation. It is also important

to note that the peak value ofPDSSS one-fourth (1/Gp) the value ofPBPSK (−6 dB on a

decibel scale). Thus, the DSSS signal power is effectively spread across a wider bandwidth

than the original unspread signal.

The DSSS receiver essentially despreads and estimates communication symbols by

repeating transmitter functions in reverse order. This is functionally illustrated in the block

diagram shown in Fig. 2.9. The received DSSS signal enters the system and is first despread
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Figure 2.8: PSD comparison of unspread data modulated carrier (dashed
line) and final spread DSSS waveform (solid line). The amountof spectral
spread is dictated by processing gainGPp = Tsym/Tc [25].

by mixing it with an estimate of the transmitted spreading waveformc(t). To be effective

when there is geographic separation between the transmitter and receiver, the receiver must

have somea priori knowledge of the transmitted spreading code and thus the code cannot

be purely random. The despread signal is bandpass filtered and the communication symbols

estimated using techniques that are identical to systems employing no spread spectrum

techniques.

sr(t)

A cos (2πfct)cp(t)

BPF LPF Dem

Figure 2.9: Illustration of typical DSSS receiver architecture [25].
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During DSSS receiver processing, the noise and other interfering signal components

can be thought of as beingspreadversusdespreadgiven they do not contain the original

spreading modulation. Thus, the compositedespreadwaveform consists of two terms:

1) one due to the desired transmitted signal which returns toits original spectral shape and

bandwidth, and 2) undesired noise and interfering signal contributions that are spectrally

spread with reduced peak power levels. After post-despreadfiltering, a majority of the

desired signal power remains (70% to 90% depending of the filter bandwidth) while only a

fraction of the unwanted noise and interfering power remain. The portion of desired signal

power that remains and the percentage of undesired power that is rejected is a function of

the DSSS processing gainGp. In general, the SNR improvement due to the despreading

and filtering operation is proportional toGp [25].

For a DSSS system to optimally estimate communication symbols, the DSSS receiver

must have some knowledge of the received signal characteristics across the signaling do-

mains: time, frequency, space, polarization, and code. Depending on the system, some

of these parameters are knowna priori while others must be estimated. In addition, the

estimated parameters may change over time and must be constantly tracked and updated.

For example, a communication system often operates at a pre-determined center frequency

fc. However, frequency variation in the received signal, due to Doppler frequency shift

fd resulting from relative transmitter-receiver motion and imperfect local oscillator behav-

ior in both the transmitter and receiver, dictates that the receiver employ frequency and/or

phase tracking which is typically accomplished with a Phase-Lock Loop (PLL). Next to

PLL tracking stability, the next most important tracking requirement is perhaps the abil-

ity to reliably generate a local estimate of the received spreading code. The next section

describes one common tracking method used for DSSS code tracking.

2.1.3 Delay-Lock Loop (DLL) Code Tracking. Spreading code tracking is per-

haps the most important aspect in a DSSS system. While the transmitted code and code

parameters are generally knowna priori by the receiver, the relative time offset or delay of

the code (sometimes called it phase) and chip-to-chip interval variation must be estimated
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and tracked – this is referred to ascode tracking. In a communication system, a lack of ef-

fective code tracking generally results in inefficient despreading of the received signal. This

results in a lower SNR at the demodulator input and poorer biterror performance [15,16].

In applications other than communications that also employsome form of code tracking,

e.g., spread spectrum based navigation or radar systems, ineffective code tracking may

result in poor delay estimates which ultimately lead to poorer position estimates [21].

To track the received PN coded waveform, the DSSS receiver must first search and

find the relative code position using a process called acquisition. This process provides

an initial course estimate of the code’s temporal position and is used as a starting point

for more accurate tracking by the code tracking loop. Once the tracking loop receives an

initial temporal estimate of code position, it undergoes a process called pull-in, where it

fine-tunes the estimated code position. Once it has adjustedthe loop enters a state known

a tracking, where it is providing a sufficiently accurate code estimate, in terms of temporal

position, to effectively despread the received DSSS waveform. The required code tracking

accuracy varies with system requirements.

Code tracking is generally performed using PLL techniques. The most commonly

used architecture employs two parallel branches, including one representing an early (ad-

vanced) version of the current code estimate and the other representing a late (delayed)

version of the current code estimate. This architecture is known as a Delay-Lock Loop

(DLL) [32] and is the focus of this research. DLL implementations can be categorized

as being either coherent or non-coherent. A coherent DLL uses knowledge of the received

signal carrier frequency and phase to perform tracking. Therefore, the signal may be down-

converted with the code tracking occurring at baseband. However, in many situations it can

be difficult to estimate and track the carrier phase without first tracking the code for ef-

fective despreading. For this reason, the analysis in this dissertation concentrated on the

non-coherent DLL, which typically operates at an intermediated frequency (IF) and does

not require or assume knowledge of the carrier phase.
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Figure 2.10: Typical elements of non-coherent Delay-Lock Loop (DLL) [25].

The typical elements for implementing a non-coherent DLL are shown in Fig. 2.10.

The two distinct parallel branches following the RF BPF are referred to as theearly and

lategate branches. These two branches are functionally equivalent beginning with the left-

most despreading mixer and ending with the right-most LPF. What distinguishes the two

branches is that the estimated code from the code generator is either delayed (arrives late)

or advanced (arrives early) by some fixed amount before beingapplied to the despreading

mixer. One intuitive way to understand DLL functionality isto observe how the time and

frequency domain responses of a given input signal are modified as the signal progresses

through the DLL. Given the early and late gate branches are functionally equivalent except

for a code timing offset, the process is illustrated usingce/l(t) to represent either the early

or late gate code.

Received signalsr(t) = d(t)c(t)cos [2π(fc + fd)t], wherefc is the transmitted car-

rier frequency andfd is Doppler frequency shift, is first passed through the DLL RF BPF.

Given an RF BPF bandwidth ofWRF = 2Rchip and an arbitrary portion ofsr(t) that spans

two chip intervals, the DLL RF BPF produces the filtered time andfrequency domain re-

sponses,s1(t) andS1(f), shown in Fig. 2.11 and Fig. 2.12, respectively. Selection of the

RF BPF bandwidth is usually related to the main spectral response of the received signal.

20



This allows the filter to pass most of the desired signal energy while blocking undesired

signal and noise responses falling outside the band of interest. Notice in Fig. 2.11 that less

than ideal filtering removes the ideal rectangular shape across the chip boundary and that

only the main spectral response remains in Fig. 2.12.

The remaining signal is then multiplied by an offset versionof the baseband PN code.

The time domain results2(t) is shown in Fig. 2.13 and the frequency domain resultS2(f)

is in Fig. 2.14. The important observation at this point occurs in the frequency domain,

where one can see that spectral lines are created at harmonics of the code repetition rate,

Rc. The magnitude of the spectral line afc is used for code tracking. If the code is perfectly

tracked, this spectral line will have the same magnitude in both the early and late branches

of the DLL. If it is not perfectly tracked, then the magnitudeof this spectral line in the two

branches will differ.

To recover the desired spectral line atfc, the signal is passed through the IF BPF.

The bandwidth of this filter should be as narrow as possible toremove unwanted noise and

harmonic effects, while being wide enough to ensure sufficient desired signal energy passes

given that received signal frequency (fc + fd) is not precisely known. The resultant time

and frequency domain responses of the DSSS signal at the DLL IF BPF output,s3(t) and

S3(f) are shown in Fig. 2.15 and Fig. 2.16, respectively.

The magnitude (envelope) of the DLL IF BPF output effectivelyrepresents a measure

of correlation between the received PN coded waveform and the DLL estimate of the same.

The envelope is extracted using a basic energy detection process comprised of a squaring

operation(•)2 followed by lowpass filtering (LPF). The result of applying this operation to

the signal in Fig. 2.15 yields the time and frequency domain responses shown in Fig. 2.17

and Fig. 2.18, respectively.

The filtered difference between the early and late gate energy detector outputs, or

discriminator output, provides a measure of relative code offset between the received and

internally generated codes. The loop filter design is highlyapplication specific and aims

to maximize overall DLL stability. The discriminator output controls the numerically con-
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Figure 2.13: Unfiltered time domain response ofdespreadDSSS signal
after multiplication byc(t) under perfect code tracking conditions.
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Figure 2.14: Unfiltered frequency domain response ofdespreadDSSS
signal after multiplication byc(t) under perfect code tracking conditions.

23



0

k Tchip

s 3
(t

)

Time

Figure 2.15: Filtered time domain response ofdespreadDSSS signal at
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Figure 2.16: Filtered frequency domain response ofdespreadDSSS sig-
nal at DLL IF BPF output under perfect code tracking conditions.
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trolled oscillator (NCO) which drives the PN code generator.If the current state of the

internal code generator perfectly matches the received code, the discriminator output is

zero and no change occurs in the NCO. Whenever the internal codegenerator state does

not perfectly match the received code, a non-zero signed discriminator output is produced

and the DLL code generator advances or delays its output accordingly (changes the code

phase). For example, if the early gate correlates more closely with the received signal the

discriminator output becomes positive and the NCO frequencyincreases. Likewise, if the

late gate correlates more closely with the received signal the discriminator output becomes

negative and the NCO frequency decreases. Thus, the DLL is constantly adapting to signal

and channel conditions. This adaptation is desirable when compensating for actual varia-

tions insr(t) such as changes in carrier frequencyfc and Doppler frequencyfd. However,

DLL tracking variation due to noise and/or interfering signals is generally undesirable. The

DLL output discriminator response for changing signal conditions is generally described as

anS-curve. An idealS-curveresponse is shown in Fig. 2.19 for the case where no channel

noise or interfering signals are present.
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Figure 2.17: Time domain response of DSSS signal at the energy detec-
tor output showing that double frequency and higher-order harmonics have
been suppressed.
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Figure 2.18: Frequency domain response of DSSS signal at theenergy
detector output showing that double frequency and higher-order harmonics
have been suppressed.
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2.2 Optimization Techniques

Optimization techniques attempt to maximize or minimize the response of a math-

ematical model that represents a given physical system. Themathematical function to be

maximized or minimized is called theobjective function, which represents the system re-

sponse to a particular set ofdecision variables. The relationship between the objective

function and the decision variables is described by modelparametersandconstraints. In

general, there may be many combinations of decision variables that satisfy the constraints,

the collection of which is known as thefeasibility region. Therefore, an optimized solution

for the system is the “best choice” of decision variables that fall within the feasibility region

– the particular definition of “best choice” is problem-specific [18].

2.2.1 Genetic Algorithm (GA). There are many optimization techniques which

may be applied to a particular problem, with each having its own strengths and weaknesses.

One large class of techniques is known asheuristic methodswhich generally attempt to find

a “good” solution without necessarily striving to guarantee optimality [18]. While heuristic

techniques tend to be very problem-specific, there are a handful of metaheuristicmethods

which may be applied to a broader range of problems. The GA is one popular class of

metaheuristics which simulate the biological evolution process by describing the decision

parameters using a binary string called agene. The GA process essentiallymatesgenes

from an available population and retains the strongestoffspring for subsequent mating in

the new population. Someparentsare retained in the new population and the possibility of

mutationwithin offspring permitted [18]. The GA process can be summarized as follows:

1. The initial GA population is randomly generated and genesformed using the process

illustrated in Fig. 2.20. The fitness of each generated gene is then calculated to ensure

it is in the feasibility region. If in the feasibility regionit is retained, else, it is rejected

and another gene replaces it.

2. Some number of most fit (m) and least fit (l) genes, for(l + m) a multiple of two,

are selected from the population to serve as parents. The selected parents are then

randomly paired for mating to create(m + l)/2 parent pairs.
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Figure 2.20: GA genes assembled for the initial population using two
parameters with randomly generated binary digit values.

3. The binary digits of the parent genes are compared to generate offspring as shown

in Fig. 2.21. When binary digits in the parents match, their corresponding values are

passed directly to the offspring. When the binary digits differ (indicated by thex

elements in the figure), the offspring digit values are randomly assigned with equal

probability.

4. In addition, each digit in the selected offspring is subjected to some likelihood of

mutation, i.e., there is some chance that its final value is complemented as illustrated

in Fig. 2.22.

5. A new gene population is formed by retaining some of the previously mated parents

and their offspring.

6. The selection-mating-selection process in Step 2 through Step 5 is repeated for sev-

eral iterations (generations) until an exit criterion is met.
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Figure 2.21: GA offspring generation process using a chosenparent gene
pair from the population. The boxed columns denote dissimilar parent val-
ues where offspring values are randomly assigned. Matchingparent values
in unboxed columns are assigned directly to the offspring.

Figure 2.22: GA offspring mutation process. Each offspringdigit is sub-
jected to some likelihood of mutation.
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2.2.2 Response Surface Methodology (RSM).RSM is a statistically-based al-

ternative to GA optimization and proven itself in industrial experimentation and typically

involves quality control. However, it is believed that thissame approach may be useful in

other types of engineering applications, including waveform design. Given it has a solid

foundation in linear systems theory, it is readily accessible for communications design and

consists of the following components [22]:

1. Design of Experiments (DOE), Section 2.2.2.1: A process for setting up experiments

to ensure proper collection of data. If designed correctly,the experiment provides

data that may be used for linear regression modeling and/or Analysis of Variance

(ANOVA) processing [7,22].

2. Linear Regression Modeling, Section 2.2.2.2: Used in RSM toestimate the shape of

a response surface. If the response surface contains curvature over the tested region,

the surface model may be used to solve for an optimal point. Ifthe surface does not

contain curvature, the regression model may still be used tosearch for a region that

is quadratic [22].

3. Analysis of Variance (ANOVA), Section 2.2.2.3: A statistical analysis tool used to

statistically compare the mean values of collected data. The ANOVA process is

closely related to linear regression modeling and may be used to validate a given

regression model, or to determine the significance of various model elements, in-

cluding the presence of curvature in the response surface. Conclusions drawn from

the ANOVA process are based on the assumption that the residual data is normally

distributed and that the population variances are equal [7,22].

4. Residual Testing, Section 2.2.2.4 through Section 2.2.2.7: Provides methods for test-

ing ANOVA residual data distributions to verify whether or not the normality as-

sumptions are satisfied. If the assumptions are not satisfied, various transformation

techniques can be applied to remedy violations [14,22].

5. Comparative Testing, Section 2.2.2.8: The ANOVA null hypothesis is that the mean

values of the tested populations are equal. If the null hypothesis is rejected (means
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are not equal), at least one of the population means is statistically different. In and

of itself, the ANOVA process does not provide insight as to which population(s) are

different. Thus, additional comparative testing is required to make this determina-

tion [14,22].

2.2.2.1 Design of Experiments (DOE).DOE is a process that allows exper-

imenters to craft trials that can statistically characterize or optimize a process or a system.

The system under test may often be modeled as a linear processgiven by [22],

Y = Xβ + e , (2.8)

whereY is the system response,X is a matrix representing combinations of input parame-

ters,β is the system model, ande is random error. Several goals may be accomplished with

a design such as this. First, one may determine if the system modelβ adequately describes

true system behavior. Second, one may be able to establish a model estimatêβ. Third, if

β̂ can be determined, one can gain knowledge to optimize responseY given parametric

variation inX [22].

The input parameters in matrixX are often expressed in terms of coded variables [22].

This is done by mapping between natural variables and coded parameters inX. The input

variables in this dissertation will generally be the SMSE waveform design variablesNf

and∆f . Given these variables, a representative mapping from SMSEparameters (natural

units) to DOE coded units is shown in Table 2.1.

Table 2.1: Representative mapping from SMSE variables
(Nf , ∆f ) to DOE coded variables (x1, x2).

Factor Level Nf x1 ∆f x2

Low 8 -1 17 -1

High 32 1 15 1
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By way of illustrating the use of (2.8) with the mapping in Table 2.1, consider a first-

order model with interaction. In this case, each element in the vectorY can be expressed

as

y21 = β0 + β1x1 + β2x2 + β12x1x2 + e . (2.9)

Using this model to test the conditionNf = 32 and∆f = 17, the corresponding mapped

values ofx1 = 1 andx2 = −1 from Table 2.1 are used such that (2.9) is expressed as

y = β0 + β1(1) + β2(−1) + β12(1)(−1) + e.

A design that would test all possible combinations of (Nf , ∆f ) as given in Table 2.1 is

called afull factorial design[22] and would include all elementsY given by

y11 = β0 + β1(−1) + β2(−1) + β12(−1)(−1) + e

y12 = β0 + β1(−1) + β2(1) + β12(−1)(1) + e

y21 = β0 + β1(1) + β2(−1) + β12(1)(−1) + e

y22 = β0 + β1(1) + β2(1) + β12(1)(1) + e .

This set of equations may be expressed in the matrix form given by (2.8) using

Y =

















y11

y12

y21

y22

















, (2.10)
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XFF =

















1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

1 1 1 1

















, (2.11)

and

β =

















β0

β1

β2

β12

















, (2.12)

where subscript values inY andβ correspond to ordered coded variables (x1, x2) andXFF

denotes a full factorial design.

If experimental replication is desired for statistical analysis, which is often the case

for optimization, the input parameters inXFF may be repeated. This is accounted for using

X =

















XFF

XFF

...

XFF

















, (2.13)

whereX now represents the total experiment andXFF represents one repetition of the full

factorial design [22]. As provided, the expressions in (2.8), (2.10), (2.11), and (2.12) pro-

vide a full experimental description that may be used directly to analyze system response

Y [22].

2.2.2.2 Linear Regression Modeling. Once an experiment has been com-

pleted according to (2.8), the system responseY (collected data) may be used to generate a
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model estimatêβ. This may be done using alinear regressionprocess by solving the least

squares normal equation given by [22]

β̂ =
(

X
T
X

)

X
T
Y , (2.14)

with the predicted values ofY then given by

Ŷ = Xβ̂ . (2.15)

The resultantresidualse (error) are then calculated as the difference between the collected

and predicted values ofY according to [22]

e = Y − Ŷ . (2.16)

If the model estimatêβ provides a good prediction of responseY given inputX, then

the residual elements ine will be normally distributed random variables. Furthermore, the

variance ofe under each condition inX should be approximately equal [22]. Tests for

quantifying normality and variance equality among the residual elements are described in

Section 2.2.2.5 and Section 2.2.2.6, respectively. If the model estimatêβ indicates there

is curvature in the response surfaceY, it may be used to optimizeY, i.e., β̂ may be used

to specify optimal input parameters inX to either maximize or minimize response surface

Y [22].

Two β models are particularly useful for RSM: the second-order model and the first-

order model [22]. The second-order model is given by

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 . (2.17)

If the estimated model parameters from (2.17) adequately describes the data (as determined

by the ANOVA), then the surface is assumed to contain curvature and optimal input param-
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etersx1 andx2 may be calculated. Using elements expressed by (2.17), the second-order

model may be expressed in matrix form as

Y = β0 + X
T
b + X

T
BX , (2.18)

where

X =





x1

x2



 ,

b =





β̂1

β̂2



 ,

and

B =





β̂11
ˆβ12

2

ˆβ12

2
β̂22



 .

A stationary pointfor the second-order model is given by [22]

Xs = −
1

2
B

−1
b . (2.19)

The derivation of stationary pointXs is accomplished by setting the derivative of the es-

timated model̂β to zero and solving forX [22]. Therefore, the stationary point must be

tested to determine if it creates a maximum, minimum, or saddle point in response surface

Y. This is done using Eigenvalue analysis. If all Eigenvaluesof B are positive,Xs mini-
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mizesY. If all Eigenvalues are negative,Xs maximizesY. If the Eigenvalues signs forB

differ, the pointXs corresponds to a saddle point onY [22].

If, however, when using the second-order model of (2.17) theresultant ANOVA does

not determine the response surfaceY contains curvature, a first-order model of the follow-

ing form may be used [22]

y = β0 + β1x1 + β2x2 . (2.20)

In this case, the path of steepest ascent/descent, given by

∆x1

β̂1

=
∆x2

β̂2

, (2.21)

may be followed in subsequent experiments until the second-order model becomes appro-

priate. Then, a stationary point may be found by (2.19) [22].

2.2.2.3 Analysis of Variance (ANOVA). The ANOVA process is the heart

of DOE optimization. ANOVA is a statistical technique whichuses the sample variances

of a data set to test the impact of input parameters on an output response variable. Specif-

ically, given an experimental designX and modelβ, the ANOVA process uses the sample

variances to test the null hypothesis, i.e., “Are the means of different conditions described

by the model equal?” Thus, rejection of the null hypothesis implies that at least one of the

means are different [22].

There are many ways to interpret a null hypothesis rejection. In this analysis, the

ANOVA is primarily used in two ways. First, rejecting the null hypothesis with respect to

the entire regression model signifies thatβ̂ adequately describes the process [22]. Second,

the ANOVA is used to evaluate the individual input parameters ofX. In this case, rejecting

the null hypothesis for an given input parameter indicates that parameter has a significant

effect on response surfaceY and should be included in the model for optimization [22]. As

a result, ANOVA provides insight into the response surface shape by including appropriate
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model terms while eliminating those that are inappropriate. The ANOVA process begins by

assuming a model for the test data [7]. For this illustration, the assumed model issecond-

order and expressed as [22]

yijk = β0 + β1x1i
+ β2x2j

+ β12x1i
x2j

+ β11x
2
1i

+ β22x
2
2j

+ eijk , (2.22)

wherey is the response variable,(x1, x2) are coded input variables, theβ terms represent

regression coefficients ande represents the error. Thei andj subscripts correspond to index

values ofx1 andx2, respectively. Thek subscript represents the experimental run number.

The expression in (2.22) may be expressed more compactly in matrix form as

Y = Xβ + e . (2.23)

Essentially, the ANOVA process performs a least-squares fitof the data to the model by

applying [7,22]

β̂ =
(

X
T
X

)

−1

X
T
Y . (2.24)

Substituting this estimate forβ into (2.23) yields a regression model of the form

Ŷ = Xβ̂ = X
(

X
T
X

)

−1

X
T
Y , (2.25)

with the resultant error given by

e = Y − Ŷ . (2.26)

After the least-squares fit to the data, the sample variance is partitioned into sub-

spaces corresponding to the main effects, interactions anderror. The main effects variance
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and interaction variances are compared to the error variance as part of a significance test

to determine their relative importance to the model. More specifically, assuming that the

underlying model error is Gaussian, the ratio of a given factor’s sample variance to the

error’s sample variance will be distributed according to the F distribution. TabulatedF

distribution values may then be used to provide probabilities that the given factor under

test is significant and should be included in the model. The larger the value of test statis-

tic F0, the more reasonable it becomes to reject the null hypothesis of equal means. An

alternative approach uses ap-value which represents the probability that the statisticF0 is

the result of a population that corresponds to the null hypothesis. If thep-value is small, it

casts doubt on the null hypothesis. Therefore, ANOVA provides a tool for deciding which

factors and interactions are most important in a given system model, a task which is often

left to intuition [7, 22]. More detailed information regarding ANOVA processing can be

found in [22].

2.2.2.4 Normality and Variance. The normality and equal variance as-

sumptions that were noted in Section 2.2.2.2 and Section 2.2.2.3 are important to both lin-

ear regression modeling and ANOVA processing [22]. The following subsections address

each of these conditions.

2.2.2.5 Normality Testing. The residualse are assumed to be normally

distributed [22] in linear regressing modeling and ANOVA processing. A visual test such

as a probability plot, or a numerical method such as the Shapiro-Wilks test, can be used for

testing normality [14].

A representative normal probability plot of residuals is shown in Fig. 2.23. This is

essentially a plot of the residuals (x-axis) versus the cumulative probability of the normal

distribution (y-axis). If the residuals appear to lie on a straight line theyare distributed

approximately normally [14,22].

The Shapiro-Wilks test provides a significance test for normality [14]. In this case,

the null hypothesis is that the data is normally distributed. To execute the test, the residuals
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Figure 2.23: Normality test using residuals versus cumulative probability
of normal distribution. If residuals lie along a straight line the data may be
considered normally distributed [22].

e are ordered such thate1 ≤ e2 ≤ · · · ≤ eNe
, whereNe represents the total number of

residuals. Test statisticW is then calculated using

S2 =
Ne
∑

i=1

(ei − e)2 , (2.27)

k =







Ne

2
, Ne even

Ne−1
2

, Ne odd,
(2.28)

b =
k

∑

i=1

aNe−i+1 (eNe−i+1 − ei) , (2.29)

W =
b2

S2
, (2.30)

wheree in (2.27) is the residual mean and tabulated values ofaNe−i+1 in (2.29) are provided

in [14]. The resultant value ofW from (2.30) is then mapped to a tabulatedp-value which

can be found in [14]. Given that the null hypothesis is normally distributed data, a smallp-
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value from the Shapiro-Wilks casts doubt on this assumptionand causes the null hypothesis

to be rejected [14].

2.2.2.6 Variance Testing. Variance equality testing can be done using a

Bartlett’s significant test. In this case, the null hypothesis is that the residual variances

under all experimental conditions are equal.

Assuming there area variances to compare with each havingni samples, the total

number of samplesNe is given by

Ne =
a

∑

i=1

ni . (2.31)

To test the null hypothesis thatσ2
1 = σ2

2 = · · · = σ2
a, the test statisticχ2

0 is calculated by

S2
p =

1

Ne − a

a
∑

i=1

(ni − 1) S2
i , (2.32)

q = (Ne − a) log10

(

S2
p

)

−

a
∑

i=1

(ni − 1) log10

(

S2
i

)

, (2.33)

c = 1 +
1

3 (a − 1)

[

a
∑

i=1

(ni − 1)−1 − (Ne − 1)−1

]

, (2.34)

χ2
0 = 2.3026

q

c
, (2.35)

whereS2
i represents the sample variance of theith condition in the experiment [22]. The

test statisticχ2
0 is used to find a tabulatedp-value from aχ2

a−1 distribution. If thep-value

obtained from aχ2
a−1 distribution is small, this suggests that the null hypothesis should be

rejected and the data does not meet the variance equality condition [22].

2.2.2.7 Statistical Transformation. If the normality conditions and/or vari-

ance equality conditions in Section 2.2.2.5 and Section 2.2.2.6 are not satisfied, it may be
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possible to transform the data so the conditions are met. TheBox-Cox transformation is

one common transformation for accomplishing this. The Box-Cox transformation is given

by [22]

T =







Yλ
−1

λ
λ 6= 0

ln (Y) λ = 0 ,
(2.36)

whereλ ∈ R. As indicated, dataY may be transformed using a range ofλ values. If a

value ofλ exists such that the residuals of the transformed dataT meet the requirements

for normality and equality of variance, then linear regression and/or the ANOVA may be

performed on the transformed data,T [22]. However, if the residuals fromT still does not

satisfy normality and variance equality conditions, the ranks of the data can be analyzed as

part of the ANOVA process. When ranks are used, the test is known as the Kruskal-Wallis

test [22].

2.2.2.8 Comparative Testing. The ANOVA process is a hypothesis test

that provides information about the statistical data meansfor conditions under test. The

null hypothesis is that all means are equal and its rejectionindicates that at least one mean

differs from the others. However, in and of itself the ANOVA process does not provide

an indication of which mean(s) is different. Comparative testing can be performed to de-

termine this. In addition to providing information about the ANOVA results, comparative

testing is also important to quantify results of the optimization process [22].

One visual tool for comparing population statistics for random variables is the box

and whisker plot as illustrated in Fig. 2.24 [22]. This plot shows statistical properties of

the correlation degradation metricCDeg under various SMSE parameter combinations. The

box and whisker plot is interpreted as follows for a given SMSE parameter combination:

2) the box midline represents the median value, 2) the top andbottom box edges represent

quartiles for the25th and75th percentiles of the populations, and 3) the extreme “whisker”

ends represent the minimum and maximum population values. The box and whisker repre-

sentation reveals general trends about the data means and data spread [22].
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Figure 2.24: Representative box and whisker plot showing population
medians (box midline), quartiles for25th and75th percentiles (box top and
bottom), and population extreme values (whisker ends) [22].

To formally compare the means of two normally distributed, equal variance popula-

tions, at-test may be used according to the following [22]. Given there areni samples in

the ith population, withyi being the mean value for the theith population, test statistict0

for the two mean case can be calculated as follows:

S2
i =

1

ni − 1

ni
∑

k=1

(yk − yi)
2 i = 1, 2 , (2.37)

S2
p =

(n1 − 1) S2
1 + (n2 − 1) S2

2

n1 + n2 − 2
, (2.38)

to =
y1 − y2

Sp

√

1
n1

+ 1
n2

. (2.39)

Test statistict0 from (2.39) is used to find a tabulatedp-value from atn1+n2−2 distri-

bution. If thep-value obtained from thetn1+n2−2 distribution is small, this suggests that the

null hypothesis should be rejected and the meansy1 andy2 do indeed differ [22].
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To compare means for more than two populations, the Least Significant Difference

(LSD) test may be used. Assuming there area total means to compare with each based on

ni samples, the total number of samplesNe is given by

Ne =
a

∑

i=1

ni . (2.40)

In this case, the LSD test for a full-factorial design is given by

LSD = tα
2

,Ne−a

√

2 eTe

n(Ne − a)
, (2.41)

whereα is the significance level andν = Ne − a is the number of degrees of freedom [22].

When comparing any two populations in the experiment, the null hypothesis of equal means

(yi = yj) would be rejected if the means differ by more than the LSD [22].
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III. Methodology

In many respects, the goal of this dissertation is to developand demonstrate a set of tools

that waveform design engineers can use to design efficient communication waveforms.

One of the basic tools adopted for this research is the Spectrally Modulated, Spectrally

Encoded (SMSE) framework as described in Section 2.1.1. TheSMSE framework has

been successfully used to mathematically describe varioustypes of Orthogonal Frequency

Division (OFDM) waveforms. The quantitative nature of the SMSE framework makes

it well-suited for applying design techniques from disciplines outside of communications

and/or signal processing. More specifically, the SMSE framework enables a systematic

approach to waveform design fromoperations research– a field of study dedicated to the

various forms of optimization [18].

Coexistent interference occurs when two or more communication systems operate

without orthogonality in frequency, time, space, polarization, and/or coding. With limited

available bandwidth, it is often necessary for signals to spectrally coincide while inducing

“manageable” levels of mutual interference. When user requirements dictate fundamentally

different waveform modulations, the system design procedure often involves trial and error

to find waveforms which cancoexist[25, 31]. As commonly employed in the operations

research field, theGenetic Algorithm(GA) and Response Surface Methodology(RSM)

techniques, as described in Section 2.2.1 and Section 2.2.2, represent two approaches that

can be considered for waveform designoptimizationto provide a more structured, optimal

means for determining waveform design parameters [3,4].

Each of these optimization techniques are employed here to demonstrate SMSE

waveform design in a coexistent scenario containing an SMSEsignal and a Direct Se-

quence Spread Spectrum (DSSS) system operating over an Additive White Gaussian Noise

(AWGN) channel. The DSSS system employs a non-coherent Delay-Lock Loop (DLL)

as described in Section 2.1.3 for code tracking prior to datademodulation. It is important

to note that the particular DLL implementation used here, and the metric introduced in

Section 3.2.3 to characterize various tracking conditions(perfect and imperfect), are suffi-

ciently general such that the optimization demonstrationsherein are broadly applicable to
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other non-communication applications employing DLL tracking, e.g., precision navigation,

timing, geolocation, etc.

The coexistent SMSE-DSSS waveform design process is demonstrated under two

conditions, including: 1)perfectDLL code tracking as described in Section 3.1 and 2)im-

perfectDLL code tracking as described in Section 3.2. UnderperfectDLL code tracking

conditions, the GA and RSM optimization processes are considered independently in Sec-

tion 3.1.3 and Section 3.1.4, respectively. In both cases, the optimization goal is to deter-

mine SMSE parameter values for the number of IFFT pointsNf and subcarrier spacing∆f

such that DSSS bit error ratePb is optimized (minimized or maximized). Underimperfect

DLL code tracking conditions in Section 3.2, the GA and RSM techniques are sequentially

combined into a hybrid optimization process that includes:1) the GA process being ap-

plied in Section 3.2.4 to generate a “coarse” solution for initial RSM processing, and 2) the

RSM process providing the final optimized solution in Section3.2.5. As in the perfect code

tracking case, the end goal is to determine the(Nf , ∆f) pair that optimizesPb. However,

Pb optimization (minimization or maximization) is actually accomplished through a Corre-

lation Degradation metricCDeg as introduced in Section 3.2.3. The statistical behavior of

CDeg is used to capture and characterize overall DLL code tracking performance.

3.1 Perfect DLL Code Tracking

3.1.1 Coexistent SMSE-DSSS Scenario.The following signal conditions were

used for coexistent SMSE-DSSS scenario underperfectDLL code tracking conditions.

The SMSE signal was generated according to the framework described in Section 2.1.1.

Two SMSE factors (design parameters) were varied for the experiments, including: 1) the

total number of IFFT pointsNf and 2) the subcarrier frequency separation∆f . The re-

maining SMSE design parameters in (2.4) were fixed such that conventional OFDM was

implemented [34], i.e.,sk = dk. The complex baseband OFDM symbols were generated

using independent BPSK data modulation on all subcarriers and carrier modulated tofc for

coexistent demonstrations. The carrier modulated SMSE waveform occupies a total band-

width of WSMSE = 2 × Nf × ∆f and has a duration ofTOFDM = 1/ROFDM = 1/∆f .
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The SMSE data bits were randomly generated with equal probability. Therefore,

every transmitted SMSE symbol was random and there were no special bit sequences used

to simulate frames, packets, etc. Finally, there was no cyclic prefix used for the waveform

design demonstrations and analysis.

The coexistent DSSS system used BPSK for both data and spreading modulations.

For demonstration purposes, the spreading code was anNc = 32-bit Hadamard sequence

with exactly one code period (32 chip intervals) occurring per data symbol. The DSSS

symbol duration wasTsym = 1 sec, and the symbol rate wasRsym = 1/Tsym = 1 Hz.

Consequently, the chip rate wasRchip = Nc×Rsym = 32 Hz. The DSSS receiver wasper-

fectly synchronizedto the transmitted DSSS signal in terms of carrier tracking (frequency

and phase), spreading code tracking, and communication symbol tracking. An ideal RF fil-

ter was used and communication symbols were estimated usinga single channel correlation

receiver under Maximum Likelihood (ML) conditions.

3.1.2 Optimization Metric. The optimization metric under perfect DLL code

tracking tracking conditions was end-to-end DSSS systemPb, as determined by Monte

Carlo simulation of a physics-based analytic model. The model assumed that the coexistent

SMSE and DSSS signals were spectrally coincident (same center frequency) and were

operating over an AWGN channel. Therefore, the resultant DSSS bit errors are due to a

combination of channel noise and the coexistent SMSE signal. However, the channel noise

power was fixed during both the minimization and maximization demonstrations. Thus, the

DSSSPb curves in Section 3.1 correspond to bit error change as a function of interfering

signal power and optimized input SMSE parameters. The changes are not due to differing

noise power.

3.1.3 Genetic Algorithm (GA). Each combination of the two optimization input

parameters (Nf , ∆f ) were represented using eight binary digits in a gene. Furthermore,

the number of SMSE subcarriers was constrained to be an integer power of two withNf ∈

[1, 128]. Similarly, the SMSE subcarrier spacing was assigned an integer value satisfying

∆f ∈ [1, 33]. The feasibility region for optimization included all possible combinations
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of Nf and∆f within these ranges. For the special case ofNf = 1, the resultant SMSE

waveform is equivalent to a single BPSK modulated subcarrierand has an RF bandwidth

of WSMSE = 2/TOFDM = 2/∆f , where∆f is used here and in presenting subsequent

Nf = 1 results to more appropriately refer to waveform bandwidth and not subcarrier

spacing. Finally, the objective function was end-to-end DSSS(Pb).

Consistent with the process described in Section 2.2.1, the GA process proceeded as

follows:

1. The initial GA population consisted of ten randomly generated genes.

2. Using Monte Carlo simulation of a physics-based analytic model, the DSSSPb was

calculated for each case to judge each genes’fitness.

3. For mating, four of the five most fit genes and two of the leastfit genes were chosen

as parents. The resulting six parents were randomly assigned for mating, creating

three pairs of parents.

4. To mate, the binary digits of the parents’ genes were compared. When the binary val-

ues of parent genes matched, the same values were passed to the offspring. Where

the values differed, the offspring values were randomly chosen with equal probabil-

ity. Each pair of parents created two offspring.

5. After mating, each binary digit in the offspring’s gene was subjected to a 10% chance

of mutation, or complementing the bit value.

6. The next population of ten genes included the six childrenand the four most fit

parents. The GA process then proceeded as it did with the initial/previous population

of ten genes. For design demonstrations in this dissertation, the GA process was

repeated for 100 generations.

The GA optimization process was used to both minimize and maximize DSSSPb.

Minimizing Pb creates what could be called “peaceful” coexistence while maximizingPb

creates worst-case coexistence conditions. Results for GA optimization underperfectcode

tracking conditions are provided in Section 4.1.2.
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3.1.4 Response Surface Methodology (RSM).The RSM process was also used to

optimize SMSE parameters (Nf , ∆f ) such that coexistent DSSSPb performance was both

maximized and minimized. The RSM experiments assumed a second-order model as de-

scribed in (2.17). As a result, the experimental design consisted of a two-factor, three-level,

full-factorial design with four additional center runs. The corresponding system model

from (2.8) for this demonstration is expressed as

Y =
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The SMSE parameters were optimized using the steepest ascent/descent process described

in (2.21) until the response surface fit the second-order model, as determined by the ANOVA.

Once the second-order model detected curvature, (2.19) wasused to solve for the SMSE

parameters in terms of their coded variables. Results for theRSM optimization process

underperfectcode tracking conditions are provided in Section 4.1.3.

3.2 Imperfect DLL Code Tracking

3.2.1 Coexistence Scenario. The following signal conditions were used for co-

existent SMSE-DSSS scenario underimperfectDLL code tracking conditions.
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The SMSE coexistent signal remained unchanged from that used in the perfect DLL

code tracking demonstration in Section 3.1.1. Once gain, the DSSS system used BPSK

for both data and spreading modulations. However, the spreading code used for demon-

stration was anNc = 1023-chip Gold code sequence with exactly one code period (1023

chip intervals) occurring per data symbol. The symbol rate was set toRsym = 1 kHz,

and therefore the chip rate wasRchip = 1.023 MHz. The DSSS receiver wasperfectly

synchronizedto the transmitted DSSS signal in terms of carrier tracking (frequency and

phase) and communication symbol tracking.

The DSSS receiver used the non-coherent DLL described in Section 2.1.3 for code

tracking. A non-coherent DLL was chosen for demonstration give it is suitable for gen-

eral purpose DSSS receivers without requiring precise carrier tracking [25]. The DLL RF

filter was an8th-order Butterworth filter having a bandwidth equal to twice the chip rate,

WRF = 2Rchip = 2.046 MHz. The bandpass filter following the despreading mixer in

the early/late DLL branches was an8th-order Butterworth filter having a bandwidth of

WBPF = 5 kHz. The low-pass filter in the DLL energy detectors used a4th-order Butter-

worth filter with a bandwidth ofWLPF = 2.5 MHz. The loop filter was a first-order filter

with Floop(s) = 1. The mapping between the discriminator output and the NCO waslinear,

such that a maximum response from the discriminator resulted in a NCO code generation

rate of2Rchip. Finally, the early (advanced) and late (delayed) codes were separated by

∆e−l = 1 chip.
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3.2.2 Hybrid Optimization. The perfect DLL code tracking demonstration in

Section 3.1 only accounted for a portion of the errors associated with coexistent interfer-

ence. Under more realistic conditions, imperfect DLL code tracking due to interfering

signals will further degrade DSSSPb performance [15, 16]. The imperfect code tracking

demonstration is designed to help isolate code tracking error effects resulting from a coex-

istent SMSE waveform being received by the DSSS system.

Unlike the perfect DLL code tracking demonstration in Section 3.1, the GA and

RSM optimization processes are not performed independentlyunder imperfect tracking

conditions. Rather, they are used to complement each other using a hybrid optimization

approach. In this process, the GA process is first used to determine an initial “coarse” solu-

tion that is then passed to the RSM process which determines the final optimized solution.

This approach is advantageous for several reasons. First, given that GA is naturally a dis-

crete process, it performs best at describing and optimizing SMSE design parameters that

are discrete as well, e.g., the number of IFFT pointsNf . Second, GA solutions are less

accurate when the gene mapping is for continuous variables,such as subcarrier spacing

∆f . In this respect, the RSM process is most advantageous given its solutions are based

on a modeled surface response and the resultant optimized solution is not necessarily part

of the input test matrix. However, one limitation of the RSM process is that it requires a

good starting point or the search process may become too prolonged. Therefore, the final

hybrid approach for optimizing (Nf , ∆f ) selection exploits the strength of each process

and consists of 1) using GA first to determine the most appropriateNf value, followed by

2) the RSM process to find the optimized∆f value associated with the GANf value.
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3.2.3 Optimization Metric. To isolate the impact of a coexistent SMSE signal

on DSSS code tracking performance, an optimization metric is introduced. In this case,

optimization is based on DLL code tracking performance versus end-to-end DSSSPb. The

DSSS Correlation Degradation metric is defined here as

CDeg = 1 −

∫ NcTc

0

ci(t)cp(t)dt , (3.2)

wherecp(t) is the DLL prompt code estimate shown in Figure 2.10,ci(t) is incident re-

ceived code and integration is carried out over one full codeperiodNcTc (NcTc = Tsym =

1 msec for this demonstration). The minimum value ofCDeg = 0 indicatesperfectcode

tracking, a value of0 < CDeg < 1 indicatesimperfectcode tracking, and a maximum

value ofCDeg = 1 indicates a DLL break-lock condition. Representative histograms for

CDeg in (3.2) under imperfectmanageableand imperfectseverely degradedDLL tracking

conditions are shown in Fig. 3.1 and Fig. 3.2, respectively.

3.2.4 Genetic Algorithm (GA). Each combination of the two optimization input

parameters (Nf , ∆f ) were represented using nine binary digits in a gene. In addition,

the parameters were constrained toNf ∈ {16, 32, 64, 128} and∆f ∈ [6, 133] ∩ I. The

feasibility region was defined such that the total SMSE signal bandwidth was less than the

DLL RF filter bandwidth (Nf∆f < 2.046 MHz). The optimization objective function was

the the correlation metricCDeg given in (3.2).

Consistent with the process described in Section 2.2.1, the GA process proceeded as

follows:
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Figure 3.1: Representative histogram of correlation degradation metric
CDeg in (3.2) for imperfectmanageableDLL tracking conditions.
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Figure 3.2: Representative histogram of correlation degradation metric
CDeg in (3.2) for imperfectseverely degradedtracking conditions.
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1. The initial population consisted of ten randomly generated genes.

2. Using a physics-based analytic model,CDeg was calculated for each case to judge

the genes’fitness.

3. For mating, four of the five most fit genes and two of the leastfit genes were chosen

as parents. The resulting six parents were randomly assigned for mating, creating

three pairs of parents.

4. To mate, the binary digits of the parents’ genes were compared. When the binary val-

ues of parent genes matched, the same values were passed to the offspring. Where

the values differed, the offspring values were randomly chosen with equal probabil-

ity. Each pair of parents created two offspring.

5. After mating, each binary digit in the offspring’s gene was subjected to a 10% chance

of mutation, or complementing the bit value.

6. The next population of ten genes included the six childrenand the four most fit

parents. The GA process then proceeded as it did with the initial/previous population

of ten genes. For design demonstrations in this dissertation, the GA process was

repeated for 1000 generations.

The GA process was used to both minimize and maximize the DSSSCDeg. Minimiz-

ing CDeg corresponds to “peaceful” coexistence while maximizingCDeg creates a worst-

case coexistence scenario. The GA output included ten SMSE (Nf , ∆f ) parameter com-

binations for both the minimization and maximization cases. These final populations were
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compared using multi-comparison tests from Section 2.2.2.8. Optimization results for this

process are found in Section 3.2.4.

3.2.5 Response Surface Methodology (RSM).Given that the GA process pro-

vided a “coarse” solution that maximized and minimizedCDeg, the RSM was next used to

obtain final optimization results. SinceNf is a discrete parameter and every value is tested

in the GA process, the GA-optimized values forNf were accepted. The RSM process was

then applied to find corresponding optimized values for∆f .

As in the perfect code tracking case, the RSM experiments usedthe ANOVA with a

second-order model to detect curvature in the response surface. However, there was only

one input variable in the model,x1. Consequently, the experimental design consisted of a

one-factor, five-level, full-factorial design. The matrixform of the system model from (2.8)

is then expressed as

Y =
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The SMSE parameters were optimized using the steepest ascent/descent process de-

scribed in (2.21) until the response surface fit the second-order model, as determined by the

ANOVA. Once the second-order model detected curvature, (2.19) was used to solve for the

SMSE parameters in terms of their coded variables. Final results for the RSM optimization

process underimperfectcode tracking conditions are provided in Section 4.2.3.
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IV. Results and Analysis

The SMSE waveform design procedure is demonstrated in this chapter under two code

tracking conditions, including perfect code tracking and imperfect code tracking. In both

cases, the SMSE waveform is introduced into the DSSS system and resultant DSSS bit error

rate (Pb) performance characterized as the SMSE parameters are varied. Underperfect code

trackingconditions in Section 4.1, the DSSS receiver is assumed to maintain perfect code

tracking such that the DLL produces an ideal prompt codecp(t) for despreading. Optimal

SMSE parameter selection is addressed using independent Genetic Algorithm (GA) and

Response Surface Methodology (RSM) approaches. Underimperfect code trackingcondi-

tions in Section 4.2, DLL code tracking is incorporated to assess performance under more

realistic channel conditions using a less than idealcp(t) estimate. Optimal SMSE parame-

ter selection under these conditions is addressed using a hybrid GA-RSM technique. The

reader should exercise caution when comparing optimization results across various sec-

tions in this chapter. This is especially important when considering perfect and imperfect

DSSS code tracking results, given they were generated usingdissimilar SMSE and DSSS

parameter values as well as different objective functions and feasibility region constraints

during optimization.

4.1 Perfect Code Tracking

4.1.1 Demonstration Procedure. The SMSE waveform design procedure is first

demonstrated in a coexistent environment underperfectDSSS code tracking conditions.

In this case, the estimated DLL prompt codecp(t) is considered to be ideal such that the

DSSS receiver despreading code perfectly matches the transmitted spreading code. Opti-

mal SMSE parameter selection is addressed using independent GA and RSM approaches.

The goal is to find SMSE parameter values that optimize DSSS receiver performance in

terms of end-to-end bit error rate (Pb).

4.1.1.1 Coexistent SMSE Signal. The coexisting SMSE signal was gen-

erated using the framework described in Section 2.1.1 all but two of the parameters fixed

to implement conventional OFDM [34]. Performance of an SMSEOFDM implementa-
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tion is dictated by two design parameters, including the total number of IFFT pointsNf ,

which dictates the number of individual SMSE subcarriers, and the subcarrier frequency

spacing∆f . Together, the value of these two parameters determines theoverall waveform

bandwidth.

4.1.1.2 Overall DSSS System. The DSSS system considered here uses

BPSK for both data and spreading modulations. The spreading code was aNc = 32 bit

Hadamard sequence with exactly one code period occurring per data symbol. The DSSS

Pb performance is evaluated over an Additive White Gaussian Noise (AWGN) channel.

The DSSS receiver employs an ideal RF filter prior to the despreading mixer. Following

the despreading mixer, the communication symbols are estimated using a single channel

correlation process under maximum likelihood conditions.

4.1.2 Genetic Algorithm (GA). The analytic SMSE framework enables paramet-

ric optimization of OFDM waveforms using a GA process. As noted previously, the two

SMSE optimization parameters included, 1) the number of IFFT points in the SMSE wave-

form generation (Nf ), and 2) the subcarrier frequency separation (∆f ). Each GA gene

used eight binary digits to represent the possible SMSE parameter values. Furthermore,

the value ofNf was constrained to be an integer power of two in the range [1,128]. For

representation in the GA gene,∆f was assigned an integer value in the range [1,33]. The

objective function to be optimized was DSSS bit error ratePb. For demonstration purposes,

the GA optimization process was carried out for two cases: (A) MinimizingDSSSPb which

represents best-case SMSE-DSSS coexistence performance,and (B)MaximizingDSSSPb

which represents worst-case SMSE-DSSS coexistence performance.

For both cases, the initial GA population consisted of ten randomly generated genes.

Using Monte Carlo simulation of a physics-based analytic model, the DSSSPb was cal-

culated for each case to judge the genes’fitness, with the DSSS systemPb value being

the fitness statistic. Tabulated GA results for the two optimization cases are presented in

Table 4.1 and Table 4.2 [3]. Each table includes the initial random population values and

the final optimized values. Table 4.1 shows the GA optimized parameter values thatmin-
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imizeDSSSPb (best-case SMSE-DSSS coexistence) and Table 4.2 shows GA optimized

parameter values thatmaximizeDSSSPb (worst-case SMSE-DSSS coexistence).

Corresponding bit error curves for the data presented in Table 4.1 and Table 4.2 are

shown in Fig. 4.1 and Fig. 4.2, respectively [3]. In both cases, the signal power (S) and

the noise power (N ) in the DSSS system remained fixed while the interfering SMSEpower

(I) was varied to achieve the indicated Signal-to-Interference-plus-Noise RatioSINR =

S/(I + N).

GA optimized results for Minimum DSSSPb are shown in Fig. 4.1. The upper

curve (unfilled boxes) is provided for comparison and shows the highest resultantPb per-

formance obtained from the initial non-optimized parameter population. The lower curve

(filled boxes) is the resultantPb performance using the final GA-optimized parameters from

Table 4.1 (Nf = 64, ∆f = 11 Hz,WSMSE = 1.41 KHz) and represents best-case coex-

istence. In this case, theWSMSE bandwidth greatly exceedsWRF = 2 × Rchip = 64 Hz

and minimal received SMSE power actually enters the DSSS detector. Consequently, the

Pb results approach the noise limited case, i.e., the resultant Pb is the same as if there were

no SMSE signal present. This result is a direct consequence of the feasibility region being

loosely constrained and allowing solutions whereWSMSE > WRF . As such, there are ad-

ditional GA solutions in Table 4.1 that were analyzed and produced similar noise limited

results, e.g., the (Nf = 128, ∆f = 11 Hz,WSMSE = 2.82 KHz) solution uses the same

subcarrier spacing with more carriers and an even wider bandwidth.

GA optimized results for Maximum DSSSPb degradation are shown in Fig. 4.2. The

lower curve (unfilled boxes) is provided for comparison and shows the lowest resultantPb

performance obtained from the initial non-optimized parameter population (noise limited

performance). The upper curve (filled boxes) is the resultant Pb performance using the final

GA-optimized parameters from Table 4.2 (Nf = 1, f = 16 Hz,WSMSE = 32 Hz). This is

the special case ofNf = 1 (single BPSK modulated subcarrier centered atfc) and produces

worst-case coexistence. Given the resultant bandwidth ofWSMSE = 32 Hz, all SMSE

power is withinWRF = 64 Hz and contributes to degraded performance. In addition to
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Table 4.1: Initial and optimized SMSE parametric value populations us-
ing the GA process toMINIMIZE DSSS probability of bit error (Pb) – Best-
Case SMSE-DSSS Coexistence Performance [3].

Nf ∆f (kHz)

Initial Optimized Initial Optimized

128 64 20 10

2 128 28 11
16 128 28 4
8 64 29 22

128 8 5 1
64 64 4 8
8 128 21 11
1 128 5 11
64 64 19 23
8 64 18 11

Table 4.2: Initial and optimized SMSE parametric value populations us-
ing the GA process toMAXIMIZE DSSS probability of bit error (Pb) –
Worst-Case SMSE-DSSS Coexistence Performance [3].

Nf ∆f (kHz)

Initial Optimized Initial Optimized

128 1 20 16

2 4 28 16
168 32 28 13
8 1 29 16

128 1 5 32
64 1 4 16
8 1 21 16
1 1 5 16
64 1 19 16
8 1 18 16
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Figure 4.1: SINR vs DSSSPb performance for initial (unfilled boxes) and
GA optimized (filled boxes) SMSE parameters in Table 4.1. GA optimized
for MinimumPb – Best-Case SMSE-DSSS Coexistence Performance [3].
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power, thePb degradation is also attributable to the spectral sinc(f) = sin (f) /f response

of the SMSE waveform and the spectral structure of the DSSS spreading signal. More

specifically, the discrete spectral lines in theNc = 32-chip DSSS spreading code are spaced

fchip = Rchip/Nc = 1 Hz apart [25] and there areWRF /fchip = 64 total lines inWRF =

2 × Rchip = 64 Hz, or 32 total lines inWSMSE = WRF /2 = 32 Hz. The impact of this

is illustrated by considering the power spectrum at the despreading mixer output (DSSS

detector input) in the DSSS receiver, which is the convolution of the spreading code spectral

lines and the SMSE subcarriers. For the shift-multiply-integrate operations of the spectral

convolution process that occur nearfc, there are 32 contributing products in the correlation

result. As a result, the amount of power in the “despread” spectral response that falls within

the DSSS detector bandwidth (WDet = 2×Rsym = 2 Hz) is maximum and the interfering

SMSE signal has maximum impact on DSSSPb performance.

4.1.3 Response Surface Methodology (RSM).The RSM was the second approach

considered to optimize SMSE parameter selection under perfect DSSS code tracking con-

ditions. In this case, the experiments assumed thePb response surface fit a second-order

model given by

Y = β0 + β1x1 + β2x2 + β12x1x2 + β11x11 + β22x22 (4.1)

To properly characterize this model, the experimental design considered a two-factor, three-

level, full-factorial design with four additional center runs. The matrix form of the experi-

mental design is given by
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The mapping from SMSE parameter variables (Nf , ∆f ) to coded variables (x1, x2)

for the initial and final RSM experiments is shown in Table 4.3 and Table 4.4, respec-

tively [4]. The final results were obtained using the method of steepest descent.

Table 4.3: Mapping from SMSE parameters (Nf , ∆f ) to coded variables
(x1, x2) for the initial RSM experiment [4].

Factor Level Nf x1 ∆f x2

Low 23 -1 17 -1

Medium 24 0 16 0
High 25 1 15 1

Table 4.4: Mapping from SMSE parameters (Nf , ∆f ) to coded variables
(x1, x2) for thefinal RSM experiment after applying the method of steepest
descent [4].

Factor Level Nf x1 ∆f x2

Low 21 -1 16.37 -1

Medium 22 0 15.87 0
High 23 1 15.36 1
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Table 4.5: ANOVA table for initial and final RSM trials [4]

Source of Degrees of Initial Final
Variation Freedom p-value p-value

Model 5 3.8 × 10−6 2.1 × 10−4

x1 1 1.6 × 10−8 1.0 × 10−5

x2 1 1.0 × 10−1 1.4 × 10−1

x1x2 1 3.1 × 10−1 2.5 × 10−2

x2
1 1 6.6 × 10−3 1.5 × 10−5

x2
2 1 3.8 × 10−1 1.2 × 10−2

Error 7

Table 4.5 shows ANOVA results for the initial and final RSM experiments [4], with

the table rows representing main effects and interactions according to the experimental

model. Thep-value indicates the significance for each factor. The smaller thep-value,

in a given row, the more likely that term is significant. For the trials illustrated here, a

p-value < 0.05 was considered significant, and results in rejection of the ANOVA null

hypothesis of equal means.

As one may observe, results for first RSM trial indicate that the response surface was

not quadratic given thep-value > 0.05. After moving to the final region, both of thex2
1

andx2
2 quadratic terms are significant and the stationary pointxs, found using (2.19), is

determined to beNf = 2 and∆f = 15.87 Hz. However, additional Eigenvalue analysis

of the resulting regression coefficients revealed that the stationary pointxs is neither a

minimum nor a maximum, but rather a saddle point. If a global minimum or maximum is

desired, the RSM process would need to be repeated using a different starting point. For

purposes of this research, the saddle point solution is sufficient to demonstrate the practical

utility of the RSM process.

To illustrate consistency between the RSM saddle point solution and physical wave-

form level modeling, an end-to-end simulation was run for the SMSE-DSSS coexistent

scenario. Simulation results are shown in Fig. 4.3 for thePb corresponding to the RSM
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Figure 4.3: SINR vs DSSSPb performance for RSM optimized SMSE
parameters. Unfilled boxes represent Best-Case SMSE-DSSS Coexistence
and filled boxes represent Worst-Case SMSE-DSSS Coexistence [4].

stationary point (unfilled circles) [4]. Additional best-case (unfilled boxes) and worst-case

(filled boxes) results are also shown and were obtained from additional RSM searches.

As indicated in Fig. 4.3, the saddle point solution in Table 4.4 of (Nf = 4, ∆f =

15.87 Hz,WSMSE = 127 Hz) has approximately one-half of its power withinWRF =

2 × Rchip = 64 Hz and is indeed non-optimal (neither maximum nor minimum degrada-

tion) given that its resultantPb performance consistently fall between the two extremes of

maximum degradation for (Nf = 1, ∆f = 8 Hz,WSMSE = 16 Hz) and minimum noise

limited performance for (Nf = 8, ∆f = 2 Hz,WSMSE = 32 Hz). As with GA maximiza-

tion results in Section 4.1.2, worst-case coexistence performance is once again achieved

for the special case ofNf = 1 (single BPSK modulated subcarrier centered atfc) and the

physical interpretation as to why this occurs is as explained in that section.

Results in Section 4.1.2 and Section 4.1.3 suggest that the GAand RSM techniques

are applicable for rigorous coexistence analysis of conventional, DSSS and OFDM-based

SMSE waveforms. In applying both techniques, the independently optimized results con-
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Figure 4.4: Imperfect code tracking scenario for SMSE-DSSScoexis-
tent optimization. SMSE parameters impact DLL performanceand impact
prompt codecp(t) estimation.

sistently migrated toward expected system performance andthere were valuable “lessons

learned” regarding how to best address more realistic constraints and conditions. As pre-

sented in the next section, these lessons learned drove the development a hybrid GA-RSM

optimization process to address imperfect code tracking conditions.

4.2 Imperfect Code Tracking

The SMSE waveform design procedure is next demonstrated in acoexistent envi-

ronment underimperfectcode tracking conditions. As discussed in Section 2.1.3, receiver

code tracking is critical to successful demodulation. The effects of code tracking are incor-

porated here to assess SMSE-DSSS coexistence performance under more realistic channel

conditions. In this case, a less than ideal prompt code estimatecp(t) is used and optimal

SMSE parameter selection is addressed using a hybrid GA-RSM technique. The hybrid

technique first uses the GA process in Section 4.2.2 to find a “coarse” optimization solu-

tion. The course GA solution is then used as the initial starting point in the RSM process

of Section 4.2.3 which provides the final, more precise optimized solution.

4.2.1 Demonstration Procedure.The imperfect code tracking scenario for SMSE-

DSSS optimization is depicted in Fig. 4.4 which shows the coexistent SMSE and DSSS

transmitters. As shown, both signals are present while the DLL in the DSSS receiver tracks

the received spreading code.
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Figure 4.5: Coexistent SMSE signal generation architecture.

The DLL prompt code outputcp(t) in Fig. 4.4 represents the PN spreading code

estimate that is used to despread the received signal prior to demodulation. In this sce-

nario, the received DSSS waveform is corrupted by the SMSE waveform which causes the

prompt code estimate to be an imperfect representation of the true spreading code. As a

result, the incoming DSSS signal of interest is not perfectly despread and demodulated

Pb performance is degraded. Demonstration details with respect to the coexistent SMSE

signal, the overall DSSS system, and DLL code tracking are presented in Section 4.2.1.1,

Section 4.2.1.2 and Section 4.2.1.3, respectively.

4.2.1.1 Coexistent SMSE Signal. The SMSE signal was generated using

the architecture shown in Fig. 4.5. The sequence of input data bitsdk are randomly gen-

erated with equal probability of being either a 0 or 1. The bits are then modulated using

antipodal BPSK such that thekth bit bk is mapped todk ∈ {−1, 1} according to

dk = (−1)bk .

Using a serial-to-parallel (S/P) conversion process, groups of Nf modulated bits

passed to the IFFT operation after 1) element-by-element weighting by complex vector

wk and 2) zero padding. The first weighting coefficient is set tow1 = 0 and the remain-

ing Nf − 1 coefficients are set to unity such thatwk = [0 1 1 · · · 1]. This is consistent

with common practice when implementing OFDM and effectively ensures that the resul-
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tant SMSE waveform does not include a DC component. In the simulation, the resultant

weighted vector ofNf elements is then zero padded with a total offs/∆f − Nf zeros.

This ensures that the resultant time domain SMSE symbol following the IFFT process is

sampled at the same effective ratefs as other signals in the simulation. In the simulation,

this operation effectively replaces the Digital-to-Analog converter (DAC) in a real-world

communication system.

Each IFFT operation creates one time domain SMSE symbol comprised ofNf carri-

ers and having a symbol duration ofTsym = 1/∆f and sample frequencyfs. The resultant

SMSE symbols are complex baseband signals. The received interfering SMSE waveform

was taken as real part of the carrier modulated signal, expressed as

sSMSE(t) = Re
[

v(t)ej2πfct
]

,

wherefc is the carrier frequency,v(t) is the complex baseband SMSE signal, andsSMSE(t)

is the resultant coexisting SMSE signal.

The optimized SMSE variables used for the imperfect code tracking demonstration

included: 1) the number of IFFT pointsNf and 2) the subcarrier frequency separation∆f ,

which were allowed to take on values ofNf ∈ {16, 32, 64, 128} and∆f ∈ [6, 132] kHz.

4.2.1.2 Overall DSSS System.The transmitted DSSS signal was generated

using the architecture shown in Fig. 4.6. The input data modulated waveformd(t) is based

on BPSK modulation using randomly generated bits having equal probability of being a

0 or 1. The baseband data modulated waveformd(t) is then carrier modulated tofc and

spread byc(t) prior to transmission. Spreading waveformc(t) is generated according to

c(t) =
Nc
∑

m=1

(−1)cmp(t − mTchip) ,

wherecm is anNc length binary spreading code andTchip is the chip duration. For the

imperfect code tracking demonstration being considered here: 1) cm was anNc = 1023
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Figure 4.6: DSSS signal generation architecture.

length Gold code, 2) the code period was set equal to the symbol duration (Nc × Tchip =

Tsym), 3) the chip rate wasRchip = 1/Tchip = 1023× 103 chips/sec, and 4) the code period

start/stop boundaries were synchronous withTsym transition boundaries.

4.2.1.3 Delay-Lock Loop (DLL) Code Tracking. The DLL architecture

used for the imperfect code tracking demonstration is shownin Fig. 4.7. The RF bandpass

filter was implemented as an8th-order Butterworth filter having a−3 dB bandwidth of

WRF = 2 × Rchip = 2.046 MHz.

The prompt codecp(t) is generated using the same spreading code sequence used by

the DSSS transmitter but with its timing characteristics varied by the NCO in accordance

with the DLL error voltage. The early codece(t) is advancedTchip/2 relative to the prompt

code while the late codecl(t) is delayedTchip/2 relative to the prompt code.

The IF bandpass filters serves to remove all but the fundamental harmonic after mul-

tiplication by eitherce(t) or cl(t). The IF filters were implemented as8th-order Butterworth

filters having a−3 dB bandwidth ofWBPF = 5 kHz. This bandwidth is somewhat wider

than necessary to track the code of interest, but a wider bandpass was chosen for consis-

tency with real-world conditions where Doppler shift is notprecisely known or not tracked.

The squaring operation following the IF bandpass filtering and subsequent low pass

filtering comprise an envelope detector. The low pass filtersare designed to remove dou-

ble frequency terms resulting from the squaring operation and were implemented here4th-

order Chebychev filters having a−3 dB bandwidth ofWLPF = 2.5 MHz. The early and late

gate low pass filter outputs are summed and filtered to providethe control signal (discrim-
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inator voltage) to the Numerically Controlled Oscillator (NCO). For simulation purposes,

the NCO maintains its own time reference to generate the PN code. When the discrimina-

tor voltage is zero, the NCO sample rate matches the simulatedsample rate offs and the

estimated prompt codecp(t) perfectly matches the received code. When the signed discrim-

inator value deviates positive/negative from zero, the NCO sample rate increases/decreases

accordingly and the estimated prompt codecp(t) is altered. Ideally, the discriminator value

varies linearly between its extremes. When viewed in real-time, an accordion-like effect is

observed incp(t) on a chip-by-chip basis, i.e., there is a clear compression and dilation of

the chip intervals throughout the code period.

Perfect DLL tracking results in a prompt code estimate that is an exact replica (code

phase and chip duration) of the received DSSS spreading waveform. The presence of a

coexisting SMSE signal causes the estimated prompt code to vary in both phase and chip

duration as the DLL compensates. This degradation is characterized and quantified using

the cross-correlation metricCDeg introduced in Section 3.2.3.

The correlation metric introduced in Section 3.2.3 is generated as follows to charac-

terize DLL code tracking performance. The DSSS waveform is received by the DLL with

an initial code phase difference of 20% between the prompt code and the true spreading

code. The DLL processes this signal for two code cycles without adaptation to allow the

DLL to stabilize to an accurate initial phase estimate. Adaption begins after two code pe-

riods. After five code periods the coexistent SMSE signal is applied to the loop along with

the DSSS signal for five additional code periods. The prompt code and true spreading code

from the five additional code periods are correlated per (3.2) using an integration interval

of one code period. The mean value from the correlation process comprises one sample of

the correlation metric,CT−P . For clarity, the data is presented is terms of a normalized and

shifted version ofCT−P , termedCDeg, which represents the amount of tracking degradation

caused by the coexistent SMSE signal.

Representative histograms of theCDeg metric are shown in Fig. 3.1 and Fig. 3.2 for

moderately and severely degraded DLL code tracking performance, respectively. Recall
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that values ofCDeg approaching zero indicate better DLL tracking performancewhile val-

ues near one indicate poorer, more degraded tracking performance.

In addition, observations ofCDeg behavior in many such figures indicates that the

SMSE waveform impact on DLL performance is highly dependenton ISR. Thus, care was

taken to choose appropriate ISR values for subsequent waveform design demonstrations.

For example, if the chosen ISR value is too high all of the potential SMSE waveform

designs can cause the DLL to break lock. Likewise, if the chosen ISR value is too low,

many of the potential waveform designs will have minimal impact. Observations ofCDeg

for 15 dB ≤ ISR ≤ 35 dB showed that the metric behaved best for optimization purposes

at ISR = 20 dB. At that value, all of the SMSE parameter combinations degraded DLL

code tracking performance, but none consistently caused the DLL to break lock.

4.2.2 Hybrid Optimization Step 1: GA Process.The hybrid optimization tech-

nique first uses the GA process in Section 3.2.4 to find a “coarse” optimized SMSE solution.

For demonstration purposes, 1000 generations were used with optimization variables being

the number of IFFT pointsNf ∈ {16, 32, 64, 128} and the subcarrier frequency spacing

∆f ∈ [1, 33] ∩ I. The feasibility region was defined such thatNf∆f ≤ 1/Tchip.

The GA process was used to both minimize and maximizeCDeg under imperfect DLL

tracking conditions. Table 4.6 shows the initial random andfinal optimized populations

using the GA process tominimizeCDeg . Box and whisker plots ofCDeg for the initial and

final optimized populations are shown in Fig. 4.8 and Fig. 4.9, respectively.

Table 4.7 shows the initial random and final optimized populations using the GA

process tomaximizeCDeg. Box and whisker plots ofCDeg for the initial and final optimized

populations are shown in Fig. 4.10 and Fig. 4.11, respectively.

The parameter combinations in Table 4.6 and Table 4.7 were compared via the LSD

test described in Section 2.2.2.8. The SMSE parameters, (Nf = 16, ∆f = 6 kHz), pro-

videdCDeg means which were statistically lower than all other parameter combinations ex-

cept for (Nf = 16, ∆f = 7 kHz). These two SMSE parameter combinations were statisti-

cally indistinguishable. The combination (Nf = 16, ∆f = 6 kHz) was chosen as the start-
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Table 4.6: Initial random and final optimized SMSE parametric value
populations using the GA process toMINIMIZE correlation degradation
CDeg – Best-Case Tracking and SMSE-DSSS Coexistence.

Nf ∆f (kHz) Figs. 4.8 & 4.9

Initial Optimized Initial Optimized Combination

32 16 23 10 1
64 16 8 38 2
16 32 53 6 3
16 16 17 6 4
32 16 14 6 5
16 32 24 6 6
64 16 11 6 7
16 16 7 6 8
16 16 34 6 9
16 16 63 6 10

Table 4.7: Initial random and final optimized SMSE parametric value
populations using the GA process toMAXIMIZE correlation degradation
CDeg – Worst-Case Tracking and SMSE-DSSS Coexistence.

Nf ∆f (kHz) Figs. 4.10 & 4.11

Initial Optimized Initial Optimized Combination

16 32 48 25 1
16 32 20 24 2
16 32 24 28 3
64 32 13 24 4
32 32 29 24 5
32 32 27 24 6
32 32 31 24 7
16 32 33 24 8
32 32 22 24 9
16 32 29 24 10
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Figure 4.8: Box and whisker plot ofCDeg results forinitial randompop-
ulation using the GA process toMINIMIZE CDeg.
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Figure 4.9: Box and whisker plot ofCDeg results forfinal optimizedpop-
ulation using the GA process toMINIMIZE CDeg.
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Table 4.8: Hybrid Optimization Process: GA Optimized SMSE param-
etersNf and∆f maximizing and minimizing the correlation degradation
metric,CDeg.

Nf ∆f (kHz) WSMSE (MHz)

MinimizedCDeg 16 6 0.19
MaximizedCDeg 32 24 1.54

ing point for the RSM minimization process instead of (Nf = 16, ∆f = 7 kHz), because it

was the result of GA convergence. However, the parameter values (Nf = 16, ∆f = 7 kHz)

were also explored with the RSM process, because of its proximity to (Nf = 16, ∆f =

6 kHz).

The SMSE parameters (Nf = 32, ∆f = 24 kHz) providedCDeg means that were

not statistically lower than any other parameter combinations. Eleven SMSE parame-

ter combinations from Table 4.6 and Table 4.7 providedCDeg means which were statis-

tically indistinguishable from that of (Nf = 32, ∆f = 24 kHz). The other parameter

combinations were similar to (Nf = 32, ∆f = 24 kHz) with respect to their relatively

high bandwidths (WSMSE = Nf × ∆f ). The bandwidth range for these signals was

512kHz ≤ WSMSE ≤ 992 kHz. For comparison purposes, the bandwidth of the mini-

mization solution, (Nf = 16, ∆f = 6 kHz) wasWSMSE = 96 kHz. The combination

(Nf = 32, ∆f = 24 kHz) was chosen as the starting point for the RSM maximization

process instead of the other, similarly performing SMSE parameter combinations, because

it was the result of GA convergence.

The resultant GA-optimized SMSE parameters are shown in Table 4.8, and their

corresponding histograms forCDeg are shown in Fig. 4.12 and Fig. 4.13.

4.2.3 Hybrid Optimization Step 2: RSM Process.Given the “coarse” optimiza-

tion solution from the GA process in Section 4.2.2, the RSM process in Section 3.2.5 is

next applied to perform final minimization and maximizationof correlation degradation

CDeg. This hybrid GA-RSM approach addressed two issues that emerged in Section 4.1.3.
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Figure 4.10: Box and whisker plot ofCDeg results forinitial random
population using the GA process toMAXIMIZE CDeg.
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Figure 4.11: Box and whisker plot ofCDeg results forfinal optimized
population using the GA process toMAXIMIZE CDeg.
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Figure 4.12: Histogram showing behavior ofCDeg for severely degraded
DLL code tracking with ISR = 25dB (at the output of the front-end RF
filter) in coexistent SMSE-DSSS scenario with GAMAXIMIZED SMSE
Parameters(Nf , ∆f).
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Figure 4.13: Histogram showing behavior ofCDeg for moderately de-
graded DLL code tracking with ISR = 25dB (at the output of the front-end
RF filter) in coexistent SMSE-DSSS scenario with GAMINIMIZED SMSE
Parameters(Nf , ∆f).
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Table 4.9: Hybrid Optimization Process: SMSE parameter-to-coded vari-
able (∆f -to-x) mapping for initial RSMMINIMIZATION experiment under
imperfect code tracking conditions.

x ∆f (kHz)

-2 6.00
-1 6.23
0 6.47
1 6.71
2 6.94

The first issue had to do with answering the question, “What is agood starting point for

the RSM process?” Given GA is the first step in the hybrid process, a systematic approach

is now used to choose the RSM starting point. The second issue is simply related to the

number of dimensions used in the optimization process. Given the GA solution effectively

identifies the appropriateNf value, the RSM optimization process is reduced to a one di-

mensional search for the appropriate∆f value. This is a desirable outcome given that RSM

attempts to optimize on a continuous surface, whileNf is inherently discrete. Thus, resul-

tant RSM design matrix has one factor with five levels. The number of SMSE subcarriers

was set toNf = 16 as determined by the initial GA process.

4.2.3.1 Minimizing DLL Tracking Degradation. Final RSM optimization

is first considered for the case whereCDeg is to be minimized for the coexistent SMSE-

DSSS scenario. The values used for∆f are shown in Table 4.9 along with their coded

counterparts in variablex.

The RSM design matrix was run with 1000 repetitions and the data transformed using

the Box-Cox transformation with a value ofλ = 54.78. This resulted in each condition in

the trial being properly classified as normal according to the Shapiro-Wilks test described

in Section 2.2.2.5.

The data was then fit to linear, pure quadratic, and quadraticmodels as described in

Section 2.2.2.2. The resultantp-value test for all three models yieldedp < 10−3 indicating
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Table 4.10: Hybrid Optimization Process: SMSE parameter-to-coded
variable (∆f -to-x) mapping for initial RSMMAXIMIZATION experiment
under imperfect code tracking conditions.

x ∆f (kHz)

-2 23.03
-1 23.52
0 24.00
1 24.48
2 24.97

a good fit. The pure quadratic model provided the best fit basedon its F statistic and

p-value. However, the solutions for all three models were calculated since all were deemed

to be statistically significant.

Based on these results, the final solution for a coexistent SMSE signal that is least dis-

ruptive to DSSS system performance, as indicated by minimalDSSS code tracking degra-

dation, isNf = 16 and∆f = 6.47 kHz. This was accomplished by finding a coarse GA

solution followed by fine-tuning with the RSM process.

4.2.3.2 Maximizing DLL Tracking Degradation. Final RSM optimization

is first considered for the case whereCDeg is to be maximized for the coexistent SMSE-

DSSS scenario. The values used for∆f are shown in Table 4.10 along with their coded

counterparts in variablex.

The RSM design matrix was run with 1000 repetitions and the data transformed using

the Box-Cox transformation with a value ofλ = 10.88. This resulted in each condition in

the trial as being properly classified as normal according tothe Shapiro-Wilks test described

in Section 2.2.2.5.

The data was then fit to linear, pure quadratic, and quadraticmodels as described

in Section 2.2.2.2. The resultantp-value test for the quadratic model yieldedp < 10−3

indicating a good fit.
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Table 4.11: Hybrid Optimization Process: RSM Optimized SMSEpa-
rametersNf and∆f maximizing and minimizing the correlation degrada-
tion metric,CDeg.

Nf ∆f (kHz) WSMSE (MHz)

MinimizedCDeg 16 6.47 0.2
MaximizedCDeg 32 25.02 1.6

Based on these results, the final solution for a coexistent SMSE signal that is the

most disruptive to DSSS system performance, as indicated bymaximal DSSS code track-

ing degradation, isNf = 32 and∆f = 25.02 kHz, as shown in Table 4.11. This was

accomplished by finding a coarse GA solution followed by fine-tuning with the RSM pro-

cess. To visually compare the final solutions of the RSM process, histograms of the final

minimized and maximizedCDeg values are provided in Fig. 4.14 and Fig. 4.15, respectively.

Given the resultantWSMSE for each optimized case in Table 4.11, all SMSE power

is contained withinWRF = 2.046 MHz and thus the RF filtering effects contribute min-

imally to the performance difference. The performance difference is most attributable to

the relationship between SMSE subcarrier spacing and the spectral structure of the DSSS

spreading signal, i.e., the degree of SMSE-DSSS spectral coincidence. For parameters

used in these imperfect tracking scenarios, the spectral characteristics of the DSSS spread-

ing signal and received SMSE signals can be summarized as follows:

1. The spectral lines for theNc = 1023-chip DSSS spreading code are spaced∆fchip =

Rchip/Nc = 1 KHz apart [25]. There areWRF /∆fchip = 2, 046 total lines inWRF =

2 × Rchip = 2.046 MHz that are power weighted according to [25]

Sc (f − fc) =







1
N2

c
, f = fc

Nc−1
N2

c
sinc2 [(f − fc) Tchip] , Elsewhere

,

where sinc(f) = sin (f)/f . The central line is located atfc and remaining lines

uniformly spaced on either side offc at intervals of∆fchip = 1 KHz.
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Figure 4.14: Histogram showing behavior ofCDeg for the RSM solution
thatMINIMIZESCDeg.
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Figure 4.15: Histogram showing behavior ofCDeg for the RSM solution
thatMAXIMIZESCDeg.
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2. The coexisting SMSE signal spectrum is centered atfc with an even number of BPSK

data modulated subcarriers (Nf/2) uniformly spaced on either side offc. The two

centrally located SMSE subcarriers are at∆f on either side offc and all remaining

subcarriers spaced at uniform intervals of∆f from these. By design, the total SMSE

powerI is equally distributed across all subcarriers.

The degree of spectral coincidence between the DSSS spreading code, as used in the

DSSS receiver to “despread” the received signals, and received SMSE signals dictatesPb

performance. This is best characterized by considering therelationship between the DSSS

spectral line spacing∆fchip and the SMSE subcarrier spacing∆f , or more directly, by

considering the resultant power spectrum at the despreading mixer output (DSSS detector

input) in the DSSS receiver. The “despread” spectral response is the convolution of the

uniformly spaced DSSS spectral lines at∆fchip = 1 KHz with the uniformly spaced

SMSE subcarriers spaced at∆f .

For the least disruptive solution in Table 4.11 the optimized subcarrier spacing of

∆f = 6.47 KHz is a non-integer multiple of∆fchip = 1 KHz. Therefore, for a given

shift-multiply-integrate operation of the spectral convolution process there is a most one

DSSS spectral line that is aligned with an SMSE subcarrier and the peak response of all

other SMSE subcarriers falls approximately midway betweenother spectral lines–minimal

SMSE-DSSS spectral coincidence. As a result, the amount of power in the “despread”

spectral response that falls within the DSSS detector bandwidth (WDet = 2 × RSym =

2 KHz) is relatively low and the interfering SMSE signal has minimal impact on DSSSPb

performance.

On the other hand, for the most disruptive solution in Table 4.11, the optimized sub-

carrier spacing of∆f = 25.02 KHz is approximately an integer multiple of∆fchip =

1 KHz. Therefore, for a given shift-multiply-integrate operation of the spectral convolu-

tion process the peak responses of all SMSE subcarriers align near perfectly with specific

DSSS spectral lines–maximum SMSE-DSSS spectral coincidence. As a result, the amount

of power in the “despread” spectral response that falls within the DSSS detector bandwidth
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(WDet = 2 × RSym = 2 KHz) is maximum and the interfering SMSE signal has maxi-

mum impact on DSSSPb performance. Alternately stated, this SMSE solution in this case

is more spectrally “matched” to the DSSS signal which causesgreater degradation.

4.2.4 Optimal SMSE Parameter Demonstration. Two additional metrics were

calculated to demonstrate waveform optimization effects using the final RSM optimized

solutions from Section 4.2. First, DSSS end-to-end bit error rate Pb was calculated to

demonstrate the communication system applicability. Second, relative timing jitter,Jcode,

between the DLL-generated prompt codecp(t) and the incident DSSS codeci(t) was calcu-

lated to demonstrate applicability to DSSS-based navigation and precision timing system.

Communication systemPb results are shown in Table 4.12. These results were gen-

erated using the physics-based analytic DSSS receiver model with Monte Carlo simulation

as shown in Section 4.1. The ideal results are provided for comparison and represent per-

fect code tracking conditions, i.e., the best that can be expected. The minimization and

maximization results were obtained using the SMSE parameter solutions from the hybrid

optimization process. For the degraded cases, the SMSE waveform effects on the DSSS

receiver were isolated to DLL tracking performance only; noSMSE signal was present in

the DSSS demodulator.

Timing jitterJcode results are shown in Table 4.13. For this analysis,Jcode was defined

as the the time difference between the coded pulse transition points inci(t) andcp(t), with

negative values forJcode indicating thatcp(t) transitioned beforecp(t) and positive values

indicating thatcp(t) transitioned aftercp(t). Table 4.13 shows the standard deviation of the

Jcode metric.
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Table 4.12: Communication system bit error rate (Pb) for ideal code track-
ing and degraded code tracking using final SMSE parameters from hybrid
GA-RSM optimization process in Section 4.2.

CDeg Optimization Nf ∆f(kHz) Pb

Ideal N/A N/A 1.0 × 10−3

Minimized 16 6.47 5.6 × 10−2

Maximized 32 25.02 2.2 × 10−1

Table 4.13: Timing jitter standard deviationJcode for degraded code track-
ing using final SMSE parameters from hybrid GA-RSM optimization pro-
cess in Section 4.2.

CDeg Optimization Nf ∆f(kHz) Jcode (sec)

Minimized 16 6.47 1.83 × 10−7

Maximized 32 25.02 1.94 × 10−7
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V. Conclusion

5.1 Research Summary

The Spectrally Modulated, Spectrally Encoded (SMSE) framework provides an ef-

fective means for implementing Orthogonal Frequency Division Multiplexing (OFDM) sig-

nals and the ability to efficiently generate them has only recently become practical from a

hardware perspective. As such, OFDM technology has been identified as a bedrock tech-

nology for fourth generation (4G) communications based on Cognitive Radio (CR) and

Software Defined Radio (SDR) techniques [17]. The inherent flexibility of OFDM has

generated significant research interest [11,20,34–37,40]and the expanding pool of OFDM

variants drove the need for a unified framework. As utilized under this research, the resul-

tant SMSE framework effectively embodies the class of OFDM-based signals [27–30].

As 4G SMSE communications emerge they must coexist with other systems while

competing to use available communication resources. Thus,coexistent interference be-

comes a concern, especially when these systems operate without orthogonality in fre-

quency, time, space, polarization, and/or coding. Given a lack of orthogonality and limited

available bandwidth, these signals must be designed to spectrally coincide while induc-

ing “manageable” levels of mutual interference. This becomes particularly challenging

when fundamentally different waveform modulations and thewaveform design procedure

often resorts to trial and error design methods [25, 31]. Thegoal of this research was to

demonstrate a more structured, optimal means for SMSE waveform design using tech-

niques commonly employed in the operations research field. Asurvey of general optimiza-

tion techniques revealed that two methods were particularly applicable to the coexistent

SMSE waveform design scenario, includingGenetic Algorithm(GA) andResponse Sur-

face Methodology(RSM) optimization techniques.

Each of these optimization techniques are used to demonstrate SMSE waveform de-

sign in a coexistent scenario containing an SMSE signal and aDirect Sequence Spread

Spectrum (DSSS) system operating over an Additive White Gaussian Noise (AWGN) chan-

nel. The DSSS system employs a non-coherent Delay-Lock Loop(DLL) for code track-

ing. The specific DLL implementation used here, along with defined correlation metrics
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that characterize code tracking conditions, is sufficiently general such that the optimization

demonstrations herein are broadly applicable to other non-communication applications em-

ploying DLL tracking, e.g., precision navigation, timing,geolocation, etc.

The coexistent SMSE-DSSS waveform design process is demonstrated herein under

bothperfectandimperfectDLL code tracking conditions. Under both conditions the num-

ber of subcarriersNf and subcarrier spacing∆f are the SMSE design variables of interest.

Under perfectDLL code tracking conditions, the GA and RSM optimization processes

are considered independently with the objective function to be optimized (minimized and

maximized) being DSSS bit error ratePb. A hybrid GA-RSM optimization process is used

under more realisticimperfectDLL code tracking conditions. In this case,Pb optimization

is accomplished through a correlation degradation metric with the GA process being first

applied to generate a “coarse” solution followed by RSM processing to provide the final

optimized solution.

For all perfect and imperfect DLL code tracking scenarios considered, the optimized

DSSSPb minimizationresults yielded SMSE waveform designs andPb performance that

was consistent with scenarios having no coexistent SMSE signal present (best-case co-

existent performance). For the optimized DSSSPb maximizationsolutions, worst-case

SMSE-DSSS coexistence was achieved for SMSE waveform designs that were spectrally

“matched” to the DSSS signal, i.e., greatestPb degradation was experienced when the re-

sultant SMSE subcarrier spacing∆f was an integer multiple of the spectral line spacing

∆fchip of the DSSS spreading code.

The research objective has been achieved in the sense that 4Gcommunications de-

sign engineers now have one additional tool at their disposal. This work has successfully

expanded the practical utility of a previously developed tool, the original SMSE frame-

work [26,28,30], by demonstrating a more efficient, structured means for coexistent wave-

form design that replaces previous trial and error methods.As such, the communications

community is one step closer to actually hitting the bedrockof OFDM-based signaling

using the SMSE framework. The significance of this has been acknowledged through ac-
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ceptance of the independent GA [3] and RSM [4] optimization results underperfectDLL

code tracking conditions. Applicability of the hybrid GA-RSM processing technique under

imperfectDLL code tracking conditions has been acknowledged as well [2].

5.2 Recommendations for Future Research

Given that applicability of optimization techniques to SMSE waveform design has

been demonstrated and well-received by the technical community, there are many addi-

tional research topics that could be investigated. Some of the most evident future research

avenues include:

• The research assumptions in Chapter I could be removed and/orrelaxed and the

research process repeated. In some cases, this would represent a somewhat triv-

ial exercise and produce results that might be expected. Forexample, the coexis-

tent SMSE-DSSS demonstration results in Chapter V could easily be expanded by

considering alternative OFDM-based communication variants (CI-OFDM, COFDM,

MC-CDMA, etc.). In other cases, relaxing the research assumptions could prove to

be far more challenging and could produce results which are far more significant.

• The demonstrations here focused on SMSE waveform design through appropriate

selection of two variables,Nf and∆f . For all cases, the total SMSE power was

equally distributed across all selected subcarriers. Research could be conducted that

maintains the same coexistent SMSE-DSSS scenarios and GA/RSM optimization

objective functions but with additional consideration given to incorporating the se-

lection of SMSE weight vectorwk. By treating each element ofwk as a model

parameter, the ANOVA process could provide insight into theimpact that individual

subcarriers are having on the objective function. Assumingthe optimization goal is to

achieve best-case coexistence, the practical implicationis that insignificant subcarri-

ers (those inducing minimal interference) could transmit at appreciable power levels

while power levels in significant subcarriers (those inducing maximum interference)

could be reduced or set to zero (shut off).
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• The approach to shutting off significant subcarriers is perhaps best characterized as

being ahard decisionprocess. Recent efforts have introduced overlay, underlay

and hybrid overlay/underlay waveform design using the original SMSE framework

with subcarrier selection and power distribution based onsoft decisioncriteria [5,6].

Given the inherent structure of the original SMSE frameworkis maintained in these

efforts, the emergence of these new SD-SMSE techniques warrants future investi-

gation given that the optimization methods demonstrated inthis work should to be

directly applicable.

• Demonstrations in this work are based oninternally observable knowledge of how

the coexistent DSSS system, and in particular its DLL code tracking, is respond-

ing to various SMSE parameter changes. This internal knowledge will generally

be unavailable and thus alternatives need to be investigated. Two potential alterna-

tives could be considered. First, cooperative exchange of system performance status

among coexistent system(s) through communication back channels. While this ap-

proach generally requires additional communication resources, which may result in

fewer resources being available for the primary function, similar techniques have

been employed in communication networks. Second, the objective function behav-

ior could be determined passively without any aid from coexistent systems. While

this approach is technically more challenging, it is consistent with envisioned 4G

communication goals for CR-based SDR communications that will use externally

observable knowledge to adapt and optimize performance.

• The specific non-coherent DLL implementation used here, along with defined cor-

relation metrics for characterizing code tracking conditions, are sufficiently gen-

eral such that the optimization processes considered are broadly applicable to other

non-communication applications employing DLL tracking, e.g., precision naviga-

tion, timing, geolocation, etc. Therefore, a similar SMSE coexistence analysis and

demonstration could be conducted within each of these application areas.

87



5.3 Acknowledgement

This research was sponsored in part by the Sensors Directorate of the Air Force Re-

search Laboratory (AFRL/RY), Wright-Patterson AFB, Ohio. Thecoexistent SMSE-DSSS

demonstration results directly support their vision of providing sensor and countermea-

sure technology to enable complete freedom of air and space operations for the military

warfighter and for civilian agencies supporting homeland security. AFIT appreciates AFR-

L/RY’s sustained support for continued development of the SMSE framework and demon-

stration of its applicability to their mission.

88



Bibliography

1. Akyildiz, I.F., W. Lee, M.C. Vuren, and S. Mohanty. “NeXt Generation/Dynamic
Spectrum Access/Cognitive Radio Wireless Networks: A Survey”. Elsevier Computer
Networks, 50:2127-2159, May 2006.

2. Beard, T.W. and M.A. Temple.Applications and Methods of Waveform Diversity.
SciTech Publishing, Inc. Chapter C-V-8: Coexistent SMSE Waveform Design Using
Optimization Techniques, To appear:2nd Quarter 2008.

3. Beard, T.W., M.A. Temple, J.O. Miller, and R.F. Mills. “Using Genetic Algorithms for
Spectrally Modulated Spectrally Encoded waveform Design”. Int’l Waveform Diver-
sity and Design Conf (WDD07), 265–269, Jun 2007.

4. Beard, T.W., M.A. Temple, and M.L. Roberts. “An Experimental Design Approach for
Optimizing SMSE Waveforms to Minimize Coexistent Interference”. IEEE Int’l Conf
on Comm (ICC07), 5581–5585, Jun 2007.

5. Chakravarthy, V., Z. Wu, A. Shaw, M.A. Temple, R. Kannan, andF. Garber. “A Gen-
eral Overlay/Underlay Analytic Expression Representing Cognitive Radio Waveform”.
3rd IEEE Int’l Waveform Diversity and Design Conf (WDD07), 69–73. 2007.

6. Chakravarthy, V., Z. Wu, M.A. Temple, A. Shaw, and F. Garber. “Novel Overlay/Un-
derlay Cognitive Radio Waveforms Using SD-SMSE Framework to Enhance Spectrum
Efficiency - Part I”. IEEE Trans on Comm, Aug 2008, Under Review.

7. Christensen, Ronald.Plane Answers to Complex Questions: The Theory of Linear
Models. Springer-Verlag, New York, New York,2nd Edition, 1996.

8. Defense Research Projects Agency (DARPA). “XG Communications Program
Overview”. URL www.darpa.mil/sto/solicitations/WAND, Feb 2007.

9. Devroye, N. and P. Mitran. “Achievable Rates in Cognitive Radio Channels”. IEEE
Trans on Info Thy, 52(5):1813–1827, May 2006.

10. Dynamic Spectrum Access Networks (DySPAN). URL www.ieee-dyspan.org.

11. Engels, M.Wireless OFDM Systems: How to Make Them Work?Kluwer Academic
Publishers, Boston, MA, 2002.

12. Federal Communications Commission. “Report of the Spectrum Efficiency Working
Group”. Spectrum Policy Task Force, 15 Nov 2002.

13. Glossner, J., D. Iancu, J. Lu, E. Hokenek, and M. Moudgill. “A Software-Defined
Communications Baseband Design”.IEEE Comm Mag, 41(1):120–128, Jan 2003.

14. Hahn, Gerald J. and Samuel S. Shapiro.Statistical Models in Engineering. John Wiley
and Sons, Inc., 1967.

89



15. Hart, B.W., R.D.J Van Nee, and R. Prasad. “Bit Error Probability Degradation Due to
Code Tracking Errors in Spread-Spectrum Communication Systems”. 6th IEEE Int’l
Symp on Personal, Indoor and Mobile Radio Communications (PIMRC95), 3:1016–
1024, Sep 1995.

16. Hart, B.W., R.D.J. Van Nee, and R. Prasad. “Performance Degradation Due to Code
Tracking Errors in Spread-Spectrum Code-Division Multiple-Access Systems”.IEEE
Jour on Sel Areas in Comm, 14(8):1669–1679, Oct 1996.

17. Haykin, S. “Cognitive Radio: Brain-Empowered Wireless Communications”. IEEE
Jour on Sel Areas in Comm, 23(2):201–220, Feb 2005.

18. Hillier, F.S. and G.J. Leiberman.Introduction to Operations Research. McGraw-Hill,
New York, New York,8th Edition, 2005.

19. “Joint Tactical Radio System (JTRS) Program”. URLhttp://jtrs.army.mil.

20. LeFloch, B., M. Alard, and C. Berrou. “Coded Orthogonal Frequency Division Multi-
plex”. Proc of IEEE, 83(6):982–996, Jun 1995.

21. Misra, P., B.P. Burke, and M.M. Pratt. “GPS Performance in Navigation”. Proc of
IEEE, 87(1):65–85, Jan 1999.

22. Montgomery, D.C.Design and Analysis of Experiments. John Wiley and Sons, Hobo-
ken, New Jersey,6th Edition, 2005.

23. Network Centric Warfare. Report to Congress, Department of Defense, Washington,
DC, July 31, 2001. URL http://www.dod.mil/nii/NCW/.

24. “Networking Will Drive ISR Success”. C4ISR Online Journal. URL
http://www.isrjournal.com, Aug 2004.

25. Peterson, R.L., R.E. Ziemer, and D.E. Borth.Introduction to Spread Spectrum Com-
munications. Prentice Hall, Englewood Cliffs, NJ, 1995.

26. Roberts, M.L. “A General Framework for Analyzing, Characterizing, and Imple-
menting Spectrally Modulated, Spectrally Encoded Signals”. Doctoral Dissertation,
AFIT/DS/ENG/ENG/06-06, Air Force Institute of Technology, 2006.

27. Roberts, M.L., M.A. Temple, R.F. Mills, and R.A. Raines. “Interference Suppression
Characterization for Spectrally Modulated, Spectrally Encoded Signals”. IEE Elec-
tronic Letters, 42(19):1103–1104, Sep 2006.

28. Roberts, M.L., M.A. Temple, M.E. Oxley, R.F. Mills, and R.A.Raines. “A General
Analytic Framework for Spectrally Modulated, Spectrally Encoded Signals”.IEEE
Int’l Conf. on Waveform Diversity and Design (WDD06), Jan 2006.

29. Roberts, M.L., M.A. Temple, M.E. Oxley, R.F. Mills, and R.A.Raines. “A Spec-
trally Modulated, Spectrally Encoded Analytic Framework for Carrier Interferometry
Signals”. ACM Int’l Wireless Commun. and Mobile Computing Conf (IWCMC), Jul
2006.

90



30. Roberts, M.L., M.A. Temple, R.A. Raines, R.F. Mills, and M.E.Oxley. “Communica-
tion Waveform Design Using an Adaprive Spectrally Modulated, Spectrally Encoded
(SMSE) Framework”.IEEE Jour on Sel Topic in Sig Proc, 1(1):203–213, Jun 2007.

31. Sklar, B. Digital Communications: Fundamentals and Applications. Prentice Hall,
Englewood Cliffs, NJ,2nd Edition, 2001.

32. Spilker, J.J. and D.T. Magill. “The Delay-Lock Discriminator–An Optimum Tracking
Device”. Proceedings of the IRE, 49(9):1403–1416, Sep 1961.

33. U.S. Department of Commerce, National Telecommunications and Informa-
tion Administration (NTIA). “United States Frequency Allocation Chart”.
http://www.ntia.doc.gov/osmhome/allochrt.pdf, Oct 2003.

34. Van Nee, R.D.J. and R. Prasad.OFDM for Wireless Multimedia Communications.
Artech House, Boston, MA, 2000.

35. Wiegandt, D.A. and C.R. Nassar. “High Performance OFDM viaCarrier Interfer-
ometry”. IEEE Int’l Conf on 3rd-Generation Wireless and Beyond (3GWireless01),
404–409. 2001.

36. Wiegandt, D.A., C.R. Nassar, and Z. Wu. “Overcoming Peak-to-Average Power Ratio
Issues in OFDM via Carrier Interferometry Codes”.IEEE Vehicular Tech Conf (VTC),
660–663. 2001.

37. Wiegandt, D.A., Z. Wu, and C.R. Nassar. “High-Throughput,High-Performance
OFDM via Pseudo-Orthogonal Carrier Interferometry Spreading Codes”.IEEE Trans
on Comm, 51(7):1123–1134, Jul 2003.

38. Zhao, Q. and B.M. Sadler. “A Survey of Dynamic Spectrum Access”. IEEE Trans on
Communications, 24(3):79–89, May 2007.

39. Zhao, Q. and A. Swami. “A Survey of Dynamic Spectrum Access: Signal Process-
ing and Networking Perspectives”.IEEE Int’l Conf on Acoustics, Speach and Signal
Processing (ICASSP07). Vol. 4, pp. 1349-1352, 2007.

40. Zou, W.Y. and Y. Wu. “COFDM: An Overview”. IEEE Trans on Broadcasting,
41(1):1–8, Mar 1995.

91



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
                     20-09-2008 

2. REPORT TYPE  
    Doctoral Dissertation 

3. DATES COVERED (From – To) 
      September 2005-September 2008 

4.  TITLE AND SUBTITLE 
 

Application of Optimization Techniques to Spectrally Modulated, Spectrally Encoded Waveform 
Design 

 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Beard, Todd W., Major, USAF 
 
 
 

5d.  PROJECT NUMBER 
        ENG 08-275 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
 

Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way 
WPAFB OH 45433-7765  DSN: 785-3636 

 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
    AFIT/DEE/ENG/08-16 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
    Air Force Research Laboratory 
    Attn: AFRL/RYRE (Mr. Vasu Chakravarthy) 
    2241 Avionics Circle, Bldg 620 
    WPAFB OH 45433-7734 
    Vasu.Chakravarthy@wpafb.af.mil 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
      AFRL 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT  

APPROVED FOR PUBLIC RELEASE;  DISTRIBUTION UNLIMITED  

13. SUPPLEMENTARY NOTES  
 
 
 
 
14. ABSTRACT  
 

A design process is demonstrated for a coexistent scenario containing Spectrally Modulated, Spectrally Encoded (SMSE) and Direct Sequence Spread 
Spectrum (DSSS) signals.  Coexistent SMSE-DSSS designs are addressed under both perfect and imperfect DSSS code tracking conditions using a non-
coherent delay-lock loop (DLL).  Under both conditions, the number of SMSE subcarriers and subcarrier spacing are the optimization variables of interest.  
For perfect DLL code tracking conditions, the GA and RSM optimization processes are considered independently with the objective function being end-
to-end DSSS bit error rate.  A hybrid GA-RSM optimization process is used under more realistic imperfect DLL code tracking conditions.  In this case, 
optimization is accomplished using a correlation degradation metric with the GA process being first applied to generate a “coarse” solution followed by 
RSM processing which provides the final optimized solution.  This work has successfully expanded the practical utility of a previously developed tool, the 
original SMSE framework, by demonstrating a more efficient, structured means for coexistent waveform design that replaces previous trial and error 
methods. 

 

15. SUBJECT TERMS 
SMSE, OFDM, Waveform Design, Optimization, Genetic Algorithm, Response Surface Methodology, 

16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION OF  
     ABSTRACT 
 
                 UU 

18. NUMBER  
      OF 
      PAGES 
        104 

19a.  NAME OF RESPONSIBLE PERSON 
         Dr. Michael A. Temple (ENG) 

REPORT 
      U 

ABSTRACT 
       U 

c. THIS PAGE 
         U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636 x4279;  email: Michael.Temple@afit.edu 

Standard Form 298 (Rev: 8-98) 
Prescribed  by  ANSI  Std.  Z39-18 


	Application of Optimization Techniques to Spectrally Modulated, Spectrally Encoded Waveform Design
	Recommended Citation

	Beard_Diss_Final
	Beard_SF298

