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Abstract 

 Military airlift is vital to any nation’s ability to project power on a global scale.  

In the United States, the vast majority of airlift responsibility lies with the Air Force’s Air 

Mobility Command (AMC).  As with most military endeavors of this magnitude, airlift 

comes at a great financial cost; it is therefore imperative to utilize the Air Force's airlift 

fleet in an efficient manner.  One aspect of efficiency involves transporting a set of cargo 

items using the fewest number of aircraft possible.  This is called the Mixed Payload 

Airlift Load Planning (MPALP) problem.  This paper presents a new tabu search based 

two-dimensional bin packing algorithm which produces high quality solutions to the 

MPALP using C-5 and C-17 aircraft.  This algorithm, called the Mixed Payload Airlift 

Load Planning Tabu Search (MPALPTS), surpasses previous research conducted in this 

area because, in addition to pure pallet cargo loads, MPALPTS can accommodate rolling 

stock cargo (i.e. tanks, trucks, HMMMVs, etc.) while still maintaining aircraft feasibility 

with respect to aircraft center of balance, mandatory cargo separations, aircraft floor 

structural limitations, etc.  Furthermore, while this research is currently restricted to C-5 

and C-17 aircraft, MPALPTS is capable of modeling nearly any type of cargo aircraft and 

requires a limited number of assumptions thereby making it applicable to operational 

missions.  To demonstrate its effectiveness, the load plans generated by MPALPTS are 

directly compared to those generated by the Automated Air Load Planning Software 

(AALPS) for a given cargo set; AALPS is the load planning software currently mandated 
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for use in all Department of Defense load planning.  While more time consuming than 

AALPS, MPALPTS required the same or fewer aircraft than AALPS in all test scenarios.  

If implemented, MPALPTS has the potential to save AMC millions of dollars in airlift 

costs. 
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An Advanced Tabu Search Approach to Solving the Mixed Payload 

Airlift Loading Planning Problem  
 

Chapter 1: Introduction 
 

 

1.1 Global Airlift Power 

Throughout military history, armies, large and small, have battled one another 

using dramatically different tactics and a wide range of weapons; however, one constant 

remains for every battle: the need for supplies.  Sun-Tzu wrote, “So, armies cannot 

survive without supplies, cannot survive without provisions, cannot survive without 

stockpiled materials” (Huang, 1993).  Without a steady flow of food, equipment and 

weapons, the military fighting machine could not function in ancient times; similar 

requirements hold for the conventional and unconventional wars currently being waged.  

The United States Air Force (USAF) defines airlift as “the transportation of 

personnel and materiel through the air, which can be applied across the entire range of 

military operations to achieve or support objectives and can achieve tactical through 

strategic effects” (AFDD 1 2003).  General Michael T. Mosely, a former USAF Chief of 

Staff, once wrote, “While other forms of American military power have some degree of 

inherent mobility, the scale of flexibility and responsiveness of the Air Force’s air 

mobility forces is singular in the history of world conflict” (AFDD 2-6 2006).  The ability 

to rapidly deploy vast numbers of both combat forces and their equipment to any point on 

the globe is a unique capability possessed by the United States (US); having this 

capability gives the US an unprecedented advantage in projecting power in the place and 
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at the time of its choosing.  Unfortunately, airlift comes at a great price.  In fiscal year 

2008, the Air Force spent approximately $22,998 per flight hour to operate a C-5 and 

$12,911 per flight hour for a C-17 (Herbison 2008).  In today’s economically constrained 

environment, it is critical to operate these airlift missions in the most efficient way 

possible.  Choosing the smallest number of aircraft required to move needed supplies and 

determining the exact placement of each piece of equipment on the aircraft is a very 

difficult problem to solve.  As a result, this topic has been the focus of much research.   

1.2 Current Airlift Process 

 The current airlift process begins with the United States Transportation Command 

(USTRANSCOM) tasking Air Mobility Command (AMC) with daily airlift 

requirements.  Once tasked, planners in the Tanker Airlift Control Center (TACC) within 

AMC follow a continuous complex process to  

balance global requirements from its variety of government users against 

the availability and location of resources. This streamlined planning 

process focuses on a continuous, prioritized, frequently user-adjusted 

schedule rather than strategy creation and enemy analysis. For non-

contingency situations, those taskings are rank ordered by priority and time 

received, then planned and executed (AFDD 2-6 2006). 

 

Once the subset of priority missions is selected to be flown, planners begin the process of 

obtaining diplomatic airspace clearances, ascertaining airfield suitability and gaining host 

nation support.  In many cases, load plans (which detail the exact positioning of cargo 

items in an aircraft) for USTRANSCOM tasked missions are created by the requesting 

agency using their own load planners.  These load plans are validated by the appropriate 

validation cell within TACC.  After validation, TACC tasks the missions to specific Air 
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Force Wings who, in turn, task the mission to specific airlift squadrons.  The squadron 

assigns the required aircrew members to the mission.   

The cargo requiring transportation will either be at the assigned wing’s aerial port 

or at an aerial port at another location.  Thus, the aircraft may either be loaded at its home 

station, or it may fly to a distant aerial port to be loaded.  The aerial port is simply a 

distribution center for cargo and passengers.  It contains personnel trained on preparing 

passengers and all types of cargo for flight.  Prior to a mission’s execution, specially 

trained personnel verify that TACC’s load plan for the mission meets the various 

restrictions in place to ensure safety of flight, and they prepare the cargo for loading.  On 

the day of the mission, the aerial port personnel generally load the aircraft prior to the 

aircrew arriving (if the cargo is at the aircraft’s home station); the aircrew inspects the 

load and provides a final check to ensure the load is correctly positioned on the aircraft 

and meets all required restrictions.  Once verified, the mission is flown and the cargo is 

delivered. 

1.3 Cargo Types 

 Current military aircraft are equipped to carry a wide variety of cargo.  One type 

is palletized cargo.  Boxes and other suitably small items can be strategically loaded onto 

pallets, and a cargo net is secured on top of all the stacked items.  The pallets are then 

loaded onto the aircraft such that specific weight and balance restrictions, discussed later, 

are satisfied.  Each pallet, whose dimensions measure 88 inches by 108 inches and can be 

as tall as 96 inches, are packed such that its overall center of gravity falls in the center of 

the pallet.  Pallets have predetermined locations available within the aircraft.  Loading 
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occurs using a rail system on the floor of the aircraft; after pallets are loaded, the rail 

system secures them to prevent shifting during flight. 

 Military aircraft are also equipped to carry wheeled or tracked vehicles.  These 

vehicles can range from tanks and trucks to helicopters and boats and are generally 

referred to as “rolling stock”.  To ensure the vehicles do not move during flight, they are 

secured using heavy duty chains connected to tiedown rings located on the aircraft floor. 

1.4 Airlift Aircraft 

 The USAF has numerous aircraft capable of airlift activities.  These include the 

KC-135, KC-10, C-130, C-17 and C-5.  Generally, airlift capable aircraft can be 

classified into two categories: intertheater and intratheater. Intertheater airlift transports 

personnel and equipment from the Continental United States (CONUS) to a theater of 

operations or between two theaters (AFDD 2-6 2006).  While the KC-135 and KC-10 can 

carry intertheater cargo and passengers, they have a much more limited cargo capacity 

than other intertheater airlifters and are more often utilized for their primary purpose of 

performing air refueling operations.  Hence, the C-5 and C-17 are generally considered to 

be the primary intertheater airlifters (USAF 2008).   Intratheater airlift operations move 

cargo and passengers inside a theater of operations and are generally supported by 

smaller tactical aircraft.  The C-17, because of its ability to land on short unimproved 

runways, is often used as an intratheater airlifter, but the C-130 is the USAF’s primary 

choice for intratheater airlift (USAF 2008).  Because the focus of this research considers 

a large set of cargo requiring long-range transportation, only the intertheater C-17 and 
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C-5 aircraft are considered; however, the algorithms used are flexible enough to include 

other airlift capable aircraft. 

1.5 Loading Constraints 

 In order to safely transport cargo, aircraft must be loaded to satisfy several 

constraints.  For example, the Allowable Cabin Load (ACL), Center of Balance (CB) and 

chaining constraints are applicable to all airlift aircraft 

The total gross weight of an aircraft includes the empty aircraft, the aircraft’s fuel, 

and its cargo, passenger and crew load.  The upper bound of gross weight is fixed by the 

structural and aerodynamic properties of the aircraft.  There are two types of ACL.  The 

first type (planning ACL) is the total weight of cargo and passengers that can be loaded 

on an aircraft under standard environmental and mission assumptions.  Early in the 

planning process, personnel use the planning ACL as a non-strict upper bound; however, 

as weather forecasts and mission details are updated, this ACL constraint becomes 

binding.  The second type (maximum ACL) is the maximum total weight an aircraft can 

carry and is primarily based upon the structural limitations of the aircraft floor.  It is 

much larger than the planning ACL and rarely is a factor in loading aircraft.  For this 

research, all references to ACL pertain to the planning ACL.  Depending on the source 

document and the assumptions its author makes, the planning ACL for a C-5 and C-17 

can vary.  For this research, data from Air Mobility Command’s airlift planning training 

manual is used; this document lists the C-5 and C-17 planning ACL as 150,000 pounds 

and 90,000 pounds, respectively (Air Mobility Command 2004).  
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 In addition to the ACL, the CB constraint is critical to ensuring safe flight 

operations.  An aircraft’s center of gravity (CG) is affected by the amount of fuel, cargo 

and people in the aircraft.  The cargo and passengers must be arranged in an aircraft such 

that the center or average of their weight falls within specific ranges inside the aircraft.  

The CB constraints are defined such that regardless of the amount of fuel required for the 

mission, the aircraft’s CG will fall within acceptable ranges.  Furthermore, there is also 

an optimal CB for a given cargo weight that minimizes fuel burn. 

  An additional constraint requires rolling stock to have approximately 24 inches of 

separation to allow sufficient space to secure the items to the floor of the cargo 

compartment.  The actual space required is based upon the weight of the cargo item as 

well as the location of the item’s tiedown rings; however, according to Senior Master 

Sergeant Tim Wakefield, a subject matter expert who is the chief C-5 loadmaster for Air 

Mobility Command, 24 inches is a very conservative estimate. 

While the ACL, CB and chaining constraints can be modeled relatively easily in a 

mathematical program, aircraft specific constraints are much more difficult.  These 

constraints generally encapsulate the strength of different parts of an aircraft’s cargo 

floor.  In the C-17 and C-5, the cargo compartment can viewed as having two columns: 

left and right.  If a rolling stock item meets specific width and/or weight constraints, it 

can be loaded on one of the two columns resulting in the possibility of two items being 

adjacently loaded.  If a rolling stock item is too heavy or too wide, it must be loaded in 

the center of the cargo compartment straddling the two columns.  Pallets, on the other 

hand, are loaded into predefined pallet positions within the aircraft which are adjacently 
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located in each column of the cargo compartment.  In their normal configuration, a C-17 

has 18 pallet positions (9 in each column), while a C-5 has 36 positions (18 in each 

column).  Each pallet position has associated maximum weight and height restrictions for 

any pallet placed there.  To ease on-load and off-load, pallets can only be loaded aft of 

any rolling stock within a given column.    

Cargo location within an aircraft is measured in inches by its flight station (FS).  

Every cargo aircraft has FS markings within the cargo compartment which measure the 

number of inches from the reference datum line (an imaginary point in front of the 

aircraft) to a specific point in the aircraft.  For example, FS890 represents a distance of 

890 inches from the reference datum line to a specific location in the cargo compartment, 

and FS990 represents a position that is exactly 100 inches aft of FS890. These 

measurements allow accurate CB calculations.   

The FS markings also identify where cargo zones begin and end.  Cargo zones 

define portions of the cargo compartment which have unique rolling stock weight 

capacities.   The C-5 has seven cargo floor zones; the C-17 has four.  Because rolling 

stock items may be adjacently loaded (one in each “column” of cargo compartment), 

there are also zone specific restrictions on the weight of the items’ individual axles.  If 

two axles on adjacently loaded rolling stock items are within an aircraft specific 

longitudinal distance of each other, their combined weigh must be below a particular 

zone specific value.  In some aircraft, the acceptable adjacent axle weights are defined by 

a piecewise linear equation and are therefore extremely difficult to model in a pure 

mathematical programming problem.   
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Additionally, because the sides of cargo aircraft are curved inward, there are also 

specific height restrictions that must be met so the cargo does not touch the walls of the 

cargo compartment.  For each inch taller than an aircraft specific limit, the cargo must be 

moved toward the center of the aircraft by a specific amount.  For the purposes of this 

research, each cargo item is given a six inch buffer on each side to account for this 

restriction.  

 To simply produce a feasible loading of a large set of cargo items, load planners 

must ensure all of the ACL, CB and aircraft specific constraints are met; however, simply 

deriving a feasible solution is not an acceptable measure in today’s high cost and 

restricted budget environment.   

 In military airlift, two main objectives exist.  First and most importantly, military 

airlift must be effective; cargo must be delivered to the correct destination on schedule.  

The USAF does reasonably well at achieving airlift effectiveness.  Efficiency is the 

second objective and is often overshadowed by the first objective.  Data obtained from 

Air Mobility Command’s Analysis division, which included approximately 1,480 C-5 

and 11,280 C-17 flights flown from 1 Jan 08 to 30 Sep 08, indicated the C-5 and C-17 

carried an average cargo load of  51,033.35 and 35,595.55 pounds, respectively 

(Anderson 2008).  These averages are approximately one-third of their planning ACL.  

Histograms of each airframe are shown in Figures 1 and 2 below. 
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Figure 1.  C-17 Loading Histogram 
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Figure 2.  C-5 Loading Histogram 

 

 

It is important to note that achieving an average loading at or near 100% of an 

aircraft’s ACL is probably not possible.  For example, the data presented includes 

unavoidable pre-positioning and de-positioning flights where the aircraft are flying empty 

to go pick up cargo or returning home after delivering cargo to its destination.  

Additionally, the C-17 often reaches space limitations before its entire ACL is used 

making efficiency calculations solely based on ACL less valid.   Despite these caveats, 

the data does indicate a need for efficiency improvements.  An algorithm which quickly 
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produces high quality solutions using the smallest number of aircraft while minimizing 

fuel burn would enhance the USAF’s ability to effectively and efficiently utilize its airlift 

prowess.  Unfortunately, with billions (or more) possible combinations, finding high 

quality solutions is a challenge. 

1.6 Current Load Planning Software 

 Because of the complexity of this problem, the Department of Defense (DoD), 

currently uses a commercial software package called Automated Air Load Planning 

System (AALPS) to automate this process.  AALPS uses preplanned and actual data for 

estimating airlift requirements for a given set of cargo (including pallets and rolling 

stock) and creates feasible load plans for each aircraft’s load.  It has models for nearly 

every commercial and military airlift aircraft and considers all ACL, CB and aircraft 

specific constraints.  It also has a very large database of military equipment making data 

input relatively simple (USTRANSCOM 2007).  Unfortunately, it has been shown that, 

for palletized cargo, AALPS’ greedy heuristic generates inferior solutions when 

compared to a tabu search heuristic (Roesener 2006). 

1.7 Research Objectives and Assumptions 

 The primary goal of this research is to develop and validate a tabu search-based 

algorithm which, given a set of cargo items and a set of available C-5 and/or C-17 

aircraft, creates feasible load plans for a minimal number of aircraft such that all of the 

required rolling stock and pallets are loaded.  This problem is called the Mixed Payload 

Airlift Load Planning (MPALP) problem.  To be valuable, this MPALP Tabu Search 

(MPALPTS) algorithm must provide a better solution than AALPS.  Specifically, given a 
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set of cargo, this heuristic must produce a feasible loading of all cargo which requires no 

more (and preferably fewer) aircraft than AALPS.  This feasible solution must account 

for aircraft ACL, CB, cargo securing requirements and all aircraft specific loading 

constraints. 

Given a problem of this scope, there are several assumptions which must be made 

to clearly define the problem: 

1. Hazardous Cargo:  The cargo to be loaded does not have any hazardous cargo-

related loading restrictions.   

2. Outsized Cargo:  Extremely outsized cargo such as helicopters or large boats 

often have specific loading instructions outlined in Air Force Technical Orders.  

The research assumes the set of available cargo does not have special loading 

requirements (such as a need to rotate an item in the cargo compartment) and that 

each item will physically fit in the cargo compartment; there are a very limited 

number of unique ways to load outsized cargo, and the problem therefore 

becomes trivial. 

3. Shoring:  Some cargo requires shoring which is small planks of plywood stacked 

on top of each other.  Shoring is placed under the treads or wheels of some rolling 

stock items to help distribute its load over a larger area and protect the cargo floor 

from damage.  The research assumes aerial port or loadmaster personnel properly 

place shoring when required. 

4. All cargo has the same destination.  

5. The set of available aircraft only includes C-5 and/or C-17 aircraft. 

6. In some cargo aircraft, loadmasters prefer to back rolling stock items into the 

aircraft to facilitate faster offloads.  In this algorithm, rolling stock items all face 

forward in the cargo compartment.  

The following chapters demonstrate a new tabu search heuristic that consistently 

and quickly produces feasible load plans using fewer aircraft than AALPS.  The heuristic 



 

1-12 

also outputs the placement of each item of rolling stock in each aircraft thereby giving 

load planners a complete picture of the best way to load the cargo. 
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Chapter 2: Literature Review 

2.1 Heuristics Motivation 

2.1.1 Classes of Combinatorial Optimization Problems 

 A combinatorial optimization problem (COP) is said to be solvable in polynomial 

time if the time to reach the optimal solution is bounded above by some polynomial 

function of the size of the COP instance.  Informally, the decision problem of a COP 

answers the question “does there exist a primal solution value as good or better than 

[some value] k,” and solving the decision problem a polynomial number of times will 

optimally solve the associated COP (Woosley 1998).   Hence, a particular COP’s 

decision problem (and therefore the COP itself) can be classified into several categories.  

First, the non-deterministic polynomial class (NP) defines the class of decision problems 

for which a “Yes” answer can be obtained and proven with a polynomial proof (Woosley 

1998).  A subset of NP is the class of “easy” decision problems (P) for which there exists 

a polynomial algorithm (Woosley 1998).  All COPs whose decision problem falls in P 

can be solved to optimality in polynomial time.  Finally, the class NP-complete (NPC) 

can be thought of the “hard” decision problems and is known to be non-empty (Woosley 

1998).  To prove a decision problem is a member of NPC, a problem already known to be 

in NPC must be shown to be polynomially reducible to the problem of interest.  Thus, 

when a COP is said to be NP-hard, its associated decision problem is a member of NPC 

which implies there exists no known polynomial algorithm which solves the COP to 

optimality.   
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2.1.2 MPALPTS Complexity 

The MPALP has received a moderate amount of academic attention in the past 15 

years.  In a broad sense, research has focused on two basic approaches both of which are 

discussed in detail later.  The first approach is based on a multidimensional knapsack 

problem; it assumes each item of cargo has an associated priority, and a limited number 

of aircraft are available to transport a subset of the cargo.  Hence, the knapsack solution 

loads as much cargo as possible on the available aircraft leaving some cargo unloaded.  

The second approach uses bin packing techniques to load all cargo items on a minimal set 

of aircraft.  Because both underlying knapsack and bin packing problems have been 

shown to be NP-hard (Garey and Johnson 1979), and the MPALP adds significant 

complexity to the problem through the additional constraints (CB, ACL, aircraft specific, 

etc.), the MPALP is most likely also NP-hard.  No formal proof of this claim is presented. 

2.1.3 “Solving” an NP-hard problem 

By definition, optimally solving instances of NP-hard COPs cannot be done in 

polynomial time, so it is often useful to trade a guaranteed optimal solution for a high 

quality solution in polynomial time.  Some authors argue that there are very few real-

world instances of COPs which modern computing power cannot solve in reasonable 

time (Goulimis 2007); however, the definition of reasonable time often depends on the 

situation.  The greatest obstacle to optimality for the MPALP is the practical need for 

speedy solutions.  It is not uncommon for last minute changes to be made to the load 

plans due to unforeseen circumstances.  These circumstances can range from a faulty 

cargo item that is unable to be loaded onto an aircraft (leaking fluids, engine troubles, 
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etc.) to a last-minute high priority cargo item that must be included in the load.  This 

drives the need to generate a new load plan in minimal time (minutes not days) and 

motivates the use of a heuristic-based solution.   

2.2 Heuristics 

 Pearl describes a heuristic, in the most basic sense, as rule or collection of rules 

that guides one’s actions with the intent of finding a solution to a problem (Pearl 1984).  

Unfortunately, general heuristics do not necessarily guarantee an optimal or even feasible 

solution to a problem; however, two broad categories of heuristics do guarantee at least a 

feasible solution: approximation algorithms and searched-based algorithms. 

  Approximation algorithms guarantee both polynomial time execution and 

feasibility, and most can be shown to have a worst-case objective function value bound in 

terms of the optimal solution.  They follow a series of defined steps (an algorithm) using 

a rule of thumb to exploit some structure in the problem to find high quality solutions.  

While there is no guarantee of optimality, solutions from approximation algorithms can 

be quite close to the optimal solution. 

On the other hand, search-based heuristics are akin to finding a minimum or 

maximum function value to a mathematical equation using derivative and gradient 

information.  These heuristics can find the global optimal solution or a local optimal 

solution.  Given an initial starting point which may or may not be feasible, the generic 

local search heuristic attempts to find a feasible solution with an improved objective 

function value (Aarts and Lenstra 1997).  Like approximation algorithms, the final 

solution is guaranteed to be feasible but not guaranteed to be optimal. 
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2.3 Tabu Search 

In literature, the search-based heuristic called tabu search is often used to find 

high quality solutions to MPALP-related instances.  The tabu search is an iterative 

improvement algorithm which chooses the next solution as the best feasible solution that 

neighbors the current solution in some manner.  This next solution is not required to be 

an improving search direction nor is it even required to be feasible, thereby allowing for 

the ability to circumnavigate local optima.  The feasible neighbors of a solution are 

restricted by a dynamically updated tabu list which prevents returning to recently 

explored areas; the notion of recency in this context is formally defined as the tabu tenure 

and can be a fixed or adaptively varying value.   The challenge with a tabu search and 

many other search-based heuristics is the need to tailor the parameters of the search such 

that high quality solutions are found for any problem instance (Aarts and Lenstra 1997).  

Therefore, it is important to “fine-tune” the algorithm through robust parameter design 

techniques.  Glover presents a more detailed explanation of tabu search and the 

applications to which it has been applied (Glover 1989). 

2.4 Knapsack MPALP Instances 

The single dimensional knapsack problem can be thought of as a set of items with 

associated profits and weights.  A subset of these items must be placed in a knapsack 

with a limited weight capacity in such a manner to maximize the overall profit.  The 

integer program is formulated as 
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Figure 3.  Knapsack Integer Program 

 

where 
1 if item i is placed in the knapsack

0 otherwiseix , ic is the i
th

 item’s profit, iw is the i
th

 item’s 

weight and b is the weight capacity of the knapsack.  In multidimensional knapsack 

problems, additional constraints, such as the actual size or volume of each item, are 

included in the formulation.  Geometric knapsack problems capture the shape of each 

item and the effect the shape has on the ability of items to fit into the knapsack.  In 

relation to the MPALP, each aircraft can be represented as a knapsack, and each cargo 

item can be represented in the set of items which can be placed into the aircraft.  By the 

problem definition, more cargo are items available than the set of aircraft can feasibly 

carry. 

2.4.1 Tabu Search Knapsack MPALP 

In his research, Chocolaad used a tabu search based heuristic to find quality 

solutions to the geometric knapsack MPALP using a single aircraft and a set of cargo 

items (Chocolaad 1998).  Cargo items were prioritized based on their weights; a knapsack 

heuristic selected cargo in each iteration while a packing heuristic determined feasibility.   

 The knapsack heuristic was based on a critical event tabu search which alternates 

between constructive and destructive phases.  The constructive phase adds items to the 
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aircraft while the destructive phase removes them.  The critical event terminates the 

heuristic at the last solution obtained either at the step before a constructive phase search 

enters an infeasible region or when the first feasible solution is reached during the 

destructive phase.  As the knapsack heuristic searches for items to place in the aircraft, 

the packing heuristic employs a simple tabu thresholding local search method to check 

feasibility requirements.  This approach allows non-improving moves to avoid becoming 

trapped at a local optimum while ensuring feasibility with respect to CB and aircraft 

specific weight constraints (Chocolaad 1998).   

 While Chocolaad’s approach was effective in finding quality solutions, the 

heuristic’s output only indicated which cargo items were assigned to the aircraft and did 

not include where the items were placed inside the aircraft.  Further, it was limited to 

loading one aircraft at a time rather than loading multiple aircraft simultaneously.  

Romaine later expanded Chocolaad’s work by adding the possibility of loading multiple 

aircraft simultaneously and removing the implied homogenous aircraft restriction, but the 

exact position of each cargo item was still not defined in the heuristic’s output (Romaine 

1999). 

2.4.1.1 Multiple Choice Multiple Dimension Knapsack Problem (MMKP) Heuristic 

 Hiremath and Hill define the MMKP as a knapsack problem consisting of 

multiple classes of items and multiple knapsacks; the objective is to select exactly one 

item from each class while maintaining the knapsack constraints (Hiremath and Hill 

2007).  The approach generated an initial solution using a gradient based heuristic called 

NG V3 and then refined this solution using a local search heuristic.  After constructing 
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the initial solution, they utilized two different neighborhood generating functions to 

improve the solution.  First, they considered exchanging every item in a given class with 

the current solution’s item.  They picked the best feasible solution which yielded an 

improved objective function value and repeated this process until either a maximum 

number of iterations were reached or every class was fully explored.  In the second 

function, Hiremath and Hill performed the same basic search; however, when the search 

resulted in a series of non-improving objective function values (i.e. a cycle or a local 

optima), they abandoned the search in favor of their DoubleSwap neighborhood.  The 

DoubleSwap considered two-tuples of classes and searched through both classes, 

selecting an item from each class per iteration.  If swapping the two items with two items 

of the same classes from the current solution yielded a better objective function value, the 

DoubleSwap selected that solution and continued searching in other two-tuples of classes.  

This search repeated until all two-tuples had been explored or until a maximum number 

of iterations had been reached (Hiremath and Hill 2007).   

 Their results showed, in general, the second approach created better solutions to 

an established set of problem instances and often outperformed many of the leading 

heuristic approaches (Hiremath and Hill 2007).  While this algorithm does not consider 

the MPALP, the MMKP structure is similar to the basic MPALP; thus their choice of 

neighborhoods may have merit in generating better MPALP solutions. 

While knapsack MPALP instances are adept at loading the high-priority portion 

of cargo on a given set of aircraft, many airlift taskings require that all of the cargo be 

loaded.  For these types of problems, bin packing formulations are preferred. 
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2.5 Bin Packing Problems 

 Unlike the knapsack approach, a bin packing problem attempts to load the entire 

set of items into a minimal number of bins.  In relation to the MPALP, all of the cargo 

items must be loaded in a minimal number of aircraft.  Like knapsack formulations, 

multidimensional and geometric versions of the bin packing problem have also been 

extensively studied.  For a more detailed overview of bin packing problems and some 

associated approximation algorithms, see (Vazirani 2003) or (Lodi, Martello and Vigo 

2002). 

2.5.1 Bin Packing Instances 

 This research’s primary goal is to develop a tabu search-based heuristic to find 

premium solutions to bin packing MPALP instances.  While much research has been 

done in this area, most do so by assuming away difficult aircraft specific constraints or 

implementing less effective heuristic-based algorithms. 

2.5.1.1 Goal Integer Programming Method 

 In 1989, Kevin Ng examined the bin-packing MPALP for Canada’s C-130 aircraft 

(Ng 1992).  His goal was to move a set of cargo items including pallets and rolling stock 

on a minimum number of C-130 aircraft.  To solve this problem, he used a pre-generated 

set of 38 “standard” cargo loadings which were subsets of the overall items to be airlifted.  

These standard cargo loadings were certified by Canadian C-130 loadmasters.  Using 

goal programming, Ng created three priorities which included: all items had to be 

airlifted, a minimum number of aircraft was used and the weight of excess capability was 
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maximized.   This technique gave him the ability to solve the problem to optimality using 

branch-and-bound and reduced the required number of aircraft from the manual solution 

of 121 to 110 saving the Canadian Air Force $1.21 million (Ng 1992).   

 While this approach does have merit, it requires a large set of pre-generated load 

plans covering the entire set of cargo to be transported.  As Ng pointed out, “there are 

severe limitations to using standard loads.  Many items do not have standard 

dimensions…The model, in its current form does not have the flexibility to modify load 

plans” (Ng 1992).  While creating template loads for all the vast number and types of 

cargo items the USAF airlifts is impractical, AALPS uses template loadings for 

commonly airlifted items with the goal of producing higher quality solutions. 

2.5.1.2 Two-Dimensional Orthogonal Packing 

 Unlike Ng, J.M. Harwig et al. developed an adaptive tabu search algorithm for 

two-dimensional orthogonal bin packing (Harwig, Barnes and Moore 2006).  While their 

problem formulation was not specific to aircraft operations and therefore does not 

account for CB or floor weight restrictions, their choice of objective function and 

searching methods merit study.   

Harwig et al. created a “fine-grained” objective function which effectively 

evaluated competing moves within the solution space (Harwig, Barnes and Moore 2006).  

The objective function favored the three search moves which were likely to decrease the 

overall number of bins.  First, they designated an excess bin whose function was to hold 

items that were not otherwise packed.  When the excess bin was emptied, it was 

discarded and a new excess bin was designated.  Thus, moves which removed items from 
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the excess bin and placed them in other bins were highly favored.  Next, an intra-bin 

move was attempted to produce a more compactly packed bin.  Finally, they incorporated 

an inter-bin move which created a large “dead space” within the losing bin; the goal of 

this move was to allow the relocation of an item from the excess bin (Harwig, Barnes and 

Moore 2006).  

Items in the excess bin were also penalized with a unique two-dimensional 

potential energy-based function (Harwig, Barnes and Moore 2006).  This penalty 

function was defined in terms of the height, length and weight of the items within the bin.  

Specifically, smaller items were penalized less than larger items because they are much 

easier to pack into the other bins. 

In addition to the previously described neighborhoods, Harwig et al. employed 

ejection chains.  When an insert move places a new item in a bin, the result may be the 

ejection of another item from the bin.  An ejected item is then feasibly placed inside the 

excess bin.  Finally, they use inter and intra-bin swaps as a means to search through large 

portions of the solution space. 

When used on a common test set of 500 problems, the algorithm of Harwig et al. 

improved on the previously best solutions by an average of 25%.  Unfortunately, this 

algorithm cannot be directly applied to aircraft loading because it would only guarantee 

feasibility with respect to the space inside an aircraft; CG and zone constraints would not 

necessarily be satisfied.  While their bin packing algorithm would not necessarily 

produce feasible results in loading aircraft, their methods may be applicable to this 

research endeavor. 
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2.5.1.3  Barrier Based Tabu Search 

Heidelberg et al. developed a heuristic-based bin-backing algorithm which, “often 

matches the capability of expert loadmasters usually requiring no adjustment for better 

packing efficiency” (Heidelberg, Parnell and Ames IV 1998).  They first show classical 

bin-packing heuristics such as level-based algorithms are inadequate at loading aircraft 

because they tend to pack the heaviest items towards the left-aft portion of the bin, which, 

in an aircraft, would create CB violations.  Instead, Heidelberg et al. proposed a packing 

barrier approach which uses a barrier (Figure 4) which can be bent at 90° angles at a 

maximum of four places (Heidelberg, Parnell and Ames IV 1998). 

 
 

Figure 4.  Heidelberg et al. candidate bin selection 

 

The packing barrier approach can be described in the following manner.  First, the 

algorithm determines where, relative to the current barrier configuration, an item should 

be placed.  Next, it chooses the best candidate item to be packed in that section; after 

placing the item, the algorithm determines the best shape of the new barrier.  As the 

aircraft fills with cargo, the probability that subsequent items will exceed the space or 

weight capacity of the aircraft increases.  When no additional items can be loaded on the 

aircraft, the barrier’s shape is changed in an attempt to accommodate a larger item.  Once 

all barrier combinations have been tried, the aircraft is deemed full. 
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Heidelberg et al. tested this algorithm on two sets of random sized cargo items 

constructed to represent typically sized military cargo and compared its performance to 

the CLS (Constrained Local Search) and BFLD (Best Fit Level Decreasing) algorithms 

(K. Heidelberg 1995) (Gehring 1990).  The first test set consisted of a random number of 

items.  Each item’s size was also randomly generated.  The three methods were compared 

using 20 different instances from the first test set.  The second set was designed to be 

more representative of actual aircraft loads.  It included a random number of a smaller set 

of randomly sized items each of which was duplicated between five and ten times.   The 

three methods were also compared using 20 instances from the second test set.   

In the 20 trials of cargo loads from the first test set, their algorithm outperformed 

CLS and BFLD in every instance.  CLS outperformed their algorithm once and BFLD 

tied it twice in the 20 trials of cargo loads from the second test set (Heidelberg, Parnell 

and Ames IV 1998).  In both cases, their algorithm took longer to find a solution than the 

other two; however, the worst-case running time in any of their test replications was 

under two minutes. 

Unfortunately, Heidelberg et al. did not elaborate on the methods they used to 

handle aircraft specific constraints such as ACL, zone restrictions or even the space 

required to chain cargo items to the floor; however, their heuristic must account for these 

constraints because AALPS uses it to produce feasible load plans (Heidelberg, Parnell 

and Ames IV 1998).  Despite its operational success, Roesener showed AALPS to be less 

effective than a tabu search based approach with respect to loading pallets (Roesener 

2006).  
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2.5.1.4 MPALP Specific Tabu Search 

Roesener developed a tabu search based heuristic to solve a portion of the 

MPALP which accounts for CB, ACL and aircraft specific constraints (Roesener 2006).  

This research is strongly related to his work; however, he focused on loading pallets 

while this research loads both pallets and rolling stock.  There are four areas of 

Roesener’s research that are of interest: the initial solution, tabu list construction, 

objective function calculations and neighborhood search functions.  

Roesener began by determining the upper and lower bounds on the number of 

aircraft required to load the pallets (Roesener 2006).  The upper bound came from an 

AALPS solution to the same problem instance which was known to be feasible.  For the 

lower bound, he used the following equation: 

total number of pallets total pallet weight
max ,

number of pallet positions in aicraft aircraft ACL
 

Equation 1.  Roesener's Lower Bound Calculation 

This equation defines a relaxation of the problem by possibly allowing CB violations 

resulting in a lower bound to the number of required aircraft. 

Using the upper bound as the initial set of available aircraft, Roesener developed 

an algorithm which constructs an initial solution by simultaneously maximizing both 

volume and ACL.  First, the pallets are placed into the “Big Bin” (which is similar to 

Harwig’s excess bin) and then the pallets are sorted by weight from heaviest to lightest 

(Roesener 2006), (Harwig, Barnes and Moore 2006).  The sorted pallets are then divided 

into equal sized groups.  The available and empty aircraft with the largest ratio of ACL to 
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open pallet positions is selected for loading.  Pallets are iteratively loaded into the 

selected aircraft by placing the heaviest pallet in each group on the aircraft until either the 

aircraft has no open pallet positions or has reached its planning ACL.  The next step is to 

refine this aircraft’s loading.  If all pallet positions are used but there is excess ACL 

remaining, the lightest pallet on the aircraft is replaced with the heaviest pallet in the Big 

Bin that does not violate the aircraft’s ACL.  On the other hand, if there are open pallet 

positions but the planning ACL has been reached, the heaviest pallet on the aircraft is 

removed, and as many light pallets as possible are placed onto the aircraft.  This cycle 

continues until either all the aircraft have been fully loaded as determined by the 

algorithm or the Big Bin is empty. 

It is important to note this initial solution is not guaranteed to be feasible with 

respect to CB or aircraft specific constraints, and the solution may not even load all of the 

cargo on the aircraft.  The algorithm’s tabu search is created such that it will seek 

feasibility for these constrains as it tries to decrease the number of required aircraft. 

For the tabu tenure, Roesener selected a dynamic value which decreases with 

improving moves and increases with worsening moves.  The initial value for the tabu 

tenure was calculated based upon the number of pallets available for loading (Roesener 

2006).  This effectively intensified searches within areas of improvement and diversified 

in areas of poor quality solutions (Roesener 2006). 

The quality of any particular solution was determined using a five part additive 

objective function which penalizes infeasibility and undesired search locations.  The 

overall goal was to minimize the resulting objective function value.  Each part of the 
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objective function has a single or multiple weights, which are set to drive the search 

toward desirable and feasible solutions.  First, Roesener penalized unloaded pallets (i.e. 

any pallets remaining in the Big Bin) using the following equation: 

1 1
, {0,1} 1,...,

N

i ii
B B i N

 

Equation 2.  Roesener’s Unloaded Pallet Penalty Function 

This equation simply assigns a penalty of 
1  to each pallet which remains in the 

Big Bin.  In this equation, N equates to the total number of pallets and Bi is a binary 

variable which indicates whether a pallet has been loaded (Roesener 2006). 

Next, Roesener penalized each aircraft utilized in the solution.  This drives the 

tabu search into areas where fewer aircraft were required.  This was accomplished with: 

1
, {0,1}  1,2,..., ,

M

j j j jj
C A A j M C R

 

Equation 3.  Roesener’s Aircraft Cost 

In Equation 3, M represents the total number of aircraft available, and Aj is a 

binary variable indicating whether the j
th

 aircraft is used in the solution.  This equation 

gives load planners extra flexibility by allowing individual cost coefficients to be 

assigned to individual aircraft or aircraft types.  It also prevents the loading of 

unnecessary aircraft by ensuring the volume of each loaded aircraft is utilized to the 

maximum extent possible (Roesener 2006). 

 One goal of Roesener’s objective function is to maximize the utility of each 

aircraft’s ACL.  Hence, there is a penalty assigned to aircraft whose ACL is not 100 
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percent utilized.  Roesener viewed ACL as a non-strict upper bound and allowed aircraft 

to be overloaded by up to 2.5%.  Thus, the ACL penalty function has two parts: under-

loading and overloading. 

2

2 1
100 % , {0,1}  j=1,2,...,M, {0,1}  j=1,2,...,M

M

j j j jj
WF A X A X

 

2

2 3 1
100 % (1 ), {0,1}  j=1,2,...,M, {0,1}  j=1,2,...,M

M

j j j jj
WF A X A X

 

Equation 4.  Roesener’s Under-loading and Overloading Penalty Functions 

As before, M represents the number of aircraft and Aj indicates whether aircraft j is used 

in the solution, while Xj = 1 if the j
th

 aircraft has unused ACL and equals zero otherwise.  

Notice that both functions assign a squared penalty for deviating from the ACL and the 

overloading penalty is penalized more heavily than the under-loading penalty when
3

1 

(Roesener 2006).  This ensures solutions with underloaded aircraft are significantly better 

than alternate solutions while still allowing the possibility of overloading. 

 Roesener also included penalty functions for lateral and longitudinal CB 

requirements.  As mentioned in section 1.5, longitudinal CB constraints are critical to 

safe aircraft operations and include a desired position within the upper and lower bounds 

where fuel consumption is minimized.  Lateral CB constraints (i.e. balancing the load 

relative to a centerline drawn down the length of the aircraft) are not normally considered 

in the load planning process because the aircraft pilot can compensate for nearly any 

lateral imbalance; however, Roesener included this calculation as an added benefit of his 

method.  These portions of the objective function are defined in Equations 5 and 6: 
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M
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Equation 5.  Roesener’s Lateral CB Penalty Function  
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Equation 6.  Roesener’s Longitudinal CB Penalty Function 

In Equation 5, the desired lateral CB is zero, so any deviation from zero is penalized.  For 

Equation 6, Yj = 1 when the CB is within acceptable limits, and 0 when it is not.  Thus, 

the equation penalizes an acceptable but less than desired CB much less than an 

infeasible CB; higher quality solutions are feasible and close to the target CB (Roesener 

2006). 

 After the initial solution and its associated objective function value is calculated, 

Roesener’s main tabu search begins.  It combines four strategically chosen neighborhood 

functions which are similar to Chocolaad’s and Harwig’s.  The first function, Big Bin to 

Aircraft Insert, is performed only if the initial solution leaves any pallets in the Big Bin.  

It selects the heaviest pallet in the Big Bin and places it into an empty pallet position on 

the aircraft which has the greatest available ACL.  If all of the aircraft have maximized 

ACLs, it puts the pallet on the aircraft which would create the smallest ACL violation.  

This process is repeated until the Big Bin is empty.  

 While traversing the solution space, if an aircraft becomes trivially loaded, which 

Roesener defines as utilizing less than 25% of the ACL, or if the search becomes 



 

2-18 

 

stagnated, a diversification neighborhood is invoked called Unload Entire Aircraft.  This 

neighborhood empties an entire aircraft by using the same logic as the previously defined 

Big Bin to Aircraft Insert move; unloading ceases if every remaining aircraft has no 

vacant pallet positions.   

 If the current solution is infeasible with respect to CB or aircraft specific 

constraints, the Intra-Aircraft Insert/Swap neighborhood function is chosen.  In this 

neighborhood, the algorithm calculates the objective function value of every possible 

combination of swapping two pallets or moving a pallet into a currently empty position 

within a single aircraft.  The best non-tabu permutation of the current solution is chosen 

as the new solution; iterations of this neighborhood typically produce a feasible loading. 

 The final neighborhood is the Inter-Aircraft Insert/Swap Neighborhood.  This 

neighborhood is used as the primary means of traversing the solution space.  In this 

move, the algorithm calculates objective function values for every possible swap of two 

pallets or a pallet and an empty position between two non-empty aircraft.  The algorithm 

picks the best non-tabu solution as the next move. 

 To test his tabu search, Roesener executed twelve scenarios each of which varied 

levels within the number of pallets, type(s) of aircraft, or the distribution of pallet 

weights.  In nearly every trial, his algorithm decreased the number of required aircraft 

from the best AALPS solution; however, his search techniques required more time to 

generate the solution than AALPS.  Unlike AALPS, Roesener’s algorithm returns 

solutions that were deemed feasible, trivially infeasible and marginally infeasible.  As 

mentioned before, ACL can be viewed as a loose upper bound, so his trivially and 
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marginally infeasible solutions allow the ACL to be exceeded by a maximum of 1.5% 

and 2.5%, respectively.  This gives the planner extra flexibility to decide if slightly 

exceeding the ACL is worth the potential of using fewer aircraft (Roesener 2006). 

2.5.2 Summary 

 This chapter presented research which has been previously conducted in the area 

of tabu search in general and aircraft loading in particular.  The knowledge of previously 

conducted research enables this thesis to focus on new methods of finding MPALP 

solutions while preventing duplication of efforts. 
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Chapter 3: Methodology 

3.1 MPALP Tabu Search 

 Much of the MPALPTS presented here is based off of Roesener’s work; however, 

the unique complexities of feasibly loading rolling stock requires additional objective 

function costs and an efficient method of packing the cargo to meet CB and zone 

constraints (Roesener 2006). 

3.2 Decision Variable Definition 

 The primary decision variable within MPALPTS is a four-dimensional matrix 

defined as: 

2

1 1

and ,   FSFwd,FSAft,CargoID

 = FSFwd,FSAft,CargoID,Centered  

where 1,..., , 1,2 , 1,...,

A

ij

i j

ijk

ij

c C Z

x

i A j k c

 

Equation 7.  Decision Variable 

 In Equation 7, A represents the number of aircraft used in the current solution and 

is indexed by i; j represents the number of columns in the aircraft where one represents 

the left column and two represents the right column; k represents a specific cargo item 

loaded on the i
th

 aircraft in column j.  The total number of cargo items, C, can be 

determined by summing all the cargo items in each column of each aircraft.  “FSFwd” 

and “FSAft” represent the FS where the front and back of the cargo item is loaded.  

“CargoID” represents the identification of the cargo item itself, and “Centered” is binary 
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such that a value of 1 indicates the specific item is centerline loaded.  For example, 

1,2,4 [512,  612, 9, 0]x
 
indicates that cargo item nine is the fourth item loaded on the 

right column of aircraft one from FS512 to FS612 and is not centerline loaded.  This 

variable is used to represents the current solution within the MPALPTS. 

3.3  MPALPTS Input Tables 

The MPALPTS uses Microsoft Excel spreadsheets to represent all characteristics of 

the available aircraft and cargo and allows the user to import this data directly.  Where 

possible, the actual values within each table are shown; however, due to DoD security 

policies, some aircraft-specific data is removed. 

3.3.1 Aircraft Representation 

The aircraft available to be loaded is represented as a  x 19A  matrix with the 

following information: 

Table 1.  Available Aircraft Table 

Acft 

Type 

(1) 

ACL 

(2) 

FS 

Min 

(3) 

FS 

Max 

(4) 

Col 

Width 

(5) 

# 

Cols 

(6) 

# 

Zones 

(7) 

Tail 

# 

(8) 

%Sp 

(9) 

%Wt 

(10) 

Useage 

Fee 

(11) 

# 

Lft 

(12) 

# 

Rt 

(13) 

# 

Ramps 

(14) 

Aft 

Ramp 

FS 

Min 

(15) 

Aft 

Ramp 

FS 

Max 

(16) 

Fwd 

Ramp 

FS 

Min 

(17) 

Fwd 

Ramp 

FS 

Max 

(18) 

# 

Pallet 

Pos 

(19) 

1 150000 395 2131 114 2 7 9007 0 0 1000 0 0 2 1971 2131 395 517 18 

2 90000 390 1403 106.5 2 4 1468 0 0 1000 0 0 1 1165 1403 0 0 9 

 

This table defines the basic characteristics of each aircraft as well as provides a location 

for storing general information about the cargo loaded on the aircraft.  An aircraft type 

(1) of one indicates a C-5 aircraft, and a two indicates a C-17.  The aircraft’s ACL (2), 

cargo compartment dimensions (3, 4), number and width of any columns (5, 6), the 
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number of zones (7), and the number and locations of any ramps (14 to 19) are all defined 

in this table.   

3.3.2 Cargo Representation 

Cargo representation is accomplished with a similar  x 20C  matrix whose 

columns are shown in Table 2: 

Table 2.  Cargo Representation 

L W H # Axel 
Axle Location Axle Weight Total 

Wt 
CB ID Type 

Descrip

-tion 
1 2 3 4 5 6 1 2 3 4 5 6 

190 106 106 0 0 0 0 0 0 0 0 0 0 0 0 0 23500 92 25 1 Vehicle 

294 125 142 4 63 111 167 215 0 0 9480 9500 11280 10900 0 0 41160 143 26 1 Truck 

88 108 70 0 0 0 0 0 0 0 0 0 0 0 0 0 2500 0 10 2 Pallet 

 

The first four columns describe the length, width, height (in inches) and the number of 

axles of the cargo item.  The next six columns represent the measurement from the front 

of the cargo item to each of up to six axle locations (at the time of this research, very few 

rolling stock items had more than six axles), and the subsequent six columns give the 

weights of all the axles.  Tracked vehicles and pallets have zero axles and zero axle 

weights.  The total weight is placed in the 17th column.  The CB represents the center of 

balance of the cargo item (rolling stock with axles) measured in inches from the front of 

the cargo item and is computed by: 
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Axle Location AxleWeight

 Item's Total Weight

j j

j
CB

 

Equation 8.  CB Calculation for Cargo with Axles 

 

For tracked vehicles, the CB is predetermined and specified for the loadmaster 

because there are no traditional axles present for manual calculation. A pallet’s CB is 

assumed to be in the geometric center of the pallet position in which it is placed.  The last 

columns of Table 2 are the “Cargo ID” (which is a unique index for every cargo item), 

“Type” (which is set to one for rolling stock and two for pallets), and “Description” 

(which is a text field specifying the name of the cargo). 

3.3.3  Zone Representation 

Aircraft cargo zones define the weight restrictions of rolling stock items within 

specific zones of the cargo compartment.  Table 3 shows the header information 

contained within the MPALPTS zone table and defines C-5 and C-17 zone constraints. 

Table 3. Zone Representation 

Cargo Zones C-5 

Zone 
# Sub-

Zone 

FS 

Lower 

(1) 

FS Upper 

(2) 

Max Wt 

Single Axle 

(3) 

Axle  

Wt Min (4) 

Axle  Wt 

Max (5) 
Coef (6) Intercept (7) 

In Length 

(8) 

Center-

line (9) 

Max 

Total Wt 

(10) 

 

 

The “Zone” column represents the zone and “Subzones” represents the number of 

subzones that are within that zone.  Columns (1) and (2) represent the fore and aft FS 

boundaries of the zone while “Max Weight Single Axle” represents the allowable 

maximum weight for a single axle within the zone.  The “Centerline” column defines the 
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weight of an axle within the zone which, if exceeded, requires the cargo item to be 

centerline loaded while the “Max Tot Wt” is the maximum total allowable weight for all 

the cargo within that zone.  The weight of adjacently loaded axles within a specified 

distance of each other  (“In Length” column) can be restricted by the piecewise linear 

equations such as the one shown in Figure 5.   

 

 

Figure 5.  Representation of Adjacently Loaded Axle Constraints 

 

Figure 5 represents the weight restrictions placed on two adjacent axles in a 

particular zone that are within the specified distance of each other.  One enters the chart 

on the left side at the axle weight of the heaviest axle and travels horizontally until 

reaching the bold line.  The maximum amount of weight allowed for the lighter axle is 

read on the bottom scale.  For example, if the heaviest axle weighs 15,000 pounds, the 

maximum weight of the adjacent axle is 13,000 pounds.  In order to model this piecewise 

linear relationship, the equation of each line segment (the slope and the intercept) was 

calculated and called a subzone.  Each subzone is defined by the range of weights each 
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line segment represents which is recorded in columns (4) and (5) of Table 3.  The 

allowable weight of an ajacently loaded axle can be determined from Equation 9. 

Allowable Weight = Cargo Coef Axle Weight Intercept  

Equation 9.  Allowable Weight Calculation 

 

3.3.4 CB Lookup Table 

 MPALPTS uses a CB lookup table defining the acceptable ranges of CB given the 

total weight of all cargo. The actual acceptable CB lookup charts for both the C-17 and 

C-5 are described by extremely complex piecewise non-linear equations; however, the 

CB table MPALPTS uses is a discretised table used by load planners when calculations 

must be performed without the aid of AALPS (Air Mobility Command 2004).  As in 

Roesener’s work, this table is used to determine the acceptable and target CBs.     

3.3.5 Pallet Placement Tables 

 The last table defines the pallet position locations and their respective weight and 

height constraints within each aircraft.  MPALPTS uses this table to verify all the pallets 

loaded in the aircraft are in feasible locations. 

3.4 Objective Function Costs 

 In order to drive the search toward improving feasible solutions, careful 

consideration must be made in choosing objective function costs.  In MPALPTS, the total 

cost is divided into seven sub costs:  Aircraft Usage Fee, Under Weight Fee, Over Weight 

Fee, CB Fee, Target CB Fee, Zone Fee and Ramp Fee.  Each sub cost is multiplied by a 
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non-negative parameter allowing for fine adjustments of its contribution to the overall 

cost. 

3.4.1 Aircraft Usage Fee 

 The aircraft usage fee is a user-definable parameter which assigns the entire fee if 

any cargo is loaded in a particular aircraft.  Mathematically, it is represented as: 

1
, U {0,1}  1,2,..., ,

A

j j j jj
C U j A C R

 

Equation 10.  MPALP Usage Fee 

 

where Cj represents the cost of the j
th

 aircraft and Uj is a binary variable indicating 

whether (Uj =1) or not (Uj =0) the j
th

 aircraft contains any cargo. 

3.4.2  Under/Over Weight Fee 

Unlike Roesener’s weight penalties, MPALPTS uses three states to compute the 

cost of an aircraft’s weight.  Mathematically, they are: 

3

2

1 1

2 1

1

,

, ,

, ,

% 100 ,   {0,1}  j=1,2,...,A

100 % (1 ) ,  {0,1}  j=1,2,...,A

100 % (1 ) 1 ,  {0,1}  j=1,2,...,A

j j

j j

A

j j j jj

A

j j j jj

A

j j j jj

ACL U Y Y U

ACLU Y W Y U W

ACLU Y W Y U W
 

Equation 11.  Under/Over Weight Fee 

 

where, Yj is equal to one if the aircraft is overweight and zero otherwise, and Wj is equal 

to one if the aircraft is utilizing between 30% and 100% of its ACL and zero if the 

aircraft’s ACL usage percentage is between 0% and 30%.  These percentages were 
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determined through extensive testing using single factor at a time parameter setting 

techniques.  Depending on the λ values, an example of this fee is graphically represented 

in Figure 6. 

 

 

Figure 6.  Representative Under/Overweight Curve 

 

As an aircraft becomes overloaded, its cost becomes exponentially greater while 

solutions having a slight under-loading are only marginally penalized.  However, if the 

MPALP heuristic is close to emptying an aircraft, it is encouraged to continue to do so 

with a negative cost (profit).  This unique cost schedule drives solutions towards either 

0% or 100% ACL utilization.   

3.4.3  CB Fee and Target CB Fee 

 The goal of the MPALP search is to create feasible aircraft loadings whose CBs 

are as close as possible to the target CB.  To accomplish this, the following longitudinal 

CB fee equations are used: 
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Equation 12.  CB Fee 

 

where Bj equals one if the j
th

 aircraft’s CB is within acceptable CB limits and zero 

otherwise.  Uj is a binary variable indicating whether (Uj = 1) or not (Uj = 0) the j
th

 

aircraft contains any cargo.  Notice that both equations assign fees based on the proximity 

of the calculated CB to the target CB; however, because 54 , the cost associated with 

being out of CB limits is much greater than being within CB limits.   

3.4.4  Zone Fees 

 Zone fees are divided into five sub fees: (1) axles that, by themselves, are too 

heavy for a zone, (2) adjacent axles that are too heavy, (3) zones whose total cargo 

weight is too heavy, (4) zones having cargo items that require center loading but are not 

loaded in the center and (5) a pallet that is too heavy or tall for its pallet position.  These 

five sub fees are not mutually exclusive which leads to the following complex additive 

fee calculation:
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  Equation 13.  Zone Fees 

 

Starting with the first term, cij represents the number of cargo items that are loaded in the 

j
th

 column of the i
th

 aircraft.  Correspondingly, aijk represents the number of axles on the 

cij
th

 cargo item, and Hijkl is a binary variable indicating whether (Hijkl = 1) or not (Hijkl = 0) 

the aikj
th

 axle is too heavy for its zone.  If it is, it assigns a penalty of the difference 

between that axle’s weight and the maximum allowed axle weight for that zone.  The 

second term assigns fees when adjacent axles are too heavy.  The term ai1k  (note: the 

middle index is a one, not i) represents the number of axles of the cij
th

 cargo item on the 

left side of the cargo compartment.  Si1kl  (note: the second index is a one) is a binary 

variable indicating whether (Si1kl =1) or not (Si1kl =0) the ai1k
th

 axle has an adjacency zone 

violation.  If it does, it assigns a cost based on the difference between the conflicting 

axle’s weight in the right column and the maximum allowable weight for that right side 

axle.  This notation is used to avoid assigning double costs for a single adjacency 

violation.  The third term represents the fee associated with a cargo item that should be 
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center loaded but is not.  Tijk is a binary variable which indicates whether (Tijk = 1) or not 

(Tijk = 0) the k
th

 item in column j on the ith aircraft should be centerline loaded.  Items not 

properly centerline loaded are assigned a penalty equal to that cargo item’s total weight.  

The fourth term determines if the total cargo weight in a particular zone is too heavy.  

The variable zimj represents the total number of axles loaded in the j
th

 column of the i
th

 

aircraft in zone m, and Dimjn is a binary variable indicating whether (Dimjn = 1) or not 

(Dimjn = 0) the total weight of the n axles in zone m is greater than the zones maximum 

allowable weight.  If it is overloaded, the penalty assigned is equal to the difference 

between the total cargo weight in zone m and the maximum cargo weight allowed in zone 

m.  Finally, Pijk is a binary variable which indicates whether (Pijk =1) or not (Pijk =0) the k
th

 

item in the jth column of the i
th

 aircraft is a pallet that is either too heavy or tall for its 

pallet position.  The objective function is penalized by the pallet’s weight if a violation is 

present. 

 Zone violations constitute infeasibilities which prevent safe flight; they are 

extremely difficult constraint types to model in the MPALP and can account for a large 

portion of the objective function value.  When these violations are corrected, large 

objective function improvements are realized. 

3.4.5 Ramp Fees 

When an aircraft is being loaded, its ramp or ramps are lowered to allow rolling 

stock items to be towed or driven onto the aircraft; however, when an aircraft is in flight, 

its ramps are closed and lie at an upward angle with respect to the rest of the cargo floor.  

Because of this, one must consider the situation where a rolling stock item spans a ramp.  
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Ramp fees are assessed to prevent situations where a tracked vehicle spans a ramp or 

when a portion of any vehicle could contact the ramp.  The only acceptable configuration 

for a wheeled vehicle to span the ramp is if it has at least one axle resting on the cargo 

floor and one resting on the ramp.  This conservatively prevents the situation where all 

the vehicle’s axles are on the cargo floor and the aft (or forward) portion of the vehicle 

overhangs a ramp.  In this situation, the overhanging portion could come in contact with 

ramp when it is raised to the closed position.  The following ramp fee equation is used:  

2

7 1 1 1
CargoWt

0,1   1,..., ,  1,2,  1...

ijA c

ijk ijki j k

ijk ij

R

R i A j k c
 

Equation 14.  Ramp Fee 

 

Rijk is a binary variable which indicates whether (Rijk = 1) or not (Rijk = 0) the k
th

 item in 

column j on the i
th

 aircraft has a ramp constraint violation.  If it is in violation, the 

assigned cost is a multiple of the item’s weight. 

3.5 MPALPTS Neighborhoods 

The four neighborhood functions within MPALPTS are modeled after Harwig’s 

and Roesener’s work.  They include intra-aircraft swap, inter-aircraft swap, inter-aircraft 

insert, and empty aircraft.  In order to save computational time, only intra-aircraft swap 

actually evaluates its entire neighborhood.  The other insert and swap neighborhoods 

evaluate a changing subset of their full neighborhood.  Specifically, the first time the 

inter-aircraft swap neighborhood is called, it picks the best solution found from swapping 
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all cargo items between the following pairs of aircraft: 1 2 3 4 5 6 1, , , ... ,Aa a a a a a a a .  

The next time it is called, it increases the “distance” between aircraft and swaps all cargo 

items between the following pairs of aircraft: 1 3 2 4 3 5 2, , , ... ,Aa a a a a a a a .  This 

leads to exactly A pairs of aircraft evaluated each time the neighborhood is called.  

Through algorithmic testing, this reduced neighborhood approach tended to find solutions 

of comparable quality to full neighborhood searches in significantly less time. 

3.5.1 Inter-Aircraft Swaps 

 Inter-aircraft swaps are primarily used to rapidly improve the initial solution.  The 

neighborhood explores all possible combinations of swapping one cargo item in one 

aircraft with another cargo item in another aircraft within the previously described 

reduced set of aircraft.  To ensure pallets remain aft of rolling stock, pallets can only be 

swapped with other pallets, and rolling stock can only be swapped with rolling stock. 

Unlike swapping pallets which always have identical width and length, rolling 

stock swaps are much more complicated.  If the two cargo items are of different 

dimensions, the neighborhood function must determine if it is possible to fit a larger item 

in the location the smaller item previously occupied.  If such a swap is not possible, then 

the algorithm determines if it is possible to slide the cargo to allow the larger item to fit.  

If the larger item still cannot fit, then that particular swap is ignored, and the algorithm 

continues to the next item.  Thus, inter-aircraft swaps never allow the cargo items to 

exceed the physical dimensions of the cargo compartment; however, it is permitted to 

cause an aircraft to exceed its planning ACL.  After each swap, both aircraft’s loads are 
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sent through the Fix Load Function (section 3.6) which attempts to resolve zone, 

centerline and ramp violations.  The best neighborhood solution is retained as the next 

solution. 

3.5.2 Inter-Aircraft Inserts 

 Unlike inter-aircraft swaps, the inter-aircraft insert neighborhood excels at fine-

tuning a solution with relatively small objective function improvements.  When invoked, 

the inter-aircraft insert attempts to remove a cargo item from an aircraft and place it in a 

feasible location on a second aircraft.  The algorithm attempts to place the cargo item in 

the farthest aft position of the column having the fewest number of cargo items while 

ensuring no rolling stock items are placed behind a pallet.  If the cargo item will not fit, 

the inter-aircraft insert algorithm determines the maximum forward shift for the cargo in 

that column to accommodate the new item.  If, even after sliding the cargo forward, the 

item will not fit, it performs the same procedure on the other column.  If the item will not 

fit in either column, the insert is terminated and the algorithm continues to the next cargo 

item in the losing aircraft.  Pallet items are only inserted when the gaining aircraft has 

open pallet positions.  After each successful insert, the Fix Load Function is called.  The 

intra-aircraft swap neighborhood is invoked on the best solution from the reduced 

neighborhood, and this solution is retained as the next solution. 

3.5.3 Empty Aircraft Neighborhood 

 If MPALPTS determines it may be possible to empty an aircraft through the State 

Determination function (section 3.10) and it has already found a completely feasible 
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solution using the current set of aircraft, it invokes the empty aircraft neighborhood.  This 

neighborhood, which is essentially a series of inter-aircraft inserts, identifies all the 

aircraft which currently utilize less than 75% of their ACL or less than 45% of their total 

space.  These values were experimentally determined through single factor at a time 

testing.  From this subset of aircraft, the neighborhood selects the aircraft with the 

smallest planning ACL to empty thereby leaving the bigger aircraft to hold the remaining 

cargo.  It attempts to insert all of the cargo from this aircraft into any or all remaining 

aircraft.  If the aircraft cannot be emptied, it removes that aircraft from the subset and 

repeats this procedure on the remaining aircraft in the subset until an aircraft is emptied 

or no aircraft remain in the subset. 

3.5.4 Intra-Aircraft Swaps 

 Intra-Aircraft Swaps are intensification moves; their primary utility is to obtain an 

aircraft CB that is as close as possible to the target CB rather than explore new cargo 

permutations.  This neighborhood is used to refine the initial solution as well as the best 

solution found in the inter-aircraft swap and insert neighborhoods.  First, this function 

swaps all the items in a given column and computes the best solution.  These swaps are 

relatively easy to accomplish because intra-column swaps cannot result in situations 

where the cargo does not fit in the column. Inter-column swaps are similar to inter-

aircraft swaps in that if the cargo items are of different sizes, it may be possible for a 

particular swap to be infeasible.  Thus, the same logic from inter-aircraft swaps is 

incorporated into these inter-column swaps within a single aircraft. The intra-aircraft 

swap also examines pallet swaps as well as inserting a pallet into an empty position aft of 
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rolling stock within the aircraft.  After each successful swap, the Fix Load Function is 

called, and the swap with the lowest cost is chosen as the next solution. 

3.6 Fix Load Function 

 The Fix Load Function is used to reload an aircraft if its current configuration has 

zone, ramp, axle or centerline violations.  Essentially, it removes all of the rolling stock 

from the aircraft while leaving the pallets in their original locations.  It replaces each 

rolling stock item, alternating between columns, in the original order and column from 

which it came; however, it attempts to arrange them such that there are no violations.  

This is done by placing the first item from the left side at the farthest forward point in the 

aircraft and then systematically sliding it aft until all violations are corrected.  The Fix 

Load Function then places the first item from the right side and slides it in the same 

manner.  Items continue to be inserted in alternating columns until all items have been 

repositioned or until an item overlaps a pallet or cannot feasibly fit in the remaining 

space.  If a particular load cannot be corrected, the algorithm returns the original solution.  

After each successful fix, the algorithm calls the Slide CB function (section 3.7) to try to 

fix any CB violations. 

3.7 Slide CB Function 

 After each successful Fix Load Function call, the Slide CB Function recalculates 

the aircraft’s CB and determines whether it falls into acceptable ranges.  If the CB is 

violated, it simultaneously slides all rolling stock items only enough to achieve a feasible 

CB.  Because pallets have predetermined locations, they cannot be included in this 
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function.  The required distance of the slide is simply the number of inches by which the 

current CB falls outside of the acceptable bounds.  Mathematically, the CB for the i
th

 

aircraft is defined by the cargo’s total moments divided by the cargo’s total weight where 

a cargo item’s moment is the product of its weight and the FS on which its weight is 

centered. 
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1 1
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Equation 15.  CB Calculation 

 

If iCB is determined to be out of the range min max,CB CB , one can determine the distance 

the CB requires shifting by Equation 16 and the resulting CB can be computed using 

Equation 17. 
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Equation 16.  CB Shift Calculation 
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In Equation 16, represents the number of inches required to shift the cargo to the 

nearest acceptable CB boundary.  FwdShiftmax and AftShiftmax represent the maximum 

amount the cargo can be shifted forward or aft within the longitudinal bounds of the 

cargo compartment; this equation includes any pallets present in the load.  Using 

Equations 16 and 17 together, the amount one needs to shift the cargo itself to move the 

CB into its feasible bounds is simply . 

3.8 Tabu List  

MPALPTS uses a single tabu list to track which moves are deemed to be tabu.  The 

list, ,  1... ,  1...a cTL a A c C , is constructed as an  x A C  matrix and represents the 

iteration count when cargo item c can be returned to aircraft a.  For example, assume the 

inter-aircraft insert neighborhood determined the best non-tabu solution resulted from 

moving cargo item 12 from aircraft 2 to some other aircraft.  Any new solution which 

returns cargo item 12 to aircraft 2 is considered tabu until the tabu tenure expires.   

Mathematically, TL  is updated by 2,12TL iteration tabutenure  where iteration is the 

iteration count when that particular move became tabu.  An inter-aircraft swap, which can 

be described as two inter-aircraft inserts, makes two such updates to TL which prevents 

the swap.    

To determine if a move is tabu, it is simply necessary to compare the current 

iteration count to the value within the appropriate TL  cell; this is an extremely quick and 

efficient process.  If the iteration count is greater than the tabu list’s value, the move is 
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permitted.  The inspiration for this method of tabu list construction came from Alfonsas 

Misevicius’ tabu list in his traveling salesman problem heuristic (Misevicius 2004). 

3.9 Initial Solution Generation 

 MPALPTS uses a heuristic to determine the number of aircraft required to load 

the entire cargo set and is roughly based off of Roesener’s idea of dividing the cargo into 

groups (Roesener 2006).   

 First, the cargo is sorted by weight from largest to smallest and is then divided 

into two sets of k groups, one for pallets and one for rolling stock.  Through 

experimentation, using k = 4 groups generated the highest quality solutions; this value 

coincides with Roesener’s research (Roesener 2006).  The initial solution generation 

heuristic begins with the first aircraft in the available aircraft list and attempts to load as 

many items as possible from the first (heaviest) rolling stock group into the aircraft.  In 

order to keep the number of items on each side of the cargo compartment reasonably 

balanced, it loads the next item into the column with the least number of items; ties are 

arbitrarily assigned to the left column.  If the first item of a group will not fit, the 

heuristic moves to the first item in the next group.  It repeats this process until the first 

item in all four groups will not fit anywhere in the aircraft or until 100% of its ACL has 

been utilized, whichever occurs first.  After an aircraft is filled with rolling stock, the 

same procedure is used to fill it with pallets.  Once there are no open pallet positions, 

100% of its ACL has been utilized or no other items will fit on the aircraft, the heuristic 

picks the next aircraft in the list and repeats the loading process until either all the cargo 

has been loaded or it runs out of available aircraft to load.  If the user did not provide 
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enough aircraft to load all the cargo, the MPALPTS ends with an error message 

indicating it requires additional aircraft for the initial solution. 

 As the heuristic loads the aircraft with rolling stock, it determines the average axle 

weight and the item width which requires the item to be centerline loaded in the current 

aircraft.  It uses these values to determine whether an item requires centerline loading;  

this generates a conservative number of aircraft in the initial solution. 

 After generating this initial solution, a series of intra-aircraft swaps and fix load 

procedures are performed on each aircraft in an attempt to find a feasible (or as close to 

feasible as possible) solution.  However, the initial solution is only guaranteed to load all 

the available cargo such that it physically fits on each aircraft and the total weight of each 

aircraft does not exceed its ACL.  It is up to the MALPTS to find the best feasible 

solution. 

3.10 State Determination 

 MPALPTS assigns the state of the current solution into one of two categories.  If 

MPALPTS determines that the possibility exists to empty one or more aircraft in the 

current solution and the current solution is feasible (i.e. no CB, zone, axle or ramp 

violations and no aircraft exceeds its ACL), then the system is in “State 1.”  If the system 

is not in “State 1”, it is in “State 2.”   

 In order to access the probability that MPALPTS can find a feasible solution 

using one less aircraft, the algorithm first determines the current solution’s reduced 

excess weight by summing the differences of each aircraft’s current weight and 90% of 

its ACL.  As the average ACL of a solution approaches 100%, the search for feasibility 
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becomes very difficult because the space available to shift cargo is extremely limited.  

Using the reduced excess weight greatly improves the probability MPALPTS will be able 

to find a feasible solution after emptying an aircraft.  This, in turn, reduces the 

computational time required for MPALPTS to search for a feasible solution using fewer 

aircraft when the probability of finding that solution is low.  If the reduced excess weight 

is large enough to allow an aircraft to be emptied, the algorithm continues to the next 

step.  Otherwise, it indicates a “State 2” solution and prohibits emptying an aircraft.  In 

the next step, MPALPTS identifies which aircraft to attempt to empty.  It does so by 

determining the set of aircraft currently using less than 75% of their ACL or 45% of their 

total space.  If this set is nonempty, MPALPTS determines whether it is possible to 

transfer the weight of any of these aircraft to some or all of the remaining aircraft and 

returns the appropriate solution state. 

3.11  MPALP Tabu Search Algorithm 

Combining the actions described in the previous sections, the pseudo code for the 

MPALPTS is presented in Figure 7.  A flowchart of the MATLAB functions can be 

found in Appendix B and a portion of the MATLAB code is contained in Appendix C.  

There are six main variables which control the search.  First, the iteration counter tracks 

the number of iterations of the overarching while loop, and the search ends if it reaches 

300 iterations.  The trivial counter counts the number of trivially improving solutions;  

these are defined as an improvement of less than 10% from the previous solution.  If the 

trivial counter reaches 50, the search terminates.  These values were determined through 



 

3-22 

 

experimentally based single factor at a time analysis.  To avoid premature termination, 

the trivial counter is reset to zero if an improving solution is significant (i.e. not trivial).   

 

Figure 7.  MPALP Tabu Search Pseudo Code 

 

1. Get as input (Cargo, Available Aircraft, CB Lookup Table, Zone Information, Pallet Information) 

2. Account for chain space and lateral space for each cargo item in Cargo 

3. Generate Initial Solution 

a. If there are not enough aircraft to load all the cargo, display error message, STOP. 

4. Calculate cost of Initial Solution 

5. Initialize FoundFeasibleSoln = 0  (1 if a feasible solution has been found, 0 otherwise) 

6. Initialize CannotEmptyUntil = 0  (Cannot try to empty an aircraft until iteration CannotEmptyUntil) 

7. Initialize InsertVSswap  = 0 ( All inter-aircraft swap moves) 

8. Create and Initialize tabu structure and Initialize all other variables 

9. While Iteration < 300 AND Trivial < 50 AND DisImprove < 50 loop 

a. Increment Iteration 

b. Determine State: 1 = Can Empty an acft, 2=Not state 1 

c. IF [(CannotEmptyUntil > Iteration) AND (State = 1)] then State = 2 END IF 

d. IF state = 1, Invoke Empy Aircraft procedure on current solution 

i. If successful  

1. Update Best Solution variables 

2. Update current solution 

ii. Increment CannotEmptyUntil by 10 iterations 

e. ELSE IF state = 2 AND insert neighborhood is the next move 

i. Invoke inter-acft insert neighborhood on current solution and return best non-tabu 

solution and updated tabu structure 

1. IF found an improved solution THEN 

a. Update Best Solution variables 

b. Update current solution    

END IF 

2. Make returned solution the current solution  

f. ELSE IF state = 2 AND Swap neighborhood is the next move 

i. Invoke inter-acft swap neighborhood on current solution and return best non-tabu 

solution and updated tabu structure 

1. IF found an improved solution THEN 

a. Update Best Solution variables 

b. Update current solution 

END IF 

2. Make returned solution the current solution  

END State if-then 

g. IF solution was a trivial improvement, then increment Trivial, Disimprove = 0 

h. ELSE IF solution was not improving, the increment Disimprove 

i. ELSE Trivial = 0, Disimprove = 0  (Found a significantly better solution) 

END IF solution… 

j. IF Disimprove + Trivial ≥ 10, InsVsSwap = -4 

k. ELSE InsVsSwap = 0 

END IF  

END While 

10. Return Solution 
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The disimprove counter represents the number of sequential moves with a non-improving 

objection function values and is reset to zero if either a trivially or significantly better 

solution is found.   

The next set of controlling variables dictate how the search progresses.  First, it is 

critical to ensure the algorithm does not empty an aircraft before it has found a feasible 

solution using the current number of aircraft.  If no feasible solution has been found on 

the current set of aircraft, there is no guarantee of feasibility after emptying one of the 

aircraft.  Therefore, when MPALPTS has found a feasible solution using the current 

number of aircraft, it sets the binary variable “FoundFeasibleSoln” to 1; after this occurs, 

the algorithm is allowed to attempt to empty an aircraft.  Similarly, if MPALPTS 

determines that it may be able to empty an aircraft and subsequently fails to empty an 

aircraft, it is likely that ensuing state calculations will result in trying to empty an aircraft 

again.  Because of this, the “CannotEmptyUntil” variable is incremented by 10 each time 

the Empty Aircraft procedure is called regardless of success or failure.  This prohibits the 

algorithm from trying to empty an aircraft again for at least 10 iterations.  This value was 

shown, through experimentation, to allow sufficient changes in the solution to increase 

the probability of successfully emptying an aircraft.  

 The final variable, “InsertVsSwap” is designed to control the ratio of inter-aircraft 

insert to inter-aircraft swap neighborhood moves.  For example, a value of negative three 

results in three insert moves for every swap move, and a value of zero results in exploring 

only swap moves.  Swap moves generally produce large changes in the solution and are 

valuable in improving the initial solution; however, insert moves perform well at fine-
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tuning the solution.  Therefore, “InsertVsSwap” is initialized to zero and causes  

MPALPTS to refine the initial solution until stagnation occurs.  This stagnation is 

recognized when the sum of the trivially improving and disimproving counters becomes 

greater than or equal to 10.  Upon stagnation, “InsertVsSwap” is set to negative four and 

remains so until a feasible or a significantly improved solution is found at which time it is 

reset to zero.  

 If a feasible solution is found, the CannotEmptyUntil counter is incremented by 5 

to allow MPALPTS to refine the feasible solution before trying to empty an aircraft.  

Additionally, the trivial and disimprove counters are adjusted to give MPALPTS a 

minimum of 20 iterations to attempt to empty the aircraft.  These experimentally based 

values were shown to produce excellent solutions while also terminating the search 

sooner in the case an aircraft cannot be emptied. 

 After reaching a termination condition, MPALPTS returns up to three solutions 

and their associated costs: a feasible solution, a marginally infeasible solution, and a 

moderately infeasible solution.  The three solutions allow the load planner to use 

MPALPTS as decision making tool to determine the costs of exceeding aircraft ACL 

versus benefits of potentially using fewer aircraft.  Additionally, it exports the best 

feasible solution to an excel file which builds its visual representation.  An example of 

the visual representation is located in Appendix D. 

3.12 Robust Parameter Design 

The goal of Robust Parameter Design (RPD) is to mathematically model a 

problem’s solution space in terms of an algorithm’s adjustable parameters to find settings 
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which produce high quality solutions across the spectrum of expected problem instances.  

Performing RPD tends to reduce the time spent on “randomly” adjusting parameters in 

hopes of finding robust settings. 

The first step of RPD is to choose which parameters will be included within the 

mathematical models.  Preliminary testing revealed the seven multipliers which define 

the cost of a particular solution were important to both solution quality and the time spent 

producing a solution.  Table 4 shows the original parameter settings derived from the 

creation and informal testing of MPALPTS.  

Table 4.  Original Parameter Settings 

Overweight 

Fee 

(λ1) 

Underweight 

Fee > 30 

(λ2) 

Underweight 

Fee ≤ 30 

(λ3) 

Target 

CB Fee 

(λ4) 

CB Fee 

(λ5) 

Zone 

Fee 

(λ6) 

Ramp Fee 

(λ7) 

1000 2 1 0.1 1000 0.25 1 

 

The ranges in which each parameter is allowed to vary (Table 5) were chosen to 

contain the original settings.  The upper bound on parameters affecting feasibility (λ1, λ5 , 

λ6 , λ7,) were set high relative to the remaining parameters in order to ensure RPD was 

able to find settings which drove the search to feasible regions of the solution space.  
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Table 5.  Parameter Ranges 

Parameter Lower Bound Upper Bound 

λ1 750 1250 

λ2 .1 20 

λ3 .1 20 

λ4 .1 20 

λ5 750 1250 

λ6 .1 1000 

λ7 .1 1000 

3.12.1  Test Sets 

  Three pairs of problem instances were chosen as a representative sample of the 

types of loads MPALPTS may face.  They include pallets only, rolling stock only and a 

mixed load of pallets and rolling stock.  Each pair has one cargo set containing 75 items 

and one cargo set containing 200 items.  The 75-item mixed set has 40 rolling stock items 

and 35 pallets while the 200-item mixed set has 90 rolling stock items and 110 pallets.  

These ratios of pallets to rolling stock items were purposefully chosen because 

MPALPTS has a more difficult time finding feasible solutions when the ratio is relatively 

equal.  For test sets with pallets, individual pallets were chosen randomly among 30 

sample pallets (Appendix A) whose weights were evenly spaced from 333 to 10,000 

pounds.  Pallet heights were chosen to be roughly commensurate to its weight such that 

lighter pallets are generally shorter than heavier ones.  Rolling stock items were randomly 

picked from a set of 30 items selected from the extensive AALPS database (Appendix 

A).  Table 6 summarizes the six test sets. 
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Table 6.  Test Sets 

Test Set Pallets Rolling Stock Total 

P75 75 0 75 

P200 200 0 200 

R75 0 75 75 

R200 0 200 200 

M75 30 45 75 

M200 110 90 200 
 

3.12.2 RPD Model Construction 

 The software package Design Expert was used to create, analyze and optimize a 

¼ fractional central composite design which contained the seven design parameters along 

with a six-level categorical noise factor representing the test sets.  It included 88 runs per 

test set for a total of 528 runs.  MPALPTS was given an equal mix of C-5 and C-17 

aircraft for each run.  Response variables included the number of aircraft used in the best 

feasible solution and the time required to find the best feasible solution.  If a particular 

combination of design parameters failed to produce a feasible solution, the number of 

aircraft returned was four times the number of aircraft in the initial solution, and the time 

required to complete the algorithm was also multiplied by four.  This multiplication 

sufficiently separates feasible and infeasible responses.  A quadratic regression model 

was built for each response variable as well as the response variable’s variance.   

 A categorical noise factor complicates finding robust parameters.  To find robust 

parameters that work for all test sets, Brenneman and Myers suggest optimizing the 

model for each test set and then using a binomial distribution to weigh each set of 

parameters based on their probability of occurrence (Brenneman and Myers 2003).  
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Because the probability of encountering any given test set is unknown, the categories 

were weighed based on their estimated relative difficulty.  Rolling stock only problems 

have significantly more constraints than mixed and pallet only loads, and pallet only 

loads were found to be very resilient despite changes in the decision variables.  

Therefore, rolling stock only loads were weighted by 0.8, mixed loads were weighted by 

0.15 and pallet only loads were weighted by 0.05.  For the data collection phase of the 

experiment, tabu tenure was set at five and the trivially improving and disimproving 

counters were both set at 50.   

3.12.3 Feasible Aircraft Model 

 A graphical representation of the quadratic aircraft model is shown in Figure 8.  

The model includes the CB Target Fee (λ4), Zone Fee (λ6), Ramp Fee (λ7), the categorical 

variable and their quadratic interactions as the most significant components.  The 

regression model itself was constructed using backward and manual regression 

techniques.  The response variable was transformed using an inverse-square 

transformation to obtain normalized residuals and a better fitting model, so subsequent 

optimization required maximizing the transformed variable.  The model has an adjusted 

R-squared value of 0.9256 and a signal to noise ratio of 55.64 indicating a reasonably 

good fit.  The plots of the studentized residuals and predicted versus actual values both 

confirm a significant model. 
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Figure 8.  Aircraft Regression Model Plots 

 

3.12.4 Time Model 

The time model includes the same significant variables as the aircraft model, and 

the response variable was transformed using a natural log transformation.  This model has 

an adjusted R-squared value of 0.9129 and a signal to noise ratio of 50.30 indicating a 

reasonably good fit.  Figure 9 shows the plots of studentized residuals and predicted 

versus actual values both of which indicate a significant model. 
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Figure 9.  Time Regression Model Plots 

 

3.12.5 RPD Results 

 To find the best parameter settings for each test case, both the time and aircraft 

models along with their associated variance models were simultaneously optimized.  Six 

sets of optimal parameter settings (Table 7) were generated. 

Table 7.  Optimal Parameter Settings for Test Sets 

Parameter P75 P200 R75 R200 M75 M200 

λ1 772.78 1247.96 1124.47 772.78 1134.65 1145.39 

λ2 19.20 5.20 12.34 19.20 9.43 3.12 

λ3 19.99 19.96 4.59 19.99 12.45 8.22 

λ4 0.10 11.61 20.00 0.10 14.65 0.10 

λ5 750.00 1066.10 964.77 750.00 978.07 1154.95 

λ6 613.77 455.87 961.74 613.77 854.42 756.38 

λ7 475.20 497.59 872.24 475.20 701.64 554.98 
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Brenneman and Myers’ binomial probability techniques work well when the optimal 

parameters are reasonably close to one another across the categorical variable; however, 

in this case, the settings for the target CB fee (λ4) were grouped into two similar values.  

Using the previously mentioned weightings, the robust parameter settings are shown in 

Table 8. 

Table 8.  Robust Parameter Settings 

λ1 λ2 λ3 λ4 λ5 λ6 λ7 

1095.26 8.47 11.21 7.83 1016.76 788.35 630.30 

 

Unfortunately, these settings resulted in very poor performance for test sets R200 and 

M200.  Further testing revealed sets P200, R75 and M75 had only minor increases in 

required computational time when λ4 was set to 0.1, so the three models were re-

optimized in Design Expert using this setting for each level of the noise factor.  This 

resulted in a similar situation for λ2, so an additional iteration of re-optimizing had to be 

performed.  The re-optimized and final robust parameters are shown in Tables 9 and 10 

respectively. 
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Table 9.  Re-Optimized Parameters 

Parameter P75 P200 R75 R200 M75 M200 

λ1 1000.00 751.57 782.68 1143.73 1177.36 1189.06 

λ2 2.00 2.00 2.00 2.00 2.00 2.00 

λ3 20.00 6.84 19.23 15.26 13.55 17.20 

λ4 0.10 0.10 0.10 0.10 0.10 0.10 

λ5 1000.00 765.56 797.87 866.22 1203.82 759.86 

λ6 500.05 494.57 872.33 475.58 702.88 554.93 

λ7 500.05 446.84 981.05 613.66 876.66 756.32 

 

Table 10.  Final Robust Parameters 

λ1 λ2 λ3 λ4 λ5 λ6 λ7 

1123.84 2.00 15.65 0.10 946.93 631.33 795.51 

 

3.13 Summary 

This chapter presented the details of MPALPTS including its four neighborhoods 

and its main controlling variables.  The algorithm is designed to efficiently search for 

areas of high quality feasible solutions.  As with any heuristic, finding the optimal 

variable settings for an algorithm is a critical step to obtain the best possible performance 

across the expected problem instances.  Therefore, this chapter also presented robust 

parameter design techniques, as applied to MPALPTS, which illustrate an experimentally 

based method to find these optimal settings.  The difficulties of categorical noise 

variables were also discussed  
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Chapter 4: Results 

4.1 MPALPTS versus AALPS 

To compare MPALPTS performance to AALPS, each test set was first loaded by 

AALPS using three different mixes of aircraft: an equal mix of C-5 and C-17 aircraft 

(“M” in Table 11), C-5 aircraft only (C-5), and C-17 aircraft only (C-17).  AALPS has 

many loading options available to the user, so great care was taken to set both algorithms’ 

adjustable parameters to equal settings.  MPALPTS was given the exact number, mix and 

configuration of aircraft in the AALPS final solution for each test set.  Table 11 

summarizes the overall comparison between the AALPS and MPALPTS solutions.  The 

table includes the percent ACL and space used for both methods.  While the percent ACL 

calculation is straightforward, the space used is not necessarily intuitive, and it is 

unknown exactly how AALPS calculates this statistic; therefore, directly comparing the 

percentage of space used is not necessarily valid.  MPALPTS defines an aircraft’s total 

available space as the number of inches between the farthest forward and the farthest aft 

FS multiplied by the total cargo compartment width.  If a cargo item is loaded only on 

one side of the cargo compartment, MPALPTS assumes it occupies the entire lateral 

space of that column from the item’s forward FS to its aft FS including its required chain 

space.  Similarly, center-loaded items are assumed to occupy the entire width of the 

aircraft floor.   
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Table 11.  AALPS versus MPALPTS 

Test 

Set 

 AALPS MPALP-TS 

Test 
Min 

Acft 

Mix 

C-5/ 

C-17 

Acft 
Avg % 

ACL 

Avg 

% 

Space 

Mix 

C-5/ 

C-17 

Acft 

Avg 

% 

ACL 

Avg 

% 

Space 

Time to 

Feas 

(sec) 

Tot 

Time 

(sec) 

P75 M 3 2/2 4 73.5 68.0 2/1 3 97.1 79.2 10.3 38.7 

P75 C-5 3 3/0 3 83.7 71.3 3/0 3 83.7 63.4 14.2 44.8 

P75 C-17 5 0/6 6 70.0 62.2 0/5 5 83.8 80.0 2.7 16.8 

P200 M 9 5/5 10 83.0 78.2 5/4 9 92.9 78.1 29.2 114.7 

P200 C-5 7 8/0 8 84.8 70.4 7/0 7 96.8 72.4 38.9 120.9 

P200 C-17 12 0/14 14 88.7 72.9 0/12 12 98.9 88.8 305.7 363.6 

R75 M 10 7/6 13 74.2 49.8 6/5 11 85.3 88.6 80.2 236.3 

R75 C-5 8 13/0 13 69.9 44.8 9/0 9 85.4 88.8 180.7 202.2 

R75 C-17 13 0/17 17 75.4 53.1 0/17 17 75.4 87.2 27.6 126.3 

R200 M 27 17/17 34 80.0 49.7 15/14 29 93.6 88.1 1823.9 1902.

1 R200 C-5 22 26/0 26 80.4 46.7 24/0 24 92.4 88.5 1103.3 1187.

1 R200 C-17 37 0/44 44 82.3 52.4 0/44 44 82.3 85.0 587.7.8 1149.

6 M75 M 7 5/4 9 75.0 74.6 4/3 7 88.8 80.8 21.0 32.8 

M75 C-5 6 7/0 7 73.9 54.0 6/0 6 86.3 84.6 83.9 96.4 

M75 C-17 9 0/11 11 78.5 60.0 0/11 11 78.5 90.3 2.7 95.0 

M200 M 17 10/10 20 80.0 57.1 9/8 17 93.3 87.2 382.8 426.1 

M200 C-5 13 15/0 15 85.3 56.7 14/0 14 91.5 79.7 269.2 328.2 

M200 C-17 17 0/25 25 85.4 59.7 0/25 25 85.4 89.1 192.3 620.2 

S50 M 3 3/2 5 45.6 61.6 3/1 4 51.6 86.2 43.2 53.5 

M800 M 75 45/44 89 89.0 56.5 43/42 85 93.0 78.6 5801.8 1585

4   

The number of aircraft required by both algorithms is also reported, as is the 

theoretical minimum number of aircraft required for a feasible solution.  This theoretical 

minimum is computed by individually subtracting the ACL of each aircraft given to 

MPALPTS from the total weight of the cargo until all the cargo weight is “loaded” onto 

the aircraft.  This minimum does not account for any cargo constraints and therefore may 

not represent the actual optimal number of aircraft for any given cargo set.  The 
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theoretical limit can, however, be considered an absolute lower bound for feasible 

solutions.  

The time required to reach the solution is only provided for MPALPTS; AALPS 

produces solutions almost instantaneously.  The time necessary to reach a feasible 

solution using the least number of aircraft is represented in the “Time to Feasible” 

column while the overall running time of the algorithm is represented in the “Overall 

Time” column.  The “Overall Time” column can include time expended searching for a 

feasible solution using fewer aircraft than the best feasible solution found, and it may 

include time spent refining the final solution. Two additional test problems are included: 

one with 50 of the same rolling stock item (S50) and one with 400 pallets and 400 rolling 

stock items (M800).  These test problems are designed to illustrate other possible types of 

cargo loading outside of the original RPD models.  Each test set for MPALPTS was 

executed on an Intel Centrino dual-core processor laptop running at 2.4 GHz with 3 GB 

of memory. 

While RPD is extremely useful in finding robust parameter settings, it also tends 

to sacrifice excellent solution quality in individual test problems for adequate solution 

quality across all test problems.  For example, some parameter settings found feasible 

solutions for R200 C-17 using 43 aircraft.  Additionally, MPALPTS found a marginally 

infeasible solution to M800 using 84 aircraft with two of the aircraft being overloaded at 

100.15% and 100.002% of their ACL, respectively. 

Both MPALPTS and AALPS used the same number of aircraft in five test sets 

(P75 using only C-5 aircraft, R200, M75, R75, and M200 using only C-17 aircraft).  
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MPALPTS required fewer aircraft than AALPS in 15 tests sets; MPALPTS achieved the 

absolute lower bound for feasible solutions in 9 test problems.  On average, MPALPTS 

used 11.48% fewer aircraft than AALPS with a maximum percentage of 30.77% fewer 

(R-75 C-5 only); however, these improved solutions required more computational time 

than AALPS.   

The most difficult test problem of the original six was R200; this scenario had the 

largest number of axle, centerline and zone constraints of the six test sets.  MPALPTS 

required approximately 32 minutes to complete the mixed C-5/C-17 test case.  The M800 

test set, which contains 9.5 million pounds of cargo, required approximately 270 minutes 

to complete; MPALPTS found a feasible solution in about 91 minutes, and the remaining 

time was spent locating the aforementioned marginally infeasible solution.  While this 

appears to be a relatively long time (compared to AALPS), MPALPTS saved 4 aircraft 

over AALPS; a highly trained loadmaster would have required several days or weeks to 

find a similar solution.  Appendix E contains specific results for each test problem 

including the number of items loaded on each aircraft and the percentage of ACL and 

space used. 

4.2 Load Validation 

 In order to validate MPALPTS results, a sample of its load plans were manually 

recreated in AALPS which, in turn, displays any constraint violations present.  The only 

adjustments required to MPALPTS solutions were related to the C-5 crew and troop 

compartment ladders which AALPS assumes are in the “down” position.  MPALPTS 

assumes the height of each item will not impact any portion of the aircraft protruding 
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from the ceiling of the cargo compartment.  In each case tested, sliding the cargo item 

laterally corrected the violation and did not require any items to be removed from the 

aircraft.  Additionally, AALPS rounds the CB of each item to the nearest whole number 

prior to making CB calculations.  Despite this fact, the CB calculated by AALPS was 

always within 1.5 inches of the MPALPTS calculated CB.  Appendix F has two load 

plans from AALPS which represent the feasibility of MPALPTS solutions. 

4.3 Applied Results 

From February 2007 to January 2008, AMC reportedly flew 686 C-5 and 1551 

C-17 multi-leg operational missions (Anderson 2008).  Assuming all missions were 

originally planned with AALPS and were reloaded with MPALPTS (which, on average,  

increased airlift efficiency by 11.48% over AALPS), AMC would have flown 75 fewer 

C-5 missions and 171 fewer C-17 missions.  If these airlift missions averaged 30 flight 

hours from the Continental United States to the cargo’s destination and back, AMC 

would have saved $117,978,930 in this twelve-month period (using the previously 

mentioned hourly flight costs for C-5 and C-17 aircraft).  In less than nine years of using 

MPALPTS, AMC could realize airlift savings of over one billion dollars. 

While MPALPTS takes significantly longer than AALPS to find solutions, its 

ability to feasibly load a given set of cargo using fewer aircraft than AALPS would 

significantly improve the USAF’s ability to efficiently utilize its airlift fleet.  This 

increased efficiency could result in significant cost reductions for Air Mobility 

Command. 
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Chapter 5: Future Research 
 

 Despite MPALPTS successes, there are many aspects of this difficult problem 

which merit future study.  First, all the cargo loaded with MPALPTS are assumed to be 

destined for the same location.  In reality, this is rarely the case; including the destination 

of individual pieces of cargo as well as the planned stops of each aircraft would be 

required to better model this problem.  Items should be positioned within the cargo 

compartment to facilitate efficient offload at each location an aircraft transits.  This type 

of problem would be a pick-up and delivery bin packing problem.  Second, MPALPTS 

assumes no hazardous cargo is present.  Hazardous cargo must be separated by a specific 

distance within an aircraft, and some types are not allowed to be transported on the same 

aircraft.  This constraint could be relatively easily modeled in MPALPTS by adding 

additional cost and feasibility requirements.  Third, one of the greatest challenges to 

modeling airlift is handling large, oddly shaped cargo items (such as helicopters).  To 

efficiently load these types of cargo, they must be rotated within the cargo compartment; 

therefore, they present an added level of complexity to the overall problem which could 

be explored.  Fourth, the MPALPTS assumes rolling stock items will not contact the 

ceiling of the cargo compartment regardless of their position.  Accounting for available 

space within an aircraft in three dimensions is also a difficult problem because there are 

many obstructions (such as the C-17’s center fuel tank or the C-5’s aircraft ladders) 

which limit the allowable height of a cargo item.  Resolving these additional problem 

constraints would create a more robust and operationally useful product.  Additionally, 
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cargo zones have pounds per square inch limitations for the tires or vehicle tracks.  

MPALPTS assumes these constraints are satisfied or would be satisfied by adding 

shoring.  Explicitly defining these constraints would add validity to the model.  Finally, 

as with any new algorithm, improving MPALPTS in terms of its solution quality or run 

time would also be a useful endeavor.  
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Appendix A: Test Set Cargo 

A.1 Rolling Stock 

Table 12.  Rolling Stock Cargo 

Length Width Height # Axles Axle Loc 2 3 4 5 6 Axle Wts 2 3 4 5 6 Tot Wt CB Cargo Num Type (1=RS) Type NSN 

162                2531 99 1 1 TRAILER TANK WATER  

294                8000 160 2 1 TRAILER FLATBED  

147                1340 103 3 1 TRAILER CARGO 3/4-TON  

258                6220 107 4 1 TRUCK, 6 PAX, 4X4  

209                2900 91 5 1 TRUCK PICKUP 4200  

146                8730 98 6 1 TRUCK FORK LIFT  

223                8170 124 7 1 TRUCK CARGO TACTICAL  

266                22146 144 8 1 TRUCK DUMP 5-TON  

401                38800 210 9 1 TRUCK CARGO 10T 8X8  

191                5600 88 10 1 TRK, UTIL, HVY, 2 1/4T, HMMWV  

180                5280 95 11 1 TRK, UTIL, CARGO/TRP CARR, 1 1/4T, W/EQP, HMMWV  

250                15920 151 12 1 TRACTOR, ALL-WHL-DRIVE, W/ATTACHMENTS  

204                7500 95 13 1 TRK, AMBUL, 4-LTR, ARMD, 2 1/4T, HMMWV  

265                45080 120 14 1 CARRIER AMMO TRACKED VEH  

255                12160 103 15 1 LATRINE SVC TRK  

191                8400 92 16 1 EXPL ORD DISP TRK MTD  

150                3050 112 17 1 TRAILER CABLE REEL  

119                765 72 18 1 TRAILER PLATFORM WHS  

315                35975 174 19 1 MRAP BAE-TVS CAT II  

227                2520 130 20 1 TRAILER BASIC UTILITY  

122                2140 51 21 1 PUMP, WATER, 350 GPM  

420 

               

50570 196 16 1 TRK CGO HVY PLS TRANS 

 401                55665 198 23 1 TRK TANK 2500 GAL  

269                15760 149 24 1 TRK VAN SHOP 2-1/2-T  

190                23500 92 25 1 COMBAT VEH IMP TOW TRACKED  

294                41160 143 26 1 ANTI-TANK VEH/STRYKER  

252                27650 132 27 1 LAV, ANTI-TANK  

108                620 63 28 1 TRAILER CARGO 1/4-TON  

172                4120 105 29 1 TRAILER VAN SHOP  

137                3500 79 30 1 CHASSIS TRAILER  
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A.2 Pallets 

Table 13. Palletized Cargo 

Length Width Height # Axles Axle Loc 2 3 4 5 6 Axle Wts 2 3 4 5 6 Tot Wt CB Cargo Num Type (1=RS) Type 

88 108 24 0 0 0 0 0 0 0 0 0 0 0 0 0 333 0 1 2 Pallet 

88 108 30 0 0 0 0 0 0 0 0 0 0 0 0 0 667 0 2 2 Pallet 

88 108 38 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0 3 2 Pallet 

88 108 27 0 0 0 0 0 0 0 0 0 0 0 0 0 1333 0 4 2 Pallet 

88 108 33 0 0 0 0 0 0 0 0 0 0 0 0 0 1667 0 5 2 Pallet 

88 108 35 0 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 6 2 Pallet 

88 108 41 0 0 0 0 0 0 0 0 0 0 0 0 0 2333 0 7 2 Pallet 

88 108 45 0 0 0 0 0 0 0 0 0 0 0 0 0 2667 0 8 2 Pallet 

88 108 43 0 0 0 0 0 0 0 0 0 0 0 0 0 3000 0 9 2 Pallet 

88 108 50 0 0 0 0 0 0 0 0 0 0 0 0 0 3333 0 10 2 Pallet 

88 108 48 0 0 0 0 0 0 0 0 0 0 0 0 0 3667 0 11 2 Pallet 

88 108 48 0 0 0 0 0 0 0 0 0 0 0 0 0 4000 0 12 2 Pallet 

88 108 55 0 0 0 0 0 0 0 0 0 0 0 0 0 4333 0 13 2 Pallet 

88 108 37 0 0 0 0 0 0 0 0 0 0 0 0 0 4667 0 14 2 Pallet 

88 108 43 0 0 0 0 0 0 0 0 0 0 0 0 0 5000 0 15 2 Pallet 

88 108 61 0 0 0 0 0 0 0 0 0 0 0 0 0 5333 0 16 2 Pallet 

88 108 77 0 0 0 0 0 0 0 0 0 0 0 0 0 5667 0 17 2 Pallet 

88 108 82 0 0 0 0 0 0 0 0 0 0 0 0 0 6000 0 18 2 Pallet 

88 108 73 0 0 0 0 0 0 0 0 0 0 0 0 0 6333 0 19 2 Pallet 

88 108 45 0 0 0 0 0 0 0 0 0 0 0 0 0 6667 0 20 2 Pallet 

88 108 95 0 0 0 0 0 0 0 0 0 0 0 0 0 7000 0 21 2 Pallet 

88 108 83 0 0 0 0 0 0 0 0 0 0 0 0 0 7333 0 22 2 Pallet 

88 108 72 0 0 0 0 0 0 0 0 0 0 0 0 0 7667 0 23 2 Pallet 

88 108 84 0 0 0 0 0 0 0 0 0 0 0 0 0 8000 0 24 2 Pallet 

88 108 78 0 0 0 0 0 0 0 0 0 0 0 0 0 8333 0 25 2 Pallet 

88 108 76 0 0 0 0 0 0 0 0 0 0 0 0 0 8667 0 26 2 Pallet 

88 108 81 0 0 0 0 0 0 0 0 0 0 0 0 0 9000 0 27 2 Pallet 

88 108 80 0 0 0 0 0 0 0 0 0 0 0 0 0 9333 0 28 2 Pallet 

88 108 64 0 0 0 0 0 0 0 0 0 0 0 0 0 9667 0 29 2 Pallet 

88 108 90 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 30 2 Pallet 
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Appendix B: MATLAB Flowchart 
 

The following figures illustrate the overall architecture of the MPALPTS code.   
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Appendix C: MATLAB Code 
 

Only the code for the MPALPTS main procedure and the Fix Load procedure are 

included.  Complete electronic copies of the code can be obtained by emailing the author 

at robert.nance@us.af.mil. 

 
function 

[ZbestFeas,XbestFeas,ZbestMargInfeas,XbestMargInfeas,ZbestModInfeas,... 
  

XbestModInfeas,AvailAcftFeas,AvailAcftMargInfeas,AvailAcftModInfeas,t,.

.. 
  tottime] = MPALPTS (file,Cargo,AvailAcft,CBTable... 
  ,A1ZT,A2ZT,A1PT,A2PT) 

  

%******************************************************************************* 

% Procedure:  MPALPTS 

% Author   : Maj R. Larry Nance 

% Purpose  : Runs the tabu search for finding feasible loadings for aircraft based 

%         on the inputs and returns the best feasible solution it found along with some 

%        statistics about how long the solution took, etc. 

% Inputs:   file :    This is a text field that points to where the excel file is 

%                          that contains all the tables defining the variables.  If the 

%                      variables are known already, I just pass in 'file' or any 

%                      other string.  If the variables are passed in, the procedure 

%                      skips trying to open the file.  If some of the variables are 

%                      missing, it will go to the file and ask you to input the 

%                      appropriate files 

%           Cargo:    A n x 20 matrix where n is the number of cargo items. 

%                          Columns are defined in the excel file "Pallet Testing" 

%           AvailAcft:a x 19 matrix which defines various aspects of the 

%                      aircraft availiable for loading (a = number of acft) 

%           CBTable  :Lookup table for the CB 

%           A1ZT      :Aircraft 1 Zone Table -- defines zone positions and 

%                      constraints 

%           A2ZT     :Aircraft 2 Zone Table 

%           A1PT     :Aircraft 1 Pallet Table -- defines pallet positions and 

%                      constraints 

%           A2PT     :Aircraft 2 Pallet Table 

% Outputs:  ZbestFeas             :Best objective function value of best feasible solution 

%                  XbestFeas            :Representation of best feasible solution found 

%                 ZbestMargInfeas :Best cost of best marginally 

%                                   infeasible solution (ACL > 100 and <= 102.5) 

%                 XbestMargInfeas :Representation of best marginally infeasible solution 

%                 ZbestModInfeas  :Best objective function value of best moderately 

%                                   infeasible solution (ACL >102.5, < 105) 

%                 AvailAcft           :Best feasible, marginally infeasible and moderately 
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%                                             infeasible representations of the set of aircraft 

%                                             found during search 

%                   t                         :Time it took to reach best feasible solution 

%           tottime                      :Time it took for the whole tabu search to run 

% CalledBy: User (no other procedures call this.  This is the main procedure 

% Calls   : ChainSpace, GenInitSoln3, LoadZones, InterAcftInsertRedN, 

%           InterAcftSwapRedN, ConvertXcurrent, DetermineState 

%******************************************************************************* 

  

%Robust parameter settings found by RPD. 

%Costs = [MaxTrivial, MaxDisimprove, InsertVsSwap, Tabu Tenure, Overweight Fee, 

%         Underweight Fee < 30, Underweight Fee >= 30, CB Target Fee, CB Fee, 

%         Ramp Fee, Zone Fee] 

  

Costs = [50.00  50.00 0.00 5.00 1123.84 2.00 15.65 0.10 946.93 795.51 631.33]; 

  

  

%Starting Time 

starttime = cputime; 

  

%************************************************************************* 

%Allow manual input option for data 

%************************************************************************* 

if nargin == 1 

  disp ('Input Cargo File from Excel Sorted by Cargo ID.') 

  Cargo = xlsread (file,-1); 

  disp ('Input Available Aircraft File from Excel Already Sorted by priority.') 

  AvailAcft = xlsread (file,-1); 

  disp ('Input Zone table for aircraft type 1.') 

  A1ZT = xlsread (file,-1); 

  disp ('Input Zone table for aicraft type 2.') 

  A2ZT = xlsread (file,-1); 

  disp ('Input CB Lookup Table') 

  CBTable = xlsread (file,-1); 

  disp ('Input pallet table for aircraft type 1.') 

  A1PT = xlsread (file,-1); 

  disp ('Input pallet table for aircraft type 2.') 

  A2PT = xlsread (file,-1); 

   

end 

%Calculate min theoretical aircraft using the order of aircraft in AvailAcft 

TotCargoWt = sum (Cargo(:,17)); 

iter = 0; 

while TotCargoWt > 0 

  iter = iter + 1; 

  TotCargoWt = TotCargoWt - AvailAcft(iter,2); 

end 

MinAcftTheoretical = iter; 

disp (['Minimum theoretical aircraft based on ACL is ' num2str(MinAcftTheoretical) '.']); 

  

%Load Zones 

[Zones] = LoadZones (A1ZT,A2ZT); 
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%Create CB Lookup Table 

CBLookup (1,:,:) = CBTable (:,2:4); 

CBLookup (2,:,:) = CBTable (:,6:8); 

  

%Create Pallet Table which defines the pallets for each aircraft 

A1PTRows = size (A1PT,1); 

A2PTRows = size (A2PT,1); 

PalletTable = zeros (max (A1PTRows,A2PTRows),5); 

PalletTable (1,1:A1PTRows,1:5) = A1PT; 

PalletTable (2,1:A2PTRows,1:5) = A2PT; 

  

% Fix the length of each cargo item to acocunt for chaining space 

[Cargo] = ChainSpace (Cargo); 

  

%Generate Initial Solution 

disp ('Generating Initial Solution') 

[Xcurrent,AvailAcft,success,feasible,Zbest] = GenInitSoln3 (Cargo,... 

  AvailAcft,Zones,CBLookup,PalletTable,4,Costs); 

  

if success ==1 %If I came up with a initial solution 

  

  %Number of aircraft in initial solution 

  NumAcft = size (Xcurrent,1); 

  

  

  

  %Initialize all the variables 

  TrivialImproveMove = 0; 

  DisImproveMove = 0; 

  InterSpanInsert = 1; %used to spread out the reduced insert algorithm 

  InterSpanSwap = 1; 

  iteration = 0; 

  Zcurrent = Zbest; 

  ZbestFeas = inf; 

  ZbestMargInfeas =inf; 

  ZbestModInfeas = inf; 

  XbestFeas = 0; 

  XbestMargInfeas = 0; 

  XbestModInfeas = 0; 

  AvailAcftFeas = AvailAcft; 

  Xbest = Xcurrent; 

  AvailAcftBest = AvailAcft; 

  AvailAcftMargInfeas = 0; 

  AvailAcftModInfeas = 0; 

  tabulist = zeros (size(AvailAcft,1),size(Cargo,1)); 

  %tabutenure = Costs(4); 

  tabutenure = 5; 

  foundfeas = 0;  %= 1 if we have found feasible soln using NumAcft aircraft 

  MaxTrivial = Costs(1); 

  MaxDisImp = Costs(2); 
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  MaxIter = 300; 

  

  %Ratio of Insert and Swap nieghborhoods explored 

  %Neg number means do more inserts than swaps 

  %Pos number means to more swaps than inserts 

  %InsVsSwap = Costs(3); 

  InsVsSwap = 0; 

  

  ZoneMult = Costs(11); 

  RampMult = Costs(10); 

  

  %*************************************************************************** 

  %Start Tabu Search 

  %*************************************************************************** 

  %Step 1:  Determine what state we are in 

  %   State 1:  Have found a feasible solution AND algorithm thinks emptying 

  %                 is possible 

  %   State 2:  May or may not have found feasible solution.  Continuing to 

  %   refine search through inter and intra aircraft swaps/inserts 

  % 

  %************************************************************************ 

  

  CannotEmpty = 0; %= number of iterations must wait until state 1 to refine soln 

  while TrivialImproveMove < MaxTrivial &&... 

      DisImproveMove < MaxDisImp && iteration < MaxIter 

    iteration = iteration + 1; 

  

    %Display current iteration counters 

    text = sprintf ('%8s\t%8s\t%8s\t%8s\t%8s','Trivial','Disimp', 'Iter',  'NumAcft',  'InsVsSwap'); 

    disp(text) 

    text = sprintf('%8.0f\t%8.0f\t%8.0f\t%8.0f\t%8.1f',TrivialImproveMove, DisImproveMove, iteration,... 

      NumAcft, InsVsSwap); 

    disp (text) 

  

    %Determine the current solution's state 

    [state] = DetermineState (AvailAcft,foundfeas); 

  

  

    %if unable to empty acft due to space restrictions, cannot try again 

    %until CannotEmpty < iteration 

    if CannotEmpty > iteration && state == 1 

      state = 2; 

    end 

  

    %*************************************************************************** 

    %Empty an Aircraft 

    %*************************************************************************** 

    % If state equal one, then try to empty an aircraft 

    %************************************************************************ 

    if state == 1 

      disp ('Attempting to Empty Acft') 
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      [TempXcurrent,TempAvailAcft,worked] = EmptyAcft (Xcurrent,... 

        AvailAcft,Cargo,CBLookup,Zones,PalletTable,ZoneMult,RampMult); 

      %Check to see if TempXcurrent has any errors 

      %  [good] = CheckXcurrent2 (TempXcurrent,TempAvailAcft,Cargo,PalletTable); 

      %  if good == 0 

      %    disp ('Error EmptyAcft'); 

      %  end 

      if worked == 1 

        foundfeas = 0; %assume solution is not feasible 

        Zcurrent = inf; %best cost found from emptying aircraft 

        Xcurrent = TempXcurrent; %best solution found from emptying aircraft 

        AvailAcft = TempAvailAcft; 

        DisImproveMove = 0;  %Reset DisImprove moves to 0 to allow for more refining. 

        Zbest = inf;  %Reset the search because we have now reduced the aircraft by one 

        ZbestFeas = inf; 

        ZbestMargInfeas = inf; 

        ZbestModInfeas = inf; 

        tabulist = zeros (size(AvailAcft,1),size(Cargo,1)); %reset tabu list 

        disp ('Reduced number of Acft by one!!!') 

        %TEST 

        for acft = 1:size (Xcurrent,1) 

          [Xcurrent] = FixLoad (Xcurrent,acft,AvailAcft,Cargo,... 

            CBLookup,Zones,PalletTable,ZoneMult,RampMult); 

        end 

      else %if worked ~= 1-->Can't empty acft 

        disp ('Cannot Empty Acft') 

        CannotEmpty = iteration + 2; 

      end 

  

  

      %Logic to figure out if we do an insert or swap neighborhood next 

    elseif state == 2 && ((InsVsSwap > 0 && NumSwaps >= InsVsSwap) || ... 

        (InsVsSwap < 0 && NumInserts < abs(InsVsSwap))) 

      if InsVsSwap > 0 

        NumSwaps = 0; 

      else 

        NumInserts = NumInserts + 1; 

      end 

  

      %*************************************************************************** 

      %Inter-Aircraft Insert Reduced Neighborhood 

      %*************************************************************************** 

  

      %Explore the INTER acft insert neighborhood.  Generate a solution.  If it is not 

      %tabu, then allow it. (The InterAcftInsertRedN determines if a soln is 

      %tabu or not 

  

      %if insertspan > NumAcft-1, then tries to insert to itself 

      if InterSpanInsert >= NumAcft -1 

        InterSpanInsert = 1; 

      end 

      disp('Inter Aircraft Insert Reduced Neighborhood.....') 
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      [tabulist,TempXcurrent,TempAvailAcft,TempCost,feasible] = InterAcftInsertRedN... 

        (tabulist,iteration,tabutenure,AvailAcft,Xcurrent,Cargo,CBLookup,Zones,... 

        InterSpanInsert,PalletTable,Costs); 

  

      InterSpanInsert = InterSpanInsert + 1; 

  

      %[good] = CheckXcurrent2 (TempXcurrent,TempAvailAcft,Cargo,PalletTable); 

      %if good == 0 

      %  disp ('issues after InsertRedNeigh') 

      %end 

  

      %if this is the first time we have found a feasible solution, give it at 

      %least 3 iterations to improve it before we try to empty an acft 

      if feasible == 1 && foundfeas == 0 

        CannotEmpty = iteration + 5; %give some time to improve on the feasible soln 

        feastime = cputime - starttime; 

        text = sprintf ('%1s%1f%1s%d%s','***********Found feasible solution in ',... 

          feastime, ' seconds using ',NumAcft,' aircraft.'); 

        disp(text) 

        beep 

  

        %Reset Counters to allow enough time to improve solution and then, if 

        %possible, empty an aircraft and continue on.  If we empty an aircraft, 

        %then we will reset the counters to zero 

        %if we can't empty the aircraft, the algorithm will quit 

        TrivialImproveMove = max (0,MaxTrivial - 20); 

        DisImproveMove = max(0,MaxDisImp - 20); 

      end 

  

      %if I found a feasible solution and it is better than the current feasible 

      %solution 

      if feasible==1 && TempCost < ZbestFeas 

        if TempCost < Zbest 

          Zbest = TempCost; 

        end 

        XbestFeas = TempXcurrent; 

        ZbestFeas = TempCost; 

        AvailAcftFeas = TempAvailAcft; 

        foundfeas = 1; 

  

        %ELSEIf I found a marginally infeasible solution and it is better than current 

        %marginally infeasible solution 

      elseif feasible == 2 && TempCost < ZbestMargInfeas 

        XbestMargInfeas = TempXcurrent; 

        ZbestMargInfeas = TempCost; 

        AvailAcftMargInfeas = TempAvailAcft; 

  

        %ELSE If I found a moderately infeasible solution and it is better than current 

        %moderately infeasible solution 

      elseif feasible==3 &&TempCost < ZbestModInfeas 

        XbestModInfeas = TempXcurrent; 

        ZbestModInfeas = TempCost; 
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        AvailAcftModInfeas = TempAvailAcft; 

      end 

  

      %Best solution out of neghborhood becomes current solution 

      Zcurrent = TempCost; 

      Xcurrent = TempXcurrent; 

      AvailAcft = TempAvailAcft; 

  

  

      %*************************************************************************** 

      %Inter-Aircraft Swap Reduced Neighborhood 

      %*************************************************************************** 

  

    else 

      %Update counters to figure out if we do a insert or swap next 

      if InsVsSwap > 0 

        NumSwaps = NumSwaps + 1; 

      else 

        NumInserts = 0; 

      end 

  

      if InterSpanSwap >= NumAcft-1  %if insertspan > NumAcft, then tries to insert to itself 

        InterSpanSwap = 1; 

      end 

  

      disp('Inter Aircraft Swap Reduced Neighborhood...') 

      [tabulist,TempXcurrent,TempAvailAcft,TempCost,feasible]= InterAcftSwapRedN... 

        (tabulist,iteration,tabutenure,AvailAcft,Xcurrent,Cargo,CBLookup,... 

        Zones,InterSpanSwap,PalletTable,Costs); 

      InterSpanSwap= InterSpanSwap + 1; 

  

      %[good] = CheckXcurrent2 (TempXcurrent,TempAvailAcft,Cargo,PalletTable); 

      %if good == 0 

      %  disp ('issues after Swap Neigh') 

      %end 

  

      %if this is the first time we have found a feasible solution, give it at 

      %least 3 iterations to improve it before we try to empty an acft 

      if feasible == 1 && foundfeas == 0 

        CannotEmpty = iteration + 5;%give some time to improve on the feasible soln 

        feastime = cputime - starttime; 

        text = sprintf ('%1s%1f%1s','Found feasible solution in ', feastime, ... 

          ' seconds.'); 

        disp(text) 

        beep 

  

        %Reset Counters to allow enough time to improve solution and then, if 

        %possible, empty an aircraft and continue on.  If we empty an aircraft, 

        %then we will reset the counters to zero 

        TrivialImproveMove = max (0,MaxTrivial - 20); 

        DisImproveMove = max (0,MaxDisImp - 20); 

      end 
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      %if I found a feasible solution and it is better than the current feasible 

      %solution 

      if feasible==1 && TempCost < ZbestFeas 

        if TempCost < Zbest 

          Zbest = TempCost; 

        end 

        XbestFeas = TempXcurrent; 

        ZbestFeas = TempCost; 

        AvailAcftFeas = TempAvailAcft; 

        foundfeas = 1; 

  

        %ELSEIf I found a marginally infeasible solution and it is better than current 

        %marginally infeasible solution 

      elseif feasible == 2 && TempCost < ZbestMargInfeas 

        XbestMargInfeas = TempXcurrent; 

        ZbestMargInfeas = TempCost; 

        AvailAcftMargInfeas = TempAvailAcft; 

  

        %ELSE If I found a moderately infeasible solution and it is better than current 

        %moderately infeasible solution 

      elseif feasible==3 && TempCost < ZbestModInfeas 

        XbestModInfeas = TempXcurrent; 

        ZbestModInfeas = TempCost; 

        AvailAcftModInfeas = TempAvailAcft; 

      end 

  

      %Best solution out of neghborhood becomes current solution 

      Zcurrent = TempCost; 

      Xcurrent = TempXcurrent; 

      AvailAcft = TempAvailAcft; 

  

    end %State 

  

    %*************************************************************************** 

    %Update all the counters and stats of the search 

    %*************************************************************************** 

    if Zcurrent < Zbest %if there is an improving solution 

  

      if Zcurrent*1.1 >= Zbest  %Trivial Solution 

        TrivialImproveMove = TrivialImproveMove + 1; 

        if foundfeas == 0 

          DisImproveMove = 0; 

        end 

      else %significanlty improving move 

        TrivialImproveMove = 0; 

        DisImproveMove = 0; 

      end 

      Xbest = Xcurrent; %best solution found so far 

      Zbest = Zcurrent; 

      AvailAcftBest = AvailAcft; 
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    else %disimproving solution 

      DisImproveMove = DisImproveMove + 1; 

    end 

  

    %Determine if we are stagnating.  If we are, then start doing more 

    %Insert Moves (4 inserts to every one swap)  Otherwise, do all swap moves 

    if TrivialImproveMove + DisImproveMove >= 10 

      InsVsSwap = -4; 

    else 

      InsVsSwap = 0; 

    end 

  

  

    %Update the number of aircraft to make sure everything is in order 

    NumAcft = size (AvailAcft,1); 

  

    %Update statistics 

    TArray (iteration) = TrivialImproveMove; 

    DArray (iteration) = DisImproveMove; 

    ZArray (iteration) = Zbest; 

    text = sprintf ('%1s%.3f%1s','Best solution found so far has a cost of ', Zbest, ... 

      '.'); 

    disp (text) 

    disp ('') 

  

  end %while 

  

  %We are done with the tabu search 

  beep 

  %Now update all the solutions we are passing out of the function to make sure 

  %the centerline loaded portion match whether or not an item needs to be 

  %centerline loaded.  Occationally, this flag gets messed up even though the 

  %solution is valid 

  if XbestFeas (1,1,1,1) ~= 0 %if we found a feasible solution... 

    [XbestFeas] =FullUpdateXcurrent (XbestFeas,AvailAcftFeas,Cargo,Zones); 

  end 

  if size (XbestMargInfeas,1) > 1 %if we found a feasible solution... 

    [XbestMargInfeas] =FullUpdateXcurrent (XbestMargInfeas,AvailAcftMargInfeas,Cargo,Zones); 

  end 

  if size (XbestModInfeas,1) > 1 %if we found a feasible solution... 

    [XbestModInfeas] =FullUpdateXcurrent (XbestModInfeas,AvailAcftModInfeas,Cargo,Zones); 

  end 

  

  

  %Lastly, compile stats of the feasible solution 

  if XbestFeas (1,1,1,1) ~= 0 %if we found a feasible solution... 

    NumAcft = size (XbestFeas,1); 

    t = feastime; 

    tottime = cputime - starttime; 

    stats = zeros (NumAcft,11); 

    for acft = 1:NumAcft 

      [LeftCB,RightCB,CB,TargetCB,MinCB,MaxCB,CB_OK,LeftTotalWt,RightTotalWt] = ComputeCB... 
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        (acft,AvailAcftFeas,XbestFeas,Cargo,CBLookup); 

      [AcftUsageFee,UnderWeightFee,OverWeightFee,CBFee,CBTargetFee,... 

        ZoneFee,RampFee]=ComputeCost(AvailAcftFeas,XbestFeas,Cargo,CBLookup,... 

        Zones,PalletTable,Costs,acft); 

      TotWt = LeftTotalWt+RightTotalWt; 

      stats (acft,:) = [TotWt CB MinCB MaxCB TargetCB UnderWeightFee OverWeightFee CBFee ... 

        CBTargetFee ZoneFee RampFee]; 

    end 

    XCmatrix = ConvertXcurrent (XbestFeas); 

    %if we do not find a feasible solution, then indicate that and then still 

    %output the solution to the excel file to help determine why the solution is 

    %not feasible. This requires "tricking" the algorithm into thinking it found a 

    %feasible solution...thus it outputs a "feasible" solution which is not really 

    %feasible...be careful to make sure we don't interpret this as a feasible 

    %solution!!! 

  else 

    t = cputime - starttime; 

    disp ('Could not find a feasible solution'); 

    XbestFeas = Xbest; 

    NumAcft = size (XbestFeas,1); 

    AvailAcftFeas = AvailAcftBest; 

    stats = zeros (NumAcft,11); 

    for acft = 1:NumAcft 

      [LeftCB,RightCB,CB,TargetCB,MinCB,MaxCB,CB_OK,LeftTotalWt,RightTotalWt] = ComputeCB... 

        (acft,AvailAcftBest,Xbest,Cargo,CBLookup); 

      [AcftUsageFee,UnderWeightFee,OverWeightFee,CBFee,CBTargetFee,... 

        ZoneFee,RampFee]=ComputeCost(AvailAcftBest,Xbest,Cargo,CBLookup,... 

        Zones,PalletTable,Costs,acft); 

      TotWt = LeftTotalWt+RightTotalWt; 

      stats (acft,:) = [TotWt CB MinCB MaxCB TargetCB UnderWeightFee OverWeightFee CBFee ... 

        CBTargetFee ZoneFee RampFee]; 

    end 

    XCmatrix = ConvertXcurrent (Xbest); 

  end 

  

  %Plot objective function, trivial solutions and disimproving solutions 

  

  figure 

  plot (ZArray); 

  title ('Objective Function'); 

  

  figure 

  subplot (2,1,1); 

  plot (TArray); 

  axis ([0 iteration 0 MaxTrivial]); 

  title ('Trivial Solutions'); 

  

  subplot (2,1,2); 

  plot (DArray); 

  axis ([0 iteration 0 MaxDisImp]); 

  title ('DisImproving Solutions'); 
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  % write to the excel file ... this file has a macro which generates a picture 

  % of the solution 

  disp ('Writing to Excel File') 

  xlswrite('Solution Representation.xlsm', XCmatrix, 'Data', 'O2'); 

  xlswrite('Solution Representation.xlsm', AvailAcftFeas(:,1:13), 'Data', 'A2'); 

  xlswrite('Solution Representation.xlsm', Cargo, 'Data', 'U2'); 

  xlswrite('Solution Representation.xlsm', stats, 'Data', 'AO2'); 

  xlswrite('Solution Representation.xlsm', size (AvailAcftFeas,1), 'Data', 'AZ2'); 

  system ('Solution Representation.xlsm'); 

else %Assigns values to output vars if not enough acft to gen init soln 

  ZbestFeas = 0; 

  ZbestMargInfeas =0; 

  ZbestModInfeas = 0; 

  XbestFeas = Xcurrent; 

  XbestMargInfeas = 0; 

  XbestModInfeas = 0; 

  AvailAcftFeas = 0; 

  AvailAcftMargInfeas = 0; 

  AvailAcftModInfeas = 0; 

  t = cputime - starttime; 

  tottime = cputime-starttime; 

end %if success == 1 

 

 

 

 
function [Xcurrent] = FixLoad (Xcurrent,AcftIndex,AvailAcft,Cargo,... 
  CBLookup,Zones,PalletTable,ZoneMult,RampMult) 

  

%******************************************************************************* 
% Procedure: FixLoad 
% Author   : Maj R. Larry Nance 
% Purpose  :  Repack the load of an aircraft to try to make it feasible 
%              If there are zone violations present, remove all the rolling 
%              stock from each column.  Replace each item in their respecitve 
%              column in the same order as they were; however, start at the 
%              forward FS and place each item back in a feasible location with 
%              respect to the zones and all the other axle constraints.  Then, 
%              slide the cargo just enough to fix the CB.  Leave the pallets 
%              exactly where they are.  If the load cannot be fixed, then return 
%              the original Xcurrent 
% Inputs: 
%           Xcurrent       Current solution 
%           AcftIndex      Which aircraft are we trying to fix 
%           AvailAcft      a x 19 matrix which defines various aspects of the 
%                           aircraft availiable for loading (a = number of acft) 
%           Cargo:         A n x 20 matrix where n is the number of cargo items. 
%                           Columns are defined in the excel file "Pallet Testing" 
%           CBLookup       Lookup table for the CB given the weight an acft 
%           Zones          Table which defines zone limits and constraints 
%           PalletTable    Table which defines pallet locations and constraints 
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%           ZoneMult       Zone cost multiplier to determine if there are any zone 
%                           violations. 
%           RampMult       Ramp cost multiplier to determine if there are any 
%                           ramp violations 
% 
% Outputs:  Xcurrent       New solution that (hopefully) is feasible for 
%                          
% CalledBy: InterAcftInsertRedN 
% Calls   : AircraftStats, ComputeZoneCosts, ComputeRampCosts,SlideCBCenter 
%******************************************************************************* 
  
  
infeasLoad = 0; %assume the load we have is possible to put on acft 
%Gather some statistics on the load --These will not change regarldess of what 
%we do within this procedure 
[NumLeftRoll,NumLeftPallet,LPallets,NumRtRoll,NumRtPallet,RPallets] =... 
  AircraftStats (Xcurrent,AcftIndex,AvailAcft,Cargo,PalletTable); 
  
%Now see if there are any zone violations 
[ZCosts,notused1,notused2,notused3,notused4,notused5] = ComputeZoneCosts (AcftIndex,... 
  Xcurrent,Cargo,Zones,AvailAcft,PalletTable,ZoneMult); 
[RCosts]=ComputeRampCosts(AcftIndex,Xcurrent,AvailAcft,Cargo,... 
  NumLeftRoll,NumRtRoll,RampMult); 
  
  
%Are there any violations and is there any rolling stock? If there are, then fix the load 
if (ZCosts > 0 || RCosts > 0) && (NumLeftRoll > 0 || NumRtRoll > 0) 
  
  
  %Assume NOTHING is centerline loaded...this prevents Pallets loaded in 
  %previously centered locations from showing that they are centerline loaded 
  Xcurrent(AcftIndex,:,:,4) = 0; 
  
  %Initilaize variables 
  TotalRoll = NumLeftRoll + NumRtRoll; 
  AcftFSMin = AvailAcft(AcftIndex,3); 
  %Figure out where the last FS is on each side where we could load cargo 
  if NumLeftPallet > 0 
    if max (LPallets(:,3)) == 0 
      disp ('debug') 
    end 
    for i = 1:size(LPallets,1) 
      if LPallets(i,3) ~= 0 %if the pallet position is occupied 
        LeftAftFS = LPallets(i,1)-1; %One inch forward of most fwd left occupied pallet pos 
        break 
      end %if 
    end%for i = ... 
  else 
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    LeftAftFS = AvailAcft(AcftIndex,4); %FSMax 
  end 
  if NumRtPallet > 0 
    if max (RPallets(:,3)) == 0 
      disp ('debug') 
    end 
    found = 0; 
    for i = 1:size(RPallets,1) 
      if RPallets(i,3) ~= 0 %if the pallet position is occupied 
        RtAftFS = RPallets(i,1)-1; %One inch forward of most fwd left occupied pallet pos 
        found = 1; 
        break 
      end 
    end%for i = 1:size(RPallet,1) 
    if found == 0 
      disp ('debug') 
    end 
  else 
    RtAftFS = AvailAcft(AcftIndex,4); %FSMax 
  end 
  
  %Gather the axle info for the left side 
  for i = 1:NumLeftRoll 
    iNumAxles = Cargo(Xcurrent (AcftIndex,1,i,3),4); 
    if iNumAxles == 0 %If it is a tracked item 
      iNumAxles = 1; 
    end 
    %LeftItems (i,j) = [ItemNumber NumberOfAxles AxleLocation AxleWt] 
  
    for j = 1:iNumAxles 
      ItemNumber = Xcurrent (AcftIndex,1,i,3); 
      AxleLoc = Cargo(Xcurrent (AcftIndex,1,i,3),4); 
      AxleWt = Cargo(Xcurrent (AcftIndex,1,i,3),10+j); 
      if iNumAxles == 1 
        LeftItems (i,1,1) = ItemNumber; 
        LeftItems (i,1,2) = 1; 
        LeftItems (i,1,3) = Cargo(Xcurrent (AcftIndex,1,i,3),18); %CB of tracked vehicle 
        LeftItems (i,1,4) = Cargo(Xcurrent (AcftIndex,1,i,3),17); 
      else 
        LeftItems (i,j,1) = ItemNumber; 
        LeftItems (i,j,2) = iNumAxles; 
        LeftItems (i,j,3) = AxleLoc; 
        LeftItems (i,j,4) = AxleWt; 
      end %if iNumAxles == 1 
    end %for j = 1:iNumAxles 
  end %for i = 1:NumLeftRoll 
  
  %Gather the axle info for the right side 
  for i = 1:NumRtRoll 
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    iNumAxles = Cargo(Xcurrent (AcftIndex,2,i,3),4); 
    if iNumAxles == 0 %If it is a tracked item 
      iNumAxles = 1; 
    end 
    %LeftItems (i,j) = [ItemNumber NumberOfAxles AxleLocation AxleWt] 
  
    for j = 1:iNumAxles 
      ItemNumber = Xcurrent (AcftIndex,2,i,3); 
      AxleLoc = Cargo(Xcurrent (AcftIndex,2,i,3),4); 
      AxleWt = Cargo(Xcurrent (AcftIndex,2,i,3),10+j); 
      if iNumAxles == 1 
        RtItems (i,1,1) = ItemNumber; 
        RtItems (i,1,2) = 1; 
        RtItems (i,1,3) = Cargo(Xcurrent (AcftIndex,2,i,3),18); %CB of tracked vehicle 
        RtItems (i,1,4) = Cargo(Xcurrent (AcftIndex,2,i,3),17); 
      else 
        RtItems (i,j,1) = ItemNumber; 
        RtItems (i,j,2) = iNumAxles; 
        RtItems (i,j,3) = AxleLoc; 
        RtItems (i,j,4) = AxleWt; 
      end %if iNumAxles == 1 
    end %for j = 1:iNumAxles 
  end %for i = 1:NumRtRoll 
  
  %***************************************************************************** 
  
  %Now, reload Xcurrent 
  col = 1; %Start with left column 
  LoadedLeft = zeros (NumLeftRoll,4); 
  LoadedRt = zeros (NumRtRoll,4); 
  NumLoadedLeft = 0; 
  NumLoadedRt = 0; 
  FSArray = ([AcftFSMin AcftFSMin]); 
  NumRamps = AvailAcft(AcftIndex,14); 
  AftRampFS = AvailAcft(AcftIndex,15); %starting FS of aft ramp 
  if NumRamps == 2 
    FwdRampFS = AvailAcft(AcftIndex,18); 
  
  end 
  
  for i = 1:TotalRoll 
    %Which column are we loading into? 
    if col == 1 
      if NumLoadedLeft+1 <= NumLeftRoll %Load left if there is stuff left to load 
        InsertFS = FSArray (1); 
      else 
        col = 2; %nothing left to load in left side 
        InsertFS = FSArray (2); 
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      end 
    else %col == 2 
      if NumLoadedRt+1 <= NumRtRoll 
        InsertFS = FSArray (2); 
      else 
        col = 1; %nothing left to load in right side 
        InsertFS = FSArray (1); 
      end 
    end 
  
    %Now we know where the next insert point is and which column we are loading. 
    % Now we need to adjust InsertFS back such that we can feasibly load the 
    % item. 
  
  
  
    %Insert the item and then slide it aft to fix ramp, axle and zone violations 
    if col == 1 
      NumLoadedLeft = NumLoadedLeft + 1; 
      %Gather some information about the cargo item 
      %LeftItems (i,j) = [ItemNumber NumberOfAxles AxleLocation AxleWt] 
      CargoItem = LeftItems(NumLoadedLeft,1,1); 
      NumAxles = LeftItems(NumLoadedLeft,1,2); 
      AxleArray = zeros (NumAxles,4); 
      CargoWt = Cargo(CargoItem,17); 
      CargoWid = Cargo(CargoItem,2); 
      CargoLen = Cargo(CargoItem,1); 
      AcftType = AvailAcft(AcftIndex,1); 
      if Cargo(CargoItem,4) == 0 %tracked 
        tracked = 1; 
      else 
        tracked = 0; 
      end 
      NumZones = AvailAcft(AcftIndex,7); 
      %Load the Item at InsertFS 
      LoadedLeft(NumLoadedLeft,1) = InsertFS; 
      LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
      LoadedLeft(NumLoadedLeft,3) = CargoItem; 
      for k = 1:NumAxles 
        %AxleArray = [FS Weight InZone TooHeavy?] 
  
        if tracked == 1 
          AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
          AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
        else 
          AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
          AxleArray(k,2) = Cargo(CargoItem,k + 10); 
        end 
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        for j = 1:NumZones 
          %if the FS of the axle is in the kth zone 
          if AxleArray(k,1) >= Zones(AcftType,j,1,2) &&... 
              AxleArray(k,1) <= Zones(AcftType,j,1,3) 
            AxleArray(k,3) = j; 
            if AxleArray(k,2) > Zones(AcftType,j,1,4) 
              AxleArray(k,4) = 1; 
            else 
              AxleArray(k,4) = 0; 
            end 
            break 
          end 
  
        end %for j 
      end %for k 
  
  
  
      %********************************* 
      %Step 1:  Find Zone in which the axle 
      %weights and  will fit.  Needs to be as close to 
      %InsertFS as possible 
  
      %Are there any axles that are too heavy for their zones.  If YES, then find 
      %the nearest zone that will accomodate an axle of that weight 
      %Keep looping through this until all the axles are good 
      found = 1; 
      iteration = 1; 
      while found == 1 && iteration < 7 
        found = 0; 
        [x index] = find (AxleArray(:,4) == 1); 
        if ~isempty(x) %if there is an axle that has a zone violation 
          %If it finds more than one item that is overweight, pick the last one 
          if size (x,1) > 1 
            x = x(size(x,1)); 
          end 
          %Figure out nearest zone that can accomodate an axle of that weight 
          found = 1; 
          InZone = AxleArray(x,3); 
          Diff = inf; %want to pick closest zone to curent zone 
          WantZone = 0; 
          for zonecount = InZone:NumZones 
  
            if AxleArray(x,2) < Zones(AcftType,zonecount,1,4) &&... 
                abs(zonecount-InZone) < Diff 
              Diff = abs(zonecount-InZone); 
              WantZone = zonecount; 
            end 
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          end %for 
          if WantZone ~= 0 %if there is a zone I can slide this to... 
  
            ZoneFS = Zones(AcftType,WantZone,1,2); 
            delta = ZoneFS - AxleArray(x,1); 
          else 
            delta = -1; %force the program to indicate infeasible load 
          end 
          %Now slide the cargo and axles aft by Diff 
          if delta > 0 %can only go to a farther aft zone. 
            InsertFS = InsertFS + delta+1; 
            LoadedLeft(NumLoadedLeft,1) = InsertFS; 
            LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
            for s = 1:NumAxles 
              %AxleArray = [FS Weight InZone TooHeavy?] 
              if tracked == 1 
                AxleArray(s,2) = 0; %don't count the axle wt for the item of tracked vehicle 
                AxleArray(s,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
              else 
                AxleArray(s,1) = InsertFS + Cargo(CargoItem,s+ 4); 
                AxleArray(s,2) = Cargo(CargoItem,s + 10); 
              end 
              for p = 1:NumZones 
                %if the FS of the axle is in the kth zone 
                if AxleArray(s,1) >= Zones(AcftType,p,1,2) &&... 
                    AxleArray(s,1) <= Zones(AcftType,p,1,3) 
                  AxleArray(s,3) = p; 
                  if AxleArray(s,2) > Zones(AcftType,p,1,4) 
                    AxleArray(s,4) = 1; 
                  else 
                    AxleArray(s,4) = 0; 
                  end 
                  break 
                end 
                %check to see if it is too heavy 
  
              end %for p 
            end %for s 
          else 
            found = 0; %force exit the while loop b/c can't load this load 
            infeasLoad = 1; 
          end 
        end %if ~isempty 
        iteration = iteration + 1; 
      end%while 
  
      if infeasLoad == 1 
        break 
      end 
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      %Now, all the axles on the cargo item should be in zones that can support 
      %them 
  
      %*************************************************************************** 
      %Step 2: 
  
      %Now check to see if we are on the forward ramp 
      if NumRamps  == 2 && InsertFS < FwdRampFS %if any part of item hangs over ramp 
        %Rules:  1) Tracked items cannot span across the ramp 
        %        2) Items must have one wheel on the ramp and one off the ramp if 
        %        they span the ramp 
        %        3) Items cannot overhang ramp if their wheels are not on it. 
  
        %Rule 1)  Tracked 
        if (tracked == 1) && (InsertFS + CargoLen > FwdRampFS) %if tracked and spans ramp 
          %then move the item aft off of the ramp 
          delta = FwdRampFS - InsertFS; %pos # 
          InsertFS = InsertFS + delta; 
          LoadedLeft(NumLoadedLeft,1) = InsertFS ; 
          LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
          for k = 1:NumAxles 
            %NOTE: AxleArray = [FS Weight] 
            if tracked == 1 
              AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
            else 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
              AxleArray(k,2) = Cargo(CargoItem,k + 10); 
            end 
          end %for k 
  
        end %if tracked == 1 
  
  
        %Rule 2)  If Items span the ramp, they must have an axle on the front ramp 
        %and one on the aft 
        if InsertFS+12 < FwdRampFS && InsertFS + CargoLen > FwdRampFS 
          FrontAxleFS = AxleArray(1,1); 
          AftAxleFS = AxleArray(NumAxles,1); 
          if FrontAxleFS > FwdRampFS || AftAxleFS < FwdRampFS %if violation 
            %shift aft by the distance from the Fwd Ramp front of the item 
            delta = FwdRampFS-(InsertFS+12); %pos # 
            InsertFS = InsertFS + delta; 
            LoadedLeft(NumLoadedLeft,1) = InsertFS ; 
            LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
            for k = 1:NumAxles 
              %NOTE: AxleArray = [FS Weight] 
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              if tracked == 1 
                AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
                AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
              else 
                AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
                AxleArray(k,2) = Cargo(CargoItem,k + 10); 
              end 
            end %for k 
          end %if FrontAxleFS > ... 
        end %if InsertFS < FwdRampFS 
  
        %Rule 3)  Items cannot overhang ramp if their wheels are not the ramp 
        if InsertFS +13  < FwdRampFS && AxleArray(1,1) > FwdRampFS 
          delta = FwdRampFS - (InsertFS+12); 
          InsertFS = InsertFS + delta; 
          LoadedLeft(NumLoadedLeft,1) = InsertFS ; 
          LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
          for k = 1:NumAxles 
            %NOTE: AxleArray = [FS Weight] 
            if tracked == 1 
              AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
            else 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
              AxleArray(k,2) = Cargo(CargoItem,k + 10); 
            end 
          end %for k 
        end %if InsertFS + 12 
      end %if NumRamps == 2 
      %if we have exceeded the aft of the cargo compartment then quit 
      if LoadedLeft (NumLoadedLeft,2) > LeftAftFS 
        infeasLoad = 1; 
        break 
      end 
      %Now update the zones the Axles are in 
      for s = 1:NumAxles 
        for p = 1:NumZones 
          %if the FS of the axle is in the kth zone 
          if AxleArray(s,1) >= Zones(AcftType,p,1,2) &&... 
              AxleArray(s,1) <= Zones(AcftType,p,1,3) 
            AxleArray(s,3) = p; 
            break 
          end 
        end %for p 
      end %for s 
  
      %************************************************************************* 
      %Now check to see if the item needs to be centerline loaded based on its 
      %weight and width 
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      for index = 1:NumAxles 
        InZone = AxleArray(index,3);  %Gather which zone we are looking at 
        if CargoWt > Zones(AcftType,InZone,1,10) ||... %if should be centerline loaded (weight) 
            CargoWid > AvailAcft(AcftIndex,5) %if it should be centerline loaded (width) 
          %The item needs to be centerline loaded, so shift the opposite column's 
          %FS pointer to the end of this cargo item 
          %We need to make sure not to centerline load any cargo AFT of a 
          %pallet.  So, if there is a pallet on the right side, we need to make 
          %sure we don't try to centerline load aft of that pallet position 
          %(Denoted by RtAftFS 
  
          Center = 1; 
          if FSArray(2) > InsertFS %need to be past the last right item 
            InsertFS = FSArray(2); 
          end 
          if InsertFS + CargoLen < RtAftFS 
            LoadedLeft(NumLoadedLeft,1) = InsertFS ; 
            LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
  
            for k = 1:NumAxles 
              %NOTE: AxleArray = [FS Weight] 
              if tracked == 1 
                AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
                AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
              else 
                AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
                AxleArray(k,2) = Cargo(CargoItem,k + 10); 
              end 
            end %for k 
            break %Found the item...so quit 
          else 
            infeasLoad = 1;  %trying to insert a centered item aft of rt side pallets 
          end %if InsertFS... 
        else 
          Center = 0; 
        end%if 
      end %for index 
      if infeasLoad == 1 
        break %quit if the load is infeasible 
      end 
      if Center == 1 
        FSArray(2) = LoadedLeft(NumLoadedLeft,2) + 1; %Right side index incremented 
        LoadedLeft(NumLoadedLeft,4) = 1; %Indicate Centered 
      end 
  
      %************************************************************************** 
      %Now check for axles that are too heavy next to each other only if item is 
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      %not centerline loaded 
      if Center == 0 && tracked == 0 
        FSFwd = LoadedLeft(NumLoadedLeft,1); 
        FSAft = LoadedLeft(NumLoadedLeft,2); 
  
        %Determine SubZones for each of the Axles in the Left Side 
        for k = 1:NumAxles 
          InZone = AxleArray(k,3); 
  
          for subzone = 1:Zones(AcftType,InZone,1) %# of possible subzones 
            weight = AxleArray(k,2); 
  
            if weight >= Zones(AcftType,InZone,subzone,5) &&... 
                weight <= Zones(AcftType,InZone,subzone,6) %if its weight is in the subzone 
              SubZone(k) = subzone; 
              break 
            end 
          end %for subzone 
        end %for k 
  
        %Now, need to look through each item in the right side to see if it 
        %overlaps the left column item we are inserting 
        for rtcol = 1:NumLoadedRt 
          if Cargo(LoadedRt(rtcol,3),4) == 0 
            RtTracked =1; 
          else 
            RtTracked = 0; 
          end 
          if RtTracked == 0 
            RightFSFwd = LoadedRt(rtcol,1); 
            RightFSAft = LoadedRt(rtcol,2); 
  
            %If the item being inserted is next to an item in the right column... 
            if RightFSFwd >= FSFwd && RightFSFwd <= FSAft || ... 
                RightFSAft >= FSFwd && RightFSFwd <= FSAft || ... 
                RightFSFwd >= FSAft && RightFSFwd <= FSAft || ... 
                RightFSAft >= FSAft && RightFSFwd <= FSAft 
              %Need to check all the axles of the right item 
              NumRtAxles = Cargo(LoadedRt(rtcol,3),4); 
  
              for rtAxles = 1:NumRtAxles 
                for leftAxles = 1:NumAxles 
                  leftFS = InsertFS + Cargo(CargoItem,leftAxles + 4); 
                  leftWt = Cargo(CargoItem,leftAxles + 10); 
                  rtFS = RightFSFwd + Cargo(LoadedRt(rtcol,3),rtAxles+4); 
                  rtWt = Cargo(LoadedRt(rtcol,3),rtAxles+10); 
                  InZone = AxleArray(leftAxles,3); 
                  InSubZone = SubZone (leftAxles); 
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                  ReqSep = Zones(AcftType,InZone,1,9); 
                  if abs(leftFS - rtFS) <= ReqSep  %if they are close to one another 
  
                    Slope = Zones(AcftType,InZone,InSubZone,7); 
                    Intercept =Zones(AcftType,InZone,InSubZone,8); 
                    MaxRtWt = leftWt * Slope + Intercept; 
                    if MaxRtWt < rtWt %if they are too heavy then slide the left item down 
                      delta = ReqSep +1 - abs(leftFS - rtFS); 
                      InsertFS = InsertFS + delta; 
                      LoadedLeft(NumLoadedLeft,1) = InsertFS ; 
                      LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
                      for k = 1:NumAxles 
                        %NOTE: AxleArray = [FS Weight] 
                        if tracked == 1 
                          AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
                          AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
                        else 
                          AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
                          AxleArray(k,2) = Cargo(CargoItem,k + 10); 
                        end 
                      end %for k 
                    end %MaxRtWt > rtWt 
                  end %  if abs(leftFS - rtFS) <= ReqSe 
  
  
  
                end %for leftAxles = 1:NumAxles 
  
              end %rtAxles = 1:NumRtAxles 
            end %RightFSFwd >= FSFwd && RightFSFwd <= FSAft || ... 
          end %if RtTracked = 0 
  
        end %for rtcol = ... 
        %Update LoadedLeft/Right and Axles only if InsertFS changed 
  
  
  
  
      end %if Center == 0 && Tracked == 0 
  
      %******************************************************************************* 
      %Lastly, need to make sure the aft ramp is configured correclty 
      %Rules:  1) Tracked items cannot span across the ramp 
      %        2) Items must have one wheel on the ramp and one off the ramp if 
      %        they span the ramp 
      %        3) Items cannot overhang ramp if their wheels are not on it. 
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      %Rule 1)  Tracked 
      if (tracked == 1) && (InsertFS + CargoLen > AftRampFS) && ... 
          (InsertFS < AftRampFS) %if tracked and spans ramp 
        %then move the item aft off of the ramp 
        delta = AftRampFS - InsertFS; %pos # 
        InsertFS = InsertFS + delta; 
        LoadedLeft(NumLoadedLeft,1) = InsertFS ; 
        LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
        for k = 1:NumAxles 
          %NOTE: AxleArray = [FS Weight] 
          if tracked == 1 
            AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
            AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
          else 
            AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
            AxleArray(k,2) = Cargo(CargoItem,k + 10); 
          end 
        end %for k 
        InsertFS = InsertFS + delta; 
      end %if tracked == 1 
  
  
      %Rule 2)  If Items span the ramp, they must have an axle on the aft ramp 
      %and one on the aft 
      if InsertFS < AftRampFS && InsertFS + CargoLen > AftRampFS 
        FrontAxleFS = AxleArray(1,1); 
        AftAxleFS = AxleArray(NumAxles,1); 
        if FrontAxleFS > AftRampFS || AftAxleFS < AftRampFS %if violation 
          %shift aft by the distance from the Fwd Ramp to the Aft Axle 
          if AftAxleFS < AftRampFS 
            delta = AftRampFS - AftAxleFS+1; %pos # 
          else 
            delta = AftRampFS - InsertFS; 
          end 
          if delta < 0 
            disp ('debug') 
          end 
          InsertFS = InsertFS + delta; 
          LoadedLeft(NumLoadedLeft,1) = InsertFS ; 
          LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
          for k = 1:NumAxles 
            %NOTE: AxleArray = [FS Weight] 
            if tracked == 1 
              AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
            else 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
              AxleArray(k,2) = Cargo(CargoItem,k + 10); 
            end 
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          end %for k 
        end %if FrontAxleFS > ... 
      end %if InsertFS < FwdRampFS 
  
      %Rule 3)  Items cannot overhang ramp if their wheels are not the ramp 
      if LoadedLeft(NumLoadedLeft,2) - 12  > AftRampFS && AxleArray(NumAxles,1) < AftRampFS 
        delta = AftRampFS - (LoadedLeft(NumLoadedLeft,2) - 12); 
        InsertFS = InsertFS + delta; 
        LoadedLeft(NumLoadedLeft,1) = InsertFS ; 
        LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen; 
        for k = 1:NumAxles 
          %NOTE: AxleArray = [FS Weight] 
          AxleArray(k,1) = InsertFS + Cargo(CargoItem,4+k); 
          if tracked == 1 
            AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
          else 
            AxleArray(k,2) = Cargo(CargoItem,k + 10); 
          end 
        end %for k 
      end %if InsertFS + 12 
  
      %UPDATE Xcurrent 
      FSArray(1) = LoadedLeft(NumLoadedLeft,2) + 1; 
      if FSArray(1) > LeftAftFS 
        infeasLoad = 1; 
        break; 
      end 
      col = 2; %switch to the other column 
      %******************************************************************************* 
      %*******LOADING ON RIGHT %SIDE************************************************** 
      %******************************************************************************* 
  
    else %col == 2 
      %Insert the item and then slide it aft to fix ramp, axle and zone violations 
      NumLoadedRt = NumLoadedRt + 1; 
      %Gather some information about the cargo item 
      %LeftItems (i,j) = [ItemNumber NumberOfAxles AxleLocation AxleWt] 
      CargoItem = RtItems(NumLoadedRt,1,1); 
      NumAxles = RtItems(NumLoadedRt,1,2); 
      AxleArray = zeros (NumAxles,4); 
      CargoWt = Cargo(CargoItem,17); 
      CargoWid = Cargo(CargoItem,2); 
      CargoLen = Cargo(CargoItem,1); 
      AcftType = AvailAcft(AcftIndex,1); 
      if Cargo(CargoItem,4) == 0 %tracked 
        tracked = 1; 
      else 
        tracked = 0; 
      end 
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      NumZones = AvailAcft(AcftIndex,7); 
      %Load the Item at InsertFS 
      LoadedRt(NumLoadedRt,1) = InsertFS; 
      LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
      LoadedRt(NumLoadedRt,3) = CargoItem; 
      for k = 1:NumAxles 
        %AxleArray = [FS Weight InZone TooHeavy?] 
  
        if tracked == 1 
          AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
          AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
        else 
          AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
          AxleArray(k,2) = Cargo(CargoItem,k + 10); 
        end 
        for j = 1:NumZones 
          %if the FS of the axle is in the kth zone 
          if AxleArray(k,1) >= Zones(AcftType,j,1,2) &&... 
              AxleArray(k,1) <= Zones(AcftType,j,1,3) 
            AxleArray(k,3) = j; 
            if AxleArray(k,2) > Zones(AcftType,j,1,4) 
              AxleArray(k,4) = 1; 
            else 
              AxleArray(k,4) = 0; 
            end 
            break 
          end 
  
        end %for j 
      end %for k 
  
  
  
      %********************************* 
      %Step 1:  Find Zone in which the axle 
      %weights and  will fit.  Needs to be as close to 
      %InsertFS as possible 
  
      %Are there any axles that are too heavy for their zones.  If YES, then find 
      %the nearest zone that will accomodate an axle of that weight 
      %Keep looping through this until all the axles are good 
      found = 1; 
      iteration = 1; 
      while found == 1 && iteration < 10 
        found = 0; 
        [x index] = find (AxleArray(:,4) == 1); 
        if ~isempty(x) %if there is an axle that has a zone violation 
          %Figure out nearest zone that can accomodate an axle of that weight 
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          found = 1; 
          %If it finds more than one item that is overweight, pick the last one 
          if size (x,1) > 1 
            x = x(size(x,1)); 
          end 
          inZone = AxleArray(x,3); 
          Diff = inf; %want to pick closest zone to curent zone 
          WantZone = 0; 
          for zonecount = inZone:NumZones 
  
            if AxleArray(x,2) < Zones(AcftType,zonecount,1,4) &&... 
                abs(zonecount-inZone) < Diff 
              Diff = abs(zonecount-inZone); 
              WantZone = zonecount; 
            end 
          end %for 
          if WantZone ~= 0 %if there is a zone I can slide this to... 
  
            ZoneFS = Zones(AcftType,WantZone,1,2); 
            delta = ZoneFS - AxleArray(x,1); 
          else 
            delta = -1; %force the program to indicate infeasible load 
          end 
          %Now slide the cargo and axles aft by Diff 
          if delta > 0 
            InsertFS = InsertFS + delta+1; 
            LoadedRt(NumLoadedRt,1) = InsertFS; 
            LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
            for s = 1:NumAxles 
              %AxleArray = [FS Weight InZone TooHeavy?] 
              if tracked == 1 
                AxleArray(s,2) = 0; %don't count the axle wt for the item of tracked vehicle 
                AxleArray(s,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
              else 
                AxleArray(s,1) = InsertFS + Cargo(CargoItem,s+ 4); 
                AxleArray(s,2) = Cargo(CargoItem,s + 10); 
              end 
              for p = 1:NumZones 
                %if the FS of the axle is in the kth zone 
                if AxleArray(s,1) >= Zones(AcftType,p,1,2) &&... 
                    AxleArray(s,1) <= Zones(AcftType,p,1,3) 
                  AxleArray(s,3) = p; 
                  if AxleArray(s,2) > Zones(AcftType,p,1,4) 
                    AxleArray(s,4) = 1; 
                  else 
                    AxleArray(s,4) = 0; 
                  end 
                  break 
                end 
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                %check to see if it is too heavy 
  
              end %for p 
            end %for s 
          else %delta < 0, so we have hit an infeasible load 
            infeasLoad = 1; 
            found = 0; %force the loop to exit 
          end %if delta > 0 
        end %if ~isempty 
        iteration = iteration + 1; 
      end%while 
      if iteration == 10 
        disp ('debug') 
      end 
      if infeasLoad == 1 
        break %stop trying to load the acft 
      end 
  
  
  
  
      %Now, all the axles on the cargo item should be in zones that can support 
      %them 
  
      %*************************************************************************** 
      %Step 2: 
  
      %Now check to see if we are on the forward ramp 
      if NumRamps  == 2 && InsertFS < FwdRampFS %if any part of item hangs over ramp 
        %Rules:  1) Tracked items cannot span across the ramp 
        %        2) Items must have one wheel on the ramp and one off the ramp if 
        %        they span the ramp 
        %        3) Items cannot overhang ramp if their wheels are not on it. 
  
        %Rule 1)  Tracked 
        if (tracked == 1) && (InsertFS + CargoLen > FwdRampFS) %if tracked and spans ramp 
          %then move the item aft off of the ramp 
          delta = FwdRampFS - InsertFS; %pos # 
          InsertFS = InsertFS + delta; 
          LoadedRt(NumLoadedRt,1) = InsertFS ; 
          LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
          for k = 1:NumAxles 
            %NOTE: AxleArray = [FS Weight] 
            if tracked == 1 
              AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
            else 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
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              AxleArray(k,2) = Cargo(CargoItem,k + 10); 
            end 
          end %for k 
  
        end %if tracked == 1 
  
  
        %Rule 2)  If Items span the ramp, they must have an axle on the front ramp 
        %and one on the aft 
        if InsertFS+12 < FwdRampFS && InsertFS + CargoLen > FwdRampFS 
          FrontAxleFS = AxleArray(1,1); 
          AftAxleFS = AxleArray(NumAxles,1); 
          if FrontAxleFS > FwdRampFS || AftAxleFS < FwdRampFS %if violation 
            %shift aft by the distance from the Front of vechicle to the Ramp 
            delta = FwdRampFS - (InsertFS +13); %pos # 
            InsertFS = InsertFS + delta; 
            LoadedRt(NumLoadedRt,1) = InsertFS ; 
            LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
            for k = 1:NumAxles 
              %NOTE: AxleArray = [FS Weight] 
  
              if tracked == 1 
                AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
                AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
              else 
                AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
                AxleArray(k,2) = Cargo(CargoItem,k + 10); 
              end 
            end %for k 
          end %if FrontAxleFS > ... 
        end %if InsertFS < FwdRampFS 
  
        %Rule 3)  Items cannot overhang ramp if their wheels are not the ramp 
        if InsertFS +13  < FwdRampFS && AxleArray(1,1) > FwdRampFS 
          delta = FwdRampFS - (InsertFS+13); 
          InsertFS = InsertFS + delta; 
          LoadedRt(NumLoadedRt,1) = InsertFS ; 
          LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
          for k = 1:NumAxles 
            %NOTE: AxleArray = [FS Weight] 
            if tracked == 1 
              AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
            else 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
              AxleArray(k,2) = Cargo(CargoItem,k + 10); 
            end 
          end %for k 
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        end %if InsertFS + 12 
      end %if NumRamps == 2 
  
      %if we have exceeded the aft of the cargo compartment then quit 
      if LoadedRt (NumLoadedRt,2) > RtAftFS 
        infeasLoad = 1; 
        break 
      end 
      %Now update the zones the Axles are in 
      for s = 1:NumAxles 
        for p = 1:NumZones 
          %if the FS of the axle is in the kth zone 
          if AxleArray(s,1) >= Zones(AcftType,p,1,2) &&... 
              AxleArray(s,1) <= Zones(AcftType,p,1,3) 
            AxleArray(s,3) = p; 
            break 
          end 
        end %for p 
      end %for s 
  
      %************************************************************************* 
      %Now check to see if the item needs to be centerline loaded based on its 
      %weight and width 
      for index = 1:NumAxles %If the axle has no zone, it is off end of cargo compartment 
  
        InZone = AxleArray(index,3);  %Gather which zone we are looking at 
        if CargoWt > Zones(AcftType,InZone,1,10) ||... %if should be centerline loaded (weight) 
            CargoWid > AvailAcft(AcftIndex,5) %if it should be centerline loaded (width) 
          %The item needs to be centerline loaded, so shift the opposite column's 
          %FS pointer to the end of this cargo item 
          Center = 1; 
          if FSArray(1) > InsertFS %need to be past the last right item 
            InsertFS = FSArray(1) ; 
          end 
          if InsertFS +CargoLen < LeftAftFS %if no blocking pallets on left side 
            LoadedRt(NumLoadedRt,1) = InsertFS ; 
            LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
  
            for k = 1:NumAxles 
              %NOTE: AxleArray = [FS Weight InZone TooHeavy?] 
              if tracked == 1 
                AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
                AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
                for p = 1:NumZones 
                  %if the FS of the axle is in the kth zone 
                  if AxleArray(k,1) >= Zones(AcftType,p,1,2) &&... 
                      AxleArray(k,1) <= Zones(AcftType,p,1,3) 
                    AxleArray(k,3) = p; 
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                    break 
                  end 
                end %for p 
              else 
                AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
                AxleArray(k,2) = Cargo(CargoItem,k + 10); 
                for p = 1:NumZones 
                  %if the FS of the axle is in the kth zone 
                  if AxleArray(k,1) >= Zones(AcftType,p,1,2) &&... 
                      AxleArray(k,1) <= Zones(AcftType,p,1,3) 
                    AxleArray(k,3) = p; 
                    break 
                  end %if AxleArray(k,1)... 
                end %for p 
              end %if tracked ==1 
            end %for k 
  
  
            break 
          else %there is a pallet blocking the insert 
            infeasLoad = 1; 
          end%if InsertFS +CargoLen < LeftAftFS 
  
        else 
          Center = 0; 
        end%if 
      end %for index 
      if Center == 1 
        FSArray(1) = LoadedRt(NumLoadedRt,2) + 1; %Left side index incremented 
        LoadedRt(NumLoadedRt,4) = 1; %Indicate Centered 
        %It is possible that this may return a "centered" item which is not 
        %really centered because there are pallets in the way.  This should not 
        %be a problem because the solution will have a high zone cost and won't 
        %be used as the best solution... 
      end 
      if infeasLoad == 1 
        break 
      end 
  
      %************************************************************************** 
      %Now check for axles that are too heavy next to each other only if item is 
      %not centerline loaded 
      if Center == 0 && tracked == 0 
        FSFwd = LoadedRt(NumLoadedRt,1); 
        FSAft = LoadedRt(NumLoadedRt,2); 
  
        %Determine SubZones for each of the Axles in the LRighteft Side 
        for k = 1:NumAxles 
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          InZone = AxleArray(k,3); 
          if InZone == 0 
            disp ('debug') 
          end 
          for subzone = 1:Zones(AcftType,InZone,1) %# of possible subzones 
            weight = AxleArray(k,2); 
  
            if weight >= Zones(AcftType,InZone,subzone,5) &&... 
                weight <= Zones(AcftType,InZone,subzone,6) %if its weight is in the subzone 
              SubZone(k) = subzone; 
              break 
            end 
          end %for subzone 
        end %for k 
  
        %Now, need to look through each item in the right side to see if it 
        %overlaps the left column item we are inserting 
        for leftcol = 1:NumLoadedLeft 
          if Cargo(LoadedLeft(leftcol,3),4) == 0 
            LeftTracked =1; 
          else 
            LeftTracked = 0; 
          end 
          if LeftTracked == 0 
            LeftFSFwd = LoadedLeft(leftcol,1); 
            LeftFSAft = LoadedLeft(leftcol,2); 
  
            %If the item being inserted is next to an item in the right column... 
            if LeftFSFwd >= FSFwd && LeftFSFwd <= FSAft || ... 
                LeftFSAft >= FSFwd && LeftFSFwd <= FSAft || ... 
                LeftFSFwd >= FSAft && LeftFSFwd <= FSAft || ... 
                LeftFSAft >= FSAft && LeftFSFwd <= FSAft 
              %Need to check all the axles of the left item 
              NumLeftAxles = Cargo(LoadedLeft(leftcol,3),4); 
  
              for leftAxles = 1:NumLeftAxles 
                for rtAxles = 1:NumAxles 
  
                  leftFS = InsertFS + Cargo(LoadedLeft(leftcol,3),leftAxles + 4); 
                  leftWt = Cargo(LoadedLeft(leftcol,3),leftAxles + 10); 
                  rtFS = InsertFS + Cargo(CargoItem,rtAxles+4); 
                  rtWt = Cargo(CargoItem,rtAxles+10); 
                  InZone = AxleArray(rtAxles,3); 
                  if InZone == 0 
                    disp ('debug') 
                  end 
                  InSubZone = SubZone (rtAxles); 
                  if InSubZone == 0 
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                    disp ('debug') 
                  end 
                  ReqSep = Zones(AcftType,InZone,1,9); 
                  if abs(leftFS - rtFS) <= ReqSep  %if they are close to one another 
  
                    Slope = Zones(AcftType,InZone,InSubZone,7); 
                    Intercept =Zones(AcftType,InZone,InSubZone,8); 
                    MaxLeftWt = rtWt * Slope + Intercept; 
                    if MaxLeftWt < leftWt %if they are too heavy then slide the left item down 
                      delta = ReqSep + 1 - abs(leftFS - rtFS); 
                      InsertFS = InsertFS + delta; 
                      %Update LoadedLeft/Right and Axles 
                      LoadedRt(NumLoadedRt,1) = InsertFS ; 
                      LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
                      for k = 1:NumAxles 
                        %NOTE: AxleArray = [FS Weight] 
                        if tracked == 1 
                          AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
                          AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
                        else 
                          AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
                          AxleArray(k,2) = Cargo(CargoItem,k + 10); 
                        end 
                      end %for k 
                    end %MaxRtWt > rtWt 
                  end %  if abs(leftFS - rtFS) <= ReqSe 
  
  
  
                end %for leftAxles = 1:NumAxles 
  
              end %rtAxles = 1:NumRtAxles 
            end %RightFSFwd >= FSFwd && RightFSFwd <= FSAft || ... 
          end %if RtTracked = 0 
  
        end %for rtcol = ... 
  
      end %if Center == 0 && Tracked == 0 
  
      %******************************************************************************* 
      %Lastly, need to make sure the aft ramp is configured correclty 
      %Rules:  1) Tracked items cannot span across the ramp 
      %        2) Items must have one wheel on the ramp and one off the ramp if 
      %        they span the ramp 
      %        3) Items cannot overhang ramp if their wheels are not on it. 
  
      %Rule 1)  Tracked 
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      if (tracked == 1) && (InsertFS + CargoLen > AftRampFS) && ... 
          (InsertFS < AftRampFS) %if tracked and spans ramp 
        %then move the item aft onto the ramp of the ramp 
        delta = AftRampFS - InsertFS; %pos # 
        InsertFS = InsertFS + delta; 
        LoadedRt(NumLoadedRt,1) = InsertFS ; 
        LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
        for k = 1:NumAxles 
          %NOTE: AxleArray = [FS Weight] 
          if tracked == 1 
            AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
            AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
          else 
            AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
            AxleArray(k,2) = Cargo(CargoItem,k + 10); 
          end 
        end %for k 
        InsertFS = InsertFS + delta; 
      end %if tracked == 1 
  
  
      %Rule 2)  If Items span the ramp, they must have an axle on the aft ramp 
      %and one on the aft 
      if InsertFS < AftRampFS && InsertFS + CargoLen > AftRampFS 
        FrontAxleFS = AxleArray(1,1); 
        AftAxleFS = AxleArray(NumAxles,1); 
        if FrontAxleFS > AftRampFS || AftAxleFS < AftRampFS %if violation 
          %shift aft by the distance from the Fwd Ramp to front of the item 
          %(Only option is to slide forward) 
          if AftAxleFS < AftRampFS 
            delta = AftRampFS - AftAxleFS+1; %pos # 
          else 
            delta = AftRampFS - InsertFS+1; 
          end 
          if delta < 0 
            disp ('debug') 
          end 
          InsertFS = InsertFS + delta; 
          LoadedRt(NumLoadedRt,1) = InsertFS ; 
          LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
          for k = 1:NumAxles 
            %NOTE: AxleArray = [FS Weight] 
            if tracked == 1 
              AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
            else 
              AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
              AxleArray(k,2) = Cargo(CargoItem,k + 10); 
            end 
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          end %for k 
        end %if FrontAxleFS > ... 
      end %if InsertFS < FwdRampFS 
  
      %Rule 3)  Items cannot overhang ramp if their wheels are not the ramp 
      if LoadedRt(NumLoadedRt,2) - 12  > AftRampFS && AxleArray(NumAxles,1) < AftRampFS 
        delta = AftRampFS - (LoadedRt(NumLoadedRt,2) - 12); 
        InsertFS = InsertFS + delta; 
        LoadedRt(NumLoadedRt,1) = InsertFS ; 
        LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen; 
        for k = 1:NumAxles 
          %NOTE: AxleArray = [FS Weight] 
          if tracked == 1 
            AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle 
            AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item 
          else 
            AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4); 
            AxleArray(k,2) = Cargo(CargoItem,k + 10); 
          end 
        end %for k 
      end %if InsertFS + 12 
  
      %Update Array 
      FSArray(2) = LoadedRt(NumLoadedRt,2) + 1; 
      if LoadedRt(NumLoadedRt,2)  > RtAftFS 
        infeasLoad = 1; 
        break; 
      end 
  
      col = 1; %Switch to the other column 
    end %if col == 1 
  
  end %for i = 1:TotalRoll 
  
  %Now check to see if we would have overlapped any pallets or the aft of the 
  %acft.  If we did, then just return Xcurrent 
  
  if NumLoadedLeft > 0 && infeasLoad == 0 
    if LoadedLeft(NumLoadedLeft,2) <= LeftAftFS 
      Xcurrent (AcftIndex,1,1:NumLoadedLeft,1:4) = LoadedLeft(1:NumLoadedLeft,1:4); 
    end 
  end 
  if NumLoadedRt > 0 && infeasLoad == 0 
    if  LoadedRt(NumLoadedRt,2) <= RtAftFS 
      Xcurrent (AcftIndex,2,1:NumLoadedRt,1:4) = LoadedRt(1:NumLoadedRt,1:4); 
    end 
  end 
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  %Slide the CB to get things into CB limits if possible 
  [Xcurrent,InCB] = SlideCBCenter (0,Xcurrent,AcftIndex,... 
    AvailAcft,Cargo,CBLookup,NumLeftRoll,NumLeftPallet,LPallets,... 
    NumRtRoll,NumRtPallet,RPallets,PalletTable); 
  
  %Otherwise, we just return the original Xcurrent 
  
  
   
end %CenterItems ~= [inf inf inf inf inf inf] && ... 
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Appendix D: Solution Representation 

 

 After completing the search, MPALPTS exports the cargo, available aircraft and 

current solution to a specific Excel File.  This file has Visual Basic code which takes this 

data and builds a visual representation of the solution for each aircraft.  The aircraft 

representation includes the exact location of each item within the cargo compartment as 

well as its width and weight.  It also illustrates whether or not an item was centerline 

loaded.   Grey lines in the cargo compartment display where any ramps meet the cargo 

floor.  The tables below the figure display the acceptable and actual CB and ACL 

statistics as well as each item’s axle weights and axle locations.  This allows the user 

visually see how MPALPTS loaded the aircraft and to easily verify the load’s feasibility.  

The visual representation depicted on the next page is the first C-5 from the M75 mixed 

test case. 
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Appendix E: Specific Results 

The following tables illustrate the specific results for each of the original six test 

cases.  They show the number of cargo items placed on each aircraft and the aircraft’s 

percentage of ACL and space used.  It is interesting to note that scenarios with only C-17 

aircraft tended to be limited by space while the C-5 and C-5/C-17 mixed problems tended 

to be limited by ACL.  From the results, it appears AALPS does a very good job utilizing 

an aircraft’s available space; however, MPALPTS dominates in finding solutions which 

are more limited by weight. 

 

Table 14.  P75 Mixed Results  

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 18 100 56 C-5 29 99.1 73.5 

C-17 15 100 82 C-17 17 100.0 90.6 

C-5 36 88 100 C-5 29 92.2 73.5 

C-17 6 6 34 -- -- -- -- 

Totals/Avgs 75 73.5 68 Totals/Avgs 75 97.1 79.2 

 

Table 15.  P75 C-5 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 18 100 51 C-5 27 98.7 68.4 

C-5 28 100 80 C-17 30 98.9 76.0 

C-5 29 51.1 83 C-5 18 53.8 45.6 

Totals/Avgs 75 83.7 71.3 Totals/Avgs 75 83.7 63.4 
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Table 16.  P75 C-17 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-17 10 100 50 C-5 17 100.0 90.6 

C-17 12 100 59 C-5 16 100.0 85.3 

C-17 16 100 79 C-5 17 98.5 90.6 

C-17 18 80 90 C-5 18 98.9 96.0 

C-17 18 39 90 C-5 7 21.5 37.3 

C-17 1 1 5 -- -- -- -- 

Totals/Avgs 75 70.0 62.2 Totals/Avgs 75 83.8 80.0 

Table 17.  P200 Mixed Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 16 100 50 C-5 26 95.6 65.9 

C-17 10 100 54 C-17 16 100.0 85.3 

C-5 18 100 56 C-5 25 96.4 63.4 

C-17 12 100 65 C-17 18 99.6 96.0 

C-5 22 100 69 C-5 29 98.0 73.5 

C-17 16 100 88 C-17 18 98.1 96.0 

C-5 34 100 100 C-5 35 99.3 88.7 

C-17 18 67 100 C-17 18 100.0 96.0 

C-5 36 48 100 C-5 15 49.3 38.0 

C-17 18 15 100 -- -- -- -- 

Totals/Avgs 200 83.0 78.2 Totals/Avgs 200 92.9 78.1 

 

Table 18. P200 C-5 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 16 100 45 C-5 24 96.9 60.8 

C-5 17 100 48 C-5 25 94.4 63.4 

C-5 19 100 54 C-5 27 100.0 68.4 

C-5 21 100 59 C-5 30 99.8 76.0 

C-5 27 100 77 C-5 32 99.3 81.1 

C-5 36 100 100 C-5 35 100.0 88.7 

C-5 36 59 100 C-5 27 86.9 68.4 

C-5 28 19 80 -- -- -- -- 

Totals/Avgs 200 84.8 70.4 Totals/Avgs 200 96.8 72.4 
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Table 19.  P200 C-17 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-17 10 100 50 C-17 17 98.9 90.6 

C-17 10 100 50 C-17 17 97.4 90.6 

C-17 10 100 49 C-17 17 100.0 90.6 

C-17 11 100 54 C-17 17 98.5 90.6 

C-17 12 100 59 C-17 18 95.6 96.0 

C-17 12 100 59 C-17 17 98.5 90.6 

C-17 14 100 69 C-17 18 99.6 96.0 

C-17 16 100 79 C-17 18 99.6 96.0 

C-17 18 96 90 C-17 17 95.6 90.6 

C-17 18 83 90 C-17 18 100.0 96.0 

C-17 18 63 90 C-17 17 93.7 90.6 

C-17 18 45 90 C-17 9 51.5 48.0 

C-17 18 31 90 -- -- -- -- 

C-17 15 11 75 -- -- -- -- 

Totals/Avgs 200 88.7 72.9 Totals/Avgs 200 98.2 88.8 

 

Table 20. R75 Mixed Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 6 100 49 C-5 5 89.6 85.8 

C-17 4 100 50 C-17 4 99.4 94.0 

C-5 4 91 32 C-5 6 89.3 80.7 

C-17 3 100 46 C-17 3 89.2 90.7 

C-5 6 88 57 C-5 11 95.4 84.6 

C-17 4 99 49 C-17 6 90.4 90.3 

C-5 8 61 46 C-5 3 97.5 95.9 

C-17 4 99 51 C-17 10 99.5 89.1 

C-5 11 69 63 C-5 7 68.8 85.5 

C-17 3 53 44 C-17 13 51.2 87.4 

C-5 10 53 71 C-5 7 67.6 90.4 

C-17 5 36 55 -- -- -- -- 

C-5 7 15 34 -- -- -- -- 

Totals/Avgs 75 74.2 49.8 Totals/Avgs 75 85.3 88.6 
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Table 21.  R75 C-5 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 4 100 42 C-5 5 95.9 87.4 

C-5 4 94 32 C-5 11 95.3 84.0 

C-5 5 100 40 C-5 6 98.2 98.7 

C-5 7 87 57 C-5 9 53.8 85.2 

C-5 7 100 47 C-5 7 96.2 93.3 

C-5 4 38 20 C-5 6 74.4 80.7 

C-5 11 83 63 C-5 9 97.0 91.5 

C-5 9 61 51 C-5 13 79.6 92.6 

C-5 11 60 69 C-5 9 78.4 85.7 

C-5 12 44 66 -- -- -- -- 

C-5 1 2 6 -- -- -- -- 

Totals/Avgs 75 69.9 44.8 Totals/Avgs 75 85.4 88.8 

 

Table 22. R75 C-17 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-17 3 91.2 80.7 C-17 3 91.2 80.7 

C-17 4 97.0 91.2 C-17 4 97.0 91.2 

C-17 4 93.4 52.4 C-17 4 93.4 52.4 

C-17 3 67.9 91.3 C-17 3 67.9 91.3 

C-17 3 63.6 79.3 C-17 3 63.6 79.3 

C-17 3 72.1 91.7 C-17 3 72.1 91.7 

C-17 3 72.1 91.7 C-17 3 72.1 91.7 

C-17 3 63.4 95.7 C-17 3 63.4 95.7 

C-17 3 78.5 96.1 C-17 3 78.5 96.1 

C-17 4 98.0 88.5 C-17 4 98.0 88.5 

C-17 5 67.3 95.7 C-17 5 67.3 95.7 

C-17 4 85.0 89.8 C-17 4 85.0 89.8 

C-17 7 93.0 82.3 C-17 7 93.0 82.3 

C-17 7 63.8 92.3 C-17 7 63.8 92.3 

C-17 5 78.1 83.3 C-17 5 78.1 83.3 

C-17 6 68.4 92.1 C-17 6 68.4 92.1 

C-17 8 28.6 90.9 C-17 8 28.6 90.9 

Totals/Avgs 75 75.4 87.3 Totals/Avgs 75 75.4 87.3 
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Table 23. R200 Mixed Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 7 100 47 C-5 7 94.5 98.9 

C-17 4 100 52 C-17 3 93.8 91.7 

C-5 7 100 47 C-5 6 98.2 81.4 

C-17 4 99 52 C-17 3 93.8 91.7 

C-5 6 100 40 C-5 7 91.3 86.4 

C-17 4 100 45 C-17 3 99.8 46.9 

C-5 6 100 40 C-5 10 91.1 81.4 

C-17 4 100 45 C-17 3 93.8 91.7 

C-5 3 90 30 C-5 8 88.7 94.1 

C-17 2 96 35 C-17 6 99.6 95.6 

C-5 4 91 32 C-5 7 99.5 90.5 

C-17 3 100 46 C-17 4 98.5 92.5 

C-5 5 100 42 C-5 7 95.3 82.1 

C-17 3 100 46 C-17 4 99.6 95.1 

C-5 5 100 46 C-5 8 99.3 97.4 

C-17 4 100 61 C-17 4 99.7 91.3 

C-5 6 85 60 C-17 6 99.6 93.9 

C-17 4 99 61 C-5 10 80.3 96.1 

C-5 5 89 40 C-17 4 97.3 92.4 

C-17 4 99 51 C-5 8 92.1 96.9 

C-5 4 38 21 C-17 3 97.5 47.9 

C-17 4 99 51 C-5 13 79.9 93.5 

C-5 7 68 54 C-5 12 54.5 82.9 

C-17 4 99 51 C-17 6 99.6 94.6 

C-5 11 82 68 C-5 11 94.7 79.3 

C-17 3 53 44 C-17 7 99.9 88.9 

C-5 13 72 73 C-5 16 92.5 86.0 

C-17 3 53 44 C-17 6 98.0 96.3 

C-5 12 57 70 C-5 8 92.5 95.9 

C-17 5 53 72 C-17 5 99.8 85.9 

C-5 15 42 66 C-5 8 91.6 79.1 

C-17 8 25 59 -- -- -- -- 

C-5 15 23 64 -- -- -- -- 

C-17 6 9 36 -- -- -- -- 

Totals/Avgs 200 80.0 49.7 Totals/Avgs 200 93.6 88.1 
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Table 24.  R200 C-5 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 4 100 42 C-5 6 95.9 95.6 

C-5 4 100 43 C-5 7 98.4 88.0 

C-5 4 100 43 C-5 8 99.7 94.3 

C-5 6 100 39 C-5 8 98.4 67.7 

C-5 6 100 39 C-5 8 94.7 69.0 

C-5 6 100 39 C-5 9 79.2 73.2 

C-5 3 90 28 C-5 6 90.7 85.5 

C-5 3 90 28 C-5 7 99.1 86.4 

C-5 6 100 42 C-5 7 94.4 80.4 

C-5 5 100 40 C-5 7 86.2 83.4 

C-5 5 100 40 C-5 8 93.6 87.5 

C-5 5 100 51 C-5 8 91.7 85.1 

C-5 7 87 61 C-5 11 76.1 96.6 

C-5 11 89 64 C-5 10 95.4 84.1 

C-5 6 100 44 C-5 6 95.1 86.6 

C-5 6 100 41 C-5 5 98.0 86.5 

C-5 7 100 39 C-5 6 88.6 83.2 

C-5 4 

 

20 C-5 7 85.6 85.5 

C-5 10 77 59 C-5 5 76.2 84.0 

C-5 13 97 72 C-5 11 68.0 89.3 

C-5 10 55 51 C-5 11 85.8 91.7 

C-5 12 69 63 C-5 12 84.6 82.3 

C-5 12 65 67 C-5 12 99.1 93.0 

C-5 13 51 74 C-5 15 92.4 88.5 

C-5 16 40 63 -- -- -- -- 

C-5 14 20 62 -- -- -- -- 

C-5 2 2 6 -- -- -- -- 

Totals/Avgs 200 80.4 46.7 Totals/Avgs 200 90.3 85.3 
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Table 25.  R200 C-17 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-17 4 100 52 C-17 3 100.0 92.0 

C-17 4 100 52 C-17 3 95.3 89.3 

C-17 4 100 52 C-17 3 99.8 79.4 

C-17 4 100 52 C-17 3 97.6 94.0 

C-17 4 100 52 C-17 3 91.2 80.7 

C-17 4 99 52 C-17 3 85.1 81.0 

C-17 4 100 45 C-17 3 91.2 96.3 

C-17 5 100 50 C-17 3 91.2 96.3 

C-17 5 100 50 C-17 3 91.2 96.3 

C-17 5 100 50 C-17 3 91.0 80.3 

C-17 5 100 50 C-17 4 96.1 89.8 

C-17 5 100 50 C-17 4 95.5 92.2 

C-17 2 96 35 C-17 3 66.0 73.8 

C-17 2 96 35 C-17 3 73.5 93.5 

C-17 2 96 35 C-17 4 95.9 92.7 

C-17 2 96 35 C-17 3 83.9 90.2 

C-17 2 96 35 C-17 6 95.1 95.4 

C-17 2 96 35 C-17 5 88.7 86.8 

C-17 3 100 46 C-17 4 99.5 92.7 

C-17 3 100 46 C-17 4 66.9 49.6 

C-17 4 98 54 C-17 4 77.1 88.2 

C-17 4 97 54 C-17 5 78.7 88.8 

C-17 4 97 54 C-17 4 88.8 82.3 

C-17 4 97 54 C-17 4 76.4 84.8 

C-17 4 99 61 C-17 5 65.4 86.7 

C-17 4 99 61 C-17 5 79.0 91.6 

C-17 4 100 62 C-17 3 78.5 96.1 

C-17 3 92 37 C-17 4 78.0 58.9 

C-17 2 52 21 C-17 4 78.8 59.8 

C-17 3 74 51 C-17 4 70.3 56.6 

C-17 3 74 51 C-17 4 72.9 60.9 

C-17 4 85 59 C-17 4 69.1 88.9 

C-17 8 100 82 C-17 6 80.7 94.4 

C-17 6 97 77 C-17 6 71.4 87.7 

C-17 6 89 74 C-17 6 74.8 91.7 

C-17 8 67 75 C-17 7 79.0 79.8 

C-17 8 56 76 C-17 6 68.8 85.3 

C-17 8 53 88 C-17 7 88.4 76.7 
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Table 25 (Continued).  R200 C-17 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-17 8 38 70 C-17 3 88.5 77.2 

C-17 8 25 59 C-17 8 77.0 92.3 

C-17 8 22 61 C-17 6 98.4 93.9 

C-17 8 20 58 C-17 6 91.3 93.9 

C-17 9 14 53 C-17 12 27.5 95.4 

C-17 1 1 6 C-17 7 58.2 92.9 

Totals/Avgs 200 82.3 52.4 Totals/Avgs 200.0 82.1 85.2 

 

 

Table 26.  M75 Mixed Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 9 100 46 C-5 9 87.8 78.7 

C-17 2 96 35 C-17 6 99.2 96.0 

C-5 7 80 60 C-5 10 100.0 76.1 

C-17 5 96 62 C-17 4 84.3 92.9 

C-5 11 90 67 C-5 9 77.5 62.0 

C-17 6 75 61 C-17 7 75.1 83.9 

C-5 10 27 38 C-5 30 97.6 76.0 

C-17 18 100 100 -- -- -- -- 

C-17 7 7 22 -- -- -- -- 

Totals/Avgs 75 74.6 54.6 Totals/Avgs 75 88.8 80.8 

Table 27. M75 C-5 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 9 100 46 C-5 10 81.6 94.2 

C-5 9 99 52 C-5 6 87.1 70.9 

C-5 7 78 61 C-5 8 95.6 88.9 

C-5 9 79 58 C-5 7 82.8 91.4 

C-5 9 61 51 C-5 20 96.6 76.6 

C-5 4 20 21 C-5 24 74.3 85.6 

C-5 28 80 89 -- -- -- -- 

Totals/Avgs 75 73.9 54.0 Totals/Avgs 75 86.3 84.6 
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Table 28.  M75 C-17 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-17 6 99.4 50.0 C-17 4 99.8 91.5 

C-17 3 99.5 41.0 C-17 5 85.6 93.5 

C-17 5 99.9 51.0 C-17 6 96.1 93.4 

C-17 6 99.8 65.0 C-17 3 72.3 89.8 

C-17 4 86.4 62.0 C-17 4 76.8 95.1 

C-17 5 95.0 64.0 C-17 5 71.8 94.0 

C-17 8 71.9 78.0 C-17 7 64.4 98.2 

C-17 8 87.1 81.0 C-17 5 66.0 87.6 

C-17 10 55.1 57.0 C-17 6 86.1 90.1 

C-17 18 68.1 100.0 C-17 17 99.3 90.6 

C-17 2 1.1 11.0 C-17 13 45.2 69.3 

Totals/Avgs 75 78.5 60.0 Totals/Avgs 75 78.5 90.3 

Table 29.  M200 Mixed Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 7 100 39 C-5 12 97.8 89.6 

C-17 3 100 41 C-17 6 96.5 95.3 

C-5 5 100 36 C-5 6 93.3 92.3 

C-17 3 100 41 C-17 3 92.3 99.2 

C-5 5 100 42 C-5 8 92.8 84.7 

C-17 4 100 61 C-17 6 99.6 91.9 

C-5 9 95 62 C-5 9 99.2 67.1 

C-17 6 100 56 C-17 6 97.6 67.3 

C-5 11 100 55 C-5 8 96.9 84.4 

C-17 5 100 60 C-17 6 80.8 94.0 

C-5 13 83 73 C-5 11 70.9 98.0 

C-17 6 56 58 C-17 7 98.0 94.0 

C-5 14 49 72 C-5 15 85.9 83.5 

C-17 8 31 53 C-17 17 99.6 90.6 

C-5 8 33 31 C-5 29 96.0 73.5 

C-17 11 100 61 C-17 17 99.6 90.6 

C-5 23 100 72 C-5 34 90.0 86.2 

C-17 18 97 100 -- -- -- -- 

C-5 36 52 100 -- -- -- -- 

C-17 5 3 28 -- -- -- -- 

Totals/Avgs 200 80.0 57.1 Totals/Avgs 200 93.3 87.2 
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Table 30.  M200 C-5 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-5 7 100 37 C-5 7 97.1 60.6 

C-5 5 100 34 C-5 6 99.7 80.3 

C-5 6 100 36 C-5 9 88.6 88.8 

C-5 5 100 40 C-5 9 96.2 85.1 

C-5 5 100 44 C-5 9 96.1 88.8 

C-5 10 88 62 C-5 6 89.2 85.6 

C-5 6 99 46 C-5 9 92.8 84.6 

C-5 12 100 66 C-5 9 93.6 86.9 

C-5 13 75 66 C-5 13 78.1 73.2 

C-5 12 56 67 C-5 12 87.5 85.0 

C-5 14 29 57 C-5 22 95.1 71.1 

C-5 17 100 48 C-5 31 100.0 78.6 

C-5 23 100 65 C-5 35 99.1 88.7 

C-5 36 100 100 C-5 23 68.0 58.3 

C-5 29 33 83 -- -- -- -- 

Totals/Avgs 200 85.3 56.7 Totals/Avgs 200 91.5 79.7 

    

  



 

E-11 

 

Table 31.  M200 C-17 Results 

AALPS MPALPTS 

Acft Items %ACL %Space Acft Items %ACL %Space 

C-17 7 99.9 49.0 C-17 5 97.3 97.4 

C-17 3 99.9 39.0 C-17 5 87.2 92.0 

C-17 3 99.9 39.0 C-17 6 98.8 89.0 

C-17 3 99.9 39.0 C-17 5 95.7 80.4 

C-17 3 99.5 39.0 C-17 3 60.3 43.6 

C-17 3 99.5 39.0 C-17 6 94.8 90.3 

C-17 3 99.5 36.0 C-17 6 88.7 86.5 

C-17 5 94.3 52.0 C-17 7 89.9 91.1 

C-17 4 98.6 59.0 C-17 6 92.8 94.5 

C-17 4 98.6 59.0 C-17 6 74.6 93.2 

C-17 5 99.8 50.0 C-17 6 79.1 95.5 

C-17 5 99.8 40.0 C-17 4 80.0 85.6 

C-17 6 89.3 65.0 C-17 4 68.5 92.7 

C-17 8 95.0 80.0 C-17 4 87.1 94.4 

C-17 8 87.7 77.0 C-17 4 89.6 90.8 

C-17 8 58.3 80.0 C-17 6 79.5 92.8 

C-17 11 51.2 73.0 C-17 7 67.4 89.1 

C-17 7 30.8 47.0 C-17 6 78.8 92.5 

C-17 13 99.9 77.0 C-17 7 83.2 74.9 

C-17 12 100.0 60.0 C-17 8 100.0 86.5 

C-17 14 100.0 69.0 C-17 18 99.3 96.0 

C-17 17 100.0 85.0 C-17 17 98.5 90.6 

C-17 18 77.8 90.0 C-17 18 99.6 96.0 

C-17 18 42.2 90.0 C-17 18 96.3 96.0 

C-17 12 11.9 60.0 C-17 18 48.1 96.0 

Totals/Avgs 200 85.4 59.7 Totals/Avgs 200 85.4 89.1 



 

F-1 

 

Appendix F: MPALPTS Load Plans 

The first load plan presented represents the solution MPALPTS generated for the first  

C-5 aircraft loaded from the M75 mixed test set.  The exact solution representation was 

manually loaded in AALPS.  MPALPTS computed the CB at FS1332.53, and AALPS 

computed it at FS1332.  The second load plan represents the third C-17 MPALPTS 

loaded from the M75 mixed test set and includes both rolling stock and pallets.  

MPALPTS computed this load’s CB at FS857.23, and AALPS computed it at FS857.  If 

any load violations were present, they would have been identified in the Flags/Warnings 

section of the load plan. 



 

F-2 

 

 

 
Aircraft type/Config  : C-5/STD-AL                         Mission Type          : Channel      

Delivery method       : AL                                 Mission #             :     

Unit Being Airlifted  :                                    Aircraft tail #       :      

Type movement plan    :                                    System chalk #        :               

Departure date & time :                                    

Departure airfield    :                                                                       

Destination airfield  :                                                                       

Load Description      :                                                                   

  

MAIN DECK  
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SQ/D Model/Nomenclature      LEN  WDT   HT     WT   FSN   TSN    CB HZ FL   V D SH    CCC   

1/M  M1101/CHASSIS TRAILER   137   87   73   3500   517   654   596 n  E    N P       R2D   

2/M  M1134/ANTI-TANK VEH/ST  294  125  142  41160   679   973   822 n  E    N P       R0D   

3/M  M1097/TRK, UTIL, HVY,   191   86   72   5600   998  1189  1086 n  E    N P       R2D   

4/M  M1101/CHASSIS TRAILER   137   87   73   3500   998  1135  1077 n  E    N P       R2D   

5/M  M1008A1/TRUCK CARGO TA  223   87   96   8170  1160  1383  1284 n  E    N P       R2D   

6/M  6000 LB/TRAILER PLATFO  119   48   27    765  1214  1333  1286 n  E    N P       A2B   

7/M  HP-15T/TRAILER FLATBED  294   96   67   8000  1358  1652  1518 n  E    N P P     R2D   

8/M  FLU419/TRACTOR, ALL-WH  250   96  102  15920  1408  1658  1557 y  E    N P       R2D   

9/M  M992/CARRIER AMMO TRKD  265  130  115  45080  1683  1948  1803 y  E    N P PR    A1D   

 

 

Total # of Pax: 0        Weight/Pax: 210          Total Pax Weight: 0        

Total # of Subfloors: 0  Weight/Subfloor: 0       Total Subfloor Weight: 0             

Total Cargo Wt: 131695   Total Load Wt: 131695    ACL: 150000                

%ACL: 88                 %ZF: 0                   Load CB: 1332              

  

SQ/D  Flags/Warnings                              

  

SQ/D  Class/Zone       

3/M   9                

5/M   9                

8/M   9                

9/M   9                

  

  

ALL HAZARDOUS MATERIALS COVERED BY THIS                I HAVE BEEN BRIEFED ACCORDING TO   

MANIFEST HAVE BEEN INSPECTED AND                       AFMAN 24-204(I), PARAGRAPH 1.2.9,   

FOUND TO BE PACKAGED IN THE PROPER OUTSIDE             ON HAZARDOUS CARGO COVERED BY   

CONTAINER, FREE OF VISIBLE DAMAGE AND                  THIS MANIFEST   

LEAKS AND IS PROPERLY CERTIFIED   

                                                        _________________________________  

_________________________________                       Aircraft Crewmember Signature   

Air Terminal Representative Signature   
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Aircraft type/Config  : C-17/STD-AL                        Mission Type          :    

Delivery method       : AL                                 Mission #             :               

Unit Being Airlifted  :                                    Aircraft tail #       :                 

Type movement plan    :                                    System chalk #        :        

Departure date & time :                                    

Departure airfield    :                        

Destination airfield  :                                  

Load Description      :                

  

MAIN DECK  
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SQ/D Model/Nomenclature      LEN  WDT   HT     WT   FSN   TSN    CB HZ FL   V D SH    CCC   

1/M  00-M51A1/TRUCK DUMP 5-  266  128  112  22146   402   668   546 n  E    N P       R1D   

2/M  00-M51A1/TRUCK DUMP 5-  266  128  112  22146   721   987   865 n  E    N P       R1D   

3/M  7333 x 83/PALLET, 463L  108   88   83   7333  1050  1158  1104 n  E    N P       J3B   

4/M  9667 x 64/PALLET, 463L  108   88   64   9667  1050  1158  1104 n  E    N P       J3B   

5/M  4667 x 37/PALLET, 463L   88  108   37   4667  1172  1280  1226 n  E    N P       J3B   

6/M  1000 x 38/PALLET, 463L   88  108   38   1000  1282  1390  1336 n  E    N P       J3B   

7/M  667 x 30/PALLET, 463L    88  108   30    667  1282  1390  1336 n  E    N P       J3B   

Total # of Pax: 0        Weight/Pax: 210          Total Pax Weight: 0        

Total # of Subfloors: 0  Weight/Subfloor: 0       Total Subfloor Weight: 0             

Total Cargo Wt: 67626    Total Load Wt: 67626     ACL: 90000                 

%ACL: 75                 %ZF: 0                   Load CB: 857               

SQ/D  Flags/Warnings                              

  

SQ/D  Class/Zone       

  

  

ALL HAZARDOUS MATERIALS COVERED BY THIS                I HAVE BEEN BRIEFED ACCORDING TO   

MANIFEST HAVE BEEN INSPECTED AND                       AFMAN 24-204(I), PARAGRAPH 1.2.9,   

FOUND TO BE PACKAGED IN THE PROPER OUTSIDE             ON HAZARDOUS CARGO COVERED BY   

CONTAINER, FREE OF VISIBLE DAMAGE AND                  THIS MANIFEST   

LEAKS AND IS PROPERLY CERTIFIED   

                                                        _________________________________  

_________________________________                       Aircraft Crewmember Signature   

Air Terminal Representative Signature   
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Appendix G: Blue Dart 

 

Blue Dart Submission Form 

 
First Name:  Robert  Last Name: Nance  

 

Rank (Military, AD, etc.):  Major   Designator # AFIT/BD/ENS/09-11 

 

Student’s Involved in Research for Blue Dart: Maj Robert Nance 

 

Position/Title:  C-5 Evaluator Pilot / AFIT Master’s Student 

 

Phone Number:  DSN 225-3636 E-mail:  robert.nance@af.mil 

 

School/Organization:  AFIT/ENS 

 

Status:   [X] Student     [ ] Faculty     [ ] Staff     [ ] Other 

 

Optimal Media Outlet (optional):  ____________________________________________ 

 

Optimal Time of Publication (optional):  ______________________________________ 

 

General Category / Classification:   

[ ] core values       [ ] command       [ ] strategy      

[ ] war on terror       [ ] culture & language     [ ] leadership & ethics      

[ ] warfighting       [ ] international security    [ ] doctrine      

[X] other (specify): Military Airlift 

 

Suggested Headline:  Improving the efficiency of USAF airlift 

 

Keywords:  airlift, efficiency, logistics, Air Mobility Command 

 

Blue Dart  
 

 As mentioned by the JCS Director of Logistics, Lt Gen Gainey, during her recent visit 

to AFIT, there are two general measures of a logistics system:  effectiveness and efficiency.  
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To be effective, the system must deliver the required goods to the proper recipients on time.  

Efficient systems deliver goods in the most economical manner.  Lt Gen Gainey noted that 

effectiveness is more important than efficiency in a military supply system; however, in 

today’s budget constrained environment, efficiency is clearly an important goal particularly 

when it comes to the most expensive mode of transportation: airlift.  According to AMC/A9 

data, the US Air Force paid $22,998 and $12,911 per flight hour in FY08 to utilize C-5 and 

C-17 aircraft, respectively.  If we assume approximately 30 hours of flight time are required 

to fly CONUS to the Middle East and back, each C-5 mission costs roughly $689,940 and 

each C-17 mission costs $387,330.  Furthermore, AMC/A9 data indicates that the 12,760 C-5 

and C-17 operational mission sorties from 1 Jan 08 to 30 Sep 08 only used, on average, 

approximately one-third of their available cargo capacity. (This data measures the actual 

versus planning cargo weights for the C-5 and C-17 for each sortie of a mission and includes 

empty pre- and de-positioning mission sorties).  This clearly indicates the USAF operates an 

inefficient airlift system. 

 Why is USAF airlift inefficient?  The answer is simple: it is very difficult to 

optimally load aircraft!  Given a ramp full of pallets and equipment, determining which items 

to place on which aircraft and where exactly to place them has billions of possible 

combinations.  This is one of the factors which drove the DoD to invest in the Automated 

Airlift Load Planning Software (AALPS).  Given cargo and available aircraft, AALPS 

automatically generates load plans and helps load planners solve this difficult problem. 
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 While AALPS is a very powerful tool, it has been found to produce inefficient 

loadings.  My thesis research is focused on creating a better loading algorithm which uses 

fewer aircraft than AALPS.  This algorithm, called the Mixed Payload Airlift Load Planning 

Tabu Search (MPALPTS), loads a given set of cargo (pallets and rolling stock) into C-5 

and/or C-17 aircraft and makes a limited number of assumptions.  Therefore, it is 

operationally useful.  In the 20 test scenarios (which included pallet only, rolling stock only 

and a mix of pallet and rolling stock loads on C-5 and/or C-17 aircraft), my algorithm 

achieved an average aircraft reduction of 11% when compared to AALPS solutions on the 

same cargo.  A subset of MPALPTS solutions was manually loaded into AALPS to verify 

feasibility in the loadings.  I found nearly all of MPALPTS solutions were feasible, and the 

few that were not required only very small adjustments (to clear the C-5’s troop compartment 

ladder, for example).  However, MPALPTS did take much longer than AALPS to find these 

improved solutions. 

 From Feb 07 to Jan 08, AMC reported there were 686 C-5 and 1551 C-17 multi-leg 

operational missions.  Assuming all of the missions were originally planned with AALPS and 

were reloaded with MPALPTS which increased efficiency by 11%, AMC would have flown 

75 fewer C-5 missions and 171 fewer C-17 missions.  If each mission averaged 30 flight 

hours, this equates to a savings of $117,978,930 in a 12 month period with zero impact on 

effectiveness.  The DoD should incorporate MPALPTS into the current version of AALPS to 

increase USAF airlift efficiency. 
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The views expressed in this article are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the US 

Government. 

 
 

 
Feb 09 
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