
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-9-2009

An Advanced Tabu Search Approach to Solving the Mixed Payload An Advanced Tabu Search Approach to Solving the Mixed Payload

Airlift Load Planning Problem Airlift Load Planning Problem

Robert Larry Nance

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Management and Operations Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Nance, Robert Larry, "An Advanced Tabu Search Approach to Solving the Mixed Payload Airlift Load
Planning Problem" (2009). Theses and Dissertations. 2509.
https://scholar.afit.edu/etd/2509

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1311?utm_source=scholar.afit.edu%2Fetd%2F2509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F2509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F2509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2509?utm_source=scholar.afit.edu%2Fetd%2F2509&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

An Advanced Tabu Search Approach

to Solving the Mixed Payload Airlift

Load Planning Problem

THESIS

R. Larry Nance, Maj, USAF

AFIT/GOR/ENS/09-11

R. Larry Nance, Major, USAF

AFIT/GAE/ENS/09M

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GOR/ENS/09-11

An Advanced Tabu Search Approach to Solving the Mixed Payload

Airlift Load Planning Problem

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

R. Larry Nance, BS

Major, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/09-11

An Advanced Tabu Search Approach to Solving the Mixed Payload

Airlift Load Planning Problem

R. Larry Nance, BS

Major, USAF

 Approved:

 August G. Roesener (Chairman) Date

 James T. Moore (Co-Chairman) Date

iv

AFIT/GOR/ENS/09-11

Abstract

 Military airlift is vital to any nation’s ability to project power on a global scale.

In the United States, the vast majority of airlift responsibility lies with the Air Force’s Air

Mobility Command (AMC). As with most military endeavors of this magnitude, airlift

comes at a great financial cost; it is therefore imperative to utilize the Air Force's airlift

fleet in an efficient manner. One aspect of efficiency involves transporting a set of cargo

items using the fewest number of aircraft possible. This is called the Mixed Payload

Airlift Load Planning (MPALP) problem. This paper presents a new tabu search based

two-dimensional bin packing algorithm which produces high quality solutions to the

MPALP using C-5 and C-17 aircraft. This algorithm, called the Mixed Payload Airlift

Load Planning Tabu Search (MPALPTS), surpasses previous research conducted in this

area because, in addition to pure pallet cargo loads, MPALPTS can accommodate rolling

stock cargo (i.e. tanks, trucks, HMMMVs, etc.) while still maintaining aircraft feasibility

with respect to aircraft center of balance, mandatory cargo separations, aircraft floor

structural limitations, etc. Furthermore, while this research is currently restricted to C-5

and C-17 aircraft, MPALPTS is capable of modeling nearly any type of cargo aircraft and

requires a limited number of assumptions thereby making it applicable to operational

missions. To demonstrate its effectiveness, the load plans generated by MPALPTS are

directly compared to those generated by the Automated Air Load Planning Software

(AALPS) for a given cargo set; AALPS is the load planning software currently mandated

v

for use in all Department of Defense load planning. While more time consuming than

AALPS, MPALPTS required the same or fewer aircraft than AALPS in all test scenarios.

If implemented, MPALPTS has the potential to save AMC millions of dollars in airlift

costs.

vi

AFIT/GOR/ENS/09-11

To my wife and four wonderful children

vii

Acknowledgments

 First and foremost, I would like to thank God for his ultimate wisdom and

guidance throughout my time at AFIT. I would also like to thank my wife and children

for putting up with my late nights and general lack of availability.

 My advisors, Dr. August Roesener and Dr. Jim Moore, have been instrumental at

guiding me through this very long process of coding and testing my algorithm as well as

writing my thesis, and I am grateful for their expertise and advice. I would also like to

thank Dr. Shane Hall for teaching me everything I know about the mighty tabu search

and Dr. Kenneth Bauer for his teachings and encouragement as I learned and applied

robust parameter design on a separate tabu search algorithm I authored.

 Finally, I would like to thank the men and women of Air Mobility Command for

their help in gathering data and giving me better a understanding the loading problem and

its various constraints.

 R. Larry Nance

viii

Table of Contents

Abstract ... iv

Acknowledgments ... vii

List of Tables .. xi

List of Figures ... xiii

List of Equations .. xiv

Chapter 1: Introduction .. 1-1

1.1 Global Airlift Power ... 1-1

1.2 Current Airlift Process .. 1-2

1.3 Cargo Types .. 1-3

1.4 Airlift Aircraft ... 1-4

1.5 Loading Constraints .. 1-5

1.6 Current Load Planning Software .. 1-10

1.7 Research Objectives and Assumptions ... 1-10

Chapter 2: Literature Review ... 2-1

2.1 Heuristics Motivation ... 2-1

2.1.1 Classes of Combinatorial Optimization Problems ... 2-1

2.1.2 MPALPTS Complexity .. 2-2

2.1.3 “Solving” an NP-hard problem .. 2-2

2.2 Heuristics .. 2-3

2.3 Tabu Search .. 2-4

2.4 Knapsack MPALP Instances .. 2-4

2.4.1 Tabu Search Knapsack MPALP ... 2-5

2.5 Bin Packing Problems .. 2-8

2.5.1 Bin Packing Instances .. 2-8

2.5.2 Summary .. 2-19

ix

Chapter 3: Methodology.. 3-1

3.1 MPALP Tabu Search .. 3-1

3.2 Decision Variable Definition .. 3-1

3.3 MPALPTS Input Tables ... 3-2

3.3.1 Aircraft Representation .. 3-2

3.3.2 Cargo Representation ... 3-3

3.3.3 Zone Representation ... 3-4

3.3.4 CB Lookup Table ... 3-6

3.3.5 Pallet Placement Tables ... 3-6

3.4 Objective Function Costs.. 3-6

3.4.1 Aircraft Usage Fee ... 3-7

3.4.2 Under/Over Weight Fee ... 3-7

3.4.3 CB Fee and Target CB Fee .. 3-8

3.4.4 Zone Fees ... 3-9

3.4.5 Ramp Fees .. 3-11

3.5 MPALPTS Neighborhoods... 3-12

3.5.1 Inter-Aircraft Swaps ... 3-13

3.5.2 Inter-Aircraft Inserts ... 3-14

3.5.3 Empty Aircraft Neighborhood ... 3-14

3.5.4 Intra-Aircraft Swaps ... 3-15

3.6 Fix Load Function .. 3-16

3.7 Slide CB Function .. 3-16

3.8 Tabu List ... 3-18

3.9 Initial Solution Generation ... 3-19

3.10 State Determination .. 3-20

3.11 MPALP Tabu Search Algorithm .. 3-21

3.12 Robust Parameter Design ... 3-24

3.12.1 Test Sets ... 3-26

3.12.2 RPD Model Construction ... 3-27

x

3.12.3 Feasible Aircraft Model ... 3-28

3.12.4 Time Model .. 3-29

3.12.5 RPD Results ... 3-30

3.13 Summary ... 3-32

Chapter 4: Results.. 4-1

4.1 MPALPTS versus AALPS ... 4-1

4.2 Load Validation .. 4-4

4.3 Applied Results... 4-5

Chapter 5: Future Research ... 5-1

Appendix A: Test Set Cargo .. A-1

A.1 Rolling Stock .. A-1

A.2 Pallets .. A-2

Appendix B: MATLAB Flowchart .. B-1

Appendix C: MATLAB Code .. C-1

Appendix D: Solution Representation .. D-1

Appendix E: Specific Results ... E-1

Appendix F: MPALPTS Load Plans .. F-1

Appendix G: Blue Dart ... G-1

Bibliography .. BIB-1

xi

List of Tables

Table Page

Table 1. Available Aircraft Table ... 3-2

Table 2. Cargo Representation .. 3-3

Table 3. Zone Representation .. 3-4

Table 4. Original Parameter Settings .. 3-25

Table 5. Parameter Ranges ... 3-26

Table 6. Test Sets .. 3-27

Table 7. Optimal Parameter Settings for Test Sets ... 3-30

Table 8. Robust Parameter Settings .. 3-31

Table 9. Re-Optimized Parameters ... 3-32

Table 10. Final Robust Parameters ... 3-32

Table 11. AALPS versus MPALPTS.. 4-2

Table 12. Rolling Stock Cargo... A-1

Table 13. Palletized Cargo .. A-2

Table 14. P75 Mixed Results .. E-1

Table 15. P75 C-5 Results .. E-1

Table 16. P75 C-17 Results .. E-2

Table 17. P200 Mixed Results .. E-2

Table 18. P200 C-5 Results ... E-2

Table 19. P200 C-17 Results .. E-3

Table 20. R75 Mixed Results... E-3

xii

Table 21. R75 C-5 Results .. E-4

Table 22. R75 C-17 Results ... E-4

Table 23. R200 Mixed Results... E-5

Table 24. R200 C-5 Results .. E-6

Table 25. R200 C-17 Results .. E-7

Table 26. M75 Mixed Results ... E-8

Table 27. M75 C-5 Results .. E-8

Table 28. M75 C-17 Results ... E-9

Table 29. M200 Mixed Results ... E-9

Table 30. M200 C-5 Results ... E-10

Table 31. M200 C-17 Results ... E-11

xiii

List of Figures

Figure Page

Figure 1. C-17 Loading Histogram ... 1-9

Figure 2. C-5 Loading Histogram ... 1-9

Figure 3. Knapsack Integer Program .. 2-5

Figure 4. Heidelberg et al. candidate bin selection ... 2-11

Figure 5. Representation of Adjacently Loaded Axle Constraints 3-5

Figure 6. Representative Under/Overweight Curve .. 3-8

Figure 7. MPALP Tabu Search Pseudo Code ... 3-22

Figure 8. Aircraft Regression Model Plots ... 3-29

Figure 9. Time Regression Model Plots ... 3-30

xiv

List of Equations

Equation Page

Equation 1. Roesener's Lower Bound Calculation ... 2-13

Equation 2. Roesener’s Unloaded Pallet Penalty Function .. 2-15

Equation 3. Roesener’s Aircraft Cost ... 2-15

Equation 4. Roesener’s Under-loading and Overloading Penalty Functions 2-16

Equation 5. Roesener’s Lateral CB Penalty Function .. 2-17

Equation 6. Roesener’s Longitudinal CB Penalty Function ... 2-17

Equation 7. Decision Variable .. 3-1

Equation 8. CB Calculation for Cargo with Axles ... 3-4

Equation 9. Allowable Weight Calculation .. 3-6

Equation 10. MPALP Usage Fee .. 3-7

Equation 11. Under/Over Weight Fee .. 3-7

Equation 12. CB Fee ... 3-9

Equation 13. Zone Fees... 3-10

Equation 14. Ramp Fee ... 3-12

Equation 15. CB Calculation .. 3-17

Equation 16. CB Shift Calculation.. 3-17

Equation 17. Calculation .. 3-17

1-1

An Advanced Tabu Search Approach to Solving the Mixed Payload

Airlift Loading Planning Problem

Chapter 1: Introduction

1.1 Global Airlift Power

Throughout military history, armies, large and small, have battled one another

using dramatically different tactics and a wide range of weapons; however, one constant

remains for every battle: the need for supplies. Sun-Tzu wrote, “So, armies cannot

survive without supplies, cannot survive without provisions, cannot survive without

stockpiled materials” (Huang, 1993). Without a steady flow of food, equipment and

weapons, the military fighting machine could not function in ancient times; similar

requirements hold for the conventional and unconventional wars currently being waged.

The United States Air Force (USAF) defines airlift as “the transportation of

personnel and materiel through the air, which can be applied across the entire range of

military operations to achieve or support objectives and can achieve tactical through

strategic effects” (AFDD 1 2003). General Michael T. Mosely, a former USAF Chief of

Staff, once wrote, “While other forms of American military power have some degree of

inherent mobility, the scale of flexibility and responsiveness of the Air Force’s air

mobility forces is singular in the history of world conflict” (AFDD 2-6 2006). The ability

to rapidly deploy vast numbers of both combat forces and their equipment to any point on

the globe is a unique capability possessed by the United States (US); having this

capability gives the US an unprecedented advantage in projecting power in the place and

1-2

at the time of its choosing. Unfortunately, airlift comes at a great price. In fiscal year

2008, the Air Force spent approximately $22,998 per flight hour to operate a C-5 and

$12,911 per flight hour for a C-17 (Herbison 2008). In today’s economically constrained

environment, it is critical to operate these airlift missions in the most efficient way

possible. Choosing the smallest number of aircraft required to move needed supplies and

determining the exact placement of each piece of equipment on the aircraft is a very

difficult problem to solve. As a result, this topic has been the focus of much research.

1.2 Current Airlift Process

 The current airlift process begins with the United States Transportation Command

(USTRANSCOM) tasking Air Mobility Command (AMC) with daily airlift

requirements. Once tasked, planners in the Tanker Airlift Control Center (TACC) within

AMC follow a continuous complex process to

balance global requirements from its variety of government users against

the availability and location of resources. This streamlined planning

process focuses on a continuous, prioritized, frequently user-adjusted

schedule rather than strategy creation and enemy analysis. For non-

contingency situations, those taskings are rank ordered by priority and time

received, then planned and executed (AFDD 2-6 2006).

Once the subset of priority missions is selected to be flown, planners begin the process of

obtaining diplomatic airspace clearances, ascertaining airfield suitability and gaining host

nation support. In many cases, load plans (which detail the exact positioning of cargo

items in an aircraft) for USTRANSCOM tasked missions are created by the requesting

agency using their own load planners. These load plans are validated by the appropriate

validation cell within TACC. After validation, TACC tasks the missions to specific Air

1-3

Force Wings who, in turn, task the mission to specific airlift squadrons. The squadron

assigns the required aircrew members to the mission.

The cargo requiring transportation will either be at the assigned wing’s aerial port

or at an aerial port at another location. Thus, the aircraft may either be loaded at its home

station, or it may fly to a distant aerial port to be loaded. The aerial port is simply a

distribution center for cargo and passengers. It contains personnel trained on preparing

passengers and all types of cargo for flight. Prior to a mission’s execution, specially

trained personnel verify that TACC’s load plan for the mission meets the various

restrictions in place to ensure safety of flight, and they prepare the cargo for loading. On

the day of the mission, the aerial port personnel generally load the aircraft prior to the

aircrew arriving (if the cargo is at the aircraft’s home station); the aircrew inspects the

load and provides a final check to ensure the load is correctly positioned on the aircraft

and meets all required restrictions. Once verified, the mission is flown and the cargo is

delivered.

1.3 Cargo Types

 Current military aircraft are equipped to carry a wide variety of cargo. One type

is palletized cargo. Boxes and other suitably small items can be strategically loaded onto

pallets, and a cargo net is secured on top of all the stacked items. The pallets are then

loaded onto the aircraft such that specific weight and balance restrictions, discussed later,

are satisfied. Each pallet, whose dimensions measure 88 inches by 108 inches and can be

as tall as 96 inches, are packed such that its overall center of gravity falls in the center of

the pallet. Pallets have predetermined locations available within the aircraft. Loading

1-4

occurs using a rail system on the floor of the aircraft; after pallets are loaded, the rail

system secures them to prevent shifting during flight.

 Military aircraft are also equipped to carry wheeled or tracked vehicles. These

vehicles can range from tanks and trucks to helicopters and boats and are generally

referred to as “rolling stock”. To ensure the vehicles do not move during flight, they are

secured using heavy duty chains connected to tiedown rings located on the aircraft floor.

1.4 Airlift Aircraft

 The USAF has numerous aircraft capable of airlift activities. These include the

KC-135, KC-10, C-130, C-17 and C-5. Generally, airlift capable aircraft can be

classified into two categories: intertheater and intratheater. Intertheater airlift transports

personnel and equipment from the Continental United States (CONUS) to a theater of

operations or between two theaters (AFDD 2-6 2006). While the KC-135 and KC-10 can

carry intertheater cargo and passengers, they have a much more limited cargo capacity

than other intertheater airlifters and are more often utilized for their primary purpose of

performing air refueling operations. Hence, the C-5 and C-17 are generally considered to

be the primary intertheater airlifters (USAF 2008). Intratheater airlift operations move

cargo and passengers inside a theater of operations and are generally supported by

smaller tactical aircraft. The C-17, because of its ability to land on short unimproved

runways, is often used as an intratheater airlifter, but the C-130 is the USAF’s primary

choice for intratheater airlift (USAF 2008). Because the focus of this research considers

a large set of cargo requiring long-range transportation, only the intertheater C-17 and

1-5

C-5 aircraft are considered; however, the algorithms used are flexible enough to include

other airlift capable aircraft.

1.5 Loading Constraints

 In order to safely transport cargo, aircraft must be loaded to satisfy several

constraints. For example, the Allowable Cabin Load (ACL), Center of Balance (CB) and

chaining constraints are applicable to all airlift aircraft

The total gross weight of an aircraft includes the empty aircraft, the aircraft’s fuel,

and its cargo, passenger and crew load. The upper bound of gross weight is fixed by the

structural and aerodynamic properties of the aircraft. There are two types of ACL. The

first type (planning ACL) is the total weight of cargo and passengers that can be loaded

on an aircraft under standard environmental and mission assumptions. Early in the

planning process, personnel use the planning ACL as a non-strict upper bound; however,

as weather forecasts and mission details are updated, this ACL constraint becomes

binding. The second type (maximum ACL) is the maximum total weight an aircraft can

carry and is primarily based upon the structural limitations of the aircraft floor. It is

much larger than the planning ACL and rarely is a factor in loading aircraft. For this

research, all references to ACL pertain to the planning ACL. Depending on the source

document and the assumptions its author makes, the planning ACL for a C-5 and C-17

can vary. For this research, data from Air Mobility Command’s airlift planning training

manual is used; this document lists the C-5 and C-17 planning ACL as 150,000 pounds

and 90,000 pounds, respectively (Air Mobility Command 2004).

1-6

 In addition to the ACL, the CB constraint is critical to ensuring safe flight

operations. An aircraft’s center of gravity (CG) is affected by the amount of fuel, cargo

and people in the aircraft. The cargo and passengers must be arranged in an aircraft such

that the center or average of their weight falls within specific ranges inside the aircraft.

The CB constraints are defined such that regardless of the amount of fuel required for the

mission, the aircraft’s CG will fall within acceptable ranges. Furthermore, there is also

an optimal CB for a given cargo weight that minimizes fuel burn.

 An additional constraint requires rolling stock to have approximately 24 inches of

separation to allow sufficient space to secure the items to the floor of the cargo

compartment. The actual space required is based upon the weight of the cargo item as

well as the location of the item’s tiedown rings; however, according to Senior Master

Sergeant Tim Wakefield, a subject matter expert who is the chief C-5 loadmaster for Air

Mobility Command, 24 inches is a very conservative estimate.

While the ACL, CB and chaining constraints can be modeled relatively easily in a

mathematical program, aircraft specific constraints are much more difficult. These

constraints generally encapsulate the strength of different parts of an aircraft’s cargo

floor. In the C-17 and C-5, the cargo compartment can viewed as having two columns:

left and right. If a rolling stock item meets specific width and/or weight constraints, it

can be loaded on one of the two columns resulting in the possibility of two items being

adjacently loaded. If a rolling stock item is too heavy or too wide, it must be loaded in

the center of the cargo compartment straddling the two columns. Pallets, on the other

hand, are loaded into predefined pallet positions within the aircraft which are adjacently

1-7

located in each column of the cargo compartment. In their normal configuration, a C-17

has 18 pallet positions (9 in each column), while a C-5 has 36 positions (18 in each

column). Each pallet position has associated maximum weight and height restrictions for

any pallet placed there. To ease on-load and off-load, pallets can only be loaded aft of

any rolling stock within a given column.

Cargo location within an aircraft is measured in inches by its flight station (FS).

Every cargo aircraft has FS markings within the cargo compartment which measure the

number of inches from the reference datum line (an imaginary point in front of the

aircraft) to a specific point in the aircraft. For example, FS890 represents a distance of

890 inches from the reference datum line to a specific location in the cargo compartment,

and FS990 represents a position that is exactly 100 inches aft of FS890. These

measurements allow accurate CB calculations.

The FS markings also identify where cargo zones begin and end. Cargo zones

define portions of the cargo compartment which have unique rolling stock weight

capacities. The C-5 has seven cargo floor zones; the C-17 has four. Because rolling

stock items may be adjacently loaded (one in each “column” of cargo compartment),

there are also zone specific restrictions on the weight of the items’ individual axles. If

two axles on adjacently loaded rolling stock items are within an aircraft specific

longitudinal distance of each other, their combined weigh must be below a particular

zone specific value. In some aircraft, the acceptable adjacent axle weights are defined by

a piecewise linear equation and are therefore extremely difficult to model in a pure

mathematical programming problem.

1-8

Additionally, because the sides of cargo aircraft are curved inward, there are also

specific height restrictions that must be met so the cargo does not touch the walls of the

cargo compartment. For each inch taller than an aircraft specific limit, the cargo must be

moved toward the center of the aircraft by a specific amount. For the purposes of this

research, each cargo item is given a six inch buffer on each side to account for this

restriction.

 To simply produce a feasible loading of a large set of cargo items, load planners

must ensure all of the ACL, CB and aircraft specific constraints are met; however, simply

deriving a feasible solution is not an acceptable measure in today’s high cost and

restricted budget environment.

 In military airlift, two main objectives exist. First and most importantly, military

airlift must be effective; cargo must be delivered to the correct destination on schedule.

The USAF does reasonably well at achieving airlift effectiveness. Efficiency is the

second objective and is often overshadowed by the first objective. Data obtained from

Air Mobility Command’s Analysis division, which included approximately 1,480 C-5

and 11,280 C-17 flights flown from 1 Jan 08 to 30 Sep 08, indicated the C-5 and C-17

carried an average cargo load of 51,033.35 and 35,595.55 pounds, respectively

(Anderson 2008). These averages are approximately one-third of their planning ACL.

Histograms of each airframe are shown in Figures 1 and 2 below.

1-9

0

50

100

150

200

250

300

350

51
15

.0
0

10
59

4.
00

16
07

2.
00

21
55

1.
00

27
03

0.
00

32
50

9.
00

37
98

7.
00

43
46

6.
00

48
94

5.
00

54
42

4.
00

59
90

2.
00

65
38

1.
00

70
86

0.
00

76
33

8.
00

81
81

6.
00

87
29

5.
00

92
77

4.
00

98
25

3.
00

10
37

31
.0

0

Fr
e

q
u

e
n

cy

Bin

C-17 Loading Histogram

Frequency

Figure 1. C-17 Loading Histogram

0
20
40
60
80

100

25
3.

00

9,
70

9.
53

19
,1

66
.0

7

28
,6

22
.6

0

38
,0

79
.1

3

47
,5

35
.6

7

56
,9

92
.2

0

66
,4

48
.7

3

75
,9

05
.2

7

85
,3

61
.8

0

94
,8

18
.3

3

10
4,

27
4.

87

11
3,

73
1.

40

12
3,

18
7.

93

13
2,

64
4.

47

14
2,

10
1.

00

15
1,

55
7.

53

Fr
e

q
u

e
n

cy

Bin

C-5 Loading Histogram

Frequency

Figure 2. C-5 Loading Histogram

It is important to note that achieving an average loading at or near 100% of an

aircraft’s ACL is probably not possible. For example, the data presented includes

unavoidable pre-positioning and de-positioning flights where the aircraft are flying empty

to go pick up cargo or returning home after delivering cargo to its destination.

Additionally, the C-17 often reaches space limitations before its entire ACL is used

making efficiency calculations solely based on ACL less valid. Despite these caveats,

the data does indicate a need for efficiency improvements. An algorithm which quickly

1-10

produces high quality solutions using the smallest number of aircraft while minimizing

fuel burn would enhance the USAF’s ability to effectively and efficiently utilize its airlift

prowess. Unfortunately, with billions (or more) possible combinations, finding high

quality solutions is a challenge.

1.6 Current Load Planning Software

 Because of the complexity of this problem, the Department of Defense (DoD),

currently uses a commercial software package called Automated Air Load Planning

System (AALPS) to automate this process. AALPS uses preplanned and actual data for

estimating airlift requirements for a given set of cargo (including pallets and rolling

stock) and creates feasible load plans for each aircraft’s load. It has models for nearly

every commercial and military airlift aircraft and considers all ACL, CB and aircraft

specific constraints. It also has a very large database of military equipment making data

input relatively simple (USTRANSCOM 2007). Unfortunately, it has been shown that,

for palletized cargo, AALPS’ greedy heuristic generates inferior solutions when

compared to a tabu search heuristic (Roesener 2006).

1.7 Research Objectives and Assumptions

 The primary goal of this research is to develop and validate a tabu search-based

algorithm which, given a set of cargo items and a set of available C-5 and/or C-17

aircraft, creates feasible load plans for a minimal number of aircraft such that all of the

required rolling stock and pallets are loaded. This problem is called the Mixed Payload

Airlift Load Planning (MPALP) problem. To be valuable, this MPALP Tabu Search

(MPALPTS) algorithm must provide a better solution than AALPS. Specifically, given a

1-11

set of cargo, this heuristic must produce a feasible loading of all cargo which requires no

more (and preferably fewer) aircraft than AALPS. This feasible solution must account

for aircraft ACL, CB, cargo securing requirements and all aircraft specific loading

constraints.

Given a problem of this scope, there are several assumptions which must be made

to clearly define the problem:

1. Hazardous Cargo: The cargo to be loaded does not have any hazardous cargo-

related loading restrictions.

2. Outsized Cargo: Extremely outsized cargo such as helicopters or large boats

often have specific loading instructions outlined in Air Force Technical Orders.

The research assumes the set of available cargo does not have special loading

requirements (such as a need to rotate an item in the cargo compartment) and that

each item will physically fit in the cargo compartment; there are a very limited

number of unique ways to load outsized cargo, and the problem therefore

becomes trivial.

3. Shoring: Some cargo requires shoring which is small planks of plywood stacked

on top of each other. Shoring is placed under the treads or wheels of some rolling

stock items to help distribute its load over a larger area and protect the cargo floor

from damage. The research assumes aerial port or loadmaster personnel properly

place shoring when required.

4. All cargo has the same destination.

5. The set of available aircraft only includes C-5 and/or C-17 aircraft.

6. In some cargo aircraft, loadmasters prefer to back rolling stock items into the

aircraft to facilitate faster offloads. In this algorithm, rolling stock items all face

forward in the cargo compartment.

The following chapters demonstrate a new tabu search heuristic that consistently

and quickly produces feasible load plans using fewer aircraft than AALPS. The heuristic

1-12

also outputs the placement of each item of rolling stock in each aircraft thereby giving

load planners a complete picture of the best way to load the cargo.

2-1

Chapter 2: Literature Review

2.1 Heuristics Motivation

2.1.1 Classes of Combinatorial Optimization Problems

 A combinatorial optimization problem (COP) is said to be solvable in polynomial

time if the time to reach the optimal solution is bounded above by some polynomial

function of the size of the COP instance. Informally, the decision problem of a COP

answers the question “does there exist a primal solution value as good or better than

[some value] k,” and solving the decision problem a polynomial number of times will

optimally solve the associated COP (Woosley 1998). Hence, a particular COP’s

decision problem (and therefore the COP itself) can be classified into several categories.

First, the non-deterministic polynomial class (NP) defines the class of decision problems

for which a “Yes” answer can be obtained and proven with a polynomial proof (Woosley

1998). A subset of NP is the class of “easy” decision problems (P) for which there exists

a polynomial algorithm (Woosley 1998). All COPs whose decision problem falls in P

can be solved to optimality in polynomial time. Finally, the class NP-complete (NPC)

can be thought of the “hard” decision problems and is known to be non-empty (Woosley

1998). To prove a decision problem is a member of NPC, a problem already known to be

in NPC must be shown to be polynomially reducible to the problem of interest. Thus,

when a COP is said to be NP-hard, its associated decision problem is a member of NPC

which implies there exists no known polynomial algorithm which solves the COP to

optimality.

2-2

2.1.2 MPALPTS Complexity

The MPALP has received a moderate amount of academic attention in the past 15

years. In a broad sense, research has focused on two basic approaches both of which are

discussed in detail later. The first approach is based on a multidimensional knapsack

problem; it assumes each item of cargo has an associated priority, and a limited number

of aircraft are available to transport a subset of the cargo. Hence, the knapsack solution

loads as much cargo as possible on the available aircraft leaving some cargo unloaded.

The second approach uses bin packing techniques to load all cargo items on a minimal set

of aircraft. Because both underlying knapsack and bin packing problems have been

shown to be NP-hard (Garey and Johnson 1979), and the MPALP adds significant

complexity to the problem through the additional constraints (CB, ACL, aircraft specific,

etc.), the MPALP is most likely also NP-hard. No formal proof of this claim is presented.

2.1.3 “Solving” an NP-hard problem

By definition, optimally solving instances of NP-hard COPs cannot be done in

polynomial time, so it is often useful to trade a guaranteed optimal solution for a high

quality solution in polynomial time. Some authors argue that there are very few real-

world instances of COPs which modern computing power cannot solve in reasonable

time (Goulimis 2007); however, the definition of reasonable time often depends on the

situation. The greatest obstacle to optimality for the MPALP is the practical need for

speedy solutions. It is not uncommon for last minute changes to be made to the load

plans due to unforeseen circumstances. These circumstances can range from a faulty

cargo item that is unable to be loaded onto an aircraft (leaking fluids, engine troubles,

2-3

etc.) to a last-minute high priority cargo item that must be included in the load. This

drives the need to generate a new load plan in minimal time (minutes not days) and

motivates the use of a heuristic-based solution.

2.2 Heuristics

 Pearl describes a heuristic, in the most basic sense, as rule or collection of rules

that guides one’s actions with the intent of finding a solution to a problem (Pearl 1984).

Unfortunately, general heuristics do not necessarily guarantee an optimal or even feasible

solution to a problem; however, two broad categories of heuristics do guarantee at least a

feasible solution: approximation algorithms and searched-based algorithms.

 Approximation algorithms guarantee both polynomial time execution and

feasibility, and most can be shown to have a worst-case objective function value bound in

terms of the optimal solution. They follow a series of defined steps (an algorithm) using

a rule of thumb to exploit some structure in the problem to find high quality solutions.

While there is no guarantee of optimality, solutions from approximation algorithms can

be quite close to the optimal solution.

On the other hand, search-based heuristics are akin to finding a minimum or

maximum function value to a mathematical equation using derivative and gradient

information. These heuristics can find the global optimal solution or a local optimal

solution. Given an initial starting point which may or may not be feasible, the generic

local search heuristic attempts to find a feasible solution with an improved objective

function value (Aarts and Lenstra 1997). Like approximation algorithms, the final

solution is guaranteed to be feasible but not guaranteed to be optimal.

2-4

2.3 Tabu Search

In literature, the search-based heuristic called tabu search is often used to find

high quality solutions to MPALP-related instances. The tabu search is an iterative

improvement algorithm which chooses the next solution as the best feasible solution that

neighbors the current solution in some manner. This next solution is not required to be

an improving search direction nor is it even required to be feasible, thereby allowing for

the ability to circumnavigate local optima. The feasible neighbors of a solution are

restricted by a dynamically updated tabu list which prevents returning to recently

explored areas; the notion of recency in this context is formally defined as the tabu tenure

and can be a fixed or adaptively varying value. The challenge with a tabu search and

many other search-based heuristics is the need to tailor the parameters of the search such

that high quality solutions are found for any problem instance (Aarts and Lenstra 1997).

Therefore, it is important to “fine-tune” the algorithm through robust parameter design

techniques. Glover presents a more detailed explanation of tabu search and the

applications to which it has been applied (Glover 1989).

2.4 Knapsack MPALP Instances

The single dimensional knapsack problem can be thought of as a set of items with

associated profits and weights. A subset of these items must be placed in a knapsack

with a limited weight capacity in such a manner to maximize the overall profit. The

integer program is formulated as

2-5

1

1

max

. .

{0,1}, , , 1,2...,

n

i i
i

n

i i
i

i i i

c x

s t

w x b

x c w b Z i n

Figure 3. Knapsack Integer Program

where
1 if item i is placed in the knapsack

0 otherwiseix , ic is the i
th

 item’s profit, iw is the i
th

 item’s

weight and b is the weight capacity of the knapsack. In multidimensional knapsack

problems, additional constraints, such as the actual size or volume of each item, are

included in the formulation. Geometric knapsack problems capture the shape of each

item and the effect the shape has on the ability of items to fit into the knapsack. In

relation to the MPALP, each aircraft can be represented as a knapsack, and each cargo

item can be represented in the set of items which can be placed into the aircraft. By the

problem definition, more cargo are items available than the set of aircraft can feasibly

carry.

2.4.1 Tabu Search Knapsack MPALP

In his research, Chocolaad used a tabu search based heuristic to find quality

solutions to the geometric knapsack MPALP using a single aircraft and a set of cargo

items (Chocolaad 1998). Cargo items were prioritized based on their weights; a knapsack

heuristic selected cargo in each iteration while a packing heuristic determined feasibility.

 The knapsack heuristic was based on a critical event tabu search which alternates

between constructive and destructive phases. The constructive phase adds items to the

2-6

aircraft while the destructive phase removes them. The critical event terminates the

heuristic at the last solution obtained either at the step before a constructive phase search

enters an infeasible region or when the first feasible solution is reached during the

destructive phase. As the knapsack heuristic searches for items to place in the aircraft,

the packing heuristic employs a simple tabu thresholding local search method to check

feasibility requirements. This approach allows non-improving moves to avoid becoming

trapped at a local optimum while ensuring feasibility with respect to CB and aircraft

specific weight constraints (Chocolaad 1998).

 While Chocolaad’s approach was effective in finding quality solutions, the

heuristic’s output only indicated which cargo items were assigned to the aircraft and did

not include where the items were placed inside the aircraft. Further, it was limited to

loading one aircraft at a time rather than loading multiple aircraft simultaneously.

Romaine later expanded Chocolaad’s work by adding the possibility of loading multiple

aircraft simultaneously and removing the implied homogenous aircraft restriction, but the

exact position of each cargo item was still not defined in the heuristic’s output (Romaine

1999).

2.4.1.1 Multiple Choice Multiple Dimension Knapsack Problem (MMKP) Heuristic

 Hiremath and Hill define the MMKP as a knapsack problem consisting of

multiple classes of items and multiple knapsacks; the objective is to select exactly one

item from each class while maintaining the knapsack constraints (Hiremath and Hill

2007). The approach generated an initial solution using a gradient based heuristic called

NG V3 and then refined this solution using a local search heuristic. After constructing

2-7

the initial solution, they utilized two different neighborhood generating functions to

improve the solution. First, they considered exchanging every item in a given class with

the current solution’s item. They picked the best feasible solution which yielded an

improved objective function value and repeated this process until either a maximum

number of iterations were reached or every class was fully explored. In the second

function, Hiremath and Hill performed the same basic search; however, when the search

resulted in a series of non-improving objective function values (i.e. a cycle or a local

optima), they abandoned the search in favor of their DoubleSwap neighborhood. The

DoubleSwap considered two-tuples of classes and searched through both classes,

selecting an item from each class per iteration. If swapping the two items with two items

of the same classes from the current solution yielded a better objective function value, the

DoubleSwap selected that solution and continued searching in other two-tuples of classes.

This search repeated until all two-tuples had been explored or until a maximum number

of iterations had been reached (Hiremath and Hill 2007).

 Their results showed, in general, the second approach created better solutions to

an established set of problem instances and often outperformed many of the leading

heuristic approaches (Hiremath and Hill 2007). While this algorithm does not consider

the MPALP, the MMKP structure is similar to the basic MPALP; thus their choice of

neighborhoods may have merit in generating better MPALP solutions.

While knapsack MPALP instances are adept at loading the high-priority portion

of cargo on a given set of aircraft, many airlift taskings require that all of the cargo be

loaded. For these types of problems, bin packing formulations are preferred.

2-8

2.5 Bin Packing Problems

 Unlike the knapsack approach, a bin packing problem attempts to load the entire

set of items into a minimal number of bins. In relation to the MPALP, all of the cargo

items must be loaded in a minimal number of aircraft. Like knapsack formulations,

multidimensional and geometric versions of the bin packing problem have also been

extensively studied. For a more detailed overview of bin packing problems and some

associated approximation algorithms, see (Vazirani 2003) or (Lodi, Martello and Vigo

2002).

2.5.1 Bin Packing Instances

 This research’s primary goal is to develop a tabu search-based heuristic to find

premium solutions to bin packing MPALP instances. While much research has been

done in this area, most do so by assuming away difficult aircraft specific constraints or

implementing less effective heuristic-based algorithms.

2.5.1.1 Goal Integer Programming Method

 In 1989, Kevin Ng examined the bin-packing MPALP for Canada’s C-130 aircraft

(Ng 1992). His goal was to move a set of cargo items including pallets and rolling stock

on a minimum number of C-130 aircraft. To solve this problem, he used a pre-generated

set of 38 “standard” cargo loadings which were subsets of the overall items to be airlifted.

These standard cargo loadings were certified by Canadian C-130 loadmasters. Using

goal programming, Ng created three priorities which included: all items had to be

airlifted, a minimum number of aircraft was used and the weight of excess capability was

2-9

maximized. This technique gave him the ability to solve the problem to optimality using

branch-and-bound and reduced the required number of aircraft from the manual solution

of 121 to 110 saving the Canadian Air Force $1.21 million (Ng 1992).

 While this approach does have merit, it requires a large set of pre-generated load

plans covering the entire set of cargo to be transported. As Ng pointed out, “there are

severe limitations to using standard loads. Many items do not have standard

dimensions…The model, in its current form does not have the flexibility to modify load

plans” (Ng 1992). While creating template loads for all the vast number and types of

cargo items the USAF airlifts is impractical, AALPS uses template loadings for

commonly airlifted items with the goal of producing higher quality solutions.

2.5.1.2 Two-Dimensional Orthogonal Packing

 Unlike Ng, J.M. Harwig et al. developed an adaptive tabu search algorithm for

two-dimensional orthogonal bin packing (Harwig, Barnes and Moore 2006). While their

problem formulation was not specific to aircraft operations and therefore does not

account for CB or floor weight restrictions, their choice of objective function and

searching methods merit study.

Harwig et al. created a “fine-grained” objective function which effectively

evaluated competing moves within the solution space (Harwig, Barnes and Moore 2006).

The objective function favored the three search moves which were likely to decrease the

overall number of bins. First, they designated an excess bin whose function was to hold

items that were not otherwise packed. When the excess bin was emptied, it was

discarded and a new excess bin was designated. Thus, moves which removed items from

2-10

the excess bin and placed them in other bins were highly favored. Next, an intra-bin

move was attempted to produce a more compactly packed bin. Finally, they incorporated

an inter-bin move which created a large “dead space” within the losing bin; the goal of

this move was to allow the relocation of an item from the excess bin (Harwig, Barnes and

Moore 2006).

Items in the excess bin were also penalized with a unique two-dimensional

potential energy-based function (Harwig, Barnes and Moore 2006). This penalty

function was defined in terms of the height, length and weight of the items within the bin.

Specifically, smaller items were penalized less than larger items because they are much

easier to pack into the other bins.

In addition to the previously described neighborhoods, Harwig et al. employed

ejection chains. When an insert move places a new item in a bin, the result may be the

ejection of another item from the bin. An ejected item is then feasibly placed inside the

excess bin. Finally, they use inter and intra-bin swaps as a means to search through large

portions of the solution space.

When used on a common test set of 500 problems, the algorithm of Harwig et al.

improved on the previously best solutions by an average of 25%. Unfortunately, this

algorithm cannot be directly applied to aircraft loading because it would only guarantee

feasibility with respect to the space inside an aircraft; CG and zone constraints would not

necessarily be satisfied. While their bin packing algorithm would not necessarily

produce feasible results in loading aircraft, their methods may be applicable to this

research endeavor.

2-11

2.5.1.3 Barrier Based Tabu Search

Heidelberg et al. developed a heuristic-based bin-backing algorithm which, “often

matches the capability of expert loadmasters usually requiring no adjustment for better

packing efficiency” (Heidelberg, Parnell and Ames IV 1998). They first show classical

bin-packing heuristics such as level-based algorithms are inadequate at loading aircraft

because they tend to pack the heaviest items towards the left-aft portion of the bin, which,

in an aircraft, would create CB violations. Instead, Heidelberg et al. proposed a packing

barrier approach which uses a barrier (Figure 4) which can be bent at 90° angles at a

maximum of four places (Heidelberg, Parnell and Ames IV 1998).

Figure 4. Heidelberg et al. candidate bin selection

The packing barrier approach can be described in the following manner. First, the

algorithm determines where, relative to the current barrier configuration, an item should

be placed. Next, it chooses the best candidate item to be packed in that section; after

placing the item, the algorithm determines the best shape of the new barrier. As the

aircraft fills with cargo, the probability that subsequent items will exceed the space or

weight capacity of the aircraft increases. When no additional items can be loaded on the

aircraft, the barrier’s shape is changed in an attempt to accommodate a larger item. Once

all barrier combinations have been tried, the aircraft is deemed full.

2-12

Heidelberg et al. tested this algorithm on two sets of random sized cargo items

constructed to represent typically sized military cargo and compared its performance to

the CLS (Constrained Local Search) and BFLD (Best Fit Level Decreasing) algorithms

(K. Heidelberg 1995) (Gehring 1990). The first test set consisted of a random number of

items. Each item’s size was also randomly generated. The three methods were compared

using 20 different instances from the first test set. The second set was designed to be

more representative of actual aircraft loads. It included a random number of a smaller set

of randomly sized items each of which was duplicated between five and ten times. The

three methods were also compared using 20 instances from the second test set.

In the 20 trials of cargo loads from the first test set, their algorithm outperformed

CLS and BFLD in every instance. CLS outperformed their algorithm once and BFLD

tied it twice in the 20 trials of cargo loads from the second test set (Heidelberg, Parnell

and Ames IV 1998). In both cases, their algorithm took longer to find a solution than the

other two; however, the worst-case running time in any of their test replications was

under two minutes.

Unfortunately, Heidelberg et al. did not elaborate on the methods they used to

handle aircraft specific constraints such as ACL, zone restrictions or even the space

required to chain cargo items to the floor; however, their heuristic must account for these

constraints because AALPS uses it to produce feasible load plans (Heidelberg, Parnell

and Ames IV 1998). Despite its operational success, Roesener showed AALPS to be less

effective than a tabu search based approach with respect to loading pallets (Roesener

2006).

2-13

2.5.1.4 MPALP Specific Tabu Search

Roesener developed a tabu search based heuristic to solve a portion of the

MPALP which accounts for CB, ACL and aircraft specific constraints (Roesener 2006).

This research is strongly related to his work; however, he focused on loading pallets

while this research loads both pallets and rolling stock. There are four areas of

Roesener’s research that are of interest: the initial solution, tabu list construction,

objective function calculations and neighborhood search functions.

Roesener began by determining the upper and lower bounds on the number of

aircraft required to load the pallets (Roesener 2006). The upper bound came from an

AALPS solution to the same problem instance which was known to be feasible. For the

lower bound, he used the following equation:

total number of pallets total pallet weight
max ,

number of pallet positions in aicraft aircraft ACL

Equation 1. Roesener's Lower Bound Calculation

This equation defines a relaxation of the problem by possibly allowing CB violations

resulting in a lower bound to the number of required aircraft.

Using the upper bound as the initial set of available aircraft, Roesener developed

an algorithm which constructs an initial solution by simultaneously maximizing both

volume and ACL. First, the pallets are placed into the “Big Bin” (which is similar to

Harwig’s excess bin) and then the pallets are sorted by weight from heaviest to lightest

(Roesener 2006), (Harwig, Barnes and Moore 2006). The sorted pallets are then divided

into equal sized groups. The available and empty aircraft with the largest ratio of ACL to

2-14

open pallet positions is selected for loading. Pallets are iteratively loaded into the

selected aircraft by placing the heaviest pallet in each group on the aircraft until either the

aircraft has no open pallet positions or has reached its planning ACL. The next step is to

refine this aircraft’s loading. If all pallet positions are used but there is excess ACL

remaining, the lightest pallet on the aircraft is replaced with the heaviest pallet in the Big

Bin that does not violate the aircraft’s ACL. On the other hand, if there are open pallet

positions but the planning ACL has been reached, the heaviest pallet on the aircraft is

removed, and as many light pallets as possible are placed onto the aircraft. This cycle

continues until either all the aircraft have been fully loaded as determined by the

algorithm or the Big Bin is empty.

It is important to note this initial solution is not guaranteed to be feasible with

respect to CB or aircraft specific constraints, and the solution may not even load all of the

cargo on the aircraft. The algorithm’s tabu search is created such that it will seek

feasibility for these constrains as it tries to decrease the number of required aircraft.

For the tabu tenure, Roesener selected a dynamic value which decreases with

improving moves and increases with worsening moves. The initial value for the tabu

tenure was calculated based upon the number of pallets available for loading (Roesener

2006). This effectively intensified searches within areas of improvement and diversified

in areas of poor quality solutions (Roesener 2006).

The quality of any particular solution was determined using a five part additive

objective function which penalizes infeasibility and undesired search locations. The

overall goal was to minimize the resulting objective function value. Each part of the

2-15

objective function has a single or multiple weights, which are set to drive the search

toward desirable and feasible solutions. First, Roesener penalized unloaded pallets (i.e.

any pallets remaining in the Big Bin) using the following equation:

1 1
, {0,1} 1,...,

N

i ii
B B i N

Equation 2. Roesener’s Unloaded Pallet Penalty Function

This equation simply assigns a penalty of
1 to each pallet which remains in the

Big Bin. In this equation, N equates to the total number of pallets and Bi is a binary

variable which indicates whether a pallet has been loaded (Roesener 2006).

Next, Roesener penalized each aircraft utilized in the solution. This drives the

tabu search into areas where fewer aircraft were required. This was accomplished with:

1
, {0,1} 1,2,..., ,

M

j j j jj
C A A j M C R

Equation 3. Roesener’s Aircraft Cost

In Equation 3, M represents the total number of aircraft available, and Aj is a

binary variable indicating whether the j
th

 aircraft is used in the solution. This equation

gives load planners extra flexibility by allowing individual cost coefficients to be

assigned to individual aircraft or aircraft types. It also prevents the loading of

unnecessary aircraft by ensuring the volume of each loaded aircraft is utilized to the

maximum extent possible (Roesener 2006).

 One goal of Roesener’s objective function is to maximize the utility of each

aircraft’s ACL. Hence, there is a penalty assigned to aircraft whose ACL is not 100

2-16

percent utilized. Roesener viewed ACL as a non-strict upper bound and allowed aircraft

to be overloaded by up to 2.5%. Thus, the ACL penalty function has two parts: under-

loading and overloading.

2

2 1
100 % , {0,1} j=1,2,...,M, {0,1} j=1,2,...,M

M

j j j jj
WF A X A X

2

2 3 1
100 % (1), {0,1} j=1,2,...,M, {0,1} j=1,2,...,M

M

j j j jj
WF A X A X

Equation 4. Roesener’s Under-loading and Overloading Penalty Functions

As before, M represents the number of aircraft and Aj indicates whether aircraft j is used

in the solution, while Xj = 1 if the j
th

 aircraft has unused ACL and equals zero otherwise.

Notice that both functions assign a squared penalty for deviating from the ACL and the

overloading penalty is penalized more heavily than the under-loading penalty when
3

1

(Roesener 2006). This ensures solutions with underloaded aircraft are significantly better

than alternate solutions while still allowing the possibility of overloading.

 Roesener also included penalty functions for lateral and longitudinal CB

requirements. As mentioned in section 1.5, longitudinal CB constraints are critical to

safe aircraft operations and include a desired position within the upper and lower bounds

where fuel consumption is minimized. Lateral CB constraints (i.e. balancing the load

relative to a centerline drawn down the length of the aircraft) are not normally considered

in the load planning process because the aircraft pilot can compensate for nearly any

lateral imbalance; however, Roesener included this calculation as an added benefit of his

method. These portions of the objective function are defined in Equations 5 and 6:

2-17

2

4 1
_ , {0,1} 1,2,...,

M

j j jj
Lat CB A A j M

Equation 5. Roesener’s Lateral CB Penalty Function

2
5 j j1

2
5 6 j j1

(Target_Long_CB -Long_CB)

(Target_Long_CB -Long_CB) (1)

{0,1} 1,2,..., , {0,1} 1,2,...,

M

j jj

M

j jj

j j

A Y

A Y

A j M Y j M

Equation 6. Roesener’s Longitudinal CB Penalty Function

In Equation 5, the desired lateral CB is zero, so any deviation from zero is penalized. For

Equation 6, Yj = 1 when the CB is within acceptable limits, and 0 when it is not. Thus,

the equation penalizes an acceptable but less than desired CB much less than an

infeasible CB; higher quality solutions are feasible and close to the target CB (Roesener

2006).

 After the initial solution and its associated objective function value is calculated,

Roesener’s main tabu search begins. It combines four strategically chosen neighborhood

functions which are similar to Chocolaad’s and Harwig’s. The first function, Big Bin to

Aircraft Insert, is performed only if the initial solution leaves any pallets in the Big Bin.

It selects the heaviest pallet in the Big Bin and places it into an empty pallet position on

the aircraft which has the greatest available ACL. If all of the aircraft have maximized

ACLs, it puts the pallet on the aircraft which would create the smallest ACL violation.

This process is repeated until the Big Bin is empty.

 While traversing the solution space, if an aircraft becomes trivially loaded, which

Roesener defines as utilizing less than 25% of the ACL, or if the search becomes

2-18

stagnated, a diversification neighborhood is invoked called Unload Entire Aircraft. This

neighborhood empties an entire aircraft by using the same logic as the previously defined

Big Bin to Aircraft Insert move; unloading ceases if every remaining aircraft has no

vacant pallet positions.

 If the current solution is infeasible with respect to CB or aircraft specific

constraints, the Intra-Aircraft Insert/Swap neighborhood function is chosen. In this

neighborhood, the algorithm calculates the objective function value of every possible

combination of swapping two pallets or moving a pallet into a currently empty position

within a single aircraft. The best non-tabu permutation of the current solution is chosen

as the new solution; iterations of this neighborhood typically produce a feasible loading.

 The final neighborhood is the Inter-Aircraft Insert/Swap Neighborhood. This

neighborhood is used as the primary means of traversing the solution space. In this

move, the algorithm calculates objective function values for every possible swap of two

pallets or a pallet and an empty position between two non-empty aircraft. The algorithm

picks the best non-tabu solution as the next move.

 To test his tabu search, Roesener executed twelve scenarios each of which varied

levels within the number of pallets, type(s) of aircraft, or the distribution of pallet

weights. In nearly every trial, his algorithm decreased the number of required aircraft

from the best AALPS solution; however, his search techniques required more time to

generate the solution than AALPS. Unlike AALPS, Roesener’s algorithm returns

solutions that were deemed feasible, trivially infeasible and marginally infeasible. As

mentioned before, ACL can be viewed as a loose upper bound, so his trivially and

2-19

marginally infeasible solutions allow the ACL to be exceeded by a maximum of 1.5%

and 2.5%, respectively. This gives the planner extra flexibility to decide if slightly

exceeding the ACL is worth the potential of using fewer aircraft (Roesener 2006).

2.5.2 Summary

 This chapter presented research which has been previously conducted in the area

of tabu search in general and aircraft loading in particular. The knowledge of previously

conducted research enables this thesis to focus on new methods of finding MPALP

solutions while preventing duplication of efforts.

3-1

Chapter 3: Methodology

3.1 MPALP Tabu Search

 Much of the MPALPTS presented here is based off of Roesener’s work; however,

the unique complexities of feasibly loading rolling stock requires additional objective

function costs and an efficient method of packing the cargo to meet CB and zone

constraints (Roesener 2006).

3.2 Decision Variable Definition

 The primary decision variable within MPALPTS is a four-dimensional matrix

defined as:

2

1 1

and , FSFwd,FSAft,CargoID

 = FSFwd,FSAft,CargoID,Centered

where 1,..., , 1,2 , 1,...,

A

ij

i j

ijk

ij

c C Z

x

i A j k c

Equation 7. Decision Variable

 In Equation 7, A represents the number of aircraft used in the current solution and

is indexed by i; j represents the number of columns in the aircraft where one represents

the left column and two represents the right column; k represents a specific cargo item

loaded on the i
th

 aircraft in column j. The total number of cargo items, C, can be

determined by summing all the cargo items in each column of each aircraft. “FSFwd”

and “FSAft” represent the FS where the front and back of the cargo item is loaded.

“CargoID” represents the identification of the cargo item itself, and “Centered” is binary

3-2

such that a value of 1 indicates the specific item is centerline loaded. For example,

1,2,4 [512, 612, 9, 0]x

indicates that cargo item nine is the fourth item loaded on the

right column of aircraft one from FS512 to FS612 and is not centerline loaded. This

variable is used to represents the current solution within the MPALPTS.

3.3 MPALPTS Input Tables

The MPALPTS uses Microsoft Excel spreadsheets to represent all characteristics of

the available aircraft and cargo and allows the user to import this data directly. Where

possible, the actual values within each table are shown; however, due to DoD security

policies, some aircraft-specific data is removed.

3.3.1 Aircraft Representation

The aircraft available to be loaded is represented as a x 19A matrix with the

following information:

Table 1. Available Aircraft Table

Acft

Type

(1)

ACL

(2)

FS

Min

(3)

FS

Max

(4)

Col

Width

(5)

Cols

(6)

Zones

(7)

Tail

(8)

%Sp

(9)

%Wt

(10)

Useage

Fee

(11)

Lft

(12)

Rt

(13)

Ramps

(14)

Aft

Ramp

FS

Min

(15)

Aft

Ramp

FS

Max

(16)

Fwd

Ramp

FS

Min

(17)

Fwd

Ramp

FS

Max

(18)

Pallet

Pos

(19)

1 150000 395 2131 114 2 7 9007 0 0 1000 0 0 2 1971 2131 395 517 18

2 90000 390 1403 106.5 2 4 1468 0 0 1000 0 0 1 1165 1403 0 0 9

This table defines the basic characteristics of each aircraft as well as provides a location

for storing general information about the cargo loaded on the aircraft. An aircraft type

(1) of one indicates a C-5 aircraft, and a two indicates a C-17. The aircraft’s ACL (2),

cargo compartment dimensions (3, 4), number and width of any columns (5, 6), the

3-3

number of zones (7), and the number and locations of any ramps (14 to 19) are all defined

in this table.

3.3.2 Cargo Representation

Cargo representation is accomplished with a similar x 20C matrix whose

columns are shown in Table 2:

Table 2. Cargo Representation

L W H # Axel
Axle Location Axle Weight Total

Wt
CB ID Type

Descrip

-tion
1 2 3 4 5 6 1 2 3 4 5 6

190 106 106 0 0 0 0 0 0 0 0 0 0 0 0 0 23500 92 25 1 Vehicle

294 125 142 4 63 111 167 215 0 0 9480 9500 11280 10900 0 0 41160 143 26 1 Truck

88 108 70 0 0 0 0 0 0 0 0 0 0 0 0 0 2500 0 10 2 Pallet

The first four columns describe the length, width, height (in inches) and the number of

axles of the cargo item. The next six columns represent the measurement from the front

of the cargo item to each of up to six axle locations (at the time of this research, very few

rolling stock items had more than six axles), and the subsequent six columns give the

weights of all the axles. Tracked vehicles and pallets have zero axles and zero axle

weights. The total weight is placed in the 17th column. The CB represents the center of

balance of the cargo item (rolling stock with axles) measured in inches from the front of

the cargo item and is computed by:

3-4

6

1

Axle Location AxleWeight

 Item's Total Weight

j j

j
CB

Equation 8. CB Calculation for Cargo with Axles

For tracked vehicles, the CB is predetermined and specified for the loadmaster

because there are no traditional axles present for manual calculation. A pallet’s CB is

assumed to be in the geometric center of the pallet position in which it is placed. The last

columns of Table 2 are the “Cargo ID” (which is a unique index for every cargo item),

“Type” (which is set to one for rolling stock and two for pallets), and “Description”

(which is a text field specifying the name of the cargo).

3.3.3 Zone Representation

Aircraft cargo zones define the weight restrictions of rolling stock items within

specific zones of the cargo compartment. Table 3 shows the header information

contained within the MPALPTS zone table and defines C-5 and C-17 zone constraints.

Table 3. Zone Representation

Cargo Zones C-5

Zone
Sub-

Zone

FS

Lower

(1)

FS Upper

(2)

Max Wt

Single Axle

(3)

Axle

Wt Min (4)

Axle Wt

Max (5)
Coef (6) Intercept (7)

In Length

(8)

Center-

line (9)

Max

Total Wt

(10)

The “Zone” column represents the zone and “Subzones” represents the number of

subzones that are within that zone. Columns (1) and (2) represent the fore and aft FS

boundaries of the zone while “Max Weight Single Axle” represents the allowable

maximum weight for a single axle within the zone. The “Centerline” column defines the

3-5

weight of an axle within the zone which, if exceeded, requires the cargo item to be

centerline loaded while the “Max Tot Wt” is the maximum total allowable weight for all

the cargo within that zone. The weight of adjacently loaded axles within a specified

distance of each other (“In Length” column) can be restricted by the piecewise linear

equations such as the one shown in Figure 5.

Figure 5. Representation of Adjacently Loaded Axle Constraints

Figure 5 represents the weight restrictions placed on two adjacent axles in a

particular zone that are within the specified distance of each other. One enters the chart

on the left side at the axle weight of the heaviest axle and travels horizontally until

reaching the bold line. The maximum amount of weight allowed for the lighter axle is

read on the bottom scale. For example, if the heaviest axle weighs 15,000 pounds, the

maximum weight of the adjacent axle is 13,000 pounds. In order to model this piecewise

linear relationship, the equation of each line segment (the slope and the intercept) was

calculated and called a subzone. Each subzone is defined by the range of weights each

25

20

15

10

5

0

0 5 10 15 20 25

A
x

le
 A

 W
ei

g
h

t
(1

0
0

0
 l

b
s)

Axle B Weight (1000 lbs)

3-6

line segment represents which is recorded in columns (4) and (5) of Table 3. The

allowable weight of an ajacently loaded axle can be determined from Equation 9.

Allowable Weight = Cargo Coef Axle Weight Intercept

Equation 9. Allowable Weight Calculation

3.3.4 CB Lookup Table

 MPALPTS uses a CB lookup table defining the acceptable ranges of CB given the

total weight of all cargo. The actual acceptable CB lookup charts for both the C-17 and

C-5 are described by extremely complex piecewise non-linear equations; however, the

CB table MPALPTS uses is a discretised table used by load planners when calculations

must be performed without the aid of AALPS (Air Mobility Command 2004). As in

Roesener’s work, this table is used to determine the acceptable and target CBs.

3.3.5 Pallet Placement Tables

 The last table defines the pallet position locations and their respective weight and

height constraints within each aircraft. MPALPTS uses this table to verify all the pallets

loaded in the aircraft are in feasible locations.

3.4 Objective Function Costs

 In order to drive the search toward improving feasible solutions, careful

consideration must be made in choosing objective function costs. In MPALPTS, the total

cost is divided into seven sub costs: Aircraft Usage Fee, Under Weight Fee, Over Weight

Fee, CB Fee, Target CB Fee, Zone Fee and Ramp Fee. Each sub cost is multiplied by a

3-7

non-negative parameter allowing for fine adjustments of its contribution to the overall

cost.

3.4.1 Aircraft Usage Fee

 The aircraft usage fee is a user-definable parameter which assigns the entire fee if

any cargo is loaded in a particular aircraft. Mathematically, it is represented as:

1
, U {0,1} 1,2,..., ,

A

j j j jj
C U j A C R

Equation 10. MPALP Usage Fee

where Cj represents the cost of the j
th

 aircraft and Uj is a binary variable indicating

whether (Uj =1) or not (Uj =0) the j
th

 aircraft contains any cargo.

3.4.2 Under/Over Weight Fee

Unlike Roesener’s weight penalties, MPALPTS uses three states to compute the

cost of an aircraft’s weight. Mathematically, they are:

3

2

1 1

2 1

1

,

, ,

, ,

% 100 , {0,1} j=1,2,...,A

100 % (1) , {0,1} j=1,2,...,A

100 % (1) 1 , {0,1} j=1,2,...,A

j j

j j

A

j j j jj

A

j j j jj

A

j j j jj

ACL U Y Y U

ACLU Y W Y U W

ACLU Y W Y U W

Equation 11. Under/Over Weight Fee

where, Yj is equal to one if the aircraft is overweight and zero otherwise, and Wj is equal

to one if the aircraft is utilizing between 30% and 100% of its ACL and zero if the

aircraft’s ACL usage percentage is between 0% and 30%. These percentages were

3-8

determined through extensive testing using single factor at a time parameter setting

techniques. Depending on the λ values, an example of this fee is graphically represented

in Figure 6.

Figure 6. Representative Under/Overweight Curve

As an aircraft becomes overloaded, its cost becomes exponentially greater while

solutions having a slight under-loading are only marginally penalized. However, if the

MPALP heuristic is close to emptying an aircraft, it is encouraged to continue to do so

with a negative cost (profit). This unique cost schedule drives solutions towards either

0% or 100% ACL utilization.

3.4.3 CB Fee and Target CB Fee

 The goal of the MPALP search is to create feasible aircraft loadings whose CBs

are as close as possible to the target CB. To accomplish this, the following longitudinal

CB fee equations are used:

-2000

-1000

0

1000

2000

3000

4000

0 20 40 60 80 100 120 140

Fe
e

% ACL

MPALPTS Under/Overweight Fee

Fee

3-9

2

4 1

2

5 541

,

,

TargetCB -CB , 0,1 1,...,

1 TargetCB -CB , 0,1 1,..., ,

j j

j j

A

j j j jj

A

j j j jj

U

U U

U B B j A

B B j A

Equation 12. CB Fee

where Bj equals one if the j
th

 aircraft’s CB is within acceptable CB limits and zero

otherwise. Uj is a binary variable indicating whether (Uj = 1) or not (Uj = 0) the j
th

aircraft contains any cargo. Notice that both equations assign fees based on the proximity

of the calculated CB to the target CB; however, because 54 , the cost associated with

being out of CB limits is much greater than being within CB limits.

3.4.4 Zone Fees

 Zone fees are divided into five sub fees: (1) axles that, by themselves, are too

heavy for a zone, (2) adjacent axles that are too heavy, (3) zones whose total cargo

weight is too heavy, (4) zones having cargo items that require center loading but are not

loaded in the center and (5) a pallet that is too heavy or tall for its pallet position. These

five sub fees are not mutually exclusive which leads to the following complex additive

fee calculation:

3-10

1 1

2

6 1 1 1 1

6 1 2 21 1 1

2

6 1 1 1

2

6 1 1

AxleWt MaxAxleWt

AxleWt MaxAxleWt

CargoWt

CargoWt MaxZoneWt

ij ijk

i i k

ij

ijm

A c a

ijkl ijkl ijkli j k l

A c a

i kl i kl i kli k l

A c

ijk ijki j k

z

imjn imjn mj n

H

S

T

D
1 1

2

6 1 1 1

1 1 1

CargoWt

, 0,1 1,..., , 1,2 , 1... , 1...

0,1 1,..., , 1... , 1...

0,1 1,..., , 1,2 , 1... , 1...

0,

ij

A Z

i m

A c

ijk ijki j k

ijkl ijk ij ijk

i kl i i k

imjn ijm

ijk

P

H T i A j k c l a

S i A k c l v

D i A j m Z n z

P 1 1,..., , 1,2 , 1... iji A j k c

 Equation 13. Zone Fees

Starting with the first term, cij represents the number of cargo items that are loaded in the

j
th

 column of the i
th

 aircraft. Correspondingly, aijk represents the number of axles on the

cij
th

 cargo item, and Hijkl is a binary variable indicating whether (Hijkl = 1) or not (Hijkl = 0)

the aikj
th

 axle is too heavy for its zone. If it is, it assigns a penalty of the difference

between that axle’s weight and the maximum allowed axle weight for that zone. The

second term assigns fees when adjacent axles are too heavy. The term ai1k (note: the

middle index is a one, not i) represents the number of axles of the cij
th

 cargo item on the

left side of the cargo compartment. Si1kl (note: the second index is a one) is a binary

variable indicating whether (Si1kl =1) or not (Si1kl =0) the ai1k
th

 axle has an adjacency zone

violation. If it does, it assigns a cost based on the difference between the conflicting

axle’s weight in the right column and the maximum allowable weight for that right side

axle. This notation is used to avoid assigning double costs for a single adjacency

violation. The third term represents the fee associated with a cargo item that should be

3-11

center loaded but is not. Tijk is a binary variable which indicates whether (Tijk = 1) or not

(Tijk = 0) the k
th

 item in column j on the ith aircraft should be centerline loaded. Items not

properly centerline loaded are assigned a penalty equal to that cargo item’s total weight.

The fourth term determines if the total cargo weight in a particular zone is too heavy.

The variable zimj represents the total number of axles loaded in the j
th

 column of the i
th

aircraft in zone m, and Dimjn is a binary variable indicating whether (Dimjn = 1) or not

(Dimjn = 0) the total weight of the n axles in zone m is greater than the zones maximum

allowable weight. If it is overloaded, the penalty assigned is equal to the difference

between the total cargo weight in zone m and the maximum cargo weight allowed in zone

m. Finally, Pijk is a binary variable which indicates whether (Pijk =1) or not (Pijk =0) the k
th

item in the jth column of the i
th

 aircraft is a pallet that is either too heavy or tall for its

pallet position. The objective function is penalized by the pallet’s weight if a violation is

present.

 Zone violations constitute infeasibilities which prevent safe flight; they are

extremely difficult constraint types to model in the MPALP and can account for a large

portion of the objective function value. When these violations are corrected, large

objective function improvements are realized.

3.4.5 Ramp Fees

When an aircraft is being loaded, its ramp or ramps are lowered to allow rolling

stock items to be towed or driven onto the aircraft; however, when an aircraft is in flight,

its ramps are closed and lie at an upward angle with respect to the rest of the cargo floor.

Because of this, one must consider the situation where a rolling stock item spans a ramp.

3-12

Ramp fees are assessed to prevent situations where a tracked vehicle spans a ramp or

when a portion of any vehicle could contact the ramp. The only acceptable configuration

for a wheeled vehicle to span the ramp is if it has at least one axle resting on the cargo

floor and one resting on the ramp. This conservatively prevents the situation where all

the vehicle’s axles are on the cargo floor and the aft (or forward) portion of the vehicle

overhangs a ramp. In this situation, the overhanging portion could come in contact with

ramp when it is raised to the closed position. The following ramp fee equation is used:

2

7 1 1 1
CargoWt

0,1 1,..., , 1,2, 1...

ijA c

ijk ijki j k

ijk ij

R

R i A j k c

Equation 14. Ramp Fee

Rijk is a binary variable which indicates whether (Rijk = 1) or not (Rijk = 0) the k
th

 item in

column j on the i
th

 aircraft has a ramp constraint violation. If it is in violation, the

assigned cost is a multiple of the item’s weight.

3.5 MPALPTS Neighborhoods

The four neighborhood functions within MPALPTS are modeled after Harwig’s

and Roesener’s work. They include intra-aircraft swap, inter-aircraft swap, inter-aircraft

insert, and empty aircraft. In order to save computational time, only intra-aircraft swap

actually evaluates its entire neighborhood. The other insert and swap neighborhoods

evaluate a changing subset of their full neighborhood. Specifically, the first time the

inter-aircraft swap neighborhood is called, it picks the best solution found from swapping

3-13

all cargo items between the following pairs of aircraft: 1 2 3 4 5 6 1, , , ... ,Aa a a a a a a a .

The next time it is called, it increases the “distance” between aircraft and swaps all cargo

items between the following pairs of aircraft: 1 3 2 4 3 5 2, , , ... ,Aa a a a a a a a . This

leads to exactly A pairs of aircraft evaluated each time the neighborhood is called.

Through algorithmic testing, this reduced neighborhood approach tended to find solutions

of comparable quality to full neighborhood searches in significantly less time.

3.5.1 Inter-Aircraft Swaps

 Inter-aircraft swaps are primarily used to rapidly improve the initial solution. The

neighborhood explores all possible combinations of swapping one cargo item in one

aircraft with another cargo item in another aircraft within the previously described

reduced set of aircraft. To ensure pallets remain aft of rolling stock, pallets can only be

swapped with other pallets, and rolling stock can only be swapped with rolling stock.

Unlike swapping pallets which always have identical width and length, rolling

stock swaps are much more complicated. If the two cargo items are of different

dimensions, the neighborhood function must determine if it is possible to fit a larger item

in the location the smaller item previously occupied. If such a swap is not possible, then

the algorithm determines if it is possible to slide the cargo to allow the larger item to fit.

If the larger item still cannot fit, then that particular swap is ignored, and the algorithm

continues to the next item. Thus, inter-aircraft swaps never allow the cargo items to

exceed the physical dimensions of the cargo compartment; however, it is permitted to

cause an aircraft to exceed its planning ACL. After each swap, both aircraft’s loads are

3-14

sent through the Fix Load Function (section 3.6) which attempts to resolve zone,

centerline and ramp violations. The best neighborhood solution is retained as the next

solution.

3.5.2 Inter-Aircraft Inserts

 Unlike inter-aircraft swaps, the inter-aircraft insert neighborhood excels at fine-

tuning a solution with relatively small objective function improvements. When invoked,

the inter-aircraft insert attempts to remove a cargo item from an aircraft and place it in a

feasible location on a second aircraft. The algorithm attempts to place the cargo item in

the farthest aft position of the column having the fewest number of cargo items while

ensuring no rolling stock items are placed behind a pallet. If the cargo item will not fit,

the inter-aircraft insert algorithm determines the maximum forward shift for the cargo in

that column to accommodate the new item. If, even after sliding the cargo forward, the

item will not fit, it performs the same procedure on the other column. If the item will not

fit in either column, the insert is terminated and the algorithm continues to the next cargo

item in the losing aircraft. Pallet items are only inserted when the gaining aircraft has

open pallet positions. After each successful insert, the Fix Load Function is called. The

intra-aircraft swap neighborhood is invoked on the best solution from the reduced

neighborhood, and this solution is retained as the next solution.

3.5.3 Empty Aircraft Neighborhood

 If MPALPTS determines it may be possible to empty an aircraft through the State

Determination function (section 3.10) and it has already found a completely feasible

3-15

solution using the current set of aircraft, it invokes the empty aircraft neighborhood. This

neighborhood, which is essentially a series of inter-aircraft inserts, identifies all the

aircraft which currently utilize less than 75% of their ACL or less than 45% of their total

space. These values were experimentally determined through single factor at a time

testing. From this subset of aircraft, the neighborhood selects the aircraft with the

smallest planning ACL to empty thereby leaving the bigger aircraft to hold the remaining

cargo. It attempts to insert all of the cargo from this aircraft into any or all remaining

aircraft. If the aircraft cannot be emptied, it removes that aircraft from the subset and

repeats this procedure on the remaining aircraft in the subset until an aircraft is emptied

or no aircraft remain in the subset.

3.5.4 Intra-Aircraft Swaps

 Intra-Aircraft Swaps are intensification moves; their primary utility is to obtain an

aircraft CB that is as close as possible to the target CB rather than explore new cargo

permutations. This neighborhood is used to refine the initial solution as well as the best

solution found in the inter-aircraft swap and insert neighborhoods. First, this function

swaps all the items in a given column and computes the best solution. These swaps are

relatively easy to accomplish because intra-column swaps cannot result in situations

where the cargo does not fit in the column. Inter-column swaps are similar to inter-

aircraft swaps in that if the cargo items are of different sizes, it may be possible for a

particular swap to be infeasible. Thus, the same logic from inter-aircraft swaps is

incorporated into these inter-column swaps within a single aircraft. The intra-aircraft

swap also examines pallet swaps as well as inserting a pallet into an empty position aft of

3-16

rolling stock within the aircraft. After each successful swap, the Fix Load Function is

called, and the swap with the lowest cost is chosen as the next solution.

3.6 Fix Load Function

 The Fix Load Function is used to reload an aircraft if its current configuration has

zone, ramp, axle or centerline violations. Essentially, it removes all of the rolling stock

from the aircraft while leaving the pallets in their original locations. It replaces each

rolling stock item, alternating between columns, in the original order and column from

which it came; however, it attempts to arrange them such that there are no violations.

This is done by placing the first item from the left side at the farthest forward point in the

aircraft and then systematically sliding it aft until all violations are corrected. The Fix

Load Function then places the first item from the right side and slides it in the same

manner. Items continue to be inserted in alternating columns until all items have been

repositioned or until an item overlaps a pallet or cannot feasibly fit in the remaining

space. If a particular load cannot be corrected, the algorithm returns the original solution.

After each successful fix, the algorithm calls the Slide CB function (section 3.7) to try to

fix any CB violations.

3.7 Slide CB Function

 After each successful Fix Load Function call, the Slide CB Function recalculates

the aircraft’s CB and determines whether it falls into acceptable ranges. If the CB is

violated, it simultaneously slides all rolling stock items only enough to achieve a feasible

CB. Because pallets have predetermined locations, they cannot be included in this

3-17

function. The required distance of the slide is simply the number of inches by which the

current CB falls outside of the acceptable bounds. Mathematically, the CB for the i
th

aircraft is defined by the cargo’s total moments divided by the cargo’s total weight where

a cargo item’s moment is the product of its weight and the FS on which its weight is

centered.

2

1 1

2

1 1

CargoMoment

CargoWeight

ij

ij

c

ijk ijkj k i
i c

iijkj k

Weight CB
CB

Weight

Equation 15. CB Calculation

If iCB is determined to be out of the range min max,CB CB , one can determine the distance

the CB requires shifting by Equation 16 and the resulting CB can be computed using

Equation 17.

max max max

min max min

max ,

min ,

0 otherwise

i i

i i

CB CB FwdShift CB CB

CB CB AftShift CB CB

Equation 16. CB Shift Calculation

2

1 1

2

1 1

ij

ij

c

ijk ijkj k

i c

ijkj k

Weight CB
CB

Weight

Equation 17. Calculation

3-18

In Equation 16, represents the number of inches required to shift the cargo to the

nearest acceptable CB boundary. FwdShiftmax and AftShiftmax represent the maximum

amount the cargo can be shifted forward or aft within the longitudinal bounds of the

cargo compartment; this equation includes any pallets present in the load. Using

Equations 16 and 17 together, the amount one needs to shift the cargo itself to move the

CB into its feasible bounds is simply .

3.8 Tabu List

MPALPTS uses a single tabu list to track which moves are deemed to be tabu. The

list, , 1... , 1...a cTL a A c C , is constructed as an x A C matrix and represents the

iteration count when cargo item c can be returned to aircraft a. For example, assume the

inter-aircraft insert neighborhood determined the best non-tabu solution resulted from

moving cargo item 12 from aircraft 2 to some other aircraft. Any new solution which

returns cargo item 12 to aircraft 2 is considered tabu until the tabu tenure expires.

Mathematically, TL is updated by 2,12TL iteration tabutenure where iteration is the

iteration count when that particular move became tabu. An inter-aircraft swap, which can

be described as two inter-aircraft inserts, makes two such updates to TL which prevents

the swap.

To determine if a move is tabu, it is simply necessary to compare the current

iteration count to the value within the appropriate TL cell; this is an extremely quick and

efficient process. If the iteration count is greater than the tabu list’s value, the move is

3-19

permitted. The inspiration for this method of tabu list construction came from Alfonsas

Misevicius’ tabu list in his traveling salesman problem heuristic (Misevicius 2004).

3.9 Initial Solution Generation

 MPALPTS uses a heuristic to determine the number of aircraft required to load

the entire cargo set and is roughly based off of Roesener’s idea of dividing the cargo into

groups (Roesener 2006).

 First, the cargo is sorted by weight from largest to smallest and is then divided

into two sets of k groups, one for pallets and one for rolling stock. Through

experimentation, using k = 4 groups generated the highest quality solutions; this value

coincides with Roesener’s research (Roesener 2006). The initial solution generation

heuristic begins with the first aircraft in the available aircraft list and attempts to load as

many items as possible from the first (heaviest) rolling stock group into the aircraft. In

order to keep the number of items on each side of the cargo compartment reasonably

balanced, it loads the next item into the column with the least number of items; ties are

arbitrarily assigned to the left column. If the first item of a group will not fit, the

heuristic moves to the first item in the next group. It repeats this process until the first

item in all four groups will not fit anywhere in the aircraft or until 100% of its ACL has

been utilized, whichever occurs first. After an aircraft is filled with rolling stock, the

same procedure is used to fill it with pallets. Once there are no open pallet positions,

100% of its ACL has been utilized or no other items will fit on the aircraft, the heuristic

picks the next aircraft in the list and repeats the loading process until either all the cargo

has been loaded or it runs out of available aircraft to load. If the user did not provide

3-20

enough aircraft to load all the cargo, the MPALPTS ends with an error message

indicating it requires additional aircraft for the initial solution.

 As the heuristic loads the aircraft with rolling stock, it determines the average axle

weight and the item width which requires the item to be centerline loaded in the current

aircraft. It uses these values to determine whether an item requires centerline loading;

this generates a conservative number of aircraft in the initial solution.

 After generating this initial solution, a series of intra-aircraft swaps and fix load

procedures are performed on each aircraft in an attempt to find a feasible (or as close to

feasible as possible) solution. However, the initial solution is only guaranteed to load all

the available cargo such that it physically fits on each aircraft and the total weight of each

aircraft does not exceed its ACL. It is up to the MALPTS to find the best feasible

solution.

3.10 State Determination

 MPALPTS assigns the state of the current solution into one of two categories. If

MPALPTS determines that the possibility exists to empty one or more aircraft in the

current solution and the current solution is feasible (i.e. no CB, zone, axle or ramp

violations and no aircraft exceeds its ACL), then the system is in “State 1.” If the system

is not in “State 1”, it is in “State 2.”

 In order to access the probability that MPALPTS can find a feasible solution

using one less aircraft, the algorithm first determines the current solution’s reduced

excess weight by summing the differences of each aircraft’s current weight and 90% of

its ACL. As the average ACL of a solution approaches 100%, the search for feasibility

3-21

becomes very difficult because the space available to shift cargo is extremely limited.

Using the reduced excess weight greatly improves the probability MPALPTS will be able

to find a feasible solution after emptying an aircraft. This, in turn, reduces the

computational time required for MPALPTS to search for a feasible solution using fewer

aircraft when the probability of finding that solution is low. If the reduced excess weight

is large enough to allow an aircraft to be emptied, the algorithm continues to the next

step. Otherwise, it indicates a “State 2” solution and prohibits emptying an aircraft. In

the next step, MPALPTS identifies which aircraft to attempt to empty. It does so by

determining the set of aircraft currently using less than 75% of their ACL or 45% of their

total space. If this set is nonempty, MPALPTS determines whether it is possible to

transfer the weight of any of these aircraft to some or all of the remaining aircraft and

returns the appropriate solution state.

3.11 MPALP Tabu Search Algorithm

Combining the actions described in the previous sections, the pseudo code for the

MPALPTS is presented in Figure 7. A flowchart of the MATLAB functions can be

found in Appendix B and a portion of the MATLAB code is contained in Appendix C.

There are six main variables which control the search. First, the iteration counter tracks

the number of iterations of the overarching while loop, and the search ends if it reaches

300 iterations. The trivial counter counts the number of trivially improving solutions;

these are defined as an improvement of less than 10% from the previous solution. If the

trivial counter reaches 50, the search terminates. These values were determined through

3-22

experimentally based single factor at a time analysis. To avoid premature termination,

the trivial counter is reset to zero if an improving solution is significant (i.e. not trivial).

Figure 7. MPALP Tabu Search Pseudo Code

1. Get as input (Cargo, Available Aircraft, CB Lookup Table, Zone Information, Pallet Information)

2. Account for chain space and lateral space for each cargo item in Cargo

3. Generate Initial Solution

a. If there are not enough aircraft to load all the cargo, display error message, STOP.

4. Calculate cost of Initial Solution

5. Initialize FoundFeasibleSoln = 0 (1 if a feasible solution has been found, 0 otherwise)

6. Initialize CannotEmptyUntil = 0 (Cannot try to empty an aircraft until iteration CannotEmptyUntil)

7. Initialize InsertVSswap = 0 (All inter-aircraft swap moves)

8. Create and Initialize tabu structure and Initialize all other variables

9. While Iteration < 300 AND Trivial < 50 AND DisImprove < 50 loop

a. Increment Iteration

b. Determine State: 1 = Can Empty an acft, 2=Not state 1

c. IF [(CannotEmptyUntil > Iteration) AND (State = 1)] then State = 2 END IF

d. IF state = 1, Invoke Empy Aircraft procedure on current solution

i. If successful

1. Update Best Solution variables

2. Update current solution

ii. Increment CannotEmptyUntil by 10 iterations

e. ELSE IF state = 2 AND insert neighborhood is the next move

i. Invoke inter-acft insert neighborhood on current solution and return best non-tabu

solution and updated tabu structure

1. IF found an improved solution THEN

a. Update Best Solution variables

b. Update current solution

END IF

2. Make returned solution the current solution

f. ELSE IF state = 2 AND Swap neighborhood is the next move

i. Invoke inter-acft swap neighborhood on current solution and return best non-tabu

solution and updated tabu structure

1. IF found an improved solution THEN

a. Update Best Solution variables

b. Update current solution

END IF

2. Make returned solution the current solution

END State if-then

g. IF solution was a trivial improvement, then increment Trivial, Disimprove = 0

h. ELSE IF solution was not improving, the increment Disimprove

i. ELSE Trivial = 0, Disimprove = 0 (Found a significantly better solution)

END IF solution…

j. IF Disimprove + Trivial ≥ 10, InsVsSwap = -4

k. ELSE InsVsSwap = 0

END IF

END While

10. Return Solution

3-23

The disimprove counter represents the number of sequential moves with a non-improving

objection function values and is reset to zero if either a trivially or significantly better

solution is found.

The next set of controlling variables dictate how the search progresses. First, it is

critical to ensure the algorithm does not empty an aircraft before it has found a feasible

solution using the current number of aircraft. If no feasible solution has been found on

the current set of aircraft, there is no guarantee of feasibility after emptying one of the

aircraft. Therefore, when MPALPTS has found a feasible solution using the current

number of aircraft, it sets the binary variable “FoundFeasibleSoln” to 1; after this occurs,

the algorithm is allowed to attempt to empty an aircraft. Similarly, if MPALPTS

determines that it may be able to empty an aircraft and subsequently fails to empty an

aircraft, it is likely that ensuing state calculations will result in trying to empty an aircraft

again. Because of this, the “CannotEmptyUntil” variable is incremented by 10 each time

the Empty Aircraft procedure is called regardless of success or failure. This prohibits the

algorithm from trying to empty an aircraft again for at least 10 iterations. This value was

shown, through experimentation, to allow sufficient changes in the solution to increase

the probability of successfully emptying an aircraft.

 The final variable, “InsertVsSwap” is designed to control the ratio of inter-aircraft

insert to inter-aircraft swap neighborhood moves. For example, a value of negative three

results in three insert moves for every swap move, and a value of zero results in exploring

only swap moves. Swap moves generally produce large changes in the solution and are

valuable in improving the initial solution; however, insert moves perform well at fine-

3-24

tuning the solution. Therefore, “InsertVsSwap” is initialized to zero and causes

MPALPTS to refine the initial solution until stagnation occurs. This stagnation is

recognized when the sum of the trivially improving and disimproving counters becomes

greater than or equal to 10. Upon stagnation, “InsertVsSwap” is set to negative four and

remains so until a feasible or a significantly improved solution is found at which time it is

reset to zero.

 If a feasible solution is found, the CannotEmptyUntil counter is incremented by 5

to allow MPALPTS to refine the feasible solution before trying to empty an aircraft.

Additionally, the trivial and disimprove counters are adjusted to give MPALPTS a

minimum of 20 iterations to attempt to empty the aircraft. These experimentally based

values were shown to produce excellent solutions while also terminating the search

sooner in the case an aircraft cannot be emptied.

 After reaching a termination condition, MPALPTS returns up to three solutions

and their associated costs: a feasible solution, a marginally infeasible solution, and a

moderately infeasible solution. The three solutions allow the load planner to use

MPALPTS as decision making tool to determine the costs of exceeding aircraft ACL

versus benefits of potentially using fewer aircraft. Additionally, it exports the best

feasible solution to an excel file which builds its visual representation. An example of

the visual representation is located in Appendix D.

3.12 Robust Parameter Design

The goal of Robust Parameter Design (RPD) is to mathematically model a

problem’s solution space in terms of an algorithm’s adjustable parameters to find settings

3-25

which produce high quality solutions across the spectrum of expected problem instances.

Performing RPD tends to reduce the time spent on “randomly” adjusting parameters in

hopes of finding robust settings.

The first step of RPD is to choose which parameters will be included within the

mathematical models. Preliminary testing revealed the seven multipliers which define

the cost of a particular solution were important to both solution quality and the time spent

producing a solution. Table 4 shows the original parameter settings derived from the

creation and informal testing of MPALPTS.

Table 4. Original Parameter Settings

Overweight

Fee

(λ1)

Underweight

Fee > 30

(λ2)

Underweight

Fee ≤ 30

(λ3)

Target

CB Fee

(λ4)

CB Fee

(λ5)

Zone

Fee

(λ6)

Ramp Fee

(λ7)

1000 2 1 0.1 1000 0.25 1

The ranges in which each parameter is allowed to vary (Table 5) were chosen to

contain the original settings. The upper bound on parameters affecting feasibility (λ1, λ5 ,

λ6 , λ7,) were set high relative to the remaining parameters in order to ensure RPD was

able to find settings which drove the search to feasible regions of the solution space.

3-26

Table 5. Parameter Ranges

Parameter Lower Bound Upper Bound

λ1 750 1250

λ2 .1 20

λ3 .1 20

λ4 .1 20

λ5 750 1250

λ6 .1 1000

λ7 .1 1000

3.12.1 Test Sets

 Three pairs of problem instances were chosen as a representative sample of the

types of loads MPALPTS may face. They include pallets only, rolling stock only and a

mixed load of pallets and rolling stock. Each pair has one cargo set containing 75 items

and one cargo set containing 200 items. The 75-item mixed set has 40 rolling stock items

and 35 pallets while the 200-item mixed set has 90 rolling stock items and 110 pallets.

These ratios of pallets to rolling stock items were purposefully chosen because

MPALPTS has a more difficult time finding feasible solutions when the ratio is relatively

equal. For test sets with pallets, individual pallets were chosen randomly among 30

sample pallets (Appendix A) whose weights were evenly spaced from 333 to 10,000

pounds. Pallet heights were chosen to be roughly commensurate to its weight such that

lighter pallets are generally shorter than heavier ones. Rolling stock items were randomly

picked from a set of 30 items selected from the extensive AALPS database (Appendix

A). Table 6 summarizes the six test sets.

3-27

Table 6. Test Sets

Test Set Pallets Rolling Stock Total

P75 75 0 75

P200 200 0 200

R75 0 75 75

R200 0 200 200

M75 30 45 75

M200 110 90 200

3.12.2 RPD Model Construction

 The software package Design Expert was used to create, analyze and optimize a

¼ fractional central composite design which contained the seven design parameters along

with a six-level categorical noise factor representing the test sets. It included 88 runs per

test set for a total of 528 runs. MPALPTS was given an equal mix of C-5 and C-17

aircraft for each run. Response variables included the number of aircraft used in the best

feasible solution and the time required to find the best feasible solution. If a particular

combination of design parameters failed to produce a feasible solution, the number of

aircraft returned was four times the number of aircraft in the initial solution, and the time

required to complete the algorithm was also multiplied by four. This multiplication

sufficiently separates feasible and infeasible responses. A quadratic regression model

was built for each response variable as well as the response variable’s variance.

 A categorical noise factor complicates finding robust parameters. To find robust

parameters that work for all test sets, Brenneman and Myers suggest optimizing the

model for each test set and then using a binomial distribution to weigh each set of

parameters based on their probability of occurrence (Brenneman and Myers 2003).

3-28

Because the probability of encountering any given test set is unknown, the categories

were weighed based on their estimated relative difficulty. Rolling stock only problems

have significantly more constraints than mixed and pallet only loads, and pallet only

loads were found to be very resilient despite changes in the decision variables.

Therefore, rolling stock only loads were weighted by 0.8, mixed loads were weighted by

0.15 and pallet only loads were weighted by 0.05. For the data collection phase of the

experiment, tabu tenure was set at five and the trivially improving and disimproving

counters were both set at 50.

3.12.3 Feasible Aircraft Model

 A graphical representation of the quadratic aircraft model is shown in Figure 8.

The model includes the CB Target Fee (λ4), Zone Fee (λ6), Ramp Fee (λ7), the categorical

variable and their quadratic interactions as the most significant components. The

regression model itself was constructed using backward and manual regression

techniques. The response variable was transformed using an inverse-square

transformation to obtain normalized residuals and a better fitting model, so subsequent

optimization required maximizing the transformed variable. The model has an adjusted

R-squared value of 0.9256 and a signal to noise ratio of 55.64 indicating a reasonably

good fit. The plots of the studentized residuals and predicted versus actual values both

confirm a significant model.

3-29

Figure 8. Aircraft Regression Model Plots

3.12.4 Time Model

The time model includes the same significant variables as the aircraft model, and

the response variable was transformed using a natural log transformation. This model has

an adjusted R-squared value of 0.9129 and a signal to noise ratio of 50.30 indicating a

reasonably good fit. Figure 9 shows the plots of studentized residuals and predicted

versus actual values both of which indicate a significant model.

3-30

Figure 9. Time Regression Model Plots

3.12.5 RPD Results

 To find the best parameter settings for each test case, both the time and aircraft

models along with their associated variance models were simultaneously optimized. Six

sets of optimal parameter settings (Table 7) were generated.

Table 7. Optimal Parameter Settings for Test Sets

Parameter P75 P200 R75 R200 M75 M200

λ1 772.78 1247.96 1124.47 772.78 1134.65 1145.39

λ2 19.20 5.20 12.34 19.20 9.43 3.12

λ3 19.99 19.96 4.59 19.99 12.45 8.22

λ4 0.10 11.61 20.00 0.10 14.65 0.10

λ5 750.00 1066.10 964.77 750.00 978.07 1154.95

λ6 613.77 455.87 961.74 613.77 854.42 756.38

λ7 475.20 497.59 872.24 475.20 701.64 554.98

3-31

Brenneman and Myers’ binomial probability techniques work well when the optimal

parameters are reasonably close to one another across the categorical variable; however,

in this case, the settings for the target CB fee (λ4) were grouped into two similar values.

Using the previously mentioned weightings, the robust parameter settings are shown in

Table 8.

Table 8. Robust Parameter Settings

λ1 λ2 λ3 λ4 λ5 λ6 λ7

1095.26 8.47 11.21 7.83 1016.76 788.35 630.30

Unfortunately, these settings resulted in very poor performance for test sets R200 and

M200. Further testing revealed sets P200, R75 and M75 had only minor increases in

required computational time when λ4 was set to 0.1, so the three models were re-

optimized in Design Expert using this setting for each level of the noise factor. This

resulted in a similar situation for λ2, so an additional iteration of re-optimizing had to be

performed. The re-optimized and final robust parameters are shown in Tables 9 and 10

respectively.

3-32

Table 9. Re-Optimized Parameters

Parameter P75 P200 R75 R200 M75 M200

λ1 1000.00 751.57 782.68 1143.73 1177.36 1189.06

λ2 2.00 2.00 2.00 2.00 2.00 2.00

λ3 20.00 6.84 19.23 15.26 13.55 17.20

λ4 0.10 0.10 0.10 0.10 0.10 0.10

λ5 1000.00 765.56 797.87 866.22 1203.82 759.86

λ6 500.05 494.57 872.33 475.58 702.88 554.93

λ7 500.05 446.84 981.05 613.66 876.66 756.32

Table 10. Final Robust Parameters

λ1 λ2 λ3 λ4 λ5 λ6 λ7

1123.84 2.00 15.65 0.10 946.93 631.33 795.51

3.13 Summary

This chapter presented the details of MPALPTS including its four neighborhoods

and its main controlling variables. The algorithm is designed to efficiently search for

areas of high quality feasible solutions. As with any heuristic, finding the optimal

variable settings for an algorithm is a critical step to obtain the best possible performance

across the expected problem instances. Therefore, this chapter also presented robust

parameter design techniques, as applied to MPALPTS, which illustrate an experimentally

based method to find these optimal settings. The difficulties of categorical noise

variables were also discussed

4-1

Chapter 4: Results

4.1 MPALPTS versus AALPS

To compare MPALPTS performance to AALPS, each test set was first loaded by

AALPS using three different mixes of aircraft: an equal mix of C-5 and C-17 aircraft

(“M” in Table 11), C-5 aircraft only (C-5), and C-17 aircraft only (C-17). AALPS has

many loading options available to the user, so great care was taken to set both algorithms’

adjustable parameters to equal settings. MPALPTS was given the exact number, mix and

configuration of aircraft in the AALPS final solution for each test set. Table 11

summarizes the overall comparison between the AALPS and MPALPTS solutions. The

table includes the percent ACL and space used for both methods. While the percent ACL

calculation is straightforward, the space used is not necessarily intuitive, and it is

unknown exactly how AALPS calculates this statistic; therefore, directly comparing the

percentage of space used is not necessarily valid. MPALPTS defines an aircraft’s total

available space as the number of inches between the farthest forward and the farthest aft

FS multiplied by the total cargo compartment width. If a cargo item is loaded only on

one side of the cargo compartment, MPALPTS assumes it occupies the entire lateral

space of that column from the item’s forward FS to its aft FS including its required chain

space. Similarly, center-loaded items are assumed to occupy the entire width of the

aircraft floor.

4-2

Table 11. AALPS versus MPALPTS

Test

Set

 AALPS MPALP-TS

Test
Min

Acft

Mix

C-5/

C-17

Acft
Avg %

ACL

Avg

%

Space

Mix

C-5/

C-17

Acft

Avg

%

ACL

Avg

%

Space

Time to

Feas

(sec)

Tot

Time

(sec)

P75 M 3 2/2 4 73.5 68.0 2/1 3 97.1 79.2 10.3 38.7

P75 C-5 3 3/0 3 83.7 71.3 3/0 3 83.7 63.4 14.2 44.8

P75 C-17 5 0/6 6 70.0 62.2 0/5 5 83.8 80.0 2.7 16.8

P200 M 9 5/5 10 83.0 78.2 5/4 9 92.9 78.1 29.2 114.7

P200 C-5 7 8/0 8 84.8 70.4 7/0 7 96.8 72.4 38.9 120.9

P200 C-17 12 0/14 14 88.7 72.9 0/12 12 98.9 88.8 305.7 363.6

R75 M 10 7/6 13 74.2 49.8 6/5 11 85.3 88.6 80.2 236.3

R75 C-5 8 13/0 13 69.9 44.8 9/0 9 85.4 88.8 180.7 202.2

R75 C-17 13 0/17 17 75.4 53.1 0/17 17 75.4 87.2 27.6 126.3

R200 M 27 17/17 34 80.0 49.7 15/14 29 93.6 88.1 1823.9 1902.

1 R200 C-5 22 26/0 26 80.4 46.7 24/0 24 92.4 88.5 1103.3 1187.

1 R200 C-17 37 0/44 44 82.3 52.4 0/44 44 82.3 85.0 587.7.8 1149.

6 M75 M 7 5/4 9 75.0 74.6 4/3 7 88.8 80.8 21.0 32.8

M75 C-5 6 7/0 7 73.9 54.0 6/0 6 86.3 84.6 83.9 96.4

M75 C-17 9 0/11 11 78.5 60.0 0/11 11 78.5 90.3 2.7 95.0

M200 M 17 10/10 20 80.0 57.1 9/8 17 93.3 87.2 382.8 426.1

M200 C-5 13 15/0 15 85.3 56.7 14/0 14 91.5 79.7 269.2 328.2

M200 C-17 17 0/25 25 85.4 59.7 0/25 25 85.4 89.1 192.3 620.2

S50 M 3 3/2 5 45.6 61.6 3/1 4 51.6 86.2 43.2 53.5

M800 M 75 45/44 89 89.0 56.5 43/42 85 93.0 78.6 5801.8 1585

4

The number of aircraft required by both algorithms is also reported, as is the

theoretical minimum number of aircraft required for a feasible solution. This theoretical

minimum is computed by individually subtracting the ACL of each aircraft given to

MPALPTS from the total weight of the cargo until all the cargo weight is “loaded” onto

the aircraft. This minimum does not account for any cargo constraints and therefore may

not represent the actual optimal number of aircraft for any given cargo set. The

4-3

theoretical limit can, however, be considered an absolute lower bound for feasible

solutions.

The time required to reach the solution is only provided for MPALPTS; AALPS

produces solutions almost instantaneously. The time necessary to reach a feasible

solution using the least number of aircraft is represented in the “Time to Feasible”

column while the overall running time of the algorithm is represented in the “Overall

Time” column. The “Overall Time” column can include time expended searching for a

feasible solution using fewer aircraft than the best feasible solution found, and it may

include time spent refining the final solution. Two additional test problems are included:

one with 50 of the same rolling stock item (S50) and one with 400 pallets and 400 rolling

stock items (M800). These test problems are designed to illustrate other possible types of

cargo loading outside of the original RPD models. Each test set for MPALPTS was

executed on an Intel Centrino dual-core processor laptop running at 2.4 GHz with 3 GB

of memory.

While RPD is extremely useful in finding robust parameter settings, it also tends

to sacrifice excellent solution quality in individual test problems for adequate solution

quality across all test problems. For example, some parameter settings found feasible

solutions for R200 C-17 using 43 aircraft. Additionally, MPALPTS found a marginally

infeasible solution to M800 using 84 aircraft with two of the aircraft being overloaded at

100.15% and 100.002% of their ACL, respectively.

Both MPALPTS and AALPS used the same number of aircraft in five test sets

(P75 using only C-5 aircraft, R200, M75, R75, and M200 using only C-17 aircraft).

4-4

MPALPTS required fewer aircraft than AALPS in 15 tests sets; MPALPTS achieved the

absolute lower bound for feasible solutions in 9 test problems. On average, MPALPTS

used 11.48% fewer aircraft than AALPS with a maximum percentage of 30.77% fewer

(R-75 C-5 only); however, these improved solutions required more computational time

than AALPS.

The most difficult test problem of the original six was R200; this scenario had the

largest number of axle, centerline and zone constraints of the six test sets. MPALPTS

required approximately 32 minutes to complete the mixed C-5/C-17 test case. The M800

test set, which contains 9.5 million pounds of cargo, required approximately 270 minutes

to complete; MPALPTS found a feasible solution in about 91 minutes, and the remaining

time was spent locating the aforementioned marginally infeasible solution. While this

appears to be a relatively long time (compared to AALPS), MPALPTS saved 4 aircraft

over AALPS; a highly trained loadmaster would have required several days or weeks to

find a similar solution. Appendix E contains specific results for each test problem

including the number of items loaded on each aircraft and the percentage of ACL and

space used.

4.2 Load Validation

 In order to validate MPALPTS results, a sample of its load plans were manually

recreated in AALPS which, in turn, displays any constraint violations present. The only

adjustments required to MPALPTS solutions were related to the C-5 crew and troop

compartment ladders which AALPS assumes are in the “down” position. MPALPTS

assumes the height of each item will not impact any portion of the aircraft protruding

4-5

from the ceiling of the cargo compartment. In each case tested, sliding the cargo item

laterally corrected the violation and did not require any items to be removed from the

aircraft. Additionally, AALPS rounds the CB of each item to the nearest whole number

prior to making CB calculations. Despite this fact, the CB calculated by AALPS was

always within 1.5 inches of the MPALPTS calculated CB. Appendix F has two load

plans from AALPS which represent the feasibility of MPALPTS solutions.

4.3 Applied Results

From February 2007 to January 2008, AMC reportedly flew 686 C-5 and 1551

C-17 multi-leg operational missions (Anderson 2008). Assuming all missions were

originally planned with AALPS and were reloaded with MPALPTS (which, on average,

increased airlift efficiency by 11.48% over AALPS), AMC would have flown 75 fewer

C-5 missions and 171 fewer C-17 missions. If these airlift missions averaged 30 flight

hours from the Continental United States to the cargo’s destination and back, AMC

would have saved $117,978,930 in this twelve-month period (using the previously

mentioned hourly flight costs for C-5 and C-17 aircraft). In less than nine years of using

MPALPTS, AMC could realize airlift savings of over one billion dollars.

While MPALPTS takes significantly longer than AALPS to find solutions, its

ability to feasibly load a given set of cargo using fewer aircraft than AALPS would

significantly improve the USAF’s ability to efficiently utilize its airlift fleet. This

increased efficiency could result in significant cost reductions for Air Mobility

Command.

5-1

Chapter 5: Future Research

 Despite MPALPTS successes, there are many aspects of this difficult problem

which merit future study. First, all the cargo loaded with MPALPTS are assumed to be

destined for the same location. In reality, this is rarely the case; including the destination

of individual pieces of cargo as well as the planned stops of each aircraft would be

required to better model this problem. Items should be positioned within the cargo

compartment to facilitate efficient offload at each location an aircraft transits. This type

of problem would be a pick-up and delivery bin packing problem. Second, MPALPTS

assumes no hazardous cargo is present. Hazardous cargo must be separated by a specific

distance within an aircraft, and some types are not allowed to be transported on the same

aircraft. This constraint could be relatively easily modeled in MPALPTS by adding

additional cost and feasibility requirements. Third, one of the greatest challenges to

modeling airlift is handling large, oddly shaped cargo items (such as helicopters). To

efficiently load these types of cargo, they must be rotated within the cargo compartment;

therefore, they present an added level of complexity to the overall problem which could

be explored. Fourth, the MPALPTS assumes rolling stock items will not contact the

ceiling of the cargo compartment regardless of their position. Accounting for available

space within an aircraft in three dimensions is also a difficult problem because there are

many obstructions (such as the C-17’s center fuel tank or the C-5’s aircraft ladders)

which limit the allowable height of a cargo item. Resolving these additional problem

constraints would create a more robust and operationally useful product. Additionally,

5-2

cargo zones have pounds per square inch limitations for the tires or vehicle tracks.

MPALPTS assumes these constraints are satisfied or would be satisfied by adding

shoring. Explicitly defining these constraints would add validity to the model. Finally,

as with any new algorithm, improving MPALPTS in terms of its solution quality or run

time would also be a useful endeavor.

A-1

Appendix A: Test Set Cargo

A.1 Rolling Stock

Table 12. Rolling Stock Cargo

Length Width Height # Axles Axle Loc 2 3 4 5 6 Axle Wts 2 3 4 5 6 Tot Wt CB Cargo Num Type (1=RS) Type NSN

162 2531 99 1 1 TRAILER TANK WATER

294 8000 160 2 1 TRAILER FLATBED

147 1340 103 3 1 TRAILER CARGO 3/4-TON

258 6220 107 4 1 TRUCK, 6 PAX, 4X4

209 2900 91 5 1 TRUCK PICKUP 4200

146 8730 98 6 1 TRUCK FORK LIFT

223 8170 124 7 1 TRUCK CARGO TACTICAL

266 22146 144 8 1 TRUCK DUMP 5-TON

401 38800 210 9 1 TRUCK CARGO 10T 8X8

191 5600 88 10 1 TRK, UTIL, HVY, 2 1/4T, HMMWV

180 5280 95 11 1 TRK, UTIL, CARGO/TRP CARR, 1 1/4T, W/EQP, HMMWV

250 15920 151 12 1 TRACTOR, ALL-WHL-DRIVE, W/ATTACHMENTS

204 7500 95 13 1 TRK, AMBUL, 4-LTR, ARMD, 2 1/4T, HMMWV

265 45080 120 14 1 CARRIER AMMO TRACKED VEH

255 12160 103 15 1 LATRINE SVC TRK

191 8400 92 16 1 EXPL ORD DISP TRK MTD

150 3050 112 17 1 TRAILER CABLE REEL

119 765 72 18 1 TRAILER PLATFORM WHS

315 35975 174 19 1 MRAP BAE-TVS CAT II

227 2520 130 20 1 TRAILER BASIC UTILITY

122 2140 51 21 1 PUMP, WATER, 350 GPM

420

50570 196 16 1 TRK CGO HVY PLS TRANS

 401 55665 198 23 1 TRK TANK 2500 GAL

269 15760 149 24 1 TRK VAN SHOP 2-1/2-T

190 23500 92 25 1 COMBAT VEH IMP TOW TRACKED

294 41160 143 26 1 ANTI-TANK VEH/STRYKER

252 27650 132 27 1 LAV, ANTI-TANK

108 620 63 28 1 TRAILER CARGO 1/4-TON

172 4120 105 29 1 TRAILER VAN SHOP

137 3500 79 30 1 CHASSIS TRAILER

A-2

A.2 Pallets

Table 13. Palletized Cargo

Length Width Height # Axles Axle Loc 2 3 4 5 6 Axle Wts 2 3 4 5 6 Tot Wt CB Cargo Num Type (1=RS) Type

88 108 24 0 0 0 0 0 0 0 0 0 0 0 0 0 333 0 1 2 Pallet

88 108 30 0 0 0 0 0 0 0 0 0 0 0 0 0 667 0 2 2 Pallet

88 108 38 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0 3 2 Pallet

88 108 27 0 0 0 0 0 0 0 0 0 0 0 0 0 1333 0 4 2 Pallet

88 108 33 0 0 0 0 0 0 0 0 0 0 0 0 0 1667 0 5 2 Pallet

88 108 35 0 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 6 2 Pallet

88 108 41 0 0 0 0 0 0 0 0 0 0 0 0 0 2333 0 7 2 Pallet

88 108 45 0 0 0 0 0 0 0 0 0 0 0 0 0 2667 0 8 2 Pallet

88 108 43 0 0 0 0 0 0 0 0 0 0 0 0 0 3000 0 9 2 Pallet

88 108 50 0 0 0 0 0 0 0 0 0 0 0 0 0 3333 0 10 2 Pallet

88 108 48 0 0 0 0 0 0 0 0 0 0 0 0 0 3667 0 11 2 Pallet

88 108 48 0 0 0 0 0 0 0 0 0 0 0 0 0 4000 0 12 2 Pallet

88 108 55 0 0 0 0 0 0 0 0 0 0 0 0 0 4333 0 13 2 Pallet

88 108 37 0 0 0 0 0 0 0 0 0 0 0 0 0 4667 0 14 2 Pallet

88 108 43 0 0 0 0 0 0 0 0 0 0 0 0 0 5000 0 15 2 Pallet

88 108 61 0 0 0 0 0 0 0 0 0 0 0 0 0 5333 0 16 2 Pallet

88 108 77 0 0 0 0 0 0 0 0 0 0 0 0 0 5667 0 17 2 Pallet

88 108 82 0 0 0 0 0 0 0 0 0 0 0 0 0 6000 0 18 2 Pallet

88 108 73 0 0 0 0 0 0 0 0 0 0 0 0 0 6333 0 19 2 Pallet

88 108 45 0 0 0 0 0 0 0 0 0 0 0 0 0 6667 0 20 2 Pallet

88 108 95 0 0 0 0 0 0 0 0 0 0 0 0 0 7000 0 21 2 Pallet

88 108 83 0 0 0 0 0 0 0 0 0 0 0 0 0 7333 0 22 2 Pallet

88 108 72 0 0 0 0 0 0 0 0 0 0 0 0 0 7667 0 23 2 Pallet

88 108 84 0 0 0 0 0 0 0 0 0 0 0 0 0 8000 0 24 2 Pallet

88 108 78 0 0 0 0 0 0 0 0 0 0 0 0 0 8333 0 25 2 Pallet

88 108 76 0 0 0 0 0 0 0 0 0 0 0 0 0 8667 0 26 2 Pallet

88 108 81 0 0 0 0 0 0 0 0 0 0 0 0 0 9000 0 27 2 Pallet

88 108 80 0 0 0 0 0 0 0 0 0 0 0 0 0 9333 0 28 2 Pallet

88 108 64 0 0 0 0 0 0 0 0 0 0 0 0 0 9667 0 29 2 Pallet

88 108 90 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 30 2 Pallet

B-1

Appendix B: MATLAB Flowchart

The following figures illustrate the overall architecture of the MPALPTS code.

MPALPTS

ConvertXcurrent

DetermineState

FullUpdateXcurrent

LoadZones

InterAcftSwapRedN InterAcftInsertRedN EmptyAcft

InterAcftSwap

ComputeCosts

FixLoad

IntraAcftSwap
UpdateAvailAcft

AircaftStats

InterAcftInsert

ComputeCosts

FixLoad

IntraAcftSwap

AircaftStats

InterAcftInsert

AcftStats

UpdateXcurrent UpdateXcurrent

GenInitSoln3

FixLoad

ComputeCosts

IntraAcftSwap

InterAcftSwap

UpdateAvailAcft

FixLoad

InterAcftInsert

UpdateAvailAcft

FixLoad

IntraAcftSwap

UpdateAvailAcft

FixLoad

ComputeCosts

FixLoad

ComputeZoneCosts

ComputeRampCosts

SlideCBCenter

ComputeCosts

ComputeZoneCosts

ComputeRampCosts

ComputeCB

C-1

Appendix C: MATLAB Code

Only the code for the MPALPTS main procedure and the Fix Load procedure are

included. Complete electronic copies of the code can be obtained by emailing the author

at robert.nance@us.af.mil.

function

[ZbestFeas,XbestFeas,ZbestMargInfeas,XbestMargInfeas,ZbestModInfeas,...

XbestModInfeas,AvailAcftFeas,AvailAcftMargInfeas,AvailAcftModInfeas,t,.

..
 tottime] = MPALPTS (file,Cargo,AvailAcft,CBTable...
 ,A1ZT,A2ZT,A1PT,A2PT)

%***

% Procedure: MPALPTS

% Author : Maj R. Larry Nance

% Purpose : Runs the tabu search for finding feasible loadings for aircraft based

% on the inputs and returns the best feasible solution it found along with some

% statistics about how long the solution took, etc.

% Inputs: file : This is a text field that points to where the excel file is

% that contains all the tables defining the variables. If the

% variables are known already, I just pass in 'file' or any

% other string. If the variables are passed in, the procedure

% skips trying to open the file. If some of the variables are

% missing, it will go to the file and ask you to input the

% appropriate files

% Cargo: A n x 20 matrix where n is the number of cargo items.

% Columns are defined in the excel file "Pallet Testing"

% AvailAcft:a x 19 matrix which defines various aspects of the

% aircraft availiable for loading (a = number of acft)

% CBTable :Lookup table for the CB

% A1ZT :Aircraft 1 Zone Table -- defines zone positions and

% constraints

% A2ZT :Aircraft 2 Zone Table

% A1PT :Aircraft 1 Pallet Table -- defines pallet positions and

% constraints

% A2PT :Aircraft 2 Pallet Table

% Outputs: ZbestFeas :Best objective function value of best feasible solution

% XbestFeas :Representation of best feasible solution found

% ZbestMargInfeas :Best cost of best marginally

% infeasible solution (ACL > 100 and <= 102.5)

% XbestMargInfeas :Representation of best marginally infeasible solution

% ZbestModInfeas :Best objective function value of best moderately

% infeasible solution (ACL >102.5, < 105)

% AvailAcft :Best feasible, marginally infeasible and moderately

C-2

% infeasible representations of the set of aircraft

% found during search

% t :Time it took to reach best feasible solution

% tottime :Time it took for the whole tabu search to run

% CalledBy: User (no other procedures call this. This is the main procedure

% Calls : ChainSpace, GenInitSoln3, LoadZones, InterAcftInsertRedN,

% InterAcftSwapRedN, ConvertXcurrent, DetermineState

%***

%Robust parameter settings found by RPD.

%Costs = [MaxTrivial, MaxDisimprove, InsertVsSwap, Tabu Tenure, Overweight Fee,

% Underweight Fee < 30, Underweight Fee >= 30, CB Target Fee, CB Fee,

% Ramp Fee, Zone Fee]

Costs = [50.00 50.00 0.00 5.00 1123.84 2.00 15.65 0.10 946.93 795.51 631.33];

%Starting Time

starttime = cputime;

%***

%Allow manual input option for data

%***

if nargin == 1

 disp ('Input Cargo File from Excel Sorted by Cargo ID.')

 Cargo = xlsread (file,-1);

 disp ('Input Available Aircraft File from Excel Already Sorted by priority.')

 AvailAcft = xlsread (file,-1);

 disp ('Input Zone table for aircraft type 1.')

 A1ZT = xlsread (file,-1);

 disp ('Input Zone table for aicraft type 2.')

 A2ZT = xlsread (file,-1);

 disp ('Input CB Lookup Table')

 CBTable = xlsread (file,-1);

 disp ('Input pallet table for aircraft type 1.')

 A1PT = xlsread (file,-1);

 disp ('Input pallet table for aircraft type 2.')

 A2PT = xlsread (file,-1);

end

%Calculate min theoretical aircraft using the order of aircraft in AvailAcft

TotCargoWt = sum (Cargo(:,17));

iter = 0;

while TotCargoWt > 0

 iter = iter + 1;

 TotCargoWt = TotCargoWt - AvailAcft(iter,2);

end

MinAcftTheoretical = iter;

disp (['Minimum theoretical aircraft based on ACL is ' num2str(MinAcftTheoretical) '.']);

%Load Zones

[Zones] = LoadZones (A1ZT,A2ZT);

C-3

%Create CB Lookup Table

CBLookup (1,:,:) = CBTable (:,2:4);

CBLookup (2,:,:) = CBTable (:,6:8);

%Create Pallet Table which defines the pallets for each aircraft

A1PTRows = size (A1PT,1);

A2PTRows = size (A2PT,1);

PalletTable = zeros (max (A1PTRows,A2PTRows),5);

PalletTable (1,1:A1PTRows,1:5) = A1PT;

PalletTable (2,1:A2PTRows,1:5) = A2PT;

% Fix the length of each cargo item to acocunt for chaining space

[Cargo] = ChainSpace (Cargo);

%Generate Initial Solution

disp ('Generating Initial Solution')

[Xcurrent,AvailAcft,success,feasible,Zbest] = GenInitSoln3 (Cargo,...

 AvailAcft,Zones,CBLookup,PalletTable,4,Costs);

if success ==1 %If I came up with a initial solution

 %Number of aircraft in initial solution

 NumAcft = size (Xcurrent,1);

 %Initialize all the variables

 TrivialImproveMove = 0;

 DisImproveMove = 0;

 InterSpanInsert = 1; %used to spread out the reduced insert algorithm

 InterSpanSwap = 1;

 iteration = 0;

 Zcurrent = Zbest;

 ZbestFeas = inf;

 ZbestMargInfeas =inf;

 ZbestModInfeas = inf;

 XbestFeas = 0;

 XbestMargInfeas = 0;

 XbestModInfeas = 0;

 AvailAcftFeas = AvailAcft;

 Xbest = Xcurrent;

 AvailAcftBest = AvailAcft;

 AvailAcftMargInfeas = 0;

 AvailAcftModInfeas = 0;

 tabulist = zeros (size(AvailAcft,1),size(Cargo,1));

 %tabutenure = Costs(4);

 tabutenure = 5;

 foundfeas = 0; %= 1 if we have found feasible soln using NumAcft aircraft

 MaxTrivial = Costs(1);

 MaxDisImp = Costs(2);

C-4

 MaxIter = 300;

 %Ratio of Insert and Swap nieghborhoods explored

 %Neg number means do more inserts than swaps

 %Pos number means to more swaps than inserts

 %InsVsSwap = Costs(3);

 InsVsSwap = 0;

 ZoneMult = Costs(11);

 RampMult = Costs(10);

 %***

 %Start Tabu Search

 %***

 %Step 1: Determine what state we are in

 % State 1: Have found a feasible solution AND algorithm thinks emptying

 % is possible

 % State 2: May or may not have found feasible solution. Continuing to

 % refine search through inter and intra aircraft swaps/inserts

 %

 %**

 CannotEmpty = 0; %= number of iterations must wait until state 1 to refine soln

 while TrivialImproveMove < MaxTrivial &&...

 DisImproveMove < MaxDisImp && iteration < MaxIter

 iteration = iteration + 1;

 %Display current iteration counters

 text = sprintf ('%8s\t%8s\t%8s\t%8s\t%8s','Trivial','Disimp', 'Iter', 'NumAcft', 'InsVsSwap');

 disp(text)

 text = sprintf('%8.0f\t%8.0f\t%8.0f\t%8.0f\t%8.1f',TrivialImproveMove, DisImproveMove, iteration,...

 NumAcft, InsVsSwap);

 disp (text)

 %Determine the current solution's state

 [state] = DetermineState (AvailAcft,foundfeas);

 %if unable to empty acft due to space restrictions, cannot try again

 %until CannotEmpty < iteration

 if CannotEmpty > iteration && state == 1

 state = 2;

 end

 %***

 %Empty an Aircraft

 %***

 % If state equal one, then try to empty an aircraft

 %**

 if state == 1

 disp ('Attempting to Empty Acft')

C-5

 [TempXcurrent,TempAvailAcft,worked] = EmptyAcft (Xcurrent,...

 AvailAcft,Cargo,CBLookup,Zones,PalletTable,ZoneMult,RampMult);

 %Check to see if TempXcurrent has any errors

 % [good] = CheckXcurrent2 (TempXcurrent,TempAvailAcft,Cargo,PalletTable);

 % if good == 0

 % disp ('Error EmptyAcft');

 % end

 if worked == 1

 foundfeas = 0; %assume solution is not feasible

 Zcurrent = inf; %best cost found from emptying aircraft

 Xcurrent = TempXcurrent; %best solution found from emptying aircraft

 AvailAcft = TempAvailAcft;

 DisImproveMove = 0; %Reset DisImprove moves to 0 to allow for more refining.

 Zbest = inf; %Reset the search because we have now reduced the aircraft by one

 ZbestFeas = inf;

 ZbestMargInfeas = inf;

 ZbestModInfeas = inf;

 tabulist = zeros (size(AvailAcft,1),size(Cargo,1)); %reset tabu list

 disp ('Reduced number of Acft by one!!!')

 %TEST

 for acft = 1:size (Xcurrent,1)

 [Xcurrent] = FixLoad (Xcurrent,acft,AvailAcft,Cargo,...

 CBLookup,Zones,PalletTable,ZoneMult,RampMult);

 end

 else %if worked ~= 1-->Can't empty acft

 disp ('Cannot Empty Acft')

 CannotEmpty = iteration + 2;

 end

 %Logic to figure out if we do an insert or swap neighborhood next

 elseif state == 2 && ((InsVsSwap > 0 && NumSwaps >= InsVsSwap) || ...

 (InsVsSwap < 0 && NumInserts < abs(InsVsSwap)))

 if InsVsSwap > 0

 NumSwaps = 0;

 else

 NumInserts = NumInserts + 1;

 end

 %***

 %Inter-Aircraft Insert Reduced Neighborhood

 %***

 %Explore the INTER acft insert neighborhood. Generate a solution. If it is not

 %tabu, then allow it. (The InterAcftInsertRedN determines if a soln is

 %tabu or not

 %if insertspan > NumAcft-1, then tries to insert to itself

 if InterSpanInsert >= NumAcft -1

 InterSpanInsert = 1;

 end

 disp('Inter Aircraft Insert Reduced Neighborhood.....')

C-6

 [tabulist,TempXcurrent,TempAvailAcft,TempCost,feasible] = InterAcftInsertRedN...

 (tabulist,iteration,tabutenure,AvailAcft,Xcurrent,Cargo,CBLookup,Zones,...

 InterSpanInsert,PalletTable,Costs);

 InterSpanInsert = InterSpanInsert + 1;

 %[good] = CheckXcurrent2 (TempXcurrent,TempAvailAcft,Cargo,PalletTable);

 %if good == 0

 % disp ('issues after InsertRedNeigh')

 %end

 %if this is the first time we have found a feasible solution, give it at

 %least 3 iterations to improve it before we try to empty an acft

 if feasible == 1 && foundfeas == 0

 CannotEmpty = iteration + 5; %give some time to improve on the feasible soln

 feastime = cputime - starttime;

 text = sprintf ('%1s%1f%1s%d%s','***********Found feasible solution in ',...

 feastime, ' seconds using ',NumAcft,' aircraft.');

 disp(text)

 beep

 %Reset Counters to allow enough time to improve solution and then, if

 %possible, empty an aircraft and continue on. If we empty an aircraft,

 %then we will reset the counters to zero

 %if we can't empty the aircraft, the algorithm will quit

 TrivialImproveMove = max (0,MaxTrivial - 20);

 DisImproveMove = max(0,MaxDisImp - 20);

 end

 %if I found a feasible solution and it is better than the current feasible

 %solution

 if feasible==1 && TempCost < ZbestFeas

 if TempCost < Zbest

 Zbest = TempCost;

 end

 XbestFeas = TempXcurrent;

 ZbestFeas = TempCost;

 AvailAcftFeas = TempAvailAcft;

 foundfeas = 1;

 %ELSEIf I found a marginally infeasible solution and it is better than current

 %marginally infeasible solution

 elseif feasible == 2 && TempCost < ZbestMargInfeas

 XbestMargInfeas = TempXcurrent;

 ZbestMargInfeas = TempCost;

 AvailAcftMargInfeas = TempAvailAcft;

 %ELSE If I found a moderately infeasible solution and it is better than current

 %moderately infeasible solution

 elseif feasible==3 &&TempCost < ZbestModInfeas

 XbestModInfeas = TempXcurrent;

 ZbestModInfeas = TempCost;

C-7

 AvailAcftModInfeas = TempAvailAcft;

 end

 %Best solution out of neghborhood becomes current solution

 Zcurrent = TempCost;

 Xcurrent = TempXcurrent;

 AvailAcft = TempAvailAcft;

 %***

 %Inter-Aircraft Swap Reduced Neighborhood

 %***

 else

 %Update counters to figure out if we do a insert or swap next

 if InsVsSwap > 0

 NumSwaps = NumSwaps + 1;

 else

 NumInserts = 0;

 end

 if InterSpanSwap >= NumAcft-1 %if insertspan > NumAcft, then tries to insert to itself

 InterSpanSwap = 1;

 end

 disp('Inter Aircraft Swap Reduced Neighborhood...')

 [tabulist,TempXcurrent,TempAvailAcft,TempCost,feasible]= InterAcftSwapRedN...

 (tabulist,iteration,tabutenure,AvailAcft,Xcurrent,Cargo,CBLookup,...

 Zones,InterSpanSwap,PalletTable,Costs);

 InterSpanSwap= InterSpanSwap + 1;

 %[good] = CheckXcurrent2 (TempXcurrent,TempAvailAcft,Cargo,PalletTable);

 %if good == 0

 % disp ('issues after Swap Neigh')

 %end

 %if this is the first time we have found a feasible solution, give it at

 %least 3 iterations to improve it before we try to empty an acft

 if feasible == 1 && foundfeas == 0

 CannotEmpty = iteration + 5;%give some time to improve on the feasible soln

 feastime = cputime - starttime;

 text = sprintf ('%1s%1f%1s','Found feasible solution in ', feastime, ...

 ' seconds.');

 disp(text)

 beep

 %Reset Counters to allow enough time to improve solution and then, if

 %possible, empty an aircraft and continue on. If we empty an aircraft,

 %then we will reset the counters to zero

 TrivialImproveMove = max (0,MaxTrivial - 20);

 DisImproveMove = max (0,MaxDisImp - 20);

 end

C-8

 %if I found a feasible solution and it is better than the current feasible

 %solution

 if feasible==1 && TempCost < ZbestFeas

 if TempCost < Zbest

 Zbest = TempCost;

 end

 XbestFeas = TempXcurrent;

 ZbestFeas = TempCost;

 AvailAcftFeas = TempAvailAcft;

 foundfeas = 1;

 %ELSEIf I found a marginally infeasible solution and it is better than current

 %marginally infeasible solution

 elseif feasible == 2 && TempCost < ZbestMargInfeas

 XbestMargInfeas = TempXcurrent;

 ZbestMargInfeas = TempCost;

 AvailAcftMargInfeas = TempAvailAcft;

 %ELSE If I found a moderately infeasible solution and it is better than current

 %moderately infeasible solution

 elseif feasible==3 && TempCost < ZbestModInfeas

 XbestModInfeas = TempXcurrent;

 ZbestModInfeas = TempCost;

 AvailAcftModInfeas = TempAvailAcft;

 end

 %Best solution out of neghborhood becomes current solution

 Zcurrent = TempCost;

 Xcurrent = TempXcurrent;

 AvailAcft = TempAvailAcft;

 end %State

 %***

 %Update all the counters and stats of the search

 %***

 if Zcurrent < Zbest %if there is an improving solution

 if Zcurrent*1.1 >= Zbest %Trivial Solution

 TrivialImproveMove = TrivialImproveMove + 1;

 if foundfeas == 0

 DisImproveMove = 0;

 end

 else %significanlty improving move

 TrivialImproveMove = 0;

 DisImproveMove = 0;

 end

 Xbest = Xcurrent; %best solution found so far

 Zbest = Zcurrent;

 AvailAcftBest = AvailAcft;

C-9

 else %disimproving solution

 DisImproveMove = DisImproveMove + 1;

 end

 %Determine if we are stagnating. If we are, then start doing more

 %Insert Moves (4 inserts to every one swap) Otherwise, do all swap moves

 if TrivialImproveMove + DisImproveMove >= 10

 InsVsSwap = -4;

 else

 InsVsSwap = 0;

 end

 %Update the number of aircraft to make sure everything is in order

 NumAcft = size (AvailAcft,1);

 %Update statistics

 TArray (iteration) = TrivialImproveMove;

 DArray (iteration) = DisImproveMove;

 ZArray (iteration) = Zbest;

 text = sprintf ('%1s%.3f%1s','Best solution found so far has a cost of ', Zbest, ...

 '.');

 disp (text)

 disp ('')

 end %while

 %We are done with the tabu search

 beep

 %Now update all the solutions we are passing out of the function to make sure

 %the centerline loaded portion match whether or not an item needs to be

 %centerline loaded. Occationally, this flag gets messed up even though the

 %solution is valid

 if XbestFeas (1,1,1,1) ~= 0 %if we found a feasible solution...

 [XbestFeas] =FullUpdateXcurrent (XbestFeas,AvailAcftFeas,Cargo,Zones);

 end

 if size (XbestMargInfeas,1) > 1 %if we found a feasible solution...

 [XbestMargInfeas] =FullUpdateXcurrent (XbestMargInfeas,AvailAcftMargInfeas,Cargo,Zones);

 end

 if size (XbestModInfeas,1) > 1 %if we found a feasible solution...

 [XbestModInfeas] =FullUpdateXcurrent (XbestModInfeas,AvailAcftModInfeas,Cargo,Zones);

 end

 %Lastly, compile stats of the feasible solution

 if XbestFeas (1,1,1,1) ~= 0 %if we found a feasible solution...

 NumAcft = size (XbestFeas,1);

 t = feastime;

 tottime = cputime - starttime;

 stats = zeros (NumAcft,11);

 for acft = 1:NumAcft

 [LeftCB,RightCB,CB,TargetCB,MinCB,MaxCB,CB_OK,LeftTotalWt,RightTotalWt] = ComputeCB...

C-10

 (acft,AvailAcftFeas,XbestFeas,Cargo,CBLookup);

 [AcftUsageFee,UnderWeightFee,OverWeightFee,CBFee,CBTargetFee,...

 ZoneFee,RampFee]=ComputeCost(AvailAcftFeas,XbestFeas,Cargo,CBLookup,...

 Zones,PalletTable,Costs,acft);

 TotWt = LeftTotalWt+RightTotalWt;

 stats (acft,:) = [TotWt CB MinCB MaxCB TargetCB UnderWeightFee OverWeightFee CBFee ...

 CBTargetFee ZoneFee RampFee];

 end

 XCmatrix = ConvertXcurrent (XbestFeas);

 %if we do not find a feasible solution, then indicate that and then still

 %output the solution to the excel file to help determine why the solution is

 %not feasible. This requires "tricking" the algorithm into thinking it found a

 %feasible solution...thus it outputs a "feasible" solution which is not really

 %feasible...be careful to make sure we don't interpret this as a feasible

 %solution!!!

 else

 t = cputime - starttime;

 disp ('Could not find a feasible solution');

 XbestFeas = Xbest;

 NumAcft = size (XbestFeas,1);

 AvailAcftFeas = AvailAcftBest;

 stats = zeros (NumAcft,11);

 for acft = 1:NumAcft

 [LeftCB,RightCB,CB,TargetCB,MinCB,MaxCB,CB_OK,LeftTotalWt,RightTotalWt] = ComputeCB...

 (acft,AvailAcftBest,Xbest,Cargo,CBLookup);

 [AcftUsageFee,UnderWeightFee,OverWeightFee,CBFee,CBTargetFee,...

 ZoneFee,RampFee]=ComputeCost(AvailAcftBest,Xbest,Cargo,CBLookup,...

 Zones,PalletTable,Costs,acft);

 TotWt = LeftTotalWt+RightTotalWt;

 stats (acft,:) = [TotWt CB MinCB MaxCB TargetCB UnderWeightFee OverWeightFee CBFee ...

 CBTargetFee ZoneFee RampFee];

 end

 XCmatrix = ConvertXcurrent (Xbest);

 end

 %Plot objective function, trivial solutions and disimproving solutions

 figure

 plot (ZArray);

 title ('Objective Function');

 figure

 subplot (2,1,1);

 plot (TArray);

 axis ([0 iteration 0 MaxTrivial]);

 title ('Trivial Solutions');

 subplot (2,1,2);

 plot (DArray);

 axis ([0 iteration 0 MaxDisImp]);

 title ('DisImproving Solutions');

C-11

 % write to the excel file ... this file has a macro which generates a picture

 % of the solution

 disp ('Writing to Excel File')

 xlswrite('Solution Representation.xlsm', XCmatrix, 'Data', 'O2');

 xlswrite('Solution Representation.xlsm', AvailAcftFeas(:,1:13), 'Data', 'A2');

 xlswrite('Solution Representation.xlsm', Cargo, 'Data', 'U2');

 xlswrite('Solution Representation.xlsm', stats, 'Data', 'AO2');

 xlswrite('Solution Representation.xlsm', size (AvailAcftFeas,1), 'Data', 'AZ2');

 system ('Solution Representation.xlsm');

else %Assigns values to output vars if not enough acft to gen init soln

 ZbestFeas = 0;

 ZbestMargInfeas =0;

 ZbestModInfeas = 0;

 XbestFeas = Xcurrent;

 XbestMargInfeas = 0;

 XbestModInfeas = 0;

 AvailAcftFeas = 0;

 AvailAcftMargInfeas = 0;

 AvailAcftModInfeas = 0;

 t = cputime - starttime;

 tottime = cputime-starttime;

end %if success == 1

function [Xcurrent] = FixLoad (Xcurrent,AcftIndex,AvailAcft,Cargo,...
 CBLookup,Zones,PalletTable,ZoneMult,RampMult)

%***
% Procedure: FixLoad
% Author : Maj R. Larry Nance
% Purpose : Repack the load of an aircraft to try to make it feasible
% If there are zone violations present, remove all the rolling
% stock from each column. Replace each item in their respecitve
% column in the same order as they were; however, start at the
% forward FS and place each item back in a feasible location with
% respect to the zones and all the other axle constraints. Then,
% slide the cargo just enough to fix the CB. Leave the pallets
% exactly where they are. If the load cannot be fixed, then return
% the original Xcurrent
% Inputs:
% Xcurrent Current solution
% AcftIndex Which aircraft are we trying to fix
% AvailAcft a x 19 matrix which defines various aspects of the
% aircraft availiable for loading (a = number of acft)
% Cargo: A n x 20 matrix where n is the number of cargo items.
% Columns are defined in the excel file "Pallet Testing"
% CBLookup Lookup table for the CB given the weight an acft
% Zones Table which defines zone limits and constraints
% PalletTable Table which defines pallet locations and constraints

C-12

% ZoneMult Zone cost multiplier to determine if there are any zone
% violations.
% RampMult Ramp cost multiplier to determine if there are any
% ramp violations
%
% Outputs: Xcurrent New solution that (hopefully) is feasible for
%
% CalledBy: InterAcftInsertRedN
% Calls : AircraftStats, ComputeZoneCosts, ComputeRampCosts,SlideCBCenter
%***

infeasLoad = 0; %assume the load we have is possible to put on acft
%Gather some statistics on the load --These will not change regarldess of what
%we do within this procedure
[NumLeftRoll,NumLeftPallet,LPallets,NumRtRoll,NumRtPallet,RPallets] =...
 AircraftStats (Xcurrent,AcftIndex,AvailAcft,Cargo,PalletTable);

%Now see if there are any zone violations
[ZCosts,notused1,notused2,notused3,notused4,notused5] = ComputeZoneCosts (AcftIndex,...
 Xcurrent,Cargo,Zones,AvailAcft,PalletTable,ZoneMult);
[RCosts]=ComputeRampCosts(AcftIndex,Xcurrent,AvailAcft,Cargo,...
 NumLeftRoll,NumRtRoll,RampMult);

%Are there any violations and is there any rolling stock? If there are, then fix the load
if (ZCosts > 0 || RCosts > 0) && (NumLeftRoll > 0 || NumRtRoll > 0)

 %Assume NOTHING is centerline loaded...this prevents Pallets loaded in
 %previously centered locations from showing that they are centerline loaded
 Xcurrent(AcftIndex,:,:,4) = 0;

 %Initilaize variables
 TotalRoll = NumLeftRoll + NumRtRoll;
 AcftFSMin = AvailAcft(AcftIndex,3);
 %Figure out where the last FS is on each side where we could load cargo
 if NumLeftPallet > 0
 if max (LPallets(:,3)) == 0
 disp ('debug')
 end
 for i = 1:size(LPallets,1)
 if LPallets(i,3) ~= 0 %if the pallet position is occupied
 LeftAftFS = LPallets(i,1)-1; %One inch forward of most fwd left occupied pallet pos
 break
 end %if
 end%for i = ...
 else

C-13

 LeftAftFS = AvailAcft(AcftIndex,4); %FSMax
 end
 if NumRtPallet > 0
 if max (RPallets(:,3)) == 0
 disp ('debug')
 end
 found = 0;
 for i = 1:size(RPallets,1)
 if RPallets(i,3) ~= 0 %if the pallet position is occupied
 RtAftFS = RPallets(i,1)-1; %One inch forward of most fwd left occupied pallet pos
 found = 1;
 break
 end
 end%for i = 1:size(RPallet,1)
 if found == 0
 disp ('debug')
 end
 else
 RtAftFS = AvailAcft(AcftIndex,4); %FSMax
 end

 %Gather the axle info for the left side
 for i = 1:NumLeftRoll
 iNumAxles = Cargo(Xcurrent (AcftIndex,1,i,3),4);
 if iNumAxles == 0 %If it is a tracked item
 iNumAxles = 1;
 end
 %LeftItems (i,j) = [ItemNumber NumberOfAxles AxleLocation AxleWt]

 for j = 1:iNumAxles
 ItemNumber = Xcurrent (AcftIndex,1,i,3);
 AxleLoc = Cargo(Xcurrent (AcftIndex,1,i,3),4);
 AxleWt = Cargo(Xcurrent (AcftIndex,1,i,3),10+j);
 if iNumAxles == 1
 LeftItems (i,1,1) = ItemNumber;
 LeftItems (i,1,2) = 1;
 LeftItems (i,1,3) = Cargo(Xcurrent (AcftIndex,1,i,3),18); %CB of tracked vehicle
 LeftItems (i,1,4) = Cargo(Xcurrent (AcftIndex,1,i,3),17);
 else
 LeftItems (i,j,1) = ItemNumber;
 LeftItems (i,j,2) = iNumAxles;
 LeftItems (i,j,3) = AxleLoc;
 LeftItems (i,j,4) = AxleWt;
 end %if iNumAxles == 1
 end %for j = 1:iNumAxles
 end %for i = 1:NumLeftRoll

 %Gather the axle info for the right side
 for i = 1:NumRtRoll

C-14

 iNumAxles = Cargo(Xcurrent (AcftIndex,2,i,3),4);
 if iNumAxles == 0 %If it is a tracked item
 iNumAxles = 1;
 end
 %LeftItems (i,j) = [ItemNumber NumberOfAxles AxleLocation AxleWt]

 for j = 1:iNumAxles
 ItemNumber = Xcurrent (AcftIndex,2,i,3);
 AxleLoc = Cargo(Xcurrent (AcftIndex,2,i,3),4);
 AxleWt = Cargo(Xcurrent (AcftIndex,2,i,3),10+j);
 if iNumAxles == 1
 RtItems (i,1,1) = ItemNumber;
 RtItems (i,1,2) = 1;
 RtItems (i,1,3) = Cargo(Xcurrent (AcftIndex,2,i,3),18); %CB of tracked vehicle
 RtItems (i,1,4) = Cargo(Xcurrent (AcftIndex,2,i,3),17);
 else
 RtItems (i,j,1) = ItemNumber;
 RtItems (i,j,2) = iNumAxles;
 RtItems (i,j,3) = AxleLoc;
 RtItems (i,j,4) = AxleWt;
 end %if iNumAxles == 1
 end %for j = 1:iNumAxles
 end %for i = 1:NumRtRoll

 %***

 %Now, reload Xcurrent
 col = 1; %Start with left column
 LoadedLeft = zeros (NumLeftRoll,4);
 LoadedRt = zeros (NumRtRoll,4);
 NumLoadedLeft = 0;
 NumLoadedRt = 0;
 FSArray = ([AcftFSMin AcftFSMin]);
 NumRamps = AvailAcft(AcftIndex,14);
 AftRampFS = AvailAcft(AcftIndex,15); %starting FS of aft ramp
 if NumRamps == 2
 FwdRampFS = AvailAcft(AcftIndex,18);

 end

 for i = 1:TotalRoll
 %Which column are we loading into?
 if col == 1
 if NumLoadedLeft+1 <= NumLeftRoll %Load left if there is stuff left to load
 InsertFS = FSArray (1);
 else
 col = 2; %nothing left to load in left side
 InsertFS = FSArray (2);

C-15

 end
 else %col == 2
 if NumLoadedRt+1 <= NumRtRoll
 InsertFS = FSArray (2);
 else
 col = 1; %nothing left to load in right side
 InsertFS = FSArray (1);
 end
 end

 %Now we know where the next insert point is and which column we are loading.
 % Now we need to adjust InsertFS back such that we can feasibly load the
 % item.

 %Insert the item and then slide it aft to fix ramp, axle and zone violations
 if col == 1
 NumLoadedLeft = NumLoadedLeft + 1;
 %Gather some information about the cargo item
 %LeftItems (i,j) = [ItemNumber NumberOfAxles AxleLocation AxleWt]
 CargoItem = LeftItems(NumLoadedLeft,1,1);
 NumAxles = LeftItems(NumLoadedLeft,1,2);
 AxleArray = zeros (NumAxles,4);
 CargoWt = Cargo(CargoItem,17);
 CargoWid = Cargo(CargoItem,2);
 CargoLen = Cargo(CargoItem,1);
 AcftType = AvailAcft(AcftIndex,1);
 if Cargo(CargoItem,4) == 0 %tracked
 tracked = 1;
 else
 tracked = 0;
 end
 NumZones = AvailAcft(AcftIndex,7);
 %Load the Item at InsertFS
 LoadedLeft(NumLoadedLeft,1) = InsertFS;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 LoadedLeft(NumLoadedLeft,3) = CargoItem;
 for k = 1:NumAxles
 %AxleArray = [FS Weight InZone TooHeavy?]

 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end

C-16

 for j = 1:NumZones
 %if the FS of the axle is in the kth zone
 if AxleArray(k,1) >= Zones(AcftType,j,1,2) &&...
 AxleArray(k,1) <= Zones(AcftType,j,1,3)
 AxleArray(k,3) = j;
 if AxleArray(k,2) > Zones(AcftType,j,1,4)
 AxleArray(k,4) = 1;
 else
 AxleArray(k,4) = 0;
 end
 break
 end

 end %for j
 end %for k

 %*********************************
 %Step 1: Find Zone in which the axle
 %weights and will fit. Needs to be as close to
 %InsertFS as possible

 %Are there any axles that are too heavy for their zones. If YES, then find
 %the nearest zone that will accomodate an axle of that weight
 %Keep looping through this until all the axles are good
 found = 1;
 iteration = 1;
 while found == 1 && iteration < 7
 found = 0;
 [x index] = find (AxleArray(:,4) == 1);
 if ~isempty(x) %if there is an axle that has a zone violation
 %If it finds more than one item that is overweight, pick the last one
 if size (x,1) > 1
 x = x(size(x,1));
 end
 %Figure out nearest zone that can accomodate an axle of that weight
 found = 1;
 InZone = AxleArray(x,3);
 Diff = inf; %want to pick closest zone to curent zone
 WantZone = 0;
 for zonecount = InZone:NumZones

 if AxleArray(x,2) < Zones(AcftType,zonecount,1,4) &&...
 abs(zonecount-InZone) < Diff
 Diff = abs(zonecount-InZone);
 WantZone = zonecount;
 end

C-17

 end %for
 if WantZone ~= 0 %if there is a zone I can slide this to...

 ZoneFS = Zones(AcftType,WantZone,1,2);
 delta = ZoneFS - AxleArray(x,1);
 else
 delta = -1; %force the program to indicate infeasible load
 end
 %Now slide the cargo and axles aft by Diff
 if delta > 0 %can only go to a farther aft zone.
 InsertFS = InsertFS + delta+1;
 LoadedLeft(NumLoadedLeft,1) = InsertFS;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 for s = 1:NumAxles
 %AxleArray = [FS Weight InZone TooHeavy?]
 if tracked == 1
 AxleArray(s,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(s,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(s,1) = InsertFS + Cargo(CargoItem,s+ 4);
 AxleArray(s,2) = Cargo(CargoItem,s + 10);
 end
 for p = 1:NumZones
 %if the FS of the axle is in the kth zone
 if AxleArray(s,1) >= Zones(AcftType,p,1,2) &&...
 AxleArray(s,1) <= Zones(AcftType,p,1,3)
 AxleArray(s,3) = p;
 if AxleArray(s,2) > Zones(AcftType,p,1,4)
 AxleArray(s,4) = 1;
 else
 AxleArray(s,4) = 0;
 end
 break
 end
 %check to see if it is too heavy

 end %for p
 end %for s
 else
 found = 0; %force exit the while loop b/c can't load this load
 infeasLoad = 1;
 end
 end %if ~isempty
 iteration = iteration + 1;
 end%while

 if infeasLoad == 1
 break
 end

C-18

 %Now, all the axles on the cargo item should be in zones that can support
 %them

 %***
 %Step 2:

 %Now check to see if we are on the forward ramp
 if NumRamps == 2 && InsertFS < FwdRampFS %if any part of item hangs over ramp
 %Rules: 1) Tracked items cannot span across the ramp
 % 2) Items must have one wheel on the ramp and one off the ramp if
 % they span the ramp
 % 3) Items cannot overhang ramp if their wheels are not on it.

 %Rule 1) Tracked
 if (tracked == 1) && (InsertFS + CargoLen > FwdRampFS) %if tracked and spans ramp
 %then move the item aft off of the ramp
 delta = FwdRampFS - InsertFS; %pos #
 InsertFS = InsertFS + delta;
 LoadedLeft(NumLoadedLeft,1) = InsertFS ;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k

 end %if tracked == 1

 %Rule 2) If Items span the ramp, they must have an axle on the front ramp
 %and one on the aft
 if InsertFS+12 < FwdRampFS && InsertFS + CargoLen > FwdRampFS
 FrontAxleFS = AxleArray(1,1);
 AftAxleFS = AxleArray(NumAxles,1);
 if FrontAxleFS > FwdRampFS || AftAxleFS < FwdRampFS %if violation
 %shift aft by the distance from the Fwd Ramp front of the item
 delta = FwdRampFS-(InsertFS+12); %pos #
 InsertFS = InsertFS + delta;
 LoadedLeft(NumLoadedLeft,1) = InsertFS ;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]

C-19

 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 end %if FrontAxleFS > ...
 end %if InsertFS < FwdRampFS

 %Rule 3) Items cannot overhang ramp if their wheels are not the ramp
 if InsertFS +13 < FwdRampFS && AxleArray(1,1) > FwdRampFS
 delta = FwdRampFS - (InsertFS+12);
 InsertFS = InsertFS + delta;
 LoadedLeft(NumLoadedLeft,1) = InsertFS ;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 end %if InsertFS + 12
 end %if NumRamps == 2
 %if we have exceeded the aft of the cargo compartment then quit
 if LoadedLeft (NumLoadedLeft,2) > LeftAftFS
 infeasLoad = 1;
 break
 end
 %Now update the zones the Axles are in
 for s = 1:NumAxles
 for p = 1:NumZones
 %if the FS of the axle is in the kth zone
 if AxleArray(s,1) >= Zones(AcftType,p,1,2) &&...
 AxleArray(s,1) <= Zones(AcftType,p,1,3)
 AxleArray(s,3) = p;
 break
 end
 end %for p
 end %for s

 %***
 %Now check to see if the item needs to be centerline loaded based on its
 %weight and width

C-20

 for index = 1:NumAxles
 InZone = AxleArray(index,3); %Gather which zone we are looking at
 if CargoWt > Zones(AcftType,InZone,1,10) ||... %if should be centerline loaded (weight)
 CargoWid > AvailAcft(AcftIndex,5) %if it should be centerline loaded (width)
 %The item needs to be centerline loaded, so shift the opposite column's
 %FS pointer to the end of this cargo item
 %We need to make sure not to centerline load any cargo AFT of a
 %pallet. So, if there is a pallet on the right side, we need to make
 %sure we don't try to centerline load aft of that pallet position
 %(Denoted by RtAftFS

 Center = 1;
 if FSArray(2) > InsertFS %need to be past the last right item
 InsertFS = FSArray(2);
 end
 if InsertFS + CargoLen < RtAftFS
 LoadedLeft(NumLoadedLeft,1) = InsertFS ;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;

 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 break %Found the item...so quit
 else
 infeasLoad = 1; %trying to insert a centered item aft of rt side pallets
 end %if InsertFS...
 else
 Center = 0;
 end%if
 end %for index
 if infeasLoad == 1
 break %quit if the load is infeasible
 end
 if Center == 1
 FSArray(2) = LoadedLeft(NumLoadedLeft,2) + 1; %Right side index incremented
 LoadedLeft(NumLoadedLeft,4) = 1; %Indicate Centered
 end

 %**
 %Now check for axles that are too heavy next to each other only if item is

C-21

 %not centerline loaded
 if Center == 0 && tracked == 0
 FSFwd = LoadedLeft(NumLoadedLeft,1);
 FSAft = LoadedLeft(NumLoadedLeft,2);

 %Determine SubZones for each of the Axles in the Left Side
 for k = 1:NumAxles
 InZone = AxleArray(k,3);

 for subzone = 1:Zones(AcftType,InZone,1) %# of possible subzones
 weight = AxleArray(k,2);

 if weight >= Zones(AcftType,InZone,subzone,5) &&...
 weight <= Zones(AcftType,InZone,subzone,6) %if its weight is in the subzone
 SubZone(k) = subzone;
 break
 end
 end %for subzone
 end %for k

 %Now, need to look through each item in the right side to see if it
 %overlaps the left column item we are inserting
 for rtcol = 1:NumLoadedRt
 if Cargo(LoadedRt(rtcol,3),4) == 0
 RtTracked =1;
 else
 RtTracked = 0;
 end
 if RtTracked == 0
 RightFSFwd = LoadedRt(rtcol,1);
 RightFSAft = LoadedRt(rtcol,2);

 %If the item being inserted is next to an item in the right column...
 if RightFSFwd >= FSFwd && RightFSFwd <= FSAft || ...
 RightFSAft >= FSFwd && RightFSFwd <= FSAft || ...
 RightFSFwd >= FSAft && RightFSFwd <= FSAft || ...
 RightFSAft >= FSAft && RightFSFwd <= FSAft
 %Need to check all the axles of the right item
 NumRtAxles = Cargo(LoadedRt(rtcol,3),4);

 for rtAxles = 1:NumRtAxles
 for leftAxles = 1:NumAxles
 leftFS = InsertFS + Cargo(CargoItem,leftAxles + 4);
 leftWt = Cargo(CargoItem,leftAxles + 10);
 rtFS = RightFSFwd + Cargo(LoadedRt(rtcol,3),rtAxles+4);
 rtWt = Cargo(LoadedRt(rtcol,3),rtAxles+10);
 InZone = AxleArray(leftAxles,3);
 InSubZone = SubZone (leftAxles);

C-22

 ReqSep = Zones(AcftType,InZone,1,9);
 if abs(leftFS - rtFS) <= ReqSep %if they are close to one another

 Slope = Zones(AcftType,InZone,InSubZone,7);
 Intercept =Zones(AcftType,InZone,InSubZone,8);
 MaxRtWt = leftWt * Slope + Intercept;
 if MaxRtWt < rtWt %if they are too heavy then slide the left item down
 delta = ReqSep +1 - abs(leftFS - rtFS);
 InsertFS = InsertFS + delta;
 LoadedLeft(NumLoadedLeft,1) = InsertFS ;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 end %MaxRtWt > rtWt
 end % if abs(leftFS - rtFS) <= ReqSe

 end %for leftAxles = 1:NumAxles

 end %rtAxles = 1:NumRtAxles
 end %RightFSFwd >= FSFwd && RightFSFwd <= FSAft || ...
 end %if RtTracked = 0

 end %for rtcol = ...
 %Update LoadedLeft/Right and Axles only if InsertFS changed

 end %if Center == 0 && Tracked == 0

 %***
 %Lastly, need to make sure the aft ramp is configured correclty
 %Rules: 1) Tracked items cannot span across the ramp
 % 2) Items must have one wheel on the ramp and one off the ramp if
 % they span the ramp
 % 3) Items cannot overhang ramp if their wheels are not on it.

C-23

 %Rule 1) Tracked
 if (tracked == 1) && (InsertFS + CargoLen > AftRampFS) && ...
 (InsertFS < AftRampFS) %if tracked and spans ramp
 %then move the item aft off of the ramp
 delta = AftRampFS - InsertFS; %pos #
 InsertFS = InsertFS + delta;
 LoadedLeft(NumLoadedLeft,1) = InsertFS ;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 InsertFS = InsertFS + delta;
 end %if tracked == 1

 %Rule 2) If Items span the ramp, they must have an axle on the aft ramp
 %and one on the aft
 if InsertFS < AftRampFS && InsertFS + CargoLen > AftRampFS
 FrontAxleFS = AxleArray(1,1);
 AftAxleFS = AxleArray(NumAxles,1);
 if FrontAxleFS > AftRampFS || AftAxleFS < AftRampFS %if violation
 %shift aft by the distance from the Fwd Ramp to the Aft Axle
 if AftAxleFS < AftRampFS
 delta = AftRampFS - AftAxleFS+1; %pos #
 else
 delta = AftRampFS - InsertFS;
 end
 if delta < 0
 disp ('debug')
 end
 InsertFS = InsertFS + delta;
 LoadedLeft(NumLoadedLeft,1) = InsertFS ;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end

C-24

 end %for k
 end %if FrontAxleFS > ...
 end %if InsertFS < FwdRampFS

 %Rule 3) Items cannot overhang ramp if their wheels are not the ramp
 if LoadedLeft(NumLoadedLeft,2) - 12 > AftRampFS && AxleArray(NumAxles,1) < AftRampFS
 delta = AftRampFS - (LoadedLeft(NumLoadedLeft,2) - 12);
 InsertFS = InsertFS + delta;
 LoadedLeft(NumLoadedLeft,1) = InsertFS ;
 LoadedLeft(NumLoadedLeft,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,4+k);
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 else
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 end %if InsertFS + 12

 %UPDATE Xcurrent
 FSArray(1) = LoadedLeft(NumLoadedLeft,2) + 1;
 if FSArray(1) > LeftAftFS
 infeasLoad = 1;
 break;
 end
 col = 2; %switch to the other column
 %***
 %*******LOADING ON RIGHT %SIDE**
 %***

 else %col == 2
 %Insert the item and then slide it aft to fix ramp, axle and zone violations
 NumLoadedRt = NumLoadedRt + 1;
 %Gather some information about the cargo item
 %LeftItems (i,j) = [ItemNumber NumberOfAxles AxleLocation AxleWt]
 CargoItem = RtItems(NumLoadedRt,1,1);
 NumAxles = RtItems(NumLoadedRt,1,2);
 AxleArray = zeros (NumAxles,4);
 CargoWt = Cargo(CargoItem,17);
 CargoWid = Cargo(CargoItem,2);
 CargoLen = Cargo(CargoItem,1);
 AcftType = AvailAcft(AcftIndex,1);
 if Cargo(CargoItem,4) == 0 %tracked
 tracked = 1;
 else
 tracked = 0;
 end

C-25

 NumZones = AvailAcft(AcftIndex,7);
 %Load the Item at InsertFS
 LoadedRt(NumLoadedRt,1) = InsertFS;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 LoadedRt(NumLoadedRt,3) = CargoItem;
 for k = 1:NumAxles
 %AxleArray = [FS Weight InZone TooHeavy?]

 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 for j = 1:NumZones
 %if the FS of the axle is in the kth zone
 if AxleArray(k,1) >= Zones(AcftType,j,1,2) &&...
 AxleArray(k,1) <= Zones(AcftType,j,1,3)
 AxleArray(k,3) = j;
 if AxleArray(k,2) > Zones(AcftType,j,1,4)
 AxleArray(k,4) = 1;
 else
 AxleArray(k,4) = 0;
 end
 break
 end

 end %for j
 end %for k

 %*********************************
 %Step 1: Find Zone in which the axle
 %weights and will fit. Needs to be as close to
 %InsertFS as possible

 %Are there any axles that are too heavy for their zones. If YES, then find
 %the nearest zone that will accomodate an axle of that weight
 %Keep looping through this until all the axles are good
 found = 1;
 iteration = 1;
 while found == 1 && iteration < 10
 found = 0;
 [x index] = find (AxleArray(:,4) == 1);
 if ~isempty(x) %if there is an axle that has a zone violation
 %Figure out nearest zone that can accomodate an axle of that weight

C-26

 found = 1;
 %If it finds more than one item that is overweight, pick the last one
 if size (x,1) > 1
 x = x(size(x,1));
 end
 inZone = AxleArray(x,3);
 Diff = inf; %want to pick closest zone to curent zone
 WantZone = 0;
 for zonecount = inZone:NumZones

 if AxleArray(x,2) < Zones(AcftType,zonecount,1,4) &&...
 abs(zonecount-inZone) < Diff
 Diff = abs(zonecount-inZone);
 WantZone = zonecount;
 end
 end %for
 if WantZone ~= 0 %if there is a zone I can slide this to...

 ZoneFS = Zones(AcftType,WantZone,1,2);
 delta = ZoneFS - AxleArray(x,1);
 else
 delta = -1; %force the program to indicate infeasible load
 end
 %Now slide the cargo and axles aft by Diff
 if delta > 0
 InsertFS = InsertFS + delta+1;
 LoadedRt(NumLoadedRt,1) = InsertFS;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 for s = 1:NumAxles
 %AxleArray = [FS Weight InZone TooHeavy?]
 if tracked == 1
 AxleArray(s,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(s,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(s,1) = InsertFS + Cargo(CargoItem,s+ 4);
 AxleArray(s,2) = Cargo(CargoItem,s + 10);
 end
 for p = 1:NumZones
 %if the FS of the axle is in the kth zone
 if AxleArray(s,1) >= Zones(AcftType,p,1,2) &&...
 AxleArray(s,1) <= Zones(AcftType,p,1,3)
 AxleArray(s,3) = p;
 if AxleArray(s,2) > Zones(AcftType,p,1,4)
 AxleArray(s,4) = 1;
 else
 AxleArray(s,4) = 0;
 end
 break
 end

C-27

 %check to see if it is too heavy

 end %for p
 end %for s
 else %delta < 0, so we have hit an infeasible load
 infeasLoad = 1;
 found = 0; %force the loop to exit
 end %if delta > 0
 end %if ~isempty
 iteration = iteration + 1;
 end%while
 if iteration == 10
 disp ('debug')
 end
 if infeasLoad == 1
 break %stop trying to load the acft
 end

 %Now, all the axles on the cargo item should be in zones that can support
 %them

 %***
 %Step 2:

 %Now check to see if we are on the forward ramp
 if NumRamps == 2 && InsertFS < FwdRampFS %if any part of item hangs over ramp
 %Rules: 1) Tracked items cannot span across the ramp
 % 2) Items must have one wheel on the ramp and one off the ramp if
 % they span the ramp
 % 3) Items cannot overhang ramp if their wheels are not on it.

 %Rule 1) Tracked
 if (tracked == 1) && (InsertFS + CargoLen > FwdRampFS) %if tracked and spans ramp
 %then move the item aft off of the ramp
 delta = FwdRampFS - InsertFS; %pos #
 InsertFS = InsertFS + delta;
 LoadedRt(NumLoadedRt,1) = InsertFS ;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);

C-28

 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k

 end %if tracked == 1

 %Rule 2) If Items span the ramp, they must have an axle on the front ramp
 %and one on the aft
 if InsertFS+12 < FwdRampFS && InsertFS + CargoLen > FwdRampFS
 FrontAxleFS = AxleArray(1,1);
 AftAxleFS = AxleArray(NumAxles,1);
 if FrontAxleFS > FwdRampFS || AftAxleFS < FwdRampFS %if violation
 %shift aft by the distance from the Front of vechicle to the Ramp
 delta = FwdRampFS - (InsertFS +13); %pos #
 InsertFS = InsertFS + delta;
 LoadedRt(NumLoadedRt,1) = InsertFS ;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]

 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 end %if FrontAxleFS > ...
 end %if InsertFS < FwdRampFS

 %Rule 3) Items cannot overhang ramp if their wheels are not the ramp
 if InsertFS +13 < FwdRampFS && AxleArray(1,1) > FwdRampFS
 delta = FwdRampFS - (InsertFS+13);
 InsertFS = InsertFS + delta;
 LoadedRt(NumLoadedRt,1) = InsertFS ;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k

C-29

 end %if InsertFS + 12
 end %if NumRamps == 2

 %if we have exceeded the aft of the cargo compartment then quit
 if LoadedRt (NumLoadedRt,2) > RtAftFS
 infeasLoad = 1;
 break
 end
 %Now update the zones the Axles are in
 for s = 1:NumAxles
 for p = 1:NumZones
 %if the FS of the axle is in the kth zone
 if AxleArray(s,1) >= Zones(AcftType,p,1,2) &&...
 AxleArray(s,1) <= Zones(AcftType,p,1,3)
 AxleArray(s,3) = p;
 break
 end
 end %for p
 end %for s

 %***
 %Now check to see if the item needs to be centerline loaded based on its
 %weight and width
 for index = 1:NumAxles %If the axle has no zone, it is off end of cargo compartment

 InZone = AxleArray(index,3); %Gather which zone we are looking at
 if CargoWt > Zones(AcftType,InZone,1,10) ||... %if should be centerline loaded (weight)
 CargoWid > AvailAcft(AcftIndex,5) %if it should be centerline loaded (width)
 %The item needs to be centerline loaded, so shift the opposite column's
 %FS pointer to the end of this cargo item
 Center = 1;
 if FSArray(1) > InsertFS %need to be past the last right item
 InsertFS = FSArray(1) ;
 end
 if InsertFS +CargoLen < LeftAftFS %if no blocking pallets on left side
 LoadedRt(NumLoadedRt,1) = InsertFS ;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;

 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight InZone TooHeavy?]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 for p = 1:NumZones
 %if the FS of the axle is in the kth zone
 if AxleArray(k,1) >= Zones(AcftType,p,1,2) &&...
 AxleArray(k,1) <= Zones(AcftType,p,1,3)
 AxleArray(k,3) = p;

C-30

 break
 end
 end %for p
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 for p = 1:NumZones
 %if the FS of the axle is in the kth zone
 if AxleArray(k,1) >= Zones(AcftType,p,1,2) &&...
 AxleArray(k,1) <= Zones(AcftType,p,1,3)
 AxleArray(k,3) = p;
 break
 end %if AxleArray(k,1)...
 end %for p
 end %if tracked ==1
 end %for k

 break
 else %there is a pallet blocking the insert
 infeasLoad = 1;
 end%if InsertFS +CargoLen < LeftAftFS

 else
 Center = 0;
 end%if
 end %for index
 if Center == 1
 FSArray(1) = LoadedRt(NumLoadedRt,2) + 1; %Left side index incremented
 LoadedRt(NumLoadedRt,4) = 1; %Indicate Centered
 %It is possible that this may return a "centered" item which is not
 %really centered because there are pallets in the way. This should not
 %be a problem because the solution will have a high zone cost and won't
 %be used as the best solution...
 end
 if infeasLoad == 1
 break
 end

 %**
 %Now check for axles that are too heavy next to each other only if item is
 %not centerline loaded
 if Center == 0 && tracked == 0
 FSFwd = LoadedRt(NumLoadedRt,1);
 FSAft = LoadedRt(NumLoadedRt,2);

 %Determine SubZones for each of the Axles in the LRighteft Side
 for k = 1:NumAxles

C-31

 InZone = AxleArray(k,3);
 if InZone == 0
 disp ('debug')
 end
 for subzone = 1:Zones(AcftType,InZone,1) %# of possible subzones
 weight = AxleArray(k,2);

 if weight >= Zones(AcftType,InZone,subzone,5) &&...
 weight <= Zones(AcftType,InZone,subzone,6) %if its weight is in the subzone
 SubZone(k) = subzone;
 break
 end
 end %for subzone
 end %for k

 %Now, need to look through each item in the right side to see if it
 %overlaps the left column item we are inserting
 for leftcol = 1:NumLoadedLeft
 if Cargo(LoadedLeft(leftcol,3),4) == 0
 LeftTracked =1;
 else
 LeftTracked = 0;
 end
 if LeftTracked == 0
 LeftFSFwd = LoadedLeft(leftcol,1);
 LeftFSAft = LoadedLeft(leftcol,2);

 %If the item being inserted is next to an item in the right column...
 if LeftFSFwd >= FSFwd && LeftFSFwd <= FSAft || ...
 LeftFSAft >= FSFwd && LeftFSFwd <= FSAft || ...
 LeftFSFwd >= FSAft && LeftFSFwd <= FSAft || ...
 LeftFSAft >= FSAft && LeftFSFwd <= FSAft
 %Need to check all the axles of the left item
 NumLeftAxles = Cargo(LoadedLeft(leftcol,3),4);

 for leftAxles = 1:NumLeftAxles
 for rtAxles = 1:NumAxles

 leftFS = InsertFS + Cargo(LoadedLeft(leftcol,3),leftAxles + 4);
 leftWt = Cargo(LoadedLeft(leftcol,3),leftAxles + 10);
 rtFS = InsertFS + Cargo(CargoItem,rtAxles+4);
 rtWt = Cargo(CargoItem,rtAxles+10);
 InZone = AxleArray(rtAxles,3);
 if InZone == 0
 disp ('debug')
 end
 InSubZone = SubZone (rtAxles);
 if InSubZone == 0

C-32

 disp ('debug')
 end
 ReqSep = Zones(AcftType,InZone,1,9);
 if abs(leftFS - rtFS) <= ReqSep %if they are close to one another

 Slope = Zones(AcftType,InZone,InSubZone,7);
 Intercept =Zones(AcftType,InZone,InSubZone,8);
 MaxLeftWt = rtWt * Slope + Intercept;
 if MaxLeftWt < leftWt %if they are too heavy then slide the left item down
 delta = ReqSep + 1 - abs(leftFS - rtFS);
 InsertFS = InsertFS + delta;
 %Update LoadedLeft/Right and Axles
 LoadedRt(NumLoadedRt,1) = InsertFS ;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 end %MaxRtWt > rtWt
 end % if abs(leftFS - rtFS) <= ReqSe

 end %for leftAxles = 1:NumAxles

 end %rtAxles = 1:NumRtAxles
 end %RightFSFwd >= FSFwd && RightFSFwd <= FSAft || ...
 end %if RtTracked = 0

 end %for rtcol = ...

 end %if Center == 0 && Tracked == 0

 %***
 %Lastly, need to make sure the aft ramp is configured correclty
 %Rules: 1) Tracked items cannot span across the ramp
 % 2) Items must have one wheel on the ramp and one off the ramp if
 % they span the ramp
 % 3) Items cannot overhang ramp if their wheels are not on it.

 %Rule 1) Tracked

C-33

 if (tracked == 1) && (InsertFS + CargoLen > AftRampFS) && ...
 (InsertFS < AftRampFS) %if tracked and spans ramp
 %then move the item aft onto the ramp of the ramp
 delta = AftRampFS - InsertFS; %pos #
 InsertFS = InsertFS + delta;
 LoadedRt(NumLoadedRt,1) = InsertFS ;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 InsertFS = InsertFS + delta;
 end %if tracked == 1

 %Rule 2) If Items span the ramp, they must have an axle on the aft ramp
 %and one on the aft
 if InsertFS < AftRampFS && InsertFS + CargoLen > AftRampFS
 FrontAxleFS = AxleArray(1,1);
 AftAxleFS = AxleArray(NumAxles,1);
 if FrontAxleFS > AftRampFS || AftAxleFS < AftRampFS %if violation
 %shift aft by the distance from the Fwd Ramp to front of the item
 %(Only option is to slide forward)
 if AftAxleFS < AftRampFS
 delta = AftRampFS - AftAxleFS+1; %pos #
 else
 delta = AftRampFS - InsertFS+1;
 end
 if delta < 0
 disp ('debug')
 end
 InsertFS = InsertFS + delta;
 LoadedRt(NumLoadedRt,1) = InsertFS ;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end

C-34

 end %for k
 end %if FrontAxleFS > ...
 end %if InsertFS < FwdRampFS

 %Rule 3) Items cannot overhang ramp if their wheels are not the ramp
 if LoadedRt(NumLoadedRt,2) - 12 > AftRampFS && AxleArray(NumAxles,1) < AftRampFS
 delta = AftRampFS - (LoadedRt(NumLoadedRt,2) - 12);
 InsertFS = InsertFS + delta;
 LoadedRt(NumLoadedRt,1) = InsertFS ;
 LoadedRt(NumLoadedRt,2) = InsertFS + CargoLen;
 for k = 1:NumAxles
 %NOTE: AxleArray = [FS Weight]
 if tracked == 1
 AxleArray(k,2) = 0; %don't count the axle wt for the item of tracked vehicle
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,18); %The CB of the item
 else
 AxleArray(k,1) = InsertFS + Cargo(CargoItem,k+ 4);
 AxleArray(k,2) = Cargo(CargoItem,k + 10);
 end
 end %for k
 end %if InsertFS + 12

 %Update Array
 FSArray(2) = LoadedRt(NumLoadedRt,2) + 1;
 if LoadedRt(NumLoadedRt,2) > RtAftFS
 infeasLoad = 1;
 break;
 end

 col = 1; %Switch to the other column
 end %if col == 1

 end %for i = 1:TotalRoll

 %Now check to see if we would have overlapped any pallets or the aft of the
 %acft. If we did, then just return Xcurrent

 if NumLoadedLeft > 0 && infeasLoad == 0
 if LoadedLeft(NumLoadedLeft,2) <= LeftAftFS
 Xcurrent (AcftIndex,1,1:NumLoadedLeft,1:4) = LoadedLeft(1:NumLoadedLeft,1:4);
 end
 end
 if NumLoadedRt > 0 && infeasLoad == 0
 if LoadedRt(NumLoadedRt,2) <= RtAftFS
 Xcurrent (AcftIndex,2,1:NumLoadedRt,1:4) = LoadedRt(1:NumLoadedRt,1:4);
 end
 end

C-35

 %Slide the CB to get things into CB limits if possible
 [Xcurrent,InCB] = SlideCBCenter (0,Xcurrent,AcftIndex,...
 AvailAcft,Cargo,CBLookup,NumLeftRoll,NumLeftPallet,LPallets,...
 NumRtRoll,NumRtPallet,RPallets,PalletTable);

 %Otherwise, we just return the original Xcurrent

end %CenterItems ~= [inf inf inf inf inf inf] && ...

D-1

Appendix D: Solution Representation

 After completing the search, MPALPTS exports the cargo, available aircraft and

current solution to a specific Excel File. This file has Visual Basic code which takes this

data and builds a visual representation of the solution for each aircraft. The aircraft

representation includes the exact location of each item within the cargo compartment as

well as its width and weight. It also illustrates whether or not an item was centerline

loaded. Grey lines in the cargo compartment display where any ramps meet the cargo

floor. The tables below the figure display the acceptable and actual CB and ACL

statistics as well as each item’s axle weights and axle locations. This allows the user

visually see how MPALPTS loaded the aircraft and to easily verify the load’s feasibility.

The visual representation depicted on the next page is the first C-5 from the M75 mixed

test case.

D-2

E-1

Appendix E: Specific Results

The following tables illustrate the specific results for each of the original six test

cases. They show the number of cargo items placed on each aircraft and the aircraft’s

percentage of ACL and space used. It is interesting to note that scenarios with only C-17

aircraft tended to be limited by space while the C-5 and C-5/C-17 mixed problems tended

to be limited by ACL. From the results, it appears AALPS does a very good job utilizing

an aircraft’s available space; however, MPALPTS dominates in finding solutions which

are more limited by weight.

Table 14. P75 Mixed Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 18 100 56 C-5 29 99.1 73.5

C-17 15 100 82 C-17 17 100.0 90.6

C-5 36 88 100 C-5 29 92.2 73.5

C-17 6 6 34 -- -- -- --

Totals/Avgs 75 73.5 68 Totals/Avgs 75 97.1 79.2

Table 15. P75 C-5 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 18 100 51 C-5 27 98.7 68.4

C-5 28 100 80 C-17 30 98.9 76.0

C-5 29 51.1 83 C-5 18 53.8 45.6

Totals/Avgs 75 83.7 71.3 Totals/Avgs 75 83.7 63.4

E-2

Table 16. P75 C-17 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-17 10 100 50 C-5 17 100.0 90.6

C-17 12 100 59 C-5 16 100.0 85.3

C-17 16 100 79 C-5 17 98.5 90.6

C-17 18 80 90 C-5 18 98.9 96.0

C-17 18 39 90 C-5 7 21.5 37.3

C-17 1 1 5 -- -- -- --

Totals/Avgs 75 70.0 62.2 Totals/Avgs 75 83.8 80.0

Table 17. P200 Mixed Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 16 100 50 C-5 26 95.6 65.9

C-17 10 100 54 C-17 16 100.0 85.3

C-5 18 100 56 C-5 25 96.4 63.4

C-17 12 100 65 C-17 18 99.6 96.0

C-5 22 100 69 C-5 29 98.0 73.5

C-17 16 100 88 C-17 18 98.1 96.0

C-5 34 100 100 C-5 35 99.3 88.7

C-17 18 67 100 C-17 18 100.0 96.0

C-5 36 48 100 C-5 15 49.3 38.0

C-17 18 15 100 -- -- -- --

Totals/Avgs 200 83.0 78.2 Totals/Avgs 200 92.9 78.1

Table 18. P200 C-5 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 16 100 45 C-5 24 96.9 60.8

C-5 17 100 48 C-5 25 94.4 63.4

C-5 19 100 54 C-5 27 100.0 68.4

C-5 21 100 59 C-5 30 99.8 76.0

C-5 27 100 77 C-5 32 99.3 81.1

C-5 36 100 100 C-5 35 100.0 88.7

C-5 36 59 100 C-5 27 86.9 68.4

C-5 28 19 80 -- -- -- --

Totals/Avgs 200 84.8 70.4 Totals/Avgs 200 96.8 72.4

E-3

Table 19. P200 C-17 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-17 10 100 50 C-17 17 98.9 90.6

C-17 10 100 50 C-17 17 97.4 90.6

C-17 10 100 49 C-17 17 100.0 90.6

C-17 11 100 54 C-17 17 98.5 90.6

C-17 12 100 59 C-17 18 95.6 96.0

C-17 12 100 59 C-17 17 98.5 90.6

C-17 14 100 69 C-17 18 99.6 96.0

C-17 16 100 79 C-17 18 99.6 96.0

C-17 18 96 90 C-17 17 95.6 90.6

C-17 18 83 90 C-17 18 100.0 96.0

C-17 18 63 90 C-17 17 93.7 90.6

C-17 18 45 90 C-17 9 51.5 48.0

C-17 18 31 90 -- -- -- --

C-17 15 11 75 -- -- -- --

Totals/Avgs 200 88.7 72.9 Totals/Avgs 200 98.2 88.8

Table 20. R75 Mixed Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 6 100 49 C-5 5 89.6 85.8

C-17 4 100 50 C-17 4 99.4 94.0

C-5 4 91 32 C-5 6 89.3 80.7

C-17 3 100 46 C-17 3 89.2 90.7

C-5 6 88 57 C-5 11 95.4 84.6

C-17 4 99 49 C-17 6 90.4 90.3

C-5 8 61 46 C-5 3 97.5 95.9

C-17 4 99 51 C-17 10 99.5 89.1

C-5 11 69 63 C-5 7 68.8 85.5

C-17 3 53 44 C-17 13 51.2 87.4

C-5 10 53 71 C-5 7 67.6 90.4

C-17 5 36 55 -- -- -- --

C-5 7 15 34 -- -- -- --

Totals/Avgs 75 74.2 49.8 Totals/Avgs 75 85.3 88.6

E-4

Table 21. R75 C-5 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 4 100 42 C-5 5 95.9 87.4

C-5 4 94 32 C-5 11 95.3 84.0

C-5 5 100 40 C-5 6 98.2 98.7

C-5 7 87 57 C-5 9 53.8 85.2

C-5 7 100 47 C-5 7 96.2 93.3

C-5 4 38 20 C-5 6 74.4 80.7

C-5 11 83 63 C-5 9 97.0 91.5

C-5 9 61 51 C-5 13 79.6 92.6

C-5 11 60 69 C-5 9 78.4 85.7

C-5 12 44 66 -- -- -- --

C-5 1 2 6 -- -- -- --

Totals/Avgs 75 69.9 44.8 Totals/Avgs 75 85.4 88.8

Table 22. R75 C-17 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-17 3 91.2 80.7 C-17 3 91.2 80.7

C-17 4 97.0 91.2 C-17 4 97.0 91.2

C-17 4 93.4 52.4 C-17 4 93.4 52.4

C-17 3 67.9 91.3 C-17 3 67.9 91.3

C-17 3 63.6 79.3 C-17 3 63.6 79.3

C-17 3 72.1 91.7 C-17 3 72.1 91.7

C-17 3 72.1 91.7 C-17 3 72.1 91.7

C-17 3 63.4 95.7 C-17 3 63.4 95.7

C-17 3 78.5 96.1 C-17 3 78.5 96.1

C-17 4 98.0 88.5 C-17 4 98.0 88.5

C-17 5 67.3 95.7 C-17 5 67.3 95.7

C-17 4 85.0 89.8 C-17 4 85.0 89.8

C-17 7 93.0 82.3 C-17 7 93.0 82.3

C-17 7 63.8 92.3 C-17 7 63.8 92.3

C-17 5 78.1 83.3 C-17 5 78.1 83.3

C-17 6 68.4 92.1 C-17 6 68.4 92.1

C-17 8 28.6 90.9 C-17 8 28.6 90.9

Totals/Avgs 75 75.4 87.3 Totals/Avgs 75 75.4 87.3

E-5

Table 23. R200 Mixed Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 7 100 47 C-5 7 94.5 98.9

C-17 4 100 52 C-17 3 93.8 91.7

C-5 7 100 47 C-5 6 98.2 81.4

C-17 4 99 52 C-17 3 93.8 91.7

C-5 6 100 40 C-5 7 91.3 86.4

C-17 4 100 45 C-17 3 99.8 46.9

C-5 6 100 40 C-5 10 91.1 81.4

C-17 4 100 45 C-17 3 93.8 91.7

C-5 3 90 30 C-5 8 88.7 94.1

C-17 2 96 35 C-17 6 99.6 95.6

C-5 4 91 32 C-5 7 99.5 90.5

C-17 3 100 46 C-17 4 98.5 92.5

C-5 5 100 42 C-5 7 95.3 82.1

C-17 3 100 46 C-17 4 99.6 95.1

C-5 5 100 46 C-5 8 99.3 97.4

C-17 4 100 61 C-17 4 99.7 91.3

C-5 6 85 60 C-17 6 99.6 93.9

C-17 4 99 61 C-5 10 80.3 96.1

C-5 5 89 40 C-17 4 97.3 92.4

C-17 4 99 51 C-5 8 92.1 96.9

C-5 4 38 21 C-17 3 97.5 47.9

C-17 4 99 51 C-5 13 79.9 93.5

C-5 7 68 54 C-5 12 54.5 82.9

C-17 4 99 51 C-17 6 99.6 94.6

C-5 11 82 68 C-5 11 94.7 79.3

C-17 3 53 44 C-17 7 99.9 88.9

C-5 13 72 73 C-5 16 92.5 86.0

C-17 3 53 44 C-17 6 98.0 96.3

C-5 12 57 70 C-5 8 92.5 95.9

C-17 5 53 72 C-17 5 99.8 85.9

C-5 15 42 66 C-5 8 91.6 79.1

C-17 8 25 59 -- -- -- --

C-5 15 23 64 -- -- -- --

C-17 6 9 36 -- -- -- --

Totals/Avgs 200 80.0 49.7 Totals/Avgs 200 93.6 88.1

E-6

Table 24. R200 C-5 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 4 100 42 C-5 6 95.9 95.6

C-5 4 100 43 C-5 7 98.4 88.0

C-5 4 100 43 C-5 8 99.7 94.3

C-5 6 100 39 C-5 8 98.4 67.7

C-5 6 100 39 C-5 8 94.7 69.0

C-5 6 100 39 C-5 9 79.2 73.2

C-5 3 90 28 C-5 6 90.7 85.5

C-5 3 90 28 C-5 7 99.1 86.4

C-5 6 100 42 C-5 7 94.4 80.4

C-5 5 100 40 C-5 7 86.2 83.4

C-5 5 100 40 C-5 8 93.6 87.5

C-5 5 100 51 C-5 8 91.7 85.1

C-5 7 87 61 C-5 11 76.1 96.6

C-5 11 89 64 C-5 10 95.4 84.1

C-5 6 100 44 C-5 6 95.1 86.6

C-5 6 100 41 C-5 5 98.0 86.5

C-5 7 100 39 C-5 6 88.6 83.2

C-5 4

20 C-5 7 85.6 85.5

C-5 10 77 59 C-5 5 76.2 84.0

C-5 13 97 72 C-5 11 68.0 89.3

C-5 10 55 51 C-5 11 85.8 91.7

C-5 12 69 63 C-5 12 84.6 82.3

C-5 12 65 67 C-5 12 99.1 93.0

C-5 13 51 74 C-5 15 92.4 88.5

C-5 16 40 63 -- -- -- --

C-5 14 20 62 -- -- -- --

C-5 2 2 6 -- -- -- --

Totals/Avgs 200 80.4 46.7 Totals/Avgs 200 90.3 85.3

E-7

Table 25. R200 C-17 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-17 4 100 52 C-17 3 100.0 92.0

C-17 4 100 52 C-17 3 95.3 89.3

C-17 4 100 52 C-17 3 99.8 79.4

C-17 4 100 52 C-17 3 97.6 94.0

C-17 4 100 52 C-17 3 91.2 80.7

C-17 4 99 52 C-17 3 85.1 81.0

C-17 4 100 45 C-17 3 91.2 96.3

C-17 5 100 50 C-17 3 91.2 96.3

C-17 5 100 50 C-17 3 91.2 96.3

C-17 5 100 50 C-17 3 91.0 80.3

C-17 5 100 50 C-17 4 96.1 89.8

C-17 5 100 50 C-17 4 95.5 92.2

C-17 2 96 35 C-17 3 66.0 73.8

C-17 2 96 35 C-17 3 73.5 93.5

C-17 2 96 35 C-17 4 95.9 92.7

C-17 2 96 35 C-17 3 83.9 90.2

C-17 2 96 35 C-17 6 95.1 95.4

C-17 2 96 35 C-17 5 88.7 86.8

C-17 3 100 46 C-17 4 99.5 92.7

C-17 3 100 46 C-17 4 66.9 49.6

C-17 4 98 54 C-17 4 77.1 88.2

C-17 4 97 54 C-17 5 78.7 88.8

C-17 4 97 54 C-17 4 88.8 82.3

C-17 4 97 54 C-17 4 76.4 84.8

C-17 4 99 61 C-17 5 65.4 86.7

C-17 4 99 61 C-17 5 79.0 91.6

C-17 4 100 62 C-17 3 78.5 96.1

C-17 3 92 37 C-17 4 78.0 58.9

C-17 2 52 21 C-17 4 78.8 59.8

C-17 3 74 51 C-17 4 70.3 56.6

C-17 3 74 51 C-17 4 72.9 60.9

C-17 4 85 59 C-17 4 69.1 88.9

C-17 8 100 82 C-17 6 80.7 94.4

C-17 6 97 77 C-17 6 71.4 87.7

C-17 6 89 74 C-17 6 74.8 91.7

C-17 8 67 75 C-17 7 79.0 79.8

C-17 8 56 76 C-17 6 68.8 85.3

C-17 8 53 88 C-17 7 88.4 76.7

E-8

Table 25 (Continued). R200 C-17 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-17 8 38 70 C-17 3 88.5 77.2

C-17 8 25 59 C-17 8 77.0 92.3

C-17 8 22 61 C-17 6 98.4 93.9

C-17 8 20 58 C-17 6 91.3 93.9

C-17 9 14 53 C-17 12 27.5 95.4

C-17 1 1 6 C-17 7 58.2 92.9

Totals/Avgs 200 82.3 52.4 Totals/Avgs 200.0 82.1 85.2

Table 26. M75 Mixed Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 9 100 46 C-5 9 87.8 78.7

C-17 2 96 35 C-17 6 99.2 96.0

C-5 7 80 60 C-5 10 100.0 76.1

C-17 5 96 62 C-17 4 84.3 92.9

C-5 11 90 67 C-5 9 77.5 62.0

C-17 6 75 61 C-17 7 75.1 83.9

C-5 10 27 38 C-5 30 97.6 76.0

C-17 18 100 100 -- -- -- --

C-17 7 7 22 -- -- -- --

Totals/Avgs 75 74.6 54.6 Totals/Avgs 75 88.8 80.8

Table 27. M75 C-5 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 9 100 46 C-5 10 81.6 94.2

C-5 9 99 52 C-5 6 87.1 70.9

C-5 7 78 61 C-5 8 95.6 88.9

C-5 9 79 58 C-5 7 82.8 91.4

C-5 9 61 51 C-5 20 96.6 76.6

C-5 4 20 21 C-5 24 74.3 85.6

C-5 28 80 89 -- -- -- --

Totals/Avgs 75 73.9 54.0 Totals/Avgs 75 86.3 84.6

E-9

Table 28. M75 C-17 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-17 6 99.4 50.0 C-17 4 99.8 91.5

C-17 3 99.5 41.0 C-17 5 85.6 93.5

C-17 5 99.9 51.0 C-17 6 96.1 93.4

C-17 6 99.8 65.0 C-17 3 72.3 89.8

C-17 4 86.4 62.0 C-17 4 76.8 95.1

C-17 5 95.0 64.0 C-17 5 71.8 94.0

C-17 8 71.9 78.0 C-17 7 64.4 98.2

C-17 8 87.1 81.0 C-17 5 66.0 87.6

C-17 10 55.1 57.0 C-17 6 86.1 90.1

C-17 18 68.1 100.0 C-17 17 99.3 90.6

C-17 2 1.1 11.0 C-17 13 45.2 69.3

Totals/Avgs 75 78.5 60.0 Totals/Avgs 75 78.5 90.3

Table 29. M200 Mixed Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 7 100 39 C-5 12 97.8 89.6

C-17 3 100 41 C-17 6 96.5 95.3

C-5 5 100 36 C-5 6 93.3 92.3

C-17 3 100 41 C-17 3 92.3 99.2

C-5 5 100 42 C-5 8 92.8 84.7

C-17 4 100 61 C-17 6 99.6 91.9

C-5 9 95 62 C-5 9 99.2 67.1

C-17 6 100 56 C-17 6 97.6 67.3

C-5 11 100 55 C-5 8 96.9 84.4

C-17 5 100 60 C-17 6 80.8 94.0

C-5 13 83 73 C-5 11 70.9 98.0

C-17 6 56 58 C-17 7 98.0 94.0

C-5 14 49 72 C-5 15 85.9 83.5

C-17 8 31 53 C-17 17 99.6 90.6

C-5 8 33 31 C-5 29 96.0 73.5

C-17 11 100 61 C-17 17 99.6 90.6

C-5 23 100 72 C-5 34 90.0 86.2

C-17 18 97 100 -- -- -- --

C-5 36 52 100 -- -- -- --

C-17 5 3 28 -- -- -- --

Totals/Avgs 200 80.0 57.1 Totals/Avgs 200 93.3 87.2

E-10

Table 30. M200 C-5 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-5 7 100 37 C-5 7 97.1 60.6

C-5 5 100 34 C-5 6 99.7 80.3

C-5 6 100 36 C-5 9 88.6 88.8

C-5 5 100 40 C-5 9 96.2 85.1

C-5 5 100 44 C-5 9 96.1 88.8

C-5 10 88 62 C-5 6 89.2 85.6

C-5 6 99 46 C-5 9 92.8 84.6

C-5 12 100 66 C-5 9 93.6 86.9

C-5 13 75 66 C-5 13 78.1 73.2

C-5 12 56 67 C-5 12 87.5 85.0

C-5 14 29 57 C-5 22 95.1 71.1

C-5 17 100 48 C-5 31 100.0 78.6

C-5 23 100 65 C-5 35 99.1 88.7

C-5 36 100 100 C-5 23 68.0 58.3

C-5 29 33 83 -- -- -- --

Totals/Avgs 200 85.3 56.7 Totals/Avgs 200 91.5 79.7

E-11

Table 31. M200 C-17 Results

AALPS MPALPTS

Acft Items %ACL %Space Acft Items %ACL %Space

C-17 7 99.9 49.0 C-17 5 97.3 97.4

C-17 3 99.9 39.0 C-17 5 87.2 92.0

C-17 3 99.9 39.0 C-17 6 98.8 89.0

C-17 3 99.9 39.0 C-17 5 95.7 80.4

C-17 3 99.5 39.0 C-17 3 60.3 43.6

C-17 3 99.5 39.0 C-17 6 94.8 90.3

C-17 3 99.5 36.0 C-17 6 88.7 86.5

C-17 5 94.3 52.0 C-17 7 89.9 91.1

C-17 4 98.6 59.0 C-17 6 92.8 94.5

C-17 4 98.6 59.0 C-17 6 74.6 93.2

C-17 5 99.8 50.0 C-17 6 79.1 95.5

C-17 5 99.8 40.0 C-17 4 80.0 85.6

C-17 6 89.3 65.0 C-17 4 68.5 92.7

C-17 8 95.0 80.0 C-17 4 87.1 94.4

C-17 8 87.7 77.0 C-17 4 89.6 90.8

C-17 8 58.3 80.0 C-17 6 79.5 92.8

C-17 11 51.2 73.0 C-17 7 67.4 89.1

C-17 7 30.8 47.0 C-17 6 78.8 92.5

C-17 13 99.9 77.0 C-17 7 83.2 74.9

C-17 12 100.0 60.0 C-17 8 100.0 86.5

C-17 14 100.0 69.0 C-17 18 99.3 96.0

C-17 17 100.0 85.0 C-17 17 98.5 90.6

C-17 18 77.8 90.0 C-17 18 99.6 96.0

C-17 18 42.2 90.0 C-17 18 96.3 96.0

C-17 12 11.9 60.0 C-17 18 48.1 96.0

Totals/Avgs 200 85.4 59.7 Totals/Avgs 200 85.4 89.1

F-1

Appendix F: MPALPTS Load Plans

The first load plan presented represents the solution MPALPTS generated for the first

C-5 aircraft loaded from the M75 mixed test set. The exact solution representation was

manually loaded in AALPS. MPALPTS computed the CB at FS1332.53, and AALPS

computed it at FS1332. The second load plan represents the third C-17 MPALPTS

loaded from the M75 mixed test set and includes both rolling stock and pallets.

MPALPTS computed this load’s CB at FS857.23, and AALPS computed it at FS857. If

any load violations were present, they would have been identified in the Flags/Warnings

section of the load plan.

F-2

Aircraft type/Config : C-5/STD-AL Mission Type : Channel

Delivery method : AL Mission # :

Unit Being Airlifted : Aircraft tail # :

Type movement plan : System chalk # :

Departure date & time :

Departure airfield :

Destination airfield :

Load Description :

MAIN DECK

F-3

SQ/D Model/Nomenclature LEN WDT HT WT FSN TSN CB HZ FL V D SH CCC

1/M M1101/CHASSIS TRAILER 137 87 73 3500 517 654 596 n E N P R2D

2/M M1134/ANTI-TANK VEH/ST 294 125 142 41160 679 973 822 n E N P R0D

3/M M1097/TRK, UTIL, HVY, 191 86 72 5600 998 1189 1086 n E N P R2D

4/M M1101/CHASSIS TRAILER 137 87 73 3500 998 1135 1077 n E N P R2D

5/M M1008A1/TRUCK CARGO TA 223 87 96 8170 1160 1383 1284 n E N P R2D

6/M 6000 LB/TRAILER PLATFO 119 48 27 765 1214 1333 1286 n E N P A2B

7/M HP-15T/TRAILER FLATBED 294 96 67 8000 1358 1652 1518 n E N P P R2D

8/M FLU419/TRACTOR, ALL-WH 250 96 102 15920 1408 1658 1557 y E N P R2D

9/M M992/CARRIER AMMO TRKD 265 130 115 45080 1683 1948 1803 y E N P PR A1D

Total # of Pax: 0 Weight/Pax: 210 Total Pax Weight: 0

Total # of Subfloors: 0 Weight/Subfloor: 0 Total Subfloor Weight: 0

Total Cargo Wt: 131695 Total Load Wt: 131695 ACL: 150000

%ACL: 88 %ZF: 0 Load CB: 1332

SQ/D Flags/Warnings

SQ/D Class/Zone

3/M 9

5/M 9

8/M 9

9/M 9

ALL HAZARDOUS MATERIALS COVERED BY THIS I HAVE BEEN BRIEFED ACCORDING TO

MANIFEST HAVE BEEN INSPECTED AND AFMAN 24-204(I), PARAGRAPH 1.2.9,

FOUND TO BE PACKAGED IN THE PROPER OUTSIDE ON HAZARDOUS CARGO COVERED BY

CONTAINER, FREE OF VISIBLE DAMAGE AND THIS MANIFEST

LEAKS AND IS PROPERLY CERTIFIED

_________________________________ Aircraft Crewmember Signature

Air Terminal Representative Signature

F-4

Aircraft type/Config : C-17/STD-AL Mission Type :

Delivery method : AL Mission # :

Unit Being Airlifted : Aircraft tail # :

Type movement plan : System chalk # :

Departure date & time :

Departure airfield :

Destination airfield :

Load Description :

MAIN DECK

F-5

SQ/D Model/Nomenclature LEN WDT HT WT FSN TSN CB HZ FL V D SH CCC

1/M 00-M51A1/TRUCK DUMP 5- 266 128 112 22146 402 668 546 n E N P R1D

2/M 00-M51A1/TRUCK DUMP 5- 266 128 112 22146 721 987 865 n E N P R1D

3/M 7333 x 83/PALLET, 463L 108 88 83 7333 1050 1158 1104 n E N P J3B

4/M 9667 x 64/PALLET, 463L 108 88 64 9667 1050 1158 1104 n E N P J3B

5/M 4667 x 37/PALLET, 463L 88 108 37 4667 1172 1280 1226 n E N P J3B

6/M 1000 x 38/PALLET, 463L 88 108 38 1000 1282 1390 1336 n E N P J3B

7/M 667 x 30/PALLET, 463L 88 108 30 667 1282 1390 1336 n E N P J3B

Total # of Pax: 0 Weight/Pax: 210 Total Pax Weight: 0

Total # of Subfloors: 0 Weight/Subfloor: 0 Total Subfloor Weight: 0

Total Cargo Wt: 67626 Total Load Wt: 67626 ACL: 90000

%ACL: 75 %ZF: 0 Load CB: 857

SQ/D Flags/Warnings

SQ/D Class/Zone

ALL HAZARDOUS MATERIALS COVERED BY THIS I HAVE BEEN BRIEFED ACCORDING TO

MANIFEST HAVE BEEN INSPECTED AND AFMAN 24-204(I), PARAGRAPH 1.2.9,

FOUND TO BE PACKAGED IN THE PROPER OUTSIDE ON HAZARDOUS CARGO COVERED BY

CONTAINER, FREE OF VISIBLE DAMAGE AND THIS MANIFEST

LEAKS AND IS PROPERLY CERTIFIED

_________________________________ Aircraft Crewmember Signature

Air Terminal Representative Signature

G-1

Appendix G: Blue Dart

Blue Dart Submission Form

First Name: Robert Last Name: Nance

Rank (Military, AD, etc.): Major Designator # AFIT/BD/ENS/09-11

Student’s Involved in Research for Blue Dart: Maj Robert Nance

Position/Title: C-5 Evaluator Pilot / AFIT Master’s Student

Phone Number: DSN 225-3636 E-mail: robert.nance@af.mil

School/Organization: AFIT/ENS

Status: [X] Student [] Faculty [] Staff [] Other

Optimal Media Outlet (optional): __

Optimal Time of Publication (optional): ______________________________________

General Category / Classification:

[] core values [] command [] strategy

[] war on terror [] culture & language [] leadership & ethics

[] warfighting [] international security [] doctrine

[X] other (specify): Military Airlift

Suggested Headline: Improving the efficiency of USAF airlift

Keywords: airlift, efficiency, logistics, Air Mobility Command

Blue Dart

 As mentioned by the JCS Director of Logistics, Lt Gen Gainey, during her recent visit

to AFIT, there are two general measures of a logistics system: effectiveness and efficiency.

G-2

To be effective, the system must deliver the required goods to the proper recipients on time.

Efficient systems deliver goods in the most economical manner. Lt Gen Gainey noted that

effectiveness is more important than efficiency in a military supply system; however, in

today’s budget constrained environment, efficiency is clearly an important goal particularly

when it comes to the most expensive mode of transportation: airlift. According to AMC/A9

data, the US Air Force paid $22,998 and $12,911 per flight hour in FY08 to utilize C-5 and

C-17 aircraft, respectively. If we assume approximately 30 hours of flight time are required

to fly CONUS to the Middle East and back, each C-5 mission costs roughly $689,940 and

each C-17 mission costs $387,330. Furthermore, AMC/A9 data indicates that the 12,760 C-5

and C-17 operational mission sorties from 1 Jan 08 to 30 Sep 08 only used, on average,

approximately one-third of their available cargo capacity. (This data measures the actual

versus planning cargo weights for the C-5 and C-17 for each sortie of a mission and includes

empty pre- and de-positioning mission sorties). This clearly indicates the USAF operates an

inefficient airlift system.

 Why is USAF airlift inefficient? The answer is simple: it is very difficult to

optimally load aircraft! Given a ramp full of pallets and equipment, determining which items

to place on which aircraft and where exactly to place them has billions of possible

combinations. This is one of the factors which drove the DoD to invest in the Automated

Airlift Load Planning Software (AALPS). Given cargo and available aircraft, AALPS

automatically generates load plans and helps load planners solve this difficult problem.

G-3

 While AALPS is a very powerful tool, it has been found to produce inefficient

loadings. My thesis research is focused on creating a better loading algorithm which uses

fewer aircraft than AALPS. This algorithm, called the Mixed Payload Airlift Load Planning

Tabu Search (MPALPTS), loads a given set of cargo (pallets and rolling stock) into C-5

and/or C-17 aircraft and makes a limited number of assumptions. Therefore, it is

operationally useful. In the 20 test scenarios (which included pallet only, rolling stock only

and a mix of pallet and rolling stock loads on C-5 and/or C-17 aircraft), my algorithm

achieved an average aircraft reduction of 11% when compared to AALPS solutions on the

same cargo. A subset of MPALPTS solutions was manually loaded into AALPS to verify

feasibility in the loadings. I found nearly all of MPALPTS solutions were feasible, and the

few that were not required only very small adjustments (to clear the C-5’s troop compartment

ladder, for example). However, MPALPTS did take much longer than AALPS to find these

improved solutions.

 From Feb 07 to Jan 08, AMC reported there were 686 C-5 and 1551 C-17 multi-leg

operational missions. Assuming all of the missions were originally planned with AALPS and

were reloaded with MPALPTS which increased efficiency by 11%, AMC would have flown

75 fewer C-5 missions and 171 fewer C-17 missions. If each mission averaged 30 flight

hours, this equates to a savings of $117,978,930 in a 12 month period with zero impact on

effectiveness. The DoD should incorporate MPALPTS into the current version of AALPS to

increase USAF airlift efficiency.

G-4

The views expressed in this article are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the US

Government.

Feb 09

BIB-1

Bibliography

Aarts, Emile, and Jan Karel Lenstra. Local Search in Combinatorial Optimization. West

Sussex, England: John Wiley & Sons, 1997.

AFDD 1. Air Force Basic Doctrine, Complement of Joint Publication 1: Joint Warfare of

the Armed Forces of the United States. 2003.

AFDD 2-6. Air Mobility Operations. 2006.

Air Mobility Command. "AMC Affiliation Workbook 36-101 Vol 2 Airlift Planners

Course." October 1, 2004.

"T.O. 1-C-17A-9 Loading Instructions." November 15, 2007, Secretary of the Air Force,

Washington DC.

"T.O. 1-C-5A-9 Loading Instructions Manual." Feburary 1, 2003, Secretary of the Air

Force, Washington DC.

Anderson, Don, LtCol (Ret.), interview by R. Larry Nance. AMC Airlift Data from

GATES (September 15, 2008).

Brenneman, William A., and William R. Myers. "Robust Parameter Design with

Categorical Noise Variables." Journal of Quality Design, 2003: 335-341.

Chocolaad, Christopher A. "Solving Geometric Knapsack PRoblems using Tabu Search

Heuristics." Master's Thesis, Air Force Institute of Technology, 1998.

Garey, Michael R., and David S. Johnson. Computers and Intractability. New York:

W.H. Freeman and Company, 1979.

Gehring, H. et al. "A Computer-Based Heuristic for Packing Pooled Shipment

Containers." European Journal of Operations Research, 1990: 227-288.

Glover, Fred. "Tabu Search--Part I." Operations Research Society of America 1, no. 3

(1989): 190-207.

Goulimis, Constantine N. "ASP, The Art and Science of Practice: Appeal to NC-

Completeness Considered Harmful: Does the Fact That a Problem Is NP-

Complete Tell Us Anything?" Interfaces 37, no. 6 (November-December 2007):

584-586.

BIB-2

Harwig, J. M., J. W. Barnes, and J. T. Moore. "An Adaptinve Tabu Search Approach for

2-Dimensional Orthogonal Packing Problems." Military Operations Research 11,

no. 2 (2006): 5-26.

Heidelberg, K.R. A Bin Packing Algorithm for Cargo Conveyance Systems. Master's

Thesis, Virginia Commonwealth University, 1995.

Heidelberg, Kurt R., Gregory S. Parnell, and James E. Ames IV. "Automated Air Load

Planning." Naval Research Logistics 45 (1998): 751-768.

Herbison, LtCol Dave, interview by Maj R. Larry Nance. Air Mobility Command A9

Deptuty Director (September 16, 2008).

Hiremath, Chaitr S., and Raymond R. Hill. "New Greedy Heuristic for the Multiple-

Choice Multi-Dimensional Knapsack Problem." International Journal of

Operational Research 2, no. 4 (2007): 495-511.

Huang, J.H. Sun Tzu, The New Translation. New York: William Morrow, 1993.

Lodi, A., S. Martello, and D. Vigo. "Recent advances on two-dimensional bin packing

problems." Discrete Applied Mathematics, 2002: 379-396.

Misevicius, A. "Using Iterated Tabu Search for the Traveling Salesman Problem."

Informacines Technologijos IR Valdymas, 2004: 29-40.

Ng, Kevin Y. K. "A Multicriteria Optimization Approach to Aircraft Loading."

Operations Research 40, no. 6 (November-December 1992): 1200-1205.

Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Reading, Massachussets: Addison-Wesley Publishing Company, 1984.

Roesener, August G. "An Advanced Tabu Search Approach To The Airlift Loading

Problem." PhD Dissertation, 2006.

Romaine, Johathan M. "Solving the multidimensional multiple knapsack problem with

packing constraints using tabu search." Master's Thesis, Air Force Institute of

Technology, 1999.

USAF. Air Force Factsheets. April 2008. http://www.af.mil/factsheets/factsheet.asp

(accessed July 15, 2008).

BIB-3

USTRANSCOM. www.ustranscom.mil. August 2007.

http://www.transcom.mil/j5/pt/dtrpart3/dtr_part_iii_app_i.pdf (accessed July 11,

2008).

Vazirani, Vijay V. Approximation Algorithms. Heidelberg, Germany: Springer, 2003.

Wakefield, Senior Master Sergeant Tim, interview by Maj R. Larry Nance. Chief C-5

Loadmaster, Headquarters Air Mobility Command (September 15, 2008).

Woosley, Laurence A. Integer Programming. New York: John Wiley and Sons, Inc.,

1998.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

03-26-2009
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

Aug 2007 – Mar 2009

4. TITLE AND SUBTITLE

An Advanced Tabu Search Approach to Solving the Mixed Payload Airlift Load

Planning Problem

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Nance, Robert L., Maj, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Street, Building 642

 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GOR/ENS/09-11

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ AMC/A9

Attn: Mr. Dave Merrill
402 Scott Drive Unit 3M12

Scott AFB, IL 62225

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 This paper presents a new tabu search based two-dimensional bin packing algorithm which produces high quality solutions to the

Mixed Payload Airlift Load Planning (MPALP) problem using C-5 and C-17 aircraft. This algorithm, called Mixed Payload Airlift

Load Planning Tabu Search (MPALPTS), surpasses previous research conducted in this area because, in addition to pure pallet cargo

loads, MPALPTS can accommodate rolling stock cargo (i.e. tanks, trucks, HMMMVs, etc.) while still maintaining aircraft feasibility

with respect to aircraft center of balance, mandatory cargo separations, aircraft floor structural limitations, etc. Furthermore, while

this research is currently restricted to C-5 and C-17 aircraft, MPALPTS is capable of modeling nearly any type of cargo aircraft and

requires a limited number of assumptions thereby making it applicable to operational missions. To demonstrate its effectiveness, the

load plans generated by MPALPTS are directly compared to those generated by the Automated Air Load Planning Software (AALPS)

for a given cargo set; AALPS is the load planning software currently mandated for use in all Department of Defense load planning.

While more time consuming than AALPS, MPALPTS required the same or fewer aircraft than AALPS in all test scenarios.
15. SUBJECT TERMS

 Airlift, Bin Packing, Tabu Search, Air Mobility Command, Aircraft Loading Problem, AALPS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

149

19a. NAME OF RESPONSIBLE PERSON
August G. Roesener, Maj, USAF (ENS)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4314; e-mail: August.Roesener@afit.edu

	An Advanced Tabu Search Approach to Solving the Mixed Payload Airlift Load Planning Problem
	Recommended Citation

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Equations
	Introduction
	Global Airlift Power
	Current Airlift Process
	Cargo Types
	Airlift Aircraft
	Loading Constraints
	Current Load Planning Software
	Research Objectives and Assumptions

	Literature Review
	Heuristics Motivation
	Classes of Combinatorial Optimization Problems
	MPALPTS Complexity
	“Solving” an NP-hard problem

	Heuristics
	Tabu Search
	Knapsack MPALP Instances
	Tabu Search Knapsack MPALP
	Multiple Choice Multiple Dimension Knapsack Problem (MMKP) Heuristic

	Bin Packing Problems
	Bin Packing Instances
	Goal Integer Programming Method
	Two-Dimensional Orthogonal Packing
	Barrier Based Tabu Search
	MPALP Specific Tabu Search

	Summary

	Methodology
	MPALP Tabu Search
	Decision Variable Definition
	MPALPTS Input Tables
	Aircraft Representation
	Cargo Representation
	Zone Representation
	CB Lookup Table
	Pallet Placement Tables

	Objective Function Costs
	Aircraft Usage Fee
	Under/Over Weight Fee
	CB Fee and Target CB Fee
	Zone Fees
	Ramp Fees

	MPALPTS Neighborhoods
	Inter-Aircraft Swaps
	Inter-Aircraft Inserts
	Empty Aircraft Neighborhood
	Intra-Aircraft Swaps

	Fix Load Function
	Slide CB Function
	Tabu List
	Initial Solution Generation
	State Determination
	MPALP Tabu Search Algorithm
	Robust Parameter Design
	Test Sets
	RPD Model Construction
	Feasible Aircraft Model
	Time Model
	RPD Results

	Summary

	Results
	MPALPTS versus AALPS
	Load Validation
	Applied Results

	Future Research
	Test Set Cargo
	Rolling Stock
	Pallets

	MATLAB Flowchart
	MATLAB Code
	Solution Representation
	Specific Results
	MPALPTS Load Plans
	Blue Dart

	Bibliography

