
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-9-2009 

Exploitation of Intra-Spectral Band Correlation for Rapid Feacture Exploitation of Intra-Spectral Band Correlation for Rapid Feacture 

Selection and Target Identification in Hyperspectral Imagery Selection and Target Identification in Hyperspectral Imagery 

Michael K. Miller 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Operational Research Commons 

Recommended Citation Recommended Citation 
Miller, Michael K., "Exploitation of Intra-Spectral Band Correlation for Rapid Feacture Selection and Target 
Identification in Hyperspectral Imagery" (2009). Theses and Dissertations. 2508. 
https://scholar.afit.edu/etd/2508 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F2508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2508?utm_source=scholar.afit.edu%2Fetd%2F2508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXPLOITATION OF INTRA-SPECTRAL BAND 

CORRELATION FOR RAPID FEATURE 

SELECTION, AND TARGET IDENTIFICATION 

IN HYPERSPECTRAL IMAGERY 

 

THESIS 

 

Michael K. Miller, Major, USAF 

 

AFIT/GOR/ENS/09-10 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

AFIT/GOR/ENS/09-10 

 

 

 

 

EXPLOITATION OF INTRA-SPECTRAL BAND CORRELATION FOR 

RAPID FEATURE SELECTION, AND TARGET IDENTIFICATION IN 

HYPERSPECTRAL IMAGERY 

 

 

THESIS 

 

 

 

 

Presented to the Faculty  

 

Department of Operational Sciences 

 

 Graduate School of Engineering and Management  

 

Air Force Institute of Technology 

 

Air University 

            

 Air Education and Training Command 

 

 In Partial Fulfillment of the Requirements for the   

 

Degree of Master of Science in Operations Research 

 

 

 

 

Michael K. Miller, MS 

 

Major, USAF 

 

 

March 2009 

 

 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

AFIT/GOR/ENS/09-10 

 

 

 

EXPLOITATION OF INTRA-SPECTRAL BAND CORRELATION  

FOR RAPID FEATURE SELECTION, AND TARGET IDENTIFICATION  

IN HYPERSPECTRAL IMAGERY 

 

 

 

Michael K. Miller, MS 

Major, USAF 

 

 

 

 

 

 

 

    Approved: 

 

 

 

 ____________________________________      

 Dr. Kenneth. W. Bauer (Chairman)           date  

 

 

 ____________________________________      

 Dr. John O. Miller (Member)            date 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

AFIT/GOR/ENS/09-10 

Abstract 

The application of statistical techniques to hyperspectral imagery for the purpose of 

detecting anomalies or “targets” has drawn significant attention over the last decade.  

Multivariate techniques such as principal components analysis and factor analysis have 

been demonstrated effective at reducing hyperspectral image dimensionality from 

hundreds of spectral bands to a handful of bands capable of explaining the vast majority 

of the variance contained in the image.  Furthermore the development of techniques such 

as Independent Components Analysis (ICA), Vertex Components Analysis (VCA), and 

Non-negative Matrix Factorization (NNMF) have provided improved means to more 

clearly separate spectra from one another.  One common problem with such techniques is 

that typically an iterative algorithm must meet some predefined convergence criteria 

before terminating.  High dimensional hyperspectral data sets result in prohibitively high 

computational expense for any real time application.  As such some method for 

dimensionality reduction is desirable so as to speed the process of target location. 

Clustering of individual pixels in the spatial dimension has been applied by 

mechanisms such as K-means, X-means, and ISODATA clustering algorithms (Williams: 

2007).  Exploitation of these algorithms is hindered by the fact that they begin with the 

assumption of no a priori knowledge of how the image will be clustered.  This requires 

comparison of pixels and estimation of optimal clustering based on some minimization of 

the distance between pixels within the clusters, which in turn dictates a computationally 

expensive iterative process. Furthermore these approaches require a target number of 

clusters be provided as an input to the algorithm which may not be entirely practical in  
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many cases, and generally hampers any implementation of the common clustering 

algorithms into automated anomaly detection schemes.  As an alternative to spatial 

clustering this paper proposes and demonstrates an implementation of spectral based 

clustering to determine and reduce a hyperspectral image dimensionality.  While no a 

priori knowledge is likely in the spatial dimension, along the spectral dimensions, a 

certain amount of knowledge may be expected.  In particular it may be expected that 

adjacent spectral bands are most highly correlated and that well separated bands are 

generally unlike one another.  As a result very few comparisons are required to cluster 

spectral bands, and reasonable anomaly detection may be achieved by retaining the 

average spectra for only those bands which meet a predefined level of correlation 

between one another.  An algorithm is provided which performs spectral clustering on 

eight real images and results are compared to Johnson’s AutoGAD algorithm [2007]. 
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NONNEGATIVE MATRIX FACTORIZATION AND EXPLOITATION OF -SPECTRAL 

BAND CORRELATION FOR RAPID FEATURE SELECTION, AND TARGET 

IDENTIFICATION IN HYPERSPECTRAL IMAGERY 

 

I.  Introduction  

 

 

1.1 Background 

The application of Hyperspectral Imagery (HSI) to Intelligence Surveillance and 

Reconnaissance has steadily progressed over the past decade, both in commercial-medical arenas 

and in military applications.  Of particular interest to the Department of Defense is the capability 

of HSI to isolate spectrally distinct objects from surrounding detail, thereby locating potential 

targets by exploiting their distinct electromagnetic reflectance.  This sets HSI apart from many 

other means of target detection as a completely passive scheme as opposed to more active means 

such as Synthetic Aperture Radar which can be detected when in use.  The advantage presented 

by HSI was substantially advanced on 19 July 2000 with the launch of MightySat II, the first 

USAF satellite primarily dedicated to hyperspectral remote sensing (Brownlee: 2000:1). 

Before proceeding further a brief explanation of the portion of the electromagnetic 

spectrum involved in HSI and the operations involved in handling hyperspectral data is in order.  

While the visual portion of the electromagnetic spectrum is familiar, the bands beyond the visual 

spectrum are only recently becoming commonly utilized in a variety of applications including 

the medical field, geologic surveys, and military applications.  These bands include both the 

three visible bands mentioned earlier, but also bands beyond both ends of the visible spectrum, 

including the ultraviolet (UV), and infrared (IR) portions of the spectrum.  These bands are of 

great practical use in passive remote sensing as while the frequencies are invisible to the human 

eye they are present in natural light and thus require no artificial illumination be applied.  
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Furthermore objects can be detected and identified by the frequencies they reflect much in the 

same way we visually recognize the difference between red, blue, and green.  For example 

materials with high water (like foliage) content tend to absorb infrared light differently than 

materials with low water content (like metals).  It is these differences in absorption and 

reflectance we exploit over a wide range of the spectrum, when applying hyperspectroscopy. 

 

  

Figure 1-1.  Hyperspectral Electromagnetic Range (Landgrebe, 2003:14) 

 
An ongoing challenge to the application of hyperspectral imagery for target detection is 

simply the volume of data produced by the application.  While ordinary photographic imagery 

presents data only across three components of the visual band (red, green, and blue) over an area 

consisting of some predefined number of pixels, HSI scans a predefined number of pixels over a 

substantially wider range of narrow bands within the electromagnetic spectrum.  So while 

ordinary color photographic processes produce three layers (or matrices) of data, indicating the 

reflectance of light across the red, green, and blue bands, hyperspctral images contain hundreds 

of layers of reflectance data, each indicating the reflectance within separate narrow portions of 
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the electromagnetic spectrum.  The resultant data set is frequently referred to as a “data cube” as 

the image size may be on the order of 200 by 200 pixels spatially, and may contain upwards of 

200 frequency bands, or layers to the image.   

 

 

Figure 1-2.  Hyperspectral Image/Data Cube (Shaw and Manolakis, 2003:13) 

 
Given this volume of data a typical image can contain 8 million individual pixels.  The 

challenge arises from the fact that targets of interest may reflect in only a small number of bands 

and consist of a very small number of pixels relative to the background environment.  As a result 

any automated target recognition algorithm must be capable of isolating a small sample of target 

pixels from a much larger collection of differing signals and noise.  The sheer volume of data 

contained in the image and the fact that while hundreds of bands may be sampled by the sensor, 

the underlying features producing a response in each band may be significantly fewer, demands 

dimensionality reduction.  But the limited number of the number of target pixels available for 

detection versus the volume of data contained in the image makes the method of dimension 
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reduction and feature selection critical in retention of the desired target pixel data.  These 

seemingly opposing goals will be the focus of this research. 

 

1.2 Handling Hyperspectral Data 

Management of this data is simplified by manipulating the “cube” of pixels into a single 

matrix of signal strengths.  Spatially each pixel represents a small area within the geographic 

limits of the image, while each “layer” of the cube contains the reflectance, or signal strength in 

a specific portion of the spectrum for each pixel.  Our interest is in the entire spectra for each 

pixel, so the cube of pixel returns is restructured so that each column of the rearranged matrix 

represents a single pixels entire spectral return (Figure 1-3).  In this way a hyperspectral image 

with spatial dimensions i by j pixels and k spectral layers is rearranged into a j by n matrix where 

the n columns are the result of all i·۟j pixels. 

 
Figure 1-3.  Restructuring a Hyperspectral Image Cube 
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1.3 Locating Targets of Interest 

Hyperspectral target detection algorithms apply two general approaches to locating their 

targets, signature matching and anomaly detection.  Signature matching techniques attempt to 

locate targets by comparing target pixels (columns of the matrix in Figure 1-3) against a library 

of known target reflectances for matches.  As different materials produce dramatically different 

reflectances, each pixel’s reflectance produces a characteristic “signature” to match against the 

materials of which targets are composed.  Figure 1-4 shows how a vector of pixels results in a 

spectral signature across all bands of the hyperspectral image.   

 

Figure 1-4.  Single Pixel Spectra 

 

At each band the pixel intensity results in a return, or reflectance value on the 

spectrograph.  If this spectrograph can be matched to that of a material within a library of 

material spectra, then the primary material component within that pixel can be identified.  Figure 
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1-5 shows how different the spectra of many naturally occurring materials can be.  While 

signature matching is appealing based on its ability to not only identify target pixels, but also 

isolate the material composition of target and thereby provide target classification, matching 

pixels to any single signature poses a significant challenge.  While materials may be 

distinguished from one another by their spectral characteristics, it is naïve to expect that pixels 

within an image will present a consistent, unique spectral shape when observed under remote 

sensing conditions.  Sub-pixel material mixtures, atmospheric affects, and even the angle of 

illumination and view relative to the surface all result in variations in the spectral characteristics 

recorded by the sensor.   

 
Figure 1-5.  Spectral Signatures of Materials (Smith, 2006:7) 

 

Anomaly Detection is the second technique applied to location of targets within a 

hyperspectral image.  While multiple variations on this approach exist, the typical approach is 

comparison of the reflectance value of each individual pixel against the mean and variance of all 

other pixels (or within some defined surrounding neighborhood).  If the reflectance of a pixel is 

found to exceed a target threshold, the pixel is identified as an outlier. 



 

1-7 

 

The popular category of techniques known as Global Linear Mixture Model Detectors 

assumes that each of the pixel vectors, or columns, is a convex combination of a finite number of 

endmembers.  An endmember is a single spectra produced by an independent source or material 

reflectance.  Although the number of endmembers present in the image and the coefficients 

required to separate their independent reflectance components is unknown, a powerful technique 

known as Independent Component Analysis (ICA) effectively isolates these underlying features, 

by imposing the requirement that the mixed components are a product of statistically 

independent signals (Stone: 8) This technique is fundamental to the algorithm applied in this 

thesis, and will be fully described as part of Chapter 2. 

 

1.4 Research Objectives 

As an extension of the thesis entitled “Improved Feature Extraction, Feature Selection, 

and Identification Techniques that Create a Fast Unsupervised Hyperspectral Target Detection 

Algorithm” by Captain Robert J. Johnson, the goal of this work is to further improve that 

methodology.  Johnson pointed towards an investigation of methods that conform to non-

negativity and sum-to-one constraints, which leads to replacing PCA and ICA with non-negative 

matrix factorization (NMF) as the mechanism of dimensionality reduction.  This leads to the first 

objective of this thesis, application of NMF for dimension reduction.  As the results will 

demonstrate, NMF is neither as effective nor as fast as ICA, despite the fact that ICA violates 

theory regarding the mixing of material reflectances to create their resultant pixel returns. 

One goal of any automated target detection algorithm is that it be fast enough to process 

large volumes of data rapidly.  This is especially true for target detection based on hyperspectral 

imagery.  The addition of hyperspectral sensors to both manned and unmanned aircraft and 
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satellite platforms depends in part upon improving the rate at which imagery can be processed 

for further analysis.  With that in mind a screening algorithm will be proposed which exploits 

correlation between spectral bands within an image to rapidly reduce dimensionality for 

processing.  The goal is to improve algorithm run time while limiting performance loss. 

In addition to reducing dimensionality by exploiting correlation, several other techniques 

will be investigated as candidates for enhancing algorithm performance and run time.  Scott’s 

rule estimating optimal histogram bin size is adopted in place of user estimated bin width.  

Johnson’s Maximum Distance Secant Line heuristic is applied to estimate the location of a 

signal’s noise baseline.  A new measure of the contribution to kurtosis by one half of a 

distribution, Left Partial Kurtosis (LPK), is introduced and applied to determine when target 

pixels are likely to be found both in the left and right tails of signal histograms.  Finally, an 

approach allowing for only two levels of iteratively filtering noise from target images is replaced 

with an approach that decreases the number of noise reducing iterations as the signal to noise 

ratio increases.
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II.  Literature Review and Critical Analysis of Current Practices 

  

 

2.1. Linear Mixture Model (LMM) for HSI 

In Chapter 1 the concept of a pixel’s spectral signature was introduced, along with the 

recognition that recording any single pixel’s spectra as that of some pure material within the 

context of remote sensing was naïve.  While several effects lead to variations in the spectra 

recorded by sensors, sub-pixel mixing of materials as a linear combination of reflectances merits 

further discussion.  Chang provides a straightforward description of the most commonly 

accepted mathematical explanation of how material reflectances mix to result in a single pixel 

vector, the Linear Mixing Model (LMM) (2007:108).   

The model is based on some number of spectra of pure materials contained within the 

image scene.  These pure material spectra are often referred to as endmembers.  All pixel vectors 

are then a linear (additive) combination of the pure spectra.  The number of endmembers (M) 

present within the image then limits the dimensionality of the data which can ascribed to a 

specific source to a maximum of M-1.  Mathematically the LMM can be represented as:  
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The LMM depends upon several assumptions which should be highlighted before 

proceeding.  First, as indicated above the linear model is additive only, and as such only positive 

abundance fractions are permitted.  In other words, a material can only contribute a positive 

reflectance, and cannot subtract from a pixel’s resulting spectra.  Second, each pixel vector 

(spectra) is a result of fractional abundances of the M pure contributors and thus the abundance 

fractions ai,m must sum to one.  Third, the process of endmember identification depends upon the 

assumption that all pixel vectors are composed of combinations of the M pure material spectra, 

all of which are a priori unknown, but in the absence of noise are deterministic.  Real 

hyperspectral data of course contains noise; so any endmember determination technique results 

in endmembers with error of the same magnitude as the noise.  Finally, it is common to assume 

that the number of endmembers present in the scene is less than the number of bands recorded.  

As a result the dimensionality may be reduced to reflect the number of endmembers (materials) 
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present in the scene, while simultaneously retaining all information contained about the retained 

dimensions.  This final assumption is essential to any method of hyperspectral data manipulation 

which reduces dimensionality to improve processing time. 

 

2.2. Dimensionality Reduction 

The dense nature of the information obtained by HSI allows detection of targets when 

traditional imagery would prove unsuitable, but the complexity of the information usually 

requires application of some scheme to reduce the dimensionality, while retaining as much 

content for anomaly detection as possible.  The process of reducing dimensionality without loss 

of information is referred to as feature extraction.  Johnson’s AutoGAD (2008) employed one of 

the most powerful and popular forms of feature extraction, Principal Component Analysis 

(PCA). 

 

 2.2.1. Principal Components Analysis 

Dillon defines PCA a multivariate technique which, 

…transforms the original set of variables into a smaller set of linear combinations 

that account for most of the variance of the original set.  The purpose of principal 

components analysis is to determine factors (i.e. principal components) in order to 

explain as much of the total variation in the data as possible with as few of these 

factors as possible. (Dillon and Goldstein, 1984:24) 

 

The definition continues by explaining that successive principal components are weighted linear 

combinations of the observed variables such that they are uncorrelated with one another and 

simultaneously account for the maximum amount of the remaining total variance. 
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Figure 2-1.  Two Dimensional PCA example 

 

PCA is well suited to multivariate datasets where the majority of the variance present in 

the data is can be found along uncorrelated or orthogonal dimensions.  The approach reduces the 

dimensionality by transforming the original data into a new orthogonal orientation such that the 

largest variance found within the data is aligned with the first principal component.  Likewise, 

subsequent principal components align with orthogonal dimensions with the highest remaining 

variance.  Figure 2-1 shows a simple example of this in two dimensions.  In high dimensional 

data sets can commonly be oriented in such a way that a smaller set of dimensions explain a 

significant portion of the variance within the data, while remaining dimensions provide little 

further improvement, and can be removed without detracting from the information contained 

within. 

Aside from the advantage of improving processing time, PCA provides some level noise 

elimination.  Recall that the LMM assumes that all pixel vectors consist of a linear combination 

of pure spectra mixed with random noise.  So by transforming the data into a space where 

subsequent dimensions contain the maximum remaining variance, and assuming that signal 

induced variation is of greater magnitude than noise, we expect that those dimensions containing 
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the most variance contain the highest signal to noise ratio.  Thus retention of only those 

components consisting primarily of signal induced variation increases the overall signal to noise 

ratio of the data set (Johnson, 2008:2-12) 

Classical PCA finds linear combinations Xi = ei
T
Y, for i = 1,…p which maximize 

variance.  If X is a pixel vector across K bands then the first principal component is found by 

projecting X into a subspace (or principal component space) by 

 

 1 1 11 1 21 2 K1 K   T
y e X e x e x e x= = + +…+  (0.2) 

where:

     pixel vector across K bands

     projection matrix which rotate  into decorrelated dimensions

     rows of  describing rotation of  into component space 
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             and each subsequent  maximizes the remaining variance
i

X y
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in which the variance of y1, cov(y1), is maximized subject to the projection vector e1, being of 

unit norm.  This can be written as the maximization problem: 

 

 ( )1 1 1MAX :  cov   T T

Xe X e e= ∑  (0.3) 

s.t. e
T

1 e1 = 1 

 

Dillon and Goldstein demonstrate the solution to the above maximization by sequential 

application and solution of the Lagrangian equation: 

  

 ( ) ( ) 1 1  1  1 1  1  1, 1T T

xL e e e e eλ λ= Σ − −  (0.4) 
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Despite its obvious utility, the use of PCA for hyperspectral data dimensionality 

reduction violates the basic assumption under the LMM that all pixel vectors are composed of 

non-negative combinations of endmember spectra.  Hoyer (2004:1457) presented a methodology 

to overcome this limitation known as Non-negative Matrix Factorization. 

 

2.2.2. Non-Negative Matrix Factorization (NMF) 

Non-negative matrix factorization bears a striking resemblance to the Linear Mixture 

Model’s first term and for that reason is an appealing technique.  Just as the Linear Mixture 

Model represents an image as the sum of linear, non-negative constituent reflectances; NMF 

describes a data set as an additive only linear mixture of non-negative components.  The 

technique begins with by denoting a set of N-dimensional measurement vectors v
t
 as a linear 

combination of basis vectors wi according to a non-negative linear combination contained within 

the coefficient vector h
t
.   
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When put into the same nomenclature as the Linear Mixing Model from equation 2.1, NMF can 

be written as, 
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x a ε
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= =∑ Εa (0.7) 

where αi is the abundance or coefficient vector for each endmember vector εi.  In other words, 

each endmember vector (εi) represents the collection of non-negative reflectance values across 
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the sampled spectral bands, while each coefficient vector (αi) describes the linear, non-negative 

contribution made by each end member spectra to each pixel.   

Typically no combination of endmember vectors, εm, and abundance vectors, αi, can 

perfectly reconstruct the original matrix of reflectances, xi, but the optimal pair of matrices ε and 

α is defined as the one which minimizes the difference between xi and Εα.  While a number of 

error functions have been proposed to provide a comparison between the original data set and the 

product of nonnegative components Ε and α, Hoyer (2004:1459) demonstrated an algorithm 

based on a Euclidian error function. 

 ( )( )
22

, , ,

,

( , )
i m i m i m

i m

E x xα α ε α= − = −∑E E  (0.8) 

Hoyer observed and went on to exploit the fact that NMF tends to produce sparse, or 

parts based, representations of the original data set.  Ding, and others [2005] extended this 

observation with a demonstration that not only does NMF produce a sparse representation of 

data, but that the nonnegative factorization V = Wh
t
 is equivalent to Kernel K-means clustering 

in the spectral dimension.  This observation is important as in section three NMF will be 

replaced with a spectral clustering algorithm.  The algorithm exploited in this work will not be a 

K-Means type of algorithm, but an altogether different mechanism for associating spectra into 

groups, based on intra-band correlation.   
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2.2.3. K-Means Clustering 

K-means clustering is a widely applied clustering method, and was applied in the spatial 

dimension by Williams on the same ARES data used in this thesis.  The technique attempts to 

partition the original data into K groupings, or clusters, where the difference between the mean 

value for each cluster and each point contained within the cluster is minimized.  Just as a number 

of distance measures may be adopted to measure the difference between each cluster’s mean and 

its associated  original data, a Euclidian error function as in equation 2.8 is one of the most 

commonly applied measures.   

Although K-means clustering will not be applied in this work, Ding provides a 

demonstration that NMF and K-means spectral clustering are “different prescriptions of the same 

problem” [2005:4].  In effect K-means clustering seeks pixels of similar spectral signatures.  The 

average spectra of each of these “clusters” of similar pixels are used to “factor” the original data 

into a set of clustered components plus a remainder or error term.  By design the average spectra 

must be positive.  NMF approaches the problem somewhat differently in that it iteratively 

attempts to factor the original data using only nonnegative values within both the matrix of 

included spectra and the matrix describing how they are mixed.  While the approaches are 

somewhat different Ding indicates they are closely related.  Recognition of the similarity 

between these two methods is significant in that an intra-spectral band correlation clustering 

approach will be applied in Section 3. 

 

2.3. Dimensionality Estimation 

Determination of the number of spectrally distinct materials present within the image is 

of great concern when attempting to identify target pixels within the larger image frame for 
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several reasons.  The Fast ICA algorithm applied following dimensionality reduction is an 

iterative technique placing significant computational demands on the processor utilized in the 

system, so appropriate dimensionality reduction will substantially improve processing time.  

However, if an insufficient number of dimensions are retained, two or more endmembers must 

be “mixed” with one another or mixed into several independent components by ICA.  If any of 

these mixed endmembers happens to be that of a target signal, the likelihood of detecting the 

target is significantly reduced.  The goal then is balancing the requirement to explain enough of 

the variance in the data with reducing the dimensionality sufficiently to reduce computational 

expense.   

One common approach for selecting the number of endmembers to retain is simply 

retaining enough components to explain a predefined percentage variability found in the data.  

The pitfall associated with this approach rest in how dramatically the number of retained 

components varies with only small changes in percentage variability explained.   This fact leads 

to a problem when attempting to select a single percentage variability to be retained for multiple 

images.  As demonstrated by Johnson [2008:3-8] setting a single threshold of 99.78% variance 

retained on ARES 2F results in 33 retained components, or an estimation of 33 distinct spectral 

endmembers.  But the same threshold leads to only 9 retained components when applied to 

ARES 1F.  A number of approaches to estimate dimensionality from the eigenvalues of have 

been demonstrated including Kaiser’s criterion, Cattell’s test, and Horn’s test [Bauer: 54]. 

Johnson proposes a simple and effective approach to identifying the number of spectrally 

distinct endmembers present in the image.  The technique, known as the Maximum Distance 

Secant Line (MDSL), is based on the assumption that if an image is comprised of M distinct 

endmember signatures and noise.  Stocker [2003:652] provides the objective model for the 
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spectral covariance matrix of the observed data, based on the same LMM discussed in section 

2.1. 

{{{{ }}}}( )( ) ( )( )T T T T T
E E E E E E Σ= − − = − − + = += − − = − − + = += − − = − − + = += − − = − − + = +x nK x x x x c c c c E nn E E K  (0.9) 

Where E denotes expected value, C is the covariance of the abundance fraction (a from equation 

2.1), n represents random Gaussian noise as in equation 2.1, and Kn is the covariance from the 

sensor noise.  That part of the covariance matrix generated by actual signal, EΣE
T
, is of rank M 

and will generate M non-zero eigenvalues.  In the absence of noise all remaining K-M 

eigenvalues would be zero, while the inclusion of additive white noise (Kn = σ
2
I) simply 

increases all remaining K-M eigenvalues by the noise variance σ
2
.  In such a case, σ

2
 is equal to 

the constant valued portion of the eigenvalue distribution, and the correct number of 

endmembers M easily arrived at by counting the number of eigenvalues greater than σ
2
.  Figure 

2-2 reproduced from Stocker [2003:653] illustrates the theoretically ideal example with K = 64 

bands, M = 8 endmembers, and the white noise level, σ
2
 = 1. 
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Figure 2-2.  Ideal Model Signal Eigenvalues with White Noise Eigenvalues (M = 8) 

[Stocker, 2003:653] 

 

When working with real images the a covariance matrix will have to be estimated from 

the recorded data, which given large sample sizes cross terms may be assumed negligible, yields 

 ˆ ˆˆ T

x vΣ= += += += +K E E K  (0.10) 

Where Σ̂  is the sample covariance of the abundance fractions, a, and ˆ
vK  is the noise sample 

covariance.  While the signal portion of 2.10 will be of rank M, the eigenvalues of the white 

noise covariance will be non-constant based on sample estimation.  As a result the flat section of 

eigenvalues at σ
2
 from additive noise will become an inclined section of values in the vicinity of 

σ
2
 on the eigenvalue distribution.  The inclusion of non-constant sensor noise (non-white noise) 

further complicates the eigenvalue distribution by increasing the slope of the noise portion of the 

eigenvalue distribution.  Figure 2-3 also from Stocker, shows these two situations. 
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Figure 2-3.  Sample Signal Eigenvalues with White & Non-White Noise Eigenvalues (M = 8) 

[Stocker, 2003:653] 

 

Johnson exploits the fact that ordered eigenvalues of Σx may be used to identify the 

breakpoint between true signal and dimensions consisting primarily of noise.  MDSL identifies 

the “knee in the curve” between signal eigenvalues and those of noise by locating the eigenvalue 

which is the greatest Euclidean distance from a “secant line” connecting the first and last 

eigenvalues when plotted on a logarithmic scale.  Figure 2-4 shows graphically what this 

technique looks like on Stocker’s data and how in both situations MDSL locates the first 

eigenvalue primarily comprised of noise, correctly producing a signal dimensionality of M = 8. 
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Figure 2-4.  MDSL Technique for Locating Breakpoint between  

Signal and Noise on Stocker’s Simulated Data (M = 8) 

 

2.4. Independent Component Analysis (ICA) 

Independent Component Analysis (ICA) can be seen as an extension to PCA, but rather 

than transform observed data into a rotation of decorrelated variables by application of second-

order statistics, ICA includes an assumption of nongaussianity and independence of the latent 

variables.  Though the application of higher order statistics these independent latent variables, or 

independent components, can be isolated.  The isolation of independent components as opposed 

to merely uncorrelated components makes ICA a substantially more powerful technique than 

PCA and enables the approach to locate underlying factors where classical methods may fail 

[Hyvärinen, 2001:xvii]. 

ICA is a relatively new technique, having been introduced as recently as the early 1980s.  

A number of improved algorithms were introduced throughout the 1990s, culminating with the 

introduction of FastICA by A. Hyvärinen and E. Oja in 1997 [Hyvärinen, 1997:1483].  Their 
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algorithm demonstrated the ability to separate a data set into a collection of non-Gaussian 

independent components at significantly faster rates than previous ICA approaches.  They went 

on to demonstrate that maximizing the non-Gaussianity of the information is equivalent to 

minimizing mutual information, or dependence between variables.  Hyvärinen, Karhunen and 

Oja provide a complete development of the theory underlying ICA in their 2001 text Independent 

Component Analysis.  The following sections provide a brief development of the theory behind 

ICA and its application. 

The classical application of ICA is to the so called cocktail party problem, in which a 

number of “independent” voices (3 in equation 2.17 below) are speaking simultaneously, all of 

which is recorded by at least the same number of microphones placed about the room.  Just as in 

hyperspectral reflectance data each recording is a mixture or weighted sum of all the sounds in 

the room at that moment.  This mixture can be expressed as a simple linear equation: 

 

 

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t a s t a s t a s t

x t a s t a s t a s t

x t a s t a s t a s t

= + += + += + += + +

= + += + += + += + +

= + += + += + += + +

 (0.11) 

 

Where xi is the recorded mixture of signals at time, t, si is the independent source signal, and aij 

is the mixing coefficients (or abundance frequencies) which in this case are dependent on the 

distances between each microphone and the speakers being recorded.  Just as in the hyperspectral 

signal separation problem, the mixed signal are the only information available, and neither the 

mixing parameters aij, nor the original signals si(t) are known.  For convenience equation 2.11 is 

typically written in vector-matrix notation. 

 

 ====x As  (0.12) 
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2.4.1. ICA Assumptions 

Fortunately it is possible to separate the original signals, by making the assumption that 

all si(t) are statistically independent at each time instant [Hyvärinen, 2001:150].  This is not only 

true for separation of mixed sound signals, but in the case of mixed spectral reflectances, ICA 

may be applied to unmix source spectral reflectances into their independent components.  The 

assumption of independence is the first of three primary assumptions underlying the basic theory 

of ICA [Hyvärinen, 2001:152].  By independence we expect that the value of each si gives no 

information regarding the value of sj for si ≠ sj.  Or in terms of the joint probability density 

function (pdf) of our random variable si all random variables are considered independent if the 

joint pdf is factorizable. 

 1 2 3 1 1 2 2 3 3( , , ,..., ) ( ) ( ) ( )... ( )n n np s s s s p s p s p s p s====  (0.13) 

 
The second of the basic assumptions is the nongaussian nature of the independent 

components.  While the first assumption is foundational to the process of ICA, the second 

assumption is critical to estimation of the model.  The requirement for this assumption stems 

from the dependence of ICA on higher order statistical information, primarily kurtosis, which is 

essentially a measure of how outlier prone a distribution is.  Kurtosis is typically defined in one 

of two ways.   ICA theory relies on the more common of the classical definitions for kurtosis. 

 ( ) { } { }( )
2

4 2kurt 3x E x E x= −  (0.14) 

however since whitening established unitary variance, E{x
2
} = 1, so equation 2.14 reduces to: 

 ( ) { }4kurt 3x E x= −  (0.15) 
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By this definition Gaussian distributions produce kurtosis values of zero, while supergaussian 

distributions result in kurtosis values larger than zero. 

The alternative definition for kurtosis does not apply the correction factor establishing 

that Gaussian distributions produce kurtosis values of zero. 

 ( )
{ }

4

4
kurt

E x
x

µ

σ

−
=  (0.16) 

   where: 

sample distribution

population mean

population standard deviation

x

µ

σ

≡

≡

≡

 

By this definition a Gaussian distribution produces a kurtosis value of 3, while supergaussian 

distributions result in kurtosis values larger than three.  The difference between the two 

definitions is subtle, but significant in that ICA employs the kurtosis as defined by equation 2.14 

while other portions of this thesis apply the definition from equation 2.16. 

The third assumption is that the mixing matrix states that the unknown mixing matrix is 

square and invertible.  This assumption is made primarily for simplicity, but is based on the 

logical assertion that the number of independent components is equal to the number of observed 

mixtures.  This greatly simplifies the solution strategy since once estimation for the mixing 

matrix (A) has been made, its inverse can be found (call it B) and the independent components 

can be obtained easily by solving equation 2.12 for s. 

 

 ====s Bx  (0.17) 
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2.4.2. ICA Ambiguities 

Two main ambiguities, or indeterminacies, exist for the ICA model.  The first of these is 

that it is not possible to determine the variances (or scale) of the independent components.  This 

make logical sense as the model deals with two unknowns s and A, so any scalar multiplier αi in 

any one of the sources si can be countered by dividing the corresponding column ai of A by the 

same scalar. 

 

 (((( ))))
1

i i i

i i

s α
α

    
====     

    
∑∑∑∑x a  (0.18) 

 

The result of this is that the magnitudes of the independent components are generally fixed at 

unit variance, {{{{ }}}}2 1iE s ==== .  This leaves a sign ambiguity, effectively the model is unaffected by a 

positive or negative multiplier on any component. 

The second ambiguity is that the specific order of independent components cannot be 

determined, which is again based on the fact that both s and A are unknown.  In effect any 

permutation matrix and its inverse could be applied to A and s within the model to give 

 1−−−−====x AP Ps  (0.19) 

 

The elements of Ps then are same independent components sj, but in a different order.  Likewise, 

AP
-1

 is simply the corresponding rearrangement of the original unknown mixing matrix, P. 
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2.4.3 An ICA Example 

Hyvärinen [2001:155] provides an excellent graphical illustration of how ICA is able to 

separate a complicated collection of data into its most independent dimensions.  He begins by 

considering two independent components taken from the following uniform distributions: 

 

 

1
,  if 3

( ) 2 3

0,     otherwise

i

i

s
p s


≤≤≤≤

==== 



 (0.20) 

 

The range of this distribution was chosen specifically so that it has zero mean and a variance 

equal to one.  The joint density of 2000 samples of s1 and s2 then takes on the shape of a square 

as shown in figure 2-5. 

 

 
Figure 2-5 Joint Distribution of Independent Components 

 

When the two components are mixed by an arbitrary mixing matrix, the shape of the joint 

density is changed.  Using the following matrix: 

2

2

-2

-2
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5 10

10 2

    
====     
    

A  (0.21) 

 

The mixed variables x1 and x2 are obtained and when the joint distribution of the observed 

variables is graphed we see that the data has taken on a uniform distribution in the shape of a 

parallelogram (figure 2-6).  More importantly the variables x1 and x2 are no longer independent 

of one another (i.e. knowledge of the value of one variable provides information on the value of 

the other).  From figure 2-6 it can be seen that if one of the variables takes on its maximum 

value, the value of the other variable must also be its maximum value.  In figure 2-5 however 

knowledge of the value of s1 provides no useful information about the value of s2. 

 

 
Figure 2-6 Joint Distribution of Mixtures x1 and x2 

 

Given that this mixed data is the only information available, the problem becomes 

estimating the mixing matrix A from only this mixed data.  Observation of figure 2-6 indicates 

that it would be possible to estimate A by recognizing that the edges of the parallelogram are in 

the directions of the columns of A.  However in cases where the underlying distributions are 

25

-25

-25 25
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more complicated than a pair of uniform variables, location of the “edges” of the joint 

distribution becomes somewhat more difficult.  For example figures 2-7 and 2-8 show the joint 

distribution of supergaussian independent components and the mixed joint distribution by the 

previously applied mixing matrix A.  Locating the “edges”, or at least the directions of the edges, 

in figure 2-8 while possible, is not nearly as simple as in the previous case.  In practice, edge 

location is considered a poor technique because it works with variables derived from very 

specific distribution.  Generally edges cannot be found; and edge location algorithms and other 

similar methods, tend to be computationally complex and unreliable [Hyvärinen 2001:156].  

 

Figure 2-7 Joint Distribution of  

Supergaussian Independent Components s1 and s2  
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Figure 2-8 Joint Distribution of Mixtures x1 and x2  

from Supergaussian Independent Components 

 

Rather than attempt to identify the mixing matrix graphically, ICA provides a mechanism which 

works well for any distribution of independent components, and is both fast and reliable.  The 

first step in this process is whitening of the data. 

 

2.4.4 Uncorrelatedness verses Whitening and ICA 

Recall from section 2.2.1 that principal components analysis orients data into a set of 

dimensions in which the variance along orthogonal or uncorrelated axes is maximized.  This 

procedure is a simple linear transformation of the variables, which makes it a tempting technique 

for analyzing hyperspectral data.  However simply identifying uncorrelated components, does 

not imply that independent components have been found.  In other words, independence of 

variables is “stronger” than zero correlation between components.  Recall that if two variables x1 

and x2 are uncorrelated their covariance is zero: 
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 {{{{ }}}} {{{{ }}}} {{{{ }}}}1 2 1 2 1 2cov( , ) 0x x E x x E x E x= − == − == − == − =  (0.22) 

 

For two variables x1 and x2 to be considered independent, the joint density function, 1 2( , )f x x , 

must be a product of their marginal densities [Wackerly, 2002, 235]. 

 1 2 1 1 2 2( , ) ( ) ( )f x x f x f x====  (0.23) 

Likewise any pair of functions, h1 and h2, containing the variables, x1 and x2, must also be 

factorizable into separate terms 

 {{{{ }}}} {{{{ }}}} {{{{ }}}}1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) 0E h x h x E h x E h x= == == == =  (0.24) 

However in the case of zero covariance this is not necessarily true.  Hyvärinen provides a 

discrete example of four equally likely values: (0,1), (0,-1), (1,0), and (-1,0) which can be 

demonstrated to be uncorrelated by equation 2.19.  Using equation 2.21 where h1 and h2 simply 

square the variables x1 and x2 the following is obtained, 

 {{{{ }}}} (((( )))) (((( )))) {{{{ }}}} {{{{ }}}}2 2 2 2

1 2 1 2
1 1 10

4 2 2
E x x E x E x= ≠ = == ≠ = == ≠ = == ≠ = =  (0.25) 

which violates equation 2.21, indicating that although  x1 and x2 are uncorrelated they are not 

independent. 

Whitening adds to uncorrelated variables the requirement that their variances be equal to 

unity.  Or in other words both the covariance matrix and the correlation matrix of a vector (x) of 

whitened random variables are equal to the identity matrix.  Whitening requires a simple linear 

transformation of each observed data vector x by multiplying it with some matrix V 

 ====z Vx  (0.26) 

  

The FastICA algorithm adopted for this work calculates the whitening matrix V by one of the 

most common mechanisms for whitening eigenvalue decomposition of the covariance matrix 
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 1 2 T−−−−====V ED E  (0.27) 

 

 

where E is the orthogonal matrix of eigenvectors of E{xx
T} and D is the diagonal matrix of its 

eigenvalues, D = diag(d1,…dn). 

 

2.5. Automated Global Anomaly Detection (AutoGAD) Basics 

Captain Robert Johnson provided an effective anomaly detection algorithm technique in his 

2007 thesis proposal “Improved Feature Extraction, Feature Selection, and Identification 

Techniques that Create a Fast Unsupervised Hyperspectral Target Detection Algorithm”.  The 

Automated Global Anomaly Detector, or AutoGAD, performs multiple operations on a 

hyperspectral data cube, to isolate those pixels which are identified as especially different from 

the background pixels in the image.  The process begins by restructuring the data cube into a 

matrix where each row contains a single pixels entire spectral signature across all 210 bands.  

removing those bands which are known to absorb signal from the dataset.  For the ARES images 

studied both in Johnson’s thesis and this study, this step reduced the dimensionality from a raw 

set of 210 spectral bands to 145 bands.  A graphical depiction of the steps contained in the 

preprocessing portion of the algorithm is displayed in figure 2-9. 

 

Figure 2-9 AutoGAD Preprocessing of Hyperspectral Data Cube  
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AutoGAD then extracts the primary features contained in the data by performing Principal 

Components Analysis and producing an ordered log scale eigenvalue curve from the results.  

Dimensionality is assessed using the MDSL technique described in section 2.2.3.  This novel 

approach at finding the dimensionality rapidly reduces the spectral dimensions from 145 to 

approximately the 10 to 15 dimension containing the majority of the variation.  These 

uncorrelated dimensions are then passed into the FastICA [Hyvärinen, 2001], algorithm which 

“whitens” the remaining components and then rotates the remaining dimensions into their most 

independent orientation.  It is from these independent signals that the outlier pixels are found.  

Figure 2-10 provides a depiction of the process of feature extraction in AutoGAD, while Figure 

2-11depicts the second portion of AutoGAD feature extraction, ICA. 

 

Figure 2-10 AutoGAD Feature Extraction I  

(PCA, Dimensionality Reduction, and Whitening) 

 

 

Figure 2-11 AutoGAD Feature Extraction II  

(ICA with sample of resulting independent components) 
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At this point a set of independent dimensions has been produced, some of which potentially 

contain identifiable targets, while others contain primarily noise.  The process of discriminating 

between these two classes of components, or maps, is known as feature selection.  AutoGAD 

measures a maximum signal score and calculates a sample signal to noise ratio (SNR) for each 

remaining component.  By convention all signals are ordered so that the largest absolute value IC 

score is positive valued.  Maximum signal score is simply the pixel value furthest into the tail in 

the positive direction.  Measurement of SNR requires identification of a threshold between 

potential target pixels and all other “background” pixels. 

A histogram is then produced from the remaining independent signals by binning each pixel 

across the range of signal values.  The whitening accomplished during ICA automatically scales 

each dimension such that the mean is equal to zero and the variance is one, so the vast majority 

of the pixel values fall into bins near zero.  As required given the assumptions underlying ICA, 

each of the signal distributions is extremely non-gaussian, containing a handful of bins 

representing the vast majority of pixels, and a large number of bins containing only a small 

number of pixels each in the tails of the distribution.  It is from these “tails” that target pixels are 

isolated.  AutoGAD distinguishes between potential target pixels and background noise by 

locating the first bin with zero pixels occurring, and setting that value as the threshold between 

noise and signal. 
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Figure 2-12.  First Zero Bin Histogram Identification of Noise Threshold [Johnson:153]   
 

Once the threshold between signal and background pixels has been identified, Potential 

Target Signal to Noise Ratio (PT SNR) of each map is found by the equation below. 
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 (0.28) 

 

Maps exceeding both the maximum pixel value and the signal to noise ratio expected for target 

maps, are retained for further processing while all other maps are discarded.  Figure 2-13 depicts 

AutoGAD’s feature selection process for two of the independent components from ARES 1F. 
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Figure 2-13.  AutoGAD Feature Feature Selection 

(Max Signal Score and PT SNR) 

 

The next step in processing the remaining signals is smoothing, or Iterative Adaptive Noise 

(IAN) filtering.  IAN filtering reduces the noise present in the signal by comparing each pixel 

value and the variance in the immediate neighborhood of that pixel to the overall system 

variance.  The filter more heavily smoothes those pixels with variance near the overall system 

noise, and applies less smoothing to those pixels in neighborhoods where the variance is greater 

than that of the system as a whole [Johnson, 2007:3-49].  A second signal histogram is then 

generated with the smoothed signals and the baseline noise threshold is again estimated based on 

the value of the first histogram bin containing zero pixels.  All pixels with values greater than 

this threshold are deemed target pixels, while those pixels less than the threshold are deemed 

non-target pixels.  It is possible to estimate a threshold both above and below the background 

noise band, in which case pixels with values less than the negative threshold are also labeled 
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targets.  Finally, a single map representing the collection of target pixels is constructed from the 

remaining independent maps. 

 

Figure 2-14.  AutoGAD Target Pixel Identification and Image Reconstruction 

 

The entire AutoGAD process typically requires less than 10 seconds to locate and report 

target pixels to the user.  Johnson reported a 0.84 True Positive Fraction (TPF), and a 0.0025 

False Positive Fraction (FPF), with an average processing time of 6.64 seconds for the eight 

images.  While these results are extraordinary, the customer desires an even faster method for 

isolating images containing targets.  Figure 2-15 shows the result of ICA for one of the eight 

images.  Although PCA has reduced the dimensionality from its 145 original dimensions, the 

remaining 15 dimensions still contain a certain amount of noise, as seen in the four independent 

signals on the left side of the figure.  While this does not present a problem with regard to target 
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detection, it does in situations where speed is considered an important factor.  Each additional 

dimension processed via ICA complicates the iterative process of producing independent signals 

and thereby adds time to the entire process.  Further, each retained dimension requires creation 

of at least one signal histogram, and calculation of signal to noise ratio, prior to elimination as a 

non-target map.  As a result, retention of more bands than required to identify independent 

components becomes vitally important to minimizing overall algorithm run time. 

 

Figure 2-15.  15 Independent Signal Components produced by AutoGAD 
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 2.5.1. Histogram Bin Width and Scott’s Rule 

Rather than employing a user defined bin width for formation of the signal histogram, 

Scott’s Rule (equation 2.18) was applied to determine the histogram bin width for each 

independent signal resulting from ICA[Scott:1979:608].   
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====  (0.29) 
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Although Scott’s rule makes the assumption that the underlying distribution is Gaussian, this 

assumption has no significant impact on the shape of the resulting histogram.  Figure 2-16 below 

displays the independent components of ARES 1F and the associated histograms for Johnson’s 

original AutoGAD using a histogram bin width of 0.05 (Johnson’s recommended setting), while 

Figure 2-17 shows the same set of independent components with histograms created according to 

Scott’s rule.  The main difference in the histograms produced by the two techniques is simply 

that application of Scott’s rule tends to produce slightly larger bin sizes and therefore generate 

somewhat more smooth distributions, while the fixed bin width of 0.05 applied in AutoGAD 

produces more ragged distributions.  This would be significant if the use of first zero bin were to 

be employed as the discriminator between background noise and signal, but this particular 

technique will be replaced with a graphical measurement which locates the “knee in the curve” 

where background transitions to signal.  This technique will be described fully in section three. 
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Figure 2-16.  Independent Components with associated histograms 

(bin width = 0.05) 



 

2-32 

 

 

Figure 2-17.  Independent Components with associated histograms  

(bin width determined by Scott’s Rule) 
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III. Methodology and Test Image Experimentation 

 

3.1. Detector Process Flow Comparison 

Two separate adaptations of Capt Johnson’s AutoGAD were developed as a part of this 

work.  The first procedure is primarily focused on replacing PCA and ICA with a methodology 

which agrees with the Linear Mixture Model on how light reflected from sub-pixel sized objects 

of different materials mixes to produce a single pixel reflectance spectra.  In this particular 

algorithm Non-negative matrix factorization replaces both PCA and ICA.  The second procedure 

employs a clustering algorithm in place of PCA to perform simultaneous dimensionality 

assessment and reduction.  Before delving further into this second algorithm, a brief discussion 

follows on the NMF algorithm and its unsuitability to situations where algorithm speed is 

considered a priority.  Figure 3-1 shows a comparison of the AutoGAD algorithm to the 

AutoGAD – NMF algorithm.  The only significant change (shown in bold) made to the algorithm 

is substitution of NMF in place of PCA and ICA for dimensionality assessment and estimation of 

the unmixing matrix.  This single change to the algorithm provided such poor results that no 

further attempts were made to improve upon the algorithm and further use of NMF was 

abandoned. 
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Figure 3-1.  Process Comparison AutoGAD vs. AutoGAD by NMF 
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3.2. NMF Algorithm 

As with AutoGAD the first issue is reduction of dimensionality.  ARES data contains 210 

spectral bands.  A number of these are along atmospheric absorption bands and contain little or 

no useful information [Smetek: 2007].  Elimination of these absorption bands immediately 

reduces the data from 210 to 145 usable spectral bands.  In the version of the algorithm which 

employs NMF, an estimate of the number of spectrally distinct endmembers is required so that 

the NMF algorithm may reduce the data from a single matrix of 145 dimensions into two 

matrices, one containing only the retained “primary” endmember spectra and one describing how 

the endmember spectra are mixed to create the original image.  As in AutoGAD, estimation of 

the number of spectra to retain for further analysis is based on a graphical technique which 

locates the “knee in the curve” separating signal from noise on an eigenvalue curve. 

Following endmember estimation, a non-negative matrix factorization [Ross:1999] is 

applied to the original dataset as a means of partitioning the original data into a set of basis 

vectors (underlying primary spectral components), a matrix of coefficients describing how the 

basis vectors are mixed with one another, and an error term.  In its original version, unmixing of 

the endmember matrix and abundance matrix ended at this point in order to maintain non-

negativity of all components of both matrices.  As will be demonstrated in section 3.2 this 

approach was unable to separate target pixels sufficiently from background detail to isolate 

targets.  So a second version of the algorithm followed NMF dimension reduction with ICA to 

further separate components into the most independent versions of the non-negative factors 

provided by NMF. 

In the clustering algorithm, comparisons are made between adjacent spectral bands of the 

image for high intra-band correlation.  If two or more adjacent bands exceed a threshold 
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correlation, they are averaged as a single cluster of spectra.  All bands insufficiently correlated 

with at least one other spectral band are discarded as too noisy.  The number of clusters created 

from this “correlation induced” clustering algorithm is taken to be the number of endmembers 

present in the image.  In this way the algorithm simultaneously reduces dimensionality as it 

estimates the number of endmember spectra present in the image. 

 

3.2.1. Nonnegative Matrix Factorization 

Initial attempts into NMF demonstrated that while the technique was capable of 

separating hyperspectral data into a reduced set of latent components, the time required and error 

involved in the process made the approach unsuitable in situations where large sets of images are 

to be processed.  Figures 3-2 and 3-3 show the image reconstruction error and the 15 separated 

images following 10 iterations of NMF, a process which required 30.634 seconds to complete.   

 

Figure 3-2.  Reconstruction Error for ARES 1F in 10 Iterations   
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Figure 3-3.  Latent Components following 10 iterations of NMF 

 

Given that figure 3-2 indicates the NMF algorithm had yet to converge to a minimized 

reconstruction error, a second attempt at NMF target identification was made, this time with 50 

iterations of the NMF algorithm.  When the number of iterations is increased to 50, the NMF 

algorithm shows signs of converging at a reconstruction error on in the range of 1.75×10
5 

(Figure 

3-4), and the resulting separated images are somewhat more well separated (Figure 3-5), yet 

actual targets could not be autonomously identified.  Furthermore, the algorithm required 135.1 

seconds for completion, clearly too long for any real time application.  Further increasing the 

number of iterations to 100, as depicted in figures 3.6 and 3.7, provided only marginal 

improvements in signal separation, yet required 256.7 seconds (~4 minutes 17 seconds). 



 

 

Figure 3-4.  Reconstruction Error for ARES 1F in 50 Iterations  

Figure 3-5.  Latent Components following 50 iterations of NMF

3-6 

.  Reconstruction Error for ARES 1F in 50 Iterations  

 

.  Latent Components following 50 iterations of NMF
 

 

.  Reconstruction Error for ARES 1F in 50 Iterations   

 

.  Latent Components following 50 iterations of NMF 
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Figure 3-6.  Reconstruction Error for ARES 1F in 100 Iterations   
 

 

Figure 3-7.  Latent Components following 100 iterations of NMF 
 

A second attempt at identifying targets was made by including ICA following NMF as a 

dimensionality reduction step.  Of course, this dictates violation of the assumption of strict 
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nonnegativity of components and or abundance fractions at the ICA portion of the algorithm, but 

given that NMF alone as unable to sufficiently isolate signal from noise the conditition of 

nonnegativity was abandoned.  This approach was capable of isolating six of the nine targets 

present in the image (figure 3-7), but even after accomplishing 150 iterations of NMC, followed 

by ICA (a process requiring excess of 370 seconds) only about 52% of the true target pixels 

could be identified.  Furthermore the combined NMF/ICA procedure could not consistently 

isolate targets, likely due to the stochastic nature of both NMF and ICA. 

 

Figure 3-8.  Reconstruction Error for ARES 1F in 150 Iterations   
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Figure 3-9.  Independent Components after 150 iterations of NMF followed by ICA 
 

  

Figure 3-10.  Target Pixels found versus Truth Mask after  

150 Iterations of NMF followed by ICA 

 

Interestingly nine of the fifteen independent components depicted in figure 3-7 appear to be 

comprised primarily of noise, leaving what appear to be six significant latent components.  In a 

final attempt to improve the performance of the NMF portion of the algorithm a set of tests was 

completed in which the number of endmembers was fixed between 6 and 14.  Figure 3-9 shows 
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the results from the tests including 6 through 11 latent components.  As observed in figure 3-7 

there are consistently six components which appear to contain separated signals, while all 

additional components appear to be comprised of primarily noise.  These additional “noise” 

components are highlighted by red boxes in image 3-8.  The tests with 6 through 9 components 

did not isolate any target pixels, while the 10 component test isolated four of the nine targets and 

a mere 14.5% of all target pixels and the 11 component test isolated six of the nine targets and 

about 51.2% of all target pixels.  Tests of 12 through 14 components were conducted, but are not 

depicted since the general trend of each component beyond the sixth being comprised primarily 

of noise continued.  When the image was factored into 14 components, 67.6% of the target pixels 

were located, but as stated previously these results were inconsistent based on the stochastic 

nature of both NMF and ICA.  In each test run time was recorded at values ranging between 

375.8 and 386.5 seconds. 
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Figure 3-11.  ARES 1F NMF-ICA algorithm test results  

(Components fixed at 6 through 11) 

 

     

Figure 3-12.  ARES 1F NMF-ICA algorithm test results (14 Components) vs. AutoGAD 
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It should be noted that the NMF-ICA algorithm required in excess of 420 seconds to produce a 

True Positive Fraction (TPF) of target pixels of only 0.676 as depicted in figure 3.10, while the 

original version of AutoGAD required only 6.6 seconds to produce a TPF of 0.962.  These 

relatively poor results from the NMF-ICA algorithm indicate that although NMF closely matches 

the theory underlying the linear mixture model that it does not produce superior results to PCA 

followed by ICA, nor is it suitable in situations where algorithm run time is critical. 

 

3.3. A Spectral Clustering Approach 

As an alternative to PCA with the secant line method for estimating the dimensionality of a 

hyperspectral data set, a clustering algorithm could be applied to simultaneously estimate the 

appropriate number of dimensions and aggregate raw hyperspectral data into a more manageable 

set of spectral data for ICA.  Williams [2007] addresses the idea of clustering pixels together by 

applying several clustering algorithms including the K-means, X-means, and ISODATA 

algorithms for clustering pixels in the spatial dimensions.   

This type approach presents a twofold problem.  First because the K-means algorithm 

searches the spatial dimension for groups of pixels with similar spectra, an assumption of no a 

priori knowledge of how pixels ought to be clustered is required.  In other words, we cannot 

expect pixels in close physical proximity to be associated into a single cluster, nor can we expect 

physically separated pixels to be disassociated.  Unfortunately this requires the K-means 

algorithm to perform multiple permutations of the possible clusters in search for one grouping 

which minimizes the measure of separation between clustered pixels.  The price of such a 

methodology is the computational expense of searching through the possible arrangements of 

clustered pixels in an attempt to find one which reduces difference between clustered pixels.  The 
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second challenge is that this approach to clustering requires some initial estimate of the number 

of clusters.  Although these algorithms can increase or decrease the number of clusters, the 

convergence to a solution can be very dependent on the initial number and location of the 

clusters.   Furthermore, the correct number of clusters can be heavily dataset dependent, so in 

any truly automated anomaly detection algorithm exploiting clustering, the requirement to 

provide an initial estimate of the clusters present is undesirable. 

Williams also addressed exploiting intra-band correlation to rapidly reduce dimensionality, 

but exploited the results of dimensionality reduction to then speed the process of spatial 

clustering, thereby exposing the algorithm to the same limitations discussed in the previous 

paragraph.  Additionally Williams applied a methodology requiring a covariance stationary 

dataset; despite the fact he recognized that this was not necessarily the case.  This meant he was 

forced to experiment to determine the appropriate number of bands to discard between retained 

spectral signals.  His results demonstrated that if every fifth band was retained for follow-on 

spatial clustering, acceptable results could be achieved.  Unfortunately, by assuming a 

covariance stationary system, Williams was forced to retain too many bands (every fifth) in 

sections of the data cube where intra-band correlation was highest, and too few in sections where 

correlation was lowest. 

 

3.3.1. Simultaneous Dimensionality Estimation and Reduction by Spectral Clustering 

Rather than seeking spectrally similar pixels in the spatial dimension to accelerate target 

detection, this research proposes that intra-spectral band clustering be applied in an attempt to 

define the spectral dimensionality of the data, and to provide a reduced dimension dataset to ICA 

as used in Johnson’s AutoGAD algorithm.  The first advantage to this approach is the fact that a 
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certain amount of a priori knowledge can be assumed and heavily exploited.  In the spatial 

dimension the correlation between any two pixels cannot be assumed based on physical 

proximity, but in the spectral dimension this is not necessarily the case.  The correlation 

colorgraph below shows the typical relationship between spectral bands within hyperspectral 

data.  Bright green regions indicate high positive correlation between bands, bright red indicates 

strong negative correlation, and yellow indicates near zero correlation between bands. 

 

Figure 3-13. Spectral Band Correlation 

Clearly some structure between bands is present in the data.  Most obvious is the fact that 

the green regions, of highly correlated bands, are aligned primarily along the diagonal.  This 

result is to be expected from simple observation of a set of single band images as depicted in 

Figure 3-14.  This arrangement of images plainly shows the strong correlation between images in 

neighboring spectral bands.  At the same time it indicates the repetitive nature of the information 

contained in the hyperspectral dataset.  As will be seen in the next section the repetitive nature of 

1 145 Bands 
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the hyperspectral data allows for a rapid yet dynamic approach to grouping closely related 

portions of the dataset. 

 

Figure 3-14.  145 Single Spectral Band Images 

 

Figure 3-15.  9 Highly Correlated Neighboring Bands 
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When the correlation colorgraph is reoriented so that the matrix diagonal is aligned 

vertically, observation of the arrangement of the highly correlated sections of the graph indicates 

the likely number of clusters an algorithm ought to form.  In Figure 3-16, thirteen clusters have 

been identified by simple visual inspection.  As Williams indicated retention of every band 

forces subsequent processes to unnecessarily manipulate duplicate data.  Rather than arbitrarily 

discarding four of every five spectral bands, or attempting to produce a complete correlation 

matrix for each processed image, the arrangement of highly correlated bands along the diagonal 

will be exploited to perform comparisons only between bands in relatively close spectral 

proximity.   
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Figure 3-16.  Correlation Plot with Diagonal Oriented Vertically 

 

This is accomplished by beginning with band 1 and calculating its correlation with band 2.  

If the correlation between the two bands exceeds the desired threshold, the two bands are 

retained as a cluster, and the correlation is calculated between band 1 and 3.  Bands are clustered 

together until the intra-band correlation drops below the user defined Correlation Threshold.  

Then if two or more bands have been clustered, the last band which exceeded the target threshold 
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is assumed to be the center of the cluster, and the process begins a second time by finding the 

correlation between the center spectral band and the adjacent band.  Clustering continues as 

before until the correlation between the center band and the n
th

 band in sequence again falls 

below threshold.  At this point all spectral bands in the cluster are averaged together, to be 

returned as one of k clustered spectra.  Bands which do not meet the intra-band correlation 

requirement with at least one nearest neighbor are discarded. 

 

3.3.2. Comparison of Spatial Clustering to Spectral Clustering 

Figures 3-17 and 3-18 provide a comparison of K-means clustering in the spatial dimension 

to the spectral clustering algorithm developed as part of this thesis.  K-means clustering (Figure 

3-17) operates by locating individual pixels with similar spectral signatures and associating them 

into one of k clusters. 



 

 

Figure 3-17.  K

Figure 3-18 makes clear the primary advantage provided by clustering in the spectral dimension.  

Rather than seeking pixels with similar spectral signatures, this approach seeks 

bands where corresponding pixels produce similar reflectances.  This eliminates the need to 

make an assumption of no a priori knowledge about the likelihood of two bands being similar.  

Instead an assumption is made that adjacent bands ar

separated bands. 

3-19 

17.  K-means Clustering of Similar Pixels 

 

18 makes clear the primary advantage provided by clustering in the spectral dimension.  

Rather than seeking pixels with similar spectral signatures, this approach seeks adjacent spectral 

corresponding pixels produce similar reflectances.  This eliminates the need to 

make an assumption of no a priori knowledge about the likelihood of two bands being similar.  

Instead an assumption is made that adjacent bands are more likely to be similar than widely 

 

18 makes clear the primary advantage provided by clustering in the spectral dimension.  

adjacent spectral 

corresponding pixels produce similar reflectances.  This eliminates the need to 

make an assumption of no a priori knowledge about the likelihood of two bands being similar.  

e more likely to be similar than widely 



 

3-20 

 

 

Figure 3-18.   Spectral Clustering of Similar Spectral Bands 

This approach provides several advantages over previous clustering methodologies.  First, 

the algorithm is entirely deterministic.  Spatial clustering begins with some random set of cluster 

center points and iteratively rearranges the clusters to approach a minimized difference between 

clustered elements.  As a result the random selection of center points adds a stochastic element to 

the outcome.  This particular spectral clustering algorithm begins at the first spectral band and 

only clusters bands which exceed the assigned correlation threshold.  There are no stochastic 
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inputs and the algorithm will repeatedly return the same set of clustered spectral bands given a 

specific correlation threshold.  This fact contributes to the second advantage, speed.  Because the 

algorithm is deterministic, all clusters are formed in a single iteration of calculating correlations 

along the diagonal.  In fact, whereas a complete correlation matrix of 145 spectral bands requires 

21,045 intra-band correlations to be calculated, each of which might require calculation of the 

correlation between two 1x30,000 vectors, by searching for clusters only among neighboring 

spectra only 145 intra-band correlations are calculated.  It does this by calculating correlation 

values down the first superdiagonal of the correlation matrix.  Once a correlation value is found 

which exceeds the threshold allowing the band to be retained and averaged with adjacent bands, 

the algorithm continues along the same row within the correlation matrix, calculating values until 

a band is insufficiently correlated with the starting band to considered “alike”.  The algorithm 

establishes this band as the “center point” for averaging and continues by calculating that bands 

correlation with adjacent bands, until the intra-band correlation again falls below the established 

threshold.  Figure 3-19 provides a visual depiction of how this works.  Bands contained in the 

rectangles exceed an intra-band correlation threshold of 0.985 relative to their center points and 

were clustered into 15 dimensions.  Bands at the center of each cluster are identified by red 

triangles.  Several bands at either end of the correlation colorgraph are not members of any 

cluster.  These bands are adjacent to noise containing absorption bands and failed to exceed the 

correlation threshold with any immediately adjacent bands.  Because less correlated bands 

tended to be near noise containing portions of the hyperspectral image, any band not exceeding 

the correlation threshold with at least one of its immediate neighbors was discarded. 
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Figure 3-19.  Correlation Colorgraph Depicting Clustered Bands 

 The third advantage is the elimination of any requirement to estimate the number of 

expected clusters beforehand.  Rather the predefined required correlation drives how many or 

how few clusters will be generated.  A low required correlation produces fewer large clusters, 

while a high intra-band correlation requirement produces many small clusters.  Finally, the 

algorithm overcomes non-static covariance by associating spectral bands into dynamically sized 

clusters.  As few as two spectra may be clustered together if no other spectra are sufficiently 

correlated.  On the other hand, if a single series of bands are highly correlated, clustering 
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continues until the similarity between bands drops sufficiently.  This reduces processing time by 

preventing duplicate information from being passed into ICA for further processing. 

 

Figure 3-20.  Correlation Plot Clusters as produced by Spectral Clustering Algorithm 

Figure 3-20 displays the 16 clusters identified by the spectral clustering algorithm from the 

145 spectral bands remaining after removal of the absorption bands defined by Smetek 

[2007:23].  Interestingly two of the returned clusters “straddled” absorption bands, by including 

spectral bands from either side of the removed sections.  The location of the two absorption 
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bands is denoted by a blue oval around the two spectral bands on either side of the absorption 

band.  This observation led to a closer look at the removed absorption bands.  Figures 3-21(a) 

and (b) show the so called absorption bands with one non-absorption band on either end.  Both of 

the removed sections provide no obvious indication of noise, or lack of information present in 

the data in these regions.  This same inspection was conducted for all eight available data sets 

and in each case, no cause for removal of the bands could be found.  Additionally, it was 

recognized that if in the future noise were present in any band, as would be expected along 

absorption bands, the algorithm would find insufficient correlation between bands to result in 

clustering two or more bands.  This would then result in the removal of any problem spectral 

bands.  With this in mind these two absorption bands were included in all eight hyperspectral 

datasets as usable. 

 

Figure 3-21(a).  Absorption Bands 73 – 77 with Bands 72 & 78  

 

Figure 3-21(b).  Absorption Bands 87 – 91 with Bands 86 & 92  

Following reincorporation of bands 73-77 and 87-91 the clustering algorithm was reapplied 

to the 156 spectral bands.  Figure 3-22 displays the 15 clusters identified by the algorithm.  

While this is slightly more dimensions than might have been expected by visual inspection of the 

colorgraph, it was found to be acceptable and no further attempts were made to increase the size 

of the clusters produced by the algorithm.  The individual spectral bands contained in these 

clusters were averaged together and provided to ICA as a 15 dimension dataset for processing to 
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produce the most independent rotation of the remaining data.  By taking this approach, PCA was 

eliminated completely, as was the requirement to assess the dimensionality of the data from an 

eigenvalues plot. 

 

Figure 3-22.  Correlation Plot Clusters produced by Spectral Clustering Algorithm  

(156 bands) 
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Figures 3-23 through 3-25 depict the first three steps of the modified AutoGAD 

algorithm, Preprocessing, Feature Extraction I, and Feature Extraction II.  The only change made 

to the preprocessing portion of the algorithm is the increase in the number of non-absorption 

bands retained from 145 to 156.  The first portion of feature extraction is changed substantially 

from the original, shown in figure 2-10, by replacing PCA and MDSL with the clustering 

algorithm described above.  Feature Extraction II can be viewed as the engine of both original 

AutoGAD and the updated AutoGAD by correlation.  In this step the FastICA algorithm is called 

on to solve for the abundance matrix and then used to unmix independent components of the 

clustered dimensions found in the previous step. 

 

Figure 3-23 AutoGAD-SC Preprocessing of Hyperspectral Data Cube  

 

Figure 3-24 AutoGAD-SC Feature Extraction I  

(Clustering, and Whitening) 
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Figure 3-25 AutoGAD-SC Feature Extraction II  

(ICA with sample of resulting independent components in red) 

 

3.4 Separation of Target Pixels from Background 

Once ICA completes the process of extracting independent features from the original 

spectral signals, the characteristics of these independent features themselves is used to identify 

which features are likely to contain targets and which features are not.  Four characteristics of 

each signal are measured and compared against user defined thresholds in an attempt to retain 

only target containing maps.  These four characteristics include maximum component score, 

potential target signal to noise ratio (PT SNR), kurtosis, and potential target fraction (PTF).  

Maximum component score is simply a direct measurement of the maximum single pixel score 

returned by ICA.  Likewise, kurtosis is a direct measure of the fourth moment of inertia for each 

signal.  Both kurtosis and PTF require the formation of a signal histogram relating component 

scores for each pixel to the frequency of each scores occurrence in each component.  In order to 

construct the set of signal histograms a suitable component score bin width must be selected.  

AutoGAD used a user defined histogram bin width with a recommended setting of 0.05 

[Johnson: 2008,114].  This parameter was replaced in AutoGAD-SC by a simple means for 

estimating a distribution’s optimal bin width, Scott’s Rule. 
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3.4.1. Scott’s Rule for Histogram Bin Width 

As discussed in section 2.4.1, Scott’s rule for determination of the optimal histogram bin 

width [1979] was employed in place of an arbitrary user defined bin width setting.  Derivation of 

the formula for optimal bin width 

 
1

33.49
n

h sn
−−−−

====  (0.30) 

 

requires knowledge of the true underlying distribution, however Scott refers to work by Tukey 

[1977:623] which suggests assuming a Gaussian distribution as the reference standard for the 

underlying distribution.  Scott recognized that the assumption of an underlying Gaussian 

distribution as the source of the data may not be accurate in many circumstances, and points out 

that use of the equation on non-Gaussian data will not produce a “Gaussian” looking histogram.  

He then demonstrated the use of equation 3.1 on several non-Gaussian data sets and provided a 

graphical method to adjust for non-Gaussian skewness, kurtosis, or bimodality [Scott:1979, 608].  

An approximation of these correction factors was added to the algorithm, so as to produce the 

best possible bin width estimate based on the data contained in each component. 

 

3.4.2. Estimating the Threshold between Background and Signal 

One of the primary reasons for creation of these histograms is the estimation of 

breakpoint between those pixels representing background and outlying target returns.  Recall 

from section 2.4 that this breakpoint was identified by locating the first zero bin on the signal 

histogram.  All pixels with a component score greater than this threshold were identified as 

potential target pixels, while all others were assumed to be likely background pixels.  This 

approach presents two related problems associated with estimating this threshold.  Essentially the 

separation between background and outliers is found at the point on the signal histogram where 
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the transition between peak and tail occurs.  Figure 3-26 shows a signal histogram from ARES 

1D with each pixel color coded to identify its status as target or background.  Figure 3-27 shows 

an enlarged view of the region of interest.  If the first zero bin method is used to identify the 

breakpoint between peak and tail, the resulting threshold between target and background pixels is 

at a component score of 7.0034.   

 

 
 

Figure 3-26.  ARES 1D Signal Histogram  

Clearly when the first zero bin method is applied to this particular data set, it fails to 

include a significant number of actual target pixels.  In fact on this particular map with the 

threshold set at 7.0034, only 43 of 672 target pixels are correctly identified.  The problem in this 

situation is twofold, the location of the first zero bin is heavily dependent on the selected bin 

Target Pixels Non-Target Pixels
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width, and second the first zero bin frequently does not occur until well into the “tail” of the 

histogram. 

 

Figure 3-27.  ARES 1D Signal Histogram with First Zero Bin Identified  

Instead of the identifying the first zero bin as the transition between background and 

outlier type pixels, this thesis attempted to locate the “knee in the curve” between the non-

Gaussian mound and tail portions of the signal histogram.  To accomplish this Johnson’s MDSL 

technique was adapted to measure the maximum distance between the peak of each histogram 

and the maximum signal score location.  Figure 3-28 shows a graphical depiction of how this 

algorithm selects the threshold between background and potential targets.  Figure 3-29 narrows 

in on the knee in the curve and shows that this method estimates the threshold to be a component 

Target Pixels Non-Target Pixels

First Zero Bin = 7.0034Undetected Potential 

Target Pixels
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score of 1.5753.  Using this threshold 435 of the 672 target pixels are correctly identified as 

potential targets with 6 non-target pixels incorrectly included as part of the potential target 

signal.  This represents a 912% increase in potential target signal identification which has a 

dramatic impact on the PT SNR value as will be demonstrated in the next section. 

 

Figure 3-28.  ARES 1D Signal Histogram and MDSL technique  

for signal-background threshold estimation  

 

Target Pixels Non-Target Pixels
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Figure 3-29.  ARES 1D Signal Histogram with MDSL threshold identified  

By adopting the MDSL method, the need to correct for the fact that Scott’s rule assumes 

an underlying Gaussian distribution is somewhat alleviated.  Correcting for non-Gaussianity 

primarily serves to reduce bin width so as to make the resulting histogram a somewhat rougher 

appearance, but the general shape remains the same.  As a result the threshold defined by MDSL 

changes only very slightly when the correction factor is applied.  Figure 3-30 shows the effect of 

applying Scott’s correction factor on location of the threshold between signal and background 

pixels.  Of the five target containing maps, the largest affect the correction produces is a shift 

from a threshold at a component score of 1.75 with the correction to 1.862 without the 

correction.  In fact, inclusion of the correction factor actually generated a slight reduction in the 

number of target pixels found.  Figure 3-31 shows that without the correction factor the 

Target Pixels Non-Target Pixels

Continues to 14.33

435 of 672 target pixels 
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algorithm detected 97.38% of all target pixels, but that with the addition of the correction factor 

the number of target pixels detected reduced slightly to 97.22%.  Because this correction factor 

requires calculation of skew for each signal distribution and would then reduce bin width to 

correct for non-Gaussian skew, it tended to increase algorithm run time.  Since the process 

produced only a relatively small impact on the location of the threshold between signal and 

background, provided no improvement in target detection, and came with an associated time 

penalty it was removed as unnecessary. 
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Figure 3-30.  Comparison of Signal/Background Thresholds developed with and without 

adjusting for non-Gaussian behavior while estimating bin width by Scott’s Rule  

 

Target 

Component
Without Non-Gaussian 

Correction

With Non-Gaussian 

Correction

1

2

3

4

5

1.862 1.750

1.782 1.839

2.262 2.289

2.446 2.381

0.576 0.548



 

3-35 

 

           

                  (a) Without non-Gaussian Adjust        (b) With non-Gaussian Adjust 

Figure 3-31.  Comparison of Target Pixels found with and without Scott’s Rule  

Bin Width Adjust for Underlying non-Gaussian Distribution 

 

3.4.3. Calculation of Signal to Noise Ratio 

Once the line separating potential target pixels and background pixels has been defined 

the signal to noise ratio is measured.  As with Johnson’s AutoGAD algorithm PT SNR is 

calculated by the following formula 
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but use of the Maximum Distance Secant Line rather than first zero bin to define the threshold 

generates a substantial difference in signal to noise values for each map.  Figure 3-32 shows the 

component scores for all pixels from ARES 1F, in each of its 15 dimensions.  The horizontal axis 
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corresponds to the pixels left-right position in the image, while the vertical axis corresponds to 

each pixel’s component score.  The solid line represents the location of the breakpoint between 

potential target signal and background as found by the MDSL technique, while the dotted line 

indicates the location of this breakpoint as found by the first zero bin method.  Note that in each 

map the first zero bin method identifies a higher IC score (further into the tail) as the threshold.  

For reference the 15 associated image maps are provided in figure 3-33. 

The shift upwards in this threshold tends to produce lower PT SNR values based on the 

fact that many fewer target pixels, which are more variant than background pixels, are included 

in the PT SNR measurement.  Two components do not follow this trend, however.  Both Map 2 

and Map 10 produce larger PT SNR values when the first zero bin is applied, than by the MDSL 

method, yet neither of these maps contain true target pixels which lie far enough from 

background to be correctly identified.  In addition target pixel containing Map 7 produces a PT 

SNR value of only 6.533 when measured by the first zero bin, while Map 2 produces a PT SNR 

value of 6.789.  Thus any threshold for discriminating between target and non-target maps based 

on PT SNR that is set low enough to capture Map 7 must also retain Map 2.  However when the 

MDSL technique is applied, any PT SNR threshold between 8.992 (the highest PT SNR for a 

non-target map) and 11.870 (the lowest target map PT SNR value) correctly captures all target 

pixel containing maps (6, 7, 13, 14, and 15) while discarding all others. 
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Figure 3-32.  Potential Target Signal-Background Thresholds for ARES 1F by MDSL and 

First Zero Bin Methods and their associated PT SNR values  

 

Map 1 PT SNR

MDSL = -2.890, FZB = -3.050

Map 2 PT SNR

MDSL = 4.921, FZB = 6.789

Map 3 PT SNR

MDSL = 8.992, FZB = Inf

Map 4 PT SNR

MDSL = 2.687, FZB = -25.4163

Map5 PT SNR

MDSL = -1.268, FZB = Inf

Map 6 PT SNR

MDSL = 14.985, FZB = 12.367

Map 7 PT SNR

MDSL = 15.652, FZB = 6.533

Map 8 PT SNR

MDSL = -3.837, FZB = -7.875

Map 9 PT SNR

MDSL = -9.722, FZB = -17.414

Map 10 PT SNR

MDSL = -1.153, FZB = 5.968

Map 11 PT SNR

MDSL = -2.210, FZB = -9.787

Map 12 PT SNR

MDSL = 8.713, FZB = Inf

Map 13 PT SNR

MDSL = 11.870, FZB = 10.030

Map 14 PT SNR

MDSL = 28.086, FZB = 21.278

Map 15 PT SNR

MDSL = 12.369, FZB = 12.531

First Zero Bin MDSL
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Figure 3-33.  Maps from ARES 1F associated with PT SNR Tables in Figure 3-32 

Map 1 Map 2 Map 3

Map4 Map 5 Map 6

Map 7 Map 8 Map 9

Map 10 Map 11 Map 12

Map 13 Map 14 Map 15
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3.4.4. Potential Target Fraction (PTF) 

The final measure used to discriminate between signals containing likely target pixels and 

signals that are not likely to contain targets is the Potential Target Fraction (PTF).  PTF is 

defined for each map as the number of pixels with a component score greater than the signal 

threshold divided by the total number of pixels.  This parameter provides the user with some 

ability to define how densely targets of a single type material are expected to be placed within 

the scene.  More importantly by correctly setting a maximum PTF, it prevents common naturally 

occurring anomalies, such as sagebrush, from being defined as target pixels because they occur 

too frequently.   

Figure 3-34 shows this process for ARES 1D.  Note that any map with its PT SNR value 

or maximum IC score displayed in red is recognized as a non target map based on the value in 

red.  Map 1 contains primarily actual target pixels and little else.  The algorithm calculates the 

Potential Target Fraction (PTF) at 1.124% of the total image.  This target volume is in concert 

with what might be expected for man-made targets within the image.  Maps 4 and 8 both 

represent cases where the PT SNR values and Maximum IC Score exceed those of Map 1, and 

would likely be retained for further processing if PTF was not considered.  However both of 

these maps have a substantially higher concentration of potential target pixels than Map 1.  Their 

PTF values are found to be 4.024% and 3.766% respectively.  By setting a PTF threshold of 

3.5%, these two maps will be excluded from further processing, eliminating any false positive 

pixels they might identify as targets. 
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Figure 3-34.  ARES 1D Component Images,  

Potential Target Images, and Potential Target Fractions 

 

3.5. Discrimination between Target and Non-Target Components 

AutoGAD discriminated between target maps and non-target maps based on the 

maximum IC score and the PT SNR value.  Johnson demonstrated in Figure 3-35 that by setting 

a PT SNR threshold of 2 dB and a max IC score of 10 to ARES 1D, 1F, 1D, and 2D, all target 

maps are retained, while only two non-target maps are incorrectly retained.  This same analysis 

Map 1
SNR 7.647

Max Score 15.698

Potential TGT Fraction
0.01124

Map 3
SNR -8.975

Max Score 6.501

Potential TGT Fraction
0.00743

Map 4
SNR 10.521

Max Score 21.312

Potential TGT Fraction
0.04024

Map 5
SNR 1.449

Max Score 5.311

Potential TGT Fraction
0.12924

Map 6
SNR -12.382

Max Score 3.423

Potential TGT Fraction
0.00301

Map 7
SNR 1.611

Max Score 3.723

Potential TGT Fraction
0.43449

Map 8
SNR 11.523

Max Score 16.090

Potential TGT Fraction
0.03766

Map 9
SNR 0.938

Max Score 7.172

Potential TGT Fraction
0.08009

Map 2
SNR 1.734

Max Score 9.379

Potential TGT Fraction
0.05702
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was accomplished, with the addition of kurtosis and PTF as threshold options.  Results are 

shown in Figures 3-36 and 3-37. 

 

Figure 3-35.  AutoGAD Uncertainty Region in Max Score and PT SNR  

Feature Space (ARES 1D, 1F, 2D, and 2F) [Johnson: 2008:160] 

 

Figure 3-36.  AutoGAD-SC Uncertainty Region in Max Score and PT SNR  

Feature Space (ARES 1D, 1F, 2D, and 2F) 
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Notice that just as with AutoGAD, the uncertainty region produced for AutoGAD-SC 

includes two non-target maps, shown in green.  These two maps are both products of ARES 1D 

and as seen in Figure 3-37, both maps produce relatively high kurtosis values (41.26 and 39.42).  

However both maps produce somewhat larger PTF values (0.0402 and 0.0377) than might be 

expected for manmade objects in the field of view.  Given that the largest PTF value produced by 

any target map from the four tested images is 0.0196, the author selected 0.035 as a PTF 

threshold.  One non-target map, identified by the orange marker in Figures 3-36 and 3-37, falls 

inside this region.  This particular map would be eliminated based on both its maximum IC score 

and its PT SNR values.  So by retaining any map with kurtosis greater than 10, a PTF value less 

than 0.035, a PT SNR value greater than 5.25, and a maximum IC score greater than 13.5, all 

target maps are isolated from all non-target maps. 

 

Figure 3-37.  AutoGAD-SC Uncertainty Region in PTF and Kurtosis  

Feature Space (ARES 1D, 1F, 2D, and 2F) 
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3.6. Left Partial Kurtosis (LPK) 

The independent components produced by Fast ICA are asymmetrically distributed about 

a mean of zero.  By convention each distribution is oriented so that the right or positive direction 

tail is longer than the left.  This tends to place the majority of the target pixels in the right tail of 

signal histogram, however target pixels may also fall in the left tail of a signal histogram and 

appear as dark returns in the image maps.  Figure 3-38 displays the maps produced by ARES 2D.  

In the adjacent recolored images notice how bright returns appear distinctly different from the 

surrounding background, but that there are also apparent targets which do not correspond to 

bright returns in the grey scale map.  These targets correspond to darker than background pixels 

on the grey scale map, and fall in the left hand tail of the signal histogram (Figure 3-39). 

 

Figure 3-38.  ARES 2D Component Maps and False Color Images  

Map 1 Map 2 Map 3 Map 4

Map 5 Map 6 Map 7 Map 8

Map 9 Map 10 Map 11
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Figure 3-39.  ARES 2D Signal Histograms showing outliers in Left and Right Tails  

Kurtosis measures the peakedness and tail weight of a distribution.  Since this detection 

algorithm operates by locating outliers in the tails of independent signals, high kurtosis values 

are a strong indicator that target pixels are likely to be present.  For ease of code implementation 

AutoGAD-SC utilizes MatLAB’s built in definition of kurtosis (equation 2.16):  

 

 ( )
{ }4

4
kurt

E x
x

µ

σ

−
=  (0.32) 

 

 

As an indicator however, kurtosis does not provide information relating to the weight of the left 

tail versus the right tail.  Skew provides information regarding the direction in which the heavier 

tail might be found, but does not provide adequate detail to determine whether or not one tail 

contributes more to kurtosis than the other.  Figure 3-39 provides the kurtosis values for the 

independent components of ARES 2D.  Note that although Map 8 has a kurtosis value more than 

Map 1

Kurtosis 2.897

Map 2

Kurtosis 157.817

Map 3

Kurtosis 116.551

Map 4

Kurtosis 508.149

Map 5

Kurtosis 280.075

Map 6

Kurtosis 62.753

Map 7

Kurtosis 12.638

Map 8

Kurtosis 582.951

Map 9

Kurtosis 106.416

Map 10

Kurtosis 3053.924

Map 11

Kurtosis 395.628
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five times that of Map 9, the left hand tail of Map 9 is roughly twice the length of the left tail in 

Map 8.  Upon further inspection of these two maps with their associated signal histograms, the 

significance of this observation becomes apparent.  Figure 3-40 shows that map 9 contains two 

targets which lie in the extreme right tail of the distribution, but contains as many as 15 

distinguishable targets found in the left tail. 
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Figure 3-40.  ARES 2D Map 9: False Color Map and Signal Histogram 
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Figure 3-41 shows the same depiction for map 8.  Notice that although this map contains target 

pixels found in the left tail of the distribution, there are fewer of them (7 targets versus 15 in Map 

9), and they are less distinguishable from background pixels.  By measuring the kurtosis of only 

the left tail perhaps a determination can be made on whether or not to seek target pixels in both 

tails of the distribution or only in the right hand side
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Figure 3-41.  ARES 2D Map 8: False Color Map and Signal Histogram
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Another way of defining LPK is derived from the fourth moment used to develop the 

equation for kurtosis. 

 { }
4 4( ) ( )E x x f x dxµ µ

∞

−∞
− = −∫  (0.33) 

For any distribution, total kurtosis can be separated at its mean into left and right partial kurtosis 

values as shown below. 

 4 4 4( ) ( ) ( ) ( ) ( ) ( )x f x dx x f x dx x f x dx
µ

µ
µ µ µ

∞ ∞

−∞ −∞
− = − + −∫ ∫ ∫  (0.34) 

And since each IC has been centered as a part of ICA, the mean µ , is known to be 0, thus each 

tail produces a separate contribution to kurtosis by: 

Left Tail: 
0 0

4 4 4( ) ( ) ( 0) ( ) ( )x f x dx x f x dx x f x dx
µ

µ
−∞ −∞ −∞

− = − =∫ ∫ ∫  (0.35) 

Right Tail: 4 4 4

0
( ) ( ) ( 0) ( ) ( )x f x dx x f x dx x f x dx

µ µ
µ

∞ ∞ ∞

− = − =∫ ∫ ∫  (0.36) 

Equations 3.6 and 3.7 indicate that the left partial kurtosis can be found simply by basing the 

calculation only on those observations which are less than the mean value (or greater than the 

mean for right partial kurtosis).  This measure of relative contribution to overall kurtosis 

provides some indication of the tendency for a given tail to contain outliers. 

Previous work allowed the user to determine whether or not a lower threshold for 

background pixel was to be estimated, allowing pixels lower than the threshold to be identified 

as target pixels in the left tail of the distribution.  However addition of the MDSL technique for 

estimating the threshold between target and background pixels generated a tighter threshold than 

the zero bin method, as described in section 3.4.2.  This tighter threshold between left tail 

outliers and background pixels produced a tendency for false positive pixels to be detected in 

signals with short left tails.  To mitigate this tendency the switch dictating whether or not to 
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generate a lower threshold was replaced by a switch based on the contribution to kurtosis 

produced by the left tail of each target signal histogram. 

Recall from sections 2.3.3 and 2.3.4 that the process of whitening and ICA leaves each 

component with a mean of zero and a variance of one.  The enables a rather simple approach for 

quantifying the contribution of the left tail to the overall distribution’s kurtosis.  Left partial 

kurtosis was calculated by splitting each distribution into two halves at the mean value of zero, 

and then directly measuring the kurtosis of those points with IC scores less than zero.  This 

measurement cannot be considered a true kurtosis value but does provide some information 

regarding the contribution towards overall kurtosis produced by the values less than the mean.  

Left partial kurtosis was then compared to a user defined parameter, left partial kurtosis 

threshold (LPKT), to determine whether or not the presence of target pixels in the left tail of the 

distribution was expected.  If the measured left partial kurtosis exceeded the LPKT, a threshold 

would be established to identify outlier pixels to the left of the distribution.   

Table 3-1 shows the overall kurtosis values for all target maps produced by ARES 1D, 

1F, 2D, and 2F along with their associated left partial kurtosis values.  Lines shaded in dark grey 

represent target maps in which target pixels in the left tail were clearly identifiable from 

background.  Lines shaded light grey represent maps in which a lower threshold produce neither 

additional target pixels nor significant false positive pixels.  Unshaded lines represent maps 

which contained primarily background pixels in the left tail of the signal distribution making 

false positive detection likely.  Given that the kurtosis threshold used to discriminate between 

target and non-target map was set at 10, and that all target maps with clearly identifiable target 

pixels in the left tail have LPK values greater than 10, the LPK threshold was also set to 10.   
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Image 

Abundance 

Map 

Overall Kurtosis 

Value 

Left Partial 

Kurtosis (LPK) 

ARES 2D Map 10 3053.8891 187.5735 

ARES 2D Map 8 582.9253 109.1019 

ARES 2D Map 6 508.1359 80.8883 

ARES 2D Map 1 158.6498 75.4261 

ARES 2D Map 5 280.0673 64.1115 

ARES 2D Map 3 116.5282 56.9521 

ARES 1F Map 4 44.336 51.139 

ARES 2D Map 4 105.9545 48.0245 

ARES 2D Map 9 62.7229 46.6658 

ARES 2D Map 7 12.8814 36.5863 

ARES 2D Map 2 395.1442 32.8436 

ARES 2F Map 6 29.2578 19.703 

ARES 2F Map 2 45.2127 17.95 

ARES 1F Map 5 41.235 10.345 

ARES 1F Map 12 71.745 9.271 

ARES 2F Map 7 90.5685 8.3446 

ARES 2F Map 3 93.1217 7.0766 

ARES 2F Map 5 23.8729 6.7918 

ARES 1D Map 8 14.167 5.1712 

ARES 1F Map 8 44.741 5.023 

ARES 1F Map 1 108.121 4.895 

ARES 2F Map 9 28.3315 4.212 

 

Table 3-1.  Overall Kurtosis and Left Partial Kurtosis for  

ARES 1D, ARES 1F, ARES 2D, and ARES 2F  

 

Figures 3-42 and 3-43 show the impact of making a dynamic decision as to whether or not 

thresholding for outlier target pixels ought to be conducted both above and below the 

background.  Each of the target maps is shown along with its associated signal histogram.  

Notice that those distributions with short left tails tend to have few if any pixels below the main 

band of background pixels, and that no lower threshold is produced.   
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Figure 3-42.  ARES 1D Map 8: False Color Map, Signal Histogram, and  

Single Side Target Pixel Threshold  

 

Notice how the left tail of the signal histogram has a larger shoulder than the right tail.  This 

portion of the left tail corresponds to the darker returns produced by road, rock, and sagebrush 

features.  The sloped transition between peak and tail on the left side of the distribution is likely 

to contain a large number of non-target pixels recognized as outliers should the MDSL technique 

be applied to identify the threshold between signal and background. 
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Figure 3-43.  ARES 1F:  False Color Maps, Signal Histograms, and Single or 

Two Sided Target Pixel Thresholding Based on LPK 

 

Figure 3-43 provides examples of both one and two sided thresholding based on the left 

partial kurtosis.  Notice how in Map 4 the LPK of 51.139 actually exceeds the overall kurtosis 

value of 44.336.  When a lower threshold is applied to this particular map we see a large number 

of target pixels detected in the left tail (circled in green).  Map 8 provides the alternative case, 

where although the full signal has a of 44.741, the left tail provides little contribution, and 
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produces a LPK value of only 5.023.  If a lower threshold had been applied, few if any target 

pixels would have been detected. 

 

3.7. Adaptive Iterative Noise Filtering 

Previous work [Johnson, 2008:163] adopted an Iterative Adaptive Noise (IAN) Filter or 

Wiener filter to reduce false positive detections as a result of noise occurring within background 

regions of the image.  IAN filtration accomplishes this by more heavily smoothing regions of the 

image where the local variation is similar to the full image variation and applying less smoothing 

to regions in which the variance is significantly higher than that of the full image.  Johnson 

adopts a canned MATLAB algorithm known as ‘wiener2’ to accomplish this portion of the 

AutoGAD algorithm.  This algorithm smoothes each target map by observing each pixel’s 

component score in relation to the component scores of those pixels within a smoothing window.  

For each pixel the mean score and variance within the window are calculated by 
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Each pixels score is replaced with a filtered score based upon its current value, a(n1,n2) , the local 

variance, σ
2
, and the total component variance, ν

2
, by equation 3.5 below. 

 [[[[ ]]]]
2 2

1 2 1 22
( , ) ( , )b n n a n n

σ ν
µ µ

σ

−−−−
= + −= + −= + −= + −  (0.38) 

 

where 

                          
1 2

2

( , )  new pixel score

 overall system (component) variance

b n n

ν

≡≡≡≡

≡≡≡≡
 

 

Two decisions are critical in producing adequate signal smoothing of background noise, 

and in turn reducing the likelihood of false positive pixel detection.  The first of these is window 

size.  Large windows will tend to produce a variance estimate closer to that of the overall system, 

which then applies more smoothing to the indexed pixel, a(n1,n2).  If the window is too large, 

excessive smoothing can occur to target pixels, making them indistinct from background pixels.  

As Johnson points out, a smaller window can prevent this occurrence, but then repeated 

iterations of the smoothing algorithm are required to effectively smooth background pixels given 

the small window size [2008:166].  In this work as with Johnsons a 3x3 pixel window was 

chosen for all testing.  This leads to the second decision, the number of iterations of the 

smoothing algorithm to perform on each target component.  Given that reduction in overall run 

time is a goal of this thesis, the number of smoothing iterations applied to each target map is 

critical since each iteration comes with an associated expense in terms of time. 

AutoGAD applied a two level approach to solving this problem.  Three user defined 

parameters were established to exercise control over the number of smoothing iterations.  Two 

parameters define the number of iterations of smoothing to be applied, a more smoothing is 

applied to maps with low signal to noise ratios, and less smoothing repetitions to maps with high 

SNR values.  The third parameter establishes the threshold low SNR and high SNR values.  In 
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Johnson’s work a 3x3 pixel window was utilized with a the high number of smoothing iterations 

set to 100, the low number of smoothing iterations set to 20, and the SNR threshold set to 10 dB.  

Thus any map with a PT SNR value of less than 10 dB would be cycled through 100 iterations of 

the IAN filter, while any map with a PT SNR value greater than 10 dB would receive only 20 

iterations of IAN filtering.   

A test of AutoGAD was conducted to determine how much time was spent performing 

the IAN filtration portion of the algorithm.  The four images, ARES 1D, ARES 1F, ARES 2D, 

and ARES 2F, were tested over 100 iterations and PT SNR values along with time required for 

IAN filtering were recorded.  Following the test the number of iterations performed in each case 

was determined.  Table 3-2 shows the average number of smoothing iterations and the associated 

time requirement to each of the target maps found by AutoGAD in the four images.  Notice that 

for some maps the number of iterations applied is exactly 20 or 100.  This occurred in cases 

where the map in question consistently produced the same PT SNR value and was consistently 

identified as a target map.  In those cases where the average number of filtrations was something 

other than 20 or 100, the stochastic nature of ICA resulted in variations in the PT SNR value of 

the map, or the map was inconsistently identified as a target map based on its Maximum IC 

score. 
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Table 3-2.  Iterations and Time Required to perform IAN Filtration on  

ARES 1D, ARES 1F, ARES 2D, and ARES 2F Target Maps 

 

Based on the results it can be seen that for ARES 1D the two identified target maps require 100 

iterations of IAN filtration, based on their PT SNR values of 8.028 and 4.557 respectively.  This 

results in a time penalty of 2.708 seconds.  Given that over the same 100 test repetitions the 

average time required for the AutoGAD algorithm to process ARES 1D was 6.0789 seconds with 

a variance of 0.7156 seconds, the contribution due to IAN filtration is in excess of 44.55% of the 

entire algorithm run time.  Table 3-3 show the same results for all four of the tested images 

 

Image Map

Number of repetitions 

identified as target 

containing

Average PT SNR when 

retained

Averge Number of IAN 

Filtering Iterations when 

retained

Average Time for IAN 

Filtering  when 

retained (sec)

Variance of Time for 

IAN Filtering

ARES 1D 1 100 8.0284 100.0 1.3521 0.0178

ARES 1D 3 100 4.5569 100.0 1.3559 0.0213

ARES 1F 1 100 26.2662 20.0 0.1522 0.0006

ARES 1F 2 100 14.4335 20.0 0.1493 0.0004

ARES 1F 3 100 10.9542 20.0 0.1537 0.0005

ARES 1F 6 100 7.1157 100.0 0.7090 0.0044

ARES 2D 1 100 25.7392 25.4 0.1100 0.0001

ARES 2D 2 100 34.8119 24.8 0.1092 0.0001

ARES 2D 3 100 28.2084 29.4 0.1106 0.0002

ARES 2D 4 100 20.9599 23.8 0.1111 0.0002

ARES 2D 5 100 22.7185 25.0 0.1118 0.0002

ARES 2D 6 100 18.3578 21.8 0.1115 0.0002

ARES 2D 7 100 17.1696 22.6 0.1130 0.0002

ARES 2D 8 100 15.5405 26.4 0.1117 0.0002

ARES 2D 9 100 12.9649 22.6 0.1112 0.0002

ARES 2D 11 100 10.8019 22.0 0.1463 0.0138

ARES 2F 1 100 21.9327 20.0 0.2350 0.0003

ARES 2F 2 100 21.7296 20.0 0.2376 0.0005

ARES 2F 3 100 20.9701 20.0 0.2368 0.0003

ARES 2F 4 100 18.8668 20.0 0.2386 0.0004

ARES 2F 5 100 18.3510 20.0 0.2385 0.0005

ARES 2F 6 100 15.9259 28.8 0.3386 0.0837

ARES 2F 7 89 18.5978 20.0 0.2369 0.0003

ARES 2F 8 100 17.1906 28.8 0.3376 0.0833

ARES 2F 9 89 18.6327 20.0 0.2385 0.0004

ARES 2F 10 89 17.1234 20.0 0.2352 0.0002

ARES 2F 11 89 16.9719 20.0 0.2357 0.0003

ARES 2F 12 88 12.7377 42.7 0.4953 0.1708

ARES 2F 13 63 9.4635 92.4 1.0706 0.0757

ARES 2F 14 31 9.3301 100.0 1.1522 0.0006

ARES 2F 15 2 7.5029 100.0 1.1419 0.0000

ARES 2F 16 27 5.0579 100.0 1.1507 0.0006

ARES 2F 17 3 5.7525 100.0 1.1546 0.0002
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Table 3-3.  Contribution to AutoGAD run time due to IAN Filtration on 

ARES 1D, ARES 1F, ARES 2D, and ARES 2F Target Maps 

 

By enabling only two levels of signal filtration, all target maps meeting the criteria for 

one of the two filtration options are treated identically, regardless of their actual signal to noise 

value.  For example two maps from ARES 1D are recognized by AutoGAD as target containing, 

Map 1 and Map 3 in Table 3-2.  Map 3 had an average SNR value of 4.5569 and although Map 1 

had an average SNR value of 8.0284, nearly twice that of Map 3, both were treated with 100 

iterations of IAN filtration.  Likewise Maps 1 and 3 from ARES 1F are both treated with 20 

iterations of IAN filtration despite the fact that Map 1 has a SNR value nearly three times that of 

Map 3.  Figure 3-44 compares these two maps as produced by AutoGAD along with their 

associated abundance plots.  Map 1 has well separated target pixels and very low background 

variation, both of which produce a higher SNR.  Because of this fewer than 20 iterations of IAN 

filtration are required.  Map 3 has a somewhat more noisy background, as indicated by more 

color variation in the false color map, and the wider background band in the abundance plot.  

Although the target pixels are fairly well separated from background, this image benefits from 20 

iterations of filtration, and since only two levels of filtration are possible Map 1 must also be 

exposed to 20 iterations of filtration. 

Image

Average 

Algorithm Run 

Time

Variance of Algorithm Run 

Time

Average Total 

Contibution from IAN 

Filtering (sec) Variance

% Contribution due to 

IAN Filtration

ARES 1D 6.0789 0.7156 2.7080 0.0722 44.55%

ARES 1F 4.3668 0.5246 1.1642 0.0098 26.66%

ARES 2D 3.0842 0.0315 1.1465 0.0149 37.17%

ARES 2F 35.6002 72.1013 4.5408 0.8878 12.75%
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Figure 3-44.  ARES 1F Maps 1 and 3, both treated with 20 iterations of IAN filtration  

 

By comparing the impact of reducing the number of iterations to five on these two maps, 

it becomes apparent that 20 iterations of filtration on Map 1 is excessive, while on Map 3 it is 

appropriate.   In the upper half of Figure 3-45 Maps 1 and 3 are shown with the resulting target 

pixel detection map from AutoGAD.  Pixels circled in green were detected from Map 3 and 

pixels circled in orange were detected from Map 1.  Notice how when the number of IAN 

filtration iterations is reduced from 20 to 5, neither the Map 1 image nor the target pixels 

produced by Map 1 change substantially.  However when Map 3 is filtered for only 5 iterations, 

the size of the targets detected by it reduces slightly and more importantly the band of false 
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positive pixels at the lower left of the image increases, indicating that additional IAN filtration 

iterations are required. 

Figure 3-45.  ARES 1F Maps 1 and 3,  

Comparison of 20 versus 5 iterations of IAN filtration 

 

This work replaces the two level filtration technique with a variable number of IAN 

filtration iterations based on a simple ratio between a target map’s PT SNR value and the PT 

SNR threshold at which a map is accepted as likely to contain target pixels.  The number of IAN 

filtration iterations performed on each map is then:  
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(0.39) 

where 

 

Equation 3.6 then acts as a rheostat controlling the number of iterations of IAN filtration 

based on the PT SNR value specific to each map.  When the coefficient C is set to a value of 50, 

the number of iterations can be simultaneously reduced, and remain adequate for each map based 

on its PT SNR value.  For example, both Map 1 and 3 from ARES 1F were treated with 20 

iterations of filtration by AutoGAD.  Under this new procedure, the PT SNR values for Map 1 

and Map 3 would lead to 10 and 24 iterations respectively. 

Map 1:   

   
(0.40)

 
 Map 3: 

   
(0.41)

 
 

A second test measuring the number of IAN filtration iterations performed and time 

required was performed, this time using AutoGAD-SC with the number of iterations performed 

calculated by equation 3.6.  Once again 100 repetitions each of ARES 1D, 1F, 2D, and 2F were 

performed.  Table 3-4 shows the results of this experiment. 

 PT SNR

i

i

T
Iter C

SNR

    
====     
    

[[[[ ]]]]

 A user defined iteration coeffient

 The PT SNR threshold for identification of target maps

 The PT SNR value for map 

 Indicates round to the nearest whole number

SNR

i

C

T

SNR i

≡≡≡≡

≡≡≡≡

≡≡≡≡

≡≡≡≡

[[[[ ]]]]1

5.25
50 9.993 10 iterations

26.2662
Iter

    
= = == = == = == = =        

[[[[ ]]]]3

5.25
50 23.9634 24 iterations

10.9542
Iter

    
= = == = == = == = =        
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Table 3-4.  Iterations and Time Required to perform IAN Filtration on  

ARES 1D, ARES 1F, ARES 2D, and ARES 2F Target Maps 

(Iterations determined as function of PT SNR value) 

 

 

Table 3-5.  Contribution to AutoGAD-SC run time due to IAN Filtration on 

ARES 1D, ARES 1F, ARES 2D, and ARES 2F Target Maps 

 

Comparison of Table 3-2 to 3-4 reveals two improvements in terms of algorithm run 

time, the number of retained target maps upon which filtration must be applied, and the number 

of iterations of filtration performed on each map.  The tables indicate fewer maps were retained 

as target containing for ARES 1D, 2D, and 2F when the AutoGAD-SC algorithm was used, than 

Image Map

Number of repetitions 

identified as target 

containing

Average PT SNR 

when retained

Averge Number of IAN 

Filtering Iterations 

when retained

Average Time for IAN 

Filtering  when retained 

(sec)

Variance of Time 

for IAN Filtering

ARES 1D 3 100 7.6614 41.2 0.5879 0.0001

ARES 1F 1 100 28.0870 11.0 0.0795 0.0001

ARES 1F 2 100 14.9829 21.0 0.1508 0.0001

ARES 1F 3 100 12.6025 25.0 0.1793 0.0001

ARES 1F 4 100 12.3709 25.0 0.1780 0.0000

ARES 1F 5 100 11.8689 26.9 0.1918 0.0001

ARES 2D 1 100 27.2974 12.0 0.0627 0.0000

ARES 2D 2 100 29.9440 10.9 0.0561 0.0000

ARES 2D 3 100 30.3097 10.0 0.0524 0.0000

ARES 2D 4 100 21.6397 15.0 0.0789 0.0000

ARES 2D 5 100 23.5278 13.0 0.0678 0.0000

ARES 2D 6 100 16.7014 19.0 0.0984 0.0000

ARES 2D 7 100 18.3687 17.0 0.0886 0.0000

ARES 2D 8 100 13.5429 23.6 0.1224 0.0000

ARES 2D 9 100 14.9777 21.0 0.1086 0.0000

ARES 2D 10 98 7.3193 43.2 0.2220 0.0012

ARES 2F 1 100 13.3655 24.9 0.2894 0.0059

ARES 2F 2 100 10.9310 29.2 0.3423 0.0020

ARES 2F 3 100 10.9200 29.9 0.3456 0.0040

ARES 2F 4 100 11.1197 29.6 0.3457 0.0071

ARES 2F 5 100 10.7639 29.8 0.3467 0.0026

ARES 2F 6 99 9.3257 34.6 0.3975 0.0045

ARES 2F 7 1 9.2003 34.0 0.3845 0.0000

ARES 2F 8 25 9.3988 33.7 0.3999 0.0031

ARES 2F 9 1 6.9870 45.0 0.5093 0.0000

Image

Average 

Algorithm Run 

Time (sec) Variance

Average Total 

Contibution 

from IAN 

Filtering (sec) Variance

% Contribution due to 

IAN Filtration

ARES 1D 4.4347 0.3491 0.5879 0.0722 13.26%

ARES 1F 4.3765 0.2695 0.7795 0.0098 17.81%

ARES 2D 2.8725 0.0310 0.9534 0.0149 33.19%

ARES 2F 14.1303 3.1215 2.1722 0.8878 15.37%
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when original AutoGAD was employed.  For example, during the 100 AutoGAD test repetitions, 

11% of trials produced 7 target maps, 55% produced 13 target maps, 32% produced 14 target 

maps, and 2% produced 15 maps.  Yet when AutoGAD-SC was tested using the same image 

74% of the trials produced 6 target maps, while the other 26% produced 7 target maps.  In other 

words an average of 12.7 target maps were filtered when AutoGAD was used versus only 6.3 

maps when using AutoGAD-SC algorithm.  Thus the overall time spent on noise filtration of 

target maps is reduced by simply reducing the number of target maps.   

The second mechanism reducing the time required to filter noise from target maps was 

reduction of the number of iterations applied based on each maps SNR value. In the 100 

repetitions applying AutoGAD to ARES 1D (table 3-2), exactly 400 target maps were detected 

and filtered.  Of these maps 300 met the requirements to be treated with only 20 iterations of 

filtration, the remaining 100 were treated with 100 iterations.  This amounts to an average of 40 

filtration iterations for each identified target map.  Each of the 300 target maps receiving 20 

iterations of filtration required an average of 0.152 ± 0.016 seconds for filtration at the 95% 

confidence level, while the 100 maps receiving 100 iterations needed an average of 0.709 ±0.051 

seconds of filtration time.  As shown in Table 3-3 this amounted to a total of 1.1642 seconds of 

filtration time on average for ARES 2D. 

When AutoGAD-SC was applied to the same test using the same image, 500 target maps 

were found, one more per iteration.  It might be expected that by retaining 25% more maps the 

time required to perform IAN filtration would increase.  However the addition of a mechanism 

which tailors the amount of filtration specific to each map’s SNR value, the average number of 

iterations applied to a target map was reduced from 40 to 21.786, which drove a corresponding 

reduction in total time required to conduct IAN filtration from 1.1642 seconds to 0.7795 seconds.  
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In the case of ARES 1F, reducing the number of filtration iterations does not overcome the fact 

that one additional target map must be manipulated so the overall algorithm run time is not 

significantly changed.  However the contribution to total run time due to IAN filtration was 

reduced from 26.66% when using AutoGAD to 17.81% when using AutoGAD-SC. 

 

3.8. Target Pixel Detection 

Following IAN filtration target pixels are identified using the previously established threshold 

between signal and background IC scores.  Previous work required formation of a histogram 

from the filtered target map signals, followed by identification of a new signal-background 

threshold using the first zero bin technique.  Recall that the MDSL technique described in section 

3.4.2 identifies the actual “knee in the histogram” separating background pixels from outlier 

pixels.  Because the MDSL technique more closely approximates the true threshold between 

signal and noise, it was possible eliminate the steps measuring a new threshold on the reduced 

noise signals. 

 

3.9 AutoGAD-SC Process Overview 

Figure 3-45 compares the original AutoGAD algorithm to AutoGAD-SC.  Several 

significant changes in the original were made in a attempt to improve target pixel detection, 

reduce false positive pixel detection, and improve algorithm run time.  These modifications 

include: 

 

1.  Rapid dimensionality estimation/reduction by averaging highly correlated adjacent 

bands 

2. Application of Scott's Rule for optimum bin width estimation, eliminating user defined 

parameter 
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3. Application of MDSL technique to estimate the bound between outlier pixels (targets) 

and background pixels 

4. Addition of Kurtosis and Potential Target Fraction (PTF) to discriminate between 

target and non-target maps 

5. Using each target map PT SNR value to determine the number of iterations of IAN 

filtration to perform 

6. Addition of Left Partial Kurtosis (LPK) as a measure of the tail independent 

contribution to kurtosis and application of LPK to determine which maps are likely to 

contain target pixels in both tails of their signal histogram 

 

A complete listing of AutoGAD-SC, spectral correlation clustering, and FastICA code 

can be found in Appendix A. 
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Figure 3-46.  Process Comparison AutoGAD vs. AutoGAD-SC 
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2. Estimate transition between background and outliers 

based on first zero bin within each histogram

3. Calculate Max Signal Score and SNR for each remaining 
component

4. Retain those components which exceed both Max Signal 

Score and SNR thresholds

AutoGAD

Identify Target Locations

1. Perform IAN filtering based on SNR ratio

2. Determine if left hand tail is likely to contain targets 

based on left tail kurtosis

3. Use MDSL to estimate transition between background 

and outlier pixels in left tail of those components with 

sufficient LTK

4. Target pixels identified as outliers greater than the right 
tail threshold or less than the left tail threshold

Preprocessing

1. Reformat image cube into matrix

2. Remove absorption bands

Feature Extraction I

1. Average highly correlated spectral bands into clusters

2. Number of dimensions is equal to number of clusters

3. Normalize remaining dimensions to unit variance (whiten 

the data)

Feature Extraction

1. ICA:  Solve for abundance matrix to unmix image

Feature Selection

1. Apply Scott’s rule for optimal bin width and create 

signal histogram for each independent component

2. Use MDSL to estimate transition between background 

and outlier IC signals

3. Calculate Max IC Score, SNR, Kurtosis, and PTF for 
each remaining component

4. Retain those components which exceed Max IC Score, 
SNR, and Kurtosis thresholds, and which do not 

exceed PTF threshold

AutoGAD-SC



 

3-67 

 

3.10. Robust Parameter Design for New Algorithm 

Thus far in development of AutoGAD-SC parameter settings were established partially 

based off settings recommended by Johnson for AutoGAD, partially from experimentation 

conducted in Sections 3.5 and 3.6, and partially by trial and error.  These settings are listed in 

table 3-6 below. 

 

Table 3-6.  Original Parameter Settings Chosen for AutoGAD-SC 

Four parameter settings available for adjustment in AutoGAD-SC are not included in the 

list above as they were held to a single setting throughout development and testing.  The first two 

of these four parameters represent settings used internally by the FastICA algorithm, function 

and orthogonalization.  The function switch specifies which of two measures of non-gaussianity 

are applied within the objective function by the algorithm.  Tests conducted by Johnson 

[2008:139] indicated that of the two options, the pow3 setting produced the less variation in the 

results.  The orthogonalization switch establishes whether ICs will be located in parallel 

(symmetric) or one by one (deflationary).  The symmetric setting was held throughout 

development and testing of this algorithm based on tests conducted by Koo [2007:45].  The 

signal smoothing switch was set to “on”, based on Johnson’s demonstration that IAN filtration 

reduced the FPF.  Finally, the window size was held constant to the same setting employed by 

Johnson, 3 pixels, partially to provide consistency when AutoGAD-SC results are compared to 

AutoGAD, and partially to simplify testing by utilizing only continuous control variables. 

Parameter Name Setting

Required Correlation Threshold 0.985

Potential Target Fraction Threshold 3.50%

Maximum IC Score Threshold 13.5

Kurtosis Threshold 10

PT SNR Threshold 5.25

Left Partial Kurtosis Threshold 10

IAN Filtration Iterations Coefficient 50
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The main issue in establishing parameter settings for an algorithm such as AutoGAD-SC 

is that it must simultaneously maximize response, while minimizing variability when provided 

various images as inputs.  For this reason Taguchi’s Crossed Array Design using Signal-to-Noise 

Ratios as a measure of variance was utilized in an effort to isolate those parameters which 

maximize response, while simultaneously reducing variance. 

 

3.10.1. Taguchi’s Crossed Array Design 

The Taguchi approach to the RPD problem includes the use of an orthogonal 

experimental design in which the control variables (from Table 3-6) occupy an inner array, while 

the noise variables (the images included in the test) occupy the outer array [Myers, 2002:539].  

The experiment utilized consisted of a 3
7
 full factorial inner array and an outer array consisting 

of the same four sample images, ARES 1D, 1F, 2D, and 2F.  Table 3-7 lists the levels at which 

each control variable was tested. 

 

Table 3-7.  Experimental Design Factor Levels for 3
7
 Inner Array 

Three responses variables were measured at each of the 2187 possible parameter setting 

combinations for each of the four images, true positive fraction, false positive fraction, and 

algorithm run time.  Each of the recorded observations was then standardized to remove 

dimension issues when making comparisons between responses.  Marginal mean values were 

then calculated for each factor at each level by averaging all responses at that factor level. For 

Parameter Name Low Mid High

Required Correlation Threshold 0.981 0.985 0.989

Potential Target Fraction Threshold 2.50% 3.50% 4.50%

Maximum IC Score Threshold 12.5 13.5 14.5

Kurtosis Threshold 9 10 11

PT SNR Threshold 4.5 5.25 6.5

Left Partial Kurtosis Threshold 9 10 11

IAN Filtration Iterations Coefficient 40 50 60
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example the marginal mean value of TPF when the correlation threshold is set to 0.981 is found 

by averaging all TPF values produced at a correlation threshold setting of 0.981.  These response 

specific values were then plotted in an attempt to isolate the factors with the greatest influence 

over response.  Figures 3-47(a-c) show the marginal means plots for the three responses, when 

correlation threshold is isolated.  A complete set of marginal means curves can be found in 

Appendix B. 

 

Figure 3-47(a).  Marginal Mean Plot:  Standardized TPF vs. Correlation Threshold 

 

 

Figure 3-47(b).  Marginal Mean Plot:  Standardized FPF vs. Correlation Threshold 
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Figure 3-47(c).  Marginal Mean Plot:  Standardized Time vs. Correlation Threshold 

 

In Figure 3-47(a) higher values of standardized TPF indicate correlation threshold 

settings which identified more true positive pixels on average.  Likewise, in both Figures 3-37 

(b) and (c) low values of standardized FPF and time indicate settings which on average resulted 

in fewer false positives or ran in less time, respectively.  Correlation threshold then appears to 

bear some influence on all three responses and is a good candidate for control over response.  In 

addition, choice of setting for correlation threshold is relatively simplified by the fact that to 

achieve a better than average TPF either 0.985 or 0.989 must be set (Figure 3-47(a)), while in 

order to achieve less than average run time either 0.981 or 0.985 must be set (Figure 3-47(c)).  

So the only setting which produces both a high TPF response and low time response is a 

correlation threshold of 0.985. 

Taguchi suggests several summary statistics known as signal-to-noise ratios as 

mechanisms for accounting for both process mean and variance.  The measure of SNR used in 

this thesis is given by the equation. 
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where 

2

mean response for a specific parameter setting

variance of response for a specific parameter setting

y

s

≡≡≡≡

≡≡≡≡
 

By equation 3.13 an SNR value is produced for each possible combination of control variables, 

based on the mean response and standard deviation across the tested noise variables (in this 

experiment noise included the four images).  SNR provides a mechanism to gauge response 

against variation in the response.  Large responses with low variation produce higher SNR 

values; small response values with high variation produce low SNR values, thus high SNR 

values are generally desirable as they represent settings which produce low variation.  Marginal 

SNR values were then calculated by averaging the SNR response with a single control variable 

held constant at one of its tested levels, exactly as marginal mean values were calculated above.  

Plots of SNR versus the PTF factor level settings are shown in Figures 3-48(a-c).   

 

Figure 3-48(a).  Marginal SNR Plot:  SNR of TPF vs. Potential Target Fraction 
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Figure 3-48(b).  Marginal SNR Plot:  SNR of FPF vs. Potential Target Fraction 

 

Figure 3-48(c).  Marginal SNR Plot:  SNR of Time vs. Potential Target Fraction 

Figures 3-48(a) and (c) provide little indication that one PTF factor setting results in any 

less response variation than any other setting, but Figure 3-48(b) clearly demonstrates a higher 

SNR response when PTF is set to its low setting (0.025).   Given that PTF produces little impact 

on either TPF or Time response and has a positive effect on the FPF response (see Appendix A), 

a PTF setting of 0.025 is appropriate. 

With seven parameters and three response variables, a total of 21 marginal mean plots 

and 21 marginal SNR plots were produced.  Simultaneously optimizing three responses while 
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attempt to reduce the complexity, the three marginal mean responses and SNR values were 

combined into pair of values based on the formulas below:   

 tot TPF FPF Timey y y y= − −= − −= − −= − −  (0.43) 

 tot TPF FPF TimeSNR SNR SNR SNR= + += + += + += + +  (0.44) 

                where 

partial mean response taken at a single combination of 

       control settings across noise variables

 values specific to a single combination of

       control settings across noise variables

y

SNR SNR

≡≡≡≡

≡≡≡≡
 

This simple combination of responses was possible because all original response data was 

standardized as part of the analysis.  By combining the three sets of partial mean responses and 

the three sets of partial SNR responses into two groups, determination of the Taguchi derived 

parameter settings was greatly simplified.  Figures 3-49(a) through (g) show the marginal mean 

and marginal SNR responses.  In both sets of graphs below, higher values represent desirable 

results.  In the left column of graphs high marginal mean values indicate a combination of high 

TPF, with low FPF and low time required.  In the right column high marginal SNR values 

indicate low high response values coupled with low variation of the responses.  

    

Figure 3-49(a).  Summed Marginal Means (left) & Summed SNR (right)  

vs. Correlation Threshold 
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Figure 3-49(b).  Summed Marginal Means (left) & Summed SNR (right)  

vs. Potential Target Fraction Threshold 

  

Figure 3-49(c).  Summed Marginal Means (left) & Summed SNR (right)  

vs. Max IC Score Threshold 

  

Figure 3-49(d).  Summed Marginal Means (left) & Summed SNR (right)  

vs. Kurtosis Threshold 
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Figure 3-49(e).  Summed Marginal Means (left) & Summed SNR (right)  

vs. PT SNR Threshold 

  

Figure 3-49(f).  Summed Marginal Means (left) & Summed SNR (right)  

vs. Left Partial Kurtosis Threshold 

  

Figure 3-49(g).  Summed Marginal Means (left) & Summed SNR (right)  

vs. IAN Filtering Coefficient 

Inspection of Figure 3-37(a) through (g) yielded Taguchi style optimized parameter 

settings.  Table 3-8 lists the selected settings used for validation in Chapter 4. 
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Table 3-8.  Optimal AutoGAD-SC settings based on Taguchi Crossed Array Experiment 

The Taguchi crossed array design is generally accepted as one of the more easily 

implemented robust parameter design methods, but two valid criticisms of the technique exist.  

First, the crossed array design fails to account for interaction between factors when identifying 

optimal factor level settings.  While typically a first order model may suffice, the complexity of 

AutoGAD-SC with respect to its parameter-response interactions generated some concern as to 

whether or not a first order model would sufficiently describe the interaction between parameter 

settings and the actual responses.  The second criticism is that application of the Taguchi 

methodology can only produce optimal responses at tested factor level settings.  In other words, 

although correlation threshold was tested over the range 0.981 to 0.989, there is no provision for 

interpolation between the three tested factor levels (0.981, 0.985, and 0.989).  This limits the 

utility of the approach on input parameters of a continuous nature. 

 

3.10.2. Response/Variance Model Optimization 

As an alternative to the Taguchi crossed array results, the experimental data produced by 

the 3
7
 factorial design was used to generate predictive models for each of the three responses. 

The same data was also used to produce noise induced variation models of each of the three 

responses.  Once again four tested images were treated as uncontrollable noise factors.  As 

before the first step in analyzing the results of the experiment was standardization of the 

Parameter Name
Optimal for 

Response

Optimal for 

Variance
Selected Setting

Required Correlation Threshold 0.985 0.985 0.985

Potential Target Fraction Threshold 2.50% 2.50% 2.50%

Maximum IC Score Threshold 12.5 or 13.5 14.5 12.5

Kurtosis Threshold Any 11 11

PT SNR Threshold 6.0 4.5 or 6.0 6.0

Left Partial Kurtosis Threshold Any 9 or 11 11

IAN Filtration Iterations Coefficient 60 50 or 60 60
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response data.  By standardizing upfront, comparisons between responses could be made, as well 

as comparisons between algorithm response and variation in the responses.  The image averages 

and variances shown in Table 3-9 represent a selection of the 2187 response observations 

produced for each of the four tested images.  These values were produced by calculating the 

mean and variance of the response from the four tested images given a specific set of factor level 

settings. 

 

Table 3-9.  Selection of Input Factor Levels with Average Responses and  

Variance of Responses (for ARES 1D, 1F, 2D, and 2F) 

Analysis of Variance (ANOVA) was performed on the six sets of responses (three mean 

responses and three variance responses).  All regression models were produced in JMP using 

stepwise regression in both directions with entry and exit α values set to 0.25.  ANOVA tables 

for the six models are included in Appendix C.  Table 3-10 lists the number of terms included in 

each of the six models and the adjusted R
2
 values.  All six models are provided in equations 3.16 

through 3.22. 

 

Table 3-10.  Model Degrees of Freedom and Adjusted R
2
 

Correlation PTF
Max IC 

Score
Kurtosis PT SNR LTK

IAN 

Iteration 

Coeff

TPF FPF Time TPF FPF Time

0.981 0.025 12.5 9 4.5 9 40 -0.784 -0.347 -0.273 2.522 0.588 0.764

0.985 0.025 12.5 9 4.5 9 40 0.428 -0.060 -0.360 0.078 1.179 0.291

0.989 0.025 12.5 9 4.5 9 40 0.373 0.456 0.769 0.075 1.231 2.325

0.981 0.035 12.5 9 4.5 9 40 -0.409 0.024 -0.169 2.723 0.386 1.122

0.985 0.035 12.5 9 4.5 9 40 0.421 -0.157 -0.077 0.086 0.801 0.972

0.989 0.035 12.5 9 4.5 9 40 0.379 0.444 0.726 0.079 1.138 2.398

0.981 0.045 12.5 9 4.5 9 40 -0.412 0.857 -0.227 2.663 2.464 0.846

0.985 0.045 12.5 9 4.5 9 40 0.423 0.842 -0.089 0.082 3.232 0.963

0.989 0.045 12.5 9 4.5 9 40 0.379 0.513 0.721 0.079 1.001 2.357

Parameter Settings Image Averages Image Variances
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True Positive Fraction Response Model: 

(((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

C PTF Max PT SNR

Iter C PTF

C Max C PT SNR

TPF   133.0129  136.523 T  4.56 T  0.07184 T –  0.0191 T

      0.00181 T –  1704.989 T –  0.985  T –  0.035

      + 21.526 T –  0.985  T –  13.5  + 4.242 T –  0.985  T –  5.25

      + 0.4

= − + + −= − + + −= − + + −= − + + −

−−−−

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( ))))

(((( ))))

C Iter PTF Max

Max PT SNR Max Iter

PT SNR Iter

C PTF

173 T –  0.985  T –  50  –  3.098 T –  0.035  T –  13.5

      0.00584 T –  13.5  T –  5.25   0.000344 T –  13.5  T –  50

      + 0.000479 T –  5.25  T –  50

      + 1139.658 T –  0.985  T –  0.

− −− −− −− −

(((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( ))))

Max

C Max Iter

2 22

C PTF Max

2

Iter

035  T –  13.5

      + 0.1258 T –  0.985  T –  13.5  T –  50

      + 37372.56 T –  0.985 –  329.984 T –  0.035 –  0.068 T –  13.5

     + 0.0000625 T –  50

    (0.45) 
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Variance of True Positive Response Model: 

(((( ))))

(((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

c PTF Max K PT SNR

LPK Iter c PTF

c Max c PT SNR

Var TPF   313.996  317.891T  5.516T   0.056T   0.006T  0.003T

      0.0036T  0.00092T  2102.452 T  0.985  T –  0.035

      22.628 T  0.985  T –  13.5   0.211 T  0.985  T –  

= − + − − −= − + − − −= − + − − −= − + − − −

+ − − −+ − − −+ − − −+ − − −

+ − + −+ − + −+ − + −+ − + − (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

c Iter PTF Max

PTF K PTF PT SNR

PTF Iter Max K

5.25

      0.1244 T  0.985  T –  50  –  3.785 T –  0.035  T –  13.5

      0.681 T –  0.035  T –  13.5  1.132 T –  0.035  T –  5.25

      0.168 T –  0.035  T –  50  –  0.0118 T –  13.5  T –  10

      

+ −+ −+ −+ −

+ ++ ++ ++ +

++++

++++ (((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

Max PT SNR Max LPK

Max Iter K PT SNR

K LPK K Iter

0.00275 T –  13.5  T –  5.25  –  0.00125 T –  13.5  T –  10

      0.00047 T –  13.5  T –  50  –  0.00356 T –  10  T –  5.25

      0.00304 T –  10  T –  10   0.000644 T –  10  T –  50

      0.00064 T

−−−−

− −− −− −− −

−−−− (((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( ))))

K Iter PT SNR LPK

PT SNR Iter LPK Iter

c PTF Max

c PTF

–  10  T –  50  –  0.00458 T –  5.25  T –  10

      0.00391 T –  5.25  T –  50   0.00016 T –  10  T –  50

      1421.439 T  0.985  T –  0.035  T –  13.5

      651.492 T  0.985  T –  0.035  T

− +− +− +− +

+ −+ −+ −+ −

− −− −− −− − (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

PT SNR

c PTF Iter

c Max Iter

c PT SNR Iter

PTF Max K

–  5.25

      61.866 T  0.985  T –  0.035  T –  50

      0.1969 T  0.985  T –  13.5  T –  50

      1.3667 T  0.985  T –  5.25  T –  50

      0.7870 T –  0.035  T –  13.5  T –  10

      0.

− −− −− −− −

+ −+ −+ −+ −

+ −+ −+ −+ −

++++

−−−− (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( ))))

PTF PT SNR Iter

Max K LPK

Max PT SNR Iter

Max LPK Iter

K PT SN

2179 T –  0.035  T –  5.25  T –  50

      0.0165 T –  13.5  T –  10  T –  10

      0.0017 T –  13.5  T –  5.25  T –  50

      0.00125 T –  13.5  T –  10  T –  50

      0.01718 T –  10  T

−−−−

−−−−

++++

−−−− (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( ))))

R LPK

K PT SNR Iter

PT SNR LPK Iter

c PTF PT SNR Iter

2

c

–  5.25  T –  10

      0.00128 T –  10  T –  5.25  T –  50

      0.00137 T –  5.25  T –  10  T –  50

      85.4536 T  0.985  T –  0.035  T –  5.25  T –  50

      74495 T  0.985 –  576.55 

++++

++++

+ −+ −+ −+ −

+ −+ −+ −+ − (((( )))) (((( ))))

(((( )))) (((( ))))

22

PTF Max

2 2

PT SNR Iter

T –  0.035 –  0.0405 T –  13.5

      0.0237 T –  5.25 –  0.00021 T –  50−−−−

(0.46)
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False Positive Fraction Response Model: 

(((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

C PTF Max PT SNR

LPK Iter C PTF

C Max C PT SNR

FPF   29.784  30.175 T  34.998 T –  0.0114 T –  0.115 T

       0.0112 T –  0.0999 T –  4406.581 T –  0.985  T –  0.035

       1.634 T –  0.985  T –  13.5   3.19 T –  0.985  T –  5.25

   

= − + += − + += − + += − + +

−−−−

− −− −− −− −

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

C LPK PTF PT SNR

PTF Iter Max PT SNR

2

PT SNR Iter C

    3.572 T –  0.985  T –  10  –  1.158 T –  0.035  T –  5.25

       0.122 T –  0.035  T –  50   0.0174 T –  13.5  T –  5.25

       0.0022 T –  5.25  T –  50   7008.688 T –  0.985

       

−−−−

− +− +− +− +

+ ++ ++ ++ +

++++ (((( )))) (((( ))))

(((( ))))

22

PTF PT SNR

2

Iter

1667.65 T –  0.035  0.0272 T –  5.25

       0.000147 T –  50

++++

++++

      (0.47) 

 

Variance of True Positive Response Model:  

(((( ))))

(((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

C PTF Max PT SNR

Iter C PTF

C Max C PT SNR

Var FPF   31.0116 –  32.965 T  94.502 T  0.00836 T –  0.1012 T

      0.0105 T –  12503.47 T –  0.985   T –  0.035

      4.585 T –  0.985  T –  13.5  –  13.27 T –  0.985  T –  5.25

      0.993

= + += + += + += + +

−−−−

−−−−

−−−− (((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

C Iter PTF Max

PTF PT SNR PTF Iter

Max Iter PT SNR Iter

 T –  0.985  T –  50   2.547 T –  0.035  T –  13.5

      7.305 T –  0.035  T –  5.25   0.556 T –  0.035  T –  50

      0.0018 T –  13.5  T –  50   0.0077 T –  5.25  T –  50

      2091.68

++++

+ ++ ++ ++ +

− +− +− +− +

−−−− (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( ))))

(((( ))))

C PTF PT SNR

C PTF Iter

2 2

C PTF

2

Iter

7 T –  0.985  T –  0.035  T –  5.25

      196.296 T –  0.985  T –  0.035  T –  50

      27315.97 T –  0.985  7234.12 T –  0.035

      0.000435 T –  50

−−−−

− +− +− +− +

++++

    (0.48) 
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Time Response Model: 

(((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( ))))

C PTF PT SNR LPK

Iter C PT SNR

C LPK C Iter

PTF

Time   98.422  99.329 T  0.695 T  0.0161 T  0.0062 T

      0.0026 T –  2.297 T –  0.985  T –  5.25

      2.37 T –  0.985  T –  10   0.290 T –  0.985  T –  50

      0.964 T –  0.035

= − + + + += − + + + += − + + + += − + + + +

++++

+ ++ ++ ++ +

++++ (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( ))))

PT SNR PTF PT SNR

PT SNR LPK PT SNR Iter

C PT SNR Iter

PTF PT SNR

 T –  5.25  –  0.394 T –  0.035  T –  5.25

      0.0066 T –  5.25  T –  10  –  0.00099 T –  5.25  T –  50

      0.60 T –  0.985  T –  5.25  T –  50

      2.269 T –  0.035  T –  5.2

++++

−−−−

++++ (((( )))) (((( ))))

(((( ))))

LPK

2

C

5  T –  10

      26279.7 T –  0.985++++

  (0.49) 

 

Variance of Time Response Model:  

 

(((( ))))

(((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

C PTF Max PT SNR

LPK Iter C Max

C PT SNR C LPK

Var Time    152.814  154.937 T –  1.533 T  0.022 T  0.139 T

      0.0116 T  0.0036 T  1.846 T –  0.985  T –  13.5

      8.005 T –  0.985  T –  5.25   3.882 T –  0.985  T –  10

     

= − + + += − + + += − + + += − + + +

+ + ++ + ++ + ++ + +

− +− +− +− +

++++ (((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))

C Iter PTF PT SNR

PTF LPK Max PT SNR

Max Iter PT SNR LPK

 0.444 T –  0.985  T –  50   0.548 T –  0.035  T –  5.25

      0.725 T –  0.035  T –  10   0.027 T –  13.5  T –  5.25

      0.002 T –  13.5  T –  50   0.005 T –  5.25  T –  10

      0.0

++++

− +− +− +− +

+ ++ ++ ++ +

−−−− (((( )))) (((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

PT SNR Iter LPK Iter

C Max PT SNR

C Max Iter

C PT SNR Iter

011 T –  5.25  T –  50   0.002 T –  10  T –  50

      9.963 T –  0.985  T –  13.5  T –  5.25

      0.482 T –  0.985  T –  13.5  T –  50

      1.132 T –  0.985  T –  5.25  T –  50

      4.2

++++

++++

++++

−−−−

++++ (((( )))) (((( )))) (((( ))))

(((( ))))

PTF PT SNR LPK

2

C

37 T –  0.035  T –  5.25  T –  10

      62684.7 T –  0.985++++

(0.50) 

where 

 

C

PTF

Max

PT SNR

K

LPK

Iter

T Correlation Threshold

T Potential Target Fraction Threshold

T Max IC Score Threshold

T PT SNR Threshold

T Kurtosis Threshold

T Left Partial Kurtosis Threshold

T IAN Filtration Iterati

≡≡≡≡

≡≡≡≡

≡≡≡≡

≡≡≡≡

≡≡≡≡

≡≡≡≡

≡≡≡≡ ons Coefficient
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 A single objective function representing the combined standardized values of the three 

responses and their variances was produced by the following equation: 

 

C C

PTF PTF

Max Max

PT SNR PT SNR

K K

LPK LPK

Iter

max TPF Var(TPF) FPF Var(FPF) Time Var(Time)

         s.t.

T 0.981 and T 0.989

T 0.025 and T 0.045

T 12.5 and T 14.5

T 4.5 and T 6.0                 

T 9 and T 11

T 9 and T 11

T 40 a

z = − − − − −= − − − − −= − − − − −= − − − − −

≥ ≤≥ ≤≥ ≤≥ ≤

≥ ≤≥ ≤≥ ≤≥ ≤

≥ ≤≥ ≤≥ ≤≥ ≤

≥ ≤≥ ≤≥ ≤≥ ≤

≥ ≤≥ ≤≥ ≤≥ ≤

≥ ≤≥ ≤≥ ≤≥ ≤

≥≥≥≥ Iternd T 60≤≤≤≤  

(0.51)

 

 

Because there is no objective way to determine the relative importance of the three responses and 

their variances, no coefficients were included in formation of the function.  However, 

coefficients could be assigned based on a user’s preference.  Premium Solver in Microsoft Excel 

was then utilized to maximize the objective function.  Table 3-11 provides the resulting 

optimized parameter settings along with the author’s original settings and the settings derived 

from Taguchi’s crossed array design.  These three sets of parameters were then applied to 

AutoGAD-SC during performance tests of the new algorithm against AutoGAD using Johnson’s 

recommended settings. 

 

Table 3-11.  AutoGAD-SC Parameter Settings for Validation Testing 

 

Parameter Name Original Settings
Crossed Array 

Settings

Response/Variance 

Optimization Settings

Required Correlation Threshold 0.985 0.985 0.98514236

Potential Target Fraction Threshold 3.50% 2.50% 2.69%

Maximum IC Score Threshold 13.5 12.5 12.5

Kurtosis Threshold 10 11 9

PT SNR Threshold 5.25 6 6

Left Partial Kurtosis Threshold 10 11 11

IAN Filtration Iterations Coefficient 50 60 60
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Before reporting the results of the performance tests of AutoGAD-SC it is instructive to 

note the similarities and the differences between the parameter settings provided by the two RPD 

techniques.  Both the crossed array and the Response/Variance optimization approaches arrived 

at a correlation threshold identical to the one identified by the author as a good original setting.  

Crossed array could only produce the centerpoint (0.985), while the Response/Variance 

optimization technique provided a setting of 0.98514.  The two techniques chose parameter 

settings which differed from the author’s initial parameter settings for all six remaining 

parameters.  The two techniques indicated the same (or similar) parameter settings for five of the 

six remaining parameters and selected opposite extremes of tested parameter settings as their 

recommended settings for only kurtosis threshold.  This appears partially due to the fact that 

kurtosis threshold appears t o have limited affect on the responses in light of its relatively flat 

marginal means slope.  Recall that the Taguchi method accounts only for first order effects, but 

upon review kurtosis threshold appears several times as an interaction effect in the variance 

model for TPF, the only model in which TK appears.   For this reason the crossed array design 

likely mildly understated the impact of setting TK to its low level.
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IV. Results and Analysis 

4.1 Comparison of AutoGAD to AutoGAD-SC Dimensionality Estimation 

Dimensionality assessment is one of the key determiners of speed and accuracy for 

hyperspectral blind signal separation.  With this in mind a series of four tests were performed 

comparing the number of dimensions for each of the eight ARES images as estimated by 

AutoGAD to the number of dimensions as estimated by dynamic spectral clustering.  All 

AutoGAD parameters employed during testing were as recommended by Johnson during his 

work [2007] (table 4-1). 

 

Table 4-1.  AutoGAD Parameter Settings for Validation Testing 

Testing was conducted on a Dell Precision 490 PC equipped with dual Xeon® 2.99 GHz 

processors and 3.00 GB of RAM and running Microsoft Windows XP Pro.  Code execution was 

accomplished in MATLAB R2007a, with all applications other than the computers operating 

system and ordinary network activity discontinued for the duration of the test.  Testing consisted 

of 100 timed repetitions of HSI processing and target detection for all eight test images.  Four 

responses were recorded following each repetition; number of dimensions, TPF, FPF, and run 

time. 

Table 4-2 compares the dimensionality assessments produced by AutoGAD-SC to those 

made by AutoGAD.  Recall that AutoGAD employs PCA followed by Johnson’s MDSL to make 

Parameter Name Setting

Dimension Adjust 0

Maximum IC Score Threshold 10.0

Bin Width SNR 0.05

PT SNR Threshold 2.0

Bin Width Ident 0.05

Threshold Both Sides 0

Smooth Iterations High 100

Smooth Iterations Low 20

Low SNR 10
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a dimensionality estimate, while AutoGAD-SC relies on the number of spectral clusters found to 

be present in the original data cube.  Although the difference in the number of dimensions 

estimated by the two techniques is small, AutoGAD-SC tends to identify fewer endmembers than 

the original AutoGAD algorithm.  Recognizing that the number of dimensions drives the run 

time of most computationally expensive portion of the algorithm, ICA, it is expected that 

AutoGAD-SC will tend to run somewhat faster than AutoGAD. 

 

Table 4-2.  Number of Dimensions (Endmembers) Estimated by  

AutoGAD and AutoGAD-SC 

 

4.2 Comparison of Detection Results 

Prior to reporting test results, Figures 4-1through 4-8 display a comparisons showing 

AutoGAD-SC performance alongside the performance of AutoGAD.  Recognize that each of 

these results was based on a single instantiation of the algorithm processing a sample image, and 

that no assessment of how variant either algorithm’s performance was can be made from the 

results below.  The comparisons below are made between AutoGAD (left) and AutoGAD-SC 

using the author’s original parameter settings (right).  Between each target pixel detection image, 

a true color image is depicted for reference. 

Image AutoGAD AutoGAD-SC
ARES 1C 8 10

ARES 1D 8 9

ARES 1F 15 15

ARES 2C 11 10

ARES 2D 13 11

ARES 2F 18 9

ARES 3F 13 9

ARES 4F 14 8
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Figure 4-1(a).  ARES 1C:  AutoGAD (left) vs. AutoGAD-SC (right)  

 

 

Figure 4-1(b).  ARES 1D:  AutoGAD (left) vs. AutoGAD-SC (right)  
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Figure 4-1(c).  ARES 1F:  AutoGAD (left) vs. AutoGAD-SC (right)  

 

 

Figure 4-1(d).  ARES 2C:  AutoGAD (left) vs. AutoGAD-SC (right)  
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Figure 4-1(e).  ARES 2D:  AutoGAD (left) vs. AutoGAD-SC (right) 

 

Figure 4-1(f).  ARES 2F:  AutoGAD (left) vs. AutoGAD-SC (right) 
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Figure 4-1(g).  ARES 3F:  AutoGAD (left) vs. AutoGAD-SC (right) 

 

Figure 4-1(h).  ARES 4F:  AutoGAD (left) vs. AutoGAD-SC (right) 

Although the above figures represent only one observation of a stochastic process, some 

trends can be noted from the results.  First, AutoGAD tended to produce a somewhat higher FPF 

than did AutoGAD-SC.  In fact, AutoGAD falsely identified one of the two non-target images 

(ARES 2C) as target containing, while AutoGAD-SC did not.  The reduction in false positives 
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by AutoGAD-SC is accompanied by a reduction in TPF on several of the images.  In particular 

AutoGAD-SC detected between 15 and 30% fewer target pixels than AutoGAD on ARES 2F, 

3F, and 4F.  Finally, run time for AutoGAD-SC is slightly faster on five of the eight images; 

however as we shall see in the next section the tested run time of 10.471 seconds produced by 

AutoGAD processing ARES 2F was substantially faster than typical. 

Table 4-3(a) lists the overall average responses for all eight images from all 100 

repetitions, while Table 4-3(b) provides the associated variance measurements for the eight 

images.  Figures 4-2 through 4-4 divide each of these eight averages into a graphical comparison 

of performance by tested image.  Note that on average AutoGAD produced a slightly higher TPF 

and FPF, required approximately 40% more time for algorithm completion, but tended to 

produce somewhat less variant TPF responses (over the eight images) than did AutoGAD-SC. 

 

Table 4-3(a).  Average TPF, FPF, and Time from 8 tested images (100 iterations each) 

 

Table 4-3(b).  Variance of TPF, FPF, and Time from 8 tested images (100 iterations each) 

  

Algorithm Applied Parameters TPF FPF Time
AutoGAD-SC Author Selected 0.88089 0.00149 4.556

AutoGAD-SC Crossed Array 0.85769 0.00072 4.649

AutoGAD-SC Response/Variance Optimization 0.85879 0.00090 4.752

AutoGAD Recommended 0.92088 0.00203 7.879

Algorithm Applied Parameters Var(TPF) Var(FPF) Var(Time)
AutoGAD-SC Author Selected 0.00030 9.425E-07 1.546

AutoGAD-SC Crossed Array 0.00083 4.182E-07 1.358

AutoGAD-SC Response/Variance Optimization 0.00019 1.118E-06 1.045

AutoGAD Recommended 0.00001 4.401E-07 9.392
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Figure 4-2 compares the results of testing AutoGAD for 100 iterations on each of the 

eight sample images to the three tests of AutoGAD-SC using the parameter settings derived in 

Section 3.10.  All graphs include error bars representing the 95% confidence interval about the 

mean response.  The graph indicates that AutoGAD-SC performed as well or better than 

AutoGAD for 5 of the eight tested images (ARES 1C, 1D, 1F, 2C, and 2D).  However 

AutoGAD-SC performance in terms of TPF was between 15 and 20% lower for the three 

remaining images.  Overall TPF performance was best for the original author developed 

parameter settings, based on a consistent 17% higher TPF when applied to ARES 3F. 

 

Figure 4-2.  Mean TPF for AutoGAD-SC and AutoGAD 

with α = 0.05 Confidence Intervals  

Figure 4-3 provides a similar comparison between AutoGAD and AutoGAD-SC FPF 

results.  The chart indicates that AutoGAD typically detects more false positive pixels.  On only 

one of the eight tested images does AutoGAD-SC incorrectly identify more pixels as targets than 

does AutoGAD, ARES 2F.  In fact, this particular image is the only image in which greater than 
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0.098%, whereas the average FPF produced by AutoGAD for the same seven images was 

0.203%.  Of the three tested parameter settings the crossed array produced the lowest overall 

FPF values, however Response/Variance Optimization yielded only slightly higher average FPF 

values.  The key result demonstrated in Figure 4-3 is the fact that AutoGAD consistently detects 

false positive pixels in ARES 2C, an image containing no targets, while AutoGAD-SC does not 

detect false positives regardless of which parameter settings were tested.  Elimination of false 

positive detections is a key issue for any target detection so the fact that AutoGAD-SC correctly 

identifies both non-target images whereas AutoGAD consistently misidentified targets in one of 

the two images is significant.  

 

Figure 4-3.  Mean FPF for AutoGAD-SC and AutoGAD 

with α = 0.05 Confidence Intervals  

AutoGAD-SC demonstrates faster algorithm run times primarily because it processes 

ARES 2F in less than 15 seconds on average, regardless of parameter setting selection, whereas 

AutoGAD required an average of 34.78 seconds to process the same image (Figure 4-4).  Recall 
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from Table 4-1 that AutoGAD estimated ARES 2F contained 18 dimensions, while AutoGAD-

SC estimated the image contained only 9 dimensions.  This dramatic reduction in dimensionality 

produced a 17% reduction in TPF, but generated a better than 50% decrease in algorithm run 

time.  The question arises whether or not the higher TPF, lower FPF, and higher processing time 

for AutoGAD when processing ARES 2F are all factors related to the higher estimated 

dimensionality produced by AutoGAD.  Figures 4-5(a) and (b) provide depictions of how 

AutoGAD separated the original ARES 2F signal into 18 components and how AutoGAD-SC 

separated the same image into only 9 components. 

 

Figure 4-4.  Mean Run Time for AutoGAD-SC and AutoGAD 

with α = 0.05 Confidence Intervals 

Inspection of Figure 4-5 reveals that unlike ARES 1F (shown in Figure 2-15) AutoGAD 

does not overestimate the true dimensionality of ARES 2F.  This is clear based on the presence 

of only one map consisting of primarily noise, map 9.  All other bands isolate either some subset 

of the panels present in the image, the tree feature to the left of the image, the road feature to the 
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right, or the disturbed soil at the bottom.  This indicates that the image actually contains at least 

17 endmember spectra and that AutoGAD-SC underestimates the true dimensionality of the 

hyperspectral image somewhat (Figure 4-6). 

 

Figure 4-5.  AutoGAD treatment of ARES 2F:  18 Independent Components 
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Figure 4-6.  AutoGAD-SC treatment of ARES 2F:  9 Independent Components 

Since the total variance in the responses was too small to effectively conduct 

comparisons while reviewing comparisons of the mean responses, Figures 4-7 through 4-9 are 

provided below.  Figure 4-7 (a) and (b) display the variation in TPF responses for each of the 

eight images.  In 4-7(a) AutoGAD clearly outperforms AutoGAD-SC in terms of variance when 

applied to ARES 2F.  Of the three tested parameter settings the Response/Variance Optimization 

technique produced the lowest variance when applied to ARES 2F. 
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Figure 4-7(a).  Variance of TPF for AutoGAD-SC and AutoGAD 

 

Closer inspection of the TPF variance results, shown in Figure 4-7(b), reveals that for the 

remaining seven images AutoGAD continues demonstrate less variance than does AutoGAD-SC.  

In fact when the variance of TPF is averaged across all eight images as shown above in Table 4-

3(b), AutoGAD demonstrates a full order of magnitude less TPF variation than AutoGAD-SC 

with any of the tested parameters.  It is important to note however that this even the maximum 

variance recorded (0.0064 TPF
2
 for ARES 2F processed by AutoGAD-SC with the crossed array 

parameters), represents a variance of only 0.84% of the TPF response using the same parameters.  

On average AutoGAD-SC variance using the author selected original parameters, crossed array 

parameters, and Response/Variance Optimization parameters represented only a 0.03%, a 0.09%, 

and a 0.02% variance from the average response respectively. 
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Figure 4-7(b).  Variance of TPF for AutoGAD-SC and AutoGAD (scaled for detail) 

Figure 4-8 presents the FPF variance resulting from tests on the eight images.  Again 

ARES 2F tends to result in more variation when processed by AutoGAD-SC.  This may be a 

byproduct of underestimating the number of dimensions contained in the image, however as with 

TPF, the variance in false positive pixels detected by AutoGAD-SC represents an exceptionally 

small fraction of the actual response values (0.0063%, 0.0058%, and 0.1% of the FPF for the 

author selected original parameters, crossed array parameters, and Response/Variance 

Optimization parameters respectively).  When AutoGAD-SC was applied to any image other 

than ARES 2F, using any of the three test parameter settings, no variance was produced in FPF 

response.  AutoGAD produced relatively low variance across all eight images, with a maximum 

variance of 1.19×10
-6

 for ARES 2C and an overall average of 4.4×10
-7

. 
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Figure 4-8.  Variance of FPF for AutoGAD-SC and AutoGAD 

Figure 4-9(a) shows that all four algorithm/parameter combinations performed with 

relatively low variation in run time.  AutoGAD resulted in the highest variation when applied to 

ARES 1F, with roughly 9 of every 10 iterations requiring about 40 seconds to complete, while 1 

in 10 required only 10 seconds for completion.  This produced a time variance of 69.4 seconds
2
, 

however Figure 4-9(b) indicates that for five of the seven remaining images AutoGAD produced 

the same or less run time variation than did AutoGAD-SC.  Of the three sets of parameters 

applied to AutoGAD-SC those developed by Response/Variance model optimization consistently 

produced the least variation. 
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Figure 4-9(a).  Variance of Run Time for AutoGAD-SC and AutoGAD 

 

 

Figure 4-9(b).  Variance of Run Time for AutoGAD-SC and AutoGAD (scaled for detail) 
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V. Conclusions and Recommendations 

5.1. Assessment of AutoGAD-SC Performance 

When taken as a whole AutoGAD-SC demonstrated relatively impressive performance 

improvements, even when compared to Johnson’s original AutoGAD algorithm.  Table 5-1 

presents the percentage change in performance from AutoGAD based on the results of the testing 

performed in Section IV.  Of the three tested parameter settings the original settings chosen by 

the author resulted in the least decrease in TPF, while providing substantial decreases in both 

false pixel detection and algorithm run time. 

AutoGAD demonstrated an ability to autonomously detect targets in hyperspectral 

imagery using only the information present in the image itself and the characteristics of 

hyperspectral imagery.  This thesis confirmed AutoGAD was capable of detecting roughly 90% 

of all target pixels, with less than 0.3% false positive pixels detected in an average of 7.88 

seconds on a collection of eight real world hyperspectral images.  AutoGAD-SC provides a 

means to trade a slight decrease in true positive pixel detection for a dramatic reduction in false 

positives while reducing processing time by as much as 42%. 

 

Table 5-1.  AutoGAD-SC change in performance from baseline of AutoGAD 

 

5.2. Limitations 

Just as in development of AutoGAD, this thesis was produced based on a data set 

including only eight hyperspectral images, all taken in rural areas, where target classes consisted 

primarily of vehicles or panels laid out in open areas, and non-target classes consisted of grass, 

Applied Parameters TPF FPF Time

Author Selected -4.34% -26.80% -42.18%

Crossed Array -6.86% -64.44% -41.00%

Response/Variance Optimization -6.74% -55.44% -39.69%
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brush, roads, dirt, rocks, and roads.  All images were products of the HYDICE sensor, included 

210 bands, of which 156 were retained for processing.  Parameters such as Max IC score, PT 

SNR, kurtosis, and potential target fraction are all tuned for this particular sensor environment 

combination and would likely require recalibration given a different sensor or environment.  

Until AutoGAD-SC is tested for robust behavior in a variety of environments, its ability to 

consistently detect target pixels in any environment is uncertain. 

A certain amount of caution is advisable in using target detection algorithms designed to 

identify statistical outliers as targets.  AutoGAD-SC, like other anomaly detectors seeks pixels 

which stand out as different from all other pixels in the image scene.  In the six target containing 

images examined in this research, all contained very specific man-made targets which stood out 

relatively clearly from the background.  However, if a scene contained primarily clay buildings a 

few of which were covered with red tin roofs, AutoGAD-SC would be likely to identify the red 

tin as targets, regardless of the operators desired target set.  The key here is that anomaly 

detectors require some end user interface or spectral matching algorithm to confirm that the 

anomalies detected are in fact true targets. 

 

5.3. Contributions to the Field of HSI Target Detection 

This research made the following contributions that were not found during a review of 

the current literature in the field: 

1. A new heuristic for dynamically clustering spectral bands of a hyperspectral data cube 

by exploiting intra-band correlation was introduced.  The author demonstrated through 

testing that this algorithm could simultaneously produce averaged spectra of clustered 

bands and assesses image dimensionality more rapidly than PCA. 

2. A new technique for locating the breakpoint between background and likely target 

pixels was introduced.  An adaptation of Johnson’s MDSL technique for finding the “knee 
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in the curve” replaced the zero bin method of identifying the threshold between 

background and outlier in signal histograms. 

3. Potential Target Fraction was introduced as a new mechanism for discrimination 

between target and non-target maps following ICA.  This value enables the user to have an 

input regarding how densely targets are expected to be contained within the scene. 

4. A new statistical parameter, Left and Right Partial Kurtosis, was introduced.  This 

parameter estimates the overall contribution to kurtosis provided by each tail of a sample 

distribution provides by splitting the distribution into two halves at the mean and then 

measuring the kurtosis of the two half distributions independently. 

5. True positives were increased and false positives reduced through the addition of a 

dynamic algorithm switch using the author defined Left Partial Kurtosis.  This switch 

allows two sided thresholding for targets to be accomplished only on signals where target 

pixels are likely to be found in both tails of the signal histogram. 

6. A variable control over how many iterations of Adaptive Iterative Noise Filtering was 

introduced which maintained true positives and reduced false positives, while decreasing  

processing time.  A single user defined parameter replaced three parameters.  This 

coefficient controls the number of iterations applied to each target map based on a function 

of the map’s SNR value.  In this way maps with high SNR values receive progressively 

less filtration than those with low SNR values. 

 

5.4. Future Research 

It is likely that anomaly detection algorithms could be improved by examining the spatial 

and spectral relationships between identified target pixels.  For example pixels detected as 

vehicle sized and shaped areas in the image which are comprised entirely of similar spectral 

signatures are likely to be vehicle type targets.  Manmade targets are frequently aligned in lines 

or regular groupings, indicating alignment with a road or assembly into some type of formation.  

Irregularly shaped, or excessively large/small groupings of target pixels may indicate false 

positive detections resulting from anomalies other than manmade objects.  AutoGAD and 

AutoGAD-SC would both benefit from an algorithm which could examine and identify 

groupings of pixels identified as targets and then further classify each group into likely or 
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unlikely categories based on characteristics of the size and shape of the group of pixels or on 

variation of the spectral signatures contained within.  

This research initially made an attempt to adhere to the non-negativity and sum-to-one 

constraints found in the LMM used to describe pixel reflectances within an image.  

Unfortunately NMF proved to be unsuitable as a process for unmixing hyperspectral data when 

algorithm run time is considered an important response.  There is at least one other recently 

produced statistical process which appears to abide by both constraints.  A technique known as 

Dependent Components Analysis (DCA) recently developed by José Nascimento [2006] has 

been applied to hyperspectral imagery for purposes other than anomaly detection and adheres to 

both constraints present in the LMM.  Adaptation of this algorithm for the purposes of anomaly 

detection would provide a challenging an interesting extension to this work. 

 

5.4. Conclusion 

The addition of hyperspectral imagery to the Air Force’s arsenal of ISR capabilities 

provides a means of resolving one of the major problems facing the Department of Defense 

today, that of how to efficiently manage the information produced by rapidly increasing sensor 

capabilities.  Secretary of Defense Robert M. Gates pointed out the urgency of responding to the 

demands for improved ISR processes in a statement made on 23 October 2008, [Miles:2008]. 

The fusion of intelligence and operations has created “an insatiable appetite” for 

the information these systems provide and proof of the need to institutionalize 

intelligence operations. 

Secretary Robert M. Gates 
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The merger of hyperspectral imagery with automated target detection techniques like AutoGAD 

and AutoGAD-SC provides one means, not only to “institutionalize intelligence operations” but 

to automate several steps in the process of target detection and identification.   

The vast majority of images captured by ISR sensors searching for targets, contain 

nothing of interest, yet transmission of the non-target image for analysis requires valuable 

bandwidth and recognition of the image as non-target requires intervention by a human analyst.  

AutoGAD-SC relieves the burden of screening non-target images from target containing images 

from the analyst, simultaneously accelerating the target detection and identification processes.  

Furthermore AutoGAD-SC as an algorithm is fast and portable enough for the screening of 

hyperspectral imagery to be accomplished onboard the sensor platform, thereby eliminating the 

need to transmit each and every captured image over across bandwidth better utilized for actual 

target images. 

The addition of a spectral matching algorithm would further accelerate the target 

detection process by providing a mechanism for reliably identifying targets based on the material 

properties of target pixels.  Such an approach might not replace the expertise provided by a 

trained imagery analyst, but could certainly aid in the process of identification as well as increase 

the confidence in that identification.  Ultimately the fusion of hyperspectral imagery with 

automated target detection algorithms such as AutoGAD-SC presents an opportunity to provide 

more timely, reliable intelligence to a force with an insatiable appetite for information. 

 

 



 

A-1 

 

Appendix A – MATLAB Code

A.1. AutoGAD-SC Code 

 
%********************************************************************% 

%Band Correlation Clustered AutoGAD-SC                               % 

%                                                                    % 

%                                                                    % 

%Hyperspectral Autonomous Global Anomaly Detector (AutoGAD)          % 

%Using FastICA                                                       % 

%                                                                    % 

%Author: Maj. Michael Miller                                         % 

%Modified from AutoGAD v1.0 By Capt Robert Joseph Johnson            % 

%Feb 2009                                                            % 

%********************************************************************% 

  

%**********************************************************************% 

% This program takes advantage of intra-band correlation to rapidly    % 

% reduce the dimensionality of the image.  By doing so PCA is avoided  % 

% and time is saved.  A side result of this is somewhat greater loss   % 

% of information contained in the principal components, which can lead % 

% to a reduction in the number of targets detected.  In particular     % 

% small targets tend to be more difficult to detect with this method.  % 

%**********************************************************************% 

  

%**********************************************************************% 

% Modifications made to AutoGAD:                                       % 

% 1) Dimensionality reduction by clustering highly correlated bands    % 

% 2) Elimination of PCA                                                % 

% 3) Histogram bin width estimation by Scott's Rule                    % 

% 4) Inclusion of Kurtosis and target fraction as criteria for         % 

%       Target map selection.                                          % 

% 5) Noise floor Maximum Distance Secant Line "knee in the curve"      % 

%     (replaced first zero bin)                                        % 

%**********************************************************************% 

  

clear all; 

close all; 

clc; 

  

%Tactical Decisions By User------------------------------------------------ 

functn=2;%objective function in ICA to use.  Options [1=tanh, 2=pow3] 

orthogonalization=1;%find ICs in parallel (symm) or one by one (delf). 

%Options [symm=1, defl=2] 

req_corr=0.985;%Threshold correlation required for bands to be clustered together 

target_fraction_thresh = 0.035; %The maximum fraction of the image expected  

%to contain target pixels. 

max_score_thresh=13.5;%threshold above which decision is made to declare target 

Kurtosis_thresh=10;%threshold above which decision is made to declare target 

PT_SNR_thresh=5.25;%threshold above which decision is made to declare target 

threshold_both_sides=1;%1=identify outliers on both sides of IC signal, 

%0=identify ouliers on side with highest magnitude scores only 

Left_Kurt_Thresh=10;%If left side kurtosis is less than threshold program will 

%not perform thresholding on both sides for that map 

clean_sig=1;%0 = no signal smoothing, 1 = signal smoothing prior to target 

%identification 

iteration_coeff = 50;%Coefficient for the number of smoothing iterations based 

% on PT_SNR 

window_size=3;%image window size for smoothing 

show_plots=1;%1=yes, 2=no 

show_histogram=2;%1=yes, 2=no 
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show_spectra=2;%1=yes, 2=no (shows spectra of target pixels vs non-tgt pixels) 

%-------------------------------------------------------------------------- 

  

switch num2str(functn) 

    case '1' 

        funct='tanh'; 

    case '2' 

        funct='pow3'; 

end 

  

switch num2str(orthogonalization) 

    case '1' 

        orthog='symm'; 

    case '2' 

        orthog='defl'; 

end 

  

%--------------Solicit User Input to Load HSI Image File------------------- 

display('This program requires the Image Processing Toolbox for MATLAB.'); 

display('Make sure your version of MATLAB has this toolbox.'); 

display('  '); 

display('Make sure you have in your working directory the all the files for'); 

display('FastICA and the Center_and_PCA.m file'); 

display('   '); 

display('The first several lines in the AutoGAD algorithm detail default'); 

display('settings for AutoGAD.  If you would like to experiment'); 

display('changing these settings, hit ctrl c to interrupt this run.  Open'); 

display('up AutoGAD in the the editor and make changes.'); 

display('   '); 

display('Please hit enter'); 

display('  '); 

answer=input(''); 

display('Enter you image cube file name to be processed.'); 

display('File should be in .mat format '); 

display('  '); 

display('!Make sure to put it in single quotes!') 

display('!Make sure the image cube is in the same directory as this code!'); 

display('  '); 

temp1=input(''); 

temp2=struct2cell(load(temp1)); 

im_cube=temp2{1}; 

display('   '); 

display ('Enter truth mask'); 

display('  '); 

display('If you do not have a truth mask and this is a real target search'); 

display('with no truth knowledge, enter 0'); 

display('  '); 

temp3=input(''); 

if temp3~=0; 

    temp4=struct2cell(load(temp3)); 

    truth=temp4{1}; 

end 

clear temp1 

clear temp2 

clear temp4 

clc; 

display('   '); 

display('Please enter the good bands for this HSI sensor'); 

display('These are the bands that are NOT the atmospheric absorption bands'); 

display('  '); 

display('If this the the 210 band HYDICE sensor, LtCol Tim Smetek concluded'); 

display('that the good_bands = [5:72, 78:85, 92:99, 116:134,158:199]'); 

display(' '); 
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display('If this is HYDICE data and you would like to keep these bands, type');  

display('1 and hit enter'); 

display('   '); 

display('If this is not HYDICE data or you do not want to keep those bands'); 

display('just hit enter and then enter the bands you wish to keep'); 

display('  '); 

answer=input(''); 

if answer==1 

    good_bands=[5:99,116:134,158:199];%Smetek's 

bands[5:72,78:85,92:99,116:134,158:199]; 

else 

    good_bands=input('good_bands = '); 

end 

%-------------------------------------------------------------------------- 

  

%-----------Ask User if they want to see color image----------------------- 

display('  '); 

display('Do you want to see a RGB image of your HSI file?'); 

display('  '); 

display('If so, enter 1. If not just hit enter.          '); 

display('   '); 

answer=input(''); 

if answer==1 

    Red=input('Please enter the band number for red, HYDICE is 50       '); 

    display(' '); 

    Green=input('Please enter the band number for green, HYDICE is 29     '); 

    display('  '); 

    Blue=input('Please enter the band number for blue, HYDICE is 22      '); 

  

    R=im_cube(:,:,Red); 

    G=im_cube(:,:,Green); 

    B=im_cube(:,:,Blue); 

     

    %Borrowed from Lt Col Tim Smetek, lines 142 - 163, offer a way to make  

    %an RGB image look better.  The following lines are used in conjunction  

    %with the mat2gray function to perform a 2% linear stretch on the image  

    %data 

  

    m1=size(R,1); 

    n=size(R,2); 

    low_id=floor(0.02*m1*n); 

    hi_id=floor(0.98*m1*n); 

  

    r_vec=reshape(R,m1*n,1); 

    r_vec=sort(r_vec); 

    r_vec=double(r_vec); 

    min_R=r_vec(low_id); 

    max_R=r_vec(hi_id); 

  

    g_vec=reshape(G,m1*n,1); 

    g_vec=sort(g_vec); 

    g_vec=double(g_vec); 

    min_G=g_vec(low_id); 

    max_G=g_vec(hi_id); 

  

    b_vec=reshape(B,m1*n,1); 

    b_vec=sort(b_vec); 

    b_vec=double(b_vec); 

    min_B=b_vec(low_id); 

    max_B=b_vec(hi_id); 

  

    %The IPT function mat2gray to scales the values in each matrix between 0 

    %and 1.  This is necessary because the matrices are of type double and 
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    %imshow requires double value matrices to be scaled between 0 and 1 

  

    R=mat2gray(double(R),[min_R max_R]); 

    G=mat2gray(double(G),[min_G max_G]); 

    B=mat2gray(double(B),[min_B max_B]); 

  

    %**Now stack the three matrices into a 3D array and display the image 

    RGB=cat(3,R,G,B); 

    figure (1) 

    imshow(RGB,[]); 

    title('True Color Image'); 

    impixelinfo; 

    %**Turn-on the interactive pixel value utility 

    clear R G B 

    clear RGB 

    clear r_vec g_vec b_vec 

end 

%-------------------------------------------------------------------------- 

tic; 

  

%----Resize Image Cube into matrix where each row is a pixels-------------- 

%-----------------signature in the spectral bands-------------------------- 

dims=size(im_cube,3); 

num_pixels=size(im_cube,1)*size(im_cube,2); 

one=ones(num_pixels,1); 

num_lines=size(im_cube,1); 

num_col=size(im_cube,2); 

  

%**Place all the pixel vectors into a single matrix where each row 

%corresponds to a pixel vector 

data_matrix=zeros(num_pixels,dims); 

data_matrix_truth=zeros(num_pixels, 1); 

for x=1:dims 

    data_matrix(:,x)=reshape(im_cube(:,:,x),num_pixels,1); 

end 

if show_spectra == 2 

    clear im_cube; 

end 

%If HSI cube is too large for MATLAB since MATLAB converts variables to 

%double precision, this will make file smaller so that MATLAB can 

%operate on it. 

if num_pixels*dims > 25*10^6 

    data_matrix=single(data_matrix); 

end 

%%%%%%%%%%%%%%%%% 

  

  

if temp3~=0; 

    data_matrix_truth=reshape(truth,num_pixels,1); 

end 

%-------------------------------------------------------------------------- 

  

%----------Keep bands that are not atmospheric absorption bands------------ 

data_matrix_new=data_matrix(:,good_bands); 

dims=size(data_matrix_new,2); 

clear data_matrix; 

%-------------------------------------------------------------------------- 

  

%----------Set negative pixel values = 0 (remove bad pixels) -------------- 

[m,n] = size(data_matrix_new); 

for i =1:m 

    for j= 1:n 

        if data_matrix_new(i,j) < 0 
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            data_matrix_new(i,j) = 0; 

        end 

    end 

end 

%-------------------------------------------------------------------------- 

  

%--------Group Correlated Bands together to reduce dimensionality---------- 

[Y,dims,k]=Dim_Redux_By_Corr3(data_matrix_new,dims,good_bands,req_corr); 

clear data_matrix_new; 

%-------------------------------------------------------------------------- 

  

%---------------------Perform ICA on reduced PCA space--------------------- 

[icasig, A, W]=fastica(Y','approach',orthog, 'g', funct, 'epsilon',... 

    .00001, 'stabilization','on', 'verbose','off'); 

icasig=icasig'; 

%If an IC score has a high signals, make them always positive 

icasig = icasig-one*mean(icasig);                   % Centers icasig if not centered 

for j=1:k 

    if abs(min(icasig(:,j)))>max(icasig(:,j)) 

        icasig(:,j)=-icasig(:,j);                   % By convention put longer tail in 

positive direction 

    end 

end 

clear Y 

%-------------------------------------------------------------------------- 

  

%-------------------Find the Kurtosis of Each Signal----------------------- 

kurt=abs(kurtosis(icasig))'; 

%this statistic is used as part of determination of which maps are likely 

%to contain identifiable target pixels 

%-------------------------------------------------------------------------- 

  

  

%--------------------Find the Max Score of Each Signal--------------------- 

maxim=max(icasig)'; 

%this statistic is used as part of determination of which maps are likely 

%to contain identifiable target pixels 

%-------------------------------------------------------------------------- 

  

%--------------------Find the Skewness of Each Signal--------------------- 

skew=skewness(icasig)'; 

  

% This section calculates a correction factor for the fact that a 

% non-gaussian distribution underlies the data, when during histogram 

% creation Scott's rule (which assumes a gaussian distribution) is used 

% The correction factor is used in the next section, but is currently 

% commented out. 

%for j=1:k 

%    if abs(skew(j))>3 

%        skewadj(j)=0.25; 

%    else 

%        skewadj(j) = 0.02*abs(skew(j))^5-0.1792*abs(skew(j))^4+... 

%          0.6017*abs(skew(j))^3-0.8467*abs(skew(j))^2+0.0987*abs(skew(j))+1; 

%    end 

%end 

%-------------------------------------------------------------------------- 

  

%-------------------------------------------------------------------------- 

%---------------------Find the PT SNR of each signal----------------------- 

%-------------------------------------------------------------------------- 

  

% ---------------Step 1: Build ICA Signal Histogram------------------------ 
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for j=1:k 

    bins{j}=[]; 

    freq{j}=[]; 

     

% Scott's Rule (1979) for class width (Correction factor commented out) 

    bin_width_SNR(j) = 3.5*std(icasig(:,j))*(num_pixels)^(-1/3);   %*skewadj(j); 

(Adjustment for non-Gaussian Skew) 

    bins{j}=min(icasig(:,j)):bin_width_SNR(j):max(icasig(:,j)); 

    freq{j}=hist(icasig(:,j),bins{j}); 

     

%slope of line connecting peak of the histogram to the maximum value 

    [maxfreq, index_freq] = max(freq{j}); 

    m_slope = (freq{j}(index_freq)- freq{j}(end))/(bins{j}(index_freq)-bins{j}(end)); 

    y_int= freq{j}(index_freq)-m_slope*bins{j}(index_freq); 

  

% Locate Secondary Spikes or points above secant line to the right of histogram peak 

    i = size(bins{j},2); 

    while i > index_freq 

        if (freq{j}(i) > freq{j}(i-1)+0.05*maxfreq)  | freq{j}(i) > 

m_slope*bins{j}(i)+y_int+1; 

            if index_freq <= i-1 

                index_freq = i; 

                m_slope = (freq{j}(index_freq)- freq{j}(1))/(bins{j}(index_freq)-

bins{j}(1)); 

                y_int= freq{j}(index_freq)-m_slope*bins{j}(index_freq); 

            end 

        end 

        i = i-1; 

    end 

    length = sqrt((bins{j}(end)-bins{j}(index_freq))^2+(freq{j}(end)-

freq{j}(index_freq))^2); 

  

%-----------Step 2: Calculate Euclidean distance from histogram------------ 

%-------------------to secant line between peak and tail 

    Eqdist=[]; 

    x_int = -y_int/m_slope; 

    for i=index_freq:size(bins{j},2) 

        numer = abs((bins{j}(end)-bins{j}(index_freq))*(freq{j}(index_freq)... 

            -freq{j}(i))-(bins{j}(index_freq)-bins{j}(i))*(freq{j}(end)-

freq{j}(index_freq))); 

        Eqdist(i)=numer/length; 

    end 

     

%find the point on the histogram with the largest distance from the line  

% connecting the endpoints 

    [max_Eqdist, index_dim]=max(Eqdist); 

    thresh_pt(j)=bins{j}(index_dim); 

  

%------------------Plot unfiltered signal histogram------------------------     

    d=ceil(sqrt(k));     

    if show_histogram==1 

        figure(10) 

        subplot(d,d,j); 

        plot(bins{j},freq{j},'LineWidth',2); 

        title({sprintf('Map %i \n Noise Threshold %4.3f',j,thresh_pt(j))... 

            ,'Signal Histogram'},'fontweight','b'); 

        xlabel('Independent Conmponent Intensity'); 

        ylabel('Frequency'); 

    end 

end 

  

%-------------Step 3: Calculate PTSNR from variance of--------------------- 

%-----------------signal vs variance of background------------------------- 
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PT_SNR=zeros(k,1); 

for j=1:k 

    potent_target=[]; 

    potent_bkrd=[]; 

    %find the indices of those pixels greater than threshold 

    ind = icasig(:,j)>thresh_pt(j); 

    %store those pixels greater than threshold in vector 

    potent_target=icasig(ind,j); 

    if size(potent_target,1)==0 

        potent_target=0; 

    end 

    %find the indices of those pixels less than threshold 

    ind2 = icasig(:,j)<=thresh_pt(j); 

     

    %tgt_pct is used to determine if a map contains too many target pixels 

    %for them to be likely to be actual targets rather than some natural anomaly 

    tgt_pct(j) = sum(ind)/(sum(ind2)+sum(ind)); 

     

    %store those pixels less than threshold in vector 

    potent_bkrd=icasig(ind2,j); 

    power_target(j)=var(potent_target); 

    power_bkrd(j)=var(potent_bkrd); 

    PT_SNR(j)=10*log10(power_target(j)/power_bkrd(j)); 

end 

%-------------------------------------------------------------------------- 

%-------------------------------------------------------------------------- 

  

%quadres= horzcat(kurt,maxim,PT_SNR,tgt_pct'); 

  

  

%---Plot Abundance Maps from ICs Frames with PT SNR and Max Pixel Score---- 

if show_plots==1 

    figure (4) 

    for j=1:k 

        subplot(d,d,j) 

        ICsig(:,:,j)=reshape(icasig(:,j),num_lines,num_col); 

        ICsig_grey(:,:,j)=mat2gray(double(ICsig(:,:,j))); 

        imshow(ICsig_grey(:,:,j)); 

        if maxim(j)>=max_score_thresh && PT_SNR(j)>=PT_SNR_thresh... 

                && kurt(j)>=Kurtosis_thresh && tgt_pct(j) <= target_fraction_thresh 

            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',j,PT_SNR(j)... 

                ,maxim(j)),'Potential Target'},'fontweight','b'); 

        else 

            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',j,PT_SNR(j)... 

                ,maxim(j)),'Non-Target'},'fontweight','b'); 

        end 

    end 

    clear ICsig; 

    clear ICsig_grey; 

%-------------------------------------------------------------------------- 

  

%---------------------------Plot IC signals-------------------------------- 

    figure(5) 

    PT_SNR_line=one*thresh_pt; 

    for j=1:k 

        subplot(d,d,j) 

        plot(icasig(:,j),'.', 'MarkerEdgeColor','r'); 

        hold on 

        plot(PT_SNR_line(:,j),'LineWidth',2); 

        xlabel('Pixel'); 

        ylabel('Abundance (IC Score)'); 

        if maxim(j)>=max_score_thresh && PT_SNR(j)>=PT_SNR_thresh 
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            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',j,PT_SNR(j)... 

                ,maxim(j)),'Potential Target'},'fontweight','b'); 

        else 

            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',j,PT_SNR(j)... 

                ,maxim(j)),'Non-Target'},'fontweight','b'); 

        end 

        axis([0,num_pixels,-15,30]); 

    end 

    clear PT_SNR_line 

%-------------------------------------------------------------------------- 

end 

  

%----------------Keep only Those Signals Above Both Thresholds------------- 

ind_max=[]; 

ind_SNR=[]; 

ind_kurt=[]; 

ind_tgt_frac=[]; 

ind_both=[]; 

ind_max = maxim>=max_score_thresh; 

ind_SNR = PT_SNR>=PT_SNR_thresh; 

ind_kurt = kurt>=Kurtosis_thresh; 

ind_tgt_frac = tgt_pct'<=target_fraction_thresh; 

ind_both=ind_max+ind_SNR+ind_kurt+ind_tgt_frac; 

[rind,cind]= find(ind_both==4); 

if size(rind,1)==0 

    display('NO TARGETS') 

    target_sig=zeros(num_pixels,1); 

    target_vec=zeros(num_pixels,1); 

    num_tgt_maps = 0;                   % Added M. Miller to manage zero-target images 

else 

    target_sig=icasig(:,rind); 

    thresh_pt_tgt=thresh_pt(:,rind); 

    thresh_pt_tgtL=thresh_pt(:,rind); 

    num_tgt_maps=size(target_sig,2);    % Moved from line 440 to line 437 by M. Miller 

    index = 1; 

    for j = rind' 

        bins_tgt{index}=bins{j}; 

        freq_tgt{index}=freq{j}; 

        index=index+1; 

    end     

end 

clear icasig; 

clear bins; 

clear freq; 

  

for j=1:num_tgt_maps 

    tgt_sig_map(:,:,j)=reshape(target_sig(:,j),num_lines,num_col); 

end 

  

%-------------------------------------------------------------------------- 

threshold_both_sides=0; 

if size(rind,1)~=0 

%-------------Show Abundance Maps of Retained Target Signals--------------- 

    if show_plots==1 

        d=ceil(sqrt(num_tgt_maps)); 

        tgt_gray=[]; 

        figure(6) 

        for j=1:num_tgt_maps 

            subplot(d,d,j); 

            tgt_sig_map_gray(:,:,j)=mat2gray(tgt_sig_map(:,:,j)); 

            imshow(tgt_sig_map_gray(:,:,j)); 

            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',rind(j),... 

                PT_SNR(rind(j)),maxim(rind(j))),'Potential Target'},... 
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                'fontweight','b'); 

        end 

        clear tgt_sig_map_gray 

    end 

%-------------------------------------------------------------------------- 

  

%-----Split ICA Signals of any target map into two halves at mean = 0------ 

%-----------------and calculate left tail kurtosis value-------------------  

target_sig_sort=sort(target_sig); 

clear target_sig 

for j=1:num_tgt_maps 

    neg_pixels=target_sig_sort(:,j)<0; 

    neg_count=sum(neg_pixels); 

    ica_left{j}=target_sig_sort(1:neg_count,j); 

    left_kurt(j)=abs(kurtosis(ica_left{j})); 

end 

  

%----Set threshold for negative signal values on selected target maps------ 

%-----------if user specified this option (threshold both sides)----------- 

if num_tgt_maps > 0  % && added by M. Miller 

    for j=1:num_tgt_maps 

        if left_kurt(j) > Left_Kurt_Thresh 

        threshold_both_sides=1; 

         

%Slope of line connecting peak of the histogram to the minimum value 

        [maxfreq, index_freq] = max(freq_tgt{j});       

        m_slope = (freq_tgt{j}(index_freq)- freq_tgt{j}(1))/(bins_tgt{j}(index_freq)-

bins_tgt{j}(1)); 

        y_int= freq_tgt{j}(index_freq)-m_slope*bins_tgt{j}(index_freq); 

         

% Determine if any points on the histogram fall above the secant line 

        i = 1; 

        while i < index_freq 

            if (freq_tgt{j}(i) > freq_tgt{j}(i+1)+0.05*maxfreq)  | freq_tgt{j}(i) > 

m_slope*bins_tgt{j}(i)+y_int+1; 

                if index_freq >= i+1 

                    index_freq = i; 

                    m_slope = (freq_tgt{j}(index_freq)- 

freq_tgt{j}(1))/(bins_tgt{j}(index_freq)-bins_tgt{j}(1)); 

                    y_int= freq_tgt{j}(index_freq)-m_slope*bins_tgt{j}(index_freq); 

                end 

            end 

            i = i+1; 

        end 

        length = sqrt((bins_tgt{j}(end)-bins_tgt{j}(index_freq))^2+(freq_tgt{j}(end)-

freq_tgt{j}(index_freq))^2); 

  

% Calculate Euclidean distance from histogram to line connecting peak to end 

        Eqdist=[]; 

        x_int = -y_int/m_slope; 

        for i=1:index_freq 

            numer = abs((bins_tgt{j}(1)-

bins_tgt{j}(index_freq))*(freq_tgt{j}(index_freq)-... 

                freq_tgt{j}(i))-(bins_tgt{j}(index_freq)-

bins_tgt{j}(i))*(freq_tgt{j}(1)-freq_tgt{j}(index_freq))); 

            Eqdist(i)=numer/length; 

        end 

%find the point on the histogram with the largest distance from the line  

% connecting the endpoints 

        [max_Eqdist, index_dim]=max(Eqdist); 

        thresh_pt_ident_left(j)=bins_tgt{j}(index_dim); 

        end 

    end 
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end 

%-------------------------------------------------------------------------- 

  

  

%----Clean (IAN Filtering)Target Signals prior to Identification----------- 

    if clean_sig==1 

        for j=1:num_tgt_maps 

            iterations = round(iteration_coeff*PT_SNR_thresh/PT_SNR(rind(j))); 

            for c=1:iterations 

                    [tgt_sig_map(:,:,j)]=wiener2(tgt_sig_map(:,:,j), ... 

                        [window_size,window_size]); 

            end 

        end 

%-------------------------------------------------------------------------- 

  

  

%-------------------Plot IAN Filtered Target Maps-------------------------- 

        if show_plots==1 

            for j=1:num_tgt_maps 

                clean_map_gray(:,:,j)=mat2gray(tgt_sig_map(:,:,j)); 

            end 

            figure(7) 

            for j=1:num_tgt_maps 

                subplot(d,d,j); 

                imshow(clean_map_gray(:,:,j)); 

                colormap(jet) 

                title(sprintf('Filtered Map %i',rind(j)),'fontweight','b'); 

            end 

        end 

    end 

%-------------------------------------------------------------------------- 

  

%----------Identify Target Pixels from Selected Target Maps---------------- 

%-------------------------------------------------------------------------- 

    target_sig_clean=[]; 

    for j=1:num_tgt_maps 

        target_sig_clean(:,j)=reshape(tgt_sig_map(:,:,j), num_pixels, 1); 

    end 

     

    target=zeros(num_pixels, num_tgt_maps); 

    for j=1:num_tgt_maps 

        target(:,j) = target_sig_clean(:,j)>thresh_pt_tgt(j); 

    end 

     

    target_vec=sum(target,2);     

end 

%-------------------------------------------------------------------------- 

%Checks both sides of the selected target signals for target pixels if user 

%specified this option 

if threshold_both_sides==1 && num_tgt_maps > 0  % && added by M. Miller 

    target_left=zeros(num_pixels, num_tgt_maps); 

    for j=1:num_tgt_maps 

        if left_kurt(j) > Left_Kurt_Thresh 

            target_left(:,j)= target_sig_clean(:,j)<thresh_pt_ident_left(j); 

        end 

    end 

  

    target_vec_left=sum(target_left,2); 

    target_vec=target_vec+target_vec_left; 

end 

%------------------------------------------------------------------------- 

target_pic = reshape(target_vec,num_lines,num_col); 

%------------------------------------------------------------------------- 
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%----------Plot Target Signals with Calculated Thresholds----------------- 

if show_plots ==1 

    if size(rind,1)~=0 

        d=ceil(sqrt(num_tgt_maps)); 

        linetrh_ident=one*thresh_pt_tgt; 

        if threshold_both_sides==1 

            for j=1:num_tgt_maps 

                if left_kurt(j) > Left_Kurt_Thresh 

                    linetrh_ident_left(:,j)=thresh_pt_ident_left(j)*one; 

                end 

            end 

        end 

        figure(8) 

        for j=1:num_tgt_maps 

            subplot(d,d,j) 

            plot(target_sig_clean(:,j),'.', 'MarkerEdgeColor','r'); 

            hold on 

            plot(linetrh_ident(:,j),'LineWidth',2); 

            if threshold_both_sides==1 

                if left_kurt(j) > Left_Kurt_Thresh 

                    plot(linetrh_ident_left(:,j),'LineWidth',2); 

                end 

            end 

            xlabel('Pixel'); 

            ylabel('Abundance (IC Score)'); 

            title({sprintf('Map %i \n SNR %4.3f \n Max Score %4.3f',rind(j),... 

                PT_SNR(rind(j)),maxim(rind(j))),'Potential Target'},... 

                'fontweight','b'); 

            axis([0,num_pixels,-15,30]); 

        end 

        clear linetrh_ident 

    end 

    clear one 

end 

%-------------------------------------------------------------------------- 

  

%-------Grade Performance of AutoGAD if Truth Mask was Provided------------ 

if temp3~=0; 

%----------------------Confusion Matrix Calculation------------------------ 

    ConfusMat=[]; 

    ConfusMat(1,1)=0; %(TP) 

    ConfusMat(1,2)=0; %(FP) 

    ConfusMat(2,1)=0; %(FN) 

    ConfusMat(2,2)=0; %(TN) 

  

    for i=1:num_pixels 

        if target_vec(i,1)>= 1 && data_matrix_truth(i,1) >= 1 

            ConfusMat(1,1)=ConfusMat(1,1)+1; 

        else 

            if target_vec(i,1)>= 1 && data_matrix_truth(i,1) == 0 

                ConfusMat(1,2)=ConfusMat(1,2)+1; 

            else 

                if target_vec(i,1)== 0 && data_matrix_truth(i,1) == 1 

                    ConfusMat(2,1)=ConfusMat(2,1)+1; 

                else 

                    if target_vec(i,1)== 0 && data_matrix_truth(i,1) == 0 || 2 

                        ConfusMat(2,2)=ConfusMat(2,2)+1; 

                    end 

                end 

            end 



 

A-12 

 

        end 

    end 

  

    APER = (ConfusMat(1,2)+ConfusMat(2,1))/(num_pixels); 

    TPF = ConfusMat(1,1)/(ConfusMat(1,1)+ConfusMat(2,1)); 

    FPF = ConfusMat(1,2)/(ConfusMat(1,2)+ConfusMat(2,2)); 

    Perc_tgt = ConfusMat(1,1)/(ConfusMat(1,1)+ConfusMat(1,2)); 

%-------------------------------------------------------------------------- 

  

%-------------------Show Target Locations to the User---------------------- 

    target_vec_color=zeros(num_pixels,1); 

    for i=1:num_pixels 

        if target_vec(i,1)>=1 && data_matrix_truth(i,1)>=1 

            target_vec_color(i,1)=4; 

        elseif target_vec(i,1)>=1 && data_matrix_truth(i,1)==0 

            target_vec_color(i,1)=2; 

        end 

    end 

    target_pic_color = uint8(reshape(target_vec_color,num_lines,num_col)); 

    if size(rind,1)~=0 

        figure(9) 

        imshow(mat2gray(target_pic_color)); 

        colormap('Hot') 

        title(sprintf('TPF = %4.6f \n FPF = %4.6f \n Percent TGT = %4.6f',... 

            TPF, FPF,Perc_tgt),'fontweight','b'); 

        impixelinfo; 

    elseif size(rind,1)==0 

        figure(9) 

        imshow(target_pic); 

        title('No Targets Detected') 

    end 

    figure (2) 

    imshow(truth,[]); 

    title('Truth Mask'); 

    impixelinfo; 

else 

    if size(rind,1)~=0 

        figure(9) 

        imshow(target_pic) 

        title({'Suspected Target Pixels'}); 

        impixelinfo; 

    elseif size(rind,1)==0 

        figure(9) 

        imshow(target_pic) 

        title({'No Targets Detected'}); 

        impixelinfo; 

    end 

end 

  

%-----------Plot Target Pixel Spectra for each Target Map------------------ 

if show_spectra ==1 

    if size(rind,1)~=0 

        for i=1:num_tgt_maps 

            figure (i+10) 

            tgt_pixel = 1; 

            false_tgt_pixel=1; 

            non_tgt_pixel=1; 

            for j=1:num_lines 

                for k=1:num_col 

                    if target_pic_color(j,k)==4 

                        tgt_spect(tgt_pixel,:)=im_cube(j,k,:); 

                        subplot(3,1,1) 

                        plot(tgt_spect(tgt_pixel,:),'b'); 
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                        hold on 

                        tgt_pixel=tgt_pixel+1; 

                        title(sprintf('Target Pixels Raw Spectra'),'fontweight','b'); 

                    elseif target_pic_color(j,k)==2 

                        false_tgt_spect(false_tgt_pixel,:)=im_cube(j,k,:); 

                        subplot(3,1,2) 

                        plot(false_tgt_spect(false_tgt_pixel,:),'r'); 

                        hold on 

                        false_tgt_pixel=false_tgt_pixel+1; 

                        title(sprintf('False Target Pixels Raw 

Spectra'),'fontweight','b'); 

                    elseif rand<.001 && non_tgt_pixel<=20 

                        non_tgt_spect(non_tgt_pixel,:)=im_cube(j,k,:); 

                        subplot(3,1,3) 

                        plot(non_tgt_spect(non_tgt_pixel,:),'y'); 

                        hold on 

                        non_tgt_pixel=non_tgt_pixel+1; 

                    end 

                end 

                axis ([0 210 0 15000]); 

            end 

  

        end 

    end 

end 

  

time=toc 
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A.2. Spectral Clustering Code 

 
%********************************************************************% 

%Spectral Band Clustering Subroutine                                 % 

%                                                                    % 

%                                                                    % 

%Function called by AutoGAD to reduce dimensionality of              % 

%Hyperspectral Data                                                  % 

%                                                                    % 

%Author: Maj. Michael Miller                                         % 

%                                                                    % 

%Feb 2009                                                            % 

%********************************************************************% 

  

%**********************************************************************% 

% This program seeks highly correlated adjacent bands within a         % 

% hyperspectral image.  If two or more adjacent bands exceed a user    % 

% specified level of correlation, they are retained as a single average% 

% spectral signature of the "clustered" bands.  All clusters are       % 

% returned to the main program (AutoGAD-SC) with the assessed number   % 

% of dimensions based on the number of clusters formed.                % 

%**********************************************************************% 

  

function[data_matrix_final,new_dims,clusters] = 

Dim_Redux_By_Corr(data_matrix_new,dims,good_bands,threshold)  

  

first = 1; 

data_matrix_final = []; 

clusters = 0; 

clustered_bands=[]; 

while first <= dims-1 

   last = first; 

   j = first+1; 

   correl(first,j) = corr(data_matrix_new(:,first),data_matrix_new(:,j)); 

   while good_bands(j)==good_bands(j-1)+1 && correl(first,j) >= threshold && j < dims 

       j=j+1; 

       correl(first,j) = corr(data_matrix_new(:,first),data_matrix_new(:,j)); 

       last = last+1; 

   end 

   if last > first && j<dims 

        center = last; 

        j=last+1; 

        correl(center,j) =corr(data_matrix_new(:,center),data_matrix_new(:,j)); 

        while correl(center,j) >= threshold && j < dims && 

good_bands(j)==good_bands(j-1)+1 

            j=j+1; 

            correl(center,j) = corr(data_matrix_new(:,center),data_matrix_new(:,j)); 

            last=last+1; 

        end 

   end 

   if last-first>=2 

   data_matrix_final = 

horzcat(data_matrix_final,mean(data_matrix_new(:,first:last),2)); 

   clustered_bands = vertcat(clustered_bands,[first,last]); 

   clusters=clusters+1; 

   end 

   first = last+1; 

end 

new_dims=size(data_matrix_final,2); 
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Appendix B – Taguchi Marginal Mean and Marginal SNR Plots 

B.1. True Positive Fraction (TPF) Response and SNR Plots 

     

Figure B-1.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized TPF vs. Required Correlation Threshold 

     

Figure B-2.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized TPF vs. Potential Target Fraction Threshold 

     

Figure B-3.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized TPF vs. Maximum IC Score Threshold 
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Figure B-4.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized TPF vs. Kurtosis Threshold 

 

     

Figure B-5.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized TPF vs. PT SNR Threshold 

 

     

Figure B-6.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized TPF vs. Left Partial Kurtosis Threshold 
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Figure B-7.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized TPF vs. Iterative Adaptive Noise Filtering Coefficient 

 

 

B.2. False Positive Fraction (TPF) Response and SNR Plots 

       

Figure B-8.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized FPF vs. Required Correlation Threshold 

 

      

Figure B-9.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized FPF vs. Potential Target Fraction Threshold 
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Figure B-10.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized FPF vs. Maximum IC Score Threshold 

   

Figure B-11.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized FPF vs. Kurtosis Threshold 

   

Figure B-12.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized FPF vs. PT SNR Threshold 
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Figure B-13.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized FPF vs. Left Partial Kurtosis Threshold 

   

Figure B-14.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized FPF vs. Iterative Adaptive Noise Filtering Coefficient 

 

B.3. Time Response and SNR Plots 

   

Figure B-15.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized Time vs. Required Correlation Threshold 
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Figure B-16.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized Time vs. Potential Target Fraction Threshold 

   

Figure B-17.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized Time vs. Maximum IC Score Threshold 

   

Figure B-17.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized Time vs. Kurtosis Threshold 
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Figure B-18.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized Time vs. PT SNR Threshold 

   

Figure B-19.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized Time vs. Left Partial Kurtosis Threshold 

  

Figure B-16.  Marginal Mean Plot (left) and Marginal SNR plot (right) 

Standardized Time vs. Iterative Adaptive Noise Filtering Coefficient 
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Field Level Autonomous Screening of Hyperspectral Imagery:  Accelerating the ISR Process 

In the midst of simultaneous wars in Iraq and Afghanistan the Department of Defense 

recognized a significant shortcoming in the Air Force’s ability to provide sufficient Intelligence, 

Surveillance, and Reconnaissance (ISR) capabilities.   Secretary of Defense Robert M. Gates 

spoke publicly on the subject of ISR at Maxwell AFB on 21 April 2008. 

My concern is that our services are still not moving aggressively in wartime to 

provide resources needed now on the battlefield. . . While we have doubled this 

capability in recent months, it is still not good enough. 

While one aspect of the constraints relating to Air Force ISR support relates to the 

platforms and sensors providing the capability, the issue goes beyond the material aspects of 

ISR.  By its very nature intelligence is a human endeavor, but the current ISR processes place too 

heavy a burden on the sensor operator and image analyst.  Current processes rely on the analyst 

first to filter images containing nothing of interest from images which contain objects worthy of 

closer inspection.  They must then attempt to identify these objects using in some cases a single 

photographic image, or when able by a comparison of sensors including electro-optical (EO), 

infrared (IR), and synthetic aperture radar (SAR).  This dependence on the human to isolate 

likely target imagery from non-target imagery and then identify objects within images is unable 

to satisfy what Secretary Gates referred to as an “insatiable appetite” for the information these 

systems provide.  There are however, emerging alternatives. 

Hyperspectral Imagery (HSI) operates much as an ordinary digital camera in that it 

translates reflected light into pixel values representing some combination of the colors we 

recognize as red, green, and blue.  When these pixels are correctly arranged into a grid they 

produce a single digital photograph.  Hyperspectral imagery however operates beyond the human 

visual portion of the electromagnetic spectrum, by detecting reflected light spanning ultraviolet, 
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visual, and infrared bands.  Furthermore, hyperspectral sensors divide light into as many as 

hundreds of “colors” as opposed to simply red, green, and blue.  This effectively produces a 

stack of hundreds of images of the same target area, each based on how a narrow segment of 

sunlight is reflected off objects within the scene. 

Hyperspectral imagery provides some advantages over traditional imaging techniques.   

Since hyperspectral imagery relies on reflected light, the sensor itself is passive, unlike SAR.  

Because the technique observes a target scene across a wider range of the electromagnetic 

spectrum than IR, it tends to be less degraded by atmospheric effects.  Furthermore by dividing 

the spectrum into many narrow bands, hyperspectral techniques provide some inherent capability 

to defeat common camouflage, concealment, and deception (CCD) techniques which typically 

rely on masking objects in the visible portion of the spectrum.  Finally, HSI provides the 

potential to identify targets based on the reflection properties or “spectral signatures” contained 

within the layers of the image.  

The widespread application of HSI to UAV based remote sensing poses two challenges.  

First, by increasing spectral resolution of an image, larger file sizes demand greater bandwidth 

for transmission.  Second, this increased spectral resolution means that each single image 

consists of hundreds of “layered” images, each providing an opportunity to detect a target within 

a narrow spectral band.  This dramatically complicates the analysis burden placed on any system 

employing humans in the loop to detect and identify potential targets.  Autonomous target 

detection algorithms employ statistical techniques to respond to both these challenges. 

Operations Research specialists at the Air Force Institute of Technology have developed 

deployable algorithms which use the properties inherent in hyperspectral imagery to identify 

outliers likely to represent targets present in the scene.  Most recently, algorithms consisting of 



 

C-4 

roughly 1000 lines of computer code have demonstrated an ability to identify in seconds upwards 

of 85% of all target pixels present in an image, with less than 1% of all not target pixels 

incorrectly identified as targets.  Furthermore the latest effort, known as the Autonomous Global 

Anomaly Detection, Spectral Correlation (AutoGAD-SC) algorithm, correctly categorized all 

tested images into target or non-target classifications.  Integration of this type of autonomous 

target detection algorithm along with hyperspectral imaging sensors precludes the requirement to 

relay each recorded image from airborne platform to imagery analysis facilities and eliminates 

the laborious process of manually filtering non-target images from target images.  Instead initial 

screening reduces the set of images to include only those likely to contain actual targets. 

Hyperspectral imaging sensors have reached a level of maturity, which enables their 

addition to the tools employed by ISR platforms.  However, the sheer volume of information 

provided by HSI dictates some alternative to transmission of each image to a ground based unit 

for analysis by a human.  AutoGAD-SC and other similar autonomous detection algorithms 

developed by AFIT provide a means to rapidly screen images, nominate likely targets, and 

provide a starting point for target identification. 
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