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Abstract 
 
 

The United States Air Force (USAF) has experienced a dramatic increase in 

hearing loss claims since 2001.  Additionally, many operations within the USAF expose 

personnel to hazardous dust levels.  Likewise, the US mining industry has difficulties 

controlling hazardous noise and dust exposures in underground mining.  Specifically, 

studies have shown that coal mine longwall shearer operators are routinely exposed to 

noise levels at 151 percent of the allowable dose and approximately 20 percent exceed 

regulatory dust levels.  An above ground full scale model of the underground shearing 

operation was developed to test the feasibility of mounting a permanent partial barrier on 

the longwall shearer.  The barrier was constructed and tested at the National Institute for 

Occupational Safety and Health Pittsburgh Research Laboratory (NIOSH-PRL) longwall 

test facility.  The barrier achieved as high as a 7.3 dB(A) reduction in noise levels and a 

96 percent reduction in respirable dust.  Several predictive models were tested and 

compared to measured noise reduction results.  A final spreadsheet was developed as a 

tool for base level Bioenvironmental Engineers to determine when a partial barrier may 

be an effective engineered solution for controlling hazardous noise or dust within USAF 

industrial operations.   
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CONTROLLING HAZARDOUS NOISE AND DUST WITHIN THE INDUSTRIAL 
WORKFORCE USING A SIMPLE BARRIER 

1. Introduction 
 

Background 

Noise 
 

Hearing is such a valuable sense to ordinary living; it can rarely be appreciated for 

all the value it adds to our lives.  As stated in one of the fundamental books on hazardous 

noise, The Noise Manual, “hearing is fundamental to language, communication, and 

socialization” (Berger, 2003).  Thus, those who experience degraded hearing often have 

decreased quality of life.  Hearing is so critical to everyday life, and loss of hearing can 

leave the individual feeling socially isolated.  In Berger’s example, the common phrase 

“are you deaf” often has little to do with one’s ability to hear, but rather is the person 

socially inept.  Furthermore, hearing loss not only affects the individual, but family and 

friends as well, often making conversation difficult and straining relationships.   

Noise Induced Hearing Loss (NIHL) is a permanent disabling condition induced 

from chronic exposure to high levels of noise.  Hearing loss from excessive noise 

exposure is caused by degeneration of the nerve fibers associated with the hair cells of 

the inner ear (Fig 1).   
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Figure 1: Ear hair cells can be destroyed by chronic noise exposure (CHPPM, 2006) 

Once the damage has occurred, the hair cells cannot regenerate (Bruce, Bommer, 

& Moritz, 2003).  Although it is commonly believed hearing aids can be used to 

overcome the loss, if the loss is from nerve damage, the hearing aid can only partially 

restore hearing ability (Berger, 2003).  Reported as being even worse than the hearing 

loss itself, is a condition known as tinnitus, which is a constant high-pitch ringing in the 

ears.  Tinnitus is “the most prevalent disability among new cases added to Veterans’ 

Affairs rolls” (CHPPM, 2003). 

 Within the United States, 30 million people are occupationally exposed to 

hazardous noise causing nearly all of the 10 million people who currently suffer from 

NIHL.  Additionally, NIHL increased 26 percent from 1971 to 1990 among individuals 

between 18 to 44 years old(Stephenson & Stephenson, 2000). 

On 10 January, 1989, the Department of Defense (DoD) authored instruction 

(DoDI) number 6055.5, Industrial Hygiene and Occupational Health.   DoDI 6055.5 

directed DoD industrial hygienists to perform comprehensive health hazard evaluations in 

each workplace in which physical, chemical, or biological hazards may cause illness or 

death(DoD, 1989).   The purpose of the health surveys is:  

to assign priorities for abatement actions, to schedule future surveys, to 
require personal protective equipment, and to provide a basis for 
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determining the requirement and scope of periodic medical surveillance of 
workers.  (DoD, 1989)  
 

While scheduling future surveys, assigning personal protective equipment (PPE), and 

defining periodic medical surveillance is being accomplished, hazard abatement, at least 

in abating hazardous noise, has fallen short of required expectations. 

The noise abatement shortfall is most noticeable in the rapidly increasing cost of 

NIHL claims within DoD.  Hearing loss claims remained relatively consistent until the 

beginning of the twenty-first century.  However, at the turn of the century, the cost of 

claims has been rising dramatically each year, with the Department of Veterans’ Affairs 

(VA) paying out an all time high of over 900 million dollars in 2006.  In total, the VA has 

paid over three billion dollars in hearing loss claims since 1977 (CHPPM, 2006). 

As with the overall DoD claims, the Department of the Air Force (AF) has also 

seen rising NIHL cases since 2002.  Within the AF, major hearing loss disability cases 

averaged 161±85 new cases per year from 1996 through 2001.  In 2002, the number of 

new cases increased dramatically to 797 new cases.  The average number of new cases 

between 2002 and 2006 significantly increased (p<0.05, t-test) to 952±127 as compared 

to the 1996-2001 group (Fig 2) (Sweeney & Slagley, 2008).  In 2006, the total number of 

AF veterans receiving compensation for NIHL reached 13,542. 
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Figure 2: The number of new major hearing loss claims from Air Force veterans. 

A: New cases per year.  B: Mean increase ± SD of new cases per year.  *=significant 
difference (p<0.05, t-test) 

   

      The increase in NIHL seen in the Air Force may be linked to the high reliance on 

personal hearing protection devices (HPDs) as the primary control rather than 

engineering controls.  The problem with relying on HPDs is the misuse or complete lack 

of use of HPDs within the work force.  The noise reduction rating (NRR) of the HPD is 

rated by the manufacturer.  However, the manufacturer’s NRR often greatly 

overestimates the effectiveness of the HPD.  As shown in Figure 3A, the National 

Institute for Occupational Safety and Health (NIOSH) performed a study on seven 

different HPDs that demonstrated HPDs used by untrained workers were as low as 3.8 

percent of the reported NRR, with the best HPD being only 71 percent of the 

manufacturer’s rating.  Even if the NRRs were adequate to reduce noise levels to an 

acceptable limit, the HPDs need to be worn consistently to be effective.  NIOSH also 

investigated average use of HPDs among hearing conservation personnel, carpenter 

safety trainers, and carpenters showing considerably low percentage of use of HPDs (Fig 

3B).    Finally, Figure 3C shows how even just short unprotected exposure duration can 
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greatly affect the amount of noise attenuation realized by the worker (Stephenson & 

Stephenson, 2000). 

 

 
 

 

 

Because of the ineffectiveness of HPDs, the high cost associated with hearing loss 

claims and the permanent deleterious impact on human health, effective hazardous noise 

control should be a high priority for the Air Force occupational health program.  The Air 

Force mandates that engineering controls shall be the primary method of controlling 

noise exposure (USAF, 2006).  The class of engineering controls known as barriers and 

Figure 3: Misuse of HPDs can drastically reduce effectiveness A: Untrained workers 
have much lower attenuation than reported by the manufacturer. B: Lack of use of HPDs. 
C: Short durations without HPDs greatly reduce protection(Stephenson & Stephenson, 

2000). 
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enclosures may be a cost effective means to retrofit existing noise producing equipment, 

thereby reducing the noise exposure to Air Force personnel.    

Dust  
 

As with noise, hazardous workplace atmospheres can contribute to negative 

health effects.   An industrial setting has many potential sources for airborne 

contamination.  Some common sources capable of creating a hazardous atmosphere 

include chemical vapors, fumes, and particulates. One category of particulates is dust.  

The airborne hazards can enter the body through three primary routes: inhalation, 

ingestion, and dermal absorption.  Of these three routes, inhalation exposure is the 

primary concern for particulates (Schaper & Bisesi, 2003).  .  Some of the common health 

conditions associated with workplace airborne exposures in U.S. industry include: 

allergic rhinitis, work related asthma, chronic bronchitis, byssinosis, bronchiolitis, 

bronchiolitis obliterans, coal worker's pneumoconiosis, silicosis, asbestosis, 

hypersensitivity pneumonitis, and other fibrosing processes (NIOSH, 2008a). 

Engineering control measures should again be the primary focus of controlling 

hazardous atmospheres.  Similar to HPDs, there are many reasons why PPE for 

hazardous atmospheres, personal respirators, are not always an effective control measure.  

In fact in a NIOSH survey, 90 percent of workers with required respirator use had at least 

one indicator of an inadequate respiratory protection program with over 50 percent 

having 5 or more indicators (NIOSH, 2005).  Additionally, between Oct 2006 and Sep 

2007, the fifth highest out of 400 OSHA citation types was for respiratory protection 

violations, issuing a total of 4101 citations (OSHA, 2007). 
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Within the USAF, many industrial processes expose workers to hazardous 

chemicals.  Although more widespread use of engineering controls have been 

implemented for airborne hazards as compared to noise hazards, many operations still 

require respiratory protection.  For example, a recent compilation of data showed three 

out of the four AF beadblast operations sampled were over exposed to hexavalent 

chromium.  Additionally, 29 percent of the bases sampled for painting or priming 

operations were overexposed to hexavalent chromium (Sweeney, Schmidtgoessling, & 

Batten, 2008). 

Problem Statement 
 

In practical experience, engineering controls for noise and dust are often 

disregarded due to the complexity of implementing the control.  Engineering controls are 

perceived as requiring complex studies of the problem combined with a detailed analysis 

of the control.  The engineering control is seen as time consuming and expensive.  Due to 

this perception of the difficulty of engineering controls, base level Bioenvironmental 

Engineers (BEE) more often default to the less effective control of personal protective 

equipment (PPE) as a substitute for engineering controls.  The primary problem this 

thesis aims to address is to model and develop a simple engineering control that may 

effectively control hazardous noise and dust in an assortment of USAF applications, 

thereby enabling base level BEEs to identify when a simple barrier might be an effective 

engineering control.  
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Research Focus 
 

Compared to the Air Force, the United States coal mining industry experiences an 

even greater difficulty in controlling hazardous noise exposures, where 90 percent of coal 

miners experience hearing impairment(Bauer, Spencer, Smith, & Hudak, 2007).  In fact, 

because of the historical difficulties associated with controlling hazardous noise and 

hazardous dust levels within the mining industry, NIOSH has identified its top two 

strategic goals for the mining industry as reducing respiratory diseases and noise induced 

hearing loss (NIOSH, 2008b).  The NIOSH strategic goals were developed in part 

because research has shown that approximately 20 percent of the coal mine longwall 

shearer operators exceed regulatory dust levels (Rider & Colint, 2001) and operators are 

routinely exposed to hazardous noise levels at 151 percent of the allowable daily 

dose(Joy & Middendorf, 2007).  Table 1 summarizes the hypotheses that will be tested. 

Table 1: Outline of hypotheses tested 

Test 
Performed 

Null Hypothesis (Ho) Alternative Hypothesis (HA) Statistical 
Method 

Pilot study A rubber partial barrier placed 
between an operator and the 
cutting drum of a Longwall 
shearer will not reduce the 
noise to the operator 

A rubber partial barrier placed 
between operator and cutting 
drum will reduce the noise to 
the operator by more than 3 
dB(A) 

Compare 
means (n=3) 

Reproduce 
underground 
shearer noise 
in a sound 
studio 

Sound studio equipment cannot 
reproduce a similar frequency 
spectrum from a recording of 
an underground shearer 
operation as compared to 
actual underground noise 

Sound studio equipment can 
reproduce a similar frequency 
spectrum 

Compare 
frequency 
spectrums 

Partial 
barrier test 
in a sound 
studio 

The recorded shearer noise 
cannot be reduced by at least 3 
dB(A) from a partial barrier in 
a semi-reflective environment 

The recorded shearer noise can 
be reduced by at least 3 dB(A) 
from a partial barrier in a semi-
reflective environment  

t-test on 
means (n=3) 
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Test 
Performed 

Null Hypothesis (Ho) Alternative Hypothesis (HA) Statistical 
Method 

Sound 
intensity 
measurement 
of recorded 
noise 

The sound intensity of the 
audio equipment was measured 
to use in calculations.  
Hypothesis is that this is a not 
a valid measurement 

Sound Intensity is a valid 
measurement 

Compared to 
previously 
published 
methods 

Room 
absorption 
coefficient 

The measured room total 
absorption (TA) will not equal 
the calculated TA 

The measured room TA will 
equal the calculated TA 

± 10% 

Calculation 
of noise 
reduction 
from the 
barrier 

The calculated noise reduction 
using standard equations for 
sound calculations will not 
equal the measured noise 
reduction 

The calculated noise reduction 
using standard equations for 
sound calculations will equal 
the measured noise reduction 

± 10% 

Partial and 
Full barrier 
tests in a 
simulated 
Longwall test 
facility 

A partial or a full barrier will 
not significantly reduce the 
sound level at the operator 
position 

A partial or a full barrier will 
significantly reduce the sound 
level at the operator position 

ANOVA 

Dust testing 
in a 
simulated 
Longwall test 
facility 

A partial or a full barrier will 
not reduce the dust level at the 
operator position below 
regulatory standards 

A partial or a full barrier will 
reduce the dust level at the 
operator position below 
regulatory standards 

ANOVA 

Room 
absorption 
coefficient at 
the Longwall 
test facility 

The measured room TA will 
not equal previously published 
date TA for an underground 
mine 

The measured room TA will 
equal previously published 
date TA for an underground 
mine 

± 10% 

 

Methodology 
 

The purpose of the current project is to model and build a barrier to mount on a 

simulated longwall coal mine shearer between the shearer operator and the cutting drum 

to passively control hazardous noise and dust levels.  The measured outcome will be 

compared to theoretical values to validate insertion loss (IL) for partial barriers in a semi-

reverberant field.  If the barrier is shown to be a cost effective method of reducing noise 

and dust exposure under the simulated mining operations, it may also have applications 

within the Air Force to help reduce noise and dust exposure. 
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Assumptions/Limitations 
 
 The work of this thesis is intended to provide a conceptual basis for designing and 

building simple engineering controls for occupational exposure to hazardous noise and 

dust.  The work is not intended to be the final design for application in a coal mine 

longwall operation.  Nor is this thesis intended to be a measure to control all noise and 

dust issues within the USAF.  It is assumed, rather, that the thesis can be used as a 

beginning point when base level BEEs identify a noise or dust source that may be able to 

be controlled with a barrier. 

2. Literature Review 
 
Noise 
 
 Within the hierarchy of controls, engineering, administrative, and PPE, hazardous 

noise is perhaps the most ill-suited for PPE as compared to the many other hazards found 

in industrial work centers.  For example, an uncontrolled painting operation may be 

irritable enough to the worker to induce the continuous use of a respirator.  Likewise, the 

dust generated from a sanding operation is a visible hazard, again confirming to the 

worker a respirator is a valuable control.  Similarly, industrial radiation hazards are 

feared by many workers, where the workers strictly adhere to administrative and PPE 

controls.  However, with hazardous noise, workers have many perceived reasons, 

whether legitimate concerns or cultural norms, for not wearing PPE to protect against 

hearing loss.   

In a study investigating the personal and social aspects of HPD use within 

Appalachia coal miners, the investigators interviewed 31 miners from four different 
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mines to determine the reasons why HPDs are not routinely utilized in hazardous noise 

environments.  The results ranged from miners reporting it was already too late; they 

were already deaf, to increased ear infections from using dirty plugs, to reduced safety 

due to not being able to hear the “roof talk”  which is the subtle changes in cracking and 

shattering of the mine’s ceiling (Murray-Johnson, et al., 2004; Patel, Witte, Zuckerman, 

& Murray-Johnson, 2001).  Coal miners claim they can hear the type of sound that may 

indicate an imminent collapse of the mine (Holmes Safety Association, 1999).  Thus, a 

better means of controlling hazardous noise exposure may be engineering controls or 

engineering controls in combination with PPE. 

In 1999, the Mine Safety and Health Administration (MSHA) developed a 

comprehensive noise control guide for underground mining (MSHA, 1999).  For 

longwall mining, the recommended control for new equipment purchases is remote 

control, which would isolate the operator from the source.  For existing equipment, a 

number of controls are recommended as listed below: 

1. Locate the pump station in the intake entry, out by the headgate, away from 
where miners normally perform their duties.  

2. Fully enclose the stageloader (except for the entrances and exits) with 
secure, sealed, rigid covers.  

3. Attenuate the stageloader scrubbers as much as possible. Direct scrubber 
discharge away from operator locations.  

4. Install sound-absorptive material on motors, panels, and gearboxes 
provided that overheating does not occur.  

5. Design the entrance doors or chain curtains on the crusher to minimize the 
number of loose parts that can rattle. If possible, replace the chain curtains 
with conveyor belting.  

6. Cover the end of the stage loader discharge with conveyor belting.  
7. Attach belting to the shearer spray arms in a manner so that the belting 

extends above the spray arms. (MSHA, 1999) 
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None of the recommended controls, however, suggest using a sound barrier to isolate 

the worker from the noise.  This may be due to the thought that the coal mine was too 

reverberant for a barrier to be effective; however, a recent study performed by 

NIOSH showed the coal mine may be more absorptive than previously conceived 

(Kovalchik, Matetic, Cole, & Smith, 2007).  

 As with the mining industry, the use of HPDs for Department of Defense 

personnel may not be an effective means of controlling hazardous noise exposure.  As 

mentioned with the mining industry, the need for personal accountability directly 

affects the amount of protection the HPDs provide.  Combining the personal reliance 

factor with the low effectiveness of HPDs as shown earlier in figure 3, HPDs do not 

seem a likely choice of protection from hazardous noise.   

CHPPM has attempted to address at least one of the complaints of HPDs, the 

ability to hear necessary sound, while blocking the hazardous noise.    CHPPM has 

experimented with two types of HPDs that would be better suited to the field soldier.  

First, an active control system that uses microphones and plugs to enhance low noise, 

while at the same time reduce high noise(CHPPM, 2004a).  A second method is a 

modified plug with a disjointed channel, allowing for effective communication yet 

remaining effective at blocking high sound levels (CHPPM, 2004b).  While these 

devices may address one complaint of HPDs and improve the use of HPDs, it still 

does not address the personal reliance of the user to always effectively wear the HPD 

in a hazardous noise environment. 

Because of the ineffectiveness of HPDs, engineering noise controls should be 

the permanent solution to controlling occupational exposure to hazardous noise.  One 
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effective engineering control in a direct noise field is a partial barrier (Driscoll & 

Royster, 2003; Bruce, Bommer, & Moritz, 2003).  With this application, the receiver 

of the noise must be blocked form the direct line of sight of the sound source, or be in 

the “sound shadow” (Driscoll & Royster, 2003).  While full and partial enclosures 

have been tested in above ground mining, no published data was found to show a 

barrier being tested underground.  This may be due to underground mining generally 

being thought of as a very reverberant field (Yantek, Jurovcik, & Ingram, 2007), in 

which a partial barrier would not be effective. 

Dust 
 
As mentioned previously in this document, PPE for dust may not be an 

effective means of controlling exposures where a NIOSH survey suggested 90 

percent of workers with required respirator use had at least one indicator of an 

inadequate respiratory protection program (NIOSH, 2005).  Although the study was 

not limited to mining, there is no indication miners use respirators more effectively 

than the general industrial population. 

In a second study, the investigators provided coal miners with personal direct 

read dust monitors to provide instant feedback on dust exposures.  Prior to this study, 

many miners would only be aware of high dust levels from indicators such as chest x-

rays, doctor’s warnings, or physical signs such as coughing or shortness of breath.  

Thirty miners were trained on the use of the personal monitoring devices.  Twenty-

seven of the thirty miners reported noticing fluctuations in dust levels.  Of these, 

seventeen were surprised by the high levels, suggesting the miners are not aware of 

when they are being exposed.  Some of the miners noticing fluctuations in the dust 
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levels attempted to change the work environment.  Fifteen changed position, three 

changed ventilation, four changed position and ventilation, but only one wore his 

respirator.  The study has two critical findings.  First, miners may not be aware of 

when they are being overexposed to hazardous dust, and second, even when aware of 

the overexposure, miners are reluctant to wear their respirators (Peters, Vaught, Hall, 

& Volkwein, 2007).  

Engineering dust controls have been widely implemented within the coal mine 

industry.  However, most of these controls have high implementation costs, high 

operating costs, and do not always reduce the dust levels below the acceptable 

standards.  For example, forced ventilation in combination with air sprayers is often 

utilized in coal mine long wall operations to control dust levels.  The average 

minimum ventilation headgate velocity throughout U.S. coal mines was reported as 

24.5 m3/sec (n=44), which is a 65 percent increase over mid-1990 levels (Rider & 

Colinet, 2006).  The number of spray nozzles used in longwall mining ranged from 30 

to 62, with an average spray pressure of 551 kPa.  The mines reported 75-90 percent 

of the nozzles must be operational when mining.  In spite of the increased ventilation 

and use of spray nozzles, the study showed many workers are still over the regulatory 

limits (Rider & Colinet, 2006).  An additional engineering control of a shield to 

separate the miner from the source of the dust, the cutting drum, may reduce dust 

levels, while at the same time allow for decreased use of water spray nozzles, thereby 

decreasing operating expenses.  A previous study utilizing a full mesh partition 

indicated a reduction in dust could be achieved by separating the source from the 
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operator.  However, in that study, the full mesh partition blocked the view of the 

cutting drum and therefore did not have miner acceptance (Bureau of Mines, 1994). 

3. Methods 
 
Pilot Study 
 

Initial field tests were conducted in an underground coal mine longwall shearer 

operation.  A 178x86x0.635 cm (70x34x0.25 in) rubber sheet was used as a partial sound 

barrier.  The sheet was held between the shearer operator and the cutting drum to reflect 

the direct noise path.  Sound measurements were taken at the shearer operator’s head 

position.  The measurements were repeated three times each with the sheet up then 

removed to get an average noise reduction of 3.8±0.8 dB(A) at the operator’s position.  

Readings were repeated with the sheet up then removed several times to get an average 

IL of 3.8 ± 0.8 dB(A) (Slagley & Sweeney, 2007). 

Tests Performed at Wright Patterson Air Force Base (WPAFB) 

Sound Reproduction at the WPAFB Test Facility 
 

The initial underground tests warranted further investigation into engineering 

noise controls for the longwall shearer.  Therefore, an above ground model of the 

underground noise was developed and tested to determine if similar sound levels and 

frequency responses could be created.  A 24x4x2.4 m semi-reverberant room was used to 

test if shearer noise could be reproduced above ground in order to further develop the 

partial sound barrier.  The room was comprised of tile flooring, suspended acoustical tile 

ceiling, and sound absorption tiling with several layers of paint fixed to all of the walls.  

Recorded noise from an actual shearer operation was provided by MSHA.  This recording 



16 
 

was played back through a Dell® laptop computer (Dell®; Round Rock, Texas) connected 

to a Bogen® Gold Seal Series GS3 250 pre-amplifier (Bogen® Communications; Ramsey, 

New Jersey).  The pre-amplifier was routed through a dbx 223XL crossover (dbx 

Professional Products; Sandy, Utah) which was connected to two QSC® RMX-1450 

amplifiers (QSC Audio; Costa Mesa, California).  The first amplifier was connected to 

two Peavey® 115 loudspeakers (Peavey Electronics Corporation; Meridian, Mississippi) 

for middle and high frequency output.  The second amplifier was connected to two 

Peavey® 118 subwoofers for low frequency output.  Each set of speakers was connected 

in series with a second loudspeaker or subwoofer.  Twelve gauge Livewire® speaker 

cable with a length of 15.25 meters connected the amplifier to the first set of speakers 

followed by a 15.25 meter long 14 gauge Livewire® speaker cable from the first speaker 

to the next (Appendix A) (Sweeney & Slagley, 2008).  

 

 
Figure 4: Audio equipment configuration at WPAFB test facility 

 
The audio equipment allowed for both sound output control and frequency 

adjustment, enabling the operator to match the frequency spectrum of the actual 
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underground recordings.  The settings of each component of the audio equipment are at 

Appendix A. 

A partial barrier was constructed of a 2.4 m long, by 1.8 m high, by 1.3 cm thick 

piece of plywood.   The barrier was placed half-way between the speakers and the 

simulated position of the shearer operator and moved from one speaker location to the 

next (Fig 5).  Plywood was chosen for the barrier because of its availability and it should 

have similar acoustical properties of the final barrier tested, which was clear acrylic.  In a 

single barrier configuration, thicker material can have a higher transmission loss (Uris, 

Llopis, & Llinares, 2001).  Therefore, because the plywood was thicker than the acrylic 

used later, the plywood may reduce the noise to the operator to a greater extent.  

However, the intent of the experiments performed at WPAFB was to demonstrate 

feasibility prior to testing the full scale model. 

Partial Barrier Test at the WPAFB Test Facility 
 

The noise was recorded using a Larson Davis Model 831 octave band analyzer 

(OBA) (Larson Davis, Provo, Utah).  The OBA was mounted to a tripod 1.5 m above the 

ground.  Three measurements were taken with and without the barrier in place at each 

speaker location.  The measurements were taken as a 20 second average sound pressure 

level and reported as either 1/1 octave band, 1/3 octave band, or A-weighted decibels 

(dB(A)).  The meter was placed directly across from the speaker at a distance of 1.2 m 

(Fig 5).   
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Figure 5: Placement of OBA from source 

Sound Intensity Measurement 
 

Sound intensity level was measured for each speaker set in order to calculate 

sound power level.  All audio equipment was configured as mentioned in the previous 

section.  The sound intensity was measured with a Norsonic sound intensity probe type 

216 connected to a type 830 real time analyzer (Norsonic AS, Tranby I Lier, Norway).  

The box method was used for the sound intensity measurements with a 17.2 meter 

rectangular “box” surrounding the speaker set.  All sound intensity measurements were 

taken 0.6 meter from the corresponding speaker surface (Sweeney & Slagley, 2008).  To 

create the “box” around each speaker, 13 measurements were taken surrounding the 

speakers, 4 at the front and 4 at the back, 2 at each side, and 1 at the top (Fig 6).  Each 

measurement was taken as a 20 second average.  Measurements for each 1/1 octave band, 

dB(A), dB(C), and dB line were entered into a Microsoft Excel® spreadsheet. 
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Figure 6: Sound intensity probe locations 

 

Room Absorption Coefficient 
 
 An electronic buzzer with a measured sound power level was used as a noise 

source and placed in the center of the room.   A grid was measured for the room with full 

octave sound intensity level measurements taken at three locations across the width of the 

room and nine locations across the length of the room, for a total of 27 measurements.  

The measurements were used in equation (1) in the calculations section of this document 

to determine the average room’s total absorption (TA) coefficient for each octave.  

Additionally, the TA was estimated for the room using published absorption coefficients 

for each room material for comparison purposes. 

 The buzzer’s sound power was estimated in a free field using the Larson Davis 

OBA.  In contrast to the sound power measurements with the speakers, a spherical model 

was used to estimate the sound power rather than the box model.  A 3 m (10 ft) string was 
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attached to the base of the sound meter and to the buzzer to create a consistent radius 

which calculates to a surface area of 117 m2 (1256 ft2). 

Calculation of Noise Reduction from a Partial Barrier 
 
 The overall expected values for the sound pressure level within the WPAFB test 

facility was calculated by logarithmically adding each contributing sound source.  In this 

study, the contributing sources were the sound from the un-attenuated speaker, the sound 

diffracted over the barrier from the attenuated speaker, and the reflected sound off the 

ceiling from the attenuated speaker.   

 All calculations were performed for each full octave separately between 31.5 and 

8000 Hz.  The first calculation for the un-attenuated speaker used the equation for 

calculating sound levels in a reverberant space (equation 1) (Bruce, Bommer, & Moritz, 

2003).   

        (1) 

Where Lp is the sound pressure level, Lw is the sound power level of the source, Q is the 

directivity factor of the source, r is the distance from the source to the receiver, and TA is 

the room absorption factor.  Sound power (Lw) was calculated from the average intensity 

(Li) over the total area of the box using equation (2).  

 
     (2) 
 
Li was calculated as the average intensity level using the logarithmic average of the 13 

measured points around the “box” surrounding the speaker using equation (3).  The “box” 

surface area was measured as 17.22 m2. 
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        (3) 

The directivity factor used was 2 for reflection off the floor only. 

 The noise reduction from the diffracted source was determined from the path 

difference over the barrier versus the direct path from the source (Fig 7). 

 
Figure 7: Diffracted sound path over barrier 

After calculating the path difference, the insertion loss value was obtained from table 

21.11 of The Occupational Environment (Bruce, Bommer, & Moritz, 2003). 

 The third noise source, the noise reflected from the ceiling, was calculated using 

equation (4), where ILc is the difference between the level of the direct sound without the 

barrier and the sound level reflected off the ceiling, dc is the path length the sound travels 

to the ceiling and down to the receiver, dl is the direct path length from source to receiver, 

and α is the absorption coefficient of the ceiling (Fig 8). 

        (4) 
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Figure 8: Ceiling noise reflection path 

 Finally, all three noise sources were logarithmically added for a total estimated 

sound level at the receiver position using equation (5). 

        (5) 

After the predicted noise level with the barrier in place was calculated, the value 

was subtracted from the measured noise level without the barrier in place for each 

location to determine the estimated insertion loss value for the barrier, which could then 

be compared to the measured insertion loss. 

Testing at the NIOSH-PRL Facility 

Barrier Construction 
 

The full scale model of the longwall shearer at the NIOSH-PRL facility was built 

primarily of plywood sheeting and a wooden support frame to match the approximate 

configuration of an actual underground shearer.  The model has two steel cutting drums 

that rest on the simulated coal face, which is plywood over corrugated steel.  The 

walkway is a narrow path similar to the area an operator would be working in 

underground.  The shields above the walkway are plywood and steel and represent a 

moving support structure that would protect the operator from the ceiling caving in.  
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Behind the walkway and shields is an open space of approximately 2 m (6 ft) that is used 

to represent the “gop” area of the underground operation (Fig 9A).  In longwall mining, 

the shearer cuts along the coal face, progressing forward into the face.  The shields keep 

the mine ceiling from collapsing in on the worker.  As the shearer moves, the shields 

move with it, allowing the mine ceiling to collapse behind the workers.  This area is the 

gop space comprised of loosely packed rock and earth. 

Three partial barrier configurations and a full barrier were built and mounted on 

the shearer to test the effectiveness of each barrier for noise and dust level reductions at 

the typical operators’ position.  A potential concern of a barrier mounted to the longwall 

shearer is the operators’ visibility of the cutting drum.  To address this issue, clear acrylic 

sheeting was used, as well as several barrier configurations to balance visibility and 

practicality with noise reduction.  A thicker, sturdier barrier would be required in an 

actual underground operation, which may further increase noise reduction.  The greater 

the amount of barrier surface area, the greater the sound shadow will be, which should 

correspond to a greater sound reduction to the operator.  Because the shearer is mobile, 

the underground barrier would either have to have a gap between the top of the barrier 

and the ceiling, or have a flexible portion near the top to allow for the changing ceiling 

height.  The dimensions of the barrier were chosen for practicality in this experiment.  It 

may be necessary to change the dimension for underground operations.  However, as 

long as the operator remains in the sound shadow, the barrier should effectively reduce 

the noise levels.  

The partial barrier was constructed of 1.22 by 0.61 m (4 x 2 ft) clear acrylic sheets 

with a thickness of 0.95 cm (3/8 in).  Each sheet was mounted in series to a wooden 
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frame that extended the full length of the shearer just beyond each cutting drum.  The 

partial barrier left approximately a 0.6 m (2 ft) gap between the top of the barrier and the 

shield (Fig 9B).   

  
Figure 9: Mock longwall shearer with: A: No barrier and B: The partial barrier 

The full barrier was constructed by attaching rubber sheets to the top of the partial 

barrier to create a flexible seal that could adjust with the shield height as shown in figure 

10.  The blue portion shown in the figure was a protective coating on the acrylic sheets 

that was later removed.  The four barrier configurations tested are shown in figure 11 

below.   

 
Figure 10: Barrier mounted on mock-shearer 
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Figure 11: Four barrier configurations tested for noise reduction 

Sound Testing 
 

The same audio set-up was utilized at the NIOSH-PRL longwall test facility.  

Three days of noise testing was performed.  The first two days were spent testing the best 

configuration and speaker placement, along with constructing the barrier (Fig 12).   

 

Figure 12: A: Speaker location at headgate drum and B: Sound meter on tripod 
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Some of the methods tried but not used included facing the speakers towards the 

simulated face to increase the sound scattering.  This did not provide adequate sound 

levels nor correct frequency response.  The third day recorded sound measurements in 

five configurations: no barrier, a partial barrier with a partial rubber bottom, a partial 

barrier with a partial rubber bottom and top extending to the ceiling, a partial barrier with 

a full wooden bottom section, and a full barrier from floor to ceiling (Fig 13).   

  

      
Figure 13: Partial and full noise barriers 

Three positions were tested, at the headgate drum, the center of the machine, and 

the tailgate drum for each barrier configuration (Fig 14, vertical solid arrows). At each 

test location, three heights were tested, 132 cm (52 in) from the floor to simulate the ear 

height of the fifth percentile female, 162.5 cm (64 in) for the 50th percentile male and 
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172.5 cm (68 in) for the 95th percentile male (Annis & McConville, 1996).  Additionally, 

each location and height was tested for noise reduction using a pink noise generator to 

determine if changing the frequency spectrum would have a large influence on the 

amount of attenuation from the barrier. 

The TA was measured for the longwall test facility using a similar technique as 

performed in underground coal mine absorption coefficient tests (Kovalchik, Matetic, 

Cole, & Smith, 2007).  The sound source was placed in two locations to measure the TA.  

The buzzer was first placed in the middle of the walkway centered between shield 

supports 11 and 12 and suspended from the ceiling 1.83 m (72 in) above the floor (0.66 m 

(26 in) below the ceiling).  Sound level was measured at ten locations along the center of 

the walkway at a height of 1.55 m (61 in) above the floor.  The buzzer was then moved to 

the simulated face, again centered between shields 11 and 12 and 0.91 m (36 in) above 

the shearer (0.66 m (26 in) below the ceiling).  The sound level was measured at five 

locations along the center of the walkway.  All measurements were taken as 30 second 

averages (n=2 at each location). 

Dust Testing 
 

To measure the effectiveness of the full (acrylic sheets plus rubber to ceiling) and 

partial barrier (acrylic sheets only), tests were performed in an above ground full scale 

mock-up of a coal mine longwall operation following previously published procedures.  

Briefly: 

Tests to evaluate the [effects that a partial and full barrier] have on dust 
levels on the longwall face [were] conducted at a full scale longwall test 
facility at the National Institute for Occupational Safety and Health 
Pittsburgh Research Laboratory (NIOSH-PRL).  The simulated face is 
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38.13-m [125-ft] long and the height from floor to roof is 2.29-m [7.5-ft] 
as shown in Figure [13]. Twenty-four simulated shield supports [1.52-m 
(5-ft) wide] cover the length of the test facility. A full scale wooden mock-
up of a Joy 4LS double ranging arm shearer was located approximately 
one half of the distance from the headgate to the tailgate. . . Ventilation for 
the longwall gallery was provided by two exhaust fans capable of 
supplying approximately 19.17 m3/sec (40,500 cfm) of air along the face.  
(Rider & Colint, 2001) 

 

 
 

Figure 14: Simulated full scale longwall facility at NIOSH-PRL (Rider & Colint, 2001) 

Commercially available respirable coal dust was fed into the longwall gallery at 

the head and tail drum via a screw type feeder into mini educators.  Compressed air 

carried the coal dust from the educators into the gallery to produce dust at the drum 

locations. 

Four real-time aerosol monitors (RAMs) were used to measure dust levels (Fig 

15).  The RAMs were suspended from the shield supports at breathing zone level near 

shields 10, 12, 15, and 18 to approximate the shearer operator and the jacksetter positions 

(Fig 13, horizontal, hashed arrows).  The air was pulled through a 10-mm cyclone at 2 

L/min to separate and measure the respirable dust.  Measurements were averaged and 

recorded every two seconds. 
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Figure 15: Suspended RAM 

Dust tests were conducted at three different ventilation face velocities for each 

barrier configuration: no barrier, the partial barrier, and the full barrier.  Each test was run 

for approximately 10 minutes.  The face velocity remained relatively consistent between 

configurations for each respective ventilation speed, which was measured upstream of the 

mock shearer near shield number six with a direct read anemometer.  The results are 

shown in Table 2 for each test configuration (± one standard deviation).   

Table 2: Relative face velocities for each configuration 

Relative 
Velocity 

No Barrier Partial Barrier Full Barrier 
(m3/min) (ft3/min) (m3/min) (ft3/min) (m3/min) (ft3/min) 

Low 13.6 ± 1.0 480 ± 35 13.9 ± 0.8 490 ± 30 13.9 ± 0.8 490 ± 30 
Medium 19.0 ± 1.1 670 ± 40 19.0 ± 1.0 670 ± 35 19.1 ± 1.0 675 ± 35 
High 23.5 ± 1.4 830 ± 50 23.8 ± 1.4 840 ± 50 24.0 ± 1.4 850 ± 50 

4.  Results 
 
Table 3 outlines the results of each test performed, and when applicable, the statistical 

results.  Appendix C provides the detailed statistical analysis. 
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Table 3: Outline of hypotheses results 

Test 
Performed 

Null Hypothesis (Ho) Alternative Hypothesis 
(HA) 

Result 

Pilot study A rubber partial barrier 
placed between an 
operator and the cutting 
drum of a Longwall 
shearer will not reduce 
the noise to the operator 

A rubber partial barrier 
placed between operator 
and cutting drum will 
reduce the noise to the 
operator by more than 3 
dB(A) 

Reject Ho, accept Ha: 
The rubber barrier 
reduced noise to the 
operator by 3.8 ± 0.8 
dB(A) 

Reproduce 
underground 
shearer noise 
in a sound 
studio 

Sound studio equipment 
cannot reproduce a 
similar frequency 
spectrum from a 
recording of an 
underground shearer 
operation as compared to 
actual underground noise 

Sound studio equipment 
can reproduce a similar 
frequency spectrum 

Reject Ho, accept Ha: 
The frequency spectrum 
was reproducible above 
ground with audio 
equipment 

Partial 
barrier test 
in a sound 
studio 

The recorded shearer 
noise cannot be reduced 
by at least 3 dB(A) from 
a partial barrier in a 
semi-reflective 
environment 

The recorded shearer 
noise can be reduced by 
at least 3 dB(A) from a 
partial barrier in a semi-
reflective environment  

Reject Ho, accept Ha: 
The noise level was 
reduced by 10.3 dB(A) 
(p<0.005) for the 
headgate position and 
13.2 dB(A) (p<0.005) 
for the tailgate position 

Sound 
intensity 
measurement 
of recorded 
noise 

The sound intensity of 
the audio equipment was 
measured to use in 
calculations.  Hypothesis 
is that this is a not a 
valid measurement 

Sound Intensity is a valid 
measurement 

Reject Ho, accept Ha: 
The established 
procedures are 
acceptable 

Room 
absorption 
coefficient 

The measured room total 
absorption (TA) will not 
equal the calculated TA 

The measured room TA 
will equal the calculated 
TA 

Fail to reject Ho: The 
measured TA was not 
within 10% of the 
calculated TA 

Calculation 
of noise 
reduction 
from the 
barrier 

The calculated noise 
reduction using standard 
equations for sound 
calculations will not 
equal the measured noise 
reduction 

The calculated noise 
reduction using standard 
equations for sound 
calculations will equal 
the measured noise 
reduction 

Fail to reject Ho: The 
measured TA was not 
within 10% of the 
calculated TA for both 
positions 

Partial and 
Full barrier 
tests in a 
simulated 
Longwall test 
facility 

A partial or a full barrier 
will not significantly 
reduce the sound level at 
the operator position 

A partial or a full barrier 
will significantly reduce 
the sound level at the 
operator position 

Reject Ho, accept Ha: 
The barrier did 
significantly reduce the 
noise to the operator 
(Prob > F = 0.0001) 
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Test 
Performed 

Null Hypothesis (Ho) Alternative Hypothesis 
(HA) 

Result 

Dust testing 
in a 
simulated 
Longwall test 
facility 

A partial or a full barrier 
will not reduce the dust 
level at the operator 
position below 
regulatory standards 

A partial or a full barrier 
will reduce the dust level 
at the operator position 
below regulatory 
standards 

Reject Ho, accept Ha: 
The dust levels were 
significantly reduced for 
all positions except the 
jacksetter (Prob > F = 
0.0001) 

Room 
absorption 
coefficient at 
the Longwall 
test facility 

The measured room TA 
will not equal previously 
published date TA for an 
underground mine 

The measured room TA 
will equal previously 
published date TA for an 
underground mine 

Fail to reject Ho, the 
measured TA at the test 
facility was not within 
10% of the underground 
coal mine TA 

 

Tests Performed at WPAFB 

Sound Reproduction at the WPAFB Test Facility 
 

The MSHA-provided noise recording was successfully generated through the 

loudspeaker system at the test facility for frequencies above 40 Hz (Fig 16).  The noise 

model readings reported are an average of three readings taken with a Larson Davis 

OBA. Each measurement is the sound equivalent level over a 20 second period.  For the 

primary frequencies of concern for developing engineering noise controls (125-10,000 

Hz) the spectrum was reproduced to within ± 5 decibels at each 1/3 octave band. 
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Figure 16: A: Mean frequency response of reproduced shearer noise vs. MSHA recorded 
spectrum (n=3, error bars ±1 SD). B: Mean difference in frequency response. 

Sound Measurement at the WPAFB Test Facility 
 
 Sound measurements were recorded at the simulated headgate and tailgate 

positions with and without the plywood barrier.  Three measurements were taken for each 

variation.  The average noise reduction from the barrier was 13.1 ± 0.4 dB(A) and 10.3 ± 

0.4 dB(A) for the tailgate drum and headgate drum, respectively.  Figure 17 shows the 
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frequency spectrums with and without the barrier for the headgate drum (A) and tailgate 

drum (B).  The mean sound reduction is shown in figure 18.  

 

 Figure 17: Frequency measurements with and without plywood barrier 
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Figure 18: Mean sound level reduction for plywood barrier (n=3) 

 

Sound Intensity Measurement 
 

The sound intensity was measured with the Norsonic sound meter in conjunction 

with the sound intensity probe as described in the methods section of this document.  The 

total surface area of the box surrounding the speaker set was 17.22 m2.  The measured 

results are reported in tables 4 and 5 below for the headgate and tailgate speakers, 

respectively.  The sound intensity reported was calculated as the average sound intensity 

for each measurement using equation (3) of the methods section.  The sound power was 

then calculated using the average sound intensity and equation (2) of the methods section. 
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Table 4: Sound intensity measurements for the headgate speaker 

Surface Front Back Right Left Top Sound 
Intensity 

Sound 
Power 

Frequency 1 2 3 4 1 2 3 4 1 2 1 2 1 (dB) (dB) 

31.5 95 91 87 82 88 86 83 85 86 91 87 91 88 89.1 101.4 

63 103 101 94 89 94 93 91 93 91 99 93 97 95 96.6 109.0 

125 102 102 93 94 92 95 89 88 89 97 90 98 79 96.3 108.7 

250 93 93 91 92 83 77 84 79 88 89 87 90 85 89.1 101.5 

50 97 97 93 94 83 81 86 87 87 89 87 90 89 91.7 104.1 

1000 90 90 88 89 79 75 75 68 80 81 77 84 81 85.0 97.4 

2000 82 82 84 87 78 73 76 71 72 72 78 72 78 80.3 92.7 

4000 67 71 80 83 63 60 68 65 65 63 67 66 69 74.0 86.4 

 
Table 5: Sound intensity measurements for the tailgate speaker 

Surface Front Back Right Left Top Sound 
Intensity 

Sound 
Power 

Frequency 1 2 3 4 1 2 3 4 1 2 1 2 1 (dB) (dB) 

31.5 82 89 82 80 87 85 83 84 86 93 85 90 85 87.0 99.3 

63 92 100 89 82 95 95 92 93 93 100 92 98 95 95.4 107.8 

125 96 101 94 93 93 92 85 84 92 98 87 98 86 94.8 107.2 

250 90 92 91 88 81 82 77 82 89 87 87 89 84 87.9 100.2 

50 92 96 92 89 84 84 83 79 89 90 88 90 88 90.0 102.3 

1000 88 89 88 86 77 77 73 76 80 80 81 84 83 83.9 96.2 

2000 80 82 83 79 73 71 70 74 74 72 76 74 75 77.4 89.8 

4000 65 66 78 73 67 64 60 64 67 55 65 59 64 69.2 81.6 

 

Room Absorption Coefficient 
 
 The room absorption coefficient was measured and calculated from the 27 sound 

level measurements taken at various locations in the room.  The buzzer was run 

continuously during the measurements and each sound level measurement was recorded 

as a 10 second average sound pressure level.  The results of the measured TA are shown 

in table four and compared to the calculated TA.  Published sound-absorption coefficients 

(α) for suspended acoustical tile for the ceiling, ceramic tile for the floor, and shredded 

wood fiberboard for the walls where used to calculate the room TA (Bruce, Bommer, & 
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Moritz, 2003).  Each α was multiplied by the total surface area for each section, for 

example, the ceiling surface area was 101 m2, multiplied by an α of 0.76 for the 125 Hz 

frequency to give a TA of 77 metric sabuns.  The total room TA is the some of the 

ceiling, floor, and wall TA’s. 

Table 6: TA at WPAFB test facility 
*The α for 8000 Hz was estimated 

Frequency (Hz) 125 250 500 1000 2000 4000 8000* 

Ceiling Surface Area (M2) 101 101 101 101 101 101 101 
Ceiling α 0.76 0.93 0.83 0.99 0.99 0.94 0.94 
Calculated Ceiling TA (metric sabuns) 77 94 84 100 100 95 95 
Floor Surface Area (M2) 101 101 101 101 101 101 101 
Floor α 0.01 0.01 0.01 0.02 0.02 0.02 0.02 
Calculated Floor TA (metric sabuns) 1 1 1 2 2 2 2 
Wall Surface Area (M2) 127 127 127 127 127 127 127 
Wall α 0.32 0.37 0.77 0.99 0.79 0.88 0.88 
Calculated Wall TA (metric sabuns) 41 47 98 126 100 112 112 
Calculated Room TA (metric sabuns) 118 142 183 228 202 209 209 
Measured Room TA (metric sabuns) 4.3 4.1 15.2 18.3 11.5 13.9 5.5 
Difference 114 138 168 210 191 195 204 

Calculations 
 

The predicted noise reduction from the barrier was calculated as described in the 

methods section.  The overall sound level was calculated as the logarithmic sum of the 

three sources, the diffracted noise over the barrier, the reflected noise off the ceiling, and 

the secondary diffuse noise source, which was the second speaker set (Table 7).   

Table 7: Calculated sound levels with the barrier in place 

Sound source Headgate with barrier 
(dB(A)) 

Tailgate with barrier 
(dB(A)) 

Diffracted 83.1 80.2 
Reflected from ceiling 81.0 78.2 

Second Speaker 85.3 87.0 
Total Calculated Sound Level 88.2 88.3 
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Table 8: Actual versus measured insertion loss 

 Measured 
Sound level 
w/o barrier 

(dB(A)) 

Measured 
Sound Level 
w/ barrier 

(dB(A)) 

Calculated 
sound level 
w/ barrier 

(dB(A)) 

IL from 
measured 

sound level 
(dB) 

IL from 
Calculated 

Sound Level 
(dB) 

Percent 
Difference 

(%) 

Headgate 103.1 92.8 88.2 10.3 14.9 44.7 
Tailgate 100.3 87.1 88.3 13.2 12.0 9.1 

 
Table 8 compares the sound level without the barrier to the measured sound level 

with the barrier in place and the calculated sound level with the barrier in place.  The 

model predicted the tailgate insertion loss to within 1.2 dB(A) and the headgate insertion 

loss within 4.6 dB(A).  Figure 19 shows the full octave band analysis for measured versus 

calculated noise reduction levels. 
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Figure 19: Sound reduction for center octave band analysis.  A: Measured at the headgate 
drum position.  B: Measured at the tailgate drum position 

Testing at the NIOSH-PRL Facility 
 

Sound Testing 
 
The overall logarithmic average noise reduction for the barrier for all recordings 

combined was 4.5 ± 2.8 dB(A).  The full barrier, essentially a wall, had the greatest 

sound attenuation for all locations.  The partial barrier for all configurations had some 
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noise reduction, but was not as effective as the full barrier.  Additionally, the pink noise 

had a higher reduction than the shearer operation noise.  Separating the barrier into two 

categories, full and partial, produced a reduction of 7.6 ± 3.5 dB(A) and  4.2 ± 2.4 dB(A), 

for the pink noise and 5.6 ± 0.3 dB(A) and 2.2 ± 0.5 dB(A) for the shearer noise, 

respectively.  Figure 20 shows a typical example of the noise reduction from the different 

barrier configurations.  This particular example is taken at the headgate position (Fig 14) 

with the cutting drum in the up position for the shearer noise. 

 

Figure 20: Example of noise reduction from the various barrier configurations 

The remainder of the noise data for each position can be found at appendix A. 

 The results of the TA measurement are shown in table 9.  Due to the complexities 

of sound absorption in the test facility such as the simulated shearer and cutting drums, 
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the published α and the mine dimensions (Kovalchik, Matetic, Cole, & Smith, 2007), a 

TA can be calculated from the underground tests and compared directly to the TA from 

the NIOSH-PRL test facility.  Except for the lowest frequency, 125 Hz, the test facility 

was more reflective (less absorptive) than the underground mine.  Therefore, the barrier 

may be considerably more effective at reducing noise exposure underground as compared 

to the reduction realized in the test facility. 

Table 9: Measured TA at NIOSH-PRL test facility 

Frequency (Hz) 125 250 500 1000 2000 4000 8000 

Measured TA buzzer in the 
middle  (metric sabuns) (n=20) 24.1 5.6 8.7 9.6 12.3 25.1 7.9 

Measured TA for buzzer at face 
(metric sabuns) (n=10) 17.3 14.8 11.6 4.4 7.0 23.6 9.4 

Average (metric sabuns)  (n=30) 21.9 8.6 9.7 7.9 10.5 24.6 8.4 
Mine Surface Area (m2) 290 290 290 290 290 290 290 
Reported coal face α 0.04 0.20 0.14 0.15 0.19 0.28 0.45 
Calculated mine shaft TA based 
on published α (metric sabuns) 11.6 52 40.6 43.5 55.1 81.2 130.5 

Difference from test facility 
(metric sabuns) 5.7 -43.4 -30.9 -35.6 -44.6 -56.6 -122.1 

 

Dust Testing 
 

The results of each ten minute test session were compiled to obtain an average 

(n=300) respirable dust exposure level in mg/m3.  Results were compared for statistical 

significance using JMP® software (SAS Institute Inc., Cary, North Carolina).  Each 

configuration was compared using Analysis of Variance (ANOVA) with a significance 

level of alpha less than 0.05.  When a significant difference was observed between 

groups, Tukey-Kramer comparisons were used to determine which configuration within 

the group showed a statistically significant difference.   
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The greatest reduction in measured dust levels was at the headgate position with 

the low ventilation face velocity.  The reduction was from 39 mg/m3 without the barrier 

to 1.5 mg/m3 with the partial barrier, equating to a 96 percent reduction.  Similar 

reductions were noticed at the mid and high ventilation velocities for the headgate 

position, bringing the dust levels close to zero with either barrier in place.  At the 

remaining two shearer operator positions, dust levels also decreased significantly with 

both the partial and full barriers as compared to no barrier for all ventilation rates (Prob > 

F 0.0001 for all cases).  Although in most cases, a significant difference was also found 

between the dust levels for the partial versus the full barrier, these differences were not of 

practical significance.  Figure 21 summarizes the dust level results. 
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For the jacksetter position, the dust levels increased significantly with the 

placement of the barrier, with the exception of the full barrier at low velocity, which had 

a significant decrease in dust level (Prob > F 0.0001 for all cases).  This can be explained 

by the dust channeling effect created by the barrier. 

One potential drawback to the barrier constructed in this investigation may be the 

reduced visibility of the cutting drum from the operator position.  Figure 22 demonstrates 

the visibility of the cutting drum while the dust was being generated.  Although the coal 

dust adhered to the acrylic sheeting, a simple wash spray could be utilized to keep the 

shield clean.  Additionally, if the barrier was configured without the rubber top, the 

majority of the operators would be able to simply look over the top of the barrier to see 

the top of the cutting drum. 

 
Figure 22: View of headgate cutting drum through partial barrier 

5.  Discussion 
 
WPAFB Sound Tests 
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The initial above ground tests performed at WPAFB showed a 10.3 and 13.2 

dB(A) insertion loss for the tailgate and headgate operator position.  The measured results 

varied slightly from the predicted calculated values.  The predicted loss at the headgate 

drum was 14.9 dB(A) and at the tailgate was 12.0 dB(A).  The predicted loss calculated 

in table 5 was calculated using the TA determined from the published absorption 

coefficients.  Because of the large discrepancy between the calculated TA and the 

measured TA, the expected IL was recalculated using the measured TA.  The result of the 

predicted IL using the measured TA gives quite different results as shown in table 10.  In 

this case, the room is much more reflective than previously predicted; therefore the 

contribution of sound from the second speaker is greater in the calculations.   

Table 10: Predicted vs. measured IL using measured TA 

 Measured 
Sound level 

without barrier 
(dB(A)) 

Measured 
Sound Level 
with barrier 

(dB(A)) 

Calculated 
sound level 

with barrier 
(dB(A)) 

IL from 
measured 

sound level 
(dB) 

IL from 
Calculated 

Sound 
Level (dB) 

Percent 
Difference 

(% 

Headgate 103.1 92.8 98.3 10.3 4.8 114 
Tailgate 100.3 87.1 99.7 13.2 0.6 250 

 

Using the measured TA increased the difference between the predicted and actual 

IL.  This difference in the IL may be explained with the fact that the sound produced by 

the speakers is very directional.  Therefore, the majority of the sound level at each 

location is the contribution of the speaker directly in front of the sound level meter.  

Thus, a barrier placed between the speaker and meter would have a higher IL than 

predicted.  This effect can also account for the differences between the headgate position 

and tailgate position.  The IL has a larger discrepancy between predicted and calculated 

at the tailgate position.  By observing the room configuration (Fig 23), it can be expected 
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the headgate drum speaker will diffuse the sound throughout the room to a greater extent 

than the tailgate drum position. 

        

 

Figure 23: WPAFB test configuration 

 
As already mentioned, the calculated room TA differed from the measured TA.  

The difference may be explained in part from the absorptive wall material being coated 

with several layers of paint, thus losing any absorptive properties.  Thus showing the TA 

calculations may be useful for design or comparison purposes, but may not be reliable 

when a material has changed from its original sound absorption properties. 

NIOSH-PRL Sound Tests 
 

The full scale model at the NIOSH-PRL test facility IL was slightly lower than 

the WPAFB test, with a 5.6 dB(A) and 2.4 dB(A) reduction for the recorded shearer noise 

for the full and partial barrier, respectively.  According to the U.S. Code of Federal 

Regulations (CFR), Title 30, Part 62.130, “if during any work shift a miner's noise 

exposure exceeds the permissible exposure level, the mine operator must use all feasible 

engineering and administrative controls to reduce the miner's noise exposure to the 
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permissible exposure level” (MSHA, 2000).  MSHA gives further guidance that an 

engineering control is feasible if it reduces the noise exposure, is technologically 

achievable, and is economically achievable (MSHA, 2000).  The MSHA guide also states 

that a 3 dB(A) reduction is generally considered to have reduced the noise, but the control 

may still be considered feasible if in combination with other controls, it achieves a minimum 

of 3 dB(A).  Although the partial barrier did not meet the 3 dB(A) reduction criteria, 

combined with the dust level reduction, it could be considered a feasible control and 

tested underground during an actual longwall operation.  When considering the NIOSH-

PRL test facility was more reflective than the underground coal mine, a further reduction 

in noise may be expected in actual shearer operations.  Additionally, considering the 

underground test was performed in a coal shaft with four coal surfaces without the open 

gop space normally found behind the shearer during actual shearer operations, the 

reduction may be even greater because of the potentially higher absorption coefficient. 

The four different partial barrier configurations tested for noise reduction all 

reduced the sound level to the operator.  However, each partial barrier configuration had 

slightly different results, while the full barrier was much different.  When looking at the 

percentage of a barrier, with the full barrier area considered 100% and a transmission loss 

of 7 dB(A), the expected loss for the partial configurations would be 5.5, 4.8, and 6.0 

dB(A) for the half rubber top barrier (Fig 20A), the no rubber top (Fig 20B), and the 

wood bottom (Fig 20D), respectively.  The actual noise reduction for configurations A, 

B, and D were approximately 4, 2, and 2.5 dB(A).  This may suggest the noise reflected 

of the ceiling and floor was a large contributor to the overall noise level.  Although 

probably not a practical application for underground longwall mining, the full barrier, 
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essentially a wall, had the greatest reduction.  This was due to the sound source being 

isolated from the operator by the wall, showing that when possible, even a simple wall 

isolating a sound source can achieve a high level of noise reduction.  The partial barriers 

all had similar sound level reduction, indicating the sound was either passing over or 

under the barrier, or both, depending on the configuration.  In the underground operation 

where operators are routinely exposed to hazardous noise at 151 percent of the allowable 

limit (roughly 93 dB(A) continuous equivalent level) (Joy & Middendorf, 2007), the 

barrier may reduce the noise to levels near the allowable limit, thereby reducing the 

frequency of NIHL. 

NIOSH-PRL Dust Tests 
 

The results indicated that a significant reduction of respirable dust can be 

achieved from either a partial or full barrier mounted between the cutting drums of the 

longwall shearer and the shearer operator.  As high as a 96 percent reduction in respirable 

dust levels was measured at the shearer operators’ position.  Additionally, reduced dust 

levels were noticed regardless of ventilation face velocity.  While the model used in this 

study was not built to withstand the rigorous conditions found in underground longwall 

operations, the model demonstrates the preliminary feasibility of such a control.  In order 

to be of practical use, the barrier would need to be constructed of hardened materials, 

such as a bullet-proof clear acrylic, be mounted on a flexible hinge, and be capable of 

continuous or rapid cleaning so as not to block the operator’s view of the longwall face. 

Surprisingly, for the dust reduction, the partial and full barriers had nearly 

identical dust reduction levels at all positions and ventilation rates, suggesting the barrier 

in either configuration helps keep a laminar flow separation between the dust source, the 
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cutting drum, and the shearer operator.  This is a significant finding, showing even the 

partial barrier will dramatically reduce dust levels to the miners.  As mentioned earlier, an 

estimated 20 percent of coal mine longwall shearer operators continue to be overexposed 

to dust levels, and eight percent of long term operators suffer from coal worker 

pneumoconiosis (CWP) (Rider & Colint, 2001).  With the application of this barrier in 

conjunction with water spray nozzles, it may be possible to eliminate over-exposure to 

dust levels, thus reducing future cases of CWP.  

Additional Noise Barrier Modeling 
 

 The barrier modeling used in this thesis was not only inaccurate, but 

would not be a practical tool for the base level BEE.  Therefore, a simpler model was 

developed assuming a free field with the only sound sources being the diffracted noise 

over the barrier and the reflected noise off the ceiling.  Equation 4 presented earlier in 

this document was used in a Microsoft Excel® spreadsheet along with the insertion loss 

value from table 21.11 of The Occupational Environment (Bruce, Bommer, & Moritz, 

2003).  The only inputs needed from the user are source, receiver, barrier, and ceiling 

height, ceiling material, and an octave band analysis of the sound source.  This simpler 

model provided closer results to the realized sound reduction, thus validating the model 

in the two locations tested in this study.  Table 11 outlines the results of using this new 

model.  Because the model assumes a perfect barrier from the floor up, configuration D 

from the NIOSH-PRL test was used in the model.  Configuration D was the full plywood 

to the floor in combination with the acrylic, but no rubber top (Fig 20D).  Figure 24 

shows the model results for the headgate position with the 50th percentile male. 
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Table 11: Measured versus predicted loss using simplified model 

Test Predicted Loss 
dB(A) 

Measured Loss 
dB(A) 

Percent Difference 
(%) 

WPAFB headgate 12 10.3 16.5 
WPAFB tailgate 15 13.2 13.6 
NIOSH-PRL headgate 2.9 2.6 11.5 
NIOSH-PRL center 1.8 2.1 14.3 
NIOSH-PRL tailgate 3.2 0.7 350 
 

 

Figure 24: Model for NIOSH-PRL headgate position, 50% male, barrier configuration D 

 While the simpler version of the model presented here still does not predict the 

noise reduction within ten percent of the measured value, the model has practical field 

applications due to its simplicity.  The remainder of the results for this new model is in 

Appendix D. 

The following decision matrix and barrier modeling can be used to help dtermine if a barrier can be ean effective engineering control

1.  Is a barrier physically possible? Yes
2.  Will the worker accept a barrier? Yes
3.  Is the hazard source stationary or semi-stationary? Yes
4.  Is this for noise or dust control? Noise
5.  Can the barrier be modeled? Yes
6.  Does model indicate a 3dB(A) reduciton or greater? Yes
7.  Is cross ventilation available to channel dust away from opeYes

NOTE: These Calculations assume a perfect barrier in a free field, the predicted sound reduction may be less than the observed
All Measurements must be input in meters

Height of Source (m)
Height of Receiver (m)
Height of Barrier (m)
Line of sight distance between source and receiver (m)
Height of ceiling (m)
Ceiling material (pick from dropdown)

Freqeuncy 31.5 63 125 250 500 1000 2000 4000 8000
Octave Band Measurement of Source 77.0 94.9 93.6 78.4 80.6 74.8 76.0 73.5 71.5

Calculated dB(A) without barrier
Calculated dB(A) with barrier
Reduction dB(A)

81
3.2

3.3
3
Plywood

Octave Band Measurement of Source

Results

84

Test Barrier
Test Barrier

Area Data
1
1.6
2.4

Decision Matrix
Proceed to Question 2
Proceed to Question 3
Proceed to Question 4
Proceed to Question 5
Proceed to Modeling Sheet
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6. Conclusions 
 

A simulated full scale coal mine longwall shearer operation was utilized to test 

the feasibility of utilizing a barrier to separate the shearer operator from the direct path of 

the noise and dust source during mining operations.  In this model, noise and dust levels 

were reduced by the application of a barrier.  The barrier should be tested in an 

underground mining operation to determine if it can reduce the shearer operators’ noise 

and dust exposure to below regulatory limits.  If so, the application of the barrier may 

help reduce the two greatest concerns in the mining industry, NIHL and respiratory 

diseases. 

This proof of concept study helps gain an understanding of how simple 

engineering controls can be applied to unique industrial operations.  As mentioned in the 

background, the Air Force has not been successful in reducing NIHL claims.  Rather, just 

the opposite has occurred with NIHL claims having increased over the past five or six 

years, perhaps suggesting current control measures are not effective.  Engineering noise 

controls are often dismissed as being too complicated and expensive to implement.  

Simple barriers may prove to be useful in AF operations such as aerospace generation 

equipment (AGE), corrosion control facilities, or any other noisy or dusty operation.   

This research addressed a fundamental dilemma within the BEE career field: by 

regulation, engineering controls are suppose to be the primary means of controlling an 

occupational exposure to within acceptable limits, yet because engineering controls are 

often regarded as complicated, expensive, and time consuming, the BEE typically favors 

PPE, which places the burden of protection on the worker, over a more permanent 

solution.   This research showed proof of concept that even basic noise and dust 
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engineering controls can be very effective.  The developed spreadsheet may be a useful 

tool for the base level BEE to determine if a sound barrier can be a useful engineering 

control.  Future research could implement the concepts shown in this work to common 

industrial processes found throughout the AF, with the long range goal of having AF 

BEEs control processes through engineering measures, rather than just measure exposure 

and control through PPE.  Furthermore, a full scale production model of the longwall 

barrier should be tested in an actual underground shearer operation. 
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Appendix A 
 

Table A 1: Initial audio equipment settings 

Component Variable Setting 

Computer Audio Output Maximum 
Bogen pre-amp Mic 1 5 
 Mic 2-6 Not Used 
 Aux 1, Aux 2 Not Used 
 Equalizer (#6) Not Used 
 Switch 7 Out 
 Switch 9 Out 
 Master 2 
DBX Channel 1 Input gain 0 
 Channel 1 Cross Over 240 Hz 
 Channel 1 Low out gain -0.5 (1 notch) 
 Channel 1 High out gain -5 
 Channel 2 Settings Not Used 
QSC high frequency amp Channel 1 Gain 22 
 Channel 2 Gain Not Used 
QSC low Frequency amp Channel 1 Gain 14 
 Channel 2 Gain Not Used 

 

 

Figure A 1: Front view of audio equipment 
(Bogen Communications; QSC Audio; DBX Professional Products) 
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Figure A 2: Rear view of audio equipment  

(Bogen Communications; DBX Professional Products; QSC Audio) 
 

Table A 2: Mode switch configuration for amplifiers 

Switch Number Subwoofer Amp Main Speaker Amp 
1 Clip Limiter On Clip Limiter On 
2 30 Hz 50 Hz 
3 Filter On Filter On 
4 Parallel Parallel 
5 Parallel Parallel 
6 Bridge Mono On Bridge Mono On 
7 Bridge Mono On Bridge Mono On 
8 Not Used Not Used 
9 Not Used Not Used 
10 Not Used Not Used 
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Appendix B 
 

 

Figure B 1: Recorded shearer noise at simulated headgate position 
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Figure B 2: Recorded shearer noise at simulated center position 
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Figure B 3: Recorded shearer noise at simulated tailgate position 
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Figure B 4: Pink noise at simulated headgate position 
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Figure B 5: Pink noise at simulated center position 
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Figure B 6: Pink noise at simulated tailgate position 
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Figure B 7: Octave band analysis headgate drum, recorded noise - 5% female 
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Figure B 8: Octave band analysis headgate drum, recorded noise - 50% male 
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Figure B 9: Octave band analysis headgate drum, recorded noise - 95% male 
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Figure B 10: Octave band analysis center position, recorded noise - 5% female 
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Figure B 11: Octave band analysis center position, recorded noise - 50% male 

0

10

20

30

40

50

60

70

80

90

100

8.0 16.0 31.5 63.0 125 250 500 1000 2000 4000 8000 16000

So
un

d 
Le

ve
l (

dB
)

Frequency (Hz)

Center Position, Recorded Noise - 50% Male

No Barrier

Barrier half rubber top rubber bottom

Barrier no rubber top rubber bottom

Barrier with full rubber top wood bottom

Barrier with no rubber top wood bottom



 

 
 

64 

 

Figure B 12: Octave band analysis center position, recorded noise - 95% male 
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Figure B 13: Octave band analysis tailgate position, recorded noise - 5% female 
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Figure B 14: Octave band analysis tailgate position, recorded noise - 50% male 
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Figure B 15: Octave band analysis tailgate position, recorded noise - 95% male 
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Figure B 16: Octave band analysis headgate position, pink noise - 5% female 
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Figure B 17: Octave band analysis headgate position, pink noise - 95% male 
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Figure B 18: Octave band analysis headgate position, pink noise - 95% male 
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Figure B 19: Octave band analysis center position, pink noise - 5% female 
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Figure B 20: Octave band analysis center position, pink noise - 50% male 
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Figure B 21: Octave band analysis center position, pink noise - 95% male 
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Figure B 22: Octave band analysis tailgate position, pink noise - 5% female 

0

10

20

30

40

50

60

70

80

90

100

8.0 16.0 31.5 63.0 125 250 500 1000 2000 4000 8000 16000

So
un

d 
Le

ve
l (

dB
)

Frequency (Hz)

Tail Drum in Down Position, Pink Noise - 5% Female  

No Barrier

Barrier half rubber top rubber bottom

Barrier no rubber top rubber bottom

Barrier with full rubber top wood bottom

Barrier with no rubber top wood bottom



 

 
 

75 

 

Figure B 23: Octave band analysis tailgate position, pink noise - 50% male 
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Figure B 24: Octave band analysis tailgate position, pink noise - 95% male
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Appendix C 
 
 

Table C 1: Barrier test at WPAFB test facility headgate position 

  No Barrier Barrier 
Mean 103.06667 92.766667 
Variance 0.0933333 0.0033333 
Observations 3 3 
Pooled Variance 0.0483333 

 Hypothesized Mean 
Difference 0 

 df 4 
 t Stat 57.379859 
 P(T<=t) one-tail 2.762E-07 
 t Critical one-tail 2.1318468 
 P(T<=t) two-tail 5.524E-07 
 t Critical two-tail 2.7764451 
 t-Test: two-sample assuming equal variances 

 
 

Table C 2: Barrier test at WPAFB test facility tailgate position 

 
No Barrier Barrier 

Mean 100.2666667 87.16666667 
Variance 0.093333333 0.013333333 
Observations 3 3 
Pooled Variance 0.053333333 

 Hypothesized Mean 
Difference 0 

 df 4 
 t Stat 69.47324125 
 P(T<=t) one-tail 1.28603E-07 
 t Critical one-tail 2.131846782 
 P(T<=t) two-tail 2.57206E-07 
 t Critical two-tail 2.776445105 
 t-Test: Two-Sample Assuming Equal Variances 
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Figure C 1: Oneway analysis of sound level by barrier configuration 
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Figure C 2: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=center, operator height=low 
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Figure C 3: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=center, operator height=medium 
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Figure C 4: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=center, operator height=high 
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Figure C 5: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=headgate, operator height=low 
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Figure C 6: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=headgate, operator height=medium 
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Figure C 7: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=headgate, operator height=high 
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Figure C 8: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=tailgate, operator height=low 

           

           

           

          
  

          
  

          
  

          
  

86

87

88

89

90

91

92

93

94

95
So

un
d

 L
e

ve
l

Fu
ll r

ub
be

r
to

p 
- w

o
od

 b
ot

to
m

Ha
lf R

u
bb

e
r t

o
p 

-
ru

b
be

r 
bo

tto
m

No
 ru

b
be

r 
to

p
 -

ru
b

be
r 

bo
tto

m

No
 ru

b
be

r 
to

p
 -

wo
od

 b
ot

to
m

No
ne

Barrier Confiuaration

All Pairs
Tukey-Kramer
0.05

Rsquare
Adj Rsquare
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.998907
0.998469
0.096609
90.67333

15

Summary of Fit

Barrier Confiuaration
Error
C. Total

Source
4

10
14

DF
85.276000
0.093333

85.369333

Sum of
Squares

21.3190
0.0093

Mean Square
2284.179

F Ratio
<.0001 *

Prob > F

Analysis of Variance

Full rubber top - wood bottom
Half Rubber top - rubber bottom
No rubber top - rubber bottom
No rubber top - wood bottom
None

Level
3
3
3
3
3

Number
86.7333
90.0000
91.2333
91.3000
94.1000

Mean
0.05578
0.05578
0.05578
0.05578
0.05578

Std Error
86.609
89.876
91.109
91.176
93.976

Lower 95%
86.858
90.124
91.358
91.424
94.224

Upper 95%

Std Error uses a pooled estimate of error variance

Means for Oneway Anova

Oneway Anova

3.29108
q*

0.05
Alpha

None
No rubber top - wood bottom
No rubber top - rubber bottom
Half Rubber top - rubber bottom
Full rubber top - wood bottom

-0.2596
2.5404
2.6071
3.8404
7.1071

2.5404
-0.2596
-0.1929
1.0404
4.3071

2.6071
-0.1929
-0.2596
0.9737
4.2404

3.8404
1.0404
0.9737

-0.2596
3.0071

7.1071
4.3071
4.2404
3.0071

-0.2596

Abs(Dif)-LSD
None No rubber top - wood bottom No rubber top - rubber bottom Half Rubber top - rubber bottom Full rubber top - wood bottom

Positive values show pairs of means that are significantly different.

None
No rubber top - wood bottom
No rubber top - rubber bottom
Half Rubber top - rubber bottom
Full rubber top - wood bottom

Level
A
 
 
 
 

 
B
B
 
 

 
 
 
C
 

 
 
 
 
D

94.100000
91.300000
91.233333
90.000000
86.733333

Mean

Levels not connected by same letter are significantly different.

     
     

     

     
     
     

     
     
     
     
     
     
     
     
     
     

   

Comparisons for all pairs using Tukey-Kramer HSD

Means Comparisons

Oneway Analysis of Sound Level By Barrier Confiuaration

          
  

          
  

         

  
         

  
         

  
         

   
         

   
         

   
         

   
         

   
         

   



 

86 
 

 
Figure C 9: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=tailgate, operator height=medium 
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Figure C 10: Oneway analysis of sound level by barrier configuration sound type=pink, 

position=tailgate, operator height=high 
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Figure C 11: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=center, operator height=low 
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Figure C 12: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=center, operator height=medium 
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Figure C 13: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=center, operator height=high 
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Figure C 14: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=headgate, operator height=low 

           

           

           

          
  

          
  

          
  

          
  

          
  

          
  

         

  
         

  
         

  
         

   

80

81

82

83

84

So
un

d
 L

ev
el

Fu
ll r

ub
be

r
to

p 
- w

o
od

 b
o

tto
m

Ha
lf R

u
bb

er
 to

p 
-

ru
b

be
r 

bo
tto

m

No
 ru

b
be

r t
o

p 
-

ru
b

be
r 

bo
tto

m

No
 ru

b
be

r t
o

p 
-

wo
od

 b
o

tto
m

No
ne

Barrier Confiuaration

All Pairs
Tukey-Kramer
0.05

Rsquare
Adj Rsquare
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.998816
0.998343
0.057735
81.98667

15

Summary of Fit

Barrier Confiuaration
Error
C. Total

Source
4

10
14

DF
28.124000
0.033333

28.157333

Sum of
Squares

7.03100
0.00333

Mean Square
2109.300

F Ratio
<.0001 *

Prob > F

Analysis of Variance

Full rubber top - wood bottom
Half Rubber top - rubber bottom
No rubber top - rubber bottom
No rubber top - wood bottom
None

Level
3
3
3
3
3

Number
79.8667
81.7333
81.9333
82.2333
84.1667

Mean
0.03333
0.03333
0.03333
0.03333
0.03333

Std Error
79.792
81.659
81.859
82.159
84.092

Lower 95%
79.941
81.808
82.008
82.308
84.241

Upper 95%

Std Error uses a pooled estimate of error variance

Means for Oneway Anova

Oneway Anova

3.29108
q*

0.05
Alpha

None
No rubber top - wood bottom
No rubber top - rubber bottom
Half Rubber top - rubber bottom
Full rubber top - wood bottom

-0.1551
1.7782
2.0782
2.2782
4.1449

1.7782
-0.1551
0.1449
0.3449
2.2115

2.0782
0.1449

-0.1551
0.0449
1.9115

2.2782
0.3449
0.0449

-0.1551
1.7115

4.1449
2.2115
1.9115
1.7115

-0.1551

Abs(Dif)-LSD
None No rubber top - wood bottom No rubber top - rubber bottom Half Rubber top - rubber bottom Full rubber top - wood bottom

Positive values show pairs of means that are significantly different.

None
No rubber top - wood bottom
No rubber top - rubber bottom
Half Rubber top - rubber bottom
Full rubber top - wood bottom

Level
A
 
 
 
 

 
B
 
 
 

 
 
C
 
 

 
 
 
D
 

 
 
 
 
E

84.166667
82.233333
81.933333
81.733333
79.866667

Mean

Levels not connected by same letter are significantly different.

     

     

     
     
     
     

     
     
     
     
     
     
     
     
     
     

   

Comparisons for all pairs using Tukey-Kramer HSD

Means Comparisons

Oneway Analysis of Sound Level By Barrier Confiuaration

         
   

         
   

         
   

         
   

         
   



 

92 
 

 
Figure C 15: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=headgate, operator height=medium 
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Figure C 16: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=headgate, operator height=high 
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Figure C 17: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=tailgate, operator height=low 
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Figure C 18: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=tailgate, operator height=medium 
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Figure C 19: Oneway analysis of sound level by barrier configuration sound 

type=recorded, position=tailgate, operator height=high 
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Appendix D 

 
Figure D 1: WPAFB Headgate Position 

 
Figure D 2: WPAFB tailgate position 

The following decision matrix and barrier modeling can be used to help dtermine if a barrier can be ean effective engineering control

1.  Is a barrier physically possible? Yes
2.  Will the worker accept a barrier? Yes
3.  Is the hazard source stationary or semi-stationary? Yes
4.  Is this for noise or dust control? Noise
5.  Can the barrier be modeled? Yes
6.  Does model indicate a 3dB(A) reduciton or greater? Yes
7.  Is cross ventilation available to channel dust away from opeYes

NOTE: These Calculations assume a perfect barrier in a free field, the predicted sound reduction may be less than the observed
All Measurements must be input in meters

Height of Source (m)
Height of Receiver (m)
Height of Barrier (m)
Line of sight distance between source and receiver (m)
Height of ceiling (m)
Ceiling material (pick from dropdown)

Freqeuncy 31.5 63 125 250 500 1000 2000 4000 8000
Octave Band Measurement of Source 80.3 90.6 98.7 96.4 96.5 97.7 95.0 93.9 90.1

Calculated dB(A) without barrier
Calculated dB(A) with barrier
Reduction dB(A)

Decision Matrix

Area Data

102
90
12

Results

Proceed to Question 2
Proceed to Question 3
Proceed to Question 4
Proceed to Question 5
Proceed to Modeling Sheet

1
1.5
2.4
1.2
3.6
Suspended Acoustical tile 

Test Barrier
Test Barrier

Octave Band Measurement of Source

The following decision matrix and barrier modeling can be used to help dtermine if a barrier can be ean effective engineering control

1.  Is a barrier physically possible? Yes
2.  Will the worker accept a barrier? Yes
3.  Is the hazard source stationary or semi-stationary? Yes
4.  Is this for noise or dust control? Noise
5.  Can the barrier be modeled? Yes
6.  Does model indicate a 3dB(A) reduciton or greater? Yes
7.  Is cross ventilation available to channel dust away from opeYes

NOTE: These Calculations assume a perfect barrier in a free field, the predicted sound reduction may be less than the observed
All Measurements must be input in meters

Height of Source (m)
Height of Receiver (m)
Height of Barrier (m)
Line of sight distance between source and receiver (m)
Height of ceiling (m)
Ceiling material (pick from dropdown)

Freqeuncy 31.5 63 125 250 500 1000 2000 4000 8000
Octave Band Measurement of Source 80.5 90.8 95.3 90.3 95.3 91.7 96.2 85.4 84.3

Calculated dB(A) without barrier
Calculated dB(A) with barrier
Reduction dB(A)

85
15

1.2
3.6
Suspended Acoustical tile 

Octave Band Measurement of Source

Results

100

Test Barrier
Test Barrier

Area Data
1
1.5
2.4

Decision Matrix
Proceed to Question 2
Proceed to Question 3
Proceed to Question 4
Proceed to Question 5
Proceed to Modeling Sheet
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Figure D 3: NIOSH-PRL headgate position, 50% male, barrier configuration D 

 

 
Figure D 4: NIOSH-PRL center position, 50% male, barrier configuration D 

The following decision matrix and barrier modeling can be used to help dtermine if a barrier can be ean effective engineering control

1.  Is a barrier physically possible? Yes
2.  Will the worker accept a barrier? Yes
3.  Is the hazard source stationary or semi-stationary? Yes
4.  Is this for noise or dust control? Noise
5.  Can the barrier be modeled? Yes
6.  Does model indicate a 3dB(A) reduciton or greater? Yes
7.  Is cross ventilation available to channel dust away from opeYes

NOTE: These Calculations assume a perfect barrier in a free field, the predicted sound reduction may be less than the observed
All Measurements must be input in meters

Height of Source (m)
Height of Receiver (m)
Height of Barrier (m)
Line of sight distance between source and receiver (m)
Height of ceiling (m)
Ceiling material (pick from dropdown)

Freqeuncy 31.5 63 125 250 500 1000 2000 4000 8000
Octave Band Measurement of Source 73.7 90.1 94.5 93.0 95.5 90.0 86.1 81.3 78.6

Calculated dB(A) without barrier
Calculated dB(A) with barrier
Reduction dB(A)

93
2.9

3.9
3
Plywood

Octave Band Measurement of Source

Results

96

Test Barrier
Test Barrier

Area Data
1
1.6
2.4

Decision Matrix
Proceed to Question 2
Proceed to Question 3
Proceed to Question 4
Proceed to Question 5
Proceed to Modeling Sheet

The following decision matrix and barrier modeling can be used to help dtermine if a barrier can be ean effective engineering control

1.  Is a barrier physically possible? Yes
2.  Will the worker accept a barrier? Yes
3.  Is the hazard source stationary or semi-stationary? Yes
4.  Is this for noise or dust control? Noise
5.  Can the barrier be modeled? Yes
6.  Does model indicate a 3dB(A) reduciton or greater? Yes
7.  Is cross ventilation available to channel dust away from opeYes

NOTE: These Calculations assume a perfect barrier in a free field, the predicted sound reduction may be less than the observed
All Measurements must be input in meters

Height of Source (m)
Height of Receiver (m)
Height of Barrier (m)
Line of sight distance between source and receiver (m)
Height of ceiling (m)
Ceiling material (pick from dropdown)

Freqeuncy 31.5 63 125 250 500 1000 2000 4000 8000
Octave Band Measurement of Source 82.9 91.8 91.1 90.7 90.8 83.5 81.8 77.8 71.1

Calculated dB(A) without barrier
Calculated dB(A) with barrier
Reduction dB(A)

89
1.8

5.5
3
Plywood

Octave Band Measurement of Source

Results

91

Test Barrier
Test Barrier

Area Data
1
1.6
2.4

Decision Matrix
Proceed to Question 2
Proceed to Question 3
Proceed to Question 4
Proceed to Question 5
Proceed to Modeling Sheet
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Figure D 5: NIOSH-PRL tailgate position, 50% male, barrier configuration D 

  

The following decision matrix and barrier modeling can be used to help dtermine if a barrier can be ean effective engineering control

1.  Is a barrier physically possible? Yes
2.  Will the worker accept a barrier? Yes
3.  Is the hazard source stationary or semi-stationary? Yes
4.  Is this for noise or dust control? Noise
5.  Can the barrier be modeled? Yes
6.  Does model indicate a 3dB(A) reduciton or greater? Yes
7.  Is cross ventilation available to channel dust away from opeYes

NOTE: These Calculations assume a perfect barrier in a free field, the predicted sound reduction may be less than the observed
All Measurements must be input in meters

Height of Source (m)
Height of Receiver (m)
Height of Barrier (m)
Line of sight distance between source and receiver (m)
Height of ceiling (m)
Ceiling material (pick from dropdown)

Freqeuncy 31.5 63 125 250 500 1000 2000 4000 8000
Octave Band Measurement of Source 77.0 94.9 93.6 78.4 80.6 74.8 76.0 73.5 71.5

Calculated dB(A) without barrier
Calculated dB(A) with barrier
Reduction dB(A)

81
3.2

3.3
3
Plywood

Octave Band Measurement of Source

Results

84

Test Barrier
Test Barrier

Area Data
1
1.6
2.4

Decision Matrix
Proceed to Question 2
Proceed to Question 3
Proceed to Question 4
Proceed to Question 5
Proceed to Modeling Sheet
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