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Abstract

An automatic target classification system contains a classifier which reads a

feature as an input and outputs a class label. Typically, the feature is a vector of

real numbers. Other features can be non-numeric, such as a string of symbols or

alphabets. One method of improving the performance of an automatic classification

system is through combining two or more independent classifiers that are comple-

mentary in nature. Complementary classifiers are observed by finding an optimal

method for partitioning the problem space. For example, the individual classifiers

may operate to identify specific objects. Another method may be to use classifiers

that operate on different features. We propose a design for a hybrid composite clas-

sification system, which exploits both real-numbered and non-numeric features with

a template matching classification scheme. This composite classification system is

made up of two independent classification systems.

These two independent classification systems, which receive input from two

separate sensors are then combined over various fusion methods for the purpose of

target identification.

By using these two separate classifiers, we explore conditions that allow the two

techniques to be complementary in nature, thus improving the overall performance

of the classification system. We examine various fusion techniques, in search of the

technique that generates the best results. We investigate different parameter spaces

and fusion rules on example problems to demonstrate our classification system. Our

examples consider various application areas to help further demonstrate the util-

ity of our classifier. Optimal classifier performance is obtained using a mathematical

framework, which takes into account decision variables based on decision-maker pref-

erences and/or engineering specifications, depending upon the classification problem

at hand.

xi



The first example problem is the handwritten digit recognition problem. The

handwritten digits used in this application come from the Modified National Insti-

tute of Standards and Technology (MNIST) database. Many previous digit recog-

nition methodologies have been tested on the MNIST database or on subsets of the

database, making it an excellent baseline for comparison of methods. The examina-

tion of this application demonstrates the versatility of the composite classification

system and the framework used to optimize classifier performance.

The second application examined is a combat identification problem. The

ability of a decision maker to make a quality real-time decision requires reliable and

timely information must be made available. Within the scope of combat identifica-

tion, this means combat identification systems must be fast, accurate and easy to

use. We apply our composite classification system to a Synthetic Aperture Radar

system data set, which was collected at Eglin AFB, FL from the General Dynamics

Data Collection System. We examine methodologies for classification, fusion, non-

declarations and out-of-library determination along with the mathematical frame-

work to realize optimal classification system results which outperm previous research

on this problem.

The results of this research are a novel out-of-library detector, which success-

fully identifies targets for which the classification system has not been trained to

make decisions. This is the first such successful classifier of this type. This research

also sucessfully combines elements of statistical template methods and syntactic

methods to create a hybrid classification system that is both robust and fast, in

terms of computation time, in both classification problems. We also advance the no-

tion of Automatic Target Recognition as an engineering optimization problem and

use a statistical model to demonstrate the best fusion optimization scheme.

xii
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A HYBRID TEMPLATE-BASED

COMPOSITE CLASSIFICATION SYSTEM

1. Introduction

1.1 Pattern Recognition and Hybrid Techniques

The problem of pattern classification is approached from several different points

of view. Jain et al. [25] list the following as the four best known approaches. The

first is template matching. In template matching, prototypes of all known patterns

are stored into a template, which is used for comparison to unknown patterns for

classification. The classification decision in template matching is based on a sim-

ilarity measure. These measures can include correlation or Mahalanobis distance.

The second approach is the statistical approach. In this approach, each pattern

is represented in terms of a number of features or measurements, which can then

be viewed as a point in a d-dimensional vector space. The goal in the statistical

method is to choose features such that the pattern vectors occupy disjoint spaces

in the d-dimensional vector space. The third approach is neural networks. Neural

networks can be described as massively parallel computing systems consisting of an

extremely large number of simple processors with many interconnections. The fourth

and last approach is the syntactic approach. The premise of the syntactic approach

is that problems with complex patterns should adapt a hierarchical prospective in

1



which each pattern is considered to be made up of subpatterns, which, in turn, are

made up of smaller subpatterns. The smallest of these subpatterns are called primi-

tives. From these primitives, the more complex patterns are represented in terms of

how the primitives relate to one another. The analogy Jain uses is the comparison

between the structure of patterns and the syntax of a language.

Bunke [7] describes the traditional methods of pattern recognition as being

either: (1) decision theoretic or statistical; or (2) structural. The author goes on

to explain that each of these different methods has its strengths and limitations. A

methodology to combine multiple pattern recognition in such a way as to overcome

the drawbacks of each while maintaining the advantages of each is known as a hybrid

pattern recognition system [14].

We choose to call our technique a hybrid to reflect that our classifier combines

sereral different techniques. The non-numeric features are from syntactic techniques.

The formulation of templates and the use of geometric type distances are from the

template-based techniques. The use of thresholds is from statistical techniques.

It can be argued that any pattern recognition system can be described as a hy-

brid, rather than belonging to a particular class or approach, such as those listed by

Jain. The main objective in this research is to build a hybrid classification system,

which combines strengths from several different known pattern recognition tech-

niques, that can be adapted such that it can be successfully applied across different

application areas.

2



1.2 Combat Identification and Automatic Target Recognition

The ability of a decision maker to make a quality real-time decision requires

that reliable and timely information must be made available. Within the scope of

combat identification, this means combat identification systems must be fast, ac-

curate and easy to use. We now demonstrate how our classification system makes

improvements to the timeliness and accuracy of combat identification systems by

automatic target recognition methods. The process of detecting, tracking and cor-

rectly identifying an enemy’s key targets loosely defines the combat identification

(CID) process.

Sadowski [57] defined CID as “the process of attaining an accurate characteri-

zation of detected objects in the joint battlespace to the extent that high confidence,

timely application of tactical military options and weapons resources can occur.”

Laine [34] describes two types of CID: (1) cooperative and (2) non-cooperative.

Cooperative CID includes identification of friendly targets through the use of com-

munication between two friendly systems. Non-cooperative CID includes cases where

feedback from one of the systems does not occur. This can be further broken up into

fully autonomous or man-in-the-loop systems. In an autonomous system, decisions

are made without any type of human intervention. On the other hand, man-in-the-

loop systems require a human to make final decisions regarding target identification.

Automatic target recognition systems seek to fully automatate the target recog-

nition process. This includes not only the recognition and descrimination between

3



hostile or friendly targets, but also the ability to correctly categorize hostile targets

for the purpose of engagement.

1.3 Research Goals and Application Areas

The goal of this research is the development of a hybrid composite classification

system, which exploits integer valued quantized features with a template matching

classification scheme. This composite classification system is made up of two inde-

pendent classification systems.

We investigate different parameter spaces and fusion rules on example problems

to demonstrate our classification system. Our examples consider various application

areas to help further demonstrate the utility of our classifier. Optimal classifier

performance is obtained using a mathematical framework, which takes into account

decision variables based on decision-maker preferences and/or engineering specifica-

tions, depending upon the classification problem at hand.

1.4 Contributions of Research

This research makes several contributions within the overall research goal.

First, is the hybrid template-based classifier we develop. We demonstrate the utility

of the hybrid classifier across different problem types. Noting that we achieve supe-

rior or equal classifier performance to existing systems, while developing a system

that has potential real-world application, due to lower computational and storage

4



requirements. The development of this classifier includes the exploration of feature

extraction, representation scheme, similarity measure, classification technique and

fusion method in order to produce a flexible, optimal peforming system.

In the course of this research, we detail the mathematics of our classification

system. In doing so, we produce a combined system that composes the hybrid clas-

sifier with an out-of-library OOL detector. This OOL detector uses artificial neural

networks as a means of identifying targets (OOL targets) for which the hybrid clas-

sifier is not trained to recognize. We go on to develop an overall mathematical

framework, that enables us to find optimal parameter settings for the overall classi-

fication system that optimize some measure of performance for the system.

1.5 Organization of Dissertation

This disseration is organized as follows. Chapter 2 provides a thorough back-

ground via a summary of current literature. We discuss various pattern recognition

techniques, similarity measures and fusion techniques that may be used for the pur-

pose of constructing a classification system. We also present a background of our two

application areas. The first application area is target identification using High Range

Resolution (HRR) profiles that have been extracted from Synthetic Apperture Radar

(SAR) imagery. The second application area is recognition of optical characters. In

Chapter 3, we provide the mathematical framework for our classification system. We

present our methodology for the case of OOL targets as well as the case where the

5



classification system is unable to distinguish between two or more potential target

labeling options. Instead of making an uncertain decision, the classification system

uses the labeling option of non-declaration (NDEC). Finally, we formulate a mixed

variable optimization problem as well as various methods of evaluation in seeking

to improve classifier performance. In chapter 4, we apply our classifciation system

to the optical character recognition problem, and make positive comparisons to ex-

isting techniques. We apply our classification system to the ATR problem problem

in Chapter 5, where we use the HRR profiles derived from SAR imagery. We apply

our system in three different scenarios: a forced decision, a 10-class problem with

a NDEC option and a problem that includes both in-library and out-of-library tar-

gets. Throughout this process, we develop methods and application techniques for

both a NDEC labeling option and an OOL detector. Finally, we draw superior re-

sults to previous and/or exisiting techniques that have been applied to this problem

through the use of the mathematic framework. Finally, Chapter 6 summarizes the

contributions of this research and suggests areas for further research.

6



2. Background

2.1 Introduction

This chapter reviews literature and provides background on concepts and

methodologies related to research presented in subsequent chapters. First, a back-

ground of pattern recognition and various pattern recognition techniques is pre-

sented. Current application areas are discussed for each of the techniques and rel-

evant literature reviews are presented. Second, similarity measures used in pattern

recognition are discussed and our specific choice of measure is presented. Third,

various data fusion techniques are presented with relevant literature for each. Next,

we present background for each of the two application areas which will be presented

in subsequent chapters of this document. First, we discuss the formation of high-

range resolution (HRR) profiles. The data set used in our research is presented,

along with the preprocessing steps which produce the HRR profiles. In addition, the

current literature for HRR profile classification is presented. Finally, handwritten

character recognition techniques are discussed and the current literature is reviewed.

Along with this discussion, we detail the handwritten character data set used in our

research.
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2.2 Pattern Recognition Background

The problem of pattern classification is approached from several different points

of view. Jain et al. [25] list the following as the four best known approaches, with

brief descriptions of each taken from this paper. The first is template matching. In

this approach, prototypes of all known patterns are stored into a template, which

is used for comparison to unknown patterns for classification. The classification

decision in template matching is based on a similarity measure. These measures

can include correlation or Mahalanobis distance [3, 12, 34]. The second approach is

the statistical approach. In this approach, each pattern is represented in terms of

a number of features or measurements, which can then be viewed as a point in a

d-dimensional vector space. The goal in the statistical method is to choose features

such that the pattern vectors occupy disjoint spaces in the d-dimensional vector

space. The third approach is neural networks. Jain describes neural networks as

massively parallel computing systems consisting of an extremely large number of

simple processors with many interconnections. The fourth and last approach we will

mention is the syntactic approach. The premise of the syntactic approach is that

problems with complex patterns should adapt a hierarchical prospective in which

each pattern is considered to be made up of subpatterns, which in turn are made

up of smaller subpatterns. The smallest of these subpatterns are called primitives.

From these primitives, the more complex patterns are represented in terms of how
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the primitives relate to one another. The obvious analogy Jain uses is the comparison

between the structure of patterns and the syntax of a language.

2.2.1 Statistical Techniques

As previously stated, Jain et al. [25] state that in the statistical approach to

pattern recognition, each pattern is represented in terms of a number of features

or measurements, which can then be viewed as a point in a d-dimensional vector

space, x = (x1, x2, ..., xd). The goal in the statistical method is to choose features

such that the pattern vectors occupy disjoint sets in the d-dimensional vector space.

In designing a statistical classifier, it is assumed that there exist C classes denoted

ω1, ω2, ..., ωC , and associated with each pattern x is a categorical variable, z that

denotes class membership. Thus, if z = i, then the pattern belongs to class ωi,

i ∈ 1, 2, ..., C [69]. Webb explains that class membership determinations are made

through a decision rule, which partitions the feature space into C regions Ωi, i =

1, 2, ..., C. If an exemplar, x ∈ Ωi, then it is assigned to class ωi [69]. Discrimination

can generally be broken down into two approaches. The first assumes knowledge of

the underlying class-conditional probability density functions of the feature vectors,

while the second approach makes decision rules based on the data itself without

making assumptions about or calculating the probability density functions.
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2.2.1.1 Bayesian Decision Theory

Consider C classes ω1, ω2, ..., ωC , with a priori probabilities P (ω1), P (ω2), ..., P (ωC),

which are assumed to be known. If a classification decision must be made about

observation vector x with only this information, then we decide x ∈ ωi if

P (ωi) > P (ωj) j = 1..., C; j 6= i (2.1)

If we consider the observation vector, x = (x1, x2, ..., xd), we can base our

decision on class-conditional probabilities, p(ωi|x). Thus, we assign x to class ωi if

p(ωi|x) > p(ωj|x) j = 1, ..., C; j 6= i (2.2)

The a posteriori probabilities, p(x|ωi|) may be expressed in terms of the a

priori probabilities P (ωi) and the class-conditional density functions p(ωi|x) using

Bayes’ formula

p(x|ωi) =
p(ωi|x)P (ωi)

p(x)
(2.3)

where the evidence from the data is

p(x) =
C∑

i=1

p(x|ωi)p(ωi).
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Thus, the decision rule can be written: assign x to ωi if

p(ωi|x)p(ωi) > p(ωj|x)p(ωj) j = 1, ..., C; j 6= i (2.4)

This is known as Bayes’ rule for minimizing the probability of a classification

decision error [11,69]. Both Webb and Duda et al. dedicate several chapters of each

textbook detailing Bayesian decision theory [11,69].

2.2.1.2 Discriminant Functions

Webb [69] introduces the technique of discriminant functions as a method to com-

plement Bayesian decision theory. With this method, assumptions about the forms

of the discriminant functions, gi(x), i = 1, 2, ..., C are made, rather than making

assumptions about p(x|ωi). Duda et al. [11] explains that a classifier will assign an

exemplar x to class ωi if

gi(x) > gj(x) j = 1, ..., C; j 6= i (2.5)

Webb [69] details several examples of discriminant functions, which are shown

in Table 2.1.

Example application areas for statistical pattern recognition techniques include

the following. Facial recognition is an ongoing research effort that employs statistical

pattern recognition techniques. Bayesian methods using a probablistic distance met-
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Table 2.1 Discriminant Functions, φ

Discriminant Function Mathematical Form, φi(x)
linear φi(x) = xi, i = 1, ..., p

quadratic φi(x) = xl1
k1

xl2
k2

, i = 1, ..., (p+1)(p+2)
2−1

l1, l2 = 0 or 1; k1, k2 = 1, ..., p; l1, l2 not both 0.

νth order polynomial φi(x) = xl1
k1

...xlν
kν

, i = 1, ...,
(

p+ν
ν

)
− 1

l1, ..., lν = 0 or 1; k1, ...kν = 1, ..., p; li not all 0
radial basis function φi(x) = φ(|x − νi|) for center νi and function φ
multilayer perceptron φi(x) = f(xTνi + νi0) for direction νi and offset νi0.

f is the logistic function, f(z) = 1/(1 + exp(−z))

ric as a decision criteria were employed in work by Moghaddam and Pentland [47].

Statistical techniques have also been employed in the area of handwritten character

recognition [?] and automatic target recognition [45].

2.2.2 Syntactic Techniques

To begin, we will consider some of the elementary basics of Syntactic Pattern

Recognition. We will then explore some of the current research being conducted

which used the syntactic approach to pattern recognition. Fu [14] describes a syn-

tactic pattern recognition system as being made up of two major parts: analysis and

recognition. The analysis part consists of selecting the primitives and grammatical

inference. Grammars or syntax rules are the means to describe the rules of languages

or the structural relations of patterns. Fu defines the problem of learning a grammar

based on a set of sample sentences as grammatical inference. Thus, our goal in syn-

tactic pattern recognition is to choose primitives that are adequately representative

of the subpatterns that make up the more complex patterns in our approach to clas-
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sification. We then form grammars which will tell us the rules for putting together

the simple primitives to form more complex patterns. Again, we can use the direct

analogy of how words, sentences and paragraphs are formed from the grammatical

rules of a language to the way in which primitives can be used to form more complex

patterns by way of the grammatical rules employed.

There are several current research areas which employ the syntactic approach.

The medical community has tapped into the use of syntactic pattern recognition for

aid in diagnosis of cancer such as Ogiela [49] as well as in the aid of identification of

abnormal electro-cardiograms done by Trahanias [61]. In the former, a context-free

attribute grammar was developed to symbolically depict the characteristic of a pan-

creas as seen on an x-ray image. The primitives of the grammar were chosen in a way

such that representations would note significant changes, such as cysts, branchings

or enlargements; all of which are indicative of pancreatic cancer. In the latter case,

syntactic pattern recognition techniques are applied to electrocardiograms so that an

automated process for detection of abnormal readings could be applied. The prim-

itives chosen for this application were chosen to represent the key elements of the

electrocardiogram, the complexes. Each of these complexes contains either parabolic

shapes, sharp peaks or line segments as well as combinations of the three. Thus the

primitives were chosen to be these three distinct attributes, with measurements of

each, such as starting point, stopping point and peak amplitude captured as part of

the overall representations.
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Other application areas include character recognition, RNA modeling and im-

agery analysis. Particular areas of character recognition include recognition of Chi-

nese characters. In the work by Liu et al. [39], the particular goal of online hand-

writing recognition of handwritten Chinese characters is addressed. The increased

interest in this field is due to the increase of pen computing devices and pen input de-

vices. They use a representation scheme that accounts for the relationships between

the complex strokes of these Chinese characters, followed by a template matching

type scheme that matches candidate classes to a library of known classes. Another

application to Chinese character recognition is done by Kuroda [33], which employs

a Kohonen self-organizing map as a method of feature extraction. The results in

their experiments show promise, with a recognition rate of over 94 percent. In the

field of RNA modeling, Abe [2] used grammatical inference by way of a Hidden

Markov Model algorithm to automatically learn the RNA sequences. The protein

secondary structures of an RNA sequence were predicted using grammatical infer-

ence by Sakakibara [58]. Image analysis of Synthetic Aperture Radar ship images

using syntactic methods was done by Klepko [30]. Syntactic methods can also be

applied to the analysis and target identification of images captured by space borne

platforms [24] [38].

The non-numeric features of the hybrid classifier developed in this research

are inspired by the syntactic classifier. The hybrid classifier attempts to represent a

given signal using this scheme such that a new representation unlike those found in
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previous research is formed. This new classifier can then in turn be fused with other

classifiers that use a complementary representation scheme to produce the combined

classification system that shows improved overall performance.

2.2.3 Template-based Techniques

The feature vector classifier used in this research is a slight modification from

Friend [12]. This research conducted ATR on HRR signatures derived from SAR

chips using algorithms provided by AFRL, as shown in Figure 2.1. These 724 HRR

profiles are then sorted by aspect angle, evenly divided into training and test sets

then interpolated to produce two 360◦ data sets for each target.

In the training phase, a 10-dimensional feature vector is extracted by binning

the HRR profile data into 10 equally sized range bins, as shown in Figure 2.2. The

features are the maximum amplitude within each bin. Templates are then formed

for each target, where each template is made up of a feature vector at each aspect

angle. In the classification phase, an unknown HRR profile is compared to the

template in the following manner. Twenty-four wedges of 15◦ width are made from

each target template. Using a prior aspect angle knowledge of ±22.5◦, test profiles

are compared to template profiles from surrounding two wedges for each target. For

example, a test profile with an aspect angle of 20◦ would be compared to wedges

1-3, or a template window of size 45◦. The minimum squared Mahalanobis distance

over all three wedges is then used for comparison between the unknown profile and
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Figure 2.1 Steps to process SAR chips into HRR profiles.

each of the possible classes. This research also considered different prior aspect angle

knowledge, which is discussed in subsequent sections.

This method of choosing peak amplitudes within range bins was based on re-

search by Mitchell and Westerkamp [45] who applied features from range bins with

a statistical feature based classifier which was applied to HRR signatures. This sta-

tistical classifier introduced in Mitchell [46] used features extracted exclusively from

the middle portion of the signal, which the author states is the portion of the signal

which contains useful information. This research also used the technique of using the
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Figure 2.2 Example Range Bins used by Feature Vector Classifier.

peak amplitudes of an HRR profile as features for representation. Another feature

used in representation was peak location, which naturally aids in registration. The

classification decisions are then based on two models generated from the features ex-

tracted; a peak location probability function and peak amplitude probability density

function. The experimental results include forced decision as well as forced decision

with unknown target types, which we call out-of-library targets.

The Multinomial Pattern Matching algorithm developed by Sandia National

Laboratories [32] is another template-based classification method that has been suc-

cessfully applied to HRR signature classification. The MPM utilizes a quantile trans-

formation to map target intensity samples to a small number of grayscale values, or
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quantiles. The MPM builds a template of HRR signatures in the training phase,

which is described in the following paragraphs.

The data used in their research contains multiple signatures for a given as-

pect angle. Each HRR signature is mapped to a fingerprint using the quantization

method. These profile fingerprints are then binned by a given aspect angle, which is

chosen to be 10◦ in this paper. The bin width is chosen such that it is wide enough

to populate aspect bins over even a short tracking engagement yet narrow enough

to preclude drastic changes in target signature over the width of the aspect bin.

Profile stabilization is performed to maximize the similarity between profiles

within any given aspect bin. This profile stabilization consists of profile alignment

followed by optional length normalization and smoothing steps. For narrow aspect

bins, the alignment process generally yields acceptable registration. For wider aspect

bins, the length normalization is implemented to aid in the registration of profiles

with varying target lengths.

The target templates are then formed consisting of two components. The first

is a statistical characterization component that forms a marginal quantile model as a

K ×Nq matrix of observed quantile probabilities P̂. The second is a K ×Nq matrix

of sample penalties T, which expresses the penalty to be assigned to any quantile

observation at any sample. In each case, K is the number of samples and Nq is the

the number of quantiles. These two matrices are then used in template matching by
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computing a z-score for any unclassified exemplar when compared to a given target

template.

Another template-based approach to the HRR signature matching problem was

done by Bhatnagar et al. [5]. This research developed a structural approach for HRR

pattern recognition. Their technique used grammatical inference and classification

algorithms, attribute grammars and an error correcting parsing mechanism. With

this method, HRR patterns were classified using structural as well as quantitative

information from the numerical attributes of the pattern grammars.

Classification decision were done using a minimum distance classifier based on

syntactic approach. The choice of weighed Levenshtein distance measure was used

for comparing the distance between string representations of test profiles with those

of a template formed in the training phase.

2.2.4 Hybrid Techniques

Bunke [7] describes the traditional methods of pattern recognition as being

either: (1) decision theoretic or statistical; or (2) structural. The author goes on

to explain that each of these different methods has its strengths and limitations. A

methodology to combine multiple pattern recognition in such a way as to overcome

for the drawbacks of each while maintaining the advantages of each is known as a

hybrid pattern recognition system [13].
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Nadler [48] describes pattern recognition in the following manner. The task

of removing noise and revealing the underlying ideal pattern. In the formation of a

hybrid method, he states it is advantageous to pattern recognition problems to use

a combined method. He also states the desired outcome of combining methods is to

overcome the weaknesses of each method while using the strengths of each. Before

moving on, let us consider the strengths and weaknesses of each approach.

The statistical approach has a very rich and well established theoretical foun-

dation. It has given rise to numerous proven methods that have been applied to

applications both within and beyond pattern recognition. Statistical methods are

most useful when the number of prototypes is relatively small and the range of vari-

ation from each prototype is small enough that clusters of classes do not overlap [48].

One weakness of the statistical approach is the feature extractor. No common theory

exists for the design and selection of optimal features. Optimal feature extraction is

typically the result of cleverness and experience of the designer.

Syntactic techniques do not rely on features. Instead, as we have seen these

approaches attempt to learn a grammar through inference that builds a language

of words or representations for the set of prototypes. These methods do not need

the measurements counted on by statistical approaches, thus the overlapping of

prototypes is not as destructive as in statistical methods. One drawback of the

syntactic approach is the computational efficiency. The number of distinct words

that can arise from a single class can be extremely large [14]. This is due to the fact
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that small imperfections in shape that would be ignored by a statistical classifier can

generate entire new characters in the syntactic approach.

Template methods store prototypes of all known patterns and use these proto-

types for comparison to unknown patterns. These methods are not as theoretically

sound as the previous methods. Furthermore, the number of prototypes needed to

accurately depict all known or observed patterns can be extremely high. These tem-

plate approaches use some form of similarity measure as a means for classification.

With the possibly large number of prototypes, this gives rise for the need to use

centroids such as the mean or other computed representation as a prototype when

building a class template.

We choose to call our technique a hybrid to reflect that this classifier combines

several different techniques. The non-numeric features are from syntactic techniques.

The formulation of templates and the use of geometric type distances are from the

template-based techniques. The use of thresholds is from statistical techniques.

2.3 Similarity Measures

The concept of similarity is fundamental to pattern recognition systems. Clas-

sification decisions are routinely based on the level of similarity a given input pattern

has to a template of prototypes, a class distribution or some other prototype which

is used as the basis of a given class of patterns. One of the oldest and most influ-

ential similarity concepts is that perceived similarity is inversely related to observed
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distance. This means that if we take some form of distance measure between two

objects, the closer they are in distance implies the more similar the two objects.

This section will give a brief overview of some of the methods used in determining

similarity.

2.3.1 Hamming Distance

In the theory of block codes intended for error detection or error correc-

tion, the Hamming distance d(u, v) between two words u = (u1, u2, ..., un) and

v = (v1, v2, ..., vn), of the same length, is equal to the number of symbol places

in which the words differ from one another. If u and v are of finite length n then

their Hamming distance is finite since d(u, v) ≤ n [16].

The Hamming distance can be called a distance since it is nonnegative, positive

definite, symmetric, and triangular:

Nonnegative: d(u, v) ≥ 0 (2.6)

Positive Definite: d(u, v) = 0 iff u = v (2.7)

Symmetric: d(u, v) = d(v, u) (2.8)

Triangular: d(u,w) ≤ d(u, v) + d(v, w) (2.9)
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The Hamming distance is important in the theory of error-correcting codes and

error-detecting codes: if, in a block code, the codewords are at a minimum Hamming

distance d from one another, then:

(a) if d is even, the code can detect d − 1 symbols in error and can correct

1
2
d − 1 symbols in error;

(b) if d is odd, the code can detect d − 1 symbols in error and can correct

1
2
(d − 1) symbols in error.

2.3.2 Levenshtein Distance

Levenshtein distance (LD) is a measure of the similarity between two strings,

which we will refer to as the source string s and the target string t. The distance

is the number of deletions, insertions, or substitutions required to transform s into

t [18]. For example,

If s is the string s = (t, e, s, t) and t is the string t = (t, e, s, t), then LD(s, t) =

0, because no transformations are needed. The strings are already identical. If s is

the string s = (t, e, s, t) and t is the string t = (t, e, n, t), then LD(s, t) = 1, because

one substitution (change “s” to “n”) is sufficient to transform s into t. The greater

the Levenshtein distance, the more dissimilar the strings are.

The Levenshtein distance algorithm has been used in such applications as spell

checking, speech recognition, DNA analysis and plagiarism detection.
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The Levenshtein distance also has several simple upper and lower bounds that

are useful in applications which compute many of them and compare them. These

include:

1. It is always at least the difference of the sizes of the two strings,

LD(s, t) = min {|s| , |t|} .

2. It is at most the length of the longer string,

LD(s, t) ≤ max {|s| , |t|} .

3. It is zero if and only if the strings are identical,

LD(s, t) = 0, iff s = t.

4. If the strings are the same size, the Hamming distance d(s, t) is an upper bound

on the Levenshtein distance

LD(s, t) ≤ d(s, t) iff |s| = |t| .
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2.3.3 Jaro Winkler Algorithm

The Jaro-Winkler algorithem [74] measures the similarity between two strings.

It is a variant of the Jaro algorithm [26] and mainly used in the area of record linkage

(duplicate detection). The higher the Jaro-Winkler score for two strings is, the more

similar the strings are. The Jaro-Winkler algorithm is designed and best suited for

short strings such as person names. The score is normalized such that 0 equates to

no similarity and 1 is an exact match.

The Jaro algorithm states that given two strings s1 and s2, their similarity dJ

is:

dJ =
1

3

(
m

‖s1‖
+

m

‖s2‖
+

m − t

m

)
(2.10)

where:

m is the number of matching characters and

t is the number of transpositions.

Two characters from s1 and s2 respectively, are considered matching only if

their distance dJ is not greater than:

⌊
max(‖s1‖, ‖s2‖)

2
⌋ − 1
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Each character of s1 is compared with all its matching characters in s2. The

number of matching (but different order) characters divided by two defines the num-

ber of transpositions.

Jaro-Winkler algorithm uses a prefix scale p which gives more favorable ratings

to strings that match from the beginning for a set prefix length,lp. Given two strings

s1 and s2, their Jaro-Winkler distance dJW is:

dJW = dJ + lp(1 − dJ) (2.11)

where:

dJ is the Jaro distance for strings s1 and s2,

lp is the length of common prefix at the start of the string up to a maximum

of 4 characters and

p is a constant scaling factor for how much the score is adjusted upwards for

having common prefixes.

The standard value for this constant in Winkler’s work is p = 0.1. Although

often referred to as a distance metric, the JaroWinkler score is actually not a metric

in the mathematical sense of that term because it fails the triangle inequality.

For example, given the strings s1 = (t, a, w, n, y, a) and s2 = (t, o, n, y, a),

we find
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m = 3

‖s1‖ = 6

‖s2‖ = 5

t = 0

then the Jaro score for the strings is:

dJ = 1
3

(
3
6

+ 3
5

+ 3
3

)
= 0.7.

To find the Jaro-Winkler score, we find

lp = 1.

Thus, the Jaro-Windler score is: dJW = 0.70 + (1 ∗ 0.1(1 − 0.70)) = 0.73.

2.3.4 Minkowski Metric

In the Euclidean space Rn, the distance between two points is usually given

by the Euclidean distance (2-norm distance) [11]. Other distances, based on other

norms, are sometimes used instead.

For a point x = (x1, x2, ..., xn) and a point y = (y1, y2, ..., yn), the Minkowski

distance of order p (p-norm distance) is defined as:

dp(x,y) = ‖x − y‖ =

(
n∑

k=1

|xk − yi|
p

)1/p

(2.12)
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the order, p need not be an integer, but it cannot be less than 1, because otherwise

the triangle inequality does not hold [11].

The 2-norm distance is the Euclidean distance, d2, a generalization of the

Pythagorean theorem to more than two coordinates. It is what would be obtained

if the distance between two points were measured with a ruler: the “intuitive” idea

of distance.

The 1-norm distance is called the taxicab norm or Manhattan distance, d1,

because it is the distance a car would drive in a city laid out in square blocks (if

there are no one-way streets).

The infinity norm , ‖x‖∞ ≡ maxi∈1,...,n ‖xi‖ is also called Chebyshev distance

[27]. In R2 it represents the distance kings must travel between two squares on a

chessboard.

The p-norm is rarely used for values of p other than 1, 2, and infinity.

In physical space the Euclidean distance is, in a way, the most natural one,

because in this case the length of a rigid body does not change with rotation.

2.3.5 Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of n dimen-

sions by finding the angle between them, often used to compare documents in text

mining. Given two vectors, x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn), such that
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x 6= 0 and y 6= 0, the cosine similarity, θ, is represented using a dot product and

magnitude as:

θ(x,y) = arccos

(
xTy

‖x‖ ‖y‖

)
(2.13)

For text matching, the attribute vectors x and y are usually the term frequency-

inverse document frequency (tf-idf) vectors of the documents.

Since the angle, θ, is in the range of [0, π], the resulting similarity will yield the

value of π as meaning exactly opposite, π
2

meaning orthogonal, 0 meaning exactly the

same, with in-between values indicating intermediate similarities or dissimilarities.

2.4 Fusion

In Air Force Doctrine, the Air Force warns its members not to strike targets

based on single source intelligence; at some level, intelligence information should be

fused together [64]. One form of this intelligence fusion is sensor fusion. Hall and

Llinas state that multisensor data fusion combines data from multiple sensors to

achieve improved accuracies and more specific inferences than could be achieved by

using a single sensor alone [19]. The authors use the example of multisensory data

fusion done by humans and animals to more accurately assess their surrounding

environments. For example, the presence and quality of an edible substance may
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not be detected solely by sight, but by a combination of sight, touch, smell and

taste [19].

Roli [55] explains that the growing interest in multiple classifier systems (MCS)

is that, in many cases, the search for the best individual classifier for a specific ap-

plication is either impossible or extremely difficult. Furthermore, complementary

discriminatory information that multiple classifiers can exploit is lost by using a sin-

gle classifier. Roli details two main phases of an MCS design: (1) the design of a

classifier ensemble and (2) the design of a combination function. He also states that

the literature typically focuses on only one of the two phases. Those methods that

focus on classifier ensemble design strive to design an MCS made up of complemen-

tary classifiers that achieve optimal accuracy using a simple decision function. Those

methods that focus on combination function assume that the individual classifiers

that make up the MCS are all optimally designed within their own scope and, thus,

optimality is obtained through formulating the optimal combination of those clas-

sifiers. These combination functions range from simple voting rules to “trainable”

combination functions [55].

2.4.1 Constructing Classifier Ensembles

Kittler et al. [29] also note that the design of a classifier ensemble is particularly

useful when the individual classifiers are complementary. The authors state that
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classifier differences can be achieved through the use of different feature sets, different

training sets, randomization or cluster analysis.

Input feature manipulation can be done manually or through an automated

process so that individual classifiers are presented different feature sets. One method

is to simply take a random subspace of features from the original feature space and

then train a classifier on each subspace [4, 23].

Output feature manipulation can be accomplished in the following manner [4].

For an N class problem, partition the set of classes in such a way that each individual

classifier solves a subset of the N class problem. A combination method is then

created so that the results of the subproblems solved by each individual classifier are

combined to solve the original N class problem.

Training set manipulation methods aim to achieve differences in classifiers by

having N different classifiers train on N different training sets. Breiman [6] proposed

a technique called bagging, which is an acronym for “bootstrap aggregating”. In

bagging, multiple training sets are created by taking bootstrap samples of the original

training data set. The bootstrapping procedure is as follows. For a training data set

of size n, X = (x1, x2, ...xn), a new training data set of size n, X∗ = (x∗
1, x

∗
2, ...x

∗
n) is

formed by taking a random sample of size n from the original training data set, X,

with replacement. Since each sample is drawn with replacement, each sample in X

can appear repeated times or not at all in X∗. This procedure can be repeated so

that each of the N individual classifiers has its own individual training data set.
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One example of injecting randomness is random decision forests. In a decision

forest classifier, a decision forest including multiple decision trees is used to classify

“seen” training data and “unseen” data. Each individual tree performs an initial

classification based on randomly selected subsets of the data. The classification

outcomes by the individual trees are combined using a discriminant process in the

decision-forest classier to render the ultimate classification decision [22].

2.4.2 Combination Functions

Xu [75] explains that methods for fusing of multiple classifiers can be catego-

rized by the type of information produced by the individual classifiers:

1. Abstract-level outputs: each classifier outputs a unique class label for each input

pattern.

2. Rank-level outputs: each classifier outputs a list of possible classes, with rank-

ing, for each input pattern.

3. Measurement-level outputs: each classifier outputs class confidence levels for

each input pattern.

For abstract-level outputs, where each individual classifier outputs a unique

class label for each input, a majority vote rule can be used to combine output labels

[4, 28]. Consider outputs S(1), ...S(N) from N abstract classifiers given an input

pattern, x. The majority vote rule assigns a class label, ci to x if ci is the most

frequent label in the classifier outputs. Figure 2.3 depicts a majority voting rule for
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three classifiers. The majority voting rule is used primarily for an odd number of

classifiers, thus avoiding ties.

Figure 2.3 Majority Vote Fusion Fule [54].

Other abstract-level fusers, based on Bayes’ formula, attempt to estimate the

posterior probabilities of each input pattern through an independent training and

validation set.

Rank-level fusion methods are used when the outputs of the individual clas-

sifiers are class scores or class probabilities. The rank-level fusers uses the ranked

output from each of the individual classifiers and employs a certain methodology to

determine the winning class. This type of scheme is well suited for cases when the

winning class appears near the top of the list for each individual classifier, though

not necessarily as the winning class. Figure 2.4 shows a rank-level fuser.

Measurement level classifiers take continuous outputs from the individual clas-

sifiers and combine them using some form of linear combination. The linear combin-

ers can be a simple or weighted average. A simple average is optimal for classifiers
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Figure 2.4 Rank Level Fusion Fule [54].

with the same accuracy, while a weighted average is indicated when the individual

classifiers have unbalanced accuracies [4].

2.5 HRR Profiles Background

The area of target recognition is a widespread research endeavour. From a

military point of view, the central key to any successful air operation is the identifi-

cation of targets. Air Force Doctrine Document (AFDD) 2-1 notes that if in order

to utilize the unique range of air power, key targets must be identified [66]. With

the advancement of technology and capabilities of sensors and processors, the ability

to identify these key targets both accurately and timely seem within reach. Cur-

rently, the need for human analysts to examine data points to opportunities lost.

Hebert [20] noted that the Unmanned Aerial Vehicle (UAV) Global Hawk is so ef-

fective that its full capability cannot be utilized. This is why automated analysis

of sensor data is such a pressing matter. The target identification process can be

broken down into two parts: detection and classification. We focus on classification

is the subsequent section. First, we will consider the data sources from which a
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classification decision must be made. Next, we will examine some of the techniques

in place for classification.

As defined in AFDD 2-5.2, the collective intelligence derived from visual pho-

tography, infrared sensors, lasers, electro-optics and radar sensors is collectively

known as imagery intelligence [65]. Typical sensor types include electro-optical (EO),

infrared (IR), synthetic aperture radar (SAR), high resolution range (HRR) radar

and moving target identification (MTI) as well as multi spectral (MSI) and hyper-

spectral imagery (HSI). The EO, IR and radar data provide single images, while the

MSI and HSI provide multiple images of the same region from different frequency

bands [3]. The focus of our research thus far has been in the application areas

involving HRR data and HSI data, which we will discuss further.

2.6 HRR Processing

In our main application, we use 2-dimensional X-Band SAR data on 15 sep-

arate targets collected by the Data Collection System (DCS) created by General

Dynamics. These 15 targets along with their descriptions are shown in Table 2.2.

This data was collected at both the HH and VV radar polarizations, which can lend

itself to the treatment of two separate sensors for our experimentation purposes. A

SAR system at the most basic level consists of a platform carrying a side looking

antenna which illuminates an area of interest which electromagnetic radiation. En-

ergy is reflected from objects, the magnitude of which depends on the composition
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of material, physical geometry, wavelength and polarization of the electromagnetic

pulses as well as the azimuth angle. The belief in our research is that different ob-

jects should produce different radar returns, thus a unique HRR signature should

exist for a unique target. We will discuss our ability to distinguish these signatures

in the next section. For further discussion of properties or collection of SAR data,

refer to Oliver [50].

Table 2.2 Targets Used for Collection with Descriptions and Characteristics.

Type Target Description Tracks Wheels Gun

SCUD Single Large Missile N 8 N
SMERCH MLRS Scud Confuser N 8 N

SA-6 Radar Soviet SAM Radar Y 0 N
T-72 Soviet Main Battle Tank Y 0 Y

SA-6 TEL 3 Medium SAMs Y 0 N
Zil-131 Medium Civilian Truck N 4 N

HMMVV Military SUV N 4 N
M113 Armored Personnel Carrier Y 0 Y
Zil-131 Small Civilian Truck N 4 N
M-35 Large Civilian Truck N 4 N

SA-8 TZM SA-8 Reload Vehicle N 6 N
BMP-1 Tank w/small turret Y 0 Y
BTR-70 8-wheeled transport N 8 N
SA-13 Turret SAMs Y 0 N

SA-8 TEL Integrated Radar Exposed SAMs N 6 N

Several AFIT research efforts have focused on target classification using HRR

signatures. MacDonald [42] applied Gaussian-mixture Hidden Markov Models to a

three-class airborne target problem with Fourier transformed HRR signatures. This

research found that forcing a relationship between the hidden states of the HMM and

target orientation improved classification performance. DeWitt [10] processed HRR

36



signatures produced by a synthetic CAD-based XPATCH model using the Prony

technique in a two-class problem. The Prony technique generates feature vectors that

describe scattering centers of the target. This research assumed prior target aspect

angle knowledge within ± 5◦. Meyer’s PhD research [44] considered invariant features

drawn from sequenced HRR signatures and applied a template-based classifier for

the resultant 3-dimensional scattering centers. This research showed that the effects

due to white noise that degrade other classifiers are mitigated from the stability

of the scattering centers. Using this approach, he was able to identify targets 20

percent obscured for up to 80 percent of his test cases.

Efforts from outside of AFIT include Williams et al. [71–73] who propose

template-based ATR algorithms using HRR-derived features. They use a leave-one-

out method to capture the effect of processing a SAR chip that is not in the template

library for which the classifier trained. Under this method, a single target is left out

of the training set, but all targets are used in testing. The process is then repeated

for each target. Shaw et al. [59] conducted research using a template-based classi-

fier with eigenvalues associated with HRR profiles across aspect angle. Zajik [76]

employed wavelets-based features drawn from HRR profiles in a template-matching

scheme. We detail some specific classifier types as applied to the HRR signature

matching problem in the later sections.
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2.7 Character Recognition Background

Another application area we explore for our classification system is that of

handwritten character recognition. Mantas [43] details the history of character recog-

nition back to invention of the retinal scanner. Mantas’ history continues with Nip-

kow’s inventing of the sequential scanner up to David Shepard, founder of Intelligent

Machine Research, Co. and the pioneer of commercial optical character recognition

(OCR) equipment [43]. Mantas lists and defines four schemes of OCR:

1. Fixed-font character recognition: the recognition of specific fonts of typewritten

characters.

2. On-line character recognition: the recognition of single hand-drawn characters

where both the character image and time data are captured.

3. Handwritten character recognition: the recognition of single, hand-drawn char-

acters, which are unconnected

4. Script recognition: the recognition of unrestricted handwritten characters, which

may be connected and/or cursive.

Our specific focus will be on handwritten character recognition. Govindan [17]

outlines three main ways character recognition methodologies can be looked upon.

These three main ways are based on:

1. the approaches used,

2. the nature of applications and
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3. the features used.

As our two classifiers are both feature based, we will focus further on this

methodology. In terms of features used, Govindan [17] classifies character recognition

techniques as either:

1. template matching and correlation techniques; or

2. feature analysis and matching techniques.

Template matching techniques compare an input character to a standard set

of prototypes. The prototype that matches most closely to the input is the classifi-

cation assignment for that input [17]. In feature analysis and matching, significant

features are extracted from a character and compared to feature description of ideal

characters. The ideal character whose description matches most closely provides

recognition [17]. Though not stated explicitly, Govindan’s explanation of feature

analysis is nothing more than a comparison to a compressed prototype, such a mean.

As we show in Chapter 3, the hybrid classifier we develop in this document can op-

erate on any representation scheme or feature set. We thus have an ideal classifier

to operate on the character recognition problem.

Previous work using template based character recognition was done by Con-

nell [9]. This template matching technique considers the entire stroke of a character.

Examples of these characters are shown in Figure 2.5. Strokes of a character are

made up of a series of events, or feature vectors, which average 64 in number for

all of the characters in their datasets. These events are represented by three mea-
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surements: the x and y offsets with respect to a reference coordinate and the angle

of curvature of the written stroke at the sample point. The distance between any

two aligned events is thus computed by considering the weighted differences between

the three measurements. Strokes with different numbers of events are first aligned

and differences between corresponding events are calculated, with total differences

between strokes being the sum of the event differences along with stroke count differ-

ence penalty for strokes of different lengths. Prototypes are formed using clustering

methods and classifications are made using nearest neighbor techniques and decision

trees. Resulting digit recognition rates for a 10-class problem using this technique

range from 86% to 91%.
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Figure 2.5 Examples of Characters from Connell [9].
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3. Framework

We have already seen that there exist various approaches to pattern recognition prob-

lems [25]. We have also noted that almost every pattern recognition system falls into

the category of a hybrid system. That is, most pattern recognition systems combine

attributes of each of the general approaches, rather than being entirely a particu-

lar pattern recognition technique. These hybrid approaches combine preprocessing,

segmentation, feature extraction, representation, classification, interpretation, etc.

techniques from general classes of pattern recognition approaches to form a particu-

lar pattern recognition system.

The two pattern recognition systems we develop in this research use different

representations, classification methods and non-declaration criteria. However, both

systems build a template of prototype patterns to which new patterns are compared

for the purpose of classification.

In this chapter, we begin with an overview of template-based classification sys-

tems. We begin with a discussion of the various components of a template classifier.

This begins with the features extracted from each pattern and the representation

scheme that is generated from those features. Next, we discuss various similar-

ity metrics used in template classifiers. These similarity metrics are the basis for

quantifying the level of likeness between two patterns which lead to classification de-

cisions. Next, we present methodologies for both non-declaration and out-of-library

decisions. Non-declarations occur when the classification system cannot distinguish
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the similarity a test pattern has to more than one of the classes in the template. Out-

of-library determinations are made when the classification system indicates that a

pattern is not among the types for which it has been trained to identify.

3.1 Template-Based Classification Overview

Template classification is based on the notion of using characteristics or fea-

tures of objects which may be used to train a classifier to recognize other objects

with similar characteristics or features. In this approach, prototypes of all known

patterns are stored into a template, which is used for comparison to unknown pat-

terns for classification. The classification decision in template matching is based on a

similarity measure. These measures can include correlation or Mahalanobis distance,

as is used in Laine [34], Albrecht [3] and Friend [12]. In a forced decision scenario,

the template whose similarity metric is smallest is deemed closest to the object to

be classified and the corresponding class label is assigned to the object.

As discussed in Friend [12], SAR target signatures may vary significantly for a

target of interest over small changes in aspect and depression angle as presented to a

collection source. For this reason, it is common practice to collect many prototypes

for the same target across different aspect and/or depression angles. Several factors

contribute to the decision of how many templates should be collected. Among these

include the amount of available information to generate templates, the amount of

variance of the feature data and the storage and computation requirements needed

43



for the features [12]. For this reason, the choice of features is of key importance in

developing a template classifier.

3.1.1 Hybrid Pattern Recognition System

Duda, Hart and Stork [11] detail how a pattern recognition system can be

partitioned into distinct components. An example given in the text is shown in Figure

3.1. As detailed in the text, a sensor converts physical inputs such as images into

signal data. A segmentor isolates image objects from background or other objects.

A feature extractor measures properties from the objects that aid to categorize them

as being of a certain object type, while distinguishing them from other object types.

The classifier assigns objects to a category. The post-processor takes the output of

the classifier and decides on recommended actions [11].

We describe our hybrid classification system in terms of these components.

The first component is the sensing. The hybrid pattern recognition (HPR) system

we develop begins by taking a sensor image and processing that image into a signal.

This can be done by simply reshaping an n by m grayscale image into a 1 by nm

string or by using more complicated processing. In the case of the SAR imagery, this

is done via algorithms obtained by AFIT from the authors of [73] associated with

AFRL/SN. Once an image has been converted to a signal, the HPR system isolates

the objects from background via a user defined noise threshold. This noise threshold

works to filter the useful portion of the signal from the portion of the signal that can
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Figure 3.1 Notional Pattern Recognition System [11].

be construed as either noise or background clutter. This noise threshold can also be

set to zero, if either a subject matter expert or the analyst concludes the entire signal

is useful in making classification decisions. The top portion of Figure 3.2 shows an

example of an HRR profile that was extracted from a SAR image via the AFRL

algorithm. In the bottom portion, the HRR profile is run through a algorithm of

the HPR system that quantizes the portion of the original signal that has not been

filtered as noise. In this case, we represent noise using the integer 1 so that the graph

of the representation is easier to see.

This noise filtering and quantization algorithm is the method of feature extrac-

tion used by the HPR. Duda, Hart and Stork [11] state that the goal of a feature
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Figure 3.2 Example HRR Profile with Resulting Representation.

extractor is to find distinguishing features. That is, the feature extractor seeks to

find measurements characteristic to a certain class of objects that are similar to all

objects of that class and different from objects of other classes. As shown in Figure

3.2 the HPR system uses a representation scheme that is practical enough to accom-

plish classification, while still providing sufficient detail so that the original signal

being represented can still be approximated from the representation.

The next component of the HPR system is classification. This consists of

building a template of prototypes taken during the training phase. In the HRR

application, these prototypes can be as precise as taken from each given aspect
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angle or can be made by combining various aspect angles into a mean prototype, as

done in Koudelka et al. [32]. Other applications may only offer one prototype, or may

suggest using a centroid of a set of prototypes, such as the mean of all prototypes

for each class. The method of comparison between template and test exemplars is

also made here. Examples of comparison metrics used in previous research include

the Minkowski metric or the squared Mahalanobis distance. We detail each below.

For a point x = (x1, x2, ..., xn) and a point y = (y1, y2, ..., yn), the Minkowski

metric of order p is defined as:

dp(x,y) =

(
m∑

k=1

|xk − yk|
p

)1/p

(3.1)

p need not be an integer, but it cannot be less than 1, because otherwise the triangle

inequality does not hold.

The 2-distance is the Euclidean distance, d2, a generalization of the Pythagorean

theorem to more than two coordinates. It is what would be obtained if the distance

between two points were measured with a ruler: the ”intuitive” idea of distance.

The 1-distance is called the taxicab distance or Manhattan distance, d1, be-

cause it is the distance a car would drive in a city laid out in square blocks (if there

are no one-way streets).

Thus, two points are equal if and only if they are of the same length and

each of their corresponding components are the same. The Minkowski metric is a
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generalization of more well known metrics such as the Manhattan distance, p = 1 or

the Euclidean distance, p = 2.

Duda, Hart and Stork [11] explain Mahalanobis distance in the following man-

ner. The multivariate normal density is completely specified by d+ d(d+1)
2

parameters,

namely the elements of the mean vector, µ and the independent elements of the co-

variance matrix, Σ. Samples drawn from a normal population tend to fall in a single

cloud or cluster centered by the mean vector, µ, with the shape of the cluster de-

termined by the covariance matrix, Σ. The loci of points of constant density are

hyper-ellipsoids for which the quadratic form

r2 = (x − µ)T Σ−1(x − µ)

is constant. The quantity r2 is known as the squared Mahalanobis distance between

x and µ.

The final component of the HPR system is post-processing. This is where

class membership decisions are made by using the above metrics or by extracting

other measurements or quantities such as posterior probabilities from these metrics.

In the case of classification decisions made from an edit metric, class membership

would be assigned based on the smallest absolute value of edit metric between an

exemplar to be classified from a given target template. In the case of a forced

decision, this would be the final decision. We will discuss other methodologies such
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as out-of-library thresholds and non-declarations as aids to decrease misclassification

in subsequent chapters.

3.1.2 Feature Vector Pattern Recognition System

The feature vector pattern recognition system (FVPR) [3, 12, 34] we use is a

slight modification from previous work. As previously applied to HRR profiles, the

FVPR system preprocesses sensor images via the algorithms obtained by AFIT from

the authors of [73] associated with AFRL/SN. Once a signal has been obtained from

the image, a 10-dimensional feature vector is extracted by binning the HRR profile

data into 10 equally sized range bins. The features are the maximum amplitude

within each bin. This method of choosing peak amplitudes within range bins was

based on research by Mitchell and Westerkamp [45] whose research introduced a sta-

tistical feature-based classifier which was applied to HRR signatures. This research,

which is detailed in [46] used features extracted exclusively from the middle portion

of the signal, where Mitchell states is the portion of the signal which contains useful

information.

Once the feature vectors have been extracted from each HRR signal, templates

are then formed for each target, where each template is made up of a feature vector at

each aspect angle. In the classification phase, an unknown HRR profile is compared

to the template in the following manner. Using a prior aspect angle knowledge of

±22.5◦, 360 template profiles are formed for each target using a total of 47 training
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profiles. These training profiles consist of the target template corresponding to the

test template aspect angle, plus the 23 templates that precede the test template in

aspect angle and the 23 templates that follow the test template in aspect angle. For

instance, if a test profile has an assumed aspect angle of 45◦, the template wedge

used for comparison for each target would be made up from the template profiles

having aspect angles from 22◦ to 68◦. The mean vector, µ and covariance matrix, Σ

from these 47 template profiles are then used to compute the squared Mahalanobis

distance between the test profile and the target template. This process is repeated

for each target in the template library.

Once the squared Mahalanobis distances over all target templates have been

computed, they are processed into a vector of posterior probabilities. Similar to the

HPR system, in a forced decision scenario the target template having the minimum

squared Mahalanobis distance to the test profile is deemed the winner and the test

template is assigned the corresponding label.

3.2 Non-Declarations

Friend [12] states that in all classification problems, decisions must be made

that effect the overall quality of the classifier. Decision makers may impose con-

straints on a classifier due to their own willingness to risk critical and/or non-critical

errors. This leads to the possibility of non-declarations. For a given exemplar, the

choice to make a classification decision is usually based on thresholding the measure-
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ment the classifier employs to make decisions. Such measurements include, but are

not limited to the output of Minkowski metric used by the hybrid classifier and the

squared Mahalanobis distance used by the feature vector classifier. These thresholds

create a rejection region which encompasses a certain interval of measures for which

a classification decision is not made. The rejection region thus allows for a classifi-

cation label when a classifier output falls outside the rejection region and disallows

classification labels when a classifier output falls within the region. Previous non-

declaration methods have included Chow [8], who stated that classification accuracy

can be improved by withholding label assignments for exemplars which are difficult

to classify. Chow’s work used an optimal rule for rejection based on a single thresh-

old for the posterior probability of a given class. For a classification problem with

N classes, withold making a classification decision for exemplar x if the (winning)

posterior probability for class i given x, P (ωi|x) is less than the threshold T . We

can express this optimal rejection rule as, given T ∈ [0, 1],

x /∈ ωi if max
k∈1,2,...,N

P (ωk|x) = P (ωi|x) < T. (3.2)

Fumuera et al. [15] showed that Chow’s work could be improved by allowing

for by-class thresholds, rather than a single threshold for all classes. The authors

claimed this improvement by noting that if Chow’s assumption of perfect knowledge

of posterior probabilities were violated, no single threshold value could be used to find
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an optimal decision threshold. Using their by-class threshold scheme, a classification

decision for exemplar x is not made if

max
k∈1,2,...,N

P̂ (ωk|x) = P̂ (ωi|x) < θi where θi ∈ [0, 1]. (3.3)

where P̂ (ωi|x) is the estimated posterior probability for class i given x.

Laine [34] and Albrecht [3] implement a window-based non-declaration method.

Their research used receiver operating characteristic (ROC) curve analysis as a

method of establishing a non-declaration threshold. An example of a rejection region

is shown in Figure 3.3.

Figure 3.3 Example Rejection Region for Two Class Problem [34].

A typical ROC curve shows tradeoff between true-positive probability and

false-positive probability calculations by varying a threshold, θ ∈ [0, 1], from 0 to 1.
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A plot of the true-positive probability versus the false-positive probability at each θ

generates the ROC curve. With the implementation of a rejection region, θ is used

to define the region as follows. The center of the rejection region is defined to be

θROC and the half-width of the region is given by θREJ > 0. Thus, as seen in Figure

3.3 the rejection region is defined by the interval (θROC − θREJ , θROC + θREJ). This

rejection region serves as a means to overcome overlap between the two posterior

probability distributions. Thus, the classifier will only assign a label where there is

a high probability of class membership.

Friend [12] provided an alternative to this methodology by developing metrics

based on entropy and Kullback-Liebler (KL) distance as non-declaration methods.

In Friend’s methodology, class sets in the feature space were targets. His entropy

method treats target type as a random variable, Y and treats each corresponding

vector of posterior probability estimates as a probability mass function, pY , where

pY (y) = Pr {Y = y} , Y ∈ Rn. For a training set, the entropy,H of each in library

target’s 10−dimensional posterior probability measure is then calculated by

H(Y ) =
10∑

i=1

py(yi)log2

(
1

py(yi)

)
=

10∑

i=1

−py(yi)log2(pY (yi)) = −E[log2(p(Y ))].

Once the entropy has been calculated for each target in training set, a user

defined quantile of the entropy scores is used to form the NDEC threshold that

is used in testing. During the testing phase, each testing exemplar’s entropy is

calculated and compared to the NDEC threshold for the winning template. If the
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test exemplar’s entropy exceeds the winning template class’ NDEC threshold, the

exemplar is assigned a NDEC label.

Friend’s KL distance method again makes use of posterior probability esti-

mates. His KL method treats target type as a random variable, X and treats each

corresponding vector of posterior probability estimates as a probability mass func-

tion, pX , where pX(x) = Pr {X = x} , X ∈ Rn. Friend considers the true distribu-

tion function, qX as being 100% accurate, which has an entropy value of 0. As an

example, he presents the true probability mass function for an exemplar, xi belonging

to class i is

qX(xi) =





1 if the exemplar belongs to class i

0 otherwise

The KL distance between qX and pX is then

D(pX , qX) =
10∑

i=1

pX(xi)log(
pX(xi)

qX(xi)
) = −log(qX(xi∗))

where i∗ is the winning template. The implementation of the KL distance method

follows the same steps as the entropy method for computing NDEC thresholds for

each target template.

We extend the previous works by improving upon these methods. The idea of

a single non-declaration threshold per class introduced in Fumera et al. [15] and im-
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plemented most recently by Friend [12] is extended by determining non-declaration

status within the current exemplar itself. For our non-declaration scheme, a classi-

fication decision for exemplar x is not made if

max
k∈1,2,...,N

Ŝα(ωk|x) = Ŝα(ωi|x) < θiα (3.4)

where Ŝα(ωi|x) is the estimated similarity measure for class i given x at aspect angle

α.

Further, we note that difficulty in declarations is not simply due to the value

of the winning score, but is largely due to the difficulty in distinguishing between

at least two different classes. Thus, rather than simply thresholding on the single

winning score, we will threshold on the difference between the class with the winning

score and the class with the next closest score for exemplar x. Thus we have

max
k=1,2,...,N

Ŝα(ωi|x) − max
k=1,2,...,N,k 6=i

Ŝα(ωi|x) > θiα (3.5)

where θiα is some percentage of the overall range of scores for that exemplar.

We use the following non-declaration methodology. For a given exemplar, a

non-declaration label (NDEC) is assigned to the vector x if the distance between the

winning class’ similarity metric and the next closest class’ similarity metric is less

than some percentage of the overall range of scores. As an example, consider the

following vector of similarity metric scores:
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S = (0.48, 0.42, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01)

The winning score of S1 = 0.48 and the next closest score of S2 = 0.42 differ by

0.06. The entire range of these scores is 0.48−0.01 = 0.47 If we use a non-declaration

percentage is 10%, then we have θiα = 0.47 ∗ 0.1 = 0.047. Since the difference of

our largest two scores is larger than the 0.047, we would make a declaration, in this

case class 1. On the other hand, if we use a non-declaration percentage of 20%, then

θiα = 0.47 ∗ 0.2 = 0.094, which is larger than our difference in scores and we would

not make a declaration decision.

This new methodology improves Friend’s methodology in the following ways.

First, our methodology will make a non-declaration decision based upon how the

exemplar compares to each of the in-library target templates. The threshold we

compute will not be based on how any other exemplars may have compared to the

template, which will hopefully give a more sound basis for whether the exemplar can

distinguish which template it most resembles. Second, our methodology does not

require the formulation of posterior probability estimates. Posterior probabilities

have been characterized as troublesome in classification systems due to the need

to estimate prior probabilities. Further, they are always normalized to sum to 1.0,

which is not necessarily good under a forced decision [53,56].
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3.3 OOL Methodology Development

In many classification problems, a complete set of possible objects is not known

a priori. The use of NDEC labeling for objects where insufficient information exists

to make a classification decision is one. With NDEC labeling, there is sufficient

evidence to believe the object to be classified closely resembles at least one of the

classes the classifier has been trained to recognize. The problem lies in the ability

of the classifier to distinguish exactly which class the object most closely resembles.

Thus, for example,the object in question belongs to either class i or class j, but the

classifier is unable to determine which.

Another growing trend in ATR classification is to provide a label for objects

for which the classifier is not trained to recognize [3,12]. Such objects will be labeled

out-of-library (OOL). Leap [36] describes the difficulty of OOL classes is from the

fact that no means of training a classifier exists, since there are no exemplars of these

class types. Leap expands the adage “We don’t know what we don’t know” with

“but we do know that we don’t know it”. With this in mind, Leap deveoloped an

OOL Detector that exploits the fact there are regions of the feature space in which

no in-library classes are observed. Those regions serve as the points to be used as

training points for out-of-library classes. Leap thus developed his OOL Detector by

observing that if the feature space is chosen wisely, an attempt to distinguish regions

within that feature space where our in-library class’ features do not exist is possible.
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This builds the hope for the development of an OOL detector, which we present in

later sections.

To aid in distinguishing between different methodologies, we provide the fol-

lowing definitions for the different types of OOL methods [12].

1. Transparent Method based on complete knowledge of all test class types.

2. Semi-Blind Method based on partial knowledge about test class types. For

example using some sort of descriptive statistics generated from test data to

develop OOL thresholds.

3. Blind Method is based solely on in-library training data without any knowledge

of test data class membership. OOL criteria is based entirely on in-library

training data and the characteristics of a test exemplar.

Previous work with the classification of OOL objects has dealt with the for-

mulation of an upper bound or threshold on training set measures as a means of

determining OOL status. Williams et al. [71, 73] discuss the use of object unknown

to a trained classifier. In the case of their research, the authors use upper bounds

on mean-square error as a threshold for identifying objects that are not contained in

the training set. Ramamoorthy and Cassant [52] use MSTAR data with 8 in-library

classes and 2 confusers with a feature space trajectory (FST) classifier. A test exem-

plar is rejected as OOL if the winning class’ Euclidean distance exceeds an in-library

threshold.
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Albrecht [3] uses a heuristic which computes an OOL posterior probability,

ppOOL for a test exemplar based on the in-library posterior probability estimate.

This is accomplished as follows. For a test exemplar, a posterior probability vector,

xpost is computed. The posterior probability vector is then sorted in descending

order. Thus, if for example the posterior probability vector is

xpost = [0.9, 0.01, 0, 0.05, 0, 0.02, 0, 0, 0.02, 0],

then the sorted posterior vector is

xsort = [0.9, 0.05, 0.02, 0.02, 0.01, 0, 0, 0, 0, 0].

Albrecht then uses the assumption that a certain number of the values of the posterior

vector are larger than the rest. In this example, only five of the 10 values in this

posterior vector are nonzero. From that assumption, the threshold, θ
(1)
OOL, to be used

for OOL determination is taken by summing over the largest n values in the posterior

vector, where n is a predetermined number determined in a training phase. In this

case, if we assume n to be 5, that is, θ
(1)
OOL = 5 Albrecht’s technique would sum over

the 2nd thru the sixth posterior values to obtain θ
(2)
OOL = 0.1. The value ppOOL is
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then based on the following heuristic:

ppOOL =





0 if xOOL < θ
(2)
OOL

f(xOOL − θ
(2)
OOL if xOOL ≥ θ

(2)
OOL

where

θ
(2)
OOL = Threshold obtained from a sub-optimization routine

d = xOOL − θ
(2)
OOL

f(d) =
2

1 + e−10d

If xOOL < θ
(2)
OOL, then the exemplar x is considered in-library, and the resulting

probability of OOL is set to zero. Otherwise, if xOOL ≥ θ
(2)
OOL, then the exemplar x

is considered OOL and the probability of OOL is set to the value f(d).

Friend [12] uses the following OOL methodology. His method begins by initiat-

ing a forced decision, he runs a training set of in-library targets through his feature-

vector classifier. For each in-library target class, all correctly identified training

exemplars are extracted along with their corresponding squared Mahalanobis dis-

tance, r2. A threshold, θq is then generated using the nth quantile of the sorted

r2 values of each correctly identified exemplar per training class. In most cases,

Friend states experimentation points toward using the quantile value of 1, meaning
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the OOL threshold for each target class will be the maximum observed r2 of a cor-

rectly identified training exemplar for that target class. In testing, once the feature

vector classifier identifies the winning template, the corresponding r2 between the

test exemplar and the winning template is compared to that winning template’s

threshold value. If the r2 value exceeds the threshold, the exemplar is deemed to be

OOL. Otherwise, the exemplar is assigned the label corresponding to the winning

template.

Friend also discusses another method with a similar methodology. As with the

OOL quantile method, a training set of in-library targets is run through his feature-

vector classifier with a forced decision. For each in-library target class, all correctly

identified training exemplars are extracted along with their corresponding squared

Mahalanobis distance, r2. A threshold for each target class, θm is then generated

using the median, θ̃tr, and mean absolute deviation (MAD) over all values of r2 for the

correctly identified exemplars in each target class training set. Friend points out that

the expectation is that r2 values when comparing training exemplar to templates will

be less than when making similar comparisons between test exemplars and templates.

He therefore introduces the use of a constant multiple of the MAD, α, which will be

added to the median score of the r2 values to form OOL threshold for each target

class in the following manner. A test exemplar will be assigned an OOL label if

the r2 between the winning template and the test record exceeds the threshold θm

corresponding to that target class, where θm = θ̃tr + αMAD. Friend did not pursue
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testing of this methodology due to the need to use OOL exemplars in the test set

in order to find an optimal value for α for each target class. However, it should be

pointed out that the quantile method as well as Albrecht’s heuristic method would

also require the use of OOL test data in order to optimize the associated parameter

settings for each method. We therefore will develop an OOL method based on

Friend’s median/MAD methodology to use as a heuristic OOL methodology to use

in conjunction with our non-numeric feature classifier.

The heuristic OOL methodology we develop follows the same basic steps as

each of the methods done by Friend. Using a training set of in-library targets, we

extract similarity metrics, L for each correctly identified training exemplars. We then

compute threshold values, xL in a similar fashion as the other heuristic methods. A

threshold for each target class, xL is then generated using the mean, µ and standard

deviation, σ over all values of L for the correctly identified exemplars in each target

class training set. A test exemplar will be assigned an OOL label if the L between

the winning template and the test record exceeds the threshold xL corresponding

to that target class, where xL = µ + σ. Like friend, rather than using a single

standard deviation as the threshold distance, we can implement a multiple α so that

our threshold value is computed as xL = µ + ασ.
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3.4 Fusion

Our research examines the use of four different fusion schemes: (1) the Basic

Ensemble Method (BEM), (2) Probabilistic Neural Network (PNN), (3) Borda Count

and a (4) Bayesian Belief Network. Each of the four is discussed further below.

3.4.1 Basic Ensemble Method

Perrone [51] proposes the use of averaged classifiers, such as the BEM. The

authors prove that the mean square error is less for the ensemble than for the best

classifier in the group. The presentation of the BEM combines a population of

regression estimates to estimate a classifier function, f(x) by using a set of functions

F = {f1, f2, ..., fN}, such that each fi ∈ F approximates f . The BEM regression

function, fBEM is then defined as:

fBEM(x) ≡
1

N

N∑

i=1

fi(x) = f(x) −
1

N

N∑

i=1

mi(x) (3.6)

where mi(x) is defined as the misfit of fi(x) from the true solution, that is, mi(x) =

f(x) − fi(x).

Perrrone and Cooper [51] proved that the mean square error for the BEM

ensemble MSE[fBEM ] is less than the mean square error for the best classifier in

the group, MSE[fi] for i total classifiers, that is,
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MSE[fBEM ] ≤ min
k∈1,2,...,i

MSE[fk]

3.4.2 Probabilistic Neural Network

Leap [35] describes the PNN fusion method as a simplistic fusion method that

involves training a PNN on the posterior probabilities from the individual classifiers.

The network in Figure 3.4 accomplishes classification for a two- class problem [68].

Figure 3.4 Probabilistic Neural Network [68].

Wasserman [68] describes the PNN as follows. This method is based on the

assumption that the feature sets are normalized and independent and identically

distributed multivariate normal with common variance, σ2. The normalized input

vector X = (X1, X2, ..., Xn) is applied to the distribution layer neurons. This layer
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does not perform any computations, but merely serves as a connection point. Each

training vector is used to calculate a set of weights, where each weight has the value

of a component of that vector. Pattern layer neurons are grouped by the known

classification of its associated training vector. Each pattern layer neuron sums the

weighted inputs from every distribution layer neuron [68]. This is equivalent to taking

the sum of squares of the training set and the test set, (X−XR,i)
T (X−XR,i), where

XR,i is the ith exemplar in the Rth class from the training set. From normalization,

this reduces to (XT
R,iXi − 1). The pattern layer neurons then apply a non-linear

function to the corresponding sum producing an output Zci, where c indicates the

true class of the training vector and i indicates the pattern layer neuron. The

nonlinear function for Zc,i is

Zc,i = exp

(
(XT

R,iXi − 1)

σ2

)
. (3.7)

In this equation, X is defined above and the set of weights corresponding

to a pattern neuron represent a training vector XR,i = (XR,1, XR,2, , XR,n). The

summation layer simply sums the Zc,i for each class [68]. Thus, the output of the

summation layer for a specific class, Sc is

Sc =
n∑

i=1

exp

(
(XT

R,iXi − 1)

σ2

)
. (3.8)
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The decision layer compares Sc for all classes and assigns the input vector to

the class with the largest corresponding Sc.

3.4.3 Borda Count

The Borda count fusion method is a group consensus function which maps a

set of individual rankings to a combined ranking [23]. Using the posterior probability

vector generated from a given classifier, a ranking for each class is generated, where

the higher rank is associated with the class with the highest probability. This rank-

ing continues sequentially for each of the possible classes. To make a classification

decision, rankings are then combined additively. For any class k, the Borda count is

the sum of the rankings from each individual classifier. If Bi(k) is the ranking given

to class k by the ith classifier, then the Borda count for class k is

B(k) =
n∑

i=1

Bi(k) (3.9)

where n is the number of classifiers [67].

The classification decision is based on the class with the highest overall mag-

nitude. The Borda count method is simple to implement and requires no training.

However, it does not take into account individual classifier capabilities.
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3.4.4 Bayesian Belief Network

The Bayesian belief network is a representation suited to the task of looking

for relationships among a large number of variables [21]. A Bayesian network for a

set of variables X = X1, X2, ..., Xn consists of a network structure, S that encodes

a set of conditional independence assertions about the variables in X and a set of

probability distributions, P associated with each variable. The network structure is

a directed acyclic graph. The nodes in S are in one-to-one correspondence with the

variables in X. Using Xi to denote both a variable and its corresponding node, Pi to

denote the parents of node Xi in S, the joint probability distribution for X is given

by

p(X) =
n∏

i=1

p(Xi|Pi). (3.10)

Because the Bayesian network for X determines a joint probability distribution

for X, the Bayesian network can be used to infer any probability of interest, such

as the posterior probabilities for classification. Our research uses the open source

Bayes Net Toolbox (BNT) for Matlab [1] for calculating posterior probabilities in

our experiments.
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3.5 Mathematical Framework

3.5.1 Notation and Preliminaries

We now develop a mathematical framework for our pattern recognition system.

This framework, along with a mixed variable programming problem developed in the

subsequent section enable us to optimize the parameters of our pattern recognition

system in terms of some measure of performance, which we also present in a later

section.

To begin, we consider a classification system, under a forced decision, that

will be used to map a scene from a region of interest onto a label. For a two-class

problem, let the label set be given by L = {t1, t2}, where

t1 denotes a target 1 label and

t2 denotes a target 2 label.

Suppose we have identified representations r(1), r(2) ∈ R, where R is a set of possible

representations, such that r(1) 6= r(2), r(1) corresponds to t1 and r(2) corresponds to

t2. Let r ∈ R be a representation to which we wish to assign a label. Let d ∈ D be

any metric defined on our set of representations, R, where D is the set of all such

metrics. Then we define the classifier Cd : R → L by

Cd(r) =





t1 if d(r, r(1)) < d(r, r(2))

t2 if d(r, r(2)) < d(r, r(1)).
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This can be generalized for an n-class problem, with a label set L = {t1, t2, . . . , tn, },

where ti denotes a label corresponding to target i label for i = 1, 2, . . . n.

We thus have n representations r(1), r(2), . . . r(n) ∈ R. If we now let r ∈ R be a

representation to which we wish to assign a label, our classifier Cd, : R → L is now

defined by:

Cd(r) =

{
ti if d(r, r(i)) < d(r, r(j)) ∀ j 6= i.

3.5.2 NDEC Model

Now that we have a base model under a forced decision, we consider a classifi-

cation system with a NDEC labeling option. For a two-class problem, let a label set

be given by L = {t1, t2, ndec}, where

t1 denotes a target 1 label,

t2 denotes a target 2 label and

NDEC denotes a non-declaration.

As in the forced decision case, we have representations r(1), r(2) ∈ R, where R is a

set of possible representations, such that r(1) 6= r(2), r(1) corresponds to t1 and r(2)

corresponds to t2. Let r ∈ R be a representation to which we wish to assign a label.

Let d ∈ D be any metric defined on our set of representations, R, where D is the set

69



of all such metrics. Then we define the classifier Cd,θ1
: R → L by

Cd,θ1,(r) =





t1 if d(r, r(1)) < d(r, r(2)) ∧ |d(r, r(1)) − d(r, r(2))| ≥ θ1

t2 if d(r, r(2)) < d(r, r(1)) ∧ |d(r, r(2)) − d(r, r(1))| ≥ θ1

ndec otherwise.

For a non-declaration threshold value θ1 ∈ Θ. The development of the threshold θ1

is as follows. Consider the exemplar, xi, with representation ri. We wish to assign

a label to this exemplar, thus we compute the distance between the exemplar and a

prototype of each in-library class that is contained in a template of known classes. Let

r(1) denote the template prototype for class 1 and let r(2) denote the class prototype

for class 2. We compute the distance between ri and each class template. Using our

choice of metric, d ∈ D, we compute s1 = d(ri, r
(1)) and s2 = d(ri, r

(2)). Thus, we

have a vector of distances between the exemplar and each target template, which

we will call S = (s1, s2). For this two-class problem we choose the winning class to

be whichever class is the closest to the exemplar representation, thus we assign the

exemplar to class ti if di = min(S) = min(s1, s2). Because we now also include the

NDEC labeling option, we set the following threshold. For the vector of distances,

S = (s1, s2), we set a non-delcartion threshold, θ = [max(S)−min(S)] ∗ γ, where γ

is a user defined multiple. Hence, for every exemplar, xi, and for its corresponding

representation, ri, we define the non-declaration threshold for that exemplar, θ,
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which is a function of the range of distances,[max(S)−min(S)], and a user-defined

multiple γ, where 0 ≤ γ ≤ 1.

This can be generalized for an n class problem, with a label set

L = {t1, t2, . . . , tn, ndec} ,

where

ti denotes the label corresponding to target i for i = 1, 2, . . . n and

ndec denotes the label corresponding to a nondeclaration.

We thus have n representations r(1), r(2), . . . r(n) ∈ R. If we now let r ∈ R be a

representation to which we wish to assign a label, our classifier Cd,θ, : R → L is now

defined by

Cd,θ(r) =





ti if d(r, r(i)) < d(r, r(j)) ∀j 6= i

∧ |d(r, r(i)) − d(r, r(j))| > θ1 ∀j 6= i

ndec otherwise.

3.5.3 OOL Model

Now that we have a NDEC model, we consider a classification system with a

NDEC labeling option, that also includes OOL classes. With the introduction of

OOL classes, we develop a method of identifying those classes seperate of the classi-

fier. Our OOL Detector will take label and distance inputs from the classifier, and
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in turn will output a labeling decision of either IL or OOL. Thus, our classification

system will become a composition of functions, where we compose the classifier and

OOL Detector. We consider the two class problem first. For a two class problem,

let a label set for the classifier be given by L1 = {t1, t2, NDEC, }, where

t1 denotes a target 1 label,

t2 denotes a target 2 label and

NDEC denotes a non-declaration.

Let a label set for the OOL Detector be given by L2 = {t1, t2, NDEC,OOL, }, where

t1 denotes a target 1 label,

t2 denotes a target 2 label,

NDEC denotes a non-declaration and

OOL denotes an out-of-library target.

As in the previous two cases, we have representations r(1), r(2) ∈ R, where R is a

set of possible representations, such that r(1) 6= r(2), r(1) corresponds to t1 and r(2)

corresponds to t2. Let r ∈ R be a representation to which we wish to assign a label.

Let d ∈ D be any metric defined on our set of representations, R, where D is a set

of metrics. Then we define the classification system Cd,θ = C2
d2,θ2

◦ C1
d1,θ1

: R → L

by

Cd,θ = C2
d,θ2

◦ C1
d,θ1
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where C1
d,θ1

: R\ → L1×R
+ is the classifier equipped with a NDEC option previously

defined and C2
d,θ2

: L1 × R
+ → L2 is an OOL detector. The classification system,

equipped with an OOL detector, C2
d,θ2

operates as follows. The classifier with a

NDEC option, C1
d,θ1

assigns an initial label, li ∈ L1 where si = min(S) is the metric

output used for classification decsion, to an exemplar, x, where S is the vector of

outputs from the metric d ∈ D used by the classifier. Hence, C1
s,θ1

(r) = Li. This

label assignment and metric output are fed to the OOL Detector, C2
s,θ2

, which uses

the labeling assigment as an input and makes an in-library determination, based

on some threshold θ2. First, if the exemplar is determined to be dissimilar enough

to known in-lbrary targets, meaning si > θ2, then it is assigned on OOL label.

In this case, we have C2
d,θ2

(ri) = OOL. If the exemplar is determined to be in-

library, meaning di ≤ θ2, then we have C2
d,θ2

(ri) = l. The exemplar is then further

processed by the classifier, C1
d,θ1

during which, NDEC determination is done and

a final label assignment is made. Thus, our combined classification system, which

combines the classifier and OOL detector has an over riding rule that makes a final

label assignment. We can thus define the resultant classifier system Cd,θ = C2
d2,θ2

×

C1
d1,θ1

: R → L∈ by
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Cd,θ,(r) =





t1 if C1
d,θ1

(r) = t1

∧ C2
d,θ2

(r) = t1

t2 if C1
d,θ1

(r) = t2

∧ C2
d,θ2

(r) = t2

ool if C1
d,θ1

(r) = t1

∧ C2
d,θ2

(r) = OOL

∨ if C1
d,θ1

(r) = t2

∧ C2
d,θ2

(r) = OOL

ndec if C1
d,θ1

(r) = NDEC

∧ C2
d,θ2

(r) = t1

∨ if C1
d,θ1

(r) = NDEC

∧ C2
d,θ2

(r) = t2

An important note in the development of the composite classifier is the labeling

hierarchy. If the OOL detector,C2
d,θ2

, outputs an OOL label, this supercedes any

other possible labeling assignment. On the other hand, if the OOL detector makes an

IL assigment, then the classifier C1
d,θ1

must make an assignment from all other labels.

This can be generalized for an n-class problem, with a label set L = {L1,L2}. Where

L1 = {t1, t2, . . . , tn, NDEC} and L2 = {t1, t2, . . . , tn, NDEC,OOL} as follows. The

composite classifier Cd,θ = C2
d,θ2

◦ C1
d,θ1

assigns a label OOL if C2
d,θ2

(r) = OOL.

Otherwise, the composite classifier assigns one of the remaining labels according to
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the output of C1
d,θ1

. Thus, for an n-class problem, we define the composite classifier

system Cd,θ = C2
d2,θ2

◦ C1
d1,θ1

: R → L by

Cd,θ,(r) =





ti if C1
d,θ1

(r) = Li ∧ C2
d,θ2

(r) = IL

ool if C1
d,θ1

(r) = Li ∧ C2
d,θ2

(r) = OOL

ndec if C1
d,θ1

(r) = NDEC ∧ C2
d,θ2

(r) = IL

We wish to develop an optimization framework for determining the best clas-

sifier performance. However, before we begin with the optimization framework, we

must first develop the components of our classification system. We begin with the

classifier itself. Now, for each possible choice of classifier, C, we have the following:

• θ ∈ Θ ≡ the set of all thresholds associated with C

• d ∈ D ≡ the set of all possible metrics associated with C

The following diagram shows the components of a classification system

E
S
→ D

Ppre

→ H
Prep

→ R
Cd,θ

→ L (3.11)

where:

• E is the population set of all scenes of interest;

• S is the set of all available sensors that map a scene onto an image;
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• D is the set of all possible sensor images from sensor S;

• Ppre is the set of pre-processors that refine a image;

• H is the set of all refined images;

• Prep is the set of all processors that map a refined image onto a representation;

• R is the set of all possible representations;

• C is the set of all available classifiers that map a representation onto a label;

• L is the set of all possible labels.

The composition of these mappings yield a classification system

A = C ◦ Prep ◦ Ppre ◦ S. (3.12)

Moreover, since we are considering composite classification systems, we must consider

fusion rules where

• F is a set of fusion rules.

For example, if we use fusion at the decision level for two classification systems,

we will allow the two independent classification systems to make two independent

decisions and use a fusion rule for making a final label decision. Classifier 1 will have

its own set of parameters used to form a representation, which are generally different

than the parameters used by classifier 2 in generating its representation. Once the

two separate representations are formed, each of the classifiers will make its own
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label determination using its associated thresholds, parameters and edit metrics. In

our example problems we fuse the hybrid classifier output with the feature vector

classifier output, where the same sensor data is examined by each classifier. The

two independent label outputs, L1,L2 are then fused via a single fusion rule, f , to

form the final label output, L. Figure 3.5 below depicts a classifier system that

incorporates label fusion.

R1
C1 // L1

E
S // D

Ppre
// H

Prep1

>>||||||||

Prep2 ÃÃB
BB

BB
BB

B

Â ÂÂ Â f
+3 +3 L

R2
C2 // L2

Figure 3.5 Classifier System with Label Fusion.

We could instead incorporate fusion rules at any other level. For example,

we could choose to fuse at the sensor data level, where we combine sensor images

from two or more sensors operating on the same scene of interest. Suppose two

separate sensors are operating in the same event space. Each sensor captures its

own individual image. We could choose to fuse the sensor data prior to refining the

image. Thus, we would take each sensor image and combine the data in some way to

produce a third, combined image, which would then be processed as before. Figure

3.6 depicts a classifier system that incorporates data fusion.
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Figure 3.6 Classifier System with Data Fusion.

3.6 Mixed Variable Programming Formulation

We must also consider a methodology for evaluating the performance of our

classification system. Let ρ be a real valued functional that quantifies the perfor-

mance of our classification system, so that ρ(A) ≥ 0, for each system A. We use

the following mixed variable programming (MVP) formulation based on the previ-

ous work of Laine [34], Albrecht [3] and Friend [12]. For the MVP formulation, let

x be a vector of decision variables. Some of these decision variables are discrete,

such as choice of fusion rule or sensor, while others are continuous, such as classifier

thresholds or parameters [34]. We seek to find the optimal x in the space of decision

variables, X, given an objective function and constraints.

Objective Function

max
x∈X

ρ(x) assuming maximization is optimal

Subject to:
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Performance Constraints

Ecrit(x) < Π1 upper bound on critical errors

Encrit(x) < Π2 upper bound on non-critical errors

Ptp(x) > Π3 lower bound on true positive rate

Pdec(x) > Π4 lower bound on probability of declaration

Plib(x) > Π5 lower bound on out-of-library true positive rate

Sensor Selection Constraint

s∑

i=1

Si ≤ s select from available sensors

s∑

i=1

Si ≥ 1 select at least one sensor

where: Si =





1 if ith sensor is used

0 otherwise

Classifier Selection Constraint

c∑

j=1

Ck ≤ c select from available classifiers

c∑

j=1

Ck ≥ 1 select at least one classifier
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where: Cj =





1 if jth classifier is used

0 otherwise

Fusion Rule Constraint

f∑

k=1

Fk = 1 select a single fusion rule

where: Fk =





1 if kth fusion rule is used

0 otherwise

Minimum/Maximum Look Constraint

MinLook ≤ NL ≤ MaxLooks

where:

NL = Number of looks at the target

MinLook = lower bound on number of target passes

MaxLook = upper bound on number of target passes

Budgetary Constraints These constraints are subject to all budgetary limitations,

which include but are not limited to: Research and Development, Operation and

Maintenance, Procurement, Storage and Transportation.

s∑

i=1

MSi
Si +

c∑

j=1

MCj
Cj +

f∑

k=1

MFk
Fk limit costs of system
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where:

MSi
= the cost associated with sensor i

MCj
= the cost associated with classification system j

MFk
= the cost associated with fusion system k

Physical System Constraints These constraints are subject to the size limitations

of the classification system as a whole. These constraints include, but are not limited

to: weight, dimensions, bandwidth, platform, computation time and interface.

s∑

i=1

PSi
Si +

c∑

j=1

PCj
Cj +

f∑

k=1

PFk
Fk limit size of system

where:

PSi
= the physical limit associated with sensor i

PCj
= the physical limit associated with classification system j

PFk
= the physical limit associated with fusion system k

Threshold Constraints These thresholds will differ in values and quantity for

different sensors, fusion rules and classifiers. In the next section we discuss thresholds
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specific to the hybrid classifier.

θijk ≥ θlower

θijk ≤ θupper

where:

θijk = a threshold associated with sensor i, classifier j and fusion rule k

θlower = a lower bound for a given threshold choice

θupper = an upper bound for a given threshold choice

We can thus solve all, or more often times, a portion of this MVP formula-

tion to achieve optimal parameter settings which are dictated by specific problem

applications.

3.6.1 Threshold Considerations for the Hybrid Classifier

Let us consider the specifics of threshold choices for the hybrid classifier we have

developed. As we demonstrate in the formulation of the MVP, we have threshold

choices that are specific to a given combination of sensor, fusion system and classifier.

For the moment, we defer discussion of the first two components and focus on only

the threshold decisions specific to our hybrid classifier. Table 3.1 lists the parameters

associated with our classifier.

To consider further, let us examine these parameters in greater detail.
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Table 3.1 Hybrid Classifier Parameters.

Parameter Description

θ1 Noise Threshold
Pre Pre-processor choice
d Distance Measure
W Template Size
TR Training Data Size
Q Number of Quantiles

θOOL,i OOL Threshold for Class i
θNDEC,i NDEC Threshold for Class i

The choice of peak threshold, θ1, allows us to filter out apparent noise from

a given signal. However, a choice of zero for this threshold will allow us to keep

the entire signal, thus, extracting all information that may be contained in the

signals. For example, previous work on HRR profiles [3, 12, 34] has filtered out

what is assumed to be noise and only kept the middle part of the HRR profile for

classification purposes.

The choice of preprocessing type, Pre, includes any and all steps done to the

SAR image prior to forming representations. In our HRR profile case, the pre-

processing steps include everything from the SAR chips processed using the AFRL

algorithms, to include the interpolation done to mitigate the grouping of data.

The choice of a specific distance measure, d, is actually a method that de-

fines the resultant classifier. Specific metrics, such as our absolute difference, the

Manhattan distance, or the Euclidean distance, all contain properties specific to all

metric spaces. Other choices of similarity quantifier, such as Mahalanobis distance

or Z-score do not satisfy all of the properties of a metric space. These quantifiers do
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have other properties that allow one to assume statistical distributions of similarity

and ease in computing posterior probabilities of class membership.

Template size, W and training data size, TR are both problem specific. For

example, in the presence of multiple exemplars of a given class, we can choose to

use all exemplars of a certain class type to form a template in whole or by using

a centroid such as the mean of the exemplars to be the prototype of that class.

Training data size can vary due to availability of data as well as the need to learn

parameters such as OOL or NDEC thresholds from training data.

In our classification scheme, we use quantization as a means to extract non-

numeric features from patterns. Our choice for the number of quantiles, Q, con-

tributes to both accuracy and computation time, thus the framework leads us to

finding an optimal setting.

Finally, for a given class, i, the OOL threshold θOOL,i and the NDEC threshold,

θNDEC,i are learned in the training phase. By learning how effectively the classifier

identifies different classes, these thresholds are then formed to help optimize perfor-

mance, within the framework.

Figure 3.7 shows a notional implementation of our methodology within the

framework. Within this framework, two independent classifiers operate indepen-

dently on sensor data. The sensors are independent in the sense that the same

classifier is operating on two independent data sets, the HH polarized and the VV

polarized data. For the purpose of experimentation, the two data sets are depicted
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to be from two independent sensors. The sensors each extract their own features

and the corresponding classifiers make independent classification decisions. Each

individual classifier passes information to the OOL detector, which makes decisions

based on the information that is fed to it from each classifier. These classifiers then

make their own classification decisions and use the mathematical framework to solve

a sub-optimization problem, based solely on their own parameters and measures of

performance. The individual optimal classifier outputs are then fused to produce the

final label decisions. We will call this model the local optimization model, as it first

optimizes the two sensor/classifier combinations prior to fusing the two classificatio

system outputs together.

Figure 3.8 shows a notional implementation of our methodology, with a mod-

ification from the previously mentioned parallel sub-optimization technique. Here,

each individual classifier goes through similar steps as in the previous technique.

They each extract their own features, make class determinations and pass infor-

mation to the OOL detector. However, rather than solving two sub-optimization

problems and then using fusion to produce a final label, the fusion will be included

in the optimization process. In this case, optimal parameter settings are found by

finding the best overall fused result across all classifiers. We call this model the global

optimizer, as it fuses all possible parameter combinations together prior to finding

the optimum. We show the key change between the two models by highlighting the

change in order of optimization and fusion between the local and the global models.
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Figure 3.7 Classification System within mathematical optimization framework. In
this process two independent classification systems operate on sensor
data and produce their individual optimal outputs. These outputs are
then fused to produce the final system output.

3.7 Methods of Evaluation

In order to optimize the performance functional, ρ, of our pattern classification

system, we must first determine how we will quantify performance. One method of

presenting classification performance is through the use of a confusion matrix. A
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Figure 3.8 Classification System within mathematical optimization framework. In
this process two independent classification systems are fused within the
framework, thus producing the best overall parameter settings for the
fused classification system.

confusion matrix for a classification problem considers the number of exemplars of

a given class type and the number of labels of a given label type. So, as you add

across the row of the confusion matrix, you will get the total number of exemplars

of that class type. Similarly, as you add down the columns of the confusion matrix,

you get the total number of labels used for the given label type. Figure 3.9 shows

the entries of an example confusion matrix, as well as the row sums, Ci and column
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sums, Lj. The classification problem represented by the confusion matrix has a total

of m classes and a total of n possible labels. Note that these m possible classes can

include both in-library and out-of-library classes. Furthermore, the n possible labels

include both an out-of-library label as well as a non-declaration label.

Figure 3.9 Confusion Matrix for m classes and n possible labels.

The first performance we consider is classification accuracy (CA). The CA for

a given class is the number of successful times exemplars are correctly assigned to

the class to which they belong. This is often referred to as the engineers’ measure

of effectiveness (MOE), since CA measures considers whether a classification system

assigns a correct label, given a certain class. In practice, the classification accuracy

for any given class, i can be computed from the confusion matrix by dividing the xii

entry in the confusion matrix by its corresponding row sum. Thus, for the 10-class

problem we have from finite data the estimate of CA for each class, i, denoted ĈAi
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ĈAi =
xii

10∑
j=1

xij

Moreover, we can compute the average classification accuracy over all targets

by taking the weighted average over all individual classification accuracies. If we

assume equal prior probabilities, this is done by simply taking the mean of the

ten individual classification accuracies. This computation is no different under the

aggregated scenario, for which we have aggregated from ten classes to two classes.

Label accuracy (LA) measures the operational effectiveness of the classification

system. This is often referred to as the warfighter’s or user’s MOE since this is an

assessment of true class membership, given the classification system is indicating a

certain label. Probabilistically, we have

p(Ci|Lj) =
p(Lj|Ci)p(Ci)

p(Lj)

In practice, LA for any given class, LAj can be computed from the confusion matrix

by dividing the xjj entry in the confusion matrix by its corresponding column sum.

Thus, for the 10-class problem we have

L̂Aj =
xjj

10∑
i=1

xij
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The average LA over all ten targets can be taken as with the average CA, by

taking the weighted sum over all ten labels. Furthermore, the aggregated LA for

either of the two label types is done similarly for the aggregated CA case.

We thus define the following MOEs for a forced decision experiment as

ĈAtotal =
1

10

10∑

i=1

CAi under the 10 true classes scenario

L̂Atotal =

10∑
i=1

xij

10∑
j=1

10∑
i=1

xijLAj

under the 10 possible labels scenario

ĈAH =

5∑
i=1

5∑
j=1

xij

5∑
i=1

10∑
j=1

xij

under the aggregated 2 true classes scenario

L̂AH =

5∑
i=1

5∑
j=1

xij

10∑
i=1

5∑
j=1

xij

under the aggregated 2 possible labels scenario

ĈAFN =

10∑
i=6

10∑
j=6

xij

10∑
i=6

10∑
j=1

xij

under the aggregated 2 true classes scenario

L̂AFN =

10∑
i=6

10∑
j=6

xij

10∑
i=1

10∑
j=6

xij

under the aggregated 2 possible labels scenario
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The critical errors, Ecrit and non-critical errors Encrit are computed as

Ecrit =

10∑
i=6

5∑
j=1

xij +
5∑

i=1

10∑
j=6

xij

10∑
i=1

10∑
j=1

xij

Encrit =

5∑
i=1

5∑
j=1
i6=j

xij

5∑
i=1

5∑
j=1

xij

+

10∑
i=6

10∑
j=6
i6=j

xij

10∑
i=6

10∑
j=6

xij

The confusion matrices for the 10-class problem and an aggregated 2-class

problem are shown in Figures 3.10 and 3.11. During our experiments, we aggregate

from a 10-class problem to a 2-class problem by combining the first 5 target classes

into one class and combining the second 5 target classes into a second class.

Figure 3.10 Confusion Matrix for 10 classes and 10 possible labels.
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Figure 3.11 Aggregated Confusion Matrix for 2 classes and 2 possible labels.
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4. Handwritten Character Recognition

4.1 NIST Data

We now test our classification system methodology on the handwritten digit

recognition problem. As stated by Liu [40], the performance of a classification system

largely depends on the feature extraction approach and the classification/learning

scheme. We examine four different feature extraction methods and report our find-

ings on each. As has been done in previous testing methods, we use the Modified

National Institute of Standards and Technology (MNIST) database of handwritten

digits [37]. This database contains approximately 6000 training samples and approx-

imately 1000 test samples of each digit (1-9). As described in Teow [60], the MNIST

database was constructed from the National Institute of Standards and Technology

(NIST) Special Database (SD) 3 and Special Database 1 which contain binary im-

ages of handwritten digits. NIST originally designated SD-3 as their training set and

SD-1 as their test set. However, SD-3 is much cleaner and easier to recognize than

SD-1. The reason for this can be found on the fact that SD-3 was collected among

Census Bureau employees, while SD-1 was collected among high-school students.

Drawing sensible conclusions from learning experiments requires that the result be

independent of the choice of training set and test among the complete set of samples.

Therefore it was necessary to build a new database by mixing NIST’s datasets.
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The original black and white (bi level) images from NIST were size normalized

to fit in a 20 x 20 pixel box while preserving their aspect ratio. The resulting images

contain grey levels as a result of the anti-aliasing technique used by the normalization

algorithm. The images were centered in a 28 x 28 image by computing the center

of mass of the pixels, and translating the image so as to position this point at the

center of the 28 x 28 field.

The MNIST training set is composed of 30,000 patterns from SD-3 and 30,000

patterns from SD-1. The MNIST test set is composed of 5,000 patterns from SD-3

and 5,000 patterns from SD-1. The 60,000 pattern training set contains examples

from approximately 250 writers. Figure 4.1 shows sample images from the MNIST

database.

Figure 4.1 Sample Images From the MNIST Database.
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Many previous methods have been tested on the MNIST database or on subsets

of the database [40,60]. Thus, this database serves as an excellent baseline for making

comparisons to other methods. Teow [60] tested a k-nearest neighbor classifier. The

authors computed a distance (or similarity) between features of a test sample and

the features of each of the training samples. Before the feature extraction step occurs

each original 28 x 28 image is augmented by introducing a 2 pixel wide border around

the image, resulting in a 36 x 36 pixel image. The features used in their methodology

are extracted using a convolution mapping that detects neighboring pixels that have

similar grey-scale values. The end result of their feature extraction is a feature vector

of size 2592. The results reported used the same feature extraction method with two

different quantifiers: (1) Euclidean distance and (2) cosine similarity measure. The

experimental results reported showed that the best performing k was for k = 3,

where tests were performed for k ∈ {1, 3, 5, 7, 9}, but only the best results were

presented. Those results are shown in Table 4.1. In both cases, the training set

contained 60,000 samples and the test set contained 10,000 samples per class.

Table 4.1 Previous Results on MNIST Database [60].

Similarity Measure Error% Reject%

Euclidean 1.39 0
Cosine 1.09 0

Liu [40] reports 80 separate accuracies by taking combinations of eight different

classifiers and 10 different feature vectors. Prior to feature extraction, each image is

normalized to a standard size of 35 x 35. The features used in these experiments are
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different variants of a direction feature. The first variant is chaincode. In chaincode

feature extraction, contour pixels from the normalized image are assigned 8 direction

codes and the contour pixels of each direction are assigned to a direction plane. The

next variant is gradient. In gradient feature extraction, different gradient operators

were used to extract gradient strength and direction, which are transformed into

feature vectors. The last variant used is peripheral direction contributivity (PDC).

In PDC, the distance from a given stroke pixel to the nearest edge are computed

in eight different directions. Feature measurements are then extracted from these

directional components. The different classifiers used include a k-nearest neighbor

classifier, three different neural network classifiers, a learning vector quantization

classifier, a discriminative learning quadratic discriminant function classifier and two

support vector machine classifiers. During experiments on the MNIST dataset, the

feature vector scheme with the best average results was an eight direction gradient

feature extractor of size 200. The best performing classifier was a support vector

machine using a radial basis function (RBF) kernel. The authors note that this

particular classifier has an extremely high storage and computation expense. The

combination of this feature vector and classifier produced an accuracy of 99.227%,

while the average CPU times in classifying a test pattern was 16.67 ms per test image.

The authors conclude that this CPU time is prohibitive for real-time application of

this classification methodology.
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4.2 Implementation of the HPR System on the MNIST Data Set

We now present our results from implementing the HPR classification system

on the NIST data set. As described above, the NIST data set is the data set originally

designated SD-3, from which the MNIST data set was constructed. Our experiments

were run as follows. This database contains approximately 200 images per class. For

our experiments, we randomly divide each class dataset into 150 training samples

and 50 test samples. Features were collected by reshaping the original 16 x 16 pixel

image into a 1 x 256 vector by either concatenating rows, concatenating columns or

via a diagonalization. A representation is formed for each image from the training

set and the test set using the quantization scheme described in the previous chapter.

As a baseline of classifier performance prior to optimizing parameters, we use a

noise threshold of zero and ten quantiles. Once the representations are formed, a

prototype of each class is formed from the 150 training samples. In this case, we use

the mean representation. Then, for each of the 50 test samples, the distance measure

is computed between the test sample and each of the 10 prototypes. In this case,

we use the Euclidean distance. The test sample is then classified according to the

most similar prototype. The resulting confusion matrix, given in terms of percents,

is shown in Table 4.2.

For this experiment, we observe an average classification accuracy, across all

classes, of 77.63% and an average label accuracy of 83.27%. While these results

are lower than previously reported results, the total CPU time for these tests was
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Table 4.2 Confusion Matrix for the Recognition of NIST Handwritten Digits.

Class 0 1 2 3 4 5 6 7 8 9

0 79.44 0.00 0.00 1.11 0.00 2.22 6.11 1.00 0.00 1.11
1 0.00 96.11 0.00 0.00 0.55 0.00 0.00 1.11 0.00 2.22
2 0.00 6.67 65.55 2.22 2.22 0.00 0.56 19.44 1.11 2.22
3 0.00 0.00 0.00 92.78 0.00 0.56 0.00 4.44 0.00 2.22
4 0.00 7.22 0.00 0.00 61.67 0.00 0.00 3.33 0.00 27.78
5 0.56 0.00 0.00 2.22 0.00 58.89 0.00 29.44 0.00 8.88
6 0.00 6.67 0.00 0.00 0.00 0.00 92.78 0.56 0.00 0.00
7 0.00 0.56 0.00 0.00 0.00 0.00 0.00 94.44 0.00 5.00
8 0.00 9.44 0.00 6.67 0.00 0.00 0.00 18.33 19.44 46.11
9 0.00 0.56 0.00 0.00 0.56 0.00 0.00 2.22 0.00 96.67

virtually instantaneous, which indicates this methodology has potential for real-time

applications.

We now apply the mathematical optimization framework to an experiment

using the NIST database. We use our classification system within the framework

across a variety of experimental parameter settings to find which parameter setting

produce the best performance values. In this case, we use average classification

accuracy (CAtotal) and the average label accuracy (LAtotal) to quantify performance.

The parameters that will be varied in this experiment are the number of quantiles

(NQ) used in representations and the distance measure(S) used. Here, we vary the

number of quantiles used in the representation step from 5 to 15. The mathematical

optimization formulation then becomes:
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Objective Performance Function

max
x∈X

CA(x)

Subject to:

Parameter Constraints

NQ ∈ {5, 6, ..., 15}

S ∈ S ≡ {Manhattan, Euclidean}

We find that the Euclidean distance always outperforms the Manhattan dis-

tance in terms of our two measures of performance across all settings for NQ. Figures

4.2 and 4.3 show the average classification accuracy and average label accuracy across

the number of quantiles used in representations, when using Euclidean distance. We

find the best classification accuracy and the best label accuracy both occur when

using seven quantiles.

4.3 NDEC Experimental Methodology

For our initial non-declaration experiments, we will use the same 10 characters

as in the previous experiments. Now, we will allow for non-declarations using the

following method. For a given exemplar, x, a non-declaration is made if the distance
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Figure 4.2 Average Classification Accuracy Across Number of Quantiles.
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Figure 4.3 Average Label Accuracy Across Number of Quantiles.

between the exemplar and the winning template class d(x,x1) and the next closest
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template class’ distance , d(x,x2), is less than some percentage of the overall range

of scores.

We use our classification system within the mathematical optimization frame-

work across a variety of experimental parameter settings to find which parameter

settings produce the best performances. As in the forced decision scenario, we use

total classification accuracy (CAtotal) and the average label accuracy (LAtotal) as the

measures of performance. The parameters that will be varied in this experiment are

the number of quantiles (NQ) used in representations, the non-declaration threshold

θNDEC and the distance metric(M) used. Here, we vary the number of quantiles used

in the representation step from 5 to 15, the non-declaration threshold from 0.00 to

0.05 and again use either the Manhattan distance or the Euclidean distance as our

distance metric. The mathematical optimization formulation then becomes:

Objective Function

max
x∈X

CA(x)

Subject to:

Parameter Constraints

NQ ∈ {5, 6, ..., 15}

θNDEC ∈ {0.00, 0.01, ..., 0.05}

S ∈ S ≡ {Manhattan, Euclidean Distance}
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The confusion matrix in Table 4.2 gives the optimal classification results for

the above designed experiment. We present the average confusion matrix over 30

replications. The optimal parameter choices are given in Table 4.3.

Table 4.3 NIST Optimal Parameter Settings.

Parameter Value Settings
NQ 7

θNDEC 0.01
S Euclidean Distance

Using the optimal parameter settings of NQ = 7,θNDEC = 0.01 and the Eu-

clidean Distance for our choice of comparison metric we produce the confusion matrix

in Table 4.4.

Table 4.4 Confusion Matrix for the Recognition of NIST Handwritten Digits with
NDEC Threshold of 0.01.

Class 0 1 2 3 4 5 6 7 8 9 NDEC

0 80.35 1.09 0.04 0.69 0.06 1.83 11.00 1.72 0.31 0.76 2.15
1 0.00 96.74 0.00 0.00 1.46 0.00 0.39 0.37 0.04 0.65 0.35
2 0.00 11.74 64.96 1.61 2.39 0.15 3.70 9.30 1.33 1.44 3.37
3 0.00 1.91 0.02 83.11 0.07 0.74 0.07 5.15 0.89 6.02 2.02
4 0.00 8.96 0.02 0.00 68.06 0.00 0.26 0.63 0.04 18.07 3.96
5 0.11 0.98 0.02 4.31 0.44 70.20 3.04 9.85 0.52 7.07 3.44
6 0.35 5.78 0.09 0.00 0.09 0.15 92.93 0.06 0.15 0.04 0.37
7 0.31 1.26 0.00 0.02 0.15 0.04 0.00 88.65 0.02 7.72 1.83
8 0.02 12.94 0.04 3.19 0.70 0.91 0.59 5.85 38.20 31.63 5.93
9 0.00 1.67 0.00 0.00 1.96 0.00 0.00 2.00 0.13 92.67 1.57

Dec 0.98
AVG CA 0.79
AVG LA 0.84

This error rate of 21%, while significantly greater than the previously reported

results whose error rates were less than 1.5%, still demonstrates a favorable utility
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of tour classification. Moreover, the instantaneous CPU time indicates that further

development of this classifier methodology on this application is feasible.

4.4 Summary

The hybrid classifier applied to the MNIST data set yields several positive con-

clusions. First, the hybrid classifier was initially built with the intention of applying

it to automatic target recognition problems. The fact that the hybrid classifier per-

forms comparably to classifiers that were designed to be applied to optical character

recognition applications demonstrates the versatility of the hybrid classifier. Sec-

ond, the low storage and computation expense of applying the hybrid classifier on

the optical character recognition problem indicates that the hybrid classifier could

be modified and used in real time applications. Third, the utility of both the math-

ematical framework and the NDEC option within this application context show how

we can boost classifier performance toward an optimum, without user interaction,

thus indicating the usefullness of both methodologies.
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5. Automatic Target Recognition

5.1 Overview

The ability of a decision maker to make a quality real-time decision requires

that reliable and timely information must be made available. Within the scope

of combat identification, this means combat identification systems must be fast,

accurate and easy to use. We now demonstrate how our classification system makes

improvements to the timeliness and accuracy of combat identification systems by

automatic target recognition methods. These improvements are the result of several

key contributions. First, the development of a hybrid classifier that operates on a

non-statistical set of features while maintaining comparable results to traditional

statistical-feature classifiers gives us complementary classifiers whose outputs can

be fused to improve overall system performance. The resulting classifier system,

which we call a combined classification system, yields favorable results for both the

individual classifier components as well as when fused together into the combined

classifier.

The composite classifier is made up of different choices of pre-processor, out-

of-library and non-declaration thresholds, different models or classifiers used, as well

as choices of amount of signal or information from an observation that is retained.

All of these decisions are managed through the mathematical framework which pro-
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duces an optimal decision based on parameter choices. An overview of the combined

classification system is shown in Figure 5.1.

Figure 5.1 Overview of Combined Classification System.

5.2 HRR Data Description

The high-range resolution (HRR) data set we use has been used in previous

research at AFIT [3, 12, 34]. These dissertations detail the preprocessing methods

that generate HRR profiles from SAR chips as well as the steps used to generate

features. The original SAR data set was collected at Eglin AFB, FL from the General

Dynamics Data Collection System (DCS). The SAR data was captured from two
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separate polarizations (HH and VV). These HRR profiles are then processed into

representations or features that are used to make classification decisions. The two

separate polarizations are treated as separate sensor data and are used for fusion

experiments.

Each data set includes 724 SAR chips of each of the ten targets. A SAR

system consists of a platform carrying a side-looking antenna, which illuminates a

given area of interest with electromagnetic radiation pulses. As shown in Figure 5.2,

the direction of the platform’s travel is known as the azimuth and the perpendicular

distance from the platform to the target is known as the ground distance, or range.

Figure 5.2 Diagram of SAR Collection Process [12].

During the collection process, each flight path encompassed approximately 90

degrees of aspect angle and successive spot collections were separated by approx-
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imately 4 degrees of aspect angle. In this collection, 32 passes were performed,

providing 8 sets of SAR images collected over the entire 360 degrees of aspect angle.

Figure 5.3 shows the aspect angle conventions for the data set.

Figure 5.3 Aspect angle Conventions for DCS Data Set [12].

The data set of 724 exemplars for each data type were collected at a desired

depression angle of between 6 and 8 degrees, though the actual range of depression

angle was between 4 and 9 degrees. Figure 5.4 shows the relationship between

platform and target in terms of depression angle.

Figure 5.4 Diagram of Depression Angle [12].

Additionally, the data collection does not have an equal distribution of coverage

over the 360 degrees of aspect angle. Friend [12] gave an example of this unequal

distribution with a rose plot with 10 degree bins as in Figure 5.5. If there was an
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equal distribution across aspect angle, the bins of the rose plot would each contain

20 elements.

Figure 5.5 Example Aspect Angle Distribution. [12]

5.3 Implementing the Hybrid Classifier on the HRR Data Set with a

Forced Decision

The following is the methodology followed for classification experiments with

the HRR profile data. The data set is composed of 724 exemplars of each target

type. There are 10 in-library classes. The first five of these targets are hostile and

the second five are non-hostiles. There are also 5 classes of out-of-library targets,

which the classifier is not trained to recognize. Each exemplar has a range length of
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322 and has a corresponding amplitude at each step that is plotted along the length

to produce an HRR profile as shown in Figure 5.6.

Figure 5.6 Example HRR Profile.

Each data set is first reduced in size to 723 by randomly removing a single

exemplar. For each class, the remaining data is then randomly split into three

separate data sets: a training set, a test set and a validation set. Each of these data

sets contains 241 exemplars, which are linearly interpolated to form 360 exemplars

in each set. These resulting exemplars each represent a single degree of aspect angle.

The training set for each of the 10 in-library targets is used to form the templates

in the two classifiers. The template for each class is formed in the following manner.

Let α represent an aspect angle for an exemplar, where α ∈ {1, 2, ..., 360}. Since

aspect angle is not necessarily known with 100 % certainty, a symmetric wedge of

15 degrees is formed around the aspect angle estimate, α (i.e. α ± 7 degrees). For
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each of the 10 in-library targets, a template is formed for every aspect angle where

x̂αd represents the centroid estimate of the 15 degree symmetric wedge for the dth

class and Σ̂ad is a 10 × 10 estimated diagonal covariance matrix generated from the

features in a 15 degree wedge centered at aspect angle α for the dth class. Once the

template classifier is built using in-library targets, it is tested using two independent

data sets containing both in-library and out-of-library targets.

As in previous work, [62,63] we assume a prior aspect angle knowledge of ±7◦.

Several works have proposed that effective pose estimation improves classification

accuracy by reducing the number of templates that must be considered for classifi-

cation decisions. Previous work with the feature vector classifier [3,12,34] follows the

convention that pose estimation provided by a moving target indicator is accurate

to within ±22.5◦. As done in our previous work [62, 63] we use the more liberal

estimate of ±7◦ for both classifiers. Thus, when comparing an unknown exemplar

with assumed aspect angle α to each of the in-library targets, we form a symmetric

window of 15 degrees centered at α where x̂αd represents the centroid estimate for

the 15 degree window centered at α for the dth class.

Following the methodologies and notation used most recently by Friend [12],

we adopt the following state space for classifier decisions. Consider the cases outlined

in this research, where the general target classes will be: target of the day, other

hostile target, or a non-hostile target. The state space for this scenario is outlined

in Figure 5.7.
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Figure 5.7 Event set for the forced decision classifier experiments [12].

A critical error, Ecrit is either the mislabeling of a hostile target as non-hostile

or mislabeling of a non-hostile target as hostile. Either error presents the possibility

of catastrophic consequences. A non-critical error, Encrit, would include mislabeling

within aggregated hostile class or within the aggregated non-hostile class. While not

necessarily catastrophic, these types of errors could lead to poor mission decisions,

such as poor choice of weapon system or sortie generation.

Warfighter measures of effectiveness (MOEs) are used within the mathemati-

cal framework to evaluate system performance. In the following definitions, let Ci

indicate an exemplar truly belonging to a given target class, i. Let Lj indicates

an exemplar given a label assignment by the classification system that assigns the
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exemplar to target class, j. For a ten-class problem under a forced decision, Figure

5.8 shows the the resulting confusion matrix.

Figure 5.8 Confusion Matrix for the Forced Decision Classifier Experiments

Note that in this problem, the same numbers of both labels and classes exist.

Thus, every exemplar is assigned to belong to one of the known classes. Furthermore,

this 10-class confusion matrix can be aggregated to a higher level confusion matrix.

Consider the confusion matrix in Figure 5.8. Now, we aggregate class membership

as follows. We will consider two class types and similarly two label types. The first

class type will be made up of the first five classes from our ten class scenario. The

second type will be made up of the second five classes. Thus, we have aggregated

from a 10-class problem to a 2-class problem. Under this aggregated scenario, we

would consider a label to be correct, under the following. First, for any exemplar

belonging to class i ∈ {1, 2, ..., 5}, a correct label would be an assignment of any
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label, j ∈ {1, 2, ..., 5}. Thus, an incorrect label for any exemplar belonging to class

i ∈ {1, 2, ..., 5} would be an assignment of label j ∈ {6, 7, ..., 10}.

The MOEs for this scenario include the following. First, classification accuracy

(CA) is the rate at which exemplars are correctly assigned to the class to which they

belong. This is often referred to as the engineers MOE, since CA measures the

rate at which a classification system assigns a correct label, given a certain class

type. In practice, the classification accuracy for any given class, i can be computed

from the confusion matrix by dividing the xii entry in the confusion matrix by its

corresponding row sum. Thus, for the 10-class problem we have

ĈAi =
xii

10∑
j=1

xij

.

Moreover, we can compute the average classification accuracy over all targets by

taking the weighted average over all individual classification accuracies. If we are

using equal priors, this is done by simply taking the mean of the ten individual

classification accuracies. This computation is no different under the aggregated

scenario, except that we have aggregated from ten classes to two classes.

Label accuracy (LA) measures the operational effectiveness of the classification

system. This is often referred to as the warfighter’s or user’s MOE since this is an

assessment of true class membership, given the classification system is indicating a

certain label. Probabilistically, we have
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p(Ci|Lj) =
p(Lj|Ci)p(Ci)

p(Lj).

In practice, LA for any given class, LAj can be computed from the confusion matrix

by dividing the xjj entry in the confusion matrix by its corresponding column sum.

Thus, for the ten class problem we have

L̂Aj =
xjj

10∑
i=1

xij

The average LA over all ten targets can be taken as with the average CA; by

taking the weighted sum over all ten labels. Furthermore, the aggregated LA for

either of the two label types is done similarly for the aggregated CA case.

ĈAtotal =
1

10

10∑

i=1

CAi under the 10 true classes scenario

L̂Atotal =

10∑
i=1

xij

10∑
j=1

10∑
i=1

xijLAj

under the 10 possible labels scenario

ĈAH =

5∑
i=1

5∑
j=1

xij

5∑
i=1

10∑
j=1

xij

under the aggregated 2 true classes scenario
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L̂AH =

5∑
i=1

5∑
j=1

xij

10∑
i=1

5∑
j=1

xij

under the aggregated 2 possible labels scenario

ĈAFN =

10∑
i=6

10∑
j=6

xij

10∑
i=6

10∑
j=1

xij

under the aggregated 2 true classes scenario

L̂AFN =

10∑
i=6

10∑
j=6

xij

10∑
i=1

10∑
j=6

xij

under the aggregated 2 possible labels scenario

The critical errors, Ecrit and non-critical errors Encrit are computed as

Ecrit =

10∑
i=6

5∑
j=1

xij +
5∑

i=1

10∑
j=6

xij

10∑
i=1

10∑
j=1

xij

Encrit =

5∑
i=1

5∑
j=1
i6=j

xij

5∑
i=1

5∑
j=1

xij

+

10∑
i=6

10∑
j=6
i6=j

xij

10∑
i=6

10∑
j=6

xij

The classification of ground vehicle targets from the DCS database is investi-

gated using each of our classification schemes and the four fusion techniques. For

our initial investigation, we consider the following. We first consider a forced deci-

sion scenario for ten targets from the DCS database. Each target type has two data

sets, one from the HH-polarized data and the other from the VV-polarized data. We
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treat these data sets as sensor 1 and sensor 2, respectively. Table 5.1 details the ten

targets used in the forced decision experiments with a description of each.

Table 5.1 Ten Class Forced Decision Targets.

Tgt Type Description Tracks Wheels Gun Class

1 SCUD Single Large Missile N 8 N Hostile
2 SMERCH MLRS Scud Confuser N 8 N Hostile
3 SA-6 Radar Soviet SAM Radar Y 0 N Hostile
4 T-72 Soviet Main Battle Tank Y 0 Y Hostile
5 SA-6 TEL 3 Medium SAMs Y 0 N Hostile
6 Zil-131 Medium Civilian Truck N 4 N Friendly
7 HMMVV Military SUV N 4 N Friendly
8 M113 Armored Personnel Carrier Y 0 Y Friendly
9 Zil-131 Small Civilian Truck N 4 N Friendly
10 M-35 Large Civilian Truck N 4 N Friendly

5.3.1 The Hybrid Classifier: Forced Decision

We will now utilize the optimization framework for the forced decision scenario.

We consider two separate classifiers both operating within the framework across

various parameter settings. These parameter settings are shown in Table 5.2. For this

scenario, the parameters being explored are: fusion method, F ; wedge size, W ; the

number of quantiles, Q, used in forming representations; the noise threshold, θ1; and

finally, the choice of comparison metric, M , where we will use the Minkowski metric

for p = 1,2 or 3. As previously defined, the Minkowski metric is the Manhattan

distance when p = 1 and the Euclidean distance when p = 2.

Here, the hybrid classifier operates in one of the two sensor data sets, the HH

or VV polarized data using the full HRR profile for each exemplar. Within the
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Table 5.2 Hybrid Classifier Settings.

Parameter Value Settings
W 7,15,22
Q 5,6,...,15
θ1 0.0, 0.05, 1.0
M Minkowski for p = 1, 2, 3
F BEM,Borda Count, PNN, Bayes Net

framework, each individual classifier/sensor combination is optimized. Model 1 is

the local optimimization model, which is shown in Figure 5.9.

Figure 5.9 Classification System within mathematical optimization framework.
In this process two independent classifiers operate on sensor data and
produce their individual optimal outputs. These outputs are then fused
to produce the final system output.

Under the local optimization model, the Hybrid Classifier operating on the

HH polarized data, optimal parameter settings are chosen within the framework so

as to optimize a certain performance, such as CAavg. This is then repeated for the
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VV polarized data. Each of the four fusion methods are then used to combine the

optimal results from each sensor to produce a combined optimal result.

Model 2 is the global optimization model, which is shown in Figure 5.10. Under

the global optimization model, we first fuse the HH and VV outputs for the various

parameter settings, then determine the optimal parameter settings.

Figure 5.10 Classification System within mathematical optimization framework.
In this process two independent classifiers are fused within the frame-
work, thus producing the best overall parameter settings for the fused
classification system.

We use the framework to select the thresholds that maximize each of our choices

for parameter settings. The formulation becomes:
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Objective Function

max
x∈X

CAavg(x)

Subject to:

Parameter Constraints

q∑

i=1

Qi = 1 use one of the q quantile methods

w∑

i=1

Wi = 1 use one of the w wedge sizes

n∑

i=1

θ1i = 1 use one of the n noise thresholds

s∑

i=1

Mi = 1 use one of the s similarity metrics

f∑

i=1

Fi = 1 use one of the f fusion methods

o∑

i=1

Oi = 1 use one of the o optimization methods

5.3.2 Forced Decision Experimental Results

For our experiments, we list the optimal parameter settings and the associated

MOEs under the mathematical framework for both the local optimization model and

the global optimization model in Table 5.3. Under each model scenario, we optimize

CAavg as the objective function and boldface the optimal result under each model

in Table 5.3. For each optimum we include the results for the other MOEs and the
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two respective error rates. We also include the individual optimal results from the

individual sub-optimization problems of Model 1 in the results listed in Table 5.3.

In model 1, the PNN fusion method achieves the highest result for CAavg, while

in Model 2 the BEM produces the highest CAtotal. Aside from the fusion method,

the other parameter settings that change when optimizing in Model 2 versus Model

1 are the similarity metric and number of quantiles; while in both cases the noise

threshold and wedge size stayed the same.

Table 5.3 Hybrid Classifier Results: Forced Decision.

Local Optimization Model
Parameters MOEs

Q θ1 W M F CAavg LAavg CAH LAH CAFN LAFN Ecrit Encrit

5 0.5 7 Euclidean HH Data 0.679 0.685 0.874 0.855 0.861 0.862 0.137 0.183
5 0.5 7 Euclidean VV Data 0.684 0.690 0.867 0.873 0.862 0.860 0.130 0.187

Fused 0.5 7 Euclidean BEM 0.698 0.717 0.924 0.860 0.849 0.848 0.113 0.189
Fused 0.5 7 Euclidean Borda 0.687 0.710 0.936 0.833 0.812 0.812 0.126 0.187
Fused 0.5 7 Euclidean PNN 0.733 0.737 0.918 0.899 0.897 0.897 0.092 0.175
Fused 0.5 7 Euclidean Bayes 0.722 0.724 0.891 0.887 0.887 0.887 0.111 0.167

Global Optimization Model
Parameters MOEs

Q θ1 W M F CAavg LAavg CAH LAH CAFN LAFN Ecrit Encrit

12 0.5 7 Manhattan BEM 0.768 0.777 0.922 0.892 0.888 0.919 0.123 0.123
11 0.5 7 Manhattan Borda 0.713 0.732 0.948 0.834 0.811 0.811 0.120 0.167
8 0.5 7 Manhattan PNN 0.745 0.762 0.917 0.888 0.884 0.884 0.099 0.156
11 0.5 7 Manhattan Bayes 0.736 0.738 0.890 0.882 0.881 .0889 0.114 0.149

To further display the results reported in Table 5.3, we also present the as-

sociated confusion matrices for the optimal result from each model. The confusion

matrices for the the two models are presented in Tables 5.4 and 5.5. The entries in
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each cell of the confusion matrices are given in terms of number of occurrences for

each target/label combination.

Table 5.4 Hybrid Classifier Results: Forced Decision, Model 1, PNN.

C ↓ L → 1 2 3 4 5 6 7 8 9 10

1 285 26 1 4 6 17 2 4 10 5
2 12 323 6 5 8 3 2 1 0 0
3 0 14 240 15 69 7 0 14 1 0
4 0 13 37 285 31 6 21 21 2 0
5 0 11 75 14 229 5 3 22 1 0
6 23 13 6 7 5 257 1 3 7 38
7 6 1 2 2 3 0 278 45 22 1
8 0 7 7 18 20 0 69 231 8 0
9 14 1 8 3 13 3 26 18 266 8
10 20 1 3 0 2 24 3 1 5 301

Table 5.5 Hybrid Classifier Results: Forced Decision, Model 2, BEM.

C ↓ L → 1 2 3 4 5 6 7 8 9 10

1 267 23 6 4 10 25 1 4 13 7
2 10 306 11 17 9 4 3 0 0 0
3 0 4 264 9 62 3 1 15 2 0
4 0 12 30 248 33 0 10 26 1 0
5 0 7 62 20 249 0 1 15 6 0
6 9 16 11 10 9 274 1 5 7 18
7 4 2 5 3 3 2 295 37 8 1
8 0 6 13 8 17 0 27 284 5 0
9 12 2 6 1 17 3 16 15 286 2
10 13 7 5 2 13 19 2 0 13 286

Our results indicate increased performance across all fusion methods. In every

case, CAtotal is larger when optimizing post fusion, rather than fusing the two sub-

optimization results. To test the validity of these results, we present a test for

statistical significance.
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5.3.3 Test for Statistical Significance: Forced Decision Experiments

We first introduce some theory behind our testing [70]. We conduct experi-

ments from two different models, the Local Optimization and the Global Optimiza-

tion. The structural difference between the two is the order in which fusion and

optimization occur. For each model, we have several MOEs. Here, we choose to use

CAtotal. Welch [70] points out that testing H0 : θA = θB is equivalent to forming the

confidence interval

θ̂A − θ̂B ± SE(θ̂A − θ̂B)C(α)

and seeing if the confidence interval contains 0, where θA is the output from model

A and θB is the output from model B. For our tests, both models use the same data,

thus, we have non-independent replications. We form a paired T-Test by

Vn = θAn
− θBn

where n = 1, 2, ..., N and N is the number of replications. Then we can use the t

statistic

t =
V√

S2
V /N

∼ tN−1,α
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where V is the average difference between the outputs of the two models over all

replications and S2
V is the sample variance of V over all replications.

For our Forced Decsion Experiments, we use the initial results to guage our

parameter settings. The parameter settings for both the Local Model and the Global

Model are given in Table 5.6. Both models are then replicated 30 times, where for

each replication we randomize the data, so that each replication will have different

template, test and validation sets.

Table 5.6 Hybrid Classifier: Forced Decision Parameter Settings.

Model Q θ1 W M F

Local 5 0.5 7 Euclidean PNN
Global 12 0.5 7 Manhattan BEM

For the 30 replications of the Forced Decision optimization, we get V = 0.094

and S2
V = 0.001. Using α = 0.05, we have

t =
0.094√
0.001/30

= 14.843 > 1.699 = t29,0.05,

thus, since t > t29,0.05, we can conclude that there is a significant difference between

the Global and Local models under a Forced Decison.

5.4 Implementing the Hybrid Classifier with a NDEC Option

As stated in [12], in all classification problems, decisions must be made which

effect the overall quality of the classification system. Decision makers may impose
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constraints on a classifier due to their own willingness to risk critical and/or non-

critical errors. This leads to the possibility of non-declarations. For a given exemplar,

the choice to make a classification decision is usually based on thresholding the mea-

sure the classifier employs to make decisions. Such measures include, but are not

limited to the Minkowski metric used by the hybrid classifier and the squared Ma-

halanobis distance used by the feature vector classifier. These thresholds create a

rejection region which encompasses a certain interval of measures for which a classifi-

cation decision is not made. The rejection region thus allows for a classification label

when a classifier output falls outside the rejection region and disallows classification

labels when a classifier output falls within the region. Previous non-declaration

methods have included Chow [8] who stated that classification accuracy can be im-

proved by withholding label assignments for exemplars which are difficult to classify.

Chow’s work used an optimal rule for rejection based on a single threshold for the

posterior probability of a given class. For N classes, do not make a classification

decision for exemplar x if the (winning) posterior probability for class i given x,

P (ωi|x) is less than the threshold T . We can express this optimal rejection rule as:

given T ∈ (0, 1],

max
k∈{1,2,...,N}

P (ωk|x) = P (ωi|x) < T. (5.1)

Fumuera et al. [15] showed that Chow’s work could be improved by allowing

for by-class thresholds, rather than a single threshold for all classes. They based this
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improvement when they noted that if assumption of perfect knowledge of posterior

probabilities were violated, no single threshold value could be used to find an optimal

decision threshold. Using their scheme, a classification decision for exemplar x is not

made if

max
k=1,2,...,N

P̂ (ωk|x) = P̂ (ωi|x) < θi (5.2)

where P̂ (ωi|x) is the estimated posterior probability for class i given x.

Laine [34] designed an optimization framework that maximized the probabil-

ity of a true positive declaration while meeting warfighter constraints that were con-

cerned with setting upper bounds on errors while setting lower bounds on declaration

rate. Albrecht [3] extending this framework to include constraints on out-of-library

performance. Friend [12] extended both of these previous works by improving the

methodologies for non-declarations. His research employed entropy and Kullback-

Liebler distance as methods for identifying exemplars for which insufficient evidence

for classification decisions exist.

The feature vector method of Friend [12] processes data in the following man-

ner. For the feature vector method, a given HRR profile exemplar’s range is first

cropped to only include the middle portions. This was introduced by Mitchell [46].

We will use Friend’s user-defined range length of 120, thus we have a bin window

width of 12 for each of the 10 range bin windows. The feature vector for a given
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exemplar will then be the maximum amplitudes within each of the 10 range bins.

Similar to the hybrid classifier, the feature vector classifier forms templates for each

class from each of the 360 exemplars in the training set. Classification decisions are

made by computing the Mahalanobis distance from the exemplar to each of the 10

classes as follows. Let xα be a feature vector for a given exemplar at a particular

aspect angle α. The Mahalanobis distance, Mα,i, for that given exemplar at aspect

angle α from class i is given by

Mα,i = (xα − µ̂α,i)
′Σ̂−1

α,i(xα − µ̂α,i). (5.3)

We extend the previous works by improving upon these methods. The idea

of a single non-declaration threshold per class introduced in Fumera et al. [15] and

implemented most recently by Friend [12] is extended by determining non-declaration

status within the current exemplar itself. For this current non-declaration scheme,

a classification decision for exemplar x is not made if

max
k∈{1,2,...,N}

Ŝ(ωk|x) = Ŝ(ωi|x) < θi,α (5.4)

where Ŝ(ωi|x) is the estimated similarity measure for class i given x at aspect angle

α.

Further, we note that difficulty in declarations is not simply due to the value

of the winning score, but is largely due to the difficulty in distinguishing between
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at least two different classes. Thus, rather than simply thresholding on the single

winning score, we will threshold on the difference between the class with the winning

score and the class with the next closest score. Thus we have

max
k∈{1,2,...,N}

Ŝ(ωk|x) − max
i6=k∈{1,2,...,N}

Ŝ(ωk|x) < θiα (5.5)

where θiα is some percentage of the overall range of scores for that exemplar.

For our initial non-declaration experiments, we will use the same 10 in-library

targets as in the forced decision experiments. Now, we will allow for non-declarations

using the following method. For a given exemplar, a non-declaration is made if the

distance between the winning class’ score and the next closest class’ score is less than

some percentage of the overall range of scores.

5.4.1 NDEC Experimental Results

With a non-declaration option in place, the hybrid classifier operates on one of

the two sensor data sets, the HH or VV polarized data using the full HRR profile for

each exemplar. Within the framework, each individual classifier/sensor combination

is optimized. Under the Local Model, the Hybrid Classifier operating on the HH

polarized data, optimal parameter settings are chosen within the framework so as to

optimize a certain measure of performance, such as CAtotal. This is repeated for the

VV polarized data. Each of the four fusion methods are used to combine the optimal

results from each sensor to produce a combined optimal results. Under the Global
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Model, we first fuse the HH and VV outputs for the various parameter settings,

then determine the optimal parameter settings. We use the framework to select the

thresholds that maximize each model across our choices for parameter settings. We

now allow the non-declaration option, where the non-declaration threshold is cho-

sen from the set {0.00, 0.01, 0.02, 0.03}. The mathematical framework formulation

becomes:

Objective Function

max
x∈X

CAtotal(x)

Subject to:

Parameter Constraints

q∑

i=1

Qi = 1 use one of the q quantile methods

w∑

i=1

Wi = 1 use one of the w wedge sizes

n∑

i=1

θ1i = 1 use one of the n noise thresholds

s∑

i=1

Mi = 1 use one of the s similarity metrics

f∑

i=1

Fi = 1 use one of the f fusion methods

o∑

i=1

Oi = 1 use one of the o optimization models
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Non-Declaration Constraint

d∑

i=1

Di = 1 use one of the d non-declaration thresholds

Table 5.7 shows the optimized results for each model. Under each model sce-

nario, we optimize CAtotal as the objective function. For each optimum we include

the results for the other MOEs and the two respective error rates. We also include

the declaration rate, DecRate, which reports the percentage of exemplars for which

the classifier makes a class labeling decision. We also include the individual optimal

results from the individual sub-optimization problems of model one in the results

listed in Table 5.7.

As in the forced decision experimental results, we present the associated confu-

sion matrices for the optimal result from each model. The confusion matrices for the

the two models are presented in Tables 5.8 and 5.9. The entries in each cell of the

confusion matrices are given in terms of number of occurrences for each target/label

combination.

5.4.2 Test for Statistical Significance: NDEC Option

For our NDEC Experiments, we again use the initial results to guage our

parameter settings for 30 replications. The parameter settings are given in Table
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5.10. For our replications, we randomize the data each time, so that each replication

will have different template, test and validation sets.

For the 30 replications of the NDEC optimization, we get V = 0.149&S2
V =

0.001.. Using α = 0.05, we have

t =
0.149√
0.001/30

= 23.092 > 1.699 = t29,0.05,

thus, sicne t > t − 29.0.05 we can conclude that there is a significant difference

between the Global and Local models with the NDEC option.

5.5 Implementing the Hyrid Classifier with OOL Targets

Thus far, we have demonstrated the ability of our classifiers to correctly classify

objects for which they have been trained by presenting the classifiers with known

representations of those objects. In many cases, a complete set of possible objects

is not known a priori. One method for overcoming this obstacle is to use the NDEC

labeling for objects where insufficient information exists to make a classification

decision. Another growing trend in ATR classification is to provide a label for

objects for which the classifier is not trained to recognize [3, 12]. Such objects will

be labeled out-of-library (OOL).
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5.5.1 OOL Background

Friend [12] uses the following out-of-library procedure for the feature vector

classifier. Let the class label for exemplar x be denoted Lx where Lx ∈ {1, ..., 10}. For

exemplar x, the class label, Lx, is determined by finding the class corresponding to

the minimum average Mahalanobis distance. Lx = min dMx,d and Mx = mind Mx,d.

By looking across all exemplars in a training set by class for only those exemplars

that were correctly classified, we can determine the maximum correct average Ma-

halanobis distance. Friend [12] actually quantizes the correct average Mahalanobis

distances, but for simplification, we will only consider the maximum. This maximum

value is used as a class specific threshold, Ti = maxd Mx. Then, an exemplar is given

out-of-library status if the minimum Mahalanobis distance corresponds to class i and

Mx > Ti. Otherwise, it is considered an in-library exemplar and classified as one of

the in-library classes or given non-declaration status.

Table 5.11 lists the five OOL targets used in Friend’s research. According to

the Friend methodology, a specific exemplar is deemed to be in-library if the corre-

sponding average Mahalanobis distance is less than the class specific threshold, and

one has a complete absence of confidence that an exemplar is in the library otherwise.

This is nothing more than a confidence step function. Thus, in this method, an ex-

emplar is only observed by the IL classifier if the out-of-library system has complete

confidence that the exemplar is in-library. The out-of-library confidence values as

implemented in this section are binary values in the set {0, 1}. This methodology
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has been previously replicated and reported in Leap [36]. These results are in Table

5.12.

Table 5.12 reports results for three different measures of performance. The

first is the True Positive Rate (TPR) for hostile targets. That is the probability that

the classifier assigns a hostile label to any hostile exemplar. So, for our data set,

if an exemplar comes from any of classes 1,2,...,5, and if the label assigned to the

exemplar is one of labels 1,2,...,5, this exemplar is a true positive. Friend [12] details

the formal computation of the TPR. The next performance quantifier is the average

classification average for all in-library classes (IL CA). For this computation, the

classification accuracy for each of the 10 in-library targets is computed. In the case

of the in-library targets this computation is done for a specific class, i by dividing the

total number of exemplars from that class that are correctly classified, TCi by the

total number of exemplars of that class, Ni. However, as outlined by Friend [12], the

total number of exemplars Ni is reduced when employing NDEC and OOL methods.

The OOL Detector must first determine the number of exemplars that should be

presented to the classifier. Thus, the total number of exemplars of the given class type

is reduced to Ni −OOLi. Next, the classifier will make classification determinations

for those exemplars that pass the previously described NDEC criteria. For the case

where some exemplars do not, the total number of exemplars of the given class type

is reduced again, leaving a total of Ni −OOLi −NDECi exemplars to be classified.

Thus, the average classification accuracy for a given class is TCi

Ni−OOLi−NDECi
. The out-
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of-library classification accuracy (OOL CA) is the number of out-of-library exemplars

that are correctly identified as out-of-library by the OOL Detector COOL, divided by

the total number of out-of-library exemplars, NOOL, which is COOL

NOOL
.

The OOL Quantile Method of Friend [12] is as follows. Using the training data

set, the squared Mahalanobis distance scores for all correctly identified exemplars

of each class type are identified. The maximum squared Mahalanobis distance cor-

responding to a correctly identified exemplar is identified as the OOL threshold for

the class. Friend allows for any quantile to be used; however, he reports results for

the maximum score, which we implement.

5.5.2 OOL Methodology Improvements

Friend [12] and Leap [36] both note common trends in the feature vector tem-

plate method. Friend [12] noted that classification accuracy over all targets decreased

dramatically over certain aspect angles (∼ 90◦ and ∼ 270◦). Leap [36] noted a marked

decrease in OOL classification accuracy as the number of looks at a given target in-

creased. Table 5.12 shows that the Friend OOL detector has a significant decrease in

performance when the number of looks at a target increases from five to ten. Leap

postulated that this decrease in OOL classification accuracy was due to the hetero-

geneous nature of the HRR profiles. The OOL method of Friend [12] determines the

winning template for each look by choosing the template which corresponds to the

minimum squared Mahalanobis distance from the test exemplar. When more than
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one look was used, the average Mahalanobis distance over all looks is computed and

the winning template is the template with the smallest average Mahalanobis distance

across all looks. The heterogeneous nature of the data allows the true class’ Ma-

halanobis distance to become inflated, while allowing incorrect class’ Mahalanobis

distances to fall within the OOL threshold learned in the training phase.

We improve the OOL methodology by first breaking up each class into equally

sized windows across all aspect angles. For example, in the results which follow

we use 24 aspect angle windows, each being 15 degrees in width. We then employ

two separate independent OOL detectors. The first OOL detector is a self-organized

Kohonen map. The second is a Probabilistic Neural Network (PNN). Previous meth-

ods [12,36] have attempted to use neural networks, such as the PNN as an indepen-

dent OOL detector. In these cases, the main thrust was to train the OOL detector

in a 2-class problem, where the two classes consisted of either in-library or out-of-

library targets. Leap’s effort attempted to exploit the entire feature space, noting

that certain regions of the feature space exist where there are no in-library targets.

This observation led to the attempt to use these regions as the features for the

out-of-library class when training the PNN. Leap’s research went on to bound and

discretize the feature space, next determining the Mahalanobis distance from each

discrete point to the in-library class. If this distance from the discrete point to the

in-library class exceeds a user defined threshold, then the discrete point is deemed

to be a member of the out-of-library class. Otherwise, it is deemed an in-library
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point. This is repeated for each discrete point in the feature space. Once the entire

discretized feature space has been divided into in-library and out-of-library regions,

these points can be used to train a generalized regression neural network (GRNN).

While this methodology works well on a toy problem of multivariate normal data,

this new OOL methodology performs poorly on the DCS data set. The main reason

for this is simple. The OOL targets occupy the same regions of the feature space as

do the IL targets. Thus, an OOL target exemplar is very likely to be classified as

belonging to one of the in-library classes.

5.5.3 Artificial Neural Networks as OOL Detectors

The main idea of the Leap OOL Detector, that of finding a reasonably low

dimension feature space which could be discretized, inspires the development of our

OOL Detectors. To overcome the feature space dilemma, we propose the following.

Rather than grouping all in-library data as belonging to a single class, we will treat

each in-library target separate from the rest of the in-library data. Thus, when we

train the Kohonen map or the PNN, we will actually develop an OOL detector for

each IL target. To do so, we present the training data as follows. Each IL target

is divided into its own class for training. The remaining nine in-library classes are

grouped together and used as the OOL class for training. We then train the OOL

detector specific to each target to only recognize the difference between that target

class and anything else. If a test exemplar is close enough to the target class, the

OOL detector deems it in-library. Otherwise, it is labeled OOL. To successfully
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utilize the new OOL detectors, we will make one assumption. That is, we assume

that the classification system has already pre-screeened a test exemplar and made

a determination that the exemplar belongs to a certain target class. This is done

using the forced decision methodology presented earlier. Thus, the OOL detector

will assume that the classifier is 100 percent accurate in identifying in-library targets

which it has been trained to recognize. So, we have narrowed down the work for

each target OOL detector by only asking it to recognize a single in-library target,

while rejecting as OOL any exemplar not belonging to its own class.

5.5.4 Self Organizing Maps

A self-organizing map (SOM) is a type of artificial neural network that is

trained using unsupervised learning to produce a low-dimensional (typically two

dimensional), discretized representation of the input space of the training samples,

called a map. The map seeks to preserve the topological properties of the input

space. This makes SOM a useful tool for creating low-dimensional views of high-

dimensional data. The model was first described as an artificial neural network by

the Finnish professor Teuvo Kohonen [31], and is often referred to as a Kohonen

map. Figure 5.11 shows the architecture for a Kohonen map.

A self-organizing map consists of components called nodes or neurons. Asso-

ciated with each node is a weight vector of the same dimension as the input data

vectors and a position in the map space. The usual arrangement of nodes is a regu-
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lar spacing in a hexagonal or rectangular grid. The self-organizing map describes a

mapping from a higher dimensional input space to a lower dimensional map space.

The procedure for placing a vector from the data space onto the map is to find the

node with the closest weight vector to the vector taken from data space and to assign

the map coordinates of this node to our vector. While it is typical to consider this

type of network structure as related to feed forward networks where the nodes are

visualized as being attached, this type of architecture is fundamentally different in

arrangement and motivation.

Figure 5.11 SOM Architecture [41].
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The goal of learning in the self-organizing map is to cause different parts of the

network to respond similarly to certain input patterns. The weights of the neurons

are initialized either to small random values or sampled evenly from the subspace

spanned by the two largest principal component eigenvectors. The network must be

fed a large number of example vectors that represent, as close as possible, the kinds

of vectors expected during mapping. The examples are usually administered several

times. The training utilizes competitive learning. When a training example is fed to

the network, its Euclidean distance to all weight vectors is computed. The neuron

with weight vector most similar to the input is deemed to be the winning neuron.

The weights of the winning neuron and neurons close to it in the SOM lattice are

adjusted towards the input vector. The magnitude of the change decreases with time

and with distance from the winning neuron. The update formula for a neuron with

weight vector, W (t) is:

W (t + 1) = W (t) + Θ(v, t)α(t) (D(t) − W (t))

where,

W (t) = weight vector at time t

Θ(v, t) = the neighborhood function for the given SOM lattice

α(t) = a monotonically decreasing adaptation parameter
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D(t) = the input distance vector.

The Kohonen map reflects the inner structure of the training data. However,

one cannot say which neurons are activated by which input vectors. In addition,

the neurons corresponding to some input vectors after a particular training, will

correspond to another set of vectors after another training run. So the SOM has to

be calibrated. This can be achieved by presenting well known examples to the net

and by recording which neuron is activated with a given example vector. As Kohonen

maps tend to form some kind of elastic surface on the range of input vectors of the

training data, neurons which are not activated in the calibration process may be

interpreted by interpolation.

In developing the SOM into an OOL Detector, we follow the following pro-

cedure. For each in-library target class, a training data set is broken up into two

classes. The first class is the target of interest, which we will call the TOD. The

remaining in-library classes are used as the second class, which we use as the OOL

class for the purpose of training the SOM. Using a 4 x 4 rectangular grid, the train-

ing data is then divided into 24 wedges, according to aspect angle, each ranging

15◦ in width. After training is completed, the SOM OOL detector then has a map

according to the following scheme. Each in-library target contains 24 maps, where

each map corresponds to a 15◦ width of aspect angle. To test the SOM, recall that in
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the composite classification system, for a given test exemplar xi, the classifier, C1
d,θ1

yields an output, Li which is a labeling assignment to one of the template classes,

all of which are in-library. This labeling output is then used as an input to the OOL

Detector of the corresponding in-library class, where the assumed aspect of the ex-

emplar xi is used to pick the correct aspect angle wedge of that class’ OOL Detector.

Clearly, if the classifier makes an incorrect labeling assignment, the choice of OOL

Detector will be incorrect. Thus, the output from the OOL Detector will likely be

incorrect as well. However, to test the utility of the SOM as an OOL Detector, we

conduct an independent test. For this experiment, we train the SOM OOL Detec-

tor as we have described using a training set consisting of one TOD class and the

remaining IL targets as the second class. The test set presented to the trained SOM

is then made up of a test set of TOD data, not previously used during training and

a second set of test data, which consists of the five OOL classes presented in Table

5.11. In order to test the SOM OOL Detector independent of the Hybrid Classifier,

we assume that all labeling assignments presented to the SOM OOL Detector are

correct. The results of the SOM OOL Detector experiment are shown in Table 5.13.

For this experiment, the SOM OOL has a CAtotal = 0.7049. In subsequent

experiments, we will combine the SOM OOL Detector with the Hybrid Classifier,

which we describe in more detail later. We note similar problems as previous clas-

sifiers according to the aspect angle of the exemplar to be classified. Figure 5.12

shows the SOM OOL Detector performance by aspect angle.
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Figure 5.12 SOM OOL Detector Performance by Region.

5.5.5 Probabilistic Neural Networks

Wasserman [68] describes how the PNN operates as a classifier as follows. For

each class, a Gaussian probability density function (PDF) is placed around each data

point in the training set of that class. All PDFs are then added and then normalized.

The normalized input vector X = (X1, X2, ..., Xn) is applied to the distribution layer

neurons.

This layer does not perform any computations, but merely serves as a con-

nection point. Each training vector is used to calculate a set of weights, where

each weight has the value of a component of that vector. Pattern layer neurons are

grouped by the known classification of its associated training vector. Each pattern

layer neuron sums the weighted inputs from every distribution layer neuron [68].

This is equivalent to taking the sum of squares of the training set and the test set,

(X − XR,i)
T (X − XR,i), where XR,i is the ith exemplar in the Rth class from the
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Figure 5.13 Probabilistic Neural Network [68].

training set. From normalization, this reduces to (XT
R,iXi − 1). The pattern layer

neurons then apply a non-linear function to the corresponding sum producing an

output Zc,i, where c indicates the true class of the training vector and i indicates the

pattern layer neuron. The non-linear function for Zc,i is

Zc,i = exp

(
(XT

R,iXi − 1)

σ2

)
. (5.6)

In this equation, X is defined above and the set of weights corresponding to a pattern

neuron represent a training vector XR,i = (XR,1, XR,2, . . . , XR,n). The summation

layer simply sums the Zc,i for each class [68]. Thus, the output of the summation

layer for a specific class, Sc is
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Sc =
n∑

i=1

exp

(
(XT

R,iXi − 1)

σ2

)
. (5.7)

The decision layer compares Sc for all classes and assigns the input vector to

the class with the largest corresponding Sc.

In developing the PNN into an OOL Detector, we follow the same procedure

as with the SOM OOL Detector. For each in-library target class, a training data

set is broken up into two classes. The first class is the target of interest, which we

will call the TOD. The remaining in-library classes are used as the second class,

which we use as the OOL class for the purpose of training the SOM. The training

data is then divided into 24 wedges, according to aspect angle, each ranging 15◦

in width. After training is completed, the PNN OOL Detector has then has been

trained according to the following scheme. Each in-library target contains 24 maps,

where each map corresponds to a 15◦ width of aspect angle. We conduct the same

independent test for the PNN OOL Detector as for the SOM OOL Detector. For

this experiment, we train the PNN OOL Detector as we have described using a

training set consisting of one TOD class and the remaining IL targets as the second

class. The test set presented to the trained SOM is then made up of a test set of

TOD data, not previously used during training and a second set of test data, which

consists of the five OOL classes presented in Table 5.11. In order to test the SOM

OOL Detector independent of the Hybrid Classifier, we assume that all labeling
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assignments presented to the PNN OOL Detector are correct. The results of the

PNN OOL Detector experiment are shown in Table 5.14.

For this experiment, the PNN OOL has a CAtotal = 0.8063. In subsequent

experiments, we will combine the PNN OOL Detector with the Hybrid Classifier,

which we describe in more detail later. We note similar problems as previous clas-

sifiers according to the aspect angle of the exemplar to be classified. Figure 5.14

shows the PNN OOL Detector performance by aspect angle.

Figure 5.14 PNN OOL Detector Performance by Region.

5.5.6 OOL Detector Summary

Two important notes we should empahsize concerning the SOM and PNN OOL

Detectors are the following. First, both OOL Detectors can operate on any features

taken from the original data. We can use as many or as few as we choose without

having to make dramatic changes to the overall algorithmic structure of either OOL

Detector. The test results we reported here were actually confirmed by changing
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the number of features several times, with little change in the performance of the

OOL detectors. Second, and a key point, is the fact that both OOL Detectors fall

under the definition of blind methods. Recall the definition of a blind method is the

following.

A Blind Method is based solely on in-library training data without any knowl-

edge of test data class membership. OOL criteria is based entirely on in-library

training data and the characteristics of a test exemplar.

We have thus developed two independent OOL Detectors that operate inde-

pendently of the classifier from which they receive inputs, meaning they are not a

heuristic search technique embedded within a classifier. Moreover, they do not cre-

ate their decision thresholds from any information other than training data. Thus,

our OOL Detectors operate under the most difficult of conditions, while producing

very favorable results.

We now demonstrate the utility of the two independent OOL detectors by using

them in conjunction with the already tested Hybrid Classifier. By allowing the OOL

Detectors to operate independent of the classifier, a more true OOL decision can be

expected, where classifier performance does not influence OOL Detection rates, as

observed in previous research [12,36].
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5.5.7 OOL NDEC Experimental Results

With a non-declaration option in place, the hybrid classifier operates on one

of the two sensor data sets, the HH or VV polarized data using the full HRR profile

for each exemplar. We now present each classifier with the same ten IL targets as

in previous experiments, as well as the five OOL targets discussed earlier. Within

the framework, each individual classifier/sensor combination is optimized. Under

the Local Model, the Hybrid Classifier operating on the HH polarized data, optimal

parameter settings are chosen within the framework so as to optimize a certain

measure of performance, such as CAtotal. This is then repeated for the VV polarized

data. Each of the four fusion methods are then used to combine the optimal results

from each sensor to produce a combined optimal results. Under the Global Model, we

first fuse the HH and VV outputs for the various parameter settings, then determine

the optimal parameter settings. We use the framework to select the thresholds

that maximize each of across our choices for parameter settings. We now allow the

non-declaration option, where the non-declaration threshold is chosen from the set

{0.00, 0.01, 0.02, 0.03}. Additionally, the system now implements one of the two OOL

detectors, the Kohonen map OOL detector (OOLSOM) or the PNN OOL detector

(OOLPNN). The mathematical framework formulation becomes:

Objective Function

max
x∈X

CAtotal(x)
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Subject to: Performance Constraints

Ecrit(x) < 0.1 upper bound on critical errors

Encrit(x) < 0.2 upper bound on non-critical errors

Ptp(x) > 0.85 lower bound on true positive rate

Parameter Constraints

q∑

i=1

Qi = 1 use one of the q quantile methods

w∑

i=1

Wi = 1 use one of the w wedge sizes

n∑

i=1

θ1i = 1 use one of the n noise thresholds

s∑

i=1

Mi = 1 use one of the s similarity metrics

f∑

i=1

Fi = 1 use one of the f fusion methods

Non-Declaration Constraint

d∑

i=1

Di = 1 use one of the d non-declaration threshold
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OOL-Detector Constraint

g∑

i=1

Gi = 1 use one of the g OOL detectors

With the entire composite classification system in place. We test the full

capability of the system on the complete DCS dataset. As done in previuos re-

search [3, 12, 34, 36], we not only implement a NDEC option and an OOL detector,

but also allow for additional looks at a given target. By increasing the number of

looks or observations the classification system has at each target, we should observe

increased classification system performance. We note the results reported by Leap

in Table 5.12, that showed increase in classifier performance for 2 looks and 5 looks

while observing a degradation in OOL CA when using 10 observations. Leap con-

cluded that the non-heterogenous nature of the data was the cause for this. To

clarify, a brief explanation of the procedure is needed. When implementing the mul-

tiple target look methodology, target observations from subsequent aspect angles are

combined with current observations then combined to produce a classifier output.

For example, when observing a target at a given aspect angle, α, additional looks

would be made for the same target at aspect angles {α + 1, α + 2, ...} in order to

increase the likelihood of correct target identification. This can be accomplished by

either: combining features at additonal looks, then inputing a combined feature set

into the classifer; or by inputting the subsequent observations features sequentially
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and combining the outputs or comparison metrics of the classifier. For example,

Leap [36] takes the latter approach. For each subseqeuent look at a given target,

he computes the Mahalanobis distance between the target and each template class.

Then, the average Mahalanobis distance over all looks is computed for each template

class. These average distances are then used in the classification decsion. This was

Leap’s point for his conclusion about the non-heterogenous nature of the data. As

the number of looks increased from 5 to 10, the features of the target class differed

enough that the Mahalanobis distance between the target and it’s true class will in-

crease significantly. To illustrate this point, we show an example of two HRR profiles

that differ by one degree of aspect angle in Figure 5.15. We see a significant change

in the HRR profiles over a small shift in aspect angle, which can become more severe

as the change in aspect angle increases.

In all previously presented experiments, we have demonstrated the capability

of our classifier in both a 10-class forced decsion scenario and a 10-class with NDEC

option scenario. In both of these cases, we demonstrate that optimal classifier perfor-

mance is observed using the Global Model, in which all possible parameter settings

and fusion rules are run prior to optimizing the system. This was compared to a

Local Optimization Model, in which parameter settings were optimized prior to fus-

ing. In both scenarios, we observed better results from the Global Model and tested

the statistical significance of the conclusion. We have also independently tested the

149



0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Range

A
m

pl
itu

de

Example HRR Profile

Figure 5.15 Example of Adjacent HRR Profile Shift.

capability of both the SOM and PNN OOL Detectors, with very favorable results

under the most difficult of scenarios.

We now wish to test our classification system under a realistic operational

scenario, with user defined constraints placed upon the classification system. Friend

[12] used the optimization framework shown in Figure 5.16 for his tests on the DCS

data with optimal results given in Table 5.15. We duplicate this effort and run our

classification system under the Friend optimization framework.

We run a multiple look experiment using our composite classification system,

under the same optimization framework as Friend. In order to make a comparision,

we choose to optimize CAH under the framework. Recall, previous results we have
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Figure 5.16 Friend OOL Framework [12].

reported were for CAtotal. The optimal result across numbers of looks, along with

the corresponding parameter settings are given in Table 5.17. As in previous exper-

iments, the Global Model produces superior results to the Local Model. We list all

optimal parameter settings for this experiment in Table 5.16

In comparing the results of our procedure listed in Table 5.17 to the results

previuously reported by Friend listed in Table 5.15, we note the following improve-

ments. First, our composite classification system has more solutions meeting all the

constraints of the Friend Framework. This is true for both the Local Model and

the Global Model, whose best result for each sensor/look combination is shown in

Table 5.17. Second, the problem of degradation of OOL CA the Friend methodology

suffered from is eliminated with our composite classifier. Recall Table 5.12 showed

increase in classifier performance for 2 looks and 5 looks while observing a degra-

dation in OOL CA when using 10 observations. Under our composite classification

system, an increase in MOEs is observed for any classification accuracy. At the same
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time, both critical and non-critical error rates go down. Third, we note that although

as we increase the number of looks, we observe an increase in our declaration rate.

However, the Friend methodology has much higher declaration rates for the same

number of looks. This is the obvious tradeoff. A lower declaration rate for higher

classification accuracies. Finally, we observe that the combination of our indepen-

dent OOL Detectors with the hybrid classifier does an outstanding job of correctly

identifying IL and OOL targets, as evidenced by the CAOOL column of Table 5.17.

5.5.8 Extended Operating Conditions

Our previous results have shown that the Hybrid Classification system im-

proves results from previous research under nominal operating conditions (NOC). In

nominal operating condidtions, the template, training and test data all come from

the same data set, where the desired depression angle during data collection was

between 6◦ and 8◦. We now test our classification system under extended operating

conditions (EOC). As previoulsy performed by Friend [12], in EOC experiments, a

classifier is trained under nominal conditions and tested under extended conditions.

In the case of EOC, the test data now comes from a seperate data set, where the

desired depression angle during data collection was 10◦.
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Table 5.7 Hybrid Classifier Results: Non-Declaration Option.

Local Optimization Model
Parameters MOEs

Q θ1 W M F d CAtotalLAtotalCAH LAH CAFN LAFN Ecrit EncritDecRate
5 0.5 7 Euclidean HH Data0.03 0.719 0.722 0.890.0.877 0.880 0.878 0.2460.220 0.86
5 0.5 7 Euclidean VV Data0.03 0.737 0.744 0.925 0.868 0.859 0.896 0.1710.225 0.87

Fused0.5 7 Euclidean BEM 0.03 0.783 0.792 0.950 0.907 0.902 0.902 0.0740.139 0.80
Fused0.5 7 Euclidean Borda 0.03 0.703 0.720 0.926 0.848 0.833 0;833 0.1200.176 0.977
Fused0.5 7 Euclidean PNN 0.03 0.801 0.804 0.923 0.933 0.935 0.935 0.0710.123 0.761

Fused0.5 7 Euclidean Bayes 0.03 0.749 0.752 0.893 0.904 0.908 0.908 0.0990.149 0.937
Global Optimization Model

Parameters MOEs

Q θ1 W M F d CAtotalLAtotalCAH LAH CAFN LAFN Ecrit EncritDecRate
13 0.5 7 Manhattan BEM 0.03 0.912 0.903 0.958 0.946 0.953 0.953 0.0450.045 0.584
11 0.5 7 Manhattan Borda 0.03 0.731 0.745 0.939 0.845 0.829 0.829 0.1160.152 0.959
5 0.5 7 Manhattan PNN 0.03 0.814 0.817 0.926 0.931 0.933 0.933 0.0700.111 0.711
11 0.5 7 Manhattan Bayes 0.03 0.750 0.751 0.887 0.888 0.890 0.890 0.1120.134 0.992
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Table 5.8 Hybrid Classifier Results: Non Dec Option, Model 1, PNN.

C ↓ L → 1 2 3 4 5 6 7 8 9 10 NDEC

1 237 14 2 0 2 9 1 1 5 11 78
2 7 263 2 9 3 2 1 0 0 1 72
3 0 5 206 2 25 3 1 6 2 0 110
4 0 3 15 149 15 3 4 23 2 0 146
5 1 3 35 9 159 4 3 11 0 0 135
6 15 9 3 2 2 231 1 2 8 21 66
7 2 0 1 1 0 0 207 16 5 2 126
8 0 2 3 5 7 1 23 176 3 0 140
9 10 1 5 1 3 3 19 9 207 5 97
10 12 0 1 1 1 11 0 0 2 261 71

Table 5.9 Hybrid Classifier Results: Non Dec Option, Model 2, BEM.

C ↓ L → 1 2 3 4 5 6 7 8 9 10 NDEC

1 233 11 2 1 2 10 0 1 10 2 88
2 6 261 0 4 4 0 2 0 0 0 83
3 0 3 149 0 13 0 0 3 0 0 192
4 0 0 5 128 1 0 3 3 1 0 219
5 0 1 5 9 104 0 0 3 3 0 244
6 2 9 3 4 0 238 0 1 5 12 86
7 0 0 1 1 0 1 202 7 0 0 148
8 0 0 3 0 2 0 0 134 0 0 221
9 6 1 0 0 5 0 6 0 234 0 108
10 11 2 0 0 3 5 0 0 0 229 110

Table 5.10 Hybrid Classifier: NDEC Parameter Settings.

Model Q θ1 W M F

Local 5 0.5 7 Euclidean BEM
Global 13 0.5 7 Manhattan BEM
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Table 5.11 Out-of-Library Targets with Descriptions and Characteristics.

Type Target Description Tracks Wheels Gun

SA-8 TZM SA-8 Reload Vehicle N 6 N
BMP-1 Tank w/small turret Y 0 Y
BTR-70 8-wheeled transport N 8 N
SA-13 Turret SAMs Y 0 N

SA-8 TEL Integrated Radar Exposed SAMs N 6 N

Table 5.12 Results Summary for Friend Feature Vector Methodology

Senor Looks TPR IL CA OOL CA Dec

HH 1 0.98 0.95 0.70 0.23
VV 1 0.97 0.96 0.70 0.24
HH 2 0.97 0.94 0.70 1
VV 2 0.96 0.95 0.72 1
HH 5 0.99 0.97 0.68 1
VV 5 0.97 0.96 0.72 1
HH 10 0.99 0.98 0.59 1
VV 10 0.97 0.98 0.62 1

Table 5.13 Results Summary for SOM OOL Detector Experiment.

Result ↓ True Class → 1 2 3 4 5 6 7 8 9 10

TP 56 35 37 65 58 47 43 56 74 54
FP 304 325 323 295 302 313 317 304 286 306
TN 1500162015041446143613911461152213951425
FN 300 180 296 354 364 409 339 278 405 375

Table 5.14 Results Summary for PNN OOL Detector Experiment.

Result ↓ True Class → 1 2 3 4 5 6 7 8 9 10

TP 44 41 35 10 36 44 7 51 30 24
FP 316 319 325 350 324 316 353 309 330 336
TN 1656168417371778175316251795173716841646
FN 144 116 63 22 47 175 5 63 116 154
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Table 5.15 Friend OOL Optimization Results.

Parameters MOEs
Looks Sensor CAH CAFN Ecrit Encrit CAOOL Dec

2 HH 0.9454 0.8725 0.0030 0.0663 0.3530 0.5585
2 VV 0.9285 0.8661 0.0125 0.0672 0.3919 0.7713
5 HH 0.9472 0.8782 0.0157 0.0510 0.3535 0.8828
5 VV 0.9255 0.8370 0.0317 0.0524 0.3530 0.9583
10 HH 0.9537 0.8744 0.0270 0.0322 0.4580 0.9880
10 VV 0.9465 0.8308 0.0322 0.0448 0.4580 0.9880
2 Mean 0.9233 0.7277 0.0572 0.0633 0.4039 0.9943
5 Mean 0.9143 0.7559 0.0494 0.0622 0.4921 0.9889
10 Mean 0.9339 0.8249 0.0402 0.0452 0.4971 0.9759

Table 5.16 Composite Classifier System Optimal Parameter Settings.

Model OOL Detector Q θ1 W M F

Global PNN 11 0.5 7 Manhattan PNN
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Table 5.17 Results Summary for Composite Classifier OOL Optimization Exper-
iment NOC.

Parameters MOEs

Looks Sensor CAH CAFN Ecrit Encrit CAOOL Dec
1 HH 0.927 0.912 0.081 0.099 0.659 0.554
1 VV 0.953 0.945 0.0511 0.0846 0.609 0.571
1 BEM 0.9554 0.961 0.062 0.0663 0.641 0.561
1 Borda 0.946 0.945 0.082 0.0663 0.650 0.559
1 PNN 0.9454 0.952 0.075 0.067 0.661 0.558
1 Bayes 0.9454 0.922 0.079 0.066 0.649 0.562

2 HH 0.929 0.942 0.064 0.064 0.690 0.550
2 VV 0.954 0.959 0.043 0.060 0.632 0.559
2 BEM 0.961 0.973 0.065 0.0663 0.685 0.551
2 Borda 0.955 0.952 0.048 0.0663 0.692 0.563
2 PNN 0.959 0.962 0.052 0.0663 0.698 0.560
2 Bayes 0.933 0.958 0.066 0.0663 0.655 0.5585

5 HH 0.954 0.959 0.013 0.004 0.845 0.585
5 VV 0.999 0.997 0.002 0.008 0.833 0.587
5 BEM 0.973 0.966 0.010 0.007 0.852 0.588
5 Borda 0.966 0.962 0.008 0.009 0.855 0.585
5 PNN 0.972 0.967 0.009 0.008 0.862 0.588
5 Bayes 0.955 0.954 0.011 0.008 0.851 0.583

10 HH 1.00 1.00 0 0 0.947 0.688
10 VV 1.00 1.00 0 0 0.926 0.726
10 BEM 1.00 1.00 0 0 0.946 0.698
10 Borda 1.00 1.00 0 0 0.954 0.712
10 PNN 1.00 1.00 0 0 0.954 0.723
10 Bayes 1.00 1.00 0 0 0.943 0.720
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Table 5.18 Friend OOL Optimization Results EOC.

Parameters MOEs
Looks Sensor CAH CAFN Ecrit Encrit CAOOL Dec

2 HH 0.8579 0.9270 0.0066 0.0655 0.2026 0.5033
2 VV 0.8875 0.9167 0.0245 0.0515 0.2675 0.5069
5 HH 0.8516 0.8891 0.0035 0.0870 0.2552 0.5319
5 VV 0.8502 0.9347 0.0199 0.0591 0.2779 0.5017
10 HH 0.8782 0.8046 0.0089 0.1018 0.3505 0.52220
10 VV 0.9036 0.8559 0.0206 0.0695 0.3555 0.6098
2 Mean 0.8501 0.8202 0.0379 0.0807 0.2941 0.5624
5 Mean 0.8985 0.8085 0.0310 0.0719 0.3512 0.5794
10 Mean 0.9328 0.7750 0.0385 0.0676 0.3554 0.6822
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Table 5.19 Results Summary for Composite Classifier OOL Optimization Exper-
iment EOC.

Parameters MOEs

Looks Sensor CAH CAFN Ecrit Encrit CAOOL Dec
1 HH 0.836 0.827 0.091 0.81 0.525 0.544
1 VV 0.847 0.836 0.089 0.084 0.519 0.562
1 BEM 0.850 0.848 0.089 0.082 0.524 0.552
1 Borda 0.849 0.852 0.086 0.088 0.522 0.548
1 PNN 0.855 0.851 0.081 0.079 0.528 0.549
1 Bayes 0.852 0.849 0.087 0.079 0.530 0.544

2 HH 0.909 0.912 0.073 0.076 0.590 0.571
2 VV 0.921 0.923 0.064 0.078 0.572 0.578
2 BEM 0.912 0.918 0.065 0.076 0.558 0.581
2 Borda 0.919 0.921 0.058 0.066 0.592 0.573
2 PNN 0.936 0.925 0.072 0.066 0.589 0.568
2 Bayes 0.923 0.918 0.066 0.0663 0.655 0.5585

5 HH 0.944 0.939 0.013 0.004 0.765 0.683
5 VV 0.949 0.947 0.012 0.017 0.773 0.682
5 BEM 0.953 0.956 0.019 0.018 0.785 0.689
5 Borda 0.964 0.962 0.013 0.019 0.785 0.684
5 PNN 0.952 0.967 0.012 0.017 0.782 0.698
5 Bayes 0.955 0.954 0.011 0.021 0.768 0.689

10 HH 0.98 0.98 0 0 0.833 0.677
10 VV 0.99 0.98 0 0 0.828 0.706
10 BEM 0.99 0.98 0 0 0.855 0.698
10 Borda 0.99 0.98 0 0 0.861 0.702
10 PNN 1.00 0.99 0 0 0.884 0.710
10 Bayes 0.99 0.99 0 0 0.863 0.715
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6. Contributions and Future Research

This chapter provides a summary of the contributions made to the fields of pattern

recogntion, automatic target recognition and operations research by this research.

6.1 Research Contributions

6.1.1 Hybrid Template-Based Classifier Development

This research develops a combined hybrid template-based classification system

that operates effectively across two seperate application areas. The development

of the classification system includes the exploration of feature extraction, represen-

tation, similiarity measures, classification decisions and fusion techniques for the

purpose of achieving optimal classifier performance. A major contribution made

during the development is the ability of the classifier system to operate in differ-

ent application domains while mainitaining both superior identification rate and low

computational time.

6.1.2 Combinded Classifier Development

We explore various fusion schemes and techniques in order to boost overall

classifier system performance. A key technique we explore is the order of operations

for optimzation and fusing. Under one scenario, called the Local Model, indepen-

dent classifiers are optimized prior to fusion. Under the second scenario, called the
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Global Model, the entire parameter space across all classifiers are explored prior to

optimization. This second scenario is shown to produce superior results under inti-

tial exploration. Furthermore, these models are then replicated such that tests for

statistical significance can be performed to validate the intitial model comparison

conclusions.

6.1.3 Improvements to existing NDEC and OOL methodologies

Using a very simple NDEC methodology, we seek the ability to quickly identify

situations for which the classification system is unable to distinguish which labeling

assignment to make. Under these conditions, comparisons between a test exemplar

and at least two target templates lead to possible label assignments, with the classifi-

cation system unable to properly or quickly decide between the available choices due

to the close resemblance of the labelling candidates. By simplifying the calculations

to a comparison between candidates with the overall range of distance and/or sim-

ilarity measures, the classifier is able to make an accurate and timely classification

decision.

6.1.4 OOL Methodology Development

We develop OOL detectors that operate independent of the classifier through

the use of two separate artificial neural networks: a self-organizing map (SOM) and

probabalistic neural network (PNN). The OOL Detectors we develop can operate

on any features taken from the original data. We can use as many or as few as we
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choose without having to make dramatic changes to the overall algorithmic structure

of either OOL Detector. Moreover, the OOL Detectors both fall under the category

of Blind Mehods. A Blind Method is based solely on in-library training data without

any knowledge of test data class membership. OOL criteria is based entirely on in-

library training data and the characteristics of a test exemplar.

We have thus developed two independent OOL Detectors that operate indepen-

dently of the classifier from which they receive inputs. Moreover, they do not create

their decision thresholds from any information other than training data. Thus, our

OOL Detectors operate under the most difficult of conditions, while producing very

favorable results.

6.1.5 Mathematical Framework

We provide the mathematical framework for our compbined classification sys-

tem. This framework encompasses the implementation of methodology for the case

of OOL targets as well as the NDEC option. We clearly define the mathematics of

our representation scheme, parameter space and similarity measures and distance

metrics which are used to produce classifier outputs or labels. Finally, we formulate

a mixed variable optimization problem as well as various methods of evaluation in

seeking to improve classification system performance.
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6.2 Future Research

During the course of research, different avenues present themselves, which due

to time limitations, are left as areas of future research. This section suggests items

of future work.

6.2.1 Feature Selection

Most research on the identification of targets within the HRR profile problems

have considered features extracted from the amplitudes of HRR profiles measured

across the range of the profile. Exploration of other features, such as occurences

of different amplitudes or the measured horizontal distance of a certain portion of

the profile have yet to be explored. For example, using the noise threshold of this

research, a horizontal range distance between the first and last amplitudes which

exceed the noise threshold could be used as either a seperate feature space or used

to augment pre-existing features.

6.2.2 Robustness

In all of our experiments, classification system performance was evaluated

based solely on maximizing performance, such as overall classification accuracy. An-

other avenue for evaluating classification system performance is that of robustness.

Under this type of performance, a more consistent classification system can be de-
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veloped by seeking to find optimal parameters which reduce variance of certain per-

formances, rather than the maximization problem used here.

6.2.3 Generalzied OOL Detector

The OOL Detectors in this research were two specific ANNs: the SOM or

the PNN. Future research could explore other techniques, whether those techniques

are other ANNs or different methodologies. Further exploration of the use of all

in-library targets such as creating sub-division of in-library target by description or

function could also be useful in creating an OOL Detector.

6.2.4 Generalized Composite Classifier

This research was able to successfully implement two independent classifiers

with one of two OOL Detectors. Further exploration of other classifiers, OOL de-

tectors and fusion methods using various methods could prove to be fruitful. As

an example, the research we present operates with all classifiers and OOL Detec-

tors operating in parallel. Different hierarchical schemes or interactions between the

classifiers and/or OOL Detectors could lead to improved performance.
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Appendix A. List of Abbreviations and Terms

AFRL Air Force Research Laboratory

ATR Automatic Target Recognition

BEM Basic Ensemble Method

CA Classification Accuracy

CID Combat Identification

DCS Data Collection System

Dec Declarations; the percentage of exemplars labeled by a classifier

DOE Design of Experiment

Ecrit Probability of a critical error

Encrit Probability of a non-critical error

FFT Fast Fourier Transform

FVPR Feature Vector Pattern Recognition

FN Friendly or Neutral Target or Class

H Hostile Target Class, includes both TOD and OH

HH Horizontally polarized radar transmit and receive

HPR Hybrid Pattern Recognition

HRR High Range Resolution

LA Label Accuracy

MCS Multiple Classifier System

MOE Measure of Effectiveness

MSTAR Moving and Stationary Target Acquisition and Recognition

MVP Mixed Variable Programming
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NDEC Non-Declarations; Percentage of exemplars not labeled by a classifier

NIST National Institiute Standards and Technology

OCR Optical Character Recognition

OH Other Hostile

OOL Out of Library

PNN Probabilistic Neural Network

RBF Radial Basis Function

ROC Receiver Operating Characteristic

SAR Synthetic Apperture Radar

TOD Target of the Day

VV Vertically polarized radar transmit and receive
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