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Abstract

Electron paramagnetic resonance (EPR), Fourier-Transform Infrared spectroscopy

(FTIR), photoluminescence (PL), thermoluminescence (TL), and wavelength-dependent

TL are used to identify and characterize point defects in lithium gallate and β-gallium

oxide doped with Mg and Fe acceptor impurities single crystals. EPR investigations of

LiGaO2 identify fundamental intrinsic cation defects lithium (V−

Li) and gallium (V2−
Ga)

vacancies. The defects’ principle g values are found through angular dependence stud-

ies and atomic-scale models for these new defects are proposed. Thermoluminescence

measurements estimate the activation energy of lithium vacancies at Ea = 1.05 eV

and gallium vacancies at Ea > 2 eV below the conduction band minimum.

Mg and Fe doped β-Ga2O3 crystals are investigated with EPR and FTIR and

concentrations of Ir4+ ions greater than 1 × 1018 cm3 are observed. The source of

the unintentional deep iridium donors is the crucible used to grow the crystal. In

the Mg-doped crystals, the Ir4+ ions provide compensation for the singly ionized Mg

acceptors contributing to the difficulties in producing p-type behavior in bulk single

crystals. A large spin-orbit coupling causes Ir4+ ions to have a low-spin (5d5, S = 1/2)

ground state. The Ir4+ ions have an infrared absorption band representing a d − d

transition within the t2g orbitals.

Using these same techniques the Fe2+/3+ level in Fe-doped β-Ga2O3 crystals is

determined. With these noncontact spectroscopy methods, a value of 0.83 ± 0.04 eV

below the conduction band is obtained for this level. These results clearly establish

that the E2 deep level observed in DLTS experiments is due to the thermal release

of electrons from Fe2+ ions.
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POINT DEFECTS IN LITHIUM GALLATE AND GALLIUM OXIDE

1. Introduction

1.1 Overview and Motivation

The unique constraints of device operation in the military domain subjects elec-

tronic and optical components to environmental extremes. In current and future

conflicts, the rise of directed-energy weapons (DEW), the continued threat of op-

erating in areas after detonation of a nuclear weapon, and the heavy reliance on

space-based platforms for power projection and routine military operations, indicates

that commercial and civilian device characteristics involving as-grown charge states

of defects may be seriously degraded or otherwise affected by radiation resulting in

adverse performance. There is considerable interest, therefore, in understanding the

fundamental physics of point defects and radiation effects in materials that may be

used in future electronic systems.

Every material, regardless of growth or manufacturing technique, contains intrin-

sic, extrinsic, or both types of defects. Small regions within a single crystal may

be free of defects, but configurational entropy favors that larger crystals, or even

thin films, incorporate a certain concentration of defects to lower the free energy [1].

Impurities are often introduced into a material to tailor it for specific applications.

Doping for electronic applications is necessary to create defect states that are close

to the respective valence and conduction bands facilitating mobile charge.

Since the presence of defects in a material is unavoidable, their effects on the

materials properties must be identified and characterized by careful and accurate
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experimental investigation. Point defects in particular play a critical role in virtually

all diffusion processes. The presence of defects can result in device degradation in

routine commercial or military use, while the absence of certain defects can also inhibit

performance. Compensation by intrinsic point defects can limit doping levels. Defects

within the band-gap acting as recombination centers can impede carrier collection, or

light emission for specific applications. Conversely, defects can also be advantageous

such as when acting as a luminescent center at a specific wavelength in wide-band-gap

materials, or as an isolated spin center creating an artificial atom that serves as a

qubit for quantum information systems [2].

The work covered in this disseration is focused on two materials:LiGaO2 and β-

Ga2O3. LiGaO2 is an insulating material, typically used as a substrate for growing

thin films, but also has potential applications as a semiconductor or a radiation

dosimeter. Beta-Ga2O3 is a wide band gap semiconductor of increasing interest for

power electronics and optical applications. Performance and suitability of Ga2O3 for

various applications is heavily dependent on the types and concentrations of point

defects within a single crystal. For most applications, it is desirable for the material

to be capable of being grown with either p- or n-type behavior.

1.2 Previous Research on Ga2O3

Recent developments and research into wide bandgap semiconductors have brought

considerable interest to β-Ga2O3 and its potential for applications in power electronics

and solar-blind detectors. Beta-Ga2O3 is low symmetry as the crystal is a monoclinic

structure and the space group is C2/m. At 273◦ K the lattice constants are a =

12.214 Å, b = 3.0371 Å, c = 5.7981 Å, and β = 103.83◦ [3,4]. These constants follow

the usual convention where the crystallographic b axis is perpendicular to the crys-

tal’s mirror plane. This structure contains two inequivalent gallium sites and three
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inequivalent oxygen sites in the crystal for this complex binary crystal. This creates

a structure where the Ga(I) ions have four oxygen neighbors and the Ga(II) ions have

six oxygen neighbors, and then the O(I) and O(II) ions have three gallium neighbors

whereas the O(III) ions have four gallium neighbors. A “ball-and-stick” model of the

β-Ga2O3 crystal is shown in Figure 1.1. Owing to the low symmetry of the crystal, it

is convenient to define another set of axes, perpendicular to each of the crystal axes

assisting in acquiring and presenting EPR spectra and angular dependence data. The

a∗ and c∗ directions are introduced and defined where a∗ is perpendicular to the crys-

tallographic b and c and c∗ is perpendicular to the crystallographic a and b. With a

Figure 1.1. Ball-and-stick model of the crystal structure for β-Ga2O3 . Gallium ions are
shown in green and the oxygen ions in red. There are two inequivalent gallium sites,
Ga(I) and Ga(II), and three inequivalent oxygen sites labeled O(I), O(II), and O(III).
The Ga(I) sites are tetrahedral (with four oxygen neighbors) and the Ga(II) sites are
octahedral (with six oxygen neighbors). Reprinted with permission from [5].

large bandgap of 4.9 eV and a high melting point of 1800◦C, β-Ga2O3 has potential

in power electronics applications. The primary shallow donor in Ga2O3 has been
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identified as Si3+ sitting on Ga3+ sites through studies on unitentionally doped sam-

ples [6–10]. In fully activated crystals having large concentrations of Si, the shallow

donor has been shown to have an activation energy slightly below 20 meV [7, 8, 10].

Studies are currently underway to identify a suitable shallow acceptor for device ap-

plications. At present, there is interest in the effects of doping with Mg, but this may

be expanded in the future to Li, Cu, and Zn.

While oxygen vacancies are now considered to be a deep donor, holes trapped

on oxygen ions adjacent to Ga vacancies or on Mg ions at Ga sites are shallower

[5,11,12]. Additionally, at low temperatures, holes can become self-trapped on oxygen

ions in an otherwise unperturbed area of the crystal lattice [13]. Ga vacancies were

recently identified through their production via neutron irradiation at the Ohio State

University nuclear reactor of an unintentionally doped (UID) sample [5]. Irradiation

lowered the Fermi level of the crystal through the production of a significant number

of Ga vacancies which were then visible during room temperature EPR, shown in

Figure 1.2. This EPR spectrum shows a doubly ionized gallium vacancy from the

neutron irradiation. A single unpaired spin (S = 1
2
) interacts with two adjacent Ga

sites. The partially resolved hyperfine arises from the two isotopes of gallium, 69Ga

and 71Ga with nuclear spin of I = 3
2
, and in natural abundances of 60.1% and 39.9%,

and magnetic moments of 69µ = +2.0166βn and 71µ = +2.5623βn. The resolved

hyperfine spectrum shown results from three different combinations of two Ga isotopes

(i) two 69Ga nuclei, (ii) one 69Ga and one 71Ga nuclei, and (iii) two 71Ga nuclei, in

relative abundances of 36.1%, 48%, and 15.9%. If the unpaired spin interacts equally

with either two isotopes of 69Ga or 71Ga, a spectrum of seven lines arises (relative

intensities of 1:2:3:4:3:2:1), whereas if the spin interacts with 69Ga and 71Ga at a

gallium vacancy, a spectrum of 16 equally intense lines is produced.

The role and EPR spectrum of neutral Mg acceptors has also been studied. Mg-
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Figure 1.2. (a) Doubly ionized gallium vacancy β-Ga2O3 EPR spectrum with S = 1

2
.

This spectrum was taken at room temperature with the magnetic field along the a
direction in the crystal, and a microwave frequency of 9.4 GHz. (b) Simulation of the
gallium vacancy EPR spectrum using the Bruker SimFonia program. Reprinted with
permission from [5].
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doped β-Ga2O3 was irradiated at 77 K with 60 kV x-rays and transferred to the EPR

spectrometer without significant warming [12]. The x-rays generate large numbers

of electrons and holes in the conduction and valence bands. While many of these

electrons and holes combine immediately, Mg trapped appreciable concentrations of

holes, while the UID of Fe3+ and Cr3+ trapped electrons. A spectrum of the Mg

acceptor is shown in Figure 1.3. A comprehensive analysis of the neutral Mg acceptor

is detailed in Kananen et al. [12]. An important finding was that the hole trapped

on the Mg becomes thermally unstable between 250 K and 300 K. The prevailing

explanation is that around this temperature, the holes “move” away from the Mg

through the small polaron-hopping process; however, present research results cannot

rule out that another unidentified defect releases an electron that recombines on a

neutral Mg site.

Another important instrinsic characteristic of β-Ga2O3 is the experimental dis-

covery of self-trapped holes (STH) by Kananen et al [13]. The details of STH are

discussed in their work, but the most relevant to current work is the thermal sta-

bility of STH. Through a series of isochronal anneals, the thermal stability of the

STH was determined to be between 80-110 K. In their work, STH are observed by

using a sample with a sufficiently low Fermi level, and irradiating with x-rays at 77

K and transferring the sample to the EPR spectrometer without significant warm-

ing. Additionally, it was determined that STH do not decay through the migration

of an electron through the lattice, but rather through the hole becoming unstable

in the temperature range and traveling through the lattice by hopping from oxygen

to oxygen. This indicates that STH are a fundamental characteristic of the material

and represent an intrinsic energy barrier (i.e., an energy penalty that must be over-

come each time a hole attempts to move from one oxygen to another) to effective

hole conduction. STHs do not dependent on the specific ions trapping electrons, and
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Figure 1.3. (a) EPR spectrum from the S = 1

2
neutral magnesium acceptor in Mg-

doped β-Ga2O3. The magnetic field was along the crystallographic a direction with
a microwave frequency of 9.3979 GHz. (b) EPR simulated spectrum produced using
EasySpin. Reprinted with permssion from [12].
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therefore are a serious impediment to developing usable p-type material.

1.3 Previous Research on LiGaO2

In contrast in β-Ga2O3, very few studies have been conducted on the fundamental

point defects of LiGaO2. LiGaO2 is a wide bandgap semiconductor with a direct

bandgap of 5.3 eV, a melting point of 1585◦C and a near wurtzite-like crystal structure

[14,15]. LiGaO2 has a higher symmetry than β-Ga2O3; the crystal has an orthorhomic

structure and the space group is Pna21. At 273 K the lattice constants are a = 5.402

Å, b = 6.372 Å, c = 5.007 Å. A schematic “ball-and-stick” model is shown in Chapter

4 in Figure 4.1.

The LiGaO2 structure is very similar to GaN, with each anion having four cation

neighbors (three are located in the basal plane and one along the c axis). In the ideal

LiGaO2 crystal structure, each oxygen ion has two gallium and two lithium neighbors,

and every gallium ion and lithium ion has four oxygen neighbors. All the Li+ sites

are equivalent and all the Ga3+ sites are equivalent. However, the oxygen ions have

two slightly inequivalent sites crystallographically, which are label OI and OII. The

oxygen sites are distinguishable by their c axis nearest neighbor, with the OI sites

having an adjacent lithium ion, and the OII having an adjacent gallium ion.

LiGaO2 has a variety of applications. Band-gap engineering can be accomplished

by alloying LiGaO2 with ZnO (ZnO has a direct bandgap of 3.37 eV) [15–18]. While

yet to be identified, suitable donor/acceptor identification for LiGaO2 − ZnO mate-

rials opens fabrication of photodetectors and laser diodes capable of operating across

most of the ultraviolet (UV). Primarily, LiGaO2 has been used as a lattice-matched

substrate for GaN and ZnO thin film growths [19–21]. Recently, Cu-doped LiGaO2

has been shown to have immediate application as a radiation detection material and

phosphor. Cu-doped LiGaO2 was identified to have well suited characteristics for
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optically stimulated luminescence (OSL) and TL dosimetry [14].

1.4 Organization of the Dissertation

Chapters 2 and 3 provide an overview of the experimental principles and instru-

ment setup starting with crystal field theory which treats the material as an ionic

solid. The merits and limits of this treatment are discussed, as well as its applica-

tion to the experimental techniques of electron paramagnetic resonance and optical

absorption. The complete expression for the spin Hamiltonian is described and the

relevance of each term to unpaired spin for measurements is detailed. A brief overview

of optical absorption is presented for d − d transitions. Chapter 2 concludes follow-

ing discussions on the various kinetic order models for thermoluminescence. Each

instrument used in the collection of experimental data and its operation is described

in chapter 3.

Chapters 4 through 6 are prepared as publishable work according the standards

of the Journal of Applied Physics in accordance with the Style Guide for AFIT Dis-

sertations, Thesis, and Graduate Research Papers. Chapters 4 and 5 are already

published in the Journal of Applied Physics. Chapter 4 is the first published work

identifying and characterizing intrinsic cation vacancies in LiGaO2 and represents

the classic description of solids provided by crystal field theory. Chapter 5 identifies

the unintentional incorporation of iridium ions in large concentrations due to crystal

growth in iridium crucibles. This defect is electrically active and acts as a deep donor

in β-Ga2O3. Its spin configuration, which leaves a single unpaired electron in the

5d orbital with a large degree of covalency, represents the limitations of crystal field

theory. Chapter 6 is a drafted submission for Journal of Applied Physics from work

presented as a poster at the Materials Research Society’s 61st Electronic Materials

Conference. This chapter covers the implementation of a novel non-contact method
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for estimating the activation energy of deep acceptors in β-Ga2O3 using general order

kinetics from thermal decay measurements.

The written document concludes with a summary of research results and sugges-

tions on future experiments for β-Ga2O3 and LiGaO2 . The results and the materials

investigated are discussed in the broader context of several emerging materials for

laser applications at wavelengths greater than 6 microns.

1.5 Research Support, Interest, and Limits

Research on Ga2O3 is supported by the Air Force Office of Scientific Research

(AFOSR) with samples supplied by Synoptics in Charlotte, NC, and Kyma Technolo-

gies in Raleigh, NC, and additional support from the Air Force Research Laboratory

(AFRL). Single crystals of Ga2O3, both UID and doped, are also grown at AFRL.

LiGaO2 was purchased from the commercial third party vendor MTI Corporation.

The primary interest in Ga2O3 is for power electronics. Ga2O3 is a wide bandgap

semiconductor with a direct bandgap of 4.85 eV. Single crystals of β-Ga2O3 are pri-

marily n-type due to the presence of Si3+. Finding a suitable shallow acceptor will

allow device construction from a single material. The large bandgap of Ga2O3 has

also generated interest for ultraviolet applications including lasers and detection.

LiGaO2 is a wide bandgap semiconductor with a direct bandgap of 5.3 eV. Few

fundamental point defect studies have been done on LiGaO2. Recent literature has

focused on alloying LiGaO2 with ZnO for bandgap engineering [15–17], and other

studies have highlighted dosimetry applications through Cu doping [14]. With two

crystallographically different cation sites (one monovalent and the other trivalent),

LiGaO2 has a large range of doping possibilities for applications.
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2. Experimental Principles

This chapter describes several of the principles of the instrumentation and results

from investigations of the radiation effects in various materials. The chapter begins

with a discussion of the ionic treatment of solids called crystal field theory. This theory

lays the foundation for describing the orbital splitting of d electrons in transition

metal ions. The merits of the theory also provide the framework for understanding

subsequent sections on the instrument principles of electron paramagnetic resonance,

optical spectroscopy, and thermoluminscence. The chapter concludes with a brief

discussion of a special case for a Ir+4 defect.

2.1 Crystal Field Theory

A pursuit of the description of the bonding in solids has led to several approaches

over the past century. Developed by Bethe and Van Vleck [22–25], crystal field theory

(CFT) was developed alongside Pauling’s valence bond (VB) theory [26]. Both CFT

and VB are considered specialized cases of the more general molecular orbital (MO)

theory. CFT’s foundation is based on arguments presented in the more restrictive

ionic model [27]. The theory is advantageous in that it provides a relatively simple

model describing the coordinate chemistry. It also successfully explains the origins of

absorption spectra in the visible and related color regions, and many observed optical

and electrical properties, and electron paramagnetic resonance spectra [27, 28]. The

energetics and predictions from CFT are similar to the more complex MO theory,

and the symmetry arguments for both CFT and MO are identical. For these reasons,

CFT is used to describe the local environment of d-shell impurities (i.e., transition

metals) in this work [22].

Transition-metal ions account for approximately one-third of all the known el-
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ements, spanning 10 of the 18 groups and 4 of the 7 periods. In total, transition

metals make up 38 elements when transactinides are included, beginning with scan-

dium and ending with copernicium [22].1 This broad range of group and periodicity

makes transition metal ions important in materials development either as a primary

constituent or as an extrinsic defect. While there is no unique way to represent
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Figure 2.1. Illustration of the d orbitals spatial arrangement. The splitting of the
orbitals into the t2g and eg levels results from a transition metal ion in the presence of
an external electric field.

d orbitals, a common representation is shown in Figure 2.1. In total, there are six

ground state wave functions that can comprise the typical four-lobed forms; however,

physical reality dictates there are only five d orbitals. Two of the orbitals are linear

combinations of the others. Common convention from group theory distinguishes

these ground states into two groups referred to as the triplet and doublet states, t2g

and eg respectively [22, 28].

The splitting of the five orbitals in an octahedral environment also modifies the

1The total number of transition metal ions can vary from 38 to 40 depending on the inclusion of
lanthanum and actinium.
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bonding with the surrounding ligand ions. A single electron in the triplet state

(t2g → dǫ) partakes in the lower energy π-bonding, and in the doublet state (eg → dγ)

higher energy σ-bonding. The nomenclature of dǫ and dγ refers to an electron purely

in the d state, but the augmented states formed through the admixing of ligand ion

orbitals retain the more general notation and classification of t2g and eg [29].

A strict view of CFT assumes a purely ionic interaction between the metal ion

and surrounding ligands. In an isolated, gaseous environment, the five d orbitals are

energetically degenerate. In highly symmetric crystal geometries, such as cubic mate-

rials, or lower symmetry materials having differing crystal sites such as tetrahedral or

octahedral, spherical symmetry is broken by partially lifting the degeneracy of levels.

An octahedral local environment with six filled ligands on the axes of the system will

create two different interactions between the metal ion and ligands. Ligand ions will

interact strongly with the eg orbitals as they approach on the x, y, and z axes raising

the energy of the dz2 and dx2
−y2 orbitals [22]. Since this interaction is directed along

the bond axis, higher energy σ-bonding occurs with the wave function symmetric

about the bonding axis and the orbitals typically of s − p hybridization. The t2g

orbitals (dxy, dyz, dxz) are repelled to some extent being directed normal to the ap-

proaching ligand bond axis and lowering their overall energy through π-bonding [29].

The separation of the orbitals from the barycenter,2 called the crystal or ligand field

splitting, is represented in energy by the quantity 10Dq = ∆, where D is the mag-

nitude of the splitting and q is the charge of an electron.3 Due to conservation of

energy, the eg orbitals are raised 6 Dq above the barycenter and the t2g lowered by

4Dq [22].

2The barycenter is likened to a center of gravity, and represents an average energy about which
the orbitals maintain degeneracy

3Values of ∆ are often measured through optical absorption techniques and are represented in
wavenumbers [30].
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2.1.1 The weak field approximation

As electrons fill their respective orbits, the energy relative to the barycenter of

the unperturbed d orbitals is known as the crystal field stabilization energy (CFSE)

[22]. When the ligand field is not strong, the influence of its field can be taken as a

perturbation of the atomic terms, and the atomic terms are classified according to

quantum number and angular momentum L [28]. Electrons typically fill the d shells

following Hund’s rule assuming the lowest possible energy configuration, unpaired

and entering different degenerate orbitals. The t2g level fills to the d3 configuration

without pairing. However, two possibilities exist for the d4 configuration: one with

electron pairing and one without. In the weak field approximation, the energy required

for pairing electrons in a single orbital is greater than the crystal field splitting, as

shown in Figure 2.2a. The electron is placed in the eg orbital and the electronic

configuration is referred to as a “high spin” system. The CFSE can be calculated if

the crystal field splitting is known by,

CFSE =

(

nt2g ×−2

5
∆

)

+

(

neg ×
3

5
∆

)

+Π (2.1)

where nt2g and neg are the number of electrons in their respective orbits and Π (some-

times shown as P) is the pairing energy; for the weak field case Π = 0. The CFSE

is zero in d5 and d10 configurations where the energy of two electrons in eg level

exactly balances the energy of the three electrons in t2g level, indicating no further

stabilization can occur from application of an external field [22]. Any ground state

configuration can be constructed by applying two rules: 1) minimize the crystal field

stabilization energy, and 2) apply the restrictions imposed by the exclusion princi-

ple. Spin values for a “high spin” have a range of 1
2
≤ S ≤ 5

2
and have electronic

configurations as shown in Figure 2.3a [22, 31]. The number of ways in which the
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Figure 2.2. Comparison of the crystal field splittings for the a) strong field approxi-
mation and b) weak field approximation. The pairing energy, P, has the more formal
mathematical notation, Π and the crystal field splitting, 10Dq = ∆. Each line repre-
sents the one electron wave function including spin denoted by α and β.
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Figure 2.3. Construction of the ground states for d-configurations of a) high and b) low
spin systems in an octahedral field. The S values and orbital multiplicity for individual
ground states are given in Table 2.1. After Abragam and Bleaney [29].
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electrons can be arranged in orbitals of the same degenerate energy for any ground

state configuration is called the orbital multiplicity. Table 2.1 shows the relationship

of electronic ground state configuration, spin values, and orbital multiplicity.

Table 2.1. Ground state construction in an octahedral field of the d-configurations
for high and low spin systems. High spin configurations are suitable for the weak and
intermediate crystal field approximation when spin coupling is stronger than the crystal
field energy. The low spin configuration is appropriate in the strong field approach when
the spin coupling is weaker than the crystal field energy.

High Spin Low Spin

orbital orbital
S multiplicity S multiplicity

d1 1
2

triplet d1 1
2

triplet

d2 1 triplet d2 1 triplet

d3 3
2

singlet d3 3
2

singlet

d4 2 doublet d4 1 triplet

d5 5
2

singlet d5 1
2

triplet

d6 2 triplet d6 0 singlet

d7 3
2

triplet d7 1
2

doublet

d8 1 singlet d8 1 singlet

d9 1
2

doublet d9 1
2

doublet

2.1.2 The intermediate field approximation

In between the limiting cases of the strong and weak field approximations, the

ligand field and the electron interactions must be considered simultaneously. The

intermediate field conditions exist when the ligand field is larger than the spin-orbit

coupling but remains smaller than the interelectron interactions. Relatively close

energetic terms interact resulting in a divergence of the energy levels. This is called

the nonintersection rule which states that terms of the same wave function symmetry

do not intersect. The resultant splitting of energy levels, ∆, depends on both the
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strength of the ligand field and the initial energy spacing of the atomic terms. Tanabe-

Sugano diagrams detail the most complete description of the electronic structure and

account for the ground state changes predicting the transition from low to high spin

systems [27–29].

2.1.3 The strong field approximation

The strong field approximation occurs if the splitting of the d orbitals is large with

respect to the pairing energy (i.e. Π > ∆). In this case, the effect of the ligand field

surpasses the electrostatic interaction between the electrons and the orbital coupling

between electrons is broken, causing states with definitive total angular momentum

quantum numbers to cease existing [28]. Electrons in the strong field case occupy

the energetically lower t2g orbitals, remaining unpaired up to d3 illustrated in Figure

2.3b. The eg level is strongly unfavorable for the fourth electron and rather than

entering, the electron forms a pair in the t2g. This increases the CFSE, Equation 2.1,

over values seen in the weak field approximation. Electron pairing in the strong field

case results in systems that are referred to as “low spin” having spin values ranging

from 1
2
≤ S ≤ 3

2
. The complete filling of the d subshells for high and low spin systems

is shown in Figure 2.3 [22, 31].

2.1.4 Pairing energies

Weak and strong field approaches are the main focus of this dissertation in Chapter

5 and are distinguished from each other based on the pairing energy which is com-

posed of two terms. The inherent repulsion from placing two electrons in the same

orbit is mostly constant for transition metal ions. Larger more diffuse orbits from the

5d configuration more readily accommodate two negative charge than the smaller 3d

configuration, but the differences are small [22]. This important result from the elec-
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trostatic repulsion is sometimes called the “nephelauxetic effect” (meaning clouding

expanding) or an “orbital reduction factor”, k, from the apparent expansion of the d

orbitals. This effect is the natural result of lowering the effective charge for transition

metal ions through partially covalent bonding from delocalization of the d electrons

onto the surrounding ions [27, 29]. The loss of the exchange energy when electrons

with parallel spins are forced to pair having antiparallel spins is the second factor.

Pairing of the d5 configuration results in the greatest loss of exchange energy.

Transition from a high to low spin complex is determined by the relative strength

of ∆ to Π. When ∆ < Π the weak field approximation is appropriate, while for

∆ > Π the strong field approximation can be used [22, 28]. On either side of the

crossover point related by ∆ = Π, both species continue to exist in thermal equi-

librium with distributions determined by Boltzmann statistics. This temperature

dependence causes changes in the average magnetic susceptibility of the two species

(high and low spin). This changing magnetic susceptibility has shown that an ion

can have different spin complexes in the same material at different temperatures [22].

2.1.5 Factors affecting magnitude of ∆

There are four primary factors affecting the magnitude of the crystal field splitting.

The oxidation state of the transition metal ion directly affects the magnitude of ∆.

From the electrostatic model, increasing the charge on a metallic ion decreases its

distance from the ligands drawing them closer and causing a greater perturbation of

the d orbitals. The number and geometry of the ligands also affects the splitting.

An octahedral field is approximately twice as strong as a tetrahedral field from the

same transition metal ion and ligands. Reducing the number of ligands decreases

the electrostatic field at the impurity ion. Additionally, the shift from octahedral

to tetrahedral less efficiently directs the ligands towards to d orbitals, exerting less
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influence on t2g and eg. An octahedral configuration exerts maximum influence on the

eg level and minimizes its influence on t2g levels [22,28]. The nature of the surrounding

ligands affects the splitting due to the extent of electron-electron repulsion in the

ground or excited state. While the increasing field strength in a spectrochemical series

provides some basis for increased splitting, the splitting of d orbitals is not purely ionic

and cannot be simplified to point charges of ions or dipoles. This is shown by the fact

that anionic ligands lie at the lower energy end of the spectrochemical series causing

small effects, whereas a strictly ionic interpretation from electrostatics predicts anionic

ligands to exert the largest effects. A final factor affecting the magnitude of splitting

is the nature of the involved metallic ion. Within a transition series, there is little

effect on the splitting. However, changes occur between congeners progressing from

3d → 4d → 5d. The result of this is the second and third transition series are almost

exclusively low spin compared to the first transition series containing both high and

low spin complexes [22].

2.2 Electron Paramagnetic Resonance (EPR)

The wave particle duality of an electron allows application of the concepts of clas-

sical angular momentum that can be represented by the spin angular momentum

operator Ŝ [32]. In the classical analog, the angular momentum arises from the spin

of a sphere about its central axis. However, the quantum mechanical interpretation

differs because the electron can be treated as elementary point particle, a fermion,

lacking an inherent internal structure. Spin of the electron is solely quantum mechan-

ical in nature, and has a related spin-induced magnetic moment

µ̂ = gγŜ (2.2)
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where the proportionality constant γ = q/2m is referred to as the gyromagnetic (or

magnetogyric) ratio having units of C kg−1 = s−1 T−1. While the gyromagnetic ratio

converts angular momentum to magnetic moment, g is a dimensionless quantity, often

called the Zeeman correction factor. A classical analog of the orbital magnetic point

dipole is a circulating electrical current i in a magnetic field. The field produced by

this circulating current is equivalent to the dipole. The two quantities are shown to

be equivalent by pointing the magnetic dipole in the z direction, perpendicular to the

xy plane of the circle with area A,

µz = iA = ±qvπr2

2πr
= ± q

2m
mvr =

q

2m
Lz (2.3)

where Lz is the orbital angular momentum about the axis z of a particle with mass

m and velocity v. The direction of rotation determines the choice of sign in equation

2.3. From quantum mechanics, free particles having orbital angular momenta that are

integral multiples of ~ have an associated orbital magnetic moment β = |q|~/2m =

|γ~/g|. In the case where the electron is free, g = ge = 2.0023193. However, in the

presence of an electric field, the values of g depend on the relative contributions of

the orbital angular momentum L of the electron in its orbit about the nucleus and

the total spin S of the electron’s total angular momentum [31,33].

When subjected to an external magnetic field, the electron can be treated as a

magnetic dipole owing to its magnetic moment shown in Figure 2.4. Taking the

magnetic field B to be in the z direction, the energy of this interaction is defined by

a scalar product

E = −µT ·B = −BT · µ = −|µB| cos(θ) (2.4)

where θ is the angle between the µ and B. Equation 2.4 contains an important result.

When the magnetic field lies parallel to the unpaired electron’s magnetic moment,
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Figure 2.4. Energy of a classical magnetic dipole in a magnetic field as a function of the
angles between the magnetic field and the axis of the dipole: (a) θ = 0 is the minimum
energy configuration; (b) an intermediate energy for an arbitrary angle of θ; and (c)
θ = 180◦ is the maximum energy configuration. After Weil [33].
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the energy is minimized; but the energy is maximized when the field is antiparallel.

For angles of θ between these extremes, U is at intermediate values. Applying U to

a “spin only” system and substituting µ = −gβeMs results in

E = gβeBMs (2.5)

where βe is the Bohr magneton and Ms = ±1
2
for a single unpaired electron, or

Ms = ±S when S > 1
2
. The range of U values from different Ms values is sometimes

referred to as the electronic Zeeman energies [33]. While classical analogues allow for

a continuous range of energies, quantum mechanics dictates discrete energy values

from the magnitude of the spin vector

S2 = ~
2 [S (S + 1)] (2.6)

The magnitude of the spin vector is shown in Figure 2.5. For a single unpaired

Figure 2.5. Allowed energy levels for Zeeman splitting with a static magnetic field
parallel to the z-axis for (a) S = 1

2
, (b) S = 1, and (c) S = 3

2
. The quantity S2 is the

magnitude squared of the spin vector. After Weil [33].
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electron, values of E = ±1
2
geβeB and an energy difference between the different Ms

values can be represented as

∆E = Eupper − Elower = µBB = gβeB (2.7)

and is shown in Figure 2.6.

Figure 2.6. A single unpaired electron with S = 1
2

has the energy level(s) shown as a
function of the applied magnetic field. This splitting is referred to as Zeeman splitting
or the Zeeman energies. After Weil [33].

Spectroscopy in EPR results from an oscillating electromagnetic field, B1 induc-

ing an electron’s spin transition (i.e., flipping spin) between two differing electronic

Zeeman levels. Generally, B1 is taken to be perpendicular to the static magnetic field,

B. The oscillating electromagnetic field is supplied by microwaves of frequency ν, and

B1 is referred to as the microwave magnetic field.4 When the microwave magnetic

4Dual mode EPR cavities do exist and are sometimes used in experiments. The dual mode
cavities allow B1 to be either parallel or perpendicular to B. This change in B1 causes ν to be
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field supplies photons having energy hν matching the spin separation energy, there

is a resonant absorption by the electron from transitioning between two electronic

Zeeman levels [31, 33].

∆E = hν = gβeB (2.8)

Since the energy between the spin states varies with magnetic field, there are two ways

to provide energy for an absorptive transition: a) varying the microwave frequency

at a fixed magnetic field or b) adjusting the magnetic field with a fixed microwave

frequency. Most commercially available EPR spectrometers use a microwave source

at a fixed frequency.

Fundamentally, an EPR spectrometer measures the small reflection of energy re-

sulting from an impedance mismatch caused by the absorption of microwave energy

from unpaired electrons. Due to the small signal strength of the impedance mismatch

from these absorptive transitions, modulation coils operating around 100 kHz vary

the static magnetic field improving the signal-to-noise ratio. This modulation fre-

quently results in the plotting of EPR absorption spectrums in their first derivatives.

The details of an EPR spectrometer are discussed further in Chapter 3.

2.3 Spin Hamiltonian

Electron paramagnetic resonance helps identify paramagnetic point defects within

a crystal and assigns charge states. In the preceding section only the electron Zeeman

term was considered. If this were the only energy contribution, all EPR spectra would

appear as uniformly shaped lines varying in number based only on differing S values.

However, in the crystal lattice, there are multiple contributions to the Hamiltonian.

Solutions to the Schrodinger equation yield a complete set of interactions between

slightly different between the parallel and perpendicular modes of operation and also drive different
electronic transitions.
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the unpaired electron spin and the external environment describing the quantum

mechanical system of a defect by its Hamiltonian identifying all possible energy levels.

However, it is the spin portion of the Hamiltonian that is the basic foundation of

EPR [31, 33]. Including all the various spin components, the spin Hamiltonian has

the form,

H = βeS · g ·B+ S ·D · S+ I ·A · S+ I ·Q · I− gnβnI ·B (2.9)

where βe is the Bohr magneton, S is the spin operator, g is the g matrix, B is the

magnetic field, I is the nuclear spin operator, A is the hyperfine matrix, D is the

fine structure matrix, Q is the nuclear electric quadrapole matrix, gn is the nuclear

g factor, and βn is the nuclear magneton. The spin portions of the Hamiltonian

highlight the interaction of the spin operators, S and I, with the magnetic field.

Without the presence of a magnetic field, many of the energy levels are degenerate

and thereby indistinguishable. Using a static magnetic field, it is possible to split

these energy levels, thus reducing or eliminating the degeneracy [33].

2.3.1 Fine structure interactions: S·D·S

For paramagnetic defects with S > 1
2
, fine structure splitting arises due to the

influence of crystal electric field on the electrons through spin-orbit coupling and the

magnetic dipole-dipole interactions. Even when the magnetic field B is equal to zero,

these levels have splitting equal in energy toD. This splitting is often called “zero-field

splitting” or “crystal-field splitting”.5 Fine structure interactions are of considerable

interest and importance in transition metal ions. The pairing of d shell electrons can

yield a wide variety of EPR spectra owing to the differences between high and low

5Although these two terms are often used interchangably in the literature, they are not the
same [34].
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spin systems and the interactions of the defect with surrounding ligands [31, 35, 36].

Appendix A details the fine structure interactions of the spin Hamiltonian of Cr3+

(3d3), a high spin system in β-Ga2O3.

2.3.2 Hyperfine interactions: I·A·S

The magnetic interaction between an unpaired electron’s magnetic moment and

the magnetic moment of the nucleus is the hyperfine interaction. For each level

resulting from the electronic Zeeman splitting in a magnetic field, the nucleus can

also assume any of its nuclear Zeeman levels when I > 0. The number of hyperfine

lines observed is dependent on the nuclear spin, I, and follows a similar pattern to the

electron spin with, 2I + 1 for the total number of hyperfine transitions. The selection

rule for allowed hyperfine transitions is:

∆ms = ±1; ∆mI = 0 (2.10)

Under certain conditions rare cases of forbidden hyperfine transitions have been ob-

served in EPR spectra, mostly in transition metal ions. Figure 2.7 details the

hyperfine iteractions for a single unpaired electron in deuterium. Without the hy-

perfine iteractions (i.e., if I = 0), a single transition would be observed, as shown

on the left. Deuterium, has I = 1 from the combined spin of an unpaired proton

and neutron. The resulting allowed transitions are three absorptions of microwave

energy equally spaced in the magnetic field by a distance ∆B = a0. In the example of

deuterium, the total S value is 1/2. EPR spectra with S > 1
2
such as weakly coupled

systems of S = 1
2
defects [5] or transition metal ions result in a greater number of

possible hyperfine lines. The total number of observable EPR lines for a point defect
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Figure 2.7. Energy levels for a deuterium atom with S = 1
2
and I = 1 for a fixed magnetic

field, B. The hyperfine splitting constant, a0 is the difference in magnetic field between
the various EPR transitions. After Weil [33].

in a material, along high symmetry directions in the crystal, then is given by,

# of lines = 2S (2I + 1) (2.11)

A common transition-metal ion impurity such as Mn2+ with S = 5
2
and I = 5

2
has a

total of 30 lines that can be observed [33].

2.3.3 Nuclear quadrapole interactions: I·Q·I

Nuclear quadrapole interactions occur when nuclei have I > 1
2
. This term charac-

terizes the electrical charge interactions with the nucleus and is usually the subject

of study for electron-nuclear double resonance (ENDOR). In cases where EPR spec-

tra have multiple or duplicate interpretations, study of this iteraction with ENDOR

provides a definitive identification of the defect spectrum. Additionally, a defect
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possessing isotopes with strong nuclear quadrapole moments and in the presence of

strong electric field gradients can give rise to forbidden transitions that are observed

as weak intensity lines between the defect’s associated hyperfine lines.

2.3.4 Nuclear Zeeman interactions: gnβnI·B

When the nucleus has I > 0 resulting from unpaired spins of the nucleons, the

interaction between the unpaired electrons and nuclei can result in further splitting of

the electron energy levels. The physics of nuclear Zeeman splitting of energy levels is

the same as for the electrons, except the energy involved is on the order of MHz versus

GHz. For comparable magnetic field values, the difference in energy is proportional

to µn and related by µn ≈ µe/1836 [31,33].

2.4 The g Matrix

For defects observed in EPR spectra, the g matrix is a set of parameters used to

describe the defect for different orientations of the magnetic field. The actual field for

each defect’s spin is not solely the external magnetic field Bext applied to the crystal.

Local fields add vectorially to the external field producing a total effective field Beff

for the unpaired electron.

Beff = B+Blocal (2.12)

Two local fields exist, those that are: a) permanent and independent of B except in

orientation; and b) having a magnitude dependent on B because they are induced

by B [33]. The matrix contains isotropic and anisotropic terms. When a defect has

hyperfine iteractions, the center of the spectrum is taken for a g value. A simple

relationship between the spectrum’s center along the high symmetry direction and

magnetic field,

g =
hν

βeBext

(2.13)
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can often give an indication of whether a defect is an electron or hole trap. A very

loosely applied rule is that g values > 2.0023 indicate hole traps, while g < 2.0023

indicates electron traps [37]. Here g = 2.0023 is the free-electron g value, ge.

Defects that are truly isotropic are quite rare and typically found in cubic materials

possessing no distortion of the crystal lattice, or in certain liquid samples. More

frequently, the spin-orbit iterations and L · S coupling with the magnetic field produce

line splittings and shifts due to orientations in the magnetic field. A defect’s EPR

spectrum that is shifted in magnetic field, and therefore g values, from the interactions

with the surrounding ligands but produces the same hyperfine pattern along high-

symmetry directions of the crystal is referred to as “crystallographically equivalent”.

The shift in magnetic field, and g, values results from the direction and L · S coupling

of the unpaired spin in its orbital. Splitting of a defect’s EPR spectrum when rotated

off high-symmetry axes can occur due to interactions with the surrounding ligands.

This effect is referred to as “magnetically inequivalent” whereas a lack of splitting is

“magnetically equivalent” for orientations of the defect [33, 38].

Several general characteristics of a defect’s g values can be mentioned. Unpaired

spins localized primarily in hydrogenic-like s orbitals exhibit very little angular de-

pendence, and little deviation in g from ge when the crystal is rotated in the magnetic

field. Defects having unpaired spins in p orbitals generally have angular dependencies

resulting in g shifts less than several hundredths from ge. Transition metals can have

widely varying g values that increase in deviation from ge as L · S coupling increases.

Anisotropy of the g matrix can be defined with six parameters. A physical sys-

tem possessing three mutually perpendicular inherent directions (i.e., principle axes)

combined with results (principle values of the defect) measured along these directions

completely describe the anisotropy contributions [31, 33]. Equation 2.13 is only suf-

ficient to describe systems that are isotropic. Resonant field values are actually a
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function of field orientation relative to the crystal axes.

The g matrix describes the ground state interaction of the defect for different

orientations of the magnetic field. The spin-orbit interactions admixes the “pure”

ground state with the excited states causing a small amount of orbital angular mo-

mentum to manifest in the observed ground state. This circulation produces a local

field, Blocal mentioned in equation 2.12 that contributes vectorially to the external

magnetic field, B. This interaction results in changes to the g factor and is inversely

proportional to the energy separation of the basis states [33].

The electron’s magnetic moment described in Section 2.2 is a magnetic moment

operator that is a vector sum of the spin and orbital angular momenta,

µ̂(r) = −βe

(

L̂+ geŜ
)

. (2.14)

The total electronic orbital angular-momentum operator for the ground state configu-

ration of the defect is represented by L̂. Combining spin and orbital angular momenta

with the electron Zeeman terms, the Hamiltonian describing the system becomes

Ĥ(r) = βeB
T ·

(

L̂+ geŜ
)

+ λL̂T · Ŝ. (2.15)

First and second order time-independent perturbation theory detail the contributions

from the admixing of states through summation over all the states. A ‘spin only’

Hamiltonian results,

Ĥ = βeB
T · g · Ŝ+ ŜT · D̂ · Ŝ. (2.16)

The g matrix can be shown to have the form,

g = gel3 + 2λΛ (2.17)
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where l is a 3 × 3 unit matrix and Λ is the outer product from second order per-

turbations. In the absence of off-diagonal terms, the g matrix has principle values

of

g1 = ge, g2 = ge −
2λ

E2 − E1

, g3 = ge −
2λ

E3 − E1

. (2.18)

These values are presented in the literature [38] for EPR spectra that are both crys-

tallographically and magnetically equivalent.

2.5 Optical Spectroscopy

The optical spectral regions of interest in this dissertation span from the ultra-

violet (UV) to the infrared (IR) wavelengths. The foundations of optical spectra

including photoluminescence (PL) and IR active spectra are discussed, while ther-

moluminescence is discussed separately in section 2.6. Molecular electronic states

can be arranged in increasing order of energy with highest filled energy level referred

to as the highest occupied molecular orbital (HOMO). The first available level above

HOMO is the lowest unoccupied molecular orbital (LUMO). Separation of energy into

HOMO and LUMO levels and spin pairing between the ground and excited state form

the singlet and triplet states. Since photons possess no inherent spin, they can only

couple to transitions of the same spin [39]. The relaxation and de-excitation process

between singlet and triplet states occur on different time scales and gives rise to fluo-

rescence and phosphorescence discussed in section 2.6 [40]. The molecular electronic

transitions can also change the vibrational state; therefore the optical transitions are

considered vibronic, a combination of changes in the electronic and vibrational state.

The electronic transitions arising from the average electric field gradients of the crystal

field supplied by the surrounding lattice ions are referred to as a static perturbation.

Since individual ions vibrate about their lattice position, discrete vibrational levels

are associated with each molecular electronic state. These vibrations are referred to
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as a dynamic perturbation and have an associated temperature dependence [41].
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Figure 2.8. Configuration coordinate diagram for a) radiative and b) non-radiative

processes. The Frank-Condon principle is illustrated by the transitions
−−→
AB and

−−→
CD

in radiative transitions. The horizontal lines represent local vibrational modes. Non-
radiative recombination occurs when strongly coupled vibrational modes are available

to excited electrons at higher energies E than radiative transitions
−−→
CD.

In contrast, impurity ions (i.e. isolated point defects) incorporated into crystals

strongly couple to the vibrational modes of lattice through electron-phonon coupling

which creates continuous vibronic bands. The relatively low concentration of the

defects creates an interaction which strongly affects the optical spectra. The coupling

of electronic states to a near continuous spectrum of vibrational modes is governed by

the density of states of the vibrational modes in dispersion curves. The absorption of

an allowed photon transition for a point defect is shown as
−→
AB in Figure 2.8a, with

energy

~ωa = (E2 − E1) + n~Ω2 (2.19)

where ~ωa is energy of the absorbed photon, Ω2 is the phonon angular frequency in the

excited state and n is an integer. Equation 2.19 dictates that absorption by a point
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defect is possible for a band of energies determined by (E2 − E1) up to a maximum

allowed by the electron-phonon coupling. Absorption transitions leave the ion in an

excited state and the excess energy is dissipated in a radiationless relaxation process

by exciting phonons which transfer their energy as heat to the crystal. Emission of a

photon at the bottom of the excited state in Figure 2.8a is shown by
−−→
CD with energy

~ωe = (E2 − n′
~Ω1)− n~Ω1 (2.20)

where Ω1 is the phonon angular frequency in the ground state and n′ is an integer.

The difference in energy between emission and absorption is the Stokes shift. The

photon-induced change in electronic energy is represented as ∆E while the change

due to coupling with a vibrational mode is represented by a change in Q in Figure

2.8. The difference in minima between the ground and excited states defined by the Q

coordinate is quantified by the Huang-Rhys parameter for the transition. This process

of energy absorption, emission, and vibrational rapid relaxation in often described as

the Frank-Condon principle and represented on the configuration coordinate diagram

by vertical arrows. The overlap of vibrational modes (called the Frank-Condon factor)

and electronic orbitals that allow for these transitions to occur is something not well

accounted for in CFT and one of its main limitations in accurately predicting optical

absorption spectra [39].

Non-radiative decay can also occur after the absorption of a photon via the process

shown in Figure 2.8b. For transition metal defect ions that strongly couple to the

crystal lattice, there is a strong dependence on vibronic modes and temperature.

A photon is absorbed,
−→
AB, but the strong coupling of defect and host lattice have

an energy shown as point E that is higher than the minimum of the excited state

transition
−−→
CD. The excited electron can transfer the excess energy as phonons and

return to the ground state without emitting a photon. When this occurs, a defect
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is termed a ‘nonradiative center’ and this process is called ‘quenching’ or ‘thermal

quenching’. [39, 40].

2.5.1 Photoluminescence and photoluminescence excitation

Photoluminescence (PL) and photoluminescence excitation (PLE) are measure-

ment techniques that characterize and identify luminescent defects in single crystals.

These techniques focus on the Stokes shift. PL measures the emission of a defect and

PLE measures the absorption.

2.5.2 IR absorption due to a change in dipole moment

Vibrational modes between ions that are IR active are more commonly reported

as absorptions resulting in a coupling to the dipole moment. However, transition

metal ion point defects with partially filled d shells provide an additional pathway for

coupling to the dipole moment. The splitting of the electronic orbitals into the t2g

and eg states allows for energy absorption promoting electronic transitions between

these levels. This is referred to as a d− d transition. On an octahedral site, CFT has

shown that these orbitals point towards or between anions. The absorption of energy

can excite an unpaired electron in d − d transitions that results in coupling to the

dipole moment.

Combined with EPR measurements, IR absorption spectroscopy can provide in-

formation about the oscillator strength of a transition for a defect’s transition. The

relationship is provided from Smakula’s formula for a Lorentzian line shape

Nf =
(

1.29× 1017
) n

(n2 + 2)2
αmaxW (2.21)

where N is the defect concentration (can be measured by EPR) in units of [cm−3],

f is the oscillator strength, n the index of refraction for the material, αmax the
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absorption coefficient at the peak with units [cm−1], and W the FWHM measured in

meV [36,42,43].

2.6 Thermoluminescence (TL)

The underlying principles of thermoluminescence (TL) were developed to describe

a subset of luminescence behaviors. There are many broad categories of luminescence

phenomena classified according to the type of absorbed radiation exciting emission

including photoluminescence (light), radioluminescence (x rays), and cathodolumines-

cence (electrons), among others. Light emission that takes place after the absorption

of radiation can be subdivided based on a characteristic time τc. Fluorescence has

τc ≤ 10−8 s and phosphorescence has τc ≥ 10−8 s. Phosphorescence is further distin-

guished from fluorescence by its dependence on temperature and characterized by the

time delay between radiation absorption and the time it takes to reach full intensity.

Thermoluminescence is a specialized type of phosphorescence with τc ≥ 10−4 s.
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Figure 2.9. Energy transition involved in the process of phosphorescence. States g, m,
and e represent the ground, metastable, and excited states for a defect in a material.
After McKeever [40].

Figure 2.9 depicts a simplified explanation of phosphorescence. An electron is

excited from the ground state g (transition (i)), to an excited state e, and then

becomes trapped at a metastable state m in the forbidden energy gap between e and

g. It remains at state m until enough energy E is provided to lift it from this state,
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returning to e and then de-exciting (transition (ii) back to g. The amount of time

spent in the trapped state m is shown from thermodynamics arguments to be,

τ = s−1 × e
−

E
kBT (2.22)

where s is a constant that will later be shown as the “attempt-to-escape” frequency

with units [s−1], E is the energy difference between m and e, kB is the Boltzmann

constant, and T the temperature in kelvin [40].

The decay to the ground state after the electron is freed from trap m has been

the subject of several different formalisms based on probabilities. If the probability

once the electron is freed from state m of returning to state m is much less than

the probability of returning to g, the process is considered first order. This type

of decay is exponential [40, 44, 45]. However, if the probability of returning to state

m is greater than the probability of returning to the ground state, the process is

considered second order. This type of decay is not exponential [40, 46]. These two

cases represent the extremes of decay behavior. Other models are based on a linear

combination of the first and second order, or on empirical fitting attempt to describe

observed decay behaviors between these two extremes [47–49]. There remains debate

on which model, mixing of first and second order (i.e., mixed order) or the empirical

fitting (i.e., general order), yields a more accurate and physical understanding of the

decay processes between the extremes [40, 47,50,51].

The simple illustration shown in Figure 2.9 does not completely capture the fun-

damental principles of thermoluminescence applied to solids. The formation of the

valence and conduction bands creates a “forbidden” energy gap, Eg. The perfect

crystal lattice contains no states within the energy gap, but various intrinsic and ex-

trinsic defect states do provide levels within Eg. In thermal equilibrium, occupation

of the states is governed by the Fermi-Dirac distribution, leading to the concept of
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the Fermi level, Ef of the material. A high Ef indicates that most of the available

states below the conduction band are filled and a low Ef denotes states close to and

immediately above the uppermost-valence band are filled.
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Figure 2.10. Simplified diagram of a one trap-one recombination energy band model
showing notional electronic transitions in a TL material. (i) Electron-hole pair genera-
tion, (ii) electron and hole trap at a given energy level or defect site in the material, (iii)
releasing of trapped charge by heat, (iv) and recombination resulting in luminescence.
Electrons are represented by solid circles, and holes are shown as open circles. R is the
recombination defect site’s level, Eg is the band gap energy, Ea represents the depth of
the trap, and Ef is the Fermi level. After Holston and Bos [52,53].

When an electron is given enough energy (e.g., from lasers of x rays), it can be

promoted from the valence band or one of the filled defect states into the conduction

band shown in Figure 2.10 by transition (i). The electron becomes trapped (shown

by transition (ii)) at defect site m that lies below the bottom of the conduction

band. The original state the electron filled is now vacant and the absence of charge

travels through the valence band until arriving at a separate defect site R and is

now considered a trapped hole above the valence band.6 The energy required to free

the electron from its trapped state is called the activation energy Ea or trap depth.

“Shallow” traps require small fractions of Eg to release trapped charge and “deep”

traps need larger energies. In thermoluminescence, the energy required to liberate

6It is possible in rare cases for the same defect to act simultaneously as an electron and hole trap.
This type of defect is referred to as amphoteric.
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the trapped charge (transition iii) is supplied by heating. The trapped charge can be

stable or semi-stable depending on the depth of the trap. Charge traps can be stable

for years if held sufficiently below the critical release temperature.

Supplying the trapped electron with enough thermal energy allows the electron

to overcome the potential energy barrier, shown as transition (iii). Once the escaped

electron becomes mobile, it will travel in the conduction band until recombining

with a trapped hole, shown by the transition (iv). This simple model assumes a

single electron-hole trap (i.e., a single recombination center). Using this model, if the

recombination center enters an excited state and is also a luminescent center, light

emission occurs as it returns to the ground state. The amount of trapped charge

in these states that is released by increasing temperature is directly proportional to

the light emitted from recombination. When applied to dosimeter materials, the

measurement of emitted light then provides a direct measurement of the radiation

dose the material received [40].

While TL measurements can provide direct radiation dose measurements, the sim-

plified single electron-hole model neglects several important considerations. Materials

often have more than a single defect, resulting in traps at various depths in the band

gap. The temperature at which an electron is freed from its trap does not prevent it

from being retrapped elsewhere in the gap (i.e., a kinetic order > 1) before eventually

recombining and returning to the ground state. Electrons can combine radiatively

or non-radiatively (i.e., thermal quenching) as shown in Figure 2.8. Additionally,

trapped holes are also released by the same processes and can recombine at a trapped

electron site [40,51]. The single electron-hole trap model (also referred to as the two-

level model) forms the foundation for describing TL kinetics. Thermoluminescence

analysis enables extraction of key parameters describing a defect and the charge trans-

fer process. Key parameters in TL include the activation energy Ea (usually given in
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units of eV) and the frequency factor s (the attempt-to-escape frequency and reported

in units of s−1). When the key parameters are combined with a known heating rate,

(β) and EPR data are available to estimate the total concentration trapped charge

[cm−3], (n), a TL “glow curve” (the radiative recombination intensity as a function

of temperature) can be predicted [40].

2.6.1 First order kinetics

In first order kinetics described by Randall and Wilkins [44,45], the process of trap

emptying in the two level system is given strict limitations. Specifically, their analysis

imposed the restriction that there is a negligible probability of retrapping compared to

the probability of recombination regardless of defect concentration. Mathematically,

the measured TL intensity follows the exponential expression,

I(t) = −dn

dt
= n s e

−
Ea
kBT (2.23)

and when integrated from t = t0 with the assumption of a linear heating rate, yields

the expression

I(T ) = n0 s exp

(

− E

kBT

)

exp

[

− s

β

∫ T

T0

exp

(

Ea

kBT

)

dT

]

(2.24)

Adjusting each of the key parameters (Ea and s) and β separately highlights their

effect on the intensity and peak position.

The activation energy Ea is a defining characteristic for defects in the process of

electronic device development and radiation dosimetry. The effect of Ea on TL peak

position for three different values is shown in Figure 2.11 where n0 = 1 (set for illus-

trative purposes), β = 1.0, and s = 1010. As the trap depth increases, charge is held

until much higher temperatures. Traps that are too deep inhibit the release of elec-
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Figure 2.11. Simulation of the effect of activation energy, Ea eV on a first-order kinetics
TL peak position for three different energies. For each simulation curve, values of n0 = 1
cm−3, β = 1.0, and s = 1010 s−1. After McKeever and Chen [40,51].
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trical charge making them unsuitable for device application. Conversely, traps that

are too shallow are problematic for radiation dosimetry because they are subject to

thermal fading, a process where charge is slowly released over time, skewing accurate

dose calculations. The characteristic shape of the first order TL glow curve results

from the probability of trap emptying at lower temperatures and lack of retrapping.

Since the probability of recombination greatly exceeds the probability to retrap, the

linear heating rate empties all trapped charge and after Ea is surpassed, luminescence

is truncated.
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Figure 2.12. Simulation of the effect of varying s s−1 on a first-order kinetics TL
peak position for three different values of s. For each simulation, the parameters are
held constant at values of n0 = 1 cm−3, β = 1.0, and Ea = 1.0 eV. After McKeever and
Chen [40,51].

The effect of varying the frequency factor s on TL peak position and shape for

three different values is shown in Figure 2.12 with n0 = 1 cm−3, β = 1.0, and Ea = 1.0

42



eV held constant. As the attempt-to-escape frequency increases, there is a greater

probability of release at lower temperatures. This results in the TL peak narrowing

its full width at half maximum (FWHM) and shifting to lower temperatures. The

characteristic TL shape dependence on Ea and s for differing values does not alter

the total area (i.e. luminescence) under the curve when all other parameters are held

constant.
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Figure 2.13. Simulation of the effect of heating rate, β on a first-order kinetics TL
peak position for three different rates. For each simulation, the parameters are held
constant at values of n0 = 1 cm−3, Ea = 1.0 eV, and s = 1010 s−1. After McKeever and
Chen [40,51].

Finally, changing the heating rate can have a large effect on the intensity as

function of temperature and peak position. Shown in Figure 2.13 are the TL peaks

for three different heating rates with n0 = 1 cm−3, s = 1010 s−1, and Ea = 1.0 eV held

constant. As the heating rate increases, the TL peak shifts to higher temperature and
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increases in intensity. On a temperature axis, the peak area scales with increasing β,

but if the luminescence were plotted as a function of time the total peak areas remain

the same for differing values of β. To avoid this effect, all heating rates used in this

dissertation are held constant at β = 1.0.

2.6.2 Second order kinetics

In second order kinetics described by Garlick and Gibson [46], the process of

trap emptying in the two level system is also given a strict limitation: there is a

negligible probability of recombination compared to the probability of retrapping.

The mathematical expression for TL intensity of second order kinetics has the form,

I(t) = −dn

dt
= n2 s′ e

−
Ea
kBT (2.25)

where s′ = s/RN and R = 1 for cases of interest, and N the total number of trapping

sites. When the above expression is integrated from t = t0 with the same assumption

of a linear heating rate, it yields the expression

I(T ) = n2
0 s

′ exp

(

− E

kBT

)[

1 +−n0s

β

∫ T

T0

exp

(

Ea

kBT

)

dT

]

(2.26)

Compared to the first order expression, the TL peak grows nearly proportional to n0

and is shifted to lower temperature [40,51]. The dependence on an attempt-to-escape

factor carries an additional condition biased by N and is called the “effective” pre-

exponential factor, s′ = s/N with units (s−1m3). The key parameters of s, Ea, and β

have a similar effect on peak position, but are now biased towards increasing the TL

peak’s tail on the higher temperature side. Physically the process of rapid retrapping

delays the onset of luminescence. The TL band appears more symmetric in shape.
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2.6.3 General order kinetics

Observed TL peaks are rarely purely first or second order in shape [40,47–49,51].

In non-ideal (i.e. real) solid materials, starting powder purity and the crystal growth

process contribute to a wide range of intrinsic and extrinsic defects, differing in defect

concentration, trap depth, and spatial separation. This range of available states

complicates and potentially distorts the recombination process. May and Partridge

[48] noted these deviations from pure first or second order decay, and generalized the

intensity expression empirically,

I(t) = nb s′ e
−

Ea
kBT (2.27)

where s now has the dimensions m3(b−1)s−1 and b is general-order parameter with

1 < b < 2. Integration yields a temperature dependent intensity of the form,

I(T ) = n2
0 s

′′ exp

(

− E

kBT

)[

1 +−
(

(b− 1)
n0s

′

β

)
∫ T

T0

exp

(

Ea

kBT

)

dT

]−
b

b−1

(2.28)

The parameter s′′ = s′nb−1
0 in the final expression causes concern due to its dependence

on the changing units of s and was later refined by Rasheedy [54] to eliminate this

factor by,

nbs′ =

(

nb

N b−1

)

s (2.29)

When compared to TL peaks with all other parameters held constant, the difference

in peak shape between orders of kinetics can be distinguished on the high temperature

side shown in Figure 2.14.
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Figure 2.14. Simulation of the effect of kinetic order b on TL peak shape for three
different values of b. For each simulation, the parameters are held constant at values of
n0 = 1 cm−3, β = 1.0, Ea = 1.0 eV, and s = 1010 s−1. After McKeever and Chen [40,51].
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2.7 Ir4+ d5 in a Strong Octahedral Field S= 1
2

Transition metal ions have been a subject of deep interest [31]. In particular,

iridium has received renewed interest in iridate compounds for its unusual electric

and magnetic properties [55–58]. Iridium in the 4+ charge state has a [Xe] 4f 145d5

electronic configuration. This is a low spin complex with S = 1
2
for the reasons stated

in the preceding section 2.1. Early work on iridium compounds such as [IrCl6]
2−

and [IrBr6]
2− was conducted by Griffiths and Owen [59–61]. This experimental work

confirmed predictions from CFT on the diffuse nature of the d orbitals. Measurements

calculated an orbital reduction factor, k = 0.83, indicating 17% of the electronic

orbitals spread onto the surrounding ligands [61].7 Inclusion of the admixtures from

excited states considerably affects analysis of experimental results, and the theory of

[IrX6]
2− was extended further by Thornley [62]. The results highlighted the larger

nature of covalent bonding than previously assumed.

The degree of covalent bonding from defects having 5d electrons such as Ir high-

lights the shortcomings of the ionic treatment of solids from CFT. While CFT provides

a framework for successfully understanding the fundamental nature of the bonding

involved, inclusion of the admixing orbitals is necessary to accurately predict optical

effects [27]. A complete discussion on the role of iridium in β-Ga2O3 is discussed in

Chapter 5.

7A value of k = 1.0 indicates no reduction or diffusion of the d orbitals onto the surrounding
ligand ions.
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3. Experimental Setup

3.1 Electron Paramagnetic Resonance Spectrometer

EPR spectroscopy is a technique by which insulating and semiconducting mate-

rials and point defects are studied by using a fixed microwave frequency source, and

varying the static applied magnetic field. EPR measures the changes in absorbed

microwave power. EPR is only effective for characterizing materials and defects when

S > 0 because at least one unpaired electron is required to allow transitions between

the available energy levels dictated by the spin Hamiltonian. EPR flips electron spins

in the applied magnetic field, and therefore the difference in electron populations of

the energy levels is important in determining observable transitions. For electrons

to flip spin and generate an EPR signal, there must be a population imbalance. If

the populations are equal, then the total difference between spin up and spin down

is zero, and no signal is generated. Conversely, if there is a population imbalance,

then there are unpaired spins and available energy states for an electron transition

through flipping spin (either ↑ to ↓ or opposite).

Utilizing knowledge of the energy levels and spin, EPR spectroscopy can identify

defects within a material. The EPR spectrometer has several key components includ-

ing the microwave source, resonant cavity, and magnet. For the block diagram shown

in Figure 3.1, the microwave source is in the bridge, the sample is located in the

cavity resonator, the electronics that enhance phase sensitive detection are contained

in the block “signal channel”, and the “field controller” is the electronic adjusting

current of the applied static magnetic field. Not shown in Figure 3.1 are the pumps

circulating water to cool the magnetic coils. Without these pumps, the coils overheat

and the spectrometer ceases functioning.

The experimental configuration of an EPR spectrometer equipped with cryogenic
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Figure 3.1. An EPR spectrometer block diagram of operation.

Figure 3.2. Experimental configuration of an EPR spectrometer for operation with
liquid He.
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components operating with liquid helium is shown in Figure 3.2. Liquid helium tem-

peratures assist EPR measurements in several ways. Large concentrations of electrons

in the conduction band absorb microwave energy and do not allow the microwaves

to penetrate into the crystal. For materials that are n-type, absent from compet-

ing external energy sources (i.e., laser or ambient light), lowering the temperature

freezes electrons out of the conduction band, returning them to the original defect

site. Second, lowering the temperature lengthens the spin-lattice relaxation times for

all defects assisting in creating the necessary population inversions. A Bruker EMX

EPR spectrometer is used in this dissertation, and several of the key components

shown in Figures 3.1 and 3.2 are detailed below. A complete explanation of all the

components and spectrometer operation are available in other resources [33, 63, 64].

The microwave source is a Bruker EMX bridge diode (a Gunn diode), operating

in the X-band, typically around 9.4 GHz, shown in Figure 3.3 as point A. Energy

travels from the Gunn diode, through an attenuator at point B, down the waveguide

and into the resonant cavity. The attenuator allows precise control of the microwave

power. For weak signals, higher power can be used to lift signals above the noise,

while for strong signals power settings are adjustable to minimize saturation effects

from spin-lattice relaxation and keep signals on scale. Microwave energy enters the

circulator C, through an initial port 1, travel down towards the sample through port 2.

Reflected energy from the sample cavity D, returns through the waveguide and into

the circulator exiting through port 3, towards the detector shown as E. The most

common detector is a Schottky diode crystal. Microwave energy leaving from the

Gunn diode is also sent through the reference arm F, acting as bias on the detector.

The reference arm enables the reference and reflected signals to be in-phase when

combining on the detector to minimize noise [33]. Improving signal-to-noise is a key

factor in detection of EPR signals.
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Figure 3.3. Block diagram of a microwave bridge used for EPR measurements.
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3.1.1 EPR sample cavity

The EPR sample cavity used in the Bruker EMX spectrometer and referenced

in Figure 3.2 is a cylindrical metal cavity. The dimensions of the cavity ensure the

microwaves are capable of forming standing waves inside the chamber resulting in

an impedance match. Each microwave cavity has its own resonant frequency and

a measure of the effectiveness is the quality factor, Q. This Q factor describes how

effectively the cavity stores energy and it is predefined for the system used in this

dissertation. The standing electromagnetic waves in the sample chamber have their

electric and magnetic fields 90◦ out of phase with each other and perpendicular to

the applied static magnetic field. Positioning sample height within cavity minimizes

the degradation of Q and also maximizes EPR signals [33]. The choice of sample

rod can also affect the detection of signals. Rods with Teflon sample holders in some

experiments have been shown to produce less intense EPR signals than those mounted

on glass rods for identical spectrometer settings and sample placement. The small

change in the dielectric constant between sample holders may slightly compress the

electromagnetic field lines in the vicinity of the sample yielding more intense signals

with glass rods.

Microwaves are impedance matched to the cavity through an iris. The Teflon iris

screw adjusts the aperture size at the back of sample cavity allowing better coupling of

the microwave energy to the cavity. Tuning the cavity is analogous to the mechanics

involved in the standing waves of a pipe organ. Reflections that are not submultiples

of the cavity dimensions result in destructive interference, while at approximately one

half of the wavelength of the cavity is the fundamental mode. Screwing the iris in or

out, assists in minimizing reflections, thus increasing coupling and tuning the cavity.

When the reflections are minimized or eliminated, the cavity is considered ”critically

coupled”.
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The EPR sample cavity is designed so that the magnetic fields of the microwaves

and static applied field are perpendicular. The oscillating microwave magnetic field in-

duces the EPR transition (i.e., a small absorption of energy) resulting in an impedance

mismatch, which reflects energy back through the waveguide and into the detec-

tor [33].

3.1.2 Phase sensitive detection

Phase sensitive detection for the EPR spectrometer used in this dissertation en-

ables detection of paramagnetic defects with concentrations as low as 5× 1010 cm−3

at 10 K. Estimates for S = 1
2
defect concentrations can be calculated using [65]

N =
(

5× 1010
)

(∆B)2
(

S

N

)

L

(

T

10

)

V −1
[

cm−3
]

(3.1)

where ∆B is the line width measured in Gauss, S/N is the signal-to-noise ratio,

L is the total number of hyperfine lines, T is the temperature measured in Kelvin,

and V the sample volume. The S/N ratio in the above equation, can also include

in the effects of multiple scans over the same magnetic field region and requires an

adjustment of
√
number of scans. An empirical relationship does not yet exist for the

estimating defect concentrations with S> 1
2
. For these defects, transition probabilities

between spin states create additional complications in developing a single equation.

Microwaves entering the sample cavity are absorbed by many defects in the bulk

single crystal. The small quantity of reflected energy makes accurate detection dif-

ficult because spurious signals have the potential to override absorptions of interest.

Phase sensitive detection employs the use of lock-in amplifiers to eliminate noise from

background absorptions. A small 100 kHz modulation amplitude of the magnetic field,

Bm imposed over the static applied magnetic field, B has become the standard field

modulation frequency.
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Figure 3.4. Effect of small-amplitude 100 kHz field modulation on the detector output
current. In the lower portion of the figure, modulation of the static magnetic field, B
occurs between the limits of Ba and Bb. The corresponding detector currents oscillates
between limits of ia and ib. Shown in the upper portion, the recorded rectified 100 kHz
signal as a function on B. Reprinted with permission from [33].
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As the applied static magnetic field is slowly varied, this smaller modulation

sweeps through a small range of magnetic field values Ba to Bb of the absorption

signal, shown in Figure 3.4. The reflected signal from the microwave energy, and

field modulation have the same frequency. The absorption signal transforms into a

detected sine wave that is displayed as the first derivative with an amplitude that is

proportional to the slope of the absorption. If the absorption signal is not approxi-

mately linear through the modulation, the detected signal appears distorted on either

the peak or trough indicating non-ideal spectrometer settings. A reference signal of

the same frequency and phase as the modulation field is provided by the phase sen-

sitive detector. To eliminate extraneous signals, this reference signal combines with

the EPR signal creating a DC current that is proportional to the amplitude of the

modulated EPR signal. Any signals that differ from the frequency of the DC current

are rejected.

Modulation of the magnetic field is provided by a small pair of embedded Helmholtz

coils in the walls of the microwave cavity. The choice of modulation frequency is bal-

anced by tradeoffs between the frequency f of the detected signal (‘1/f ’ noise, where

f is the relevant frequency) and penetrating the microwave cavity inter-walls from

the exterior. As a general rule, settling on a 100 kHz modulation frequency has the

broadest applicability to EPR problems, and this was the frequency of modulation

used in this dissertation.

3.2 FTIR Spectrometer

The principles of optical absorption discussed previously in Chapter 2 are mea-

sured using a Fourier transform infrared (FTIR) spectrometer which contains a Michel-

son interferometer, a light source, and a detector. Figure 3.5 illustrates the relevant
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components of a FTIR spectrometer and Michelson interferometer.1 Light incident

from the source can be transmitted, reflected, or absorbed by the bulk single crys-

tals or point defects. Absorption causes attenuation of the light proportional to the

sample thickness and is described by Beer’s law,

I(z) = I0e
−αz (3.2)

where α is the absorption coefficient with units [cm−1] and z (or l) is the sample

thickness through which light passes. The absorption coefficient is directly dependent

on the incident wavelength and thickness. Often, absorption spectra are expressed in

units of optical density (O.D.), or alternatively ‘absorbance’, which includes sample

thickness,

O.D. = log10
I0
I(l)

=
αl

ln(10)
(3.3)

with l the thickness of the sample along the direction of light propagation [39,66].

To measure the absorption, light from the source travels through the beam-splitter.

The beam-splitter sends approximately half the light to a fixed mirror and the other

half to a moveable mirror. Adjusting the position of the moveable mirror changes

the optical path difference of the two initial beams. This results in light recombining

either destructively or constructively. Recombined light travels through the sample

and onto a detector [41,66]. Varying the optical path difference for light produces an

interferogram signal at the detector that is a mixture of numerous sine waves. FTIR

spectrometers perform a Fourier transform of the interferogram via software packages

resulting in an absorption curve reported in wavenumber [cm−1].

The ThermoScientific Nicolet 8700 FTIR spectrometer used in this dissertation

has the Ohnic software package for translating the interferogram. Nitrogen purge

1A Michelson interferometer uses a beamsplitter, one moving mirror, and a single fixed mirror.

56



������

��	��	�� �
���

����
��
������

����
����
�
��
	���

������������

��
�����		��

Figure 3.5. Diagram of Fourier-transform infrared spectrometer.

gas flows through the system minimizing infrared atmospheric absorption. The Ther-

moScientific Nicolet 8700 has a DTGS (deuterated triglycine sulfate) and a CaF2

beam-splitter and a white light (QTH) source. The DTGS detector has an opera-

tional range from 7000 to 350 cm−1, and the QTH light source has a spectral output

from 27000 to 2000 cm−1. Polarization of the light was adjusted with an ultra-broad-

band (250 nm to 4 µm) fused silica wire-grid polarizer from Thorlabs.

Low temperature measurements sharpen absorption curves and were performed

using a small, portable dewar. CryoIndustries model ND 110H dewar contains a

copper plate “cold-finger” and reservoir for liquid nitrogen. The dewar has two sets

of windows which are either SiO2 or sapphire which are transparent to UV, visible,

and infrared light. The copper plate contains two equal apertures: one for the sample

mount and the other for low temperature background measurements. A vacuum

pump evacuates moisture and air inside in the dewar prior to using liquid nitrogen.

The temperature of the “cold-finger” is monitored by a Lakeshore 335 Temperature
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Controller, and has an operational range of 80 K - 300 K.

3.3 Thermoluminescent Dosimeter Reader

The instrument used to measure TL is a Harshaw 3500 thermoluminescent dosime-

ter (TLD) reader, shown in the generic block diagram in Figure 3.6. Samples are

Figure 3.6. Simplified block diagram for a thermoluminescent dosimeter reader.

placed on a resistive heating element connected to a power supply. As the power

increases, the temperature of the heating element rises, and light emitted from the

sample is directed into a photomultiplier tube (PMT). Light incident on the PMT

creates electrons at the photocathode, which are then accelerated and multiplied

across dynodes before entering the anode [67]. At the anode, they are converted into

a current, which undergoes amplification and is then measured. Measured current

is directly proportional to sample light emission, and therefore proportional to the

radiation dose absorbed by the sample.
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The reported TL data in this dissertation appears as intensity versus tempera-

ture, but the Harshaw 3500 software has a limited resolution of 200 channels/bins.

Software on the Harshaw 3500 allows adjustments to the starting temperature, Ti,

final temperature, Tf , and the total time, δt to ramp from Ti to Tf . The heating

rate, β can also be specified, but is interdependent and must be matched with δt.

The temperature range corresponding to TL recorded in each channel has the simple

expression,

∆Tchannel =
Tf − Ti

200
(3.4)

This makes comparison of total light intensity for samples with different ‘reset’ tem-

peratures difficult. Reset temperatures are experimentally determined for individual

samples. A sample is considered ‘reset’ when the effects of radiation or illumination

have reversed, returning the sample to its ‘as-received’ state for defect concentrations

from the crystal grower. For this reason, all TL curves are presented as normalized

intensity rather than raw or measured intensity.

Due to the sensitivity of the PMT, the detector is shielded internally within the

Harshaw 3500 to prevent ambient light from entering the photocathode and causing

damage through overexcitation of the photocathode. As an additional protective

measure, the Harshaw 3500 is equipped with a neutral density (ND) filter placed

between the sample and PMT to reduce incident light intensity [68, 69].

3.4 Wavelength-dependent TL

While the principles and underlying physics of TL outlined in Chapter 2 remain

unchanged, an alternate method of radiative recombination detection exists. The

more standard method discussed in Section 3.3 only identifies that a radiative re-

combination center exists for a given temperature, but yields no information on

wavelength(s) emitted by the center(s). Combining usage of a heating plate and
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spectrograph, obtaining wavelength dependence for a radiative recombination center

is possible.

The available heating stage for this work is the INSTEC model HCS621V. The core

of the HCS621V is a single stage made of pure silver, due to its thermal conductivity

and anti-corrosive properties, upon which samples are placed. The single Ag stage

is a 8.5Ω resistive heat stage capable of producing temperatures from ambient up to

600±0.2◦C above 100◦C. Additionally, the HCS621V can be purged with nitrogen gas

to reduce effects of spurious signals resulting from heated air, similar to the Harshaw

3500. Silica fused quartz windows 1.0 mm thick on the top of the HCS621V allow

light to escape from the sample and enter the spectrograph via an optical fiber [70].

Measurement of the wavelengths from radiative recombination use the Shamrock

193i spectrograph and iDus420 charge-coupled device (CCD). The internal compo-

nents of the Shamrock 193i spectrograph are shown in Figure 3.7. Light from the

sample on the INSTEC heating stage is collected through a lens at the end of fiber

optic cable entering the spectrograph through a side port. Light from the side port

is directed by several mirrors, shown as A, before impinging on a diffraction grating,

B. The diffraction grating disperses the incoming light onto the focusing mirror, C,

which directs the light towards the CCD, shown as D [71]. The Shamrock 193i con-

tains two different diffraction gratings: 150 l/mm and 600 l/mm. In this dissertation,

the primary grating used in measurements is 150 l/mm.

The detector in the laboratory configuration is the iDus420 camera which is a

silicon based detector with a two-dimensional array of pixels 1024 × 255. The CCD

has thermal-electric cooling reducing detector dark noise over the range of wavelengths

200 − 1100 nm. The software configuration allows binning the pixels in either the

horizontal or vertical directions. While it is possible to use the two-dimensional array

for imaging purposes, by vertically binning the pixel, this effectively increases CCD
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Figure 3.7. Internal components of the Shamrock 193i spectrograph. Light from the
side port is directed by several mirrors, shown as A, before impinging on a diffraction
grating, B. The diffraction grating disperses the incoming light onto the focusing mirror,
C, which directs the light towards the CCD, shown as D.
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wavelength dependent efficiency, and maintains a high wavelength resolution when

combined with the proper diffraction grating selection. Only vertical binning is used

in this dissertation. The exterior window of the camera is UV-grade, AR coated,

fuzed silica minimizing light loss due to lens absorption [72].
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4. Lithium and Gallium Vacancies in LiGaO2

4.1 Abstract

Lithium gallate (LiGaO2) is a wide-band-gap semiconductor with an optical gap

greater than 5.3 eV. When alloyed with ZnO, this material offers broad functionality

for optical devices that generate, detect, and process light across much of the ultra-

violet spectral region. In the present paper, electron paramagnetic resonance (EPR)

is used to identify and characterize neutral lithium vacancies (V0
Li) and doubly ion-

ized gallium vacancies (V2−
Ga) in LiGaO2 crystals. These S = 1/2 native defects are

examples of acceptor-bound small polarons, where the unpaired spin (i.e., the hole) is

localized on one oxygen ion adjacent to the vacancy. Singly ionized lithium vacancies

(V−

Li) are present in as-grown crystals, and are converted to their paramagnetic state

by above-band-gap photons (x rays are used in this study). Because there are very

few gallium vacancies in as-grown crystals, a post-growth irradiation with high-energy

electrons is used to produce the doubly ionized gallium vacancies (V2−
Ga). The EPR

spectra allow establishment of detailed models for the two paramagnetic vacancies.

Anisotropy in their g matrices is used to identify which of the oxygen ions adjacent to

the vacancy has trapped the hole. Both spectra also have resolved structure due to

hyperfine interactions with 69Ga and 71Ga nuclei. The V0
Li acceptor has nearly equal

interactions with Ga nuclei at two Ga sites adjacent to the trapped hole, whereas the

V2−
Ga acceptor has an interaction with Ga nuclei at only one adjacent Ga site.

4.2 Introduction

Lithium gallate (LiGaO2) is an ultrawide-band-gap semiconductor [15, 73] with

a wurtzite-like crystal structure. Its optical absorption edge is in the 5.3-5.7 eV

range [19, 74–77]. This material is a ternary analogue of ZnO. Replacing half the
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Zn2+ ions with Li+ ions and half with Ga3+ ions in an ordered arrangement gives

LiGaO2 . Alloying LiGaO2 with ZnO is expected to produce crystals appropriate for

ultraviolet optical applications [16, 78, 79]. As suitable shallow donors and acceptors

are identified, [80] the LiGaO2 -ZnO mixed materials system will allow laser diodes

and photodetectors to be fabricated that operate across much of the ultraviolet region.

LiGaO2 is also a candidate for phosphor and radiation-detector applications [14, 81–

84]. This ternary material has both monovalent (Li+) and trivalent (Ga3+) cation sites

and thus provides a variety of doping possibilities. These include transition-metal ions

and rare-earth ions, Group I and Group III isovalent impurities, and Group II and

Group IV donors and acceptors. These many doping choices offer broad functionality

for diverse applications of LiGaO2 and its alloys with ZnO.

In this work, electron paramagnetic resonance (EPR) is used to investigate native

acceptors in LiGaO2 crystals. Similar studies have been reported for LiAlO2 crystals

[85, 86]. Spectra from both lithium vacancies and gallium vacancies are observed in

the LiGaO2 crystals. In both cases, the hole is localized on one oxygen ion adjacent

to the vacancy, in a small-polaron configuration [87,88]. Anisotropy in the g matrices

allows determination of which oxygen ion traps the hole. The V0
Li and V2−

Ga spectra

in LiGaO2 have resolved hyperfine structure due to interactions of the trapped hole

with the adjacent 69Ga and 71Ga nuclei. Nearly equal interactions with nuclei at

two gallium sites are seen in the V0
Li spectrum, whereas interactions with nuclei at

only one gallium site are observed in the V2−
Ga spectrum. These different hyperfine

patterns easily allow the V0
Li and V2−

Ga spectra to be individually recognized. Although

their spectra are obtained at low temperature, the paramagnetic charge states of

both vacancies are stable at room temperature. Information about the small-polaron

characteristics and the thermal stabilities of these native defects will be useful when

searching for acceptor dopants for LiGaO2 . Lithium diffusion studies will also benefit
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from a spectroscopic method that monitors the presence of lithium vacancies [89,90].

4.3 Experimental

The undoped LiGaO2 crystals used in this study were obtained from the MTI Cor-

poration (Richmond, CA). They were grown by the Czochralski method. Observable

concentrations of lithium vacancies were present in some, but not all, of the as-grown

LiGaO2 crystals supplied by MTI. By trapping a hole on an adjacent oxygen ion, an

irradiation with x rays (60 kV, 30 mA) at room temperature converted the nonpara-

magnetic lithium vacancies in the as-grown crystals to a paramagnetic charge state

that could be observed at low temperature with EPR. The as-grown crystals had very

few, if any, gallium vacancies. To investigate this latter defect, a LiGaO2 crystal was

irradiated near room temperature with high-energy electrons (1 MeV, 5 µA) from

a Van de Graff accelerator at Wright State University. During the irradiation, the

crystal was in contact with a water-cooled heat sink to minimize heating by the elec-

tron beam. Momentum-conserving displacement events, initiated by the high-energy

electrons, produced large numbers of gallium vacancies in the LiGaO2 crystal. The

EPR spectra reported in this paper represent approximate defect concentrations of

2.3× 1018cm3 for the V0
Li acceptors and 1.8× 1017cm3 for the V2−

Ga acceptors.

LiGaO2 crystals are orthorhombic (space group Pna21), with lattice constants a

= 5.402 Å, b = 6.372 Å, and c = 5.007 Å, at room temperature [91]. Figure 4.1 is a

ball-and-stick representation of the crystal. The relative x, y, z positions of the ions

in Figure 4.1 are given in Table 4.1. In this material, each oxygen ion has two lithium

neighbors and two gallium neighbors, each lithium ion has four oxygen neighbors,

and each gallium ion has four oxygen neighbors. The Li+ sites are all equivalent

and the Ga3+ sites are all equivalent. Oxygen ions occupy two crystallographically

inequivalent sites (these are labeled OI and OII in Fig. 4.1). The two oxygen sites are
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Figure 4.1. Schematic representation of the LiGaO2 crystal structure. Lithium ions
are green, gallium ions are purple, and oxygen ions are red. The two inequivalent
oxygen sites are labeled OI and OII. Each lithium and gallium ion has four oxygen
neighbors and each oxygen ion has two lithium and two gallium neighbors. Reprinted
with permission [38].

most easily distinguished by which cation, a Li+ or a Ga3+ , is the nearest neighbor

along the c axis (i.e., the [001] direction). The OI ions have an adjacent lithium ion

in the c direction and the OII ions have an adjacent gallium ion in the c direction.

Bonding in LiGaO2 is predominantly ionic allowing application of CFT as discussed

in Chapter 2.

The EPR spectra were taken with a Bruker EMX spectrometer operating near 9.40

GHz. A Bruker NMR teslameter was used to measure the static magnetic field and

an Oxford helium-gas flow system controlled the sample temperature. The isotropic

Cr3+ signal (g = 1.9800) in an MgO crystal was used to make corrections for the

small differences in magnetic field at the NMR probe tip and the sample position.

4.4 Neutral Lithium Vacancy V0
Li

Figure 4.2 shows the EPR spectrum from the neutral lithium vacancy (V0
Li) in

LiGaO2. This spectrum, taken at 55 K with the magnetic field along the c axis,

was obtained after an as-received crystal was irradiated at room temperature with
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Table 4.1. Relative positions (in units of Å) of ions in LiGaO2 , based on the room-
temperature lattice parameters reported by Marezio (Reference [92]). The ion labeling
scheme in Figure 4.1 is used.

Ion x y z
Li(1) 3.1294 5.5647 4.9750
Li(2) 2.2726 7.1793 7.4785
Li(3) 4.9736 8.7507 7.4785

Ga(1) 2.2575 3.9908 7.5105
Ga(2) 4.9585 5.5672 7.5105
Ga(3) 2.2575 10.3628 7.5105
Ga(4) 3.1445 8.7532 5.0070
Ga(5) 0.4435 7.1768 5.0070
Ga(6) 5.8455 7.1768 5.0070
Ga(7) 4.9585 5.5672 2.5035

OI(1) 2.1965 7.2564 4.4697
OI(2) 4.8975 8.6736 4.4697
OI(3) 3.2055 5.4876 6.9732

OII(1) 2.3245 3.9003 4.3601
OII(2) 5.0255 5.6577 4.3601
OII(3) 2.3245 10.2723 4.3601
OII(4) 3.0775 8.8437 4.3601

x rays. Singly ionized lithium vacancies (V−

Li) in the as-grown crystal are converted

to their paramagnetic neutral charge state (V0
Li) during the irradiation. Many of the

free electrons and holes created by the x rays quickly recombine. A small portion

of the holes, however, are trapped on oxygen ions adjacent to lithium vacancies,

thus forming the V0
Li centers. A corresponding number of electrons are trapped at

unidentified defects (possibly oxygen vacancies or impurities). Heating the crystal

above 150 ◦C destroys the V0
Li spectrum and returns the crystal to its pre-irradiated

state. A related thermoluminescence (TL) peak is observed near 110 ◦C in the x-ray

irradiated LiGaO2 crystals. This TL peak and its spectral dependence are discussed

in detail in Section 4.6.

The S = 1
2
spectrum from the neutral lithium vacancies (V0

Li) consists of a sym-
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Figure 4.2. (a) EPR spectrum of the neutral lithium vacancy ( V0
Li ) in LiGaO2. The

crystal was irradiated at room temperature with x rays, then the spectrum was taken
at 55 K with the magnetic field along the c direction. The microwave frequency was
9.406 GHz. Stick diagrams illustrate the separate hyperfine contributions from the
69Ga and 71Ga nuclei. (b) Simulated spectrum produced with the SimFonia computer
program. Reprinted with permission [38].
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Figure 4.3. Model of the neutral lithium vacancy ( V0
Li ) in LiGaO2. The trapped hole

(shown in blue) is localized in a p orbital on the OII(2) oxygen ion with the lithium
vacancy at the Li(1) position. Resolved hyperfine from the 69Ga and 71Ga nuclei at
the Ga(6) and Ga(7) sites are responsible for the observed hyperfine. Reprinted with
permission [38].

metrical pattern of resolved hyperfine lines with differing intensities caused by in-

teractions with 69Ga and 71Ga nuclei. Both isotopes have I = 3
2
nuclear spins and

they are 60.1% and 39.9% abundant, respectively. Their nuclear magnetic moments

are 69µ = +2.0166βn and 71µ = +2.5623βn. [93] The complicated V0
Li spectrum in

Figure 4.2 is explained by having nearly equal hyperfine interactions with Ga nuclei

at two gallium sites adjacent to the trapped hole. This is consistent with the defect

model since each oxygen ion in LiGaO2 has two Li+ ions and two Ga3+ ions as nearest

neighbors. Thus, one Li+ vacancy, one Li+ ion, and two Ga3+ ions are adjacent to the

trapped hole on the oxygen ion. Hyperfine lines from the 7Li nucleus are not resolved

in the V0
Li spectrum, whereas lines from the 69,71Ga nuclei are well resolved. This

agrees with the model, as atomic calculations [94, 95] predict that the isotropic 7Li

hyperfine parameters will be approximately a factor of 30 smaller than the isotropic

69,71Ga parameters when similar amounts of unpaired s-like spin density are on the

Li and Ga ions.
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With two adjacent sites for Ga, there are three combinations of the two Ga isotopes

that contribute to the observed hyperfine pattern in Figure 4.2. These are (i) two

69Ga nuclei, (ii) one 69Ga nucleus and one 71Ga nucleus, and (iii) two 71Ga nuclei.

The relative distributions of these three combinations are 36.1%, 48.0%, and 15.9%,

respectively. In Figure 4.2, each combination is represented by a stick diagram above

the experimental spectrum. Although the hyperfine interactions at the two Ga sites

are not exactly equal, the stick diagrams are drawn for equal interactions. The relative

lengths of the vertical lines in these diagrams reflect the natural abundances of the two

Ga isotopes. The uppermost stick diagram illustrates the seven lines (with relative

intensities of 1:2:3:4:3:2:1) that are produced when the unpaired spin interacts equally

with two 69Ga nuclei. The lowest stick diagram in Figure 4.2 is the sum of the three

upper stick diagrams and should be directly compared to the experimental spectrum.

An EPR spectrum with a hyperfine pattern very similar to the V0
Li spectrum has

been recently reported for the doubly ionized gallium vacancy (V2−
Ga) in a β-Ga2O3

crystal [5].

Evidence that the hyperfine interactions with the nuclei at the two neighboring

Ga sites, although similar, are not equal is found in the relative intensities of the

lines in the experimental spectrum in Figure 4.2. If the two Ga sites have equal

interactions, the intensity of the middle line in the spectrum should be a factor of

14.3 greater than the intensity of the lowest-field line. The experimental ratio in

Figure 4.2, however, is only about 8.5. This observed lower ratio suggests that the

center line is slightly split due to inequivalent interactions at the neighboring Ga

sites. This splitting is not resolved in the spectrum, but it does significantly reduce

the intensity of the center line. The lowest-field line does not split when the two

Ga sites have inequivalent interactions. Thus, unlike the center line, its intensity is

unaffected by the inequivalency.
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The experimental EPR spectrum in Figure 4.2 has a set of underlying weak lines

that slightly distort the V0
Li signals in the magnetic field region above 331.5 mT.

This distortion possibly represents a second hole trap site of lower abundance and

stability than the dominant V0
Li oxygen site. Immediately after x ray irradiation,

this spectrum severely distorts the EPR spectrum in Figure 4.2. Consequently, Ga

hyperfine parameters that describe the c-axis V0
Li spectrum were obtained from the

undistorted low-field side after waiting 30 minutes post x ray irradiation. The lowest

line and the middle line in Figure 4.2 are separated by 9.675 mT. According to the

71Ga-71Ga stick diagram, the averaged value of Ac(
71Ga) for these nuclei at the two

Ga sites is equal to one-third of this separation. [Here, Ac represents the hyperfine

interaction for each nucleus when the magnetic field is along the c direction.] This

gives an averaged value of 3.22 mT for Ac(
71Ga). A corresponding averaged value of

2.53 mT for Ac(
69Ga) is obtained using the ratio of magnetic moments. A simulated c-

axis spectrum, produced with the SimFonia program from Bruker, is shown in Figure

4.2. In this simulation, the hyperfine interactions at the two neighboring gallium sites

are 4% different. The 69Ga and 71Ga parameters used in the simulation were 2.59

and 3.29 mT for one gallium site and 2.49 and 3.16 mT for the other gallium site.

Table 4.2. Parameters describing the EPR spectra of the neutral lithium vacancy (V0
Li)

in a LiGaO2 crystal. The oxygen ion trapping the hole has two slightly inequivalent Ga
neighbors. A g value and the average of the hyperfine parameters for the 69,71Ga nuclei
at the two sites were obtained when the magnetic field was along each of the three
crystallographic axes. The estimated error is ±0.0005 for the g values and ±0.05 mT for
the hyperfine values.

Averaged hyperfine
parameters (mT)

Direction of magnetic field g value 69Ga 71Ga
a crystal axis 2.0088 2.43 3.09
b crystal axis 2.0205 2.50 3.18
c crystal axis 2.0366 2.53 3.22

Averaged hyperfine values for the 71Ga-71Ga nuclei at the two Ga sites adjacent to
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the trapped hole were also obtained for the V0
Li acceptor when the magnetic field was

aligned along the a and b directions in the crystal. Results for the three directions

(a, b, and c) are listed in Table 4.2. For these high-symmetry directions, all crystal-

lographically equivalent orientations of the defect are also magnetically equivalent,

and the EPR spectra have their simplest form. Nearly identical hyperfine patterns

were observed for each of the three directions of magnetic field, thus establishing the

isotropic nature of the Ga interactions. The results in Table II provide direct evidence

for the small-polaron model of the acceptor. Specifically, small values for the strength

of the Ga hyperfine interactions indicate that only 1.1% of the unpaired spin is in

4s orbitals on the two Ga neighbors [93]. This leaves nearly all the remaining un-

paired spin density in a p orbital on the oxygen ion. CFT supports this interpretation

indicating a nearly complete ionic model/treatment for the localization of spin.

The g values in Table 4.2 were obtained from measurements of the position of the

center line in the V0
Li spectrum when the static magnetic field was along the a, b,

and c directions. The small and positive g shifts observed for the V0
Li acceptor are

also consistent with a model that has the unpaired spin (i.e., the hole) located in a

p orbital on one oxygen ion adjacent to the lithium vacancy. Acceptor-bound small

polarons of this type have been extensively investigated in oxide crystals. [5,85,87,88]

The oxygen trapping the hole is an O− ion with a 2p5 configuration (2p2x2p
2
y2pz). The

local crystalline electric field removes the threefold orbital degeneracy of this 2P state

(L = 1, S = 1
2
) and forms three energy levels (E1, E2, and E3). In this simplified

picture, E1 is the ground state with the hole in the pz orbital and E2 and E3 are excited

states with the hole in the px and py orbitals of the ion. The spin-orbit interaction then

mixes these excited states with the ground state and gives the following first-order

72



expressions for the principal g values. [33]

g1 = ge (4.1)

g2 = ge −
2λ

E2 − E1

(4.2)

g3 = ge −
2λ

E3 − E1

(4.3)

The principal direction corresponding to the g1 principal value is parallel to the unique

axis of the pz orbital. In these equations, the spin-orbit coupling constant λ for an

O− ion [95] is -135 cm−1 and ge is 2.0023. The positive g shifts (i.e., values greater

than 2.0023) reported in Table 4.2 for the V0
Li acceptor are a result of the negative

sign for λ.

The value of 2.0088 for ga in Table 4.2 is close to 2.0023, which suggests that the

pz orbital containing the unpaired spin is oriented near the a direction in the crystal.

Figure 4.3 illustrates the proposed model for the V0
Li acceptor. The lithium vacancy

is at the Li(1) position and the hole is localized on the adjacent OII(1) ion. Nuclei at

the Ga(6) and Ga(7) sites are responsible for the resolved hyperfine seen in the EPR

spectra. Before lattice relaxation, the Li(1) and OII(2) sites are 1.995 Å apart and the

line joining them makes an angle of 18.2◦ with the a axis of the crystal. The pz orbital

representing the hole, shown in blue in Figure 4.3, is pointing toward the center of

the Li vacancy. This orientation of the pz orbital corresponds to the minimum for

the energy of the ground state of the neutral acceptor and establishes the importance

of the electrostatic attraction between the positive hole and the “effective” negative

charge of the lithium vacancy. The difference between the value of 2.0088 for ga

and an anticipated g1 value nearer 2.0023 is explained by the relatively small 18.2◦

angle that the unique axis of the pz orbital (and thus the principal direction for g1)

makes with the a direction in the crystal. In other words, the measured value of ga is
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slightly greater than 2.0023 because the a direction, although close, is not a principal

direction of the g matrix for the V0
Li acceptor.

4.5 Doubly Ionized Gallium Vacancy V2−
Ga

Figure 4.4(a) shows the EPR spectrum from the doubly ionized gallium vacancy

(V2−
Ga) in LiGaO2. This spectrum was taken at 93 K with the magnetic field along the c

axis. There are six resolved hyperfine lines and gc is 2.0032. These paramagnetic V2−
Ga

acceptors were produced by a “knock-on” process in the crystal during an irradiation

near room temperature with 1 MeV electrons. A subsequent exposure to ionizing

radiation was not needed, as the doubly ionized charge state of the gallium vacancy

was thermally stable at room temperature in our crystal.

Similar to the V0
Li acceptor, the V2−

Ga acceptor has a hole localized on one oxygen

ion adjacent to the vacancy. With fewer hyperfine lines than the V0
Li spectrum, the

experimental V2−
Ga spectrum in Figure 4.4(a) is explained by interactions with 69Ga

and 71Ga nuclei at only one neighboring Ga site. This is consistent with the defect

model since each oxygen ion in the LiGaO2 crystal has two Li
+ ions and two Ga3+ ions

as nearest neighbors. With one of the gallium ions missing, the oxygen ion with the

trapped hole has two neighboring Li+ ions and one neighboring Ga3+ ion. Hyperfine

interactions with the adjacent 7Li nuclei are not resolved in the spectrum, whereas

interactions with the 69,71Ga nuclei at the one neighboring Ga site are easily observed.

Each Ga isotope has an I = 3
2
nuclear spin and produces four equally spaced

hyperfine lines, as illustrated by the stick diagrams above the experimental spectrum

in Figure 4.4(a). Only six lines are resolved in this spectrum because of the strong

overlap of the middle lines within each set of four. The difference in the separation of

hyperfine lines in the two sets is directly related to the ratio of the nuclear magnetic

moments for 69Ga and 71Ga. From the line positions in Figure 4.4(a), it is found
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Figure 4.4. (a) EPR spectrum of the doubly ionized gallium vacancy (V2−

Ga
) in LiGaO2.

The crystal was irradiated near room temperature with 1 MeV electrons, then the spec-
trum was taken at 93 K with the magnetic field along the c direction. The microwave
frequency was 9.404 GHz. (b) A simulation spectrum produced with the SimFonia
computer program. Reprinted with permission [38].
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Table 4.3. Parameters describing the EPR spectra of the doubly ionized gallium va-
cancy (V2−

Ga
) in a LiGaO2 crystal. The oxygen ion trapping the hole has one Ga neighbor.

A g value and the average of the hyperfine parameters for the 69,71Ga nuclei at the one
site were obtained when the magnetic field was along each of the three crystallographic
axes. The estimated error is ±0.0005 for the g values and ±0.05 mT for the hyperfine
values.

Averaged hyperfine
parameters (mT)

Direction of magnetic field g value 69Ga 71Ga
a crystal axis 2.0155 3.75 4.76
b crystal axis 2.0551 3.74 4.75
c crystal axis 2.0032 3.59 4.60

that Ac(
69Ga) = 3.59 mT and Ac(

71Ga) = 4.60 mT for the acceptor. Using these

results, the simulated c-axis spectrum shown in Figure 4.4(b) was produced with

the SimFonia program. Table 4.3 contains the experimental g values and hyperfine

parameters for the V2−
Ga acceptor when the magnetic field is along the a, b, and c

directions. These results show that the 69Ga and 71Ga hyperfine matrices for the V2−
Ga

acceptor are nearly isotropic.

The anisotropy of the g matrix is used to construct a model for the V2−
Ga acceptor.

When a hole is trapped on one oxygen ion next to a gallium vacancy, Equations 4.1-

4.3 predict that one principal value of the g matrix will be very near 2.0023 and the

other two principal values will have small, but positive, g shifts. The value of 2.0032

that is measured for gc is very close to 2.0023, whereas the values for ga and gb are

2.0155 and 2.0551, respectively. This strongly suggests that the pz orbital containing

the unpaired electron spin is aligned along the c direction in the crystal. The model

for the V2−
Ga acceptor in LiGaO2 is shown in Figure 4.5. The gallium vacancy is at the

Ga(4) site and the hole is localized on the adjacent OII(4) ion. Nuclei at the Ga(3)

site are responsible for the resolved hyperfine seen in the EPR spectra.
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Figure 4.5. Model of the doubly ionized gallium vacancy (V2−

Ga
) in LiGaO2. The trapped

hole (shown in blue) is localized in a p orbital on the OII(4) oxygen ion with the gallium
vacancy at the Ga(4) position. Resolved hyperfine from the 69Ga and 71Ga nuclei at the
Ga(3) site are responsible for the observed hyperfine. Reprinted with permission [38].

4.6 Thermoluminescence Analysis

The TL from irradiating LiGaO2 for 3 min at 30 mA and 60 kV is shown in Figure

4.6. A minimum of four traps are responsible for the two distinct TL peaks and low

temperature shoulder.

Fitting of the largest TL peak is accomplished using general order kinetics dis-

cussed in Chapter 2.6. An initial assumption for the activation energy, ∆Ea of the

main peak at 380◦ K can be found using a relationship from thermally stimulated

current (TSC) studies. In this quasi-equilibrium approach from TSC, several assump-

tions are necessary:

1. Recombination occuring in the material involves retrapping of emitted carriers

by the level under investigation.

2. Initially the level is completely filled.

3. Equilibrium is assumed between the conduction band and the charge trap defin-
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Figure 4.6. Thermoluminescence from LiGaO2 after exposure to 3 min of room temper-
ature x rays at 30 mA and 60 kV, with β = 1.0 C/s. Simulated TL curve is produced
using s = 1012s−1, b ≈ 1.99, and Ea = 1.05 eV. Reprinted with permission [38].
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ing a Fermi level throughout the temperature rise.

4. Peak current is achieved when the Fermi level crosses the trap level.

Using these assumptions, ∆Ea is given by.

∆Ea = kBTm ln

[

Nc(Tm)

nm

]

(4.4)

where kB is Boltzmann’s constant, Tm is the temperature of peak conductivity, Nc is

the effective density of states in the conduction band at Tm, and nm is the electron

concentration at Tm. The relation in this form is not well suited for comparison to TL

analysis. Assumptions 2 and 4 are also problematic in that they may not be true for a

given system and ∆Ea can be found independent of 4. Removing these assumptions

and using an approximation temperature-independent capture cross of 10−14 cm−2

for nm of a typical semiconductor reduces the above expression [96]

∆Ea = 23kBTm. (4.5)

This expression is now suited to TL analysis by equating Tm from TSC to where Tm is

the temperature at the TL peak’s maximum. No information regarding the trap cross

sections is experimentally available and to account for a range of possible values from

10−12 to 10−18 cm−2, the coefficient in front of kBTm, assumes values 21 - 28. This

yields an initial estimate for fitting of ∆Ea = 0.8 ± 0.15 eV. An iterative approach

varies parameters Ea, s, and b from the equation 2.28. The simulated curve shown

in Figure 4.6 is produced using Ea = 1.05 eV, s = 1012, and b = 1.99.

The spectral dependence of the TL ‘glow curve’ is shown in Figure 4.7. Lumin-

scence peaks strongly at 375 nm and has a second broader peak from 500 to 800

nm. Small structured features at longer wavelengths have a 100 nm spacing and may

represent additional recombination centers.
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Figure 4.7. Spectral dependence of TL from LiGaO2 after exposure to 3 min of room
temperature x rays at 30 mA and 60 kV. The heating rate on the INSTEC remained
linear at β = 1.0◦ C/s over a long exposure of 250 s. Several unidentified recombination
centers and possible phonon replicas are present in the spectrum.
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Deviations between the simulated and measured TL curve shown in Figure 4.6 are

explained by considering the data from the wavelength dependence. Data shown in

Figure 4.7 is characteristic of at least two recombination centers with different spectral

behavior. Parameters from the general order kinetics assume a single electron and

hole trap. The simulated ‘glow curve’ achieves reasonably good agreement on the

higher temperature side. A possible explanation for this is a separate weaker TL

peak on the lower temperature portion of the spectrum.

As stated earlier, heating the crystal above 150◦ C destroys the V0
Li spectrum and

returns the crystal to its pre-irradiated state. self-trapped excitons (STE) have been

observed in Ga2O3 in the energy range 3.26 to 3.35 eV (370 - 380 nm) [97–100]. In

Ga2O3 STEs recombine on oxygen sites resulting in blue luminescence. Although

it is not clear from the data whether the trapped hole or electron becomes mobile,

the similarity in crystal structure provides a possible explanation for the observed

luminescence in LiGaO2 . The primary TL may result from the release of charge from

the trapped electrons recombining on holes trapped next to V0
Li . The wavelengths are

approximately the same and the dominant recombination center in LiGaO2 . Slight

distortions of the 375 nm TL peak may be the result of recombination on two different

oxygen sites next to V0
Li as shown in EPR spectrum in Figure 4.2. The recombination

on two different oxygen sites with similar spectral dependence but slightly different

activation energies provides an explanation of the differences between the TL data

and simulation combined with the ANDOR data. The broader TL peak from 500 to

800 nm is most likely the result of recombination on an unidentified transition metal

ion impurity and the source of the weak TL peak at 430 K.

TL and spectral analysis was not performed for the sample containing the V2−
Ga

EPR spectrum. At present, more than 20 samples of LiGaO2 are in the inventory of

the AFIT Condensed Matter Physics EPR laboratory, but only one contains the V2−
Ga
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spectrum. The effects of heating the sample above room temperature or subjecting it

to further radiation are not known. Additionally, the electron irradiation facility at

Wright State University used to produce the V2−
Ga is no longer available. The V2−

Ga is

a deep acceptor and its preservation in the sample over years suggests an activation

energy > 2 eV below the conduction band minimum. In order to preserve the sample

for future studies, TL and spectral analysis should not be conducted until a reliable

method for producing multiple samples containing the defect are found.

4.7 Summary

Electron paramagnetic resonance (EPR) has been used to identify and characterize

native acceptors in wurtzite-like LiGaO2 crystals. Neutral lithium vacancies (V0
Li)

and doubly ionized gallium vacancies (V2−
Ga) are observed. These defects provide clear

examples of acceptor-bound small polarons, where the unpaired spin (i.e., the hole)

is localized on one oxygen ion adjacent to the vacancy. Resolved hyperfine structure

from neighboring 69,71Ga nuclei and anisotropy in the g matrices are used to construct

specific models for these acceptors. In both defects, the hole is located at an OII ion,

as it forms the shortest bond with neighboring lithium and gallium ions.

The thermal stability of the paramagnetic charge states of these cation vacancies

at room temperature is days for V0
Li and more than one year for V2−

Ga. This suggests

that they are deep levels, as expected for acceptor-bound polarons in oxide crystals.

If acceptors such as Mg can be placed on a Ga site in Li-rich, Ga-poor material,

their neutral state may also be deep, and thus not useful for devices, because of the

formation of similar small polarons. In the search for suitable p-type dopants for

LiGaO2, nitrogen ions replacing oxygen ions may be a more likely solution.

82



5. Ir4+ ions in β-Ga2O3 An Unintentional Deep Donor

5.1 Abstract

Electron paramagnetic resonance (EPR) and infrared absorption are used to de-

tect Ir4+ ions in β-Ga2O3 crystals. Mg and Fe doped crystals are investigated and

concentrations of Ir4+ ions greater than 1 × 1018cm3 are observed. The source of

the unintentional deep iridium donors is the crucible used to grow the crystal. In

the Mg-doped crystals, the Ir4+ ions provide compensation for the singly ionized Mg

acceptors, and thus contribute to the difficulties in producing p-type behavior. The

Ir4+ ions replace Ga3+ ions at the Ga(2) sites, with the six oxygen neighbors forming

a distorted octahedron. A large spin-orbit coupling causes these Ir4+ ions to have a

low-spin (5d5, S = 1/2) ground state. The EPR spectrum consists of one broad line

with significant angular dependence. Principal values of the g matrix are 2.662, 1.815,

and 0.541 (with principal axes near the crystal a, b, and c directions, respectively).

Ionizing radiation at 77 K decreases the Ir4+ EPR signal in Mg-doped crystals and

increases the signal in Fe-doped crystals. In addition to the EPR spectrum, the Ir4+

ions have an infrared absorption band representing a d − d transition within the t2g

orbitals. At room temperature, this band peaks near 5153 cm−1 (1.94 µm) and has

a width of 17 cm−1. The band is highly polarized: its intensity is a maximum when

the electric field E is parallel to the b direction in the crystal and is nearly zero when

E is along the c direction.

5.2 Introduction

Ritter et al. [101] have recently reported the presence of Ir4+ ions in β-Ga2O3

crystals doped with Mg acceptors. In the present paper, electron paramagnetic reso-

nance (EPR) and infrared absorption are used to further characterize this important
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impurity in Mg and Fe doped crystals [12,102–108]. The iridium ions are an uninten-

tional deep donor in bulk β-Ga2O3 crystals grown with iridium crucibles, by either

the Czochralski method or the edge-defined film-fed growth method [109–111]. In

n-type crystals, the iridium is present as Ir3+ ions. In crystals with a lower Fermi

level (e.g., Mg or Fe doped), a portion of the iridium will also be present as Ir4+

ions. In semiconductor terms, the Ir3+ and Ir4+ ions are neutral donors (D0) and

singly ionized donors (D+), respectively. Based on the similar radii of Ga3+, Ir3+,

and Ir4+ ions in sixfold coordinated sites, [112] the iridium ions in β-Ga2O3 crystals

are expected to be located at the octahedral Ga(2) positions. The Ga(2) location of

the Ir ions is also supported by computational studies [101].

The Ir4+ ions are unique and especially interesting in β-Ga2O3 . They have the

[Xe]4f 145d5 configuration. In their distorted octahedral environment, a large spin-

orbit coupling and a strong crystal field cause the Ir4+ ions to have a low-spin (S = 1/2)

ground state, as the five d electrons are placed in the three t2g orbitals (↑↓↑↓↑) [31].

This gives rise to an anisotropic EPR signal and also produces an infrared absorption

signal when an electron is promoted from one orbital to another within the three

t2g orbitals. In contrast, the Ir3+ (5d6) ions have no EPR signal as there are three

sets of paired d electrons in the t2g orbitals. In the early years of paramagnetic

resonance, EPR spectra from Ir4+ ions played an important role when the conceptual

understanding of low-spin d5 octahedral complexes and the sharing of spin density

(i.e., covalency) with neighboring ions was being developed [59,62,113,114]. Recently,

the study of Ir4+ ions in iridate compounds such as Sr2IrO4 have revealed new and

unusual properties of matter caused by the combined effects of strong spin-orbit and

Coulomb interactions [55–58].

Iridium is a significant donor in β-Ga2O3 crystals grown in iridium crucibles, as

this impurity provides a deep level that affects the electrical and optical properties of
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the material. In the present paper, we investigate the EPR and infrared absorption

properties of Ir4+ ions in this wide-band-gap semiconductor. The complete angular

dependence of the S = 1/2 EPR spectrum is acquired, thus establishing the principal

values and principal directions of the g matrix. The temperature dependence and

polarization properties of the 5153 cm−1 infrared absorption band are also determined.

Correlations of the intensities of the EPR spectrum and the infrared absorption band

in both Mg and Fe doped samples verify that these spectral features have a common

origin. Combining the EPR and infrared results allows an oscillator strength to be

estimated for the absorption band. A change in the concentration of Ir4+ ions occurs

when a crystal is exposed to above-band-gap photons (i.e., ionizing radiation) while at

or near 77 K. X rays are used in this study for convenience, but near-band-edge light

from a lamp or a laser is expected to be equally effective. The ionizing radiation at

77 K causes the Ir4+ EPR signal to decrease in Mg-doped crystals and to increase in

Fe-doped crystals. Subsequent warming to near or slightly above room temperature,

respectively, restores the pre-irradiated intensities.

5.3 Experimental

The bulk β-Ga2O3 crystals used in the present investigation were grown by the

Czochralski technique with iridium crucibles. Crystals doped with Mg were obtained

from Synoptics (a Northrop Grumman company in Charlotte, NC). The starting

material contained approximately 0.20 mol.% of MgO. Crystals doped with Fe were

provided by Kyma Technologies (Raleigh, NC) and had 0.01 mol.% of Fe2O3 added

to the starting materials. The samples were rectangular b plates, approximately 3×4

mm2 with thickness ranging from 0.36 to 1.4 mm. EPR and infrared absorption

spectra were obtained from four samples (two Mg-doped and two Fe-doped), thus

allowing a correlation study. An EPR spectrum from Fe3+ ions is present in all the
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samples, very intense in the Fe-doped samples and smaller, yet easily detected, in the

Mg-doped samples. The a, b, and c crystal directions for each sample were verified

using the angular dependence of the Fe3+ EPR spectrum [115]. Errors in aligning the

crystals in our experiments were less than 5◦.

A Bruker EMX spectrometer operating near 9.39 GHz was used to take the EPR

spectra. Magnetic fields were measured with a Bruker NMR teslameter and the

temperature of the sample was controlled with an Oxford helium-gas flow system.

Estimates of the concentration of defects contributing to an EPR spectrum, valid

to within a factor of two, were based on comparisons to a standard pitch sample

provided by Bruker. A Varian OEG-76H-Rh tube operating at 60 kV and 30 mA

was used for the x-ray irradiations. Infrared absorption spectra were taken with a

ThermoScientific Nicolet 8700 FTIR spectrometer. A white-light (QTH) source, a

CaF2 beam splitter, and a DTGS detector were used, along with an ultra-broad-band

(250 nm to 4 µm) fused-silica wire-grid polarizer from Thorlabs (Model WP25M-

UB). A liquid-nitrogen cryostat with sapphire windows from Cryo Industries (Model

110-637-DED) and a LakeShore (Model 335) controller were used to take the low-

temperature infrared absorption data. Effects of surface losses have been removed

from the absorption spectra shown in this paper.

5.4 EPR Results

Figure 5.1 shows the EPR spectrum obtained at 30 K from an Mg-doped β-Ga2O3

crystal. The magnetic field is along the b direction in the crystal and the microwave

frequency is 9.393 GHz. Five intense lines are observed. The broad line at 369.9

mT is assigned to Ir4+ ions, while lines at 165.7, 305.1, 607.1, and 1341.8 mT are

due to Fe3+ ions. Neutral Mg acceptors (Mg0Ga) are not present in the spectrum in

Figure 5.1, as these acceptors [12] are all compensated and thus in their singly ionized
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Figure 5.1. EPR spectrum taken at 30 K from an Mg-doped β-Ga2O3 crystal. The
magnetic field is along the b direction and the microwave frequency is 9.393 GHz. The
Ir4+ line is at 369.9 mT. The other four sharper lines are from the S = 5/2 Fe3+ ions.
Reprinted with permission [36].

87



charge state (Mg−Ga). Large zero-field splittings, comparable in energy to our 9.39 GHz

microwave photons, are responsible for the complex Fe3+ spectrum [115]. These Fe3+

(3d5) ions have the high-spin S = 5/2 ground state, with the B2 and B4 coefficients

for the Stevens operators in the monoclinic spin Hamiltonian having large values.

This causes multiple Fe3+ lines, as the distinction between allowed and forbidden

transitions is no longer valid. Also, significant shifts in the positions of lines occur

when the direction of the magnetic field is changed. In contrast, the Ir4+ (5d5) ions

have the low-spin S = 1/2 ground state. As shown in Figure 5.1, the EPR spectrum

of the Ir4+ ions in β-Ga2O3 crystals is much simpler with only an MS = +1/2 to −1/2

transition. The concentration of ions responsible for the Ir4+ EPR signal in Figure

5.1 is estimated to be approximately 7.0 × 1018cm3. [Note that the linewidth of the

Ir4+ signal is about 12.0 mT, whereas the linewidths of the Fe3+ signals are about

1.5 mT.] Above 115 K, the Ir4+ EPR signal broadens because of a short spin-lattice

relaxation time. Below 20 K, a long spin-lattice relaxation time causes the Ir4+ line

to show signs of saturation with increasing microwave power. During our study, we

did not observe an EPR spectrum that could be assigned to Ir2+ (5d7) ions. Spectra

from Ir2+ ions, however, have been reported in other materials [116,117].

Figure 5.2 shows the angular dependence of our Ir4+ EPR spectrum. The position

of the line was measured at 5◦ intervals as the direction of the magnetic field was

rotated in the a − b, b − c, and c − a∗ planes, where the b direction is normal to

the mirror plane. Because a and c are 103.8◦ apart in these crystals, [3, 4] a∗ and c∗

directions are introduced (a∗ is perpendicular to b and c whereas c∗ is perpendicular

to a and b) [35]. The space group for monoclinic β-Ga2O3 is C2/m, thus allowing

for two distinct, crystallographically equivalent, orientations of the principal axes of

the g matrix for point defects located at sixfold Ga(2) sites. There are two cases

to be considered, since these two orientations of the g matrix may or may not be
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Figure 5.2. Angular dependence of the Ir4+ EPR spectrum in a β-Ga2O3 crystal. Data
were taken in the a − b, b − c, and c − a∗ planes. The discrete points are experimental
results, and the solid lines are computer-generated using the g values listed in Table 5.1.
Magnetic field values along the left vertical axis correspond to a microwave frequency
of 9.401 GHz. Reprinted with permission [36].
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magnetically equivalent. In the first case, where the principal axes of the g matrix

are along arbitrary directions, the two orientations of the g matrix will be magnetically

equivalent when the magnetic field is aligned along the a, b, or c directions and at all

angles in the a−c plane (i.e., the mirror plane) and will not be magnetically equivalent

when rotating in the a− b and b− c planes. This results in a single line in the a− c

plane and two distinct lines in the a− b and b− c planes. Site splitting of this type

in a monoclinic material has been seen in the angular dependence of Sb2+ (5s25p1)

impurity ions at Sn sites in photorefractive Sn2P2S6 crystals [118]. In the second case,

where the principal axes of the g matrix are along the a, b, and c directions, the two

orientations of the g matrix are always magnetically equivalent and a single line will

be observed in all three planes of rotation. Our experimental results in Figure 5.2,

with no detectable splittings in the a− b and b− c planes, correspond to this second

case, thus indicating that the principal-axis directions of the g matrix for the Ir4+

ions must be near the crystals a, b, and c directions.

As illustrated by the angular dependence in Figure 5.2, the Ir4+ ions have a highly

anisotropic g matrix. The EPR line moves from a low magnetic field of 253 mT to

a high field of 1235 mT during the rotations. Turning points near a and c identify

two of the principal-axis directions of the g matrix, with the third principal axis

along the b direction (i.e., perpendicular to the mirror plane). A spin Hamiltonian

with an electron Zeeman term (H = βS · g · B) describes the angular dependence

and allows the four parameters that define the g matrix to be determined. In the

a, b, c∗ coordinate system, these parameters are the three diagonal elements and

one off-diagonal element. The 45 discrete points in Figure 5.2, along with their

corresponding microwave frequencies, were used as input data for a “least-squares”

fitting procedure. The energy eigenvalues of the 2× 2 spin Hamiltonian matrix were

repeatedly calculated as the g-matrix parameters were systematically varied during
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the fitting process. Best-fit values for the four parameters are given in Table 5.1.

Final principal g values and principal-axis directions (X, Y, Z) were obtained when

the upper matrix in Table 5.1 was diagonalized. The solid curves in Figure 5.2 were

generated using these final parameters. Our g values for the Ir4+ ions in β-Ga2O3

crystals are similar to those reported for Ir4+ ions in TiO2 (see Table 5.1) [119].

Table 5.1. Parameters describing the g matrix for Ir4+ in β-Ga2O3 crystals. The g
matrix is first given in the a, b, c∗ coordinate system, and then in its diagonal form.
Principal-axis directions are specified by a polar angle Θ and an azimuthal angle Φ.
The polar angle Θ is defined relative to the c∗ direction and the azimuthal angle Φ is
defined relative to the a direction with positive rotation from a toward b in the c∗ plane.

g matrix (in a, b, c∗ coordinate system)
2.644 0 -0.195

1.815 0
0.559

Principle values
gxx gyy gzz
2.662 1.815 0.541

Principle directions
X Y Z

Θ 95.3◦ 90.0◦ 5.3◦

Φ 0◦ 90.0◦ 0◦

g matrix (principle values) for Ir4+ ions in rutile TiO2 (from [119])
2.397 1.707 0.418

The average of our three principal g values for Ir4+ in β-Ga2O3 is 1.673. Sharing

of the Ir4+ d electrons with the six neighboring oxygen ions (and also with the Ga

ions beyond these six oxygen ions) is responsible for this averaged g value being

considerably less than the free spin value of 2.0023 [31, 59, 62, 113, 114]. If an Ir4+

ion is located at the center of a perfect (i.e., cubic) octahedron, the g matrix will

be isotropic. The observed anisotropy in the g matrix with large shifts of the three

principal values from the averaged value indicates that, as expected, the oxygen

octahedron surrounding the Ir4+ ion is significantly distorted in the monoclinic β-
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Ga2O3 crystal. The following equations describe the g values of an Ir4+ ion in a low

symmetry site [31, 114,120,121].

gz = cos2 θ
{

ge sin
2 α− (ge + 2k) cos2 α

}

+ (2k − ge) sin
2 θ (5.1)

1

2
(gx + gy) = − cos2 θ

{

ge sin
2 α + 2

√
2k cosα sinα

}

(5.2)

1

2
(gx − gy) = sin 2θ

{

ge cosα +
√
2k sinα

}

(5.3)

tan(2α) =
2
√
2λ

λ− 2∆
(5.4)

In equations (5.1 to 5.3), k is the orbital reduction factor (an indicator of cova-

lency) and α and θ describe the linear combination of d orbitals that form the ground

state doublet of the Ir4+ ion. In equation (5.4), λ is the spin-orbit coupling constant

and ∆ is the infrared absorption energy. As discussed in reference [114], there are

two choices for the relative signs of gx, gy, and gz. [Note that these signs are not

experimentally determined.] We find that the following relative signs (gx = −2.662,

gy = −1.815, and gz = +0.541) give realistic values for the three Ir4+ parameters k,

α, and θ in β-Ga2O3 . Our best-fit results using equations (5.1-5.3) are:

k = 0.646; α = 58.5◦; θ = −6.7◦

The small value for k reinforces our expectation that there is significant sharing of the

d electrons with the six neighboring oxygen ions. Equation (5.4) provides a connection

between the EPR spectrum and the infrared absorption peak position and allows us

to determine a value for λ. Using α = 58.5◦ and ∆ = 5153cm−1 from Section 5.5

gives λ = 4215cm−1. This value for λ is within the range of 3000 to 4500 cm−1 often

invoked for Ir4+ ions [119,122,123].

Many of the EPR spectra reported for Ir4+ ions in various materials have resolved
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hyperfine structure from the 191Ir and 193Ir nuclei [124–127]. These isotopes have I

= 3/2 nuclear spins and similar nuclear magnetic moments [91]. Their natural abun-

dances are 37.3% and 62.7%, respectively. In all reported cases, the hyperfine matrices

are nearly isotropic, with principal values (in energy units) near 25× 10−4cm−1. The

EPR line in Figure 5.1 from the Ir4+ ions is very broad, approximately 12.5 mT,

with no resolved hyperfine structure from 191Ir and 193Ir nuclei. This lack of resolved

hyperfine lines in the β-Ga2O3 Ir4+ spectrum is not surprising. In addition to a

broadening of the four expected lines as a result of superhyperfine interactions with

the nearest 69,71Ga nuclei, the nuclear electric quadrupole interactions for the 191,193Ir

nuclei must also be considered. Large nuclear electric quadrupole moments for the

191,193Ir nuclei [91] and a large electric field gradient at the Ga(2) sites in this low-

symmetry crystal will cause the Ir4+ ions in β-Ga2O3 to have a complex hyperfine

pattern consisting of strongly overlapping allowed and forbidden lines. This, together

with the Ga superhyperfine interactions, produce the observed broad, nearly struc-

tureless EPR line. We attribute the very slight distortion at the mid-point of the Ir4+

EPR line, when the magnetic field is along the b direction, to underlying hyperfine

structure (see Figure 5.6 and 5.7). The EPR spectra from Ir4+ ions in MgO and CaO

crystals have been fully analyzed and the effects of large nuclear quadrupole interac-

tions have been clearly illustrated [124]. We anticipate that future electron-nuclear

double resonance (ENDOR) experiments will provide similar complete sets of 191,193Ir

hyperfine parameters for Ir4+ ions in β-Ga2O3 crystals.

5.5 Infrared Absorption Results

Figure 5.3 shows the infrared absorption spectrum from Ir4+ ions in an Mg-doped

β-Ga2O3 crystal. This infrared band, first observed by Ritter et al., [101] is a d − d

transition within the t2g orbitals of the low-spin Ir4+ ions. Similar sharp absorption
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Figure 5.3. Infrared absorption band from Ir4+ ions in an Mg-doped β-Ga2O3 crystal.
Spectra were obtained at room temperature (black curve) and at 80 K (red curve).
Light propagated along the b direction with the electric field vector E along the a
direction. Reprinted with permission [36].
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bands in the 4500 to 5300 cm−1 region have been reported in the past for Ir4+ ions in

various host crystals [119, 122, 125, 128, 129]. As illustrated in Figure 5.3, the width

and thus the intensity of this band in β-Ga2O3 is strongly temperature dependent.

At room temperature, the band peaks at 5153 cm−1 (1.94 µm) and its FWHM is 17

cm−1. The band sharpens as the temperature is lowered. At 80 K, the peak shifts to

5148.1 cm−1 and the FWHM reduces to 1.2 cm−1. In Figure 5.3, the right vertical

scale goes with the room temperature spectrum and the left vertical scale goes with

the 80 K spectrum. The Ir4+ absorption band in Figure 5.3 has a Lorentzian shape

and represents a weakly allowed electronic transition. Vibronic structure near the

main peak was not observed.

Figure 5.4 shows that the 5153 cm−1 infrared absorption band is polarized. The

maximum intensity occurs when the electric field vector E of the incident light is

parallel to the b direction in the crystal. With the electric field E near c∗, the intensity

of this absorption band decreases to near zero. Figure 5.5 shows the change in the

intensity of the infrared absorption band as the direction of the electric field is varied

from a to c∗. The solid curve in Figure 5.4 is generated using I(θ) = A + Bcos2θ

for the intensity (i.e., the transition probability) of the absorption band, [42] where

θ = 0◦ when E is along a and θ = 90◦ when E is along c∗.

Table 5.2. Correlation of the infrared absorption band and EPR signal from Ir4+ ions in
β-Ga2O3 crystals. The Mg-doped crystals are labeled Mg1 and Mg2 and the Fe-doped
crystals are labeled Fe1 and Fe2. Values are given for the thickness (i.e., optical path
length), volume, absorption coefficient α of the infrared peak at room temperature for
E along the a direction, and the concentration N obtained from the EPR signal.

absorption concentration
thickness volume coefficient from EPR N/α

sample (mm) (mm3) α(cm−1) N(1018cm−3) (1018cm−2)
Mg1 1.19 14.5 2.90 7.0 2.4
Mg2 1.41 12.0 2.77 6.0 2.2
Fe1 0.36 4.6 0.46 1.2 2.7
Fe2 0.38 4.2 0.43 1.0 2.3

average N/α = 2.4
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Figure 5.4. Polarization dependence of the infrared absorption band from Ir4+ ions
in an Mg-doped β-Ga2O3 crystal. These spectra were taken with the electric field E
along the b direction (spectrum 1), the a direction (spectrum 2), and the c direction
(spectrum 3). Light propagated along the c direction for spectrum 1 and the b direction
for spectra 2 and 3. Reprinted with permission [36].
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Figure 5.5. Intensity of the Ir4+ infrared absorption band in an Mg-doped β-Ga2O3

crystal when the direction of the electric field E is rotated from a to c∗ in the crystal.
The solid line represents a cos 2θ dependence. Reprinted with permission [36].
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A primary result of the present study is the correlation of the intensities of the

EPR signal and the infrared absorption peak for Ir4+ ions in β-Ga2O3 . Data were

obtained from four crystals. Two are Mg-doped (labeled Mg1 and Mg2) and two are

Fe-doped (labeled Fe1 and Fe2). The results are presented in Table 5.2. The third

column is the room-temperature absorption coefficient α for the 5153 cm−1 infrared

band. These values were acquired with light propagating along the b direction and

the electric field E along the a direction. The fourth column is the concentration N of

Ir4+ ions obtained from EPR spectra taken at 40 K with the magnetic field along the

b direction. Larger values of α and N are expected for the Mg-doped crystals since a

greater portion of the iridium ions are in the 4+ charge state when Mg acceptors are

present. In the fifth column of Table 5.2, the ratios of N and α for the four crystals

are used to determine if a correlation exists. As can be seen, this ratio is very nearly

the same for the four samples, thus providing evidence that the infrared absorption

band and the EPR line are from the same defect. The deviations from the average

value of 2.4 × 1018cm−2 for the N/α values in Table 5.2 are less than 9%. In future

investigations, if one of the two quantities N or α is known, then the other can be

estimated using the equation N = [2.4× 1018cm−2]α.

Combining EPR and optical absorption data from the same crystal allows us to

determine an oscillator strength f for the Ir4+ infrared absorption band. The EPR

spectrum in Figure 5.1 and the room-temperature absorption spectrum in Figure 5.4

were taken from the same Mg-doped crystal (referred to as crystal Mg1 in Table

5.2). Smakula’s equation, given in equation 5.5 for a Lorentzian line shape, relates

the product of defect concentration N and oscillator strength f to the intensity and

FWHM of the absorption band and the index of refraction n of the material [43,130].

Nf =
(

1.29× 1017
) n

(n2 + 2)2
αmaxW (5.5)
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The concentration N of Ir4+ ions from the EPR spectrum in Figure 5.1 is 7.0×1018

cm−3, and αmax and W from the maximum absorption data in Figure 5.4, taken

with the electric field along the b direction, are 6.2 cm−1 and 2.2 meV, respectively.

Near the 1.9 µm position of the peak, the index of refraction n of β-Ga2O3 is 1.9

[131]. Substituting these quantities into equation 5.5 gives an oscillator strength

f = 1.5 × 10−5 for the Ir4+ infrared absorption band in β-Ga2O3 . If the refractive

index and local field correction factors are ignored, f becomes 2.5 × 10−4. These

results for f are consistent with expected values of oscillator strengths for d − d

transitions [132].

5.6 Effects of Above-Band-Gap Photons

Ionizing radiation (i.e., above-band-gap photons) was found to change the con-

centration of Ir4+ ions in the Mg-doped and Fe-doped β-Ga2O3 crystals. We used

x rays, but near-band-edge light from a lamp or a laser is also expected to produce

similar effects. In our experiments, the above-band-gap photons form “free” electrons

and holes. At 77 K, the majority of these electrons and holes immediately recombine,

but some become trapped at existing deep donors and acceptors. These electrons

and holes remain trapped for long periods of time when the crystal is kept at a suffi-

ciently low temperature. Figure 5.6 shows the effects of a 77 K x-ray irradiation on

an Mg-doped β-Ga2O3 crystal. These spectra were taken at 40 K with the magnetic

field along the b direction. In Figure 5.6(a), the spectrum taken before the exposure

to x rays shows EPR signals from Fe3+ and Ir4+ ions, but not from Mg acceptors.

The Mg acceptors are not present in Figure 5.6(a) because they are all in their singly

ionized nonparamagnetic charge state (Mg−Ga), compensated in large part by the Ir4+

ions. This is consistent with the large concentration of Ir4+ ions observed in Figure

5.1 and listed in Table 5.2. After the irradiation at 77 K with x rays, the Mg-doped
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crystal was cooled to 40 K, with no intervening warming, and the EPR spectrum

in Figure 5.6(b) was taken. The characteristic spectrum [12] from the neutral Mg

acceptors (Mg0Ga) is now present and the intensities of the Fe3+ and Ir4+ signals have

both decreased by 41% from their pre-irradiated values. The following is a possible

explanation for these observations. During the 77 K irradiation of the Mg-doped

crystal, the Fe3+ and Ir4+ ions trap electrons and become Fe2+ and Ir3+ ions while, at

the same time, the singly ionized Mg acceptors (Mg−Ga) trap holes and become neutral

acceptors (Mg0Ga).
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Figure 5.6. EPR spectra from an Mg-doped β-Ga2O3 crystal taken at 40 K before and
after an irradiation at 77 K with x rays. Identical spectrometer settings were used when
acquiring the two spectra. (a) Before the irradiation, only the Fe3+ and Ir4+ signals
are present. (b) After the irradiation, and with no warming step, the Mg0

Ga signal is
present and the Fe3+ and Ir4+ signals have decreased. Reprinted with permission [36].

The effects of x rays are quite different for the Fe-doped β-Ga2O3 crystals. EPR

spectra were taken at 40 K from an Fe-doped crystal before and after an irradiation at

77 K with x rays. These results are shown in Figure 5.7. Because of the large difference
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in the intensities of the Fe3+ and Ir4+ signals (due to very different linewidths), the

before and after Fe3+ spectra were taken with one set of spectrometer conditions

and the before and after Ir4+ spectra were taken with a different set of spectrometer

conditions. After the irradiation, the intensity of the Fe3+ EPR signal is reduced by

a factor of 1.7 (i.e., the signal is 40% less than its pre-irradiated value) whereas the

Ir4+ EPR signal is a factor of 3.2 larger than its pre-irradiated value. This decrease

of the Fe3+ signal and increase of the Ir4+ signal is consistent with the Fe ions being

acceptors [104, 106, 107] and the Ir ions being donors. Specifically, Fe3+ ions trap

electrons during the irradiation and become Fe2+ ions while nonparamagnetic Ir3+

ions trap holes and become Ir4+ ions. The Fe3+ and Ir4+ ions slowly revert to their

pre-irradiation concentrations when the crystal is returned to room temperature.

This recovery was 60% complete after the crystal was held for five min at room

temperature.

5.7 Conclusions

Large crystals of β-Ga2O3 are often grown by the Czochralski or edge-dened film-

fed methods using iridium crucibles, and thus contain significant concentrations of

isolated iridium ions. These unintentional deep donors are present as Ir3+ (5d6) ions

in n-type crystals. When the Fermi level is lower, Ir4+ (5d5) ions will also be present.

We use EPR and infrared absorption to observe these Ir4+ ions in Mg and Fe doped

crystals. The Ir4+ ions occupy Ga(2) sites with the six oxygen neighbors forming a

distorted octahedron. Because of a large spin-orbit interaction, these 5d5 ions have a

low-spin S = 1/2 ground state. Principal g values of the resulting anisotropic EPR

spectrum are 2.662, 1.815, and 0.541. Also, the Ir4+ ions have a room-temperature

infrared absorption band peaking at 5153 cm−1. This d−d band has a small oscillator

strength and is highly polarized. In the Mg-doped crystals, the Ir4+ ions are the
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Figure 5.7. EPR spectra from an Fe-doped β-Ga2O3 crystal taken at 40 K before and
after an irradiation at 77 K with x rays. The upper left (Fe3+) and upper right (Ir4+)
spectra were taken before the irradiation. The lower left (Fe3+) and lower right (Ir4+)
spectra were taken after the irradiation. One set of spectrometer operating conditions
was used for the two Fe3+ spectra and a different set was used for the two Ir4+ spectra.
The two Fe3+ spectra can be directly compared and the two Ir4+ spectra can be directly
compared. Reprinted with permission [36].
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primary source of compensation for the Mg acceptors. The presence of the iridium

ions is expected to make p-type doping of bulk-grown crystals more difficult. Of

special interest are the photon-induced changes in the charge state of the iridium

donors. During an exposure at 77 K to ionizing radiation (x rays in our experiments),

the concentration of Ir4+ ions decreased in Mg-doped crystals and increased in Fe-

doped crystals. These results suggest that the Fe impurities behave as acceptors and

prefer to be in the Fe3+ or Fe2+ states and the Ir impurities behave as donors and

prefer to be in the Ir4+ or Ir3+ states.
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6. Deep Donors and Acceptors in β-Ga2O3 Crystals:
Determination of the Fe2+/3+ Level by a Non-contact Method

6.1 Abstract

Electron paramagnetic resonance (EPR) and infrared absorption are used to de-

termine the Fe2+/3+ level in Fe-doped β-Ga2O3 crystals. With these noncontact spec-

troscopy methods, a value of 0.83 eV below the conduction band is obtained for this

level. Our results clearly establish that the E2 deep level observed in DLTS experi-

ments is due to the thermal release of electrons from Fe2+ ions. The crystals used in

this investigation were grown by the Czochralski method and contained similar con-

centrations of deep Fe acceptors and deep Ir donors, along with trace amounts of Cr

donors. Exposing a crystal at room temperature to 325 or 405 nm laser light converts

a significant portion of the Fe3+ acceptors to the Fe2+ charge state and, at the same

time, converts an equivalent number of Ir3+ donors to the Ir4+ charge state. The Fe3+

EPR spectrum slowly recovers after the light is removed, as electrons are thermally

released from Fe2+ ions to the conduction band. These electrons recombine nonra-

diatively with holes at Ir4+ ions. Using a general-order kinetics model, the analysis

of a set of isothermal recovery curves for the Fe3+ EPR signal taken between 295 and

315 K gives an activation energy of 0.83 ± 0.04 eV for the decay of the photoinduced

Fe2+ ions. A weak thermoluminescence (TL) peak near 350 K is produced when a

few of the electrons released from the Fe2+ ions recombine radiatively with holes at

Cr4+ ions. Photoluminescence (PL) results verify that these crystals contain Cr ions.

6.2 Introduction

Single crystals of β-Ga2O3, in bulk and thin-film form, are presently being de-

veloped for applications extending from power electronics to solar-blind detectors
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[102, 109, 133–138]. To support these device efforts, fundamental studies of the more

common deep donors and acceptors in this material are needed. It is expected that

these deep levels, when present, may influence the performance of the emerging op-

tical and electronic devices. The acceptors and donors receiving the most attention,

thus far, are Fe, Mg, Cr, H, and Ir [12, 35, 36, 101, 104, 106, 107, 139–141]. In this

chapter, a description of using noncontact spectroscopy methods to characterize the

behaviors of Fe acceptors and Ir and Cr donors is presented. Iron impurities appear at

trace levels in many bulk β-Ga2O3 crystals (as a result of their unintentional presence

in the starting materials used to grow the crystals). The Fe ions may also be deliber-

ately added to the starting materials to produce Fe-doped semi-insulating β-Ga2O3

crystals suitable for use as substrates for film growth. Although usually at concen-

trations lower than those of the unintentional Fe ions, Cr ions are also introduced at

trace levels into bulk β-Ga2O3 crystals because of slightly impure starting materials.

In addition to the Fe and Cr ions, large concentrations of Ir ions are present in bulk

β-Ga2O3 crystals that are grown using iridium crucibles [36,101]. Electron paramag-

netic resonance (EPR), infrared absorption, and thermoluminescence (TL) are used

in the present study to determine the Fe2+/3+ level in an Fe-doped β-Ga2O3 crystal.

The use of EPR is an important part of this investigation as this experimental tech-

nique provides direct and unambiguous identification of specific charge states of many

defects via the hyperfine and fine structure patterns appearing in their ground-state

spectra.

6.3 Experimental

Bulk β-Ga2O3 crystals doped with Fe were obtained from Kyma Technologies

(Raleigh, NC). They were grown by the Czochralski method and had 0.01 mol.% of

Fe2O3 added to the starting materials. They also contained large concentrations of
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Ir ions [36, 101] and trace amounts of Cr ions [35, 141], both substituting for sixfold

Ga3+ ions and both unintentionally present. The samples used in this study were

rectangular b plates, approximately 3× 4 mm2 with a thickness of 0.37 mm.

The EPR spectra of Fe3+ ions were obtained near room temperature using a Bruker

EMX spectrometer operating at 9.393 GHz. Flowing nitrogen gas was used to control

the temperature of the sample. The gas was contained within the glassware of an

Oxford Instruments ESR-900 cryostat extending vertically through the center of the

microwave resonator. To reach an equilibrium temperature in the 295 to 315 K range,

the gas was preheated by passing through a small external furnace before reaching the

crystal. Infrared absorption spectra of Ir4+ ions were taken with a ThermoScientific

Nicolet 8700 FTIR spectrometer. A white-light (QTH) source (with a silicon wafer

acting as a filter to remove wavelengths shorter than 1.1 µm), a CaF2 beam splitter,

and a DTGS detector were used, along with an ultra-broad-band (250 nm to 4 µm)

fused-silica wire-grid polarizer from Thorlabs (Model WP25M-UB). Surface losses

have been removed from the absorption spectra shown in this paper. The Fe2+, Ir4+,

and Cr4+ charge states are produced near room temperature using a He-Cd laser (325

or 442 nm) or a diode laser (405 nm).

Photoluminescence (PL) spectra were obtained with an Horiba Fluorolog-3 spec-

trometer and using a long pass filter for wavelengths > 420 nm on the emission port.

This spectrometer uses a xenon lamp as the excitation source, a Hamamatsu R928

photomultiplier as a detector, and two double-grating monochromators to measure

emisson and excitation spectra. Thermoluminescence (TL) glow curves were taken

with a Harshaw TLD-3500 reader. In this instrument, a photomultiplier tube moni-

tors the total light output.
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Figure 6.1. EPR spectrum taken at 296 K from an Fe-doped β-Ga2O3 crystal. The
magnetic field is along the c direction and the microwave frequency is 9.393 GHz. All
eight lines are from Fe3+ ions occupying sixfold Ga3+ sites.
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6.4 Production and Thermal Decay of Fe2+ and Ir4+ Ions

Figure 6.1 shows the EPR spectrum from Fe3+ (3d5) ions in an Fe-doped β-Ga2O3

crystal. These data were obtained at room temperature (∼296 K). The magnetic

field was aligned near the c axis, the microwave frequency was 9.393 GHz, and no

laser light was incident on the sample. Before acquiring the spectrum, the effects

of previous illuminations were removed by holding the crystal at 250◦ C for several

minutes. There are two dominant lines in Figure 6.1 at 150.0 and 332.3 mT and

six less intense lines at 102.0, 209.7, 257.6, 404.0, 667.9, and 756.8 mT. These lines,

representing both allowed and forbidden transitions, are assigned to Fe3+ ions at

sixfold sites [115, 142]. The Fe3+ ions have the high-spin S = 5/2 ground state, with

large zero-field splittings caused by the low-symmetry monoclinic crystal structure.

As seen in Figure 6.1, zero-field splittings often result in complex nonsymmetrical

patterns in the EPR spectra from transition-metal ions [31, 33]. During the present

study, no evidence was found that Fe3+ ions occupy fourfold sites in Fe-doped β-

Ga2O3 crystals grown by the Czochralski method [115]. Also, it is noted that no

EPR spectrum has been reported thus far for Fe2+ (3d6) ions in β-Ga2O3 crystals.

The Fe3+ EPR spectrum decreases in intensity when the Fe-doped β-Ga2O3 crystal

is exposed at room temperature to below-band-gap laser light. Both 325 and 405 nm

photons easily produce this effect, with reductions of approximately 30% typically

observed. Although they are less efficient, 442 nm photons also reduce the Fe3+

concentration, whereas 532 nm photons have very little effect. A similar wavelength

dependence has been reported for photocurrents in Fe-doped β-Ga2O3 crystals [143].

Figure 6.2 shows the rapid decrease in the intensity of the Fe3+ spectrum when 405

nm laser light is applied and the subsequent slow recovery of the Fe3+ spectrum when

the laser light is removed. These data were acquired at 297 K with the magnetic field

set at the upper peak of the line at 150.0 mT in Figure 6.1. The EPR spectrometer
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Figure 6.2. Monitoring the intensity of the Fe3+ EPR line at 150.0 mT in Figure 6.1
before, during, and after exposure to 325 nm laser light. The temperature is 297 K.
The Fe3+ signal decreases when the light forms Fe2+ ions. When the light is removed,
the Fe3+ signal slowly recovers as the Fe2+ ions thermally convert back to Fe3+ ions by
releasing an electron.
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was operated in a kinetics mode (i.e., a time sweep) with a fixed magnetic field, thus

allowing the production and/or decay of a specific EPR line (representing one charge

state of a defect) to be monitored.
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Figure 6.3. Infrared absorption from Ir4+ ions in an Fe-doped β-Ga2O3 crystal. These
spectra were obtained at room temperature. The spectrometer’s light propagated along
the b direction of the crystal with the electric field vector E along the a direction.
Sample thickness (i.e., optical path length) is 0.37 mm. The lower (red curve) was
taken before exposure to 405 nm laser light and the upper (blue curve) was taken
during exposure to the 405 nm laser light.

Exposure of an Fe-doped β-Ga2O3 crystal at room temperature to below-band-gap

laser light also affects the charge states of the iridium donors. Figure 6.3 shows the

infrared optical absorption spectra taken at 296 K before and during an illumination

with 405 nm laser light. The band peaking at 5153 cm−1 (1.94 µm), with a half-width

near 17 cm−1, has been assigned to Ir4+ (5d5) ions at sixfold Ga3+ sites [36,101]. This

band represents a d− d transition within the set of t2g orbitals. The lower red curve
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(labeled ‘2’) in Figure 6.3 shows that Ir4+ ions are not present before the illumination.

At this stage, all of the iridium is present as neutral Ir3+ donors. A large number

of Ir4+ ions, however, are produced by the laser light (upper blue curve labeled ‘1’

in Figure 6.3). These Ir4+ ions begin to thermally decay immediately after the light

is removed. The empirical relationship between concentration and peak absorption

coefficient, N = (2.4× 1018 cm2)α, from References [36, 42] is used to determine the

maximum concentration of Ir4+ ions formed by the laser light in the Fe-doped crystal.

A value of α = 2.19 cm−1 from Figure 6.3 gives a concentration N = 5.3× 1018 cm−3

for the Ir4+ ions.
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Figure 6.4. The decay of the Ir4+ ions and the recovery of the Fe3+ ions at 297 K
after the laser light is removed. To allow a direct comparison, the inverse of the Fe3+

recovery is plotted (i.e., the decay of photoinduced Fe2+).

The photoinduced results in Figures 6.2 and 6.3 demonstrate that the iridium
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ions lose electrons and the iron ions gain electrons during an illumination at room

temperature. Specifically, laser light converts neutral Ir3+ donors to singly ionized

Ir4+ donors and, at the same time, converts neutral Fe3+ acceptors to singly ionized

Fe2+ acceptors. This behavior suggests that the Ir4+/3+ level is below the Fe3+/2+ level

in β-Ga2O3. Figure 6.4 shows the decay of the Ir4+ ions and the recovery of the Fe3+

ions at 297 K after the laser light is removed. To allow a direct comparison, the inverse

of the Fe3+ recovery is plotted in Figure 6.4. The decay of the Ir4+ absorption band

(the discrete points) occurred after an illumination with 405 nm laser light, while the

recovery of the Fe3+ EPR spectrum (the solid curve) followed an illumination with

325 nm laser light. The similarity of the two curves in Figure 6.4 shows that the

decay of the Ir4+ ions and the recovery of the Fe3+ ions are correlated. Although the

two sets of data in Figure 6.4 were acquired in quite different experiments (optical

absorption versus EPR), the agreement is good.

Two possible mechanisms by which laser light produces the Ir4+ and Fe2+ ions in

the Fe-doped β-Ga2O3 crystals are (1) excitation of electrons from the valence band

to the Fe3+ ions with the holes left in the valence band being trapped on Ir3+ ions

or (2) excitation of electrons from Ir3+ ions to the conduction band with the subse-

quent trapping of the electrons by Fe3+ ions. It is likely that both optical absorption

processes may be contributing to the observed photoinduced effects. Independent of

the method of production, the decay mechanism that restores the crystal to its pre-

illuminated state is the thermally activated release of electrons from the Fe2+ ions.

The thermoluminescence results, reported in Section 6.6, also provides evidence that

the recovery of the Fe3+ ions occurs when electrons are thermally released from the

Fe2+ ions.

Isothermal recovery curves for the Fe3+ EPR signal in an Fe-doped β-Ga2O3 crys-

tal were obtained at 300.5, 305.0, 310.0, and 315.0 K, after illumination with 325
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Figure 6.5. Isothermal recovery curves for the Fe3+ EPR signal in an Fe-dopedβ-Ga2O3

crystal were obtained at d) 300.5, c) 305.0, b) 310.0, and a) 315.0 K, after illumination
with 325 nm laser light. Recovery of the Fe3+ ions corresponds to the decay of the
photoinduced Fe2+ ions, thus the data are plotted as decay curves. The inset shows
the plot of lnm versus 1/T used to obtain the activation energy Ea.
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nm laser light. The recovery of the Fe3+ ions corresponds to the decay of the pho-

toinduced Fe2+ ions, thus the data are plotted as decay curves in Figure 6.5. These

data were obtained by monitoring the intensity of the Fe3+ EPR line at 150.0 mT

when the magnetic field is along the c direction (see Figure 6.1). Prior to recording a

recovery curve, the crystal was exposed to 325 nm laser light until a reduced equilib-

rium concentration was established for the Fe3+ ions (approximately 4-5 min). Then

the intensity of the EPR line was monitored as a function of time after removing

the laser light. This is the procedure illustrated in Figure 6.2. While acquiring a

recovery curve, the temperature varied by less than 0.1 K. The kinetics model and

process used to extract an activation energy from the set of decay curves in Figure

6.5 is described in Section 6.5.

The approximate initial concentrations of Fe3+ were 1.6 × 1019 cm−3 ± 1.5% at

300.5, 305, 310, and 315 K, respectively. Monitoring the EPR Fe3+ signal at 150.0 mT

for these temperatures shows a decreasing intensity proportional to 1/T . These initial

concentrations of Fe3+ centers represent a population in thermal equilibrium. The

relative concentration values corresponding to the four temperatures are determined

to within approximately 1.5% because they are directly compared to the defects

EPR spectrum taken with the same spectrometer settings and only slightly different

temperatures. The absolute value of the spin concentration at 300.5 K was determined

by comparing the change of the EPR spectrum from the Fe3+ defect with FTIR

absorption data for the Ir4+. The total concentration of the Ir4+ is estimated from

Smakula’s formula and proportional to the photoinduced change in the Fe3+. This

process is an estimate and considered precise to within a factor of two.
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6.5 Analysis of Thermal Decay Curves

A general-order kinetics model [40,48,50,51,54] is used to analyze the thermal de-

cay results since the individual decay curves in Figure 6.5 are not single exponentials.

First-order kinetics does not allow for the retrapping of released charge and thus is

characterized by simple exponential decay curves [44,45]. The other extreme, referred

to as second-order kinetics, occurs when retrapping dominates the decay process and

gives decay curves with long “tails” [46].

First-order kinetics do not provide a good fit to the individual decay curves in

Figure 6.5 (i.e., these curves are not single exponentials). Thus, a general-order

kinetics model [40,48,144] is used that takes into account the retrapping of thermally

released charge on the octahedral Fe3+ sites to determine an activation energy for the

thermal decay of these photoinduced singly ionized Fe acceptors. This analysis starts

with the following differential equation:

dn

dt
= nbs′e

−
Ea
kBT (6.1)

Here, n is the concentration of photoinducted acceptors, t is the time, b is the param-

eter which describes the order of the kinetics, Ea is the activation energy, and T is

the temperature. In this general order equation, the prefactor s does not have units

of inverse seconds, and instead has units of m3(b−1)s−1. Integrating equation 6.1 has

the time-dependent decay solution for b > 1,

n(t) = n0

[

1 + s′nb−1
0 (b− 1)e

−
Ea
kBT t

]
1

1−b

(6.2)

where n0 represents the initial concentration of singly ionized Fe acceptors (when the
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laser light is removed). Equation 6.2 is then rewritten in the following linear form:

(

n

n0

)1−b

=
[

1 + s′nb−1
0 (b− 1)e

−
Ea
kBT t

]

(6.3)

Using the experimental data in Figure 6.5, the quantity (n/n0)
1−b was plotted versus

time for each decay curve. For each of these plots, the value of b was adjusted until

a straight line emerged. The four values of b obtained from this procedure were very

similar and their average was b = 1.85. This value of b indicates that the kinetics is

closer to the second order and consistent with strong retrapping of thermally released

charge on Fe3+ sites. Each of the four straight lines has a different slope. From

equation 6.3, these slopes are m0

m
′

i = s′nb−1
0,i (b− 1)e

−
Ea
kBT (6.4)

where the index i = 1 to 4 corresponds to the four different temperatures where decay

curves were obtained. While it is possible to adjust for different starting concentra-

tions, each decay curve has approximately the same value of n0 for the same intensity

and duration of exposure of excitation light. Thus, it can be written n0, i = ciN0

where the values of ci are 1.00 for all temperatures and, N0 represents the initial

concentration for the 300.5 K decay curve. Equation 6.4 then becomes

mi =
m

′

i

cb−1
i

= s′N b−1
0,i (b− 1)e

−
Ea

kBTi (6.5)

By taking the natural logarithm of each side, equation can be rewritten in the fol-

lowing form

ln(mi) = ln
[

s′N b−1
0,i (b− 1)

]

− Ea

kBTi

(6.6)

The final step is to construct a plot of ln(mi) versus 1/Ti (this plot contains four
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points, one for each decay curve, and is shown in the inset of Figure 6.5). The

slope of the best-fit straight line in the inset is E/k. Based on the thermal decay

data in Figure 6.5, the general-order kinetics analysis gives an activation energy of

Ea = 0.83± 0.04 eV.

Now it is prudent to discuss the physical meaning of this activation energy. The

effect of the 325, 405, or 442 nm light removes electrons from donor Ir3+ making

Ir4+ and traps electrons on Fe3+ acceptors producing (Fe2+) through either or both

production pathways described earlier. Upon removal of the light, these electrons

and holes recombine and the restoration rate of the original distribution of charge

depends on the temperature. There are two possible recombination processes 1) it

may be initiated by the thermal release of holes from Ir4+ or 2) the thermal release

of electrons from Fe3+. Experimentally, it is often difficult to determine whether the

measured activation energy is associated with the hole release or the electron release.

DLTS, Van der Pauw, and Hall measurements have suggested that the E2 trap with

an activation energy 0.78 to 0.86 eV is from the release of electrons based on voltage

bias and the signs of coefficients [104, 106, 107, 145, 146]. In the following section, it

is suggested that the activation energy of 0.83 eV describes the thermal release of an

electron from Fe2+ and not mobile holes releasing from Ir4+, which is consistent with

previous experimental measurements.

6.6 Luminescence Results

An uncorrected PL spectrum from Ga2O3 using 265 nm excitation light is shown in

Figure 6.6. The two sharp lines at 691 and 697 nm are the characteristic R-lines from

Cr3+ (3d3) in β-Ga2O3 resulting from the 4T2 →4A2 and
4E2 →4A2 transitions where

the 4T2 dominates at room temperature [141]. Photoluminescence was performed

using 5 nm increments of excitation light from 250 to 650 nm with no other PL
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Figure 6.6. Photoluminescence spectrum taken at room temperature from an Fe-doped
β-Ga2O3 crystal. The excitation wavelength was 265 nm. The emission is from the
4T2 →4A2 and 4E2 →4A2 transitions of Cr3+ ions. The spectrum is uncorrected.

spectrum being found from 270 to 800 nm. Additionally, multiple samples of Fe-

doped Ga2O3 , including scrap from the boule, were analyzed and found to have

varying concentrations of Cr3+ based on PL measurements. Many samples had little

to no Cr3+ indicating that incorporation of Cr into the crystal is not uniform. Based

on the PL measurements, Cr3+ is the only luminescent center in Fe-doped Ga2O3

despite the much larger concentrations of Fe3+ and Ir3+ present in these crystals.

Figure 6.7 shows the TL spectrum of Fe-doped Ga2O3 after exposure to either

325 or 405 nm light. The sample was heated from 28◦ to 200◦ C with a heating

rate of 1◦C/s. A single weak TL peak was observed with a peak temperature of 76◦

C. Attempts to measure the spectral dependence of the TL peak through the use of

ANDOR and the InsTec heating stage were not successful due to the low intensity

of the peak and the loss of collection sensitivity between the PMT on the Harshaw

system and CCD on the ANDOR. The simulated TL glow curve is constructed from
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Figure 6.7. Thermoluminescence spectra of Fe-doped β-Ga2O3 using a 1◦ C/s heating
rate. The simulated TL glow curve is constructed from the parameters of the isothermal
decay of Fe2+ measured by EPR shown in Figure 6.5 using general order decay with
b = 1.85, β = 1, and s = 1.95× 1011.
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the parameters of the isothermal decay of Fe2+ measured by EPR using general order

decay with b = 1.85, β = 1, and s = 1.95 × 1011. There is good agreement between

the measured and simulated TL suggesting that the release of photoinduced trapped

charge is responsible for observed TL peak. Furthermore, since Cr3+ is the only

identified luminescent center, it is suggested that Cr3+ is the responsible for the weak

observed TL peak.

As stated earlier, there are two possible recombination processes to describe the

activation energy that resets all the observed defects in the crystal: the release of

electrons from Fe2+ or the release of holes from Ir4+.1 The latter will be considered

first. If holes are mobile and released from Ir4+, they travel predominantly to Fe2+

sites with only a small portion returning to Cr sites and recombining. After illumina-

tion, EPR confirms a small decrease in Cr3+ concentration indicating it has changed

charge state. To recover the Cr3+ concentration, Cr must be in the 2+ charge state

and accept the mobile holes leaving from Ir4+ to form Cr3+. Using mobiles as the

recombination process, the resultant recombination on Cr sites does not create an

electron in an excited state 3+ state to have the 4T2 →4A2 and 4E2 →4A2 transi-

tions. This recombination process disagrees with the experimental data. If electrons

are mobile and released from Fe2+, they will travel predominantly to holes trapped on

Ir4+ and a small fraction will travel to Cr sites and recombine. Under this model, Cr

must be in the 4+ charge state, and recombination leaves Cr3+ and mobile electrons

in an excited state. This process is consistent with observations [104, 106, 107] and

this experimental data.

1Other explanations outside of these two possibilities for luminescence involve invoking unseen
EPR defects before or after irradiation and are unlikely.
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6.7 Summary

Large single crystals of intentionally Fe doped Ga2O3 grown in iridium crucibles

contain significant concentrations of isolated Fe3+ (3d5) and the unintentional deep

donor Ir3+ (5d6) impurity ions. Both Fe3+ and Ir4+ occupy the Ga(2) sites with six

oxygen ligands forming a distorted octahedral. These substrates are semi-insulating

indicating a low-Fermi level and compensation of the Si shallow donor. EPR, in-

frared absorption, photoluminescence, and thermoluminescence are used to observe

the roles and change of charge states of Fe, Cr, and Ir. Exposure to 325 or 405 nm

light simultaneously removes electrons from Cr and Ir donors forming Cr4+ and Ir4+

and traps the electrons on Fe acceptors creating Fe2+. Removal of light allows the

electrons to be released from Fe2+, recombining non-radiatively on Ir4+ sites. FTIR

measurements monitor the formation and decay of Ir4+ and confirming it as the pre-

dominant deep donor. Subsequent heating of the crystal produces a weak TL peak

at 76◦ C when a small number of electrons from the Fe2+ combine on Cr4+. Thermal

decay of the Fe2+/3+ is monitored by EPR at four different temperatures, and using

a general order kinetics model, the activation energy for this transition is calculated

to be 0.83 ± 0.04 eV.

121



7. Summary and Conclusions

7.1 LiGaO2 Summary

Intrinsic cation point defects have been identified and characterized for the first

time in LiGaO2 through the use of radiation and EPR measurements. In some sam-

ples, large concentrations of lithium vacancies are present in as-grown substrates that

serve as stable hole traps after ionizing radiation. These holes trapped on oxygen

ligands are paramagnetic, stable for days, and have an activation energy of approx-

imately 1.05 eV below the conduction band minimum. The paramagnetic spectrum

resulting from lithium vacancies is characteristic of nearly equal interaction with two

gallium neighboring ions. Thermal decay of lithium vacancies produces luminescence

with several broad peaks when heated above 150◦ C. Gallium vacancies have also been

found and partially characterized after electron irradiation, and have been found in

as-grown substrates. This defect is also paramagnetic with holes localizing on a single

oxygen ligand causing significant lattice relaxation resulting in a paramagnetic defect

that is stable for years. EPR spectra for gallium vacancies in LiGaO2 are from the

interaction with a single gallium neighboring ion. The activation energy of this defect

is estimated to be at least 2.5 eV below the conduction band minimum. Both defects

in LiGaO2 are examples of acceptor-bound small polarons, and the spin density on

the surrounding ions confirms the validity of the ionic model from CFT for developing

an understanding of the fundamental nature of these cation vacancies.

7.2 β-Ga2O3 Summary

Two important extrinsic point defects have been identified and characterized in β-

Ga2O3 for the first time. Single crystals of Ga2O3 grown in iridium crucibles have been

shown to incorporate significant concentrations of Ir3+ (5d6) ions onto the octahedral
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Ga(2) sites. This impurity acts as an unintentional deep donor, remaining as Ir3+ in

n-type material, and as Ir4+ (5d5) in lower Fermi crystals. Ir4+ has been observed

in both Mg and Fe doped Ga2O3 crystals through FTIR measurements. Large spin-

orbit interactions cause Ir4+ to have a low-spin S = 1/2 ground state configuration.

This impurity has a large degree of covalency highlighting some of the shortfalls of

CFT in accurately describing a defect model. Unpaired spin in the t2g orbitals is IR

active, resulting in a d−d transition within the t2g levels that is highly polarized and

peaking at 5153 cm−1 at room temperature. The unintentional presence of iridium

in bulk single crystals makes accurate assessment of suitable shallow acceptors more

difficult.

The thermal activation of the Fe2+/3+ level in β-Ga2O3 has also been determined

using a novel non-contact method. Fe3+ (3d5) is incorporated into Ga2O3 on the

octahedral Ga(2) sites acting as a deep acceptor. Using general order kinetics, the

acceptor level is found to have an energy of 0.83 ± 0.04 eV below the conduction

band minimum. Iron is incorporated into crystals either through deliberate doping

with Fe2O3 powders or as a impurity from the starting material of gallium powders.

Iron lowers the Fermi level of as-grown crystals making the material semi-insulating

by compensating the Si shallow donors. In Fe-doped Ga2O3 , electrons can be excited

off of Ir3+ making them Ir4+ and trapped at Fe3+ sites forming Fe2+ using sub-band-

gap light with wavelengths shorter than 442 nm. Combining FTIR measurements

with the observed changes in EPR signal intensity allows estimation of the total

concentrations of Ir4+ formed and Fe3+ incorporated into the crystal through the

growth process within a factor of two.
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7.3 Additional Intrinsic Point Defects: Finding Oxygen Vacancies

In both LiGaO2 and β-Ga2O3, oxygen vacancies remain undiscovered and un-

characterized. Lithium gallate remains a relatively unexplored material despite its

widespread use as a substrate. No calculations are available to suggest their depth

or role in the material. However, given the similarity to Ga2O3, analogies of oxy-

gen vacancies between the two materials should be considered. For Ga2O3, current

indications within the solid state community have concluded that oxygen vacancies

are deep donors and unsuitable for device applications. However, the role exhib-

ited by, and existing concentrations in as-grown crystals of these vacancies is yet to

unambiguously be determined.

Neutron irradiation of both crystals provides a possible path forward for uncov-

ering oxygen vacancies and their role. To date, neutron irradiation at the Ohio State

University reactor has been performed on only two Ga2O3 crystals. Both of these

crystals were as-grown UID single crystals and originally n-type. While gallium va-

cancy EPR signals were present in both, only one is suitable for detailed study. This

indicates that neutron flux, and therefore dose, in addition to finding a suitable sam-

ple is important for accurate and detailed studies. It is possible that the Fermi level

is not yet low enough in neutron irradiated crystals to detect oxygen vacancies. For

β-Ga2O3, samples doped with Fe or Mg already having low Fermi levels should be

considered candidates for neutron irradiation. This may assist in uncovering and

characterizing deeper levels not seen in the as-grown doped crystals. For LiGaO2, no

neutron irradiation experiments have been performed. If neutron irradiation creates

oxygen vacancies in these crystals, it may provide important information and clues

on how to create and monitor oxygen vacancies in Ga2O3.
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7.4 Extrinsic Point Defect Studies: Doping and Diffusion

Significant challenges remain in finding suitable extrinsic shallow acceptors for

β-Ga2O3. At present only three extrinsic defects have been intentional doped and

reported in the literature for Ga2O3: Fe, Mg, Cr. Two of these defects are known

to be acceptors: Mg and Fe. The role of Cr is unclear. Also, the role of copper and

lithium in β-Ga2O3 remain unexplored. Although expected to be a deep acceptor

from its position on the periodic table, Cu with a ground state configuration of

[Ar]3d104s1 has the potential to enter the crystal in either the 2+, 3+, or 4+ charge

state. With this variety of charge states, Cu may act as either an acceptor or a donor,

or both. It is also possible, that Cu may form more weakly coupled S = 1 which opens

up the possibility of reducing the activation energy. Lithium, with a ground state

configuration of [He]2s1, is expected to be an acceptor entering the crystal in the 1+

charge state. Lithium also carries the possibility of forming weakly coupled S = 1

defects which may be shallow. Diffusion experiments in air and with flowing nitrogen

should be perform on suitable n-type bulk Ga2O3 crystals.

Lithium gallate is largely unexplored for extrinsic defect studies and remains a

potential alternative to β-Ga2O3. Unintentionally present silicon in Ga2O3 has been

identified as the shallow donor and should explored through doping or diffusion studies

for LiGaO2. Similarly, Mg doping or diffusion should also be explored. Suitable shal-

low donors and acceptors may prove easier to identify in this ternary compound and

have broad functionality given the two different cation sites. Additionally, LiGaO2 has

not been shown to form self-trapped holes, a serious drawback in device application

for β-Ga2O3.
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7.5 Applications Beyond LiGaO2 and Ga2O3

The materials explored in this work have broad functionality and interest for the

power electronics and optoelectronics communities. Significant research remains for

these two materials to characterize the fundamental intrinsic and the role of other

extrinsic point defects for specific applications. Developments in understanding the

role of point defects in these materials has built a foundation to explore other next-

generation materials for lasers capable of operating at wavelength longer than 6 µm

including LiGaS2, LiGaSe2, BaGa4S7, BaGa4Se7, and the quaternary chalcogenides

BaGa2GeS6, and BaGa2GeSe6 and to improve bulk crystal growth for the United

States. These next generation materials are of immediate and future interest to

the Air Force, Department of Defense, Department of Energy, and United States

commercial industry.
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Appendix A. Spin Hamiltonian for Systems with S > 1/2

The generic spin Hamiltonian for any spin system can be written as,

H = βS · g ·B+ S ·D · S+ I ·A · S+ I ·Q · I− gnβnI ·B (A.1)

where β is the Bohr magneton, S is the spin operator, g is the g matrix, B is the

magnetic field, I is the nuclear spin operator, A is the hyperfine matrix, D is the

fine structure matrix, Q is the nuclear electric quadrapole matrix, gn is the nuclear g

factor, and βn is the nuclear magneton. [31, 33]. However, for Cr3+ in Ga2O3 not all

of these terms are needed based on the observed spectrum, shown in Figure A.1 [35].

The observed spectrum contains only two lines which result from the fine structure
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Figure A.1. Observed Cr3+ EPR spectrum in neutron irradiated β-Ga2O3 at 40 K with
a microwave frequency ν = 9.40 GHz, from 9 scans across the magnetic field values.
The magnetic field B applied is along the crystallographic b-axis.
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splitting and their associated transitions. Since, hyperfine lines are not observed

for this paramagnetic defect, only electron Zeeman and fine structure terms need

consideration. This simplifies the above expression to,

H = HZ +HZFS (A.2)

with Hz the electron Zeeman term and HZFS the zero-field splitting term. The zero-

field splitting terms are determined by the crystallographic structure of the material,

in this case monoclinic, and incorporated through the use of Stephen’s operators

[147, 148]. Since Ga2O3 is a low symmetry crystal, with a single crystallographic

symmetry axis, the b axis, the zero-field splitting term will contain both higher and

lower symmetry Stephen’s operators [34, 147–153]. The zero-field splitting term is

broken in an orthorhombic and a monoclinic portion,

HZFS = Hortho
ZFS +Hmono

ZFS (A.3)

which, for Cr3+ with S = 3
2
in Ga2O3 , have Stephen’s operators of second rank

Hortho
ZFS = B0

2O
0
2 + B2

2O
2
2 (A.4)

Hmono
ZFS = B1

2O
1
2 (A.5)

where the Stephen’s operators are defined as,

O0
2 = 3Sz − S(S + 1) (A.6)

O1
2 =

1

4
[Sz (S+ + S−) + (S+ + S−)Sz] (A.7)

O2
2 =

1

2

[

S2
+ + S2

−

]

(A.8)
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The expression for the monoclinic terms included in the zero field splitting, arise

from the selection of the symmetry axis for a given crystal with its relation to the

magnetic field. In this example, the y-axis has been chosen as the axis of symmetry,

and negates the use of negative Stephen’s operators and coefficients.

Simplifying equation A.3, an isotropic g is assumed, transforming the electron

Zeeman term into,

HZ = g · β [SxBx + SyBy + SzBz] (A.9)

with

Bx = B sin θ cosφ (A.10)

By = B sin θ sinφ (A.11)

Bz = B cos θ (A.12)

Sx =
1

2
(S+ + S−) (A.13)

Sy =
1

2i
(S+ − S−) (A.14)

and Sz is the spin of the system, defined as 3
2
. Substituting in the the various terms,

equation A.5 becomes,

HZ = gβB

[

Sz cos θ +
1

2
(sin θ cosφ− i sin θ sinφ)S+

+
1

2
(sin θ cosφ+ i sin θ sinφ)S−

]

(A.15)

As a first approximation, the constant term S(S + 1) is dropped from O0
2 and g is

reduced to a scalar quantity when combining the electron Zeeman and zero field

129



splitting terms,. The resulting form of the spin Hamiltonian becomes,

H = gβBSz cos θ +
1

2
gβB sin θ (cosφ− i sinφ)S+

+
1

2
gβB sin θ (cosφ− i sinφ)S− + 3B0

2O
0
2 (A.16)

+
1

4
B1

2 (SzS+ + SzS− + S+Sz + SzS−) +
1

2
B2

2

(

S2
+ + S2

−

)

Now, the spin Hamiltonian can be setup as a matrix with each element describing

the energy of a given transition for ms. Since the spin of the Cr3+ defect is S = 3
2
,

the basis set uses | ms〉 with ms =
+ 3

2
,+ 1

2
,− 1

2
,− 3

2

+ 3
2

+ 1
2

− 1
2

− 3
2

+ 3
2

a1,1

+ 1
2

a2,1 a2,2

− 1
2

a3,1 a3,2 a3,3

− 3
2

0 a4,2 a4,3 a4,4

To solve for each of the individual elements, the raising and lowering operators

are calculated using,

S+ | ms〉 = [S(S + 1)−m(m+ 1)]
1
2 | m+ 1〉 (A.17)

S− | ms〉 = [S(S + 1)−m(m− 1)]
1
2 | m− 1〉 (A.18)

which then yield the following values for S+ and S− for the various transitions,

S+ |+ 1
2
〉 =

√
3 |+ 3

2
〉 S− |+ 3

2
〉 =

√
3 |+ 1

2
〉

S+ |− 1
2
〉 = 2 |+ 1

2
〉 S− |+ 1

2
〉 = 2 |− 1

2
〉

S+ |− 3
2
〉 =

√
3 |− 1

2
〉 S− |− 1

2
〉 =

√
3 |− 3

2
〉
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With these values, the individual elements can calculated,

a1,1 =
3

2
gβB cos θ +

27

4
B0

2 (A.19)

a2,2 =
1

2
gβB cos θ +

3

4
B0

2 (A.20)

a3,3 = −1

2
gβ cos θ +

3

4
B0

2 (A.21)

a4,4 = −3

2
gβ cos θ +

27

4
B0

2 (A.22)

a2,1 =
√
3gβBA1 sin θ +

√
3

2
B1

2 (A.23)

a3,1 =
√
3B2

2 (A.24)

a3,2 = 2gβBA1 sin θ (A.25)

a4,2 =
√
3B2

2 (A.26)

a4,3 =
√
3gβBA1 sin θ −

√
3

2
B1

2 (A.27)

a1,2 = a∗2,1 (A.28)

a1,3 = a∗3,1 (A.29)

a2,3 = a∗3,2 (A.30)

a2,4 = a∗4,2 (A.31)

a3,4 = a∗4,3 (A.32)

where in above equations,

A1 =
1

2
(cos θ + i sinφ) (A.33)

With an expression for the energy of each transition and a set of real values along

the diagonal, it is now possible to solve the system of equations for their respective

eigenvalues at a given magnetic field for specified angles of θ and φ. Computing the

energy at discrete magnetic values will produce a set of values for each transition, and

for a given microwave frequency, a prediction can be made of where a transition (i.e.
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absorption of microwave energy) is likely to be observed in an EPR spectrum, shown

in Figure A.2. The calculated Cr3+ ion transitions with ν = 9.4 GHz, assuming
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Figure A.2. Energy level of Cr3+ ion in β-Ga2O3 with magnetic field B aligned with
crystallographic b axis with a microwave frequency ν = 9.40 GHz. For this calculation,
an isotropic g is assumed with a value of 1.97 [35]. The length of the arrows between
the number transitions correspond to the microwave frequency.

an isotropic g, are represented by the arrows. These transitions coincide with the

observed EPR tranistions of the Cr3+ lines shown in Figure A.1. Understanding

key points of development of the spin Hamiltonian, generation of the energy level

plots, and angular dependence modeling (a.k.a crystal roadmap) for Cr3+ , enables

application of this algorithm to any spin system. At present, a similar development

for the Cr2+ , Cr4+ , Fe2+ , Fe3+ , and Fe4+ spin systems are underway. A spin

Hamiltonian for the Mn2+ (3d5) has already been developed and will be used as a

guide for pursuing Fe3+ along with Meil’man’s work [115, 142, 154]. Development of

spin Hamiltonian analysis will aid in identification of the unknown signals seen in
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β-Ga2O3 at low temperatures.
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