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Abstract

Unmanned aerial vehicles are no longer used for just reconnaissance. Current

requirements call for smaller autonomous vehicles that replace the human in high-risk

activities. Many times these activities are performed in GPS-degraded environments.

Without GPS providing today’s most accurate navigation solution, autonomous navi-

gation in tight areas is more difficult. Today, image-aided navigation is used and other

methods are explored to more accurately navigate in such areas (e.g., indoors). This

thesis explores the use of inertial measurements and navigation solution updates using

cameras with a model-based Linear Quadratic Gaussian controller. To demonstrate

the methods behind this research, the controller will provide inputs to a micro-sized

helicopter that allows the vehicle to maintain hover.

A new method for obtaining a more accurate navigation solution was devised,

originating from the following basic setup. To begin, a nonlinear system model was

identified for a micro-sized, commercial, off-the-shelf helicopter. This model was ver-

ified, then linearized about the hover condition to construct an Linear Quadratic

Regulator (LQR). The state error estimates, provided by an Unscented Kalman Fil-

ter using simulated image measurement updates, are used to update the navigation

solution provided by inertial measurement sensors using strapdown mechanization

equations. The navigation solution is used with a reference signal to determine the

position and heading error. This error, along with other states, is fed to the LQR,

which controls the helicopter. Research revealed that by combining the navigation

solution from the INS mechanization block with a model-based navigation solution,

and combining the INS error model and system model during the time propagation

in the UKF, the navigation solution error decreases by 20%. The equations used for

this modification stem from state and covariance combination methods utilized in the

Federated Kalman Filter.
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Model-Based Control using Model and Mechanization

Fusion Techniques for Image-Aided Navigation

I. Introduction

The successful demonstration of the RQ-1 Predator Unmanned Aerial Vehicle

(UAV) introduced a new way to conduct warfare. These relatively low-cost drones

were initially used to perform reconnaissance missions, loitering for up to 24 hours 1.

The operators of the system controlled the vehicle from a ground control station sev-

eral miles from the area of interest. This stand-off capability allowed the mission

to be performed in high-risk areas of operation without endangering the lives of on-

board pilots or losing high-cost aircraft. The RQ-1’s role was quickly expanded to

include offensive air-to-ground engagement using Hellfire missiles. With the configu-

ration of missiles, the designation changes to the MQ-1 Predator. There is no doubt

that the Predator was the first-mover in the world of UAVs; but, with first-movers,

come fast-followers. UAVs are now a viable consideration for today’s military to

fill current capability gaps (e.g., mine detection; signals intelligence, precision tar-

get designation, etc.) [23]. In the DoD’s Unmanned Systems Roadmap 2007-2032,

many implementations are being considered in effort to “invest in new equipment,

technology, and platforms for the forces, including advanced combat capabilities” in

terms of UAVs [23]. Not only is the mission of the UAV being expanded, but new

operational environments are also being explored. One example of a new operational

environment is the urban environment. Many unmanned systems are currently in

development to operate within this challenging environment; these systems include

ground robots and micro-sized aerial vehicles (MAVs). The urban environment poses

a unique challenge for navigation in that the most accurate navigation solution to

date, Global Positioning System (GPS), is often degraded or denied, especially inside

1http://www.af.mil/factsheets/factsheet.asp?fsID=122
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buildings or underground. Alternatives to GPS are being explored to make the use

of MAV’s in the urban environment a reality.

1.1 Purpose

The purpose of this thesis is to develop a model-based Linear Quadratic Gaus-

sian (LQG) controller design to control a MAV when GPS is denied. Because this

design is model-based, a system would need to be chosen before a model is devel-

oped. Logically, the MAV would need to stop, look around, and change directions

in a worst-case setting which heavily constricts movement due to walls, furniture,

etc. The system chosen to meet this requirement is a vertical take-off and landing

(VTOL) aircraft, such as a helicopter. Furthermore, an inertial navigation system

and eventually cameras will be used to calculate a navigation solution in the absence

of GPS. The image processing portion of this effort will not be undertaken, and is

assumed to be available for integration at a later date. The innovative portion of this

design is to create and test a method for combining system and inertial models to

provide a more accurate solution of the vehicle’s position and heading. This design, if

successful, could be leveraged to help meet future requirements of today’s warfighters.

1.2 Previous Work

Designing MAV controllers while considering the complexities of the urban en-

vironment is not cutting-edge work. Many papers have been published featuring the

use of inertial and/or vision navigation of a micro-sized helicopter [7] [20] [19]. One

example is detailed in an effort conducted by Allen Wu, Eric Johnson, and Alison

Proctor from the Georgia Institute of Technology [1].

Wu et al. argued that in 2005 researchers had only “begun seriously investi-

gating the application of vision sensors in inertial navigation” [1]. They investigated

using an Extended Kalman Filter (EKF) to process measurement updates derived

from image processing to correct for accelerometer and gyroscope drift that is in-

herent in inertial navigation systems. This corrected solution would serve as the
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navigation solution for the controller. The crux of their design was to demonstrate

the performance of the vision-based EKF through simulations using GPS readings as

as truth. Although, the paper proved the design to be successful, the EKF is not

the only state estimation method used for nonlinear filtering. A more recent Kalman

filtering method has been devised that captures higher-order nonlinearities in a non-

liner model. This effectiveness of this filter, unscented Kalman filter (UKF), has been

tested many times against the EKF and repeatedly shown to provide superior per-

formance. Two such studies were performed by First Lieutenant Sedat Ebcin from

AFIT, who used the UKF with vision-aided inertial navigation [3], and Rudolph van

der Merwe and Eric A. Wan from Oregon Health & Science University, whose work

integrated the UKF study with an implementation on a MAV [20].

First Lieutenant Sedat Ebcin, conducted research on the UKF and its use with

a tightly-coupled, image-aided, inertial navigation system (INS) [3]. His accomplish-

ment was a follow-on to an earlier AFIT effort to fuse image and inertial navigation

information using an EKF. Image measurements depicting range information to selec-

tive features were used in a feedback configuration to provide state estimates in order

to correct the INS trajectory. The simulation was performed using a Monte Carlo

analysis approach, followed-on by an experiment using binocular vision to calculate

a trajectory inside a building. The results concluded that the UKF addressed the

“destabilizing effects of linearization errors” found to be characteristic of the EKF,

thus provided a notable improvement in the estimate of the navigation states dur-

ing simulation and test [3]. Likewise, Rudolph van der Merwe and Eric A. Wan

investigated the deficiencies found using the the EKF, which is considered by some

the industry standard for nonlinear filtering, with integrated navigation system plat-

forms [20]. The thrust of their work was to prove the UKF’s, otherwise known as a

Sigma-Point Kalman filter, superior performance in state estimation to the EKF in

navigation by loosely-coupling a GPS receiver with an INS. Their stated points of

query were limited to: 1) six degrees-of-freedom (6DOF) accuracy, 2) GPS latency

resolution (to test a “sensor latency compensation technique”), and 3) closed-loop
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control. When constructing the algorithm for simulation, a reduced nonlinear math-

ematical model was used, specific to the hardware to be later tested. Two types

of UKFs were analyzed, the square-root UKF and the square-root central difference

Kalman Filter. The square root approach was used to provide numerical stability to

the calculations which is known to be problematic due to rounding-off, typical of most

computer systems. The results of their efforts support their hypothesis of the UKF’s

superiority. Their conclusions were supported by simulation and hardware experi-

mentation using an instrumented X-Cell-90 helicopter, created by MIT’s Laboratory

for Information and Decision Systems. Not only have many studies been performed

comparing the UKF to the EKF using a micro-sized helicopter, LQG control has also

been utilized in controlling the same type of vehicle.

Zhe Jiang, Jianda Han, Yuechao Wang, and Qi Song, from the Chinese Academy

of Sciences, developed an LQG controller using a UKF for state estimation to sim-

ulate a helicopter maintaining a hover in a feedback configuration [9]. Their effort

is one example of a simple design using LQG control techniques to control a highly

nonlinear system. Another example is an effort made by John C. Morris, Michiel

van Nieuwstadt, and Pascale Bendotti, from Caltech [10]. This group designed an

LQG controller based on a nonlinear helicopter model to maintain hover. The design

followed the basic steps for LQG control; however, mostly focused on the system iden-

tification process. One concern stated in the paper centered around the high degree

of uncertainty in the yaw axis performance of their helicopter. The helicopter model

used considers a tail rotor to control the yaw motion. Their paper suggests that an

asymmetry in accusation could be the cause, and this effect was not captured in the

system model. Plainly stated, “it is much easier to yaw in the direction opposite to

the rotation direction of the main rotor” [10]. As a result, they reiterated the im-

portance of modeling the dynamics of the system when implementing a model-based

controller.

Numerous lessons learned can be gleaned from the many references previously

mentioned. The concepts of LQG control of a hovering vehicle using INS and a UKF
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with vision updates have all been previously accomplished. The concept of combining

models to provide a better navigation solution for flight control is an area of control

that is seemingly untouched. The work performed in this paper will incorporate

information garnered from these previous works, along with others, to implement a

new strategy in model-based control. This thesis will cover background supporting the

methodology, the methodology and design, simulation and hardware results analysis,

and conclusions. The first step is to understand the concepts behind the design.
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II. Background

T
his chapter provides an introduction to the ideas and concepts behind the re-

search and design effort presented in this paper. The objective of this thesis is

to build a model-based LQG controller for a micro-sized helicopter. The controller will

utilize a system model/inertial navigation integration method to help the helicopter

maintain a hover condition. The background supporting the design is introduced in

a way that each new concept builds upon the previous. The concepts to be covered

in order of occurrence are: coordinate and transformation systems, Inertial Navi-

gation Systems, Kalman filtering techniques, Linear Quadratic Gaussian controllers,

Vision-Aided Navigation, and the Vicon System.

2.1 Coordinate Systems and Transformations

In navigation, the chosen coordinate reference determines the way position in-

formation is calculated and conveyed. Whether it be degrees in latitude and longitude

or height in kilometers above a defined ellipsoid, having a reference standard between

systems reduces errors in navigation. The following coordinate frames of reference are

commonly used in navigation: inertial, Earth, navigation, and body frame [30]. An

inertial coordinate system is defined as a non-accelerating, non-rotating coordinate

system [32]. In navigation, the Earth-Centered inertial coordinate system represents

a coordinate system which the axes are pointed to fixed stars. For navigation with

respect to the Earth, the Earth-centered, Earth-fixed is the more logical frame of

reference to be used.

2.1.1 Earth-centered, Earth-fixed. The Earth-centered, Earth-fixed (ECEF)

frame of reference, otherwise known as the Earth frame, is a rotating, right-hand

coordinate system [30]. This frame of reference uses the coordinates x, y, and z with

the origin located at the Earth’s center of mass. The ECEF frame rotates on the

z-axis at the same rate as the Earth’s rotation, allowing the x-axis to be fixed at the

crossing of the prime meridian and the equator. The y-axis also protrudes out the

equator, orthogonal to the x-axis and the z-axis, as displayed in Figure 2.1.
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Figure 2.1: Earth-centered, Earth-fixed Coordinate System. A right-hand, Earth-
centered, rotating coordinate system used in navigation.

A point referenced in this coordinate system is expressed in meters or kilometers.

Applications using the ECEF frame include, but are not limited to, navigation over

short distances, such as missile navigation, and over long distances, such as navigation

with GPS. Another frame of reference used extensively for navigating is the navigation

frame [30].

2.1.2 Navigation. The local geographic navigation frame, otherwise known

as NED (North East Down) frame, is a rotating frame of reference with its origin

located at the navigation system (see Figure 2.2) [30]. Its positive x-axis points to

true north, positive y-axis points east, and positive z-axis points down. The x-y plane

is always tangent to the Earth’s surface. This frame of reference is a moving plane

used extensively with Inertial Navigation Systems [25]. To determine the position in

the NED frame, the raw inertial measurement data is typically resolved in the body

frame.

2.1.3 Body. The body frame is a rotating frame of reference with a defined

point of origin located somewhere near the body’s center of mass. In Figure 2.3, the

body is an aircraft, with the positive x-axis pointing out the nose of the aircraft, the
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Figure 2.2: Local Geographic Navigation Frame in Relation to ECEF [33]. The nav-
igation frame is a right-hand, rotating coordinate system, with the xy-
plane tangent to the Earth’s surface and centered at the end of vector
pn.

positive y-axis pointing out the right wing, and the positive z-axis pointing out the

bottom, each axis being orthogonal to the others. This frame of reference is used

to quantify roll, pitch, and yaw to be used for attitude calculations. Roll is defined

as a rotation of the rigid body about the x-axis, while pitch and yaw describes the

rotations about the y and z axes, respectively. The angles of rotation, also known

as Euler angles, under particular circumstances are used to describe this change in

attitude. The Euler angles, φ , θ, and ψ, represent roll, pitch, and yaw angles,

respectively.

The Euler angles, defined by the order of rotation, are used to transform position

vectors from one reference frame to another. The order of rotation, called (3,2,1), is

used in aircraft navigation [26]. It requires a rotation about the z-axis first, then a
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Figure 2.3: Body Frame of Reference [30]. A rotating frame of reference with the
center of mass of a rigid body depicting the origin, commonly used in
inertial navigation.

rotation about the y-axis, then finally a rotation about the x-axis. This sequence of

events defines the relationship between the navigation frame and the body frame and

is required to accurately produce a body-to-nav DCM (direction cosine matrix). A

DCM is a linear transformation used to convert position information from one frame

of reference to another. The body-to-nav DCM used to transform a position vector

from the body frame of reference to the navigation frame of reference is shown in

Equation (2.1) [30].

Cn
b =




cosψcosθ cosψsinθsinφ− sinψcosφ cosψsinθcosφ + sinψsinφ

sinψcosθ sinψsinθsinφ + cosψcosφ sinψsinθcosφ− cosψsinθ

−sinθ cosθsinφ cosθcosφ


 (2.1)

Coordinate reference frames are not the only consideration when defining stan-

dards in navigation. Reference ellipsoids and gravity models are referenced also when

calculating a navigation solution. A common reference system helps eliminate errors

when computing relative position. The most common standard used in the United

States is the World Geodetic System (WGS) 84.

2.1.4 WGS 84. The WGS 84 is a standard by which a gravity model,

reference ellipsoid, and navigation coordinate system is defined. The coordinate frame

employs coordinates, λ, l, h, representing geodetic latitude, geographic longitude, and

height above the WGS 84 ellipsoid, respectively. These coordinates are based on a
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reference defined by an ellipsoid depicting the approximate shape of the earth, the

Earth’s axis of rotation, and specific points of longitude. For latitude, 0◦ is referenced

at the equator, while ± 90◦ latitudes indicate locations approximate to the north and

south poles. For longitude, the earth is divided into slices from 0◦ to 360◦, starting and

ending at the prime meridian located in Greenwich, England. This reference system

was developed for use with the GPS and eventually became a “de facto” international

standard [21].

Figure 2.4: Ellipsoidal Coordinates with λ = Geodetic Latitude and l = longitude1.
Describes the variables used with WGS 84 in defining ECEF coordinates,
depicted by position “P”.

The relationship between the WGS 84 and the ECEF coordinate frames is shown

pictorially in Figure 2.4, and depicted numerically through Equations (2.2a) - (2.2e)

in terms of the prime vertical of curvature (N), h, flattening (f), ellipsoid equatorial

radius (a), ellipsoid polar radius (b), latitude (λ), and longitude (l) [32].

1http://www.gloposys.de/Global%20Positioning%20System%20CD/Abbildungen/Abb-3-11.jpg
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x = (N + h)cos(λ)cos (l) (2.2a)

y = (N + h)cos(λ)sin (l) (2.2b)

z = [1− (f(2− f))N + h]sin(λ) (2.2c)

N =
a√

1− (f(2− f))2sin2(λ)
(2.2d)

f =
a− b

a
(2.2e)

The DCM used to transform vectors in the ECEF frame to the Navigation frame

using WGS 84 coordinates is shown in Equation (2.3) [32].

Cn
e =




−sinλ cos l −sinλ sin l cosλ

−sin l cos l 0

−cosλ cos l −cosλ sin l −sinλ


 (2.3)

These DCMs can also be used together to perform additional coordinate systems

tranformations. For example, to convert from body frame of reference to the ECEF

frame of reference, a simple matrix transform and multiplication using previously

defined DCMs are required: Ce
b = Cn T

e Cn
b . To recap, coordinate reference frames are

useful in understanding the various ways position can be calculated, transmitted, and

conveyed in different navigation systems. In this research the primary instrument

used for producing the navigation solution is the Inertial Navigation System.

2.2 Inertial Navigation Systems

Inertial Navigation Systems (INS) are instrumental in navigation today. The

concept behind these systems is to keep track of position, velocity, and attitude from

only knowledge of the starting point by measuring translation acceleration and rate

of change in attitude. Unlike other popular navigation systems, INS systems are

completely passive and do not require external signals; therefore, the system cannot
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be jammed or spoofed. INS systems are divided into two categories: gimbaled and

strapdown. Strapdown systems constitute over 90% of INS systems currently used

and will be the focus of this paper [26]. These systems use software to calculate

the navigation solution using sensory inputs. Their mechanizations define how these

solutions are calculated, and are tailored dependent upon their intended use. The

strapdown mechanization used in this thesis is the local geographic navigation frame

mechanization, as shown in Figure 2.2 [30]. The sensor package used consists of six

rigidly mounted sensors: three gyroscopes, placed orthogonally with respect to each

other and aligned with the the body’s x, y, and z-axes, sensing rotation rates in pitch,

roll, and yaw; and three accelerometers, also mounted in an orthogonal triad, sensing

motion in the x, y, and z-directions of the body. To summarize, accelerometers are

used to determine velocity and position, while the gyroscopes are used to determine

attitude and attitude rates. With this in mind, several basic tasks are executed within

the system to derive the required information for navigation. The sequence of these

tasks are interpreted from Figure 2.5, and explained in the following text.

Figure 2.5: Strapdown INS - Local Geographic Navigation Frame Mechanization [30].
Used to calculate position, velocity, and attitude in Strapdown INS Sys-
tems used for long distance travel.

The body-mounted accelerometers shown in Figure 2.5 measure a specific force,

designated f b. The specific force accounts for the 3D acceleration, to include gravity,
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and is easily translated to the navigation frame or the Earth frame of reference using

transformation matrices discussed in the previous section. These matrices are for-

mulated from aircraft’s attitude produced by the body-mounted gyroscopes, which is

later discussed. Once fn or f e is determined, acceleration in the corresponding frame

of reference can be easily calculated by adding the gravity component (g), derived

from a gravity model, in the commonly known “navigation equation”, referenced in

Equation (2.4) [30]:

an = Cn
b f b + gn (2.4)

This equation is the basis for inertial navigation. The DCM used to convert

fb to the navigation frame of reference is calculated by knowing the body’s attitude

rates. These body rates (ωb
ib) come from the three gyroscopes shown in Figure 2.5 [30].

First, ωb
ib is used to calculate the body rate with respect to the navigation frame [30]:

ωb
nb = ωb

ib − Cb
n [ωn

ie + ωn
en] (2.5)

The components ωn
ie and ωn

en constitute the navigation frame rates, and are

referenced, along with the other corrections, in Table 2.1. This equation can be

manipulated into an equation which describes the propagation of the DCM, where

Ωb
nb is the skew symmetric form of the body rate in the navigation frame ωb

nb [30]:

Ċn
b = Cn

b Ωb
nb (2.6)

This particular calculation captures attitude corrections; however, the correc-

tions to the acceleration derived from the navigation equation, Equation (2.4), still

need to be identified. These corrections come from the gravity computer and the

coriolis correction blocks in Figure 2.5, and are summarized in Table 2.1.
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Table 2.1: Inputs for Error Correction in Navigation [30]. These inputs are used
to correct the navigation state for systems using local geographic frame
mechanization.

Input Description Type of Correction

ωn
ie “The Earth’s rate with respect to the inertial

frame” in the nav frame - used to subtract
out the effects of the Earth’s rotation

Attitude

ωn
en “The turn rate of the navigation frame with

respect to the Earth” in the nav frame - pro-
vides an angular correction of the nav frame
due to the curvature of the Earth

Attitude

ωie × (ωie × r) Centripetal acceleration - used to define the
local gravity vector by adjusting the local
mass attraction (gravity) for its effects

Acceleration

(2ωn
ie + ωn

en)× vn
e The coriolis acceleration, where vn

e is the
ground speed in the nav frame - approxi-
mates an error caused by an effect of a body
moving “over the surface (air or water) of a
rotating earth”

Acceleration

To summarize, the final solution with corrections can be expressed in Equa-

tion (2.7). The term f b represents the specific force vector provided by the accelerom-

eters. This vector is translated to the navigation frame using the information provided

by the gyroscopes. Several previously mentioned corrections are made, then finally

the local gravity vector is added to the acceleration in the down direction.

an
e = Cn

b fb − [2ωn
ie + ωn

en]× vn
e + g − ωie × [ωie × r] (2.7)

With this final acceleration term, an
e , the position can be calculated by integrat-

ing twice then adding the required input of initial estimates. While understanding

strapdown INS mechanization is essential when integrating an INS system into a nav-

igation controller, state estimation is also a critical component in reducing errors due

to stochastic inputs. The type of state estimator to be used with the controller in

this effort is the Kalman filter.
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2.3 The Kalman Filtering Techniques

Kalman Filters are optimal, recursive state estimators used to estimate system

states in the presence of random inputs. The most common examples of random

signals, also termed as non-deterministic signals, are disturbances and noise. The

traditional Kalman Filter accomplishes this task through the propagation and update

of a linear stochastic dynamics model. This model can be represented by a differential

equation in terms of the system states (x), inputs (u), and process noise (w) as shown

in Equation (2.8), where A, B and G are matrices describing the relationship of these

terms. A difference equation, Equation (2.9), can be used in place of the differential

equation for implementation in discrete-time using equations found in Table 2.2, where

∆t is the sample time step and Q is the process noise covariance matrix. In the

difference equation, Φ is identified as the state transition matrix, and Bd is the input

transition matrix. These matrices are used to relate the current state, input, and

noise to the state at the next time step, ti+1. Also, with Kalman filtering, discrete

measurements are taken to perform updates. These measurements (y) are expressed

in terms of the states and measurement noise (v) in Equation 2.10, where H is the

output transition matrix.

ẋ(t) = Ax(t) + Bu(t) + Gw(t) (2.8)

x(ti+1) = Φ(ti)x(ti) + Bd(ti)u(ti) + w(ti) (2.9)

y(ti) = Hx(ti) + v(ti) (2.10)

The predicted statistics of this model constitute the mean, x̂, and the associated

uncertainty, which is captured in the covariance matrix, P . Because the traditional

Kalman filter produces state estimates based on the most likely value of the state

corresponding to the mode/mean of its Gaussian probability density function (pdf)
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Table 2.2: Continuous to Discrete-Time Matrix Formulations [17]. These symbols
and associated equations can be used to transform a differential equations
to difference equations.

Symbol Equation Matrix

Φ eA∆t State transition matrix

Qd

∫ ti+1

ti
Φ(ti+1, τ)G(τ)Q(τ)GT (τ)ΦT (ti+1, τ)dτ Process noise intensity

Bd

∫ δt

0
Φ(ti+1, τ)B(τ)dτ Input matrix

G G Noise input matrix

derived from all past measurements and the stochastic dynamics model, it is con-

sidered an optimal estimator [17]. The state estimates are updated periodically to

decrease the uncertainty due to the inevitable introduction of noise and disturbances

in the system. The time period between updates is referred to as “propagation”, as

shown in Figure 2.6.

Figure 2.6: Kalman Filter Execution [32]. This iterative sequence is divided into
two parts: propagation and measurement update. The minus superscript
signifies the estimated state before update, and the plus signifies the es-
timated state after an update.

During propagation, the states are propagated forward using the system model

with added uncertainty increasing with every time step. The following equations are
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used to update the covariance and state estimate during propagation:

x̂(t−i ) = Φ(ti−1)x̂(t+i−1) + Bd(ti−1)u(ti−1) (2.11a)

P (t−i ) = Φ(ti−1)P (t+i−1)Φ
T (t−i−1) + Qd (2.11b)

During the update, the difference between the measured (zmeas) and predicted

values (Hx̂(t−i )), called the residuals, are calculated. The residual covariance is then

used to formulate the Kalman gain, K, using Equation (2.12a). The Kalman gain

determines the weighting of the measurement used in the calculation of the updated

covariance and expected state values. The H matrix dictates the relationship between

the states and the measurement, while the R matrix contains the covariance for the

sensor noise [17]. The equations used to determine the Kalman gain and the residual

covariance, Pres, are shown below:

K(ti) = P (t−i )HT Pres(ti)
−1 (2.12a)

Pres(ti) = HP (t−i )HT + R (2.12b)

The gain, output covariance matrix, and the residuals are then used to update

the predicted mean (x̂) and covariance (P):

x̂(t+i ) = x̂(t−i ) + K(ti)
[
zmeas(ti)−Hx̂(t−i )

]
(2.13a)

P (t+i ) = P (t−i )−K(ti)HP (t−i ) (2.13b)

After the update, the covariance and mean propagate, thus repeating the se-

quence.

2.3.1 Extended Kalman Filter. The EKF is a type of Kalman filter used

to account for nonlinearities in system and measurement models and can be con-
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sidered the industry standard to reduce errors in nonlinear systems like the one in

Equation (2.14) [15].

ẋ(t) = f(x, u, t) + Gw(t) (2.14)

The EKF linearizes the nonlinear system and measurement models about the

current operating condition. This linearization process produces a linear system

model, only applicable during the next time step, which is applied to the traditional

Kalman filter algorithm. The process for Extended Kalman filtering, like the tradi-

tional, is executed within two steps iteratively [15]:

1. Propagation

2. Measurement Update

Propagation. Time propagation is performed a little differently

than the traditional Kalman filter. The state propagation equation, Equation (2.15),

uses the integral of the nonlinear differential equation with respect to time, quantified

using the current state estimate and inputs, to add to the previous state estimate.

x(t−i ) = x(t+i−1) +

∫ ti

ti−1

f [x̂(t/ti), u(t), t] dt (2.15)

The propagation of the state covariance, P , uses the equation referenced in

Equation 2.11b. Before this equation can be used, the state transition matrix, Φ,

must be realized. The EKF performs this task by linearizing the nonlinear system

equation, f(x, u, t), using only the first order of its Taylor series expansion, shown in

Equation 2.16, then evaluated at the current condition. The discrete terms P and Qd

are then calculated using previously defined discrete-time conversion methods (see

Table 2.2). These calculations occur each time step, making A, Φ, and Qd time-

varying.
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A[ti, x̂(t−i )] 4 ∂f [x, u, ti]

∂x

∣∣∣∣
x=x̂(t−i )

(2.16)

Like the traditional Kalman filter, the covariance and state estimate continue

to be propagated iteratively until a measurement update comes available.

Measurement Updates. During the measurement update for the

EKF, Equations (2.12a) - (2.13b) are used with one possible constraint: unlike the

traditional Kalman filter, the measurement model in terms of the states is not always

linear. This issue is resolved by linearizing the nonlinear measurement model, h,

about the current operating condition, shown in Equation (2.17).

H[ti, x̂(t−i )] 4 ∂h[x, ti]

∂x

∣∣∣∣
x=x̂(t−i )

(2.17)

The linearized result, H, is now available to update the state estimate and co-

variance [15]. From here, the state estimate and covariance are propagated forward

until a new update is available, at which time the new linearized predictions are pro-

duced again based on the the new current estimates [15]. This explanation provided

a brief summary of the EKF; however, it is not the only choice available in Kalman

filtering for nonlinear systems. Another example of such a filtering technique is the

Unscented Kalman filter.

2.3.2 Unscented Kalman Filter. Otherwise known as a Sigma Point Kalman

Filter (SPKF), the UKF also attempts to estimate states of a nonlinear system. The

major differences between the algorithm development of the EKF and the UKF is

that instead of propagating the mean and covariance values, sigma points, describing

the pdf, are propagated, transformed, and their statistics are used to update the mean

and its uncertainty [32]. Several studies have shown that the UKF outperforms the

EKF; however, the downfall is the longer computation time required to propagate

sigma points [3] [34]. The UKF method is broken into three steps:

19



• Build Sigma Points

• Propagate Sigma Points

• Perform Measurement Update

Build Sigma Points. The UKF deals with nonlinearities in a

system a better than the EKF. Where the EKF uses a first-order approximation for

the system model, the UKF uses a higher-order approximation, which is a function of

the unscented transform. The “unscented transformation” is a method of “calculating

the statistics of a random variable which undergoes a nonlinear transformation” [12].

Both the EKF and UKF assume the pdf to be Gaussian; however, to define variations

of the state pdf, the UKF uses sigma points instead of the mean and covariance

to more precisely propagate and update. Each sigma point is propagated through

the nonlinear function, then weighted, then used to calculate the state estimate and

covariance. The number of sigma points used is one more than twice the number of

states (2L+1). In determining the estimated mean and covariance, the engineer has

a few parameters that are design specific [32]:

λ = α2(L + κ)− L (2.18a)

ps = L + λ (2.18b)

W0m =
λ

ps

(2.18c)

W0c = W0m + (1− α2 + β) (2.18d)

Wukf =
1/2

ps

(2.18e)

The weighting’s tuning parameters, λ, α, β, and κ, are used for scaling, changing

the spread, tuning, and depicting the shape, respectively. The last three variables are

used by the engineer to tune the filter. Typical parameter values for Gaussian pdfs

are: κ = 0 and β = 2. The tuning parameter α value is typically selected between

20



1e-4 ≤ α ≤ 1 [27]. After the tuning parameters are selected, the calculated weights

are used to determine the estimated states and uncertainty. The weight is a function

of the matrix. The weighting is defined by three values: W0m - weighting for estimated

mean for nominal sigma point, W0c - weighting for estimated covariance for nominal

sigma point, and Wukf - remaining weight for all other sigma points related to mean

(x̄) and covariance, indicating the spread. But, before the weights can be applied, the

sigma points (χ) need to be built [32],

χ0 = x̄ (2.19a)

χk = xmean = x̄−
(

c
√

(L + λ)Pxx)
)

k
(2.19b)

χk+L = x̄ +
(

c
√

(L + λ)Pxx

)
k

(2.19c)

where “k” represents the kth sigma point and corresponds to the kth column of the

concatenated matrix, χ. The vector χ0 is the mean, while the other vectors are χ0

plus or minus the Cholesky square root of a weighted covariance direction. Usually

each sigma point vector has a magnitude and direction different than the others.

These sigma points will undergo a transformation using nonlinear models during the

propagation and measurement update phases. This transformation is the unscented

transformation previously discussed, which is the “basis of the UKF” [32].

Propagate Sigma Points. During propagation, the sigma points

are transformed through the nonlinear propagation function, f . Each column in the

matrix χ represent 2L + 1 vectors (χ0 through χ2L):

χ(ti) = f [χ(ti−1), u(ti−1)] (2.20)

After the sigma point transformation, the mean and covariance of χ(ti) are

calculated using the following equations, where Qd is the discrete-time process noise
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covariance. The resultant state estimate and covariance are calculated as follows,

where k symbolizes the kth sigma point vector.

x̂(t−i ) = W0mχ0(ti) +
2L∑

k=1

Wukfχk(ti) (2.21a)

Pxx(t
−
i ) = W0c

(
χ0(ti)− x̂(t−i )

) (
χ0(ti)− x̂(t−i )

)T
+

2L∑

k=1

Wukf

(
χk(ti)− x̂(t−i )

) (
χk(ti)− x̂(t−i )

)T
+ Qd(ti) (2.21b)

This propagation occurs every ∆t, the defined time step, until a measurement

is available [32].

Perform Measurement Update. When a measurement becomes

available, the filter performs an update. A new set of sigma points needs to be

calculated because of the addition of process noise after the recent propagation. The

calculations shown in Equations (2.19a) - (2.19c) are used with x̂− to determine

the new sigma points. Next, a prediction of the measurements is made based on

these sigma points. This prediction is accomplished by transforming the sigma points

through the nonlinear measurement function, h. The resultant sigma points, Zi, are

then used to calculate the measurement prediction, ẑk, and its associated uncertainty,

Pẑẑ, as shown in Equations (2.22a) - (2.22c).

ẑ(ti) = W0mZ0(ti) +
2L∑

k=1

WukfZk(ti) (2.22a)

Pẑẑ0(ti) = W0c(Z0(ti)− ẑ(ti))(Z0(ti)− ẑ(ti))
T (2.22b)

Pẑẑ(ti) = Pẑẑ0(ti) +
2L∑

k=1

Wukf (Zk(ti)− ẑ(ti))(Zk(ti)− ẑ(ti))
T + R (2.22c)
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The updated mean and covariance become,

x̂(t+i ) = x̂−k + K(zmeas − ẑk) (2.23a)

Pxx(t
+
i ) = Pxx(t

−
i )−KPẑẑ(ti)K(ti)

T (2.23b)

using new equations, different from the traditional Kalman filter, where the Kalman

filter gain, K, is calculated using the cross correlation matrix (Pxz) and the innovation

covariance matrix (Pẑẑ) [12].

K(ti) = Pxz(ti)(Pẑẑ(ti))
−1 (2.24a)

Pxz(ti) =
2L∑
i=1

[
W 0c(χ0(ti)− x̂(t−i )) W ukf (χk(ti)− x̂(t−i ))

]
∗

[
W 0c(Z0(ti)− ẑ(ti)) W ukf (Zk(ti)− ẑ(ti))

]T

(2.24b)

After each update, the filter will propagate the state estimate and covariance until

another measurement is available [32]. During this iterative process, the state estimate

is also routed to other functions in the controller. The function that uses these

states to determine the input to the plant is the Linear Quadratic Gaussian (LQG)

Controller.

2.4 Linear Quadratic Gaussian (LQG) Controllers

The LQG control method represents a “systematic design of multi-variable con-

trol system using both deterministic and stochastic dynamic optimal control ideas” [2].

In the name, “linear” refers to its association with linear systems, “quadratic” due to

the quadratic cost function, and “Gaussian” due to the Gaussian noise sources [32].

The LQG controller can be designed and applied to continuous, as well as discrete-

time applications.
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2.4.1 Continuous LQG Control Design. In the continuous-time case, the

system model is described by the following differential equation [24],

ẋ = Ax + Bu + Gw (2.25)

The states and the inputs of this system model are used in a quadratic cost

function/performance measurement. The goal of LQG design is to create a controller

by minimizing this cost function. The cost function used for continuous-time systems

is given by,

J =

∫ T

0

(xT Xx + uT Uu)dt + xT (T )Xfx(T ) (2.26)

where X (positive semi-definite matrix) and U (positive definite matrix) are weighting

matrices which influence the cost on the state and on the inputs, respectively. The

cost for each state and input will be determined by their expected values relative to

each other and the relative cost of departure from their desired value. Furthermore,

Xf is used to weight the accuracy of the state at final time, T. The selection of these

matrices will vary based on the engineer’s desired response of the system. One text

suggest two simple guidelines [2]:

1. Make all weighting matrices diagonal.

2. Select large values for any variable required to be small in the time domain.

For example, if the input varies over a small value range, a higher weight on

the U matrix would be appropriate; however if the input values are high, a higher

weight could cause “transient behavior in the states to be more pronounced” [2]. Once

the weighting matrices are selected, the matrix Riccati equation is used to find the

covariance matrix, P:

−Ṗ = AT P + PA + X − PBR−1BT P (2.27a)

P (T ) = Xf (2.27b)
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The matrix, P, is then used to determine the LQR (linear quadratic regulator)

gain, Gc:

Gc(t) = R−1BT P (t) (2.28)

This gain is then used in a negative feedback configuration to control the system

by modifying the following input, assuming that the desired state vector contains all

zeros.

u∗ = −Gc(t)x (2.29)

This method is not only available in the continuous-time domain, but equations

are also available in discrete-time.

2.4.2 Discrete LQG Control Design. For a discrete-time implementation,

the idea is the same, but the equations do change. The system model is described by

the following difference equation [32]:

xk+1 = Φkxk + Bd kuk + wk (2.30)

The overarching goal of the LQG design is to minimize the following defined

cost function J [16]. For discrete-time applications, this cost function is defined as,

J =
N∑

i=0

1

2
[xT (ti) X(ti)x(ti) + uT (ti)U(ti)u(ti)] +

1

2
xT (tN+1)Xfx(tN+1) (2.31)

where X, U , and Xf are weighting matrices that are identically defined and held to

the same criteria as previously characterized for continuous-time. The selection of

these matrices will once again vary based on the engineer’s desired response of the

system within the sampling period [16]. The optimal control, u∗, is a function of the

output state estimate of the Kalman Filter and G∗
c ,

u∗[x̂(t+i ), ti] = −G∗
c(ti)x̂(t+i ) (2.32)
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where Gc is the optimal feedback LQR controller gain given by the following equa-

tion, and the backward Riccati difference equation, Kc, is solved backwards with the

terminal condition, Kc(tN+1) = Xf [16].

G∗
c(ti) =

[
U(ti) + BT

d (ti)Kc(ti+1)Bd(ti)
]−1 [

BT
d (ti)Kc(ti+1)Φ(ti+1, ti)

]
(2.33a)

Kc = X(ti) + ΦT (ti+1, ti)Kc(ti+1)Φ(ti+1, ti)

− [Φ(ti+1, ti)Kc(ti+1)Bd(ti)]
[
U(ti) + BT

d (ti)Kc(ti+1)Bd(ti)
]−1

× [
BT

d (ti)Kc(ti+1)Φ(ti+1, ti)
]

(2.33b)

The control input, u∗, is not only applied to the plant, it is also routed back as

an input to the Kalman Filter, along with the measurement, y, as shown in Figure 2.7

[16]. One piece of the design missing from this figure is how the measurements are

made going to the Kalman filter. These measurements can be taken from a variety

of sensors, such as magnetometers, inertial sensors or cameras.

Figure 2.7: LQG State-Feedback Diagram [2]. This diagram corresponds with Equa-
tion 2.32, in deriving the optimal feedback control, when the desired states
are zero.

2.5 Vision-Aided Navigation

In environments where GPS is degraded or denied, engineers are developing

algorithms that take images from a camera and provide measurements for position and
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attitude in navigation. One common example is Visual Simultaneous Localization and

Mapping (SLAM). SLAM not only performs the image processing, but also performs

the activity of mapping and map maintenance in exchange for maximum information

usage. SLAM could perform the image processing by one of a number of techniques.

Two mentionable techniques are: optic-flow and feature-tracking. Optic flow takes

into account the entire image by creating a uniform sampling lattice. The algorithm

analyzes the whole picture over time to determine location. The other example of

localizing is the feature-tracking method. This method focuses on the features in an

image, as opposed to the whole picture. One algorithm commonly used for feature-

tracking is the Scale-Invariant Feature Transform (SIFT) [14]. To understand how

images can be used to provide a navigation solution, the SIFT process is briefly

discussed.

The SIFT method was developed by David G. Lowe of the University of British

Columbia. This approach analyzes objects in an image and generates descriptors for

these interest points in an effort to “extract distinctive invariant features” from the

image portraying the area of navigation [14]. The classification of invariant relates to

image scale and rotation of the features describing objects within the image. As the

camera moves about the room, the SIFT algorithm generates descriptors in effort to

determine the camera’s relative location within a predefined inertial frame of reference.

Specifically, additional processing is required to calculate position and attitude after

feature matching. An example of this additional processing is the use of the Kalman

filter [32].

Only a top-level understanding of vision navigation is required to accomplish

the research in this thesis. This section provides a brief overview of how vision can

be used onboard a MAV to calculate position and attitude; however, cameras can

also be used outside the MAV to provide a very accurate solution for the purpose of

risk mitigation testing. This type of system is available at AFRL and is used during

hardware testing; the manufacturer of this particular system is Vicon.
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2.6 Vicon System

The Vicon System is a real-time motion capture flight control system used in

applications ranging from animation to tracking aerial vehicles. There are several

labs established in academic/research environments using Vicon for unmanned aerial

vehicle (UAV) control. Some of these include, but are not limited to, MIT, Georgia

Institute of Technology, the Boeing Corporation, and the Air Force Research Labora-

tory (AFRL) 1 2 3. For this particular application, this system allows the tracking and

control of a “captured” object, such as a moving vehicle, with millimeter accuracy.

“Captured” refers to the Vicon system identifying an object by the orientation of

well-placed reflectors on a vehicle. When an object is captured, the system identifies

the reflectors as being on a particular vehicle and uses them as reference points when

finding center of mass and calculating position and attitude. A typical system setup

requires a collection of motion capture cameras mounted and focused on a confined

area and processing units that connect and synchronize the cameras to a desktop

computer.

At AFRL/RB’s Laboratory, Micro-Air Vehicle (MAV) Indoor Flight Facility

(IFF), 36 four-megapixel cameras are housed in a 30’×30’×20’ room. Nine cameras

are mounted on each wall to sufficiently track captured objects as shown in an active

screen shot in Figure 2.8. The overall purpose of the laboratory is to provide engineers

an environment in which to test MAV controllers without integrating a payload on

the vehicle. The setup of the Vicon System at AFRL is detailed in Figure 2.9. The

data from the cameras is sent to a National Instruments real-time processor using an

ethernet connection at 120 Hz. This data is then processed in real-time in Labview to

provide position, velocity, attitude, and attitude rates to the controller. The controller

uses this information to generate control signals at a pre-defined 50 Hz, which is

converted to a PPM (pulse-position modulation) signal by a PPM generator. This

1http://acl.mit.edu/
2http://www.vicon.lt/
3http://www.vicon.com/company/releases/220108.htm

28



Figure 2.8: AFRL/RB MAV Lab Screen Shot. Several cameras are tracking a cap-
tured object located in the center of the room. The grid shown represents
the floor, and the vehicle is defined by well placed reflectors on the body
of the MAV.

PPM signal is then sent to the MAV’s remote control through a cable connected to

the trainer port. If the bypass switch on the controller is activated, the control signal

from the PPM generator will be transmitted to the MAV in place of the control signals

provided in manual operation. For a customer of AFRL’s MAV IFF, this process is

mostly transparent. Labview acts as the primary user interface, allowing engineers to

integrate and monitor the execution of their controllers real-time [18].

Understanding the Vicon system is crucial to grasping the design of the upcom-

ing hardware tests. In retrospect, the information presented in this chapter will be

used in the research and design of the helicopter controller. In this chapter, coordinate

and transformation systems, inertial navigation systems, Kalman filtering techniques,

linear quadratic Gaussian controllers, vision-aided navigation, and the Vicon system

were discussed to provide a background of the concepts behind the research support-
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ing this thesis. Armed with these concepts, the methodology behind the design will

be discussed and quantified in the next chapter.

Figure 2.9: AFRL/RB MAV Lab Vicon Control System [18]. Data is collected by the
cameras in real-time, sent to the development PC for processing, converted
to control signals in Labview, then transmitted to the MAV through the
remote control.
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III. Methodology

B
efore building a MAV controller, two decisions have to be made: select a MAV

and select a controller functional schema. First and foremost, a MAV will need

to be selected for the project. If the end goal is to have a fully autonomous air vehicle,

several vehicles will need to be procured as back-ups to reduce the risk of delays in

schedule in case a vehicle malfunctions or is damaged. Next, the vehicle will need to

be tested to determine lift capacity since a payload with sensors and a microprocessor

is in its future (assumed to be approximately 120 grams). This information is not

typically available for commercial, off-the-shelf air vehicles so some risk of the choice

not meeting requirements is expected. Finally, the vehicle should be small enough to

move inside a building in all modes of flight: forward, backwards, laterally, and hover.

One particular vehicle was readily available in AFIT’s ANT (Advanced Navigation

Technology) Center that met all requirements: the Walkera 53-1 four-channel radio

remote-controlled, micro-sized coaxial helicopter, hereafter dubbed as “El Toro”.

Next, an overall design schema for the controller is developed. Figure 3.1 shows

the basic idea. The mechanization block represents INS mechanization, taking raw

INS data from accelerometers and gyros to produce position, velocity and attitude, or

system model mechanization, taking inputs from the controller to produce position,

velocity, attitude and attitude rates, or a combination of both. In other words, the

mechanization produces a nominal state vector. This information is subtracted from

the corresponding measurements calculated from the camera images to produce a

measurement error. This error is provided as the measurement input, along with

the control signal, to the Kalman filter. The Kalman filter produces an error state

estimate to the mechanization. The mechanization makes the necessary adjustments

to the nominal states. A reference state vector representing the desired states is

subtracted from the nominal states; the resultant error vector is multiplied by the

LQR gain, Gc, then sent to the plant as the control signal. To adequately explain

each step in the design process, this chapter is broken into the following sections:

• El Toro System Model
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• Controller Design

• Stochastic Estimation

• Inertial Navigation

• System Model and INS Combination

• Final Design

The first step of this model-based control design is to create a mathematical

model of El Toro.

Figure 3.1: Controller Functional Diagram. This diagram represents the general de-
sign schema going into the helicopter control design process.
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3.1 El Toro System Model

The El Toro helicopter (Figure 3.2) is actually a stripped-down and modified

Walkera model 53-1. This particular micro-air vehicle is a counter-rotating design

with the upper blade utilizing an inertial flybar for stabilization during changes in

attitude in pitch and roll. The remote control provides a rudder and throttle with

limits incorporated for pitch and roll.

Figure 3.2: Walkera 53-1 (El Toro) . This commercially-available, remote-controlled,
micro-sized helicopter is selected for modeling and autonomous control.

Before developing a system model, a good understanding of the system’s dy-

namics is essential. To aid in describing the dynamics of El Toro, a functional diagram

was procured from a classroom discussion and modified as a reference for discussion

(Figure 3.3). To begin, El Toro has two sets of blades: upper and lower. Each set

is controlled by a different motor. The throttle and rudder controls determine the

output of these motors. The throttle on the remote control is a notched lever that

when moved up, the two motors gain angular velocity in unison. The increase in

angular velocity causes the blades to spin at a faster rate, which, in turn, produces

more lift. When the throttle lever is moved down, the motors spin down, producing

the opposite effect.

The next three controls, rudder, pitch, and roll, are spring-loaded levers. With

these three levers remaining in the neutral position, the helicopter stays level at a

constant heading.
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Figure 3.3: El Toro Functional Diagram [31]. Two brushed motors control the speed
of the upper and lower blade sets, while the two servos control the swash-
plate, which in turn controls the attitude of the helicopter.

In contrast, the rudder produces a change in heading when its lever is moved

from its default position. With no rudder input, both upper and lower blade sets move

at the same angular speed, but in opposite directions. However, if there is a difference

between these angular velocities, a rotation about the z-axis (body-frame) is produced.

The magnitude and direction of this yaw motion depends on the length of time and

the direction and amount of force on the lever is applied. In addition, the Walkera

53-1 includes a yaw stabilization circuit installed to counter any uncommanded yaw

disturbances.

The final two controls on the remote control are: pitch and roll. These controls

provide input to the two servos shown in Figure 3.3. These servos control the swash-

plate, which changes the attitude of the lower blades. Upon this change the upper

blades follow suit, but only after a short delay due to the gyroscopic procession of the

inertial flybar. The purpose of the flybar is to provide stability during these changes

in cyclic. This overall action changes the attitude of the aircraft, thus causing a trans-

lation in the body’s x and y-direction. Specifically, servos #1 and #2 rotate clockwise
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for a positive roll, and counter-clockwise for a negative roll, tipping the swashplate

from right to left. For pitch, the servos rotate in opposite directions. Servo #1 ro-

tates counter-clockwise and servo #2 rotates clockwise for a positive pitch, tipping the

swashplate up towards the front of the helicopter. For a negative pitch, servo #1 ro-

tates clockwise and servo #2 rotates counter-clockwise, causing the swashplate to tip

down towards the front of the aircraft. When the pitch and roll controls are released

by the operator, the vehicle levels. As a final note, the vehicle requires continuous

input from the operator to remain in hover condition.

In addition, the ANT Center provided the specifications for this vehicle in Ta-

ble 3.1. These parameters were used to develop the nonlinear system model.

Table 3.1: El Toro Specifications [31]. These parameters are provided by the ANT
Center and are paramount in developing the system model.

Vehicle mass (w/ battery): 320 grams
Blades (4 total): 22 cm length, 6.2 g each
Gearing: 92:1 final drive ratio
Maximum voltage: 7.4 VDC
Maximum drive current: 8 Amps
Motor constants: Ke = 0.026 V-s

Rm = 0.42 Ohms
L = 200 uH

Motor/Drive Constants: Kt = 0.042 N − m
A

b = 140 mgm
s

3.1.1 Nonlinear System Model Derivation. As a preface to this section,

much of the design of the El Toro model was produced as a result of previously

accomplished graduate class projects with Capt Jason Bingham. Furthermore, as

a preface to the original project, much of the background information on El Toro

was developed at the ANT Center. As previously mentioned, the Walkera 53-1 has
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two brushed motors. These motors are modeled using commonly-known dynamics

equations [6]:

Minertiaω̇ = −bω + KtI − τload (3.1a)

Lİ = −RI −Keω + V (3.1b)

where Minertia is the moment of inertia, I is the motor current, V is the motor voltage,

R is the motor resistance, ω is the motor angular velocity, L is the motor inductance,

and τload is the motor torque that is created with acceleration. The remaining variables

stem from the motor parameters defined in Table 3.1. Furthermore, the moment of

inertia, Minertia (kg-m2), was calculated using the moment of a rod with length of 44

cm (twice the blade length) and mass of 0.0124 kg:

Minertia =
0.0124(0.44)2

12
(3.2)

The functions for lift (N) and torque load due to acceleration (N-m) in terms of

the motor speed were previously derived by through experimentation:

Flift = 0.0098

(
ω2

125
− ω

4
− 1.17

)
(3.3a)

τload = − e
ω
65

122
(3.3b)

The fusion of the motor, lift, and torque equations represent the dynamics of

the brushed motor. These dynamics were translated to Simulink, shown in Figure 3.4,

for future simulation.

Referring in Figure 3.4, the area outside the red box shows a series of compu-

tations that was devised to account for the effect of pitch and roll on lift. These are
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Figure 3.4: Motor Blade Simulink Diagram. The components within the red box
model the brushed motor dynamics. The components outside the red box
depict the effect pitch and roll have on lift.

Table 3.2: Blade Equations. This equations account for the effect of pitch and roll on
total lift. Each column refers to a specific label shown in Figure 3.4.

A B C D

Forward Pitch - 0.5 0.4A 1
4
FliftB C + 1

4
Flift

Aft Pitch - 0.5 -0.4A 1
4
FliftB C + 1

4
Flift

Star Roll - 0.5 0.4A 1
4
FliftB C + 1

4
Flift

Port Roll - 0.5 -0.4A 1
4
FliftB C + 1

4
Flift

referred to as the blade equations. Table 3.2 provides a brief outline of the computa-

tions. The columns in this table represent the particular areas of interest outside the

red box shown in Figure 3.4. The outputs of this figure account for the lift produced
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on a disk representing rotating blades. Forward, aft, star, and port account for the

areas on the disk in which the lift is produced. Understanding the blade equations

starts with the pitch and roll inputs. The inputs of pitch and roll range from zero to

one, with 0.5 generating no pitch or roll, and the extremes changing lift by 20%. The

outputs of the upper and lower motor-blade models (each represented by Figure 3.4)

are used to generate the forces and torques to be applied to the 6DOF Simulink model.

The force and torque equations are as follows, where rblade represents blade length,

and subscripts 0 and 1 indicate the lower and upper blades, respectively:

Fx = −mg sinθ (3.4a)

Fy = mg sinφcosθ (3.4b)

Fz = mg cosθcosφ− (Fwdtotal + Afttotal + Startotal + Porttotal) (3.4c)

Mx = rblade(Fwdtotal − Afttotal) (3.4d)

My = rblade(Porttotal − Startotal) (3.4e)

Mz = (Minertiaω̇0 − τload)− (Minertiaω̇1 − τload) (3.4f)

The inertia matrix used in the 6DOF model was derived from the measured mass

(m) of the helicopter body, along with the measured physical dimensions, assuming

a homogeneous solid: height (h) - 4 cm, width (w) - 7 cm, and depth (d) - 8 cm. The

equations used to calculate the moment of each axis came from the standard inertia

equation of a solid cuboid:

Ix =
m

12
(h2 + w2) (3.5a)

Iy =
m

12
(h2 + d2) (3.5b)

Iz =
m

12
(d2 + w2) (3.5c)
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The results make up the following inertia matrix:

I =




Ix 0 0

0 Iy 0

0 0 Iz


 (3.6)

Finally, the voltage input to the motor-blade circuits were determined to be a

function of the throttle (u1) and rudder (u2) commands:

V0 =
1

2
(u1 + u2) (3.7a)

V1 =
1

2
(u1 − u2) (3.7b)

The final nonlinear model in terms of the input (u) and states (x) was produced

from this design:

ẋ = f(x, u) (3.8)

The resulting input is a unitless vector containing throttle, rudder, pitch (u3),

and roll (u4); the resulting states are representing in a vector (x) that contains position

(meters), velocity(m
s
), attitude (radians), attitude rates ( rad

s
), the two motor angular

velocities ( rad
s

) and current (amps), and the flybar attitude (radians); and the resulting

output (y) is a vector representing the first twelve states. The subscripts 0 and 1

indicate the lower and upper blades, respectively, and FB signifies flybar states.

u = [u1, u2, u3, u4]
T (3.9a)

x = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇, ω0, I0, ω1, I1, FBφ, FBθ]
T (3.9b)

y = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇]T (3.9c)
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This nonlinear system model was also constructed in Simulink as shown in Figure 3.5,

taking into account wind resistance, flybar effects, and remote control dynamics, as

described in Table 3.3.

Table 3.3: El Toro Simulink Model Circuit Description. The sections in this table
corresponds to blocks identified in Figure 3.5.

Block Description

A More accurately models the controls of El Toro
B Models the effects of the flybar on the upper blade
C Converts the effects of gravity from the navigation to

the body frame of reference
D Accounts for the decay in velocity (ẋ and ẏ) and yaw

rate (ψ̇) once the pitch, roll, and rudder controls are
released

Figure 3.5: El Toro Simulink Model Diagram. This Simulink diagrams characterizes
the nonlinear system mathematical model for the El Toro helicopter.
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3.1.2 Model Reduction. The model in the previous subsection consists of

18 states. Model reduction is traditionally accomplished to simplify the controller

design. The first 12 states are considered the standard kinematic states of an aircraft.

The last six could be considered nontraditional and are considered for approximation

in a lower number state vector. After investigation, it is determined that the motor

angular velocity and current can easily be approximated, while the flybar states can-

not. Therefore, the 18-state model is reduced to 14 states using the method described

in this section.

To approximate the response of these four states, each input was varied while

watching the response from the upper and lower blade motors. Only the rudder and

throttle affected the motors, as expected. Each state’s output was plotted against the

varying throttle and rudder. Equations for each of the four states to be eliminated

were devised in terms of these two inputs and compared to the actual responses

in Figures 3.6 and 3.7. Note, the responses are not identical, but are close. Since

the controller will be built for hover, the equations match the closest at that point

(quantified in the next section). The final equations for ω0, ω1, I0, and I1 are:

ω0 = 14.8139(u1)− 11.39(u2) (3.10a)

ω1 = 14.8139(u1) + 11.39(u2) (3.10b)

I0 = 1.0786(0.14× u1)
2 + 0.4− 0.4495(u2) (3.10c)

I1 = 1.0786(0.14× u1)
2 + 0.4 + 0.4495(u2) (3.10d)
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Figure 3.6: Motor Angular Velocity Approximation vs. Original Response. The ac-
tual response is the motor angular velocity response of the 18-state non-
linear model varying throttle and rudder independently. The approximate
response is the motor angular velocity response using equations approxi-
mating the full-state response.
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Figure 3.7: Motor Current Approximation vs. Original Response. The actual re-
sponse is the motor current response of the 18-state nonlinear model
varying throttle and rudder independently. The approximate response is
the motor current response using equations approximating the full-state
response.
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3.1.3 System Model Linearization. In order to implement a linear quadratic

Gaussian controller, first the nonlinear system model must be linearized. Using the

full-state matrix for hover, the angular velocity, ω, was calculated by equating Equa-

tion (3.3a) to 1
2
mg. Furthermore, the motor voltage and current were calculated by

substituting ω in Equations (3.1a) - (3.1b) and solving for the two respective un-

knowns. The resulting angular velocity, motor voltage, and motor current for hover

was determined to be 158.41 rad
s

, 5.2785 volts, and 2.76 amps, respectively. In the

reduced-state model, this is not a consideration. For both models, the position,

velocities, attitude, attitude rates, and flybar angles should all be zero at hover. Sub-

stituting in these values along with inputs for hover (mentioned below), the 14-state

system model is linearized about the hover condition using the Jacobian method and

now expressed by the following deterministic state-space model:

ẋ = Ax + Bu (3.11a)

y = Cx + Du (3.11b)

The output, y, consists of the first 12 states; therefore, the C matrix is a 12×12

identity matrix with two additional columns of zeros to account for the last two

unobservable states, and the D matrix is a 12×4 matrix of zeros because the output is

not in terms of the input. The resultant matrices (shown in Appendix A) were verified

through Simulink by using the Linear Analysis function located under Tools, Control

Design (Control and Estimation Tools Manager). The default operating point was

defined by the input levels for a hover condition (shown below), then synchronizing

this default operating point to the model.

• Throttle - 10.694

• Rudder - 0

• Pitch Command - 0.5

• Roll Command - 0.5
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After the linearization of the Simulink model was performed by the software,

the results were compared with the mathematically derived result. The results were

identical, which verified the linearization results. Furthermore, the transfer functions

relating the four inputs to all twelve outputs were provided by the Simulink Lin-

earization process and are detailed in the Appendix A; the input/output combos not

included are equal to zero. The resultant pole/zero map, shown in Figure 3.8, shows

system poles (rad/sec) from the derived characteristic equation:

s(s + 396)(s + 321)(s + 166)(s + 6.21)(s + 5)(s + 2.5)(s + 1.25)(s + 0.809) (3.12)
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Figure 3.8: El Toro Pole Zero Map. These poles are the dominant poles associated
with the El Toro linearized reduced-order system model about the hover
condition.
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3.1.4 Stochastic Noise Insertion. Moving away from the deterministic side,

stochastic noise needs to be accounted for in the system model. Process noise and

measurement noise amend the system difference equation as follows, with w repre-

senting the process noise, G representing the process noise transition matrix, and v

representing the measurement noise.

ẋ = Ax + Bu + Gw (3.13a)

y = Cx + Du + v (3.13b)

Process noise, otherwise known as dynamics noise, accounts for the randomness

that correspond to the dynamics of the system [17]. Measurement noise accounts for

random signals that are inserted during the measurement process. It is important

to account for these noise sources in order to determine the most probable output

and state values. The process and measurement noise vectors for the El Toro System

model are approximated using a Gaussian noise sequence with:

E[wk] = 0 (3.14a)

E[wkw
T
i ] = Qδt (3.14b)

E[vk] = 0 (3.14c)

E[vkv
T
i ] = Rδik (3.14d)

E[wkv
T
i ] = 0 (3.14e)

In other words, each of the noise sources generated are considered independent, white

random variables. The 12 measurement noise sources, v, are added to the output

vector, y, shown in Equation (3.13b). The six process noise sources are injected into

the system model, as shown in Figure 3.5 (inputs 5-10), by adding Gaussian noise to

the forces and moments prior at the input of the 6DOF model. The variables assigned
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to this noise vector are:

w = [wFx, wFy, wFz, wMx, wMy, wMz]
T (3.15)

In efforts to devise the noise transition matrix, G, these variables are added to the

force and moment equations, Equations (3.4a) - (3.4f). The resulting ẋ nonlinear

system model was in terms of x, u, and w. The Jacobian (first derivative) was then

taken with respect to w to produce G. The process noise matrix, G, becomes a

function of θ, φ, and ψ. The numerical G matrix for hover (all angles equal to zero)

is listed in Appendix A. This matrix was verified by linearizing the Simulink model

(about hover) using the Control and Estimation Tools Manager, with w identified as

inputs.

3.2 Controller Design

A LQR controller was created and used as the heart of the LQG controller

design. The resulting gain matrix was calculated using a discrete-time solution due

to the eventual integration with the Vicon System, which determines position and

attitude at a 50 Hz rate and implementation unto the Blackfin microprocessor, man-

ufactured by Analog Devices. The key to this controller design was determining the

weighting matrices. The overarching goal of the controller is to maintain hover; there-

fore, the position and the heading were weighted higher than the remaining states.

The state weighting matrix, X, is a diagonal matrix with the values correlated to the

position and heading equal to 10, while all other states (except the motor states) equal

to 1. The input weighting matrix, U , was assigned the identity matrix, as displayed

below. Both equations use the symbol Λ to signify a diagonal matrix with diagonal

elements listed in order of row and column. The units for the states are described in
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the Section 3.1.1.

X = Λ(10, 10, 10, 1, 1, 1, 1, 1, 10, 1, 1, 1, 0, 0, 0, 0, 1, 1) (3.16a)

U = Λ(1, 1, 1, 1) (3.16b)

The LQR gain matrix was computed using the dlqry function in MATLAB with

a 0.02 second time step, which applies the LQG techniques discussed in Chapter II,

Section 2.4.2, for discrete-time systems. The 18-state model was used in the calcu-

lation of this 4×18 matrix. This controller was designed before the model reduction

effort described in the previous section. The same exercise was performed with the

reduced model with results showing only gain increases on the rudder control. The

numerical result for the truncated full-state model can be viewed in Appendix B. This

gain matrix is only one component on the overall design of the setup outlined in the

introductory paragraph in Chapter III; the inputs to the gain matrix are the states

estimated by the Kalman filter.

3.3 Stochastic Estimation

Since the world is not purely deterministic, stochastic estimation is used to

better estimate the true state errors. Because the helicopter is best modeled using a

nonlinear system of equations, the Extended Kalman Filter (EKF) and the Unscented

Kalman Filter (UKF) are both good candidates for implementation. Since several

studies have indicated that the UKF provides the better esimtate of the two (as

previously discussed in Chapter II), the UKF is the choice for this design; however,

the EKF was implemented while troubleshooting the UKF, thus both designs were

included and compared to verify the UKF’s performance. The state estimator was

designed and simulated separately from the LQR controller. This is possible due

to the separation property, which states that for LQG controllers using an optimal

state estimator (Kalman Filter), the “feedback control matrix is independent of all
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uncertainty” [16]; therefore, the deterministic controller can be designed and tested

separately from the Kalman Filter.

Whole-valued states, as opposed to error states, were initially used to verify the

performance of each filter. Also, the sampling time, ∆t, is set to 0.02 seconds, for a

discrete-time application. Finally, the reduced-state model was used in place of the

full 18-state model.

3.3.1 Extended Kalman Filter. Following theory and equations from Sec-

tion 2.3.1, the EKF was coded in an m-file using MATLAB.

Propagation. Since the state vector propagates between updates

using the linearized system model in Equation 3.11, the A matrix, previously calcu-

lated in Section 3.1.3, is used to convert the system model to discrete-time, using

the equations listed in Table 2.2. Matrices Φk and Qd are then used to propagate

the covariance between measurement updates. Both the state estimate and covari-

ance propagation equations are identified in Section 2.3.1 and listed, for convenience,

below:

x(t−i ) = x(t+i−1) +

∫ ti

ti−1

δẋdt (3.17a)

P (t−i ) = Φk(ti)P (t+i−1)Φ
T
k (t−i ) + Qd (3.17b)

where process noise intensity matrix is Q = Λ(0.01 N2

s
, 0.01 N2

s
, 0.01 N2

s
, 5e-6 N2−m2

s
,

5e-6 N2−m2

s
, 5e-6 N2−m2

s
). If a measurement update is not available,

x(t+i ) = x(t−i ) (3.18a)

P (t+i ) = P (t−i ) (3.18b)

Measurement Update. For the EKF, the measurement update

encompasses three main activities: measurement prediction, Kalman gain calculation,
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and state estimate and covariance update. The measurement (z) and measurement

estimate (ẑ), for the case of El Toro, is simply the first 12 states of x(t−i ) because

these are the only observable states. Next, the Kalman gain calculation is performed.

Once again, these equations are located and described in Section 2.3.1; however, they

are listed again below for convenience, where the measurement noise intensity matrix

is R = Λ(0.1 m2, 0.1 m2, 0.1 m2, 0.01 m2

s2 , 0.01 m2

s2 , 0.01 m2

s2 , 0.01 rad2, 0.01 rad2, 0.01

rad2, 0.01 rad2

s2 , 0.01 rad2

s2 , 0.01 rad2

s2 ):

Pres(ti) = HP (t−i )HT + R (3.19a)

K(ti) = P (t−i )HT Pres(ti)
−1 (3.19b)

The state estimate and covariance update below results when an update is available.

x(t+i ) = x(t−i ) + K(ti) [zmeas(ti)− ẑ(ti)] (3.20a)

P (t+i ) = P (t−i )−K(ti)HP (t−i ) (3.20b)

3.3.2 Unscented Kalman Filter. The UKF takes a more complicated ap-

proach to propagation and measurement update when dealing with nonlinearities

within a system. Sigma points represent the statistics of the state vector, x, where χ0

is the mean, and remaining 28 sigma points, χi, for the reduced-state model, capture

characteristics of the pdf. The sigma point equations, Equations (2.18a) - (2.19c),

were used and derived from three tunable parameters: α=0.25, β=2, and κ=0. These

sigma points are used to propagate through the nonlinear function and calculate the

corresponding propagated/updated mean and covariance.

Propagation. Once the 29 sigma points are generated, each col-

umn vector is propagated through the nonlinear system equation. Due to the “stiff-
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ness” of the system model, the small integration steps had to be used to integrate

the nonlinear system equations. A stiff system is one that refers to a system where

the ratio of the largest eigenvalue (λl) divided by the smallest eigenvalue (λs) is much

greater than 1.

λl

λs

>> 1 (3.21)

To provide this level of integration, MATLAB’s ode15s was used to integrate the

nonlinear system model differential equation during propagation using MATLAB code

and also during all Simulink simulations performed in this effort.

Next, the process noise transition matrix was calculated. This matrix is time

varying and is defined in terms of attitude angles: φ, θ, and ψ. These angles corre-

spond to the seventh, eighth, and ninth values of x(t+i ) and will be used to calculate G

during each time step. Furthermore, the system model ẋ is linearized about the cur-

rent state in order to calculate the state transition matrix, Φ. Using these matrices,

the equations from Section 2.3.2 and Table 2.2 are used to calculate the propagated

state estimate and covariance. These equations are summarized/repeated below for

convenience, with i signifying the time step number.

Φ(ti) = eA(ti) ∆t (3.22)

Q(ti−1) =
1

2

[
Φ(ti)G(ti) Q G(ti)

T Φ(ti)
T + G(ti) Q G(ti)

T
]

(3.23)

x̂(t−i ) = W0mχ0(ti) +
2L∑

k=1

Wukfχk(ti) (3.24)

Pxx(t
−
i ) = W0c

[
χ0(ti)− x̂(t−i )

] [
χ0(ti)− x̂(t−i )

]T
+

2L∑

k=1

Wukf

[
χk(ti)− x̂(t−i )

] [
χk(ti)− x̂(t−i )

]T
+ Qd

(3.25)
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Measurement Update. When a measurement update comes avail-

able (every 0.5 seconds), new sigma points are built using the same method men-

tioned during the discussion on propagation. These sigma points are then transformed

through the measurement equation below to become Z:

Z = Hχ (3.26)

The measurement equation directly observes the first 12 state variables; there-

fore, the output transition matrix, H, is a linear function. The remaining equations

used during the update were discussed in more detail in Chapter II, Section 2.3.2,

and repeated below for convenience:

ẑ(ti) = W0mZ0(ti) +
2L∑

k=1

WukfZk(ti) (3.27a)

Pẑẑ0(ti) = W0c [Z0(ti)− ẑ(ti)] [Z0(ti)− ẑ(ti)]
T (3.27b)

Pẑẑ(ti) = Pẑẑ0(ti) +
2L∑

k=1

Wukf [Zk(ti)− ẑ(ti)] [Zk(ti)− ẑ(ti)]
T + R (3.27c)

Pxz(ti) =
[
W0c(χ0(ti)− x̂(t−i )),Wukf (χk − x̂(t−i ))

] ∗
[W0c(Z0(ti)− ẑ(ti)), Wukf (Zk(ti)− ẑ(ti))]

T (3.27d)

K(ti) = Pxz(ti)Pẑẑ(ti)
−1 (3.27e)

x̂(t+i ) = x̂(t−i ) + K(ti) [zmeas − ẑ(ti)] (3.27f)

P̂xx(t
+
i ) = P̂xx(t

−
i )−K(ti)Pẑẑ(ti)K(ti)

T (3.27g)

3.4 Inertial Navigation

Looking back to Figure 3.3, the mechanization block to generate a nominal

trajectory could use one of two methods: system model mechanization using throt-

tle, rudder, pitch, and roll inputs, or INS mechanization using raw INS data from

an accelerometer and gyro as inputs. The former mechanization is discussed in Sec-
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tion 3.1, and can be described using the nonlinear equation and Simulink model block

in Figure 3.9.

Figure 3.9: El Toro System Model Mechanization. The embedded Simulink function
contains the nonlinear system model, which takes inputs and states to
generate a trajectory along with attitude results.

This system model mechanization can be replaced using INS strapdown mech-

anization equations, resulting in differing levels of accuracy. As a note, code used

for the explanation and simulation of Strapdown mechanization and INS error prop-

agation equations was previously generated by the ANT Center, and only slightly

modified for this effort.

3.4.1 Strapdown Mechanization. The application of a strapdown INS dic-

tates the mechanization employed to derive position and attitude from raw INS data:

∆vb and ∆θb
ib, previously annotated as ab and ωb

ib. The mechanizations consider differ-

ent coordinate systems and are chosen based on the application. The mechanization

chosen for the INS mechanization block in this effort is the “local geographic naviga-

tion frame mechanization”, which considers a rotating Earth, and references the local

geographic navigation frame of reference discussed in Section 2.1 [30].
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Because hover is the goal of this thesis, gravity is modeled as a constant. To

determine the constant value of gravity, AFRL’s MAV IFF was used as the most like

area of operation. Google maps was used to determine the approximate location of

the facility using WGS 84 information:

Latitude 39.79088 ◦ N

Longitude 84.0917 ◦ W

Ellipsoidal height 230 m

This coordinate will hereafter be referred to as the initial WGS 84 MAV location

(Pwgs), which will not change when hovering. The gravity component was calculated

using gravity model constants defined by WGS 84 and outlined in Table 3.4 [35].

Although this exercise is arguably irrelevant, it produced values that are operationally

representative.

Table 3.4: Gravity Model Constants. These variables are used to calculate gravity
using Equation 3.28.

Symbol Definition Value

a1 gravity model constant 9.7803267715
a2 gravity model constant 0.0052790414
a3 gravity model constant 0.0000232718
a4 gravity model constant -3.0876910891e-6
a5 gravity model constant 4.3977311e-9
a6 gravity model constant 7.211e-13

The term gn is the resulting gravity value. For the INS mechanization at the

initial WGS 84 MAV position, gn is calculated to be 9.8008 m
s2 using Equation (3.28)

[35].

gn = a1
[
1 + a2× sin(Pwgs(1))2 + a3× sin(Pwgs(1))4

]
+

[
a4 + a5× sin(Pwgs(1))2

]
Pwgs(3) + a6× Pwgs(3)2

(3.28)
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Now that gravity has been calculated, the position and gravity vectors are trans-

formed to the ECEF frame of reference for the remaining calculations. After the initial

WGS 84 MAV location is converted to the ECEF frame (P e), the raw INS data, ∆vb’s

and ∆θb
ib’s, are used to calculate acceleration (an), velocity (vn), position (pn), atti-

tude (θn
nb), and attitude rates (ωb

nb). First, the biases (ab = accelerometer bias; bb =

gyroscope bias), defined in the INS specifications, have to be removed in the following

equations, where ∆t = 0.02 seconds:

∆vb = ∆vb −∆t ab (3.29a)

∆θb
ib = ∆θb

ib −∆t bb (3.29b)

If both biases are zero, then the raw INS data will not change. To propagate the

attitude at a 50 Hz rate, first the initial MAV location and the current MAV location

are combined to create a new vector representing the direction and distance from the

center of the Earth to the current location. This vector is updated to account for the

rotation of the Earth within 0.02 seconds, and the change in attitude sensed by the

gyroscope and given by ∆θb
ib. The attitude rates are then calculated to produce the

Euler angles in vector form (θb
nb):

ωb
nb =

θb
nb

∆t
(3.30)

Next, to propagate the acceleration, the following equation is calculated using

qn
b to convert δv to the navigation frame and the skew symmetric matrix of the Earth’s

rate in the navigation frame, Ωn
ie, as shown below. Using the propagated acceleration,

the velocity and position is easily derived as shown in Equations (3.31a) - (3.31c).
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an =
∆vn

∆t
− gn − 2Ωn

iev
n
prior (3.31a)

vn = vn
prior +

∆t

2

(
an

prior + an
current

)
(3.31b)

pn = pn
prior +

∆t

2

(
vn

prior + vn
current

)
(3.31c)

This mechanization was coded using an S-function in Simulink.

3.4.2 INS Error Propagation. For the final state estimation configuration,

instead of the actual state estimation values being propagated, the state error will be

propagated in the UKF; therefore, an INS error propagation model is used in place of

the El Toro system mathematical model. The error propagation model was previously

derived and used for this effort [33]. The state vector, δx used in INS is defined by 15

parameters: the position (pn = [x, y, z]T ), velocity (vn = [ẋ, ẏ, ż]T ), attitude (θn
b = [φ,

θ, and ψ]T ), and INS biases (ab = [ab
x, a

b
y, a

b
z]

T and bb = [bb
x, b

b
y, b

b
z]

T ).

δx = [δx, δy, δz, δẋ, δẏ, δż, δφ, δθ, ψ, δab
x, δab

y, δab
z, δbb

x, δbb
y, δbb

z]
T (3.32)

Furthermore, the stochastic inputs into this model, otherwise known as pro-

cess noise, will change from the vector described in Section 3.1.4 to be as follows,

with wb
a, wb

b, wb
a bias, and wb

b bias representing accelerometer noise, gyroscope noise,

accelerometer bias, and gyroscope bias, respectively [33]:

w = [wb
a, w

b
b, w

b
a bias, w

b
b bias]

T (3.33)
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As a result, the state space INS error model is defined with respect to δx and w [33]:

δẋ=




03 I3 03 03 03

Cn
e GCe

n −2Cn
e Ωe

ieCe
n (fn×) Cn

b 03

03 03 −(Cn
e ωe

ie)× 03 −Cn
b

03 03 03 − 1
τa

I3 03

03 03 03 03 − 1
τb

I3




δx+




03 03 03 03

Cn
b 03 03 03

03 −Cn
b 03 03

03 03 I3 03

03 03 03 I3




w (3.34)

where I3 is a 3×3 identity matrix, and 03 is a 3×3 zero matrix. The deterministic

portion of this model is used to propagate sigma points within the UKF when using

INS mechanization to determine position, velocity, attitude and attitude rates, with

camera measurement updates.

3.5 System Model and INS Combination

The crux of this effort is to devise a plan to integrate the INS and system model

to provide more accurate states for feedback control. Up to this point, a system

model, an INS mechanization model, and an INS error model have been defined.

Figure 3.3 shows the system block diagram either using the system model or INS

model for the mechanization block, in addition to the appropriate models used for

Kalman filter propagation. The intent for combining the two designs is to extract

information from both models to produce a more accurate solution. Figure 3.10 adds

additional detail to Figure 3.3 by providing a graphical depiction of the final design.

This setup allows the user/engineer to select a model-only, INS-only, or a combination

configuration. The control signal is sent to the UKF and based on its value, directs

trajectory information from either the nonlinear system model, INS mechanization,

or combination block. The challenge is to produce algorithms to combine the two

trajectories and to combine the propagated state error and covariance in the UKF.
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Figure 3.10: Final Design with System Model and INS Combination Selectable. Mea-
surements and inputs are provided in an effort to predict the system state
errors for the LQR gain block. The LQR gain block will provide the op-
timal control to the helicopter.

Combining information is not new to the field of controls and stochastic estima-

tion. For instance, Federated Kalman filters (FKF) provide centralized state estima-

tion using many sensors by combining state estimates from several “local” Kalman

filters. Each Kalman filter estimates the system states from a different sensor mea-

surement update, and is weighted by the associated inverse covariance. This method

allows the setup with the lowest uncertainty/most information to have the highest

weight in the overall state estimate. Furthermore, the covariance from each filter is

also combined to produce the corresponding covariance for the combined state esti-

mate. Maybeck also covers the concept of combining state estimates and covariances

in a simple “lost at sea” example in the introduction of his first book [17]. This ap-
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proach was adapted for this effort. The final equations use information matrices, and

are adapted directly from the use of FKFs [5]:

P−1
c = P−1

ins + P−1
sys (3.35a)

x̂c = Pc

(
P−1

ins x̂ins + P−1
sysx̂sys

)
(3.35b)

where P−1 is the inverse covariance, or otherwise known as the information matrix,

and the subscript “c” represents the combination configuration, while “sys” and “ins”

represent the values for the model-only and INS-only configurations, respectively.

Referring to Figure 3.10, the source of the trajectory is determined by a control

signal whose value ranges from 0 to 2. Table 3.5 outlines the control signal value

and its corresponding configuration and calculation. Each configuration adjusts its

nominal state vector by subtracting the error state estimate (δx̂). If control signal 2 is

selected, the “Ratio” signal from the UKF is used to weight the nominal trajectories

coming from the system model and INS mechanization blocks.

Table 3.5: Possible Controller Configurations. The configuration of the controller is
determined by the control signal value, selected by the user. The selection
determines the nominal trajectory of the system.

Control Signal Configuration Equation

0 Model ONLY x̄ = x̄sys − δx̂
1 INS ONLY x̄ = x̄ins − δx̂
2 Combination x̄ = x̄sys (Ratio) + (1− Ratio) x̄ins − δx̂

The Ratio signal from the UKF is a new output of the filter and is only used when

the two methods are integrated. The new output is calculated during propagation,

which changes significantly with the combination method. Since there is only one

measurement provided, the measurement update section in the code does not change.

Several changes to the filter need to be made to accommodate the new method. The

first is to combine the state vectors. The system model has 14 states and the INS
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error model has 15 states, with only 9 states in common; therefore, the resultant

combined vector has 20 states:

δx =
[
x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇, FBφ, FBθ, abx, aby, abz, bbx, bby, bbz

]
(3.36)

This also guarantees an increase in the covariance matrix, P , to a 20×20. When

the control is set to 0 or 1, the extra states for that model are defaulted to zero, and

the corresponding uncertainty is set exceedingly high. However, when the control is

set to 2, all error states are populated and updated. To combine state vectors and

covariances, the state vector is propagated using the system model and INS model

separately, then combined using the following equations:

P−
c =

[(
P−

ins

)−1
+

(
P−

sys

)−1
]−1

(3.37a)

ratio = P−
c

(
P−

sys

)−1
(3.37b)

δx̂ = P−
c

(
P−

sys

)−1
δx̂sys + P−

c

(
P−

ins

)−1
δx̂ins (3.37c)

Ratio = Λ(ratio) (3.37d)

This process is also depicted graphically in Figure 3.11. The last equation listed

is the additional output supplied by the UKF and provided to the control signal

block in Figure 3.10. Each step of the design process was tested through simulations,

and the controller was hardware tested independently of the stochastic estimation

configuration using AFRL’s MAV IFF. These steps are discussed in detail in the next

chapter.
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Figure 3.11: UKF Combination Propagation. The inputs and previous error state
vector (to produce sigma points) are fed into the propagation section.
The sigma points are propagated through the nonlinear system model
and INS error model separately, and depending on the control signal,
then combined for use in the measurement update section.
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IV. Results and Analysis

B
efore conclusions can be made on the design outlined in Chapter III, it must

be tested through simulation and hardware tests. The results of these tests will

be analyzed, and through this analysis conclusions will be made. Several aspects of

testing will be considered during this chapter:

• Standardization: When comparing two methods, the setup will be replicated,

along with deterministic and stochastic inputs, for the same amount of time.

• Repeatability: This aspect considers performing the same test with varying

random inputs. Each test should support the same conclusions established from

analysis.

• Operationally Representative: The intensity of the random inputs must be

within an expected range viewed from testing of the physical plant.

Each step of the design process will be validated through simulation. The LQR

controller will also be validated with the hardware (El Toro) through use of the Vicon

system located in AFRL’s MAV IFF. The testing in this section will follow the design

steps in Chapter III: El Toro’s system model will be validated and reduced; the

process noise matrix, G, will be verified; the EKF and UKF filters will be compared;

strapdown INS mechanization will be tested; and, finally, all parts of the controller will

be integrated and tested under different configurations using a Monte Carlo analysis.

4.1 El Toro System Model

The LQR is a model-based controller. Since the system model is a requirement

for designing an LQR, it is necessary to create and verify the system model before the

controller is built. The nonlinear model identified for the helicopter in Chapter III

is tested by varying the inputs in simulations while monitoring the system response.

The system model should show the helicopter translating as expected given a range

of throttle, rudder, pitch, and roll commands. Stochastic inputs were also varied to

62



obtain the operationally representative process noise intensity levels. The test setup

for this open loop testing is shown in Figure 4.1.

Figure 4.1: Simulink Open Loop Testing. This setup is used to test the response of
the Simulink model while varying the deterministic and stochastic inputs.

The results of the simulation are described referencing the results shown in

Figure 4.2. To begin, the throttle was increased to a level to simulate hover at

approximately one second. Up until one second, the vehicle is falling, but as the

throttle is increased, the vehicle starts to level out. Next, a pitch command is provided

at approximately three seconds for the duration of one second. In the NED frame of

reference, θ increases as expected, and the vehicle begins to translate in the x-direction

(px). Next, a roll command is provided at approximately six seconds for a duration

of one second. Once again, φ increases as expected, and the vehicle begins to move in

the positive y-direction (py). Finally, a positive rudder is applied at approximately

eight seconds for a one second duration. The angle ψ goes negative as expected from

the helicopter dynamics. Note all noises and disturbances were set to zero during this

simulation.
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Figure 4.2: Open Loop Simulation. A variety of control inputs were supplied to the
helicopter system model to analyze the response. The system model re-
sponded as expected with changes in pitch, roll, and rudder.
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4.1.1 Model Verification. Although the system model roughly responds

as expected, how representative the mathematical model is of the system is deter-

mined through model verification. AFRL’s MAV IFF Vicon system is instrumental

in this process by providing a means of recording the inputs to the helicopter and

its response in terms of position, velocity, attitude, and attitude rates, at a 50 Hz

rate. This data was stored in a comma-separated-variable (CSV) file, and read into

MATLAB for analysis. The technique used to verify the system model is the cross-

validation test [22] [28]. The cross-validation test verifies, given the same inputs, the

physical plant (El Toro) and mathematical model provide like outputs. The cross-

validation test is performed in Simulink. The CSV file is first read into MATLAB

using the csvread function. Each row in the resulting matrix signifies a different mea-

surement (i.e., time, x, ẋ, φ, etc.), and is assigned a variable name. The time vector

is recorded in milliseconds, but does not start at zero; therefore, the first time value

is subtracted from the entire vector, then the vector is converted from milliseconds

to seconds. Likewise, AFRL’s Vicon system records position and velocity in millime-

ters, so a millimeter-to-meter conversion was employed to standardize the units for

post-processing activities later performed in MATLAB. Finally, the Vicon coordinate

system is a right-hand coordinate system with z pointing up. The following DCM was

used to transform position data from the Vicon to the navigation frame of reference.

The heading data also encountered a polarity change.

Cn
v =




1 0 0

0 −1 0

0 0 −1


 (4.1)

These calculations were eventually included in Labview and became transparent

to the user, so future recordings did not require manipulation. The Labview Virtual

Instrument (VI) hierarchy describing this setup using Vicon is referenced later in

Section 4.2.2. The recorded position, velocity, attitude, and attitude rates are now

ready for comparison with the nonlinear model in Simulink. During simulation, the

65



recorded inputs are fed in from the workspace into Simulink at a 50 Hz rate. Since

the range of all inputs provided by Vicon to the helicopter remote-control (-1 to +1)

is different than the expected inputs of the system model, a conversion block was

built to scale the inputs to a typical range and add trim settings. The overall setup

is shown in Figure 4.3.

Figure 4.3: Simulink Setup for Model Validation Response Test. The recorded inputs
are fed from the MATLAB workspace to the Simulink Model at a 50 Hz
rate. The “unnormalized block” adds the trim settings and scales the
inputs. The response is then recorded to the workspace for analysis.

After running and comparing the responses, it is noted the rates seem to provide

a better indication of the suitability of the system model. The noise on the recorded

input commands causes the position response of the nonlinear model to be grossly

exaggerated. Furthermore, the nonlinear model doesn’t account for the ground during

take-off, so the result looks like the vehicle is falling. The rates have shown to give
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a good indication of the response of the vehicle without being distracted with these

issues. Looking at Figure 4.4, the system model’s response resembles the helicopter’s

response. An anomaly occurred in all directions at approximately 15 seconds in the

Vicon recording that did not translate to the mathematical model’s response. Fur-

thermore, the system model does not account for the floor (Earth’s surface) stopping

a fall of the vehicle in the positive z-direction. Based on these observations, along

with further tests, the helicopter appears to be more sensitive to input changes, while

the system model is more sensitive to biases. The frequency (0.2 Hz) shown in the

velocity plots corresponded to the closed-loop system using a PID controller to control

the vehicle during recording. This control setup caused El Toro to fly in small circles

while trying to hover. A closer examination of the closed-loop system could reveal the

cause; however, since the purpose was to record the response given an input, the vary-

ing in the controls proved to be a better analysis. Overall, through visual inspection,

the plotted responses for both the actual plant and the model are similar enough with

velocity and attitude rates to call “good”. The ultimate test on whether the model is

considered good is whether “the regulator based on this model will give satisfactory

control” [13]; this will be tested in the next section. Until then, the biggest issues

projected in future work is the slight correlation between throttle and rudder noted

but not sufficiently captured in the system model, and the accumulation of battery

drain’s effect.

4.1.2 Model Reduction. The current identified system model has 18 states.

Due to the complexity of the full nonlinear system model equation, four states were

investigated for removal in efforts to improve the efficiency of the Kalman filter in-

tegration. From the 18 states, the first 12 (position, velocity, attitude, and attitude

rates) and the flybar effect were difficult to model and significantly changed the re-

sponse. Four states, however, could be easily removed with acceptable changes in

response. These states are the two motor armature currents (I), and two motor an-

gular velocities (ω). As discussed in Section 3.1.2, these four states were removed and
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Figure 4.4: Response Test Velocity Results. With inputs varying between +1 and -1,
the physical plant and system model’s responses show a reasonable degree
of commonality.

equations approximating I and ω (Equations (3.10)) were substituted within other

state equations. The Simulink model and mathematical model were modified to reflect

the changes. The responses of both of these models matched using the same varying

inputs, verifying no implementation errors. The new 14-state model response was

then compared to the full-state model response through simulations using Simulink.

The outputs of both were subtracted to provide the error due to the approximation.

The position, velocity, attitude, and attitude rate errors were plotted, as shown in

Figures 4.5 and 4.6. Notice translation in the z-direction is notably different between

the two; however, this difference was deemed acceptable since hover is the true goal.
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Figure 4.5: Position and Velocity Error Due to Model Reduction. The four inputs
provided to the full-state and reduced model over a 20 second period.
The difference between the two responses (error) shows acceptable error.
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4.1.3 Stochastic Noise Insertion. From Section 3.1.4, noise was inserted

into the system to account for inaccuracies within the model. An update accounting

for these inputs was made to the to the mathematical model, f(x(t), u(t), w(t)). The

updated math model was verified by comparing the output of the nonlinear mathe-

matical model and the Simulink model when all inputs, deterministic and random,

are the same. The responses were identical. Furthermore, the insertion of the process

noise at the forces and moments adequately models the real effects, with the real

effects being characterized over many runs. Over time, dynamics of the observable

states are not defined as ergodic or stationary. In other words, although hover is the

ultimate goal, if maneuvers are performed, the ensemble statistics do not resemble the

temporal statistics; also, although a steady state error affecting position and heading

is realized through hardware testing (later discussed), this error is not random, but

more like a drift over many runs. This drift is accounted for through trim settings,

further discussed in the next section.

4.2 LQG Controller

The Linear Quadratic Gaussian (LQG) controller uses a Linear Quadratic Reg-

ulator (LQR) to provide feedback to the helicopter based on a state error estimate.

To verify the LQR design outlined in Section 3.2, simulations are performed by in-

tegrating the controller in a feedback loop with the system model using Simulink,

and hardware tests are performed by integrating the controller with the Vicon system

at AFRL’s MAV IFF to control the El Toro helicopter. To help mitigate the risks

associated with hardware tests, the simulations are performed first.

4.2.1 Simulations. The LQR controller consists of a gain matrix in a neg-

ative feedback loop. The basic setup for simulations is shown in Figure 4.7. This

part of the controller test was performed to simulate a hover condition with noise and

disturbances in preparation for the hardware test. Unfortunately, since testing with

the Vicon system is limited to only controller testing without state estimation, the
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gain matrix was tested with a varying number of states with the goal of reducing it

to a 4×12 matrix. This size matrix only considers the first 12 states, which are the

only directly observable states in the system. The gain was calculated using the 18

and 14-state models, then finally truncated to a 4×12 matrix. Several iterations were

performed to test the full-state gain, 14-state gain, and truncated 12-state gain. It

was found that the last six states are not required to maintain the vehicle at hover

with low process noise and disturbances in all three directions. The simulation results

from open-loop and closed-loop configurations were compared to show the influence

of the controller using only 12 states, shown in Figure 4.8.

Figure 4.7: Close-Loop Controller Simulation. The first 12 states are fed back and
multiplied by the LQR gain to adjust the input in efforts to maintain a
hover at position (0,0,0).

In the open-loop configuration, when a external “push” is applied in the x and

y-direction, the vehicle does not return to the original position; however, when the

loop is closed as shown in Figure 4.7, the vehicle moves slightly during the applied

disturbance, but like a spring it moves back to the desired position (0,0,0) when

the disturbance goes to zero. The heading was also observed with like results. The

outcome justified the use of the truncated matrix during the upcoming hardware test.
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(a) Open-Loop Simulation

(b) Closed-Loop Simulation

Figure 4.8: Controller Validation. A series of inputs were supplied to the open loop
system and the closed loop setup to determine the effectiveness of the
controller design. The closed loop system shows effective disturbance
rejection.
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4.2.2 Hardware Test. Now that the controller is verified through simula-

tions, the truncated LQR gain matrix is taken to the MAV IFF and integrated in the

Vicon system using Labview. Several special efforts were made to make the controller

work with the actual system:

• Apply trim settings: Duplicate the trim settings set in the remote control

used to stabilize drift in position and heading.

• Scale inputs: The output of the LQR gain matrix was scaled down due to the

differences between the system model and the Labview predefined limits of the

inputs going to the PPM generator.

• Adjust coordinate system: The position data relative to the IFF’s estab-

lished coordinate system did not use the NED frame of reference; therefore a

transformation had to be performed.

• Filter position and attitude: Filters were used to filter noisy measurement

coming from the Motion Capture Cameras.

• Mix pitch and roll commands: The commands controlling the swashplate

are actually sent to two servos (S1 and S2). Each servo is not purely a pitch

or roll servo. These servos act in unison to perform pitch and roll maneuvers;

therefore, some mixing is required to provide the correct input to these servos.

This mixing can vary depending on the vehicle make and model.

• Calculate error: The error was calculated by differencing the recorded position

and heading from the desired position and heading.

These compensations were captured in a hierarchy of VIs. Each VI represents a

level of software computations to process data. The VI containing the LQR controller

is shown in Figure 4.9. The 12 observable states are captured by 36 cameras placed in

the IFF’s flight test room, subtracted from the desired position and heading to create

errors, filtered, then multiplied by the LQR gain matrix to provide negative feedback

control.
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Figure 4.9: Controller VI. The LQR gain matrix is integrated in Labview to control
El Toro using the Vicon system at the IFF.

The throttle, rudder, pitch, and roll commands are then sent to the Mixer VI to

be mixed and scaled before being routed to the PPM Generator as shown in Figure 2.9.

The mixing and scaling is captured in Equations (4.2a) - (4.2d), where S1 and S2 are

the inputs to the individual servos, and the biases represent the current trim setting.

u1 = 0.085(u1) + 0.2125 (4.2a)

u2 = 0.8(u2) + 0.1605 (4.2b)

S1 = 0.35(u3 − u4)− 0.0017 (4.2c)

S2 = −0.35(u3 + u4) + 0.0083195 (4.2d)

This configuration was tested with the same helicopter over several weeks. The results

of the controller hardware testing were consistent; the controller provided inputs to El
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Toro that concluded in stable flight. However, the trim settings did require periodic

tuning to reduce the steady state error in position and heading.

Each hardware test was accomplished in steps. First, personnel assigned to the

IFF held the vehicle while the LQR controller was engaged. The desired z-position

was set to a level that corresponded to half-throttle. The person holding the vehicle

moved around the room to determine if the swashplate was moving in the direction

corresponding to the reference point. Next, with the desired position set to (0,0,-

1 meter) with a 0 degree heading, the vehicle was allowed to hover just above the

person’s hand. Once it was established that the vehicle could hover, the person let

go of the vehicle. This process eventually progressed to slow take-offs and landings,

and slow translations along the x and y axes. Finally, disturbances were injected by

physically pushing the vehicle away from its desired position and heading, seen in

Figure 4.10. Each time, the vehicle converged back to the reference point, minimizing

the error between the desired position and its actual location.

Figure 4.10: Hardware Test at the IFF. The IFF consists of a flight test room and a
control room with a window separating the two. The LQR regulator is
controlling El Toro while manually injecting disturbances.
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The trajectory of one run lasting 264.84 seconds is recorded and plotted (Fig-

ure 4.11). Samples of the inputs from the controller, actual position of El Toro, and

the desired position (determined by the manipulation of scroll bars in Labview) is

captured at a 50 Hz rate. This diagnostic data is used to calculate error (actual mi-

nus desired) to determine the accuracy of the controller (Figures 4.13 - 4.16). Upon

closer examination, the error signals seem to be characterized by a low frequency cor-

responding to a 3 to 7 second period. To better understand the frequency content of

the error signals, a frequency analysis was performed using MATLAB’s fft function to

generate a single-sided amplitude spectrum (example shown in Figure 4.12). As ex-

pected, there is a DC component that appears to correlate with the steady state error

in position and attitude. In addition, the error signals are not purely white; it actu-

ally resembles a exponential signal with the peak at 0 Hz. The dominant frequency

components for each position and heading for one data run are listed in Table 4.1.

Figure 4.11: Trajectory of El Toro during Hardware Test in the IFF. Although hover
is the main focus, the desired position was moved inside the Lab to test
the effectiveness of the controller. This trajectory represents the actual
trajectory of the vehicle inside 300 seconds.

76



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03
X: 0.02747
Y: 0.02661

Frequency (Hz)

Single−Sided Amplitude Spectrum of y(t) = x error

X: 0.2381
Y: 0.01751

Figure 4.12: Single-Sided Amplitude Spectrum of the x Error. The dominate fre-
quencies are shown to be 0.02747 and 0.2381 in one data run lasting
approximately 240 seconds.

Table 4.1: Frequency Analysis of Error Signals. The error represents the difference
between the estimate and truth for one hardware testing run.

Error Signal Amplitude Frequency Time Period (1/f)

x 0.0016 m 0 Hz N/A
0.02661 m 0.02747 Hz 36.4033 sec
0.01751 m 0.2381 Hz 4.1999 sec

y 0.0355 m 0 Hz N/A
0.03168 m 0.009156 Hz 109.2180 sec
0.0146 m 0.2228 Hz 4.4883 sec

z 0.0370 m 0 Hz N/A
0.04188 m 0.03052 Hz 32.7654 sec

ψ 0.6188 ◦ 0 Hz N/A
1.8243 ◦ 0.003052 Hz 327.6540 sec
1.1442 ◦ 0.009156 Hz 109.2180 sec
0.8594 ◦ 0.02442 Hz 40.9500 sec
0.7746 ◦ 0.03052 Hz 32.7654 sec
0.7288 ◦ 0.05494 Hz 18.2017 sec

To determine which components are not due to noise, many data runs were

analyzed. A dominate frequency component that varied between 0.21-0.24 Hz was

common in both the x and y-errors over many data runs, therefore deemed repeatable

and significant. This component could be attributed to an inaccurate system model;

however, there are many processes within the closed loop of the hardware test that
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could contribute to its existence. These could include, but are not limited to: noise

filters created in Labview, the MX Ultranet processor, Vicon cameras, and the 0.25

second delay just recently found in the system. The LQG controller was eliminated

from this list because the same frequency was found when controlling El Toro using

a PID controller during the model validation process detailed in Section 4.1.1. A

recommendation was sent to the AFRL MAV IFF point of contact to perform the

same analysis on another vehicle (e.g., Axe helicopter) to investigate the oscillation

source.

Figure 4.13: Errors in the x-direction. The errors were calculated by subtracting the
desired position from actual position of the vehicle. The large jumps in
error occur during a vehicle translation in the x-direction.
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Figure 4.14: Errors in the y-direction. The errors were calculated by subtracting the
desired position from actual position of the vehicle. The large jumps in
error occur during a vehicle translation in the y-direction.
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Figure 4.15: Errors in the z-direction. The errors were calculated by subtracting the
desired position from actual position of the vehicle. The slight slope in
error is due to battery drain.
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Figure 4.16: Errors in Heading. The errors were calculated by subtracting the de-
sired heading from actual heading of the vehicle. The slope in error
is attributed to the slight coupling between throttle and rudder and the
on-going battery drain, while the large jump occurs at a heading change.

In addition, the 3D radial error was analyzed. In a separate trajectory where

the helicopter maintained hover for 60 seconds, the radial error (errr) was calculated

using recorded data from Vicon:

errr =
√

x2
err + y2

err + z2
err (4.3)

A histogram was then created as shown in Figure 4.17. The pdf shows a steady

state error of approximately 0.1 meters, which could be easily rectified by adjusting

the trim settings in Labview if required. Furthermore, by analyzing the data, the

radial error stayed within 13 centimeters, 83% of the time.
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Figure 4.17: Range errors. The desired position in Vicon is a point inside a 3D coor-
dinate system. This graph represents the histogram of the range errors
during the hardware test.

Now that the controller and model have been verified, attention is refocused on state

estimation.

4.3 Stochastic Estimation

The LQG controller not only consists of the LQR controller, but a Kalman Fil-

ter to provide optimal state estimation assuming additive white Gaussian process and

measurement noise. Both the Extended and Unscented Kalman Filters were imple-

mented in MATLAB as discussed in Section 3.3. Simulations were performed using

both filters with a propagation and measurement update time step of 0.5 seconds.

4.3.1 EKF/UKF Comparison. The EKF equations used are detailed in

Section 2.3.1. The UKF tuning parameter that determines the sigma spread, α,

was varied to understand its effects on the error and to select the appropriate value.

Typically, this value is set to 1e-4 ≤ α ≤ 1 [27]. The simulation would not work with

α values lower than 0.25 due to the state covariance violating positive definiteness

when performing a Cholesky square root. When varying the value from 0.25 to 1, the

position and heading errors change. The value of α that provided the lowest error
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statistics on position and heading was 0.8; therefore, when comparing EKF to UKF,

the following tuning parameters were used: α = 0.8, β = 2, and κ = 0. The results of

a 16-second, 40-run Monte Carlo simulation, providing a throttle, rudder, pitch, and

roll for hover and varying random inputs for process measurement noise for each run

are shown in Figures 4.18 - 4.21. Clearly the UKF outperforms the EKF; however,

while analyzing the data one problem arose with the UKF. The standard deviation of

the ensemble is also estimated from the UKF and EKF by taking the square root of the

diagonal terms in the state covariance matrix. The standard deviation estimates were

also compared to the ensemble standard deviations of the position and the attitude

over the 40 runs; the solid black lines represent the filter’s estimate of the standard

deviation, while the solid red lines represent the ensemble’s standard deviation, as

shown in Figures 4.18 - 4.21. The EKF’s estimate for these values matched within

approximately 20% in position and with more data runs these values are expected

to become more closely matched; however, the UKF’s estimate for each standard

deviation were over 1000% or more larger than the ensemble standard deviation for

position and heading. Although at a higher vertical axis scale the filter’s standard

deviation estimate seems to level off, it never reaches a steady state value (independent

of run length). In fact, upon further inspection, the standard deviations for all states

except position tend to have a steady state value. This trait is not dependent upon

the initial state covariance definition or the tuning parameters. Additionally, the

EKF and UKF share three common functions: model propagation, system model

linearization, and discrete process noise covariance generation. Although many steps

have been taken to isolate the issue, further investigation is required.
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Figure 4.18: Kalman Filter Ensemble Errors for x. The error signifies the difference
between the whole-value estimate and the truth. Lines representing en-
semble (red) and filter estimate (black) standard deviation are shown.
The error variation from the UKF is ∼50% less than the EKF.
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Figure 4.19: Kalman Filter Ensemble Errors for y. The error signifies the difference
between the whole-value estimate and the truth. Lines representing en-
semble (red) and filter estimate (black) standard deviation are shown.
The error variation from the UKF is ∼50% less than the EKF.
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Figure 4.20: Kalman Filter Ensemble Errors for z. The error signifies the difference
between the whole-value estimate and the truth. Lines representing en-
semble (red) and filter estimate (black) standard deviation are shown.
The error variation from the UKF is ∼50% less than the EKF.
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Figure 4.21: Kalman Filter Ensemble Errors for ψ. The error signifies the difference
between the whole-value estimate and the truth. Lines representing en-
semble (red) and filter estimate (black) standard deviation are shown.
The error variation from the UKF is ∼50% less than the EKF.
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4.3.2 Validation using Vicon Data. Because the MAV IFF is currently un-

able to support the integration of a UKF in Labview, some additional post-processing

efforts were taken to verify the UKF with actual data recorded during hover. The

recorded position, velocity, attitude, and attitude rates are considered truth, while

random Gaussian noise was added to create measurements. The truth, measurements,

reference data depicting desired position and heading, and inputs are made available

in the MATLAB workspace and read into Simulink during simulations to test the

UKF s-function. The measurements and truth were subtracted from the reference to

create errors depicting deviation from the reference, which shows a oscillating trajec-

tory about the desired location. The estimates produced by the filter are based on the

measurements and inputs. These estimates were subtracted from the truth to create

the error signals. The statistics of these error signals are outlined in Table 4.2, and

the plots resulting from the simulation are shown in Figure 4.22. The magnitude of

the errors are larger than expected. This seems logical due to the excessive amount

of noise recorded on the input signal versus the filtered data depicting the navigation

solution and the additional noise placed on the truth to create measurements. Due to

this logic, the UKF design is deemed sufficient for integration into the final controller

setup. The final testing will commence after after confirming the INS mechanization.

Table 4.2: UKF Temporal Error Statistics using Actual Data. The error defined for
these statistics is the difference between the truth and UKF estimate.

State Mean Standard Deviation

x 0.0509 m 0.1451 m
y -0.0154 m 0.1505 m
z 0.1199 m 0.1188 m
φ 0.2994 ◦ 1.1857 ◦

θ -0.1621 ◦ 1.0972 ◦

ψ -3.2473 ◦ 1.9259 ◦
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(a) Attitude

(b) Position

Figure 4.22: Open Loop Simulation with Actual Data. The recorded inputs and mea-
surements from the Vicon system were used as inputs and truth. Addi-
tional random white Gaussian noise was added to the truth and used as
measurements to test the UKF in an open-loop environment. All signals
characterize the deviation from the desired position/attitude.
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4.4 Inertial Navigation

The inertial navigation design solution is the last major piece of the controller

setup to be tested before testing the integrated, final configuration. The inertial nav-

igation mechanization and error model used for propagation during state estimation

is readily available through AFIT’s ANT Center. The m-files were only slightly mod-

ified for use in this effort, as discussed in Section 3.4. The difficulty in this test laid

in the creation of the ∆vb’s and ∆θb
ib’s (raw INS data) which represent the change in

velocity and attitude over each sample period, respectfully, from the accelerometers

and gyros. There were three methods for deriving this information:

• Using data recorded by Vicon

• Using smoothed Vicon data

• Creating data using MATLAB

All three methods used a function (m-file) available in the ANT Center to

extract the raw INS data from position and attitude. This function will be referred

to as reverse ins integrate. The code used to call this function is located in the

Appendix C. Once the raw INS data became available, they were fed into the INS

mechanization, as shown in Figure 4.23. The result is then compared to the original

trajectory.

Figure 4.23: INS Mechanization Setup. The generated raw INS data, ∆vb and ∆θb
ib,

are fed into the INS Mechanization to analyze the resulting trajectory.
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First, the actual position data (x, y, and z) recorded by the Vicon system is

used to test the mechanization. The results were found to be grossly erroneous. To

help troubleshoot this problem, the Vicon data was smoothed using a Butterworth

filter available in Simulink, with a filter order of 30 and passband edge frequency of

0.9 rad
sec

. The smoothed Vicon data is then processed using reverse ins integrate to

gain the raw INS data. Next, the raw INS data is fed into the INS mechanization

using the same process used for the raw Vicon position data. The resulting trajectory

when compared to the original trajectory, only showed minor differences. The mech-

anization was further tested with a trajectory created in MATLAB. The outcome of

this analysis showed the mechanization did work, but only if the raw INS data did

not have large, high-frequency variations (noise). To better control this effect, the

trajectory and inputs to the system model/filter will be created in MATLAB in future

simulations. Now that the INS mechanization has been verified, the next goal is to

test the integration of all parts previously covered in this section.

4.5 System Model and INS Combination

Thus far, each block within the final design outlined in Figure 3.10 has been

verified through simulations. In addition, the LQR controller has not only been veri-

fied through simulations, but also through hardware tests using the actual helicopter,

El Toro. This section tests and analyzes the results of the final design. The point of

which is to find a way to combine information contained in INS and system model

mechanization, and models contained within the Kalman filter to more accurately

predict the actual position of the helicopter to maintain a hover condition. This fi-

nal analysis is divided into two sections: controller integration/test and Monte Carlo

analysis.

4.5.1 Controller Integration/Test. The integration of all parts of the fi-

nal design is accomplished in three stages: Model-Only implementation, INS-only

implementation, and combination implementation. The model-only implementation
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setup is constructed in Simulink with s-functions built for the UKF and mechaniza-

tion blocks based on Figure 3.10, indicating the system model mechanization and

the UKF system model propagation will be used. The INS-only implementation fol-

lows the same design; the INS mechanization and the UKF INS error model will

be used instead. The setup concept for these first two parts is more generally de-

picted in Figure 3.3. The final part, combination implementation, combines the two

mechanizations and estimates used in parallel model propagations to provide a more

accurate navigation solution as described in Section 3.5. The first two stages were

tuned to provide the best navigation solution based on the available model. The final

stage was then analyzed and compared by performing a Monte Carlo analysis. The

Simulink diagrams used in the simulations are shown in the Appendix D.

4.5.2 Monte Carlo Analysis. A Monte Carlo analysis was used to calculate

the statistical properties of the controllable states being routed to the LQR con-

troller [17]. This type of analysis is performed to determine the most probable range

of outputs, given the same deterministic inputs and different independent, Gaussian,

random inputs over many samples. The mean and standard deviation of the errors

will be the primary focus of this analysis. Furthermore, root-sum-square (RSS) cal-

culations are performed to provide the overall radial and heading error over 50 runs.

The root-mean-square (RMS) is derived from the RSS, given the symbol Θ and calcu-

lated as shown in the following equations to determine the typical radial and heading

error:

Θ =

√∑50
i=1 err(i)2

50 runs
(4.4)

Fifty samples was determined to be a sufficient number to calculate these statis-

tics. To begin, the Simulink model shown in Figure D.1 was used to perform the anal-

ysis. A loop was constructed in an m-file to simulate this model three times for each

run; once in each of the three configurations. This process was repeated 50 times to
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generate 50 sample runs in each configuration. At the beginning of each run, random

noise vectors were generated by using the randn function. These vectors were used

for measurement noise (v), noise on the input signal (intensity S), and noise added

to the raw INS inputs (intensity I), and did not change until the next run. These

noise vectors were added to the truth
[
x, y, z, φ, θ, ψ

]T
, the inputs

[
u1, u2, u3, u4

]T
,

and the raw INS inputs
[
δvb(1), δvb(2), δvb(3), δθb

ib(1), δθb
ib(2), δθb

ib(3)
]T

, respectively.

The covariance matrices for these signals are defined as follows:

R =




0.01 m2 0 0 0 0 0

0 0.01 m2 0 0 0 0

0 0 0.01 m2 0 0 0

0 0 0 0.005 rad2 0 0

0 0 0 0 0.005 rad2 0

0 0 0 0 0 0.005 rad2




(4.5)

S =




0.1 0 0 0

0 0.02 0 0

0 0 0.2 0

0 0 0 0.2




(4.6)

I =




5e-5m2

s2 0 0 0 0 0

0 5e-5m2

s2 0 0 0 0

0 0 8e-3m2

s2 0 0 0

0 0 0 5e-6 rad2 0 0

0 0 0 0 5e-6 rad2 0

0 0 0 0 0 5e-5 rad2




(4.7)
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Additionally, the system and INS error models within the filter were tuned

previously by tweaking the values in the process noise matrix, Q. The resultant

matrices for the INS error model and system error model are as follows:

QINS = Λ

(
0.01

m2

s
, 0.01

m2

s
, 0.25

m2

s
, 0.0011

m2

s3
,

0.0011
m2

s3
, 0.0011

m2

s3
, 0.15e-5

rad2

s
, 0.15e-5

rad2

s
,

0.82e-3
rad2

s
, 0.82e-4

m2

s5
, 0.82e-4

m2

s5
, 0.82e-4

m2

s5
,

0.11e-9
rad2

s3
, 0.11e-9

rad2

s3
, 0.11e-9

rad2

s3

)

(4.8)

Qsys =




1N2

s
0 0 0 0 0

0 1N2

s
0 0 0 0

0 0 0.1N2

s
0 0 0

0 0 0 5e-15N2−m2

s
0 0

0 0 0 0 5e-15N2−m2

s
0

0 0 0 0 0 5e-3N2−m2

s




(4.9)

Each run performed a pitch, roll, and yaw maneuver and had a duration 100

seconds. Samples for measurement and truth were collected for each run at a 50 Hz

rate. The measurements (trajectory) are then subtracted from the truth to create

the error signals. These error signals are saved in a 50×5001 matrix with each row

representing the run and each column representing the samples collected over the

duration of each run. The error resulting from each of the 50 runs (i.e. δx, δy, δz,

δφ, ...) is plotted with respect to time to gain a better perspective of the pdf (see

Figures 4.24 - 4.29).

Furthermore, temporal statistics are calculated using the RMS results over 50

runs. The mean and standard deviation were calculated for each configuration for
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Figure 4.24: Ensemble Statistics for Position Error in the x-direction over 50 Runs.
The x error was calculated over 50 runs in the Model ONLY, INS ONLY,
and Combination (Both) configurations. The red lines indicate the stan-
dard deviation over the 50 runs at each point in time.
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Figure 4.25: Ensemble Statistics for Position Error in the y-direction over 50 Runs.
The y error was calculated over 50 runs in the Model ONLY, INS ONLY,
and Combination (Both) configurations. The red lines indicate the stan-
dard deviation over the 50 runs at each point in time.
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Figure 4.26: Ensemble Statistics for Position Error in the z-direction over 50 Runs.
The z error was calculated over 50 runs in the Model ONLY, INS ONLY,
and Combination (Both) configurations. The red lines indicate the stan-
dard deviation over the 50 runs at each point in time.
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Figure 4.27: Ensemble Statistics for Position Error in the φ-direction over 50 Runs.
The φ error was calculated over 50 runs in the Model ONLY, INS ONLY,
and Combination (Both) configurations. The red lines indicate the stan-
dard deviation over the 50 runs at each point in time.
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Figure 4.28: Ensemble Statistics for Position Error in the θ-direction over 50 Runs.
The θ error was calculated over 50 runs in the Model ONLY, INS ONLY,
and Combination (Both) configurations. The red lines indicate the stan-
dard deviation over the 50 runs at each point in time.
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Figure 4.29: Ensemble Statistics for Position Error in the ψ-direction over 50 Runs.
The ψ error was calculated over 50 runs in the Model ONLY, INS ONLY,
and Combination (Both) configurations. The red lines indicate the stan-
dard deviation over the 50 runs at each point in time.
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position and attitude. The results when the combination configuration is compared

to the other two configurations are summarized in Table 4.3. Notably, the combination

configuration demonstrated superior performance with respect to all variables except

for the y error. In hindsight, the models could have been tuned further to place a

larger noise intensity on the corresponding system process noise for y and a smaller

noise intensity on the INS process noise for y. The reason this was not changed is to

provide an example of how tuning the process noise matrix to compensate for model

defects is crucial in the success of the combination implementation.

Table 4.3: Combination vs. Model Only and INS Only Configuration Results. The
combination configuration was compared to the model-only and INS-only
by calculating the mean of each RMS run and comparing the results for
each state between configurations. A plus (+) indicates an improvement
over the over method, while a minus (-) indicates a degradation.

State Improvement over Model ONLY Improvement over INS ONLY

x +5.72% +31.44%
y +26.56% -15.34%
z +4.50% +25.59%

radial +14.00% +19.57%
φ +8.00% +37.50%
θ +36.36% +40.23%
ψ +433.70% +0.21%

To keep the helicopter in a hover condition, the most important errors in this

effort are the radial position and heading (ψ) errors. The radial RMS position errors

were calculated for each of three configurations, using Equation 4.3. These errors are

plotted over time for each configuration, as shown in Figures 4.30 and 4.31. Notice the

INS does a better job of predicting ψ. This fact was realized early (before the Monte

Carlo runs), thus the system model’s process noise intensity value in the UKF for ψ

was increased dramatically so the combination configuration would rely heavily on the

INS result. The heading error results shown in the plot convey the combination track-

ing the INS steadily throughout each 100-second run. In contrast, the radial position

results for the combination implementation outperform the model-only and INS-only

configurations by 14% and 20%, respectfully. Looking at Figure 4.30, the INS-only
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results have a large variation; after further investigation, this is due to the noise added

to the raw INS inputs combined with the sensitivity of the INS mechanization. Due

to the previous issues with the UKF’s state covariance, this exercise was repeated

with the EKF as the state estimator. Once again, new truth was generated and the

noise levels applied to the raw INS data, inputs and measurements were modified to

reflect realistic levels, and the process noise covariance matrix for each model was

tuned to reflect the model’s uncertainty. A Monte Carlo analysis was performed over

30 runs, which resulted in the same conclusions with varying improvements equal to

or greater than the UKF analysis. The results of the methodology are concluded.

The combination configuration method does show a moderate improvement over the

original methods. The conclusions gained from this effort are detailed in Section V.
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Figure 4.30: Ensemble Statistics for Radial Position RMS Error over 50 Runs. The
radial position RMS error was calculated over 50 runs in the model-
only, INS-only, and combination (both) configurations. The combina-
tion configuration performed better than the model-only and INS-only
configurations by 14% and 20%, respectively.
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Figure 4.31: Ensemble Statistics for Radial Position RMS Error over 50 Runs. The
radial position RMS error was calculated over 50 runs in the model-only,
INS-only, and combination (both) configurations.
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V. Conclusions

U
nmanned aerial vehicles have become a vital part of today’s military arsenal.

The successful demonstration of the RQ-1 Predator’s unique capabilities has led

to the exploration of UAVs further employment into increasingly challenging combat

environments. With today’s war on terror, the battle is most commonly fought in

urban areas; this realization became the impetus for research into micro-air vehicles.

Due to degradation or denial of GPS inside buildings or underground, alternative

methods for navigating are being pursued to provide the most accurate solution. One

method relies on vision to extrapolate position and attitude. The purpose of this thesis

is to build a linear quadratic Gaussian controller for a micro-sized helicopter with

inputs provided from a system model combination INS mechanization using vision

updates from a Kalman filter, then to test its effectiveness against more traditional

setups.

5.1 Research Summary

The LQG technique is a type of model-based control. The nonlinear system

model was built partially from equations derived from experimental data and partially

from standard motor and 6DOF formulas. The model was reduced, linearized, and

verified in an open-loop configuration using software-created inputs, then tested with

actual data. For the hover condition, the weighting on position and heading was

emphasized in the creation of the LQR gain matrix. With the system’s states as

inputs, the gain matrix provided throttle, rudder, pitch, and roll commands to the

vehicle that kept the vehicle in a hover. The gain matrix was then validated through

software and hardware tests, thus further verifying the legitimacy of the model. When

testing with the actual helicopter, the radial position error was within 13 cm for 83%

of a 60 second run, while the heading error remained under 5 degrees.

Next, an EKF and UKF were constructed and compared to determine the best

candidate for state estimation of the vehicle’s nonlinear system model. Consistent

with previous studies, the UKF outperformed the EKF at a steady state hover by
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approximately 50%. The final effort before integration involved constructing the INS

mechanization and error model. The algorithms were previously developed and pro-

vided by AFIT’s Advanced Navigation Technology Center. Each component within

the overall architecture, shown in Figure 3.10, was integrated and simulated in three

configurations: model-only mechanization, INS-only mechanization, and combination

mechanization. The first two configurations use a different mechanization and model

propagation in the Kalman filter. The final configuration combines the system and

INS mechanizations and models to produce a more accurate navigation solution. This

fusion technique is derived from combining the mean and covariance using the follow-

ing equations:

P−1
c = P−1

ins + P−1
sys (5.1a)

x̂c = Pc

(
P−1

ins x̂ins + P−1
sysx̂sys

)
(5.1b)

The process noise covariance was tuned for each model; if this tuning is not

accomplished, it is possible that the combination configuration will not provide the

most accurate solution. A Monte Carlo simulation was performed on each simulation

and statistics calculated. With the covariances appropriately tuned, the combination

configuration provided a radial position improvement over the model-only and INS-

only configurations by 14% and 20%, respectively.

5.2 Issues

During this research several issues arose that leave cause for further investiga-

tion.

5.2.1 AFRL’s MAV Indoor Flight Facility. This research served as the

first use of the MAV IFF from an outside agency. Labview was used as the interface

software for autonomous control. Much progress was made while integrating the LQR
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gain matrix for closed-loop helicopter control; however, much work still needs to be

accomplished. The hardware testing stopped when trying to install the Kalman filter

inline with the controller. The following methods were attempted without success:

building a C code wrapper for an m-file and building the Kalman filter in Simulink

to be installed in Labview using advertised techniques. Translating the MATLAB

code to C code was another option that was not pursued due to risk in schedule. The

Kalman filter, as an alternative, was tested using actual data in software simulations.

AFRL/RB is currently pursuing techniques to integrate state estimators in future

testing for customers.

5.2.2 Trim Settings. Although the state estimation was not verified at the

MAV IFF, the LQR gain matrix was verified through closed loop operation. This

hardware test with El Toro was repeated over several weeks. The LQR provided

stable control of the vehicle; however, a steady state error was revealed during each

flight test. After some investigation, this steady state error corresponded to the

helicopter’s trim settings. Adjustment of the trim setting values became a part of the

setup procedures before each flight test, like it would for manual operation. Further

investigation into appropriate techniques is required to eliminate this procedure.

5.2.3 State Estimation. Unlike discovering the steady state error during

flight tests was associated with trim settings, the state covariance figures produced

by the UKF was unexplainable. In the state estimation section, the EKF and UKF

were compared using a Monte Carlo Analysis. The state standard deviation values

produced by the EKF matched the ensemble standard deviations, as expected; how-

ever, the UKF did not. The values produced by the UKF were up to 400% larger

than the ensemble standard deviation. Many avenues were investigated to isolate the

cause to no avail. The UKF was used due to its superior performance in estimat-

ing the states during hover; however, the EKF was used to help verify the UKF’s

suitability due to this unresolved issue.
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These issues, in addition to improvements and hardware implementation out-

lined in the next section, should be addressed.

5.3 Future Work

The research performed in this thesis is only a stepping stone toward producing

the most accurate navigation solution for a MAV in an urban setting when GPS is

denied. The next step is to integrate the design onboard the airframe and perform

a hardware test. There are several considerations in performing this feat. First, the

payload capacity of the vehicle must be considered. The helicopter must be able to

easily carry a processor, INS, cameras, and an additional battery, at a minimum.

Furthermore, the controller could be improved from the LQG technique to provide an

adaptive or learning capability to automatically adjust to fluctuating trim settings.

Finally, the visual navigation algorithm should be integrated to provide measurement

updates to the Kalman Filter.

5.3.1 Other Vehicles. El Toro was used in this effort because it was readily

available through the ANT Center and had already been tested to derive the motor

parameters and lift/torque equations. Although El Toro was suitable for the work

performed in this thesis, it was limited in the amount of payload it could carry (ap-

proximately 0.22 pounds). Other considerations for vehicle selection are size (ability

to maneuver through a doorway), battery requirement (duration of flight), and noise

(only if the need to be stealthy arises). A larger tail-rotor helicopter or quadrotor type

would be more appropriate to carry a larger payload (i.e., processor, extra battery,

cameras, etc.). A new quadrotor, built in the ANT Center, has been selected as the

interim solution over El Toro. It has a payload capacity of two pounds, which could

ensure stable flight with all necessary equipment without having to max out at full

throttle to maintain a hover. The process for modeling the ANT Center’s quadrotor

was completed; however, a controller was not built due to the limitations in schedule.
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The nonlinear dynamics model derivation for the quadrotor is located in Appendix E

for future reference.

5.3.2 Other Types of Controllers. Although LQG control techniques were

employed during this research effort, other types of controls would be more suitable

for integration. To reduce the position and heading steady state error, additional or

alternative control techniques could be utilized. For instance, an integrating LQG

technique could be employed to reduce steady state error; another name for this type

of control is a proportional-plus-integral (PI) control. This technique “will provide

a nonzero steady state control when its own input is zero” [16]. Also, an adaptive

learning parameter estimation technique could be utilized to eliminate the need to

readjust trim settings in pre-flight and adjust for dynamics differences between he-

licopters. Neural dynamic programming and direct adaptive control techniques are

both realistic implementations for performing these tasks [4] [11] [8].

In conclusion, the simulation and hardware implementation of the LQR con-

troller provided stable control of the Walkera 53-1, commercial micro-helicopter. Fur-

thermore, simulations of the state estimation and model/INS combination mecha-

nization and propagation approach provided moderate improvement over using the

individual configurations discussed in this thesis. Hopefully, the work here will pave

the avenue to flight control hardware implementation and testing for El Toro and/or

the ANT Center quadrotor in the near future.
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Appendix A. El Toro System Model

A.1 El Toro System Model Linearized about Hover

A=




0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 −2.5 0 0 0 −9.8 0 0 0 0 0 0

0 0 0 0 −5 0 9.8 0 0 0 0 0 0 0

0 0 0 0 0 −1.25 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −398 0 0 −398 0 0 −398 0

0 0 0 0 0 0 0 −323 0 0 −323 0 0 −323

0 0 0 0 0 0 0 0 0 0 0 −166 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −5




B=




0 0 0 0 0 −2.073 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −112 0 0

0 0 0 0 0 0 0 0 0 0 323 0 0 0

0 0 0 0 0 0 0 0 0 398 0 0 0 0




T
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C=




1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0




D=

[
0

]
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G=




3.125 0 0 0 0 0

0 3.125 0 0 0 0

0 0 3.125 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 5769 0 0

0 0 0 0 4687 0

0 0 0 0 0 3319

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




A.2 El Toro Linearized System Model Transfer Functions

Note: If an input-output transfer function is not listed, assume it’s function is

zero.

z

throttle
=

−2.073

s(s + 1.25)

ż

throttle
=
−2.073

s + 1.25

ψ

rudder
=

−112

s(s + 165.9)
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ψ̇

rudder
=

−112

s + 165.9

x

pitch
=

−3169(s + 5.0016)

s(s + 321.3708)(s + 6.2212)(s + 2.4990)(s + 0.809)

ẋ

pitch
=

−3169(s + 5.0016)

(s + 321.3708)(s + 6.2212)(s + 2.4990)(s + 0.809)

θ

pitch
=

323.4(s + 5)

(s + 321.3708)(s + 6.2203)(s + 0.8089)

θ̇

pitch
=

323.4s(s + 5)

(s + 321.3708)(s + 6.2203)(s + 0.8089)

y

roll
=

3901(s + 4.9987)

s(s + 395.9769)(s + 6.2148)(s + 4.9995)(s + 0.8088)

ẏ

roll
=

3901(s + 4.9987)

(s + 395.9769)(s + 6.2148)(s + 4.9995)(s + 0.8088)

φ

roll
=

398(s + 5)

(s + 395.9769)(s + 6.2144)(s + 0.8087)

φ̇

roll
=

398s(s + 5)

(s + 395.9769)(s + 6.2144)(s + 0.8087)
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Appendix B. LQR Gain Matrix

Gc =




0.1100 0.0480 −2.1613 0.0044

−.1098 −0.0479 −0.0044 2.1623

−3.0839 0.0050 −0.1187 −0.1197

0.0668 0.0311 −1.4411 0.0031

−0.0667 −0.0310 −0.0030 1.4410

−1.4591 0.0021 −0.0595 −0.0600

−0.1451 −0.0769 −0.0081 4.5980

−0.1455 −0.0771 4.6032 −0.0082

−0.0003 −1.6530 −0.0872 −0.0878

−0.0003 −0.0002 0.0000 0.0092

−0.0004 −0.0002 0.0119 0.0000

0.0000 −0.0254 −0.0008 −0.0008




T
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Appendix C. MATLAB Code

Listing C.1:

1 %Create ∆_v and ∆_theta from Pwgs(t)

%

%Created by: Capt Constance Hendrix

initialize

6

%% Initialize Cnb0 and v_ned0

11 C2b = [1 0 0;0 cos(Phi(1)) -sin(Phi (1));0 sin(Phi(1)) cos(Phi...

(1))];

C12 = [cos(Theta (1)) 0 sin(Theta (1)); 0 1 0;-sin(Theta (1)) 0 ...

cos(Theta (1))];

Cn1 = [cos(Psi (1)) -sin(Psi (1)) 0;sin(Psi(1)) cos(Psi(1)) 0;0 0...

1];

Cnb = Cn1*C12*C2b;

Cnb0 = Cnb;

16

v_ned0 = [x_dot (1) y_dot (1) z_dot (1)];

%% sampling rate

21 dt =0.02;

%% obtain ∆_v and ∆_theta

26 for ii=1:( length(x) -1)

C2b = [1 0 0;0 cos(Phi(ii+1)) -sin(Phi(ii+1));0 sin(Phi(ii...

+1)) cos(Phi(ii+1))];
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C12 = [cos(Theta(ii+1)) 0 sin(Theta(ii+1)); 0 1 0;-sin(...

Theta(ii+1)) 0 cos(Theta(ii+1))];

Cn1 = [cos(Psi(ii+1)) -sin(Psi(ii+1)) 0;sin(Psi(ii+1)) cos(...

Psi(ii+1)) 0;0 0 1];

Cnb = Cn1*C12*C2b;

31 Cnb1 = Cnb;

[∆_v(ii ,:), ∆_theta(ii ,:), v_ned1(ii ,:)] = ...

reverse_ins_integrate(dt,Pwgs(ii+1,1),Pwgs(ii+1,2),Pwgs(...

ii+1,3),Cnb1 ,Pwgs(ii ,1),Pwgs(ii ,2),Pwgs(ii ,3),Cnb0 ,...

v_ned0);

Cnb0=Cnb1;

v_ned0=v_ned1(ii ,:);

end

36

%% Check

C2b = [1 0 0;0 cos(Phi(1)) -sin(Phi (1));0 sin(Phi(1)) cos(Phi...

(1))];

41 C12 = [cos(Theta (1)) 0 sin(Theta (1)); 0 1 0;-sin(Theta (1)) 0 ...

cos(Theta (1))];

Cn1 = [cos(Psi (1)) -sin(Psi (1)) 0;sin(Psi(1)) cos(Psi(1)) 0;0 0...

1];

Cnb = Cn1*C12*C2b;

Cnb0 = Cnb;

46 lat0 = Pwgs (1,1);

lon0 = Pwgs (1,2);

alt0 = Pwgs (1,3);

v_ned0 = [x_dot (1) y_dot (1) z_dot (1)];

51

for ii=1:( length(x) -1)
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[lat1(ii),lon1(ii),alt1(ii),v_ned1(ii ,:),Cnb1 ,f_NED]=...

ins_integrate(∆_v(ii ,:),∆_theta(ii ,:),dt,lat0 ,lon0 ,alt0 ,...

v_ned0 ,Cnb0 ,0);

Cnb0 = Cnb1;

v_ned0 = v_ned1(ii ,:);

56 lat0 = lat1(ii);

lon0 = lon1(ii);

alt0 = alt1(ii);

end
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Appendix D. Simulink Diagrams

Figure D.1: Overall Process with System Model and INS Combination Selectable.
This Simulink model is used for simulations to test the state estimation
configuration.
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Figure D.2: Deterministic and Stochastic inputs to the Simulink Model. These inputs
are fed to the Mechanization block, as well as the UKF, for simulation.
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Figure D.3: Mechanization Block. The system model, INS, or combination mech-
anization is updated by the error state estimate, producing a nominal
trajectory. The nominal state vector is then subtracted by the camera
measurement to produce the measurement error, which is then used to
update the error state vector in the UKF.
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Appendix E. Quadrotor Modeling

Modeling of the ANT Center’s quadrotor was accomplished as a first step to future

work. The modeling began by generating lift and torque curves using experimental

methods. One of the four motor/blade assemblies was dismantled from the vehicle and

configured in the setup shown in Figure E.1. The motor was controlled using a servo

tester that allowed the pulse width of the pulse-width modulation (PWM) signal to

be varied. Varying of this pulse width from 1000 µsec to 2000 µsec causes the motor

to go from zero to full throttle. In 50 µsec steps, the force due to lift was recorded

using a digital scale, the angular velocity was measured using a tachometer, and the

battery power and current was measured using an inline wattmeter. Additionally,

no-load tests were performed to estimate the rotational power loss [29]. All other

losses, to save time, were neglected.

(a) Front View (b) Side View

Figure E.1: Quadrotor Modeling Test Setup. Lift and torque equations were derived
through testing of motor/blade assembly for the quadrotor using the fol-
lowing setup. The moment arms from the pivot point to the blade and
scale were measured to be exact.

The resulting equations for lift (Flift) and torque (τ) for one motor blade as-

sembly in terms of the PWM pulse width input (p) are shown below with the curves
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plotted in Figure E.2.

τ = −2.7407e−011(p)+1.8141e−007(p)−3.9919e−004(p)+0.3694(p)−124.4460(p)

Flift = 6.7816e− 006(p)− 0.0099(p) + 2.9035(p)
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Figure E.2: Quadrotor Lift and Torque Curves. These plots were derived from ex-
perimental data in terms of the PWM input, then approximated using a
polynomial trendline in Excel and verified in MATLAB using the polyfit
function.

These equations are used for each of the four motor blade assemblies, with the sub-

script number for each equation corresponds to the motor location layout in Fig-

ure E.3. The force (F ) and moment (M) equations used as input to the 6DOF

model,

F = Cn
b




0

0

mg


 +




0

0

−Flift1 − Flift2 − Flift3 − Flift4



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M =




rb 0 0

0 rb 0

0 0 1


 ·




Flift1 − Flift2 + Flift3 − Flift4

Flift1 + Flift2 − Flift3 − Flift4

τ1 − τ2 − τ3 + τ4




where rb is the radius from the center of mass of the vehicle to the center of the blade.

These equations were provided as inputs to the 6DOF model.

Figure E.3: Quadrotor Motor Layout. The camera location indicates the front of the
vehicle, while the numbers indicate motor blade assembly location.

Next, the moment of inertial tensor in the body frame is garnered. Like El Toro,

the quadrotor uses Equation (3.6) with Ixx, Iyy, and Izz provided by 2Lt. Don

J. Yates from the ANT Center through previous experimentation. All parameters

defined are summarized in Table E.1.

Table E.1: Quadrotor Parameters. The following parameters were previously defined
using experimentation and various measurement devices.

Parameter Value

m 0.9 kg
rb 0.3 m

Ixx 0.0547 kg-m2

Iyy 0.0547 kg-m2

Izz 0.0547 kg-m2
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The final ingredient to produce the nonlinear system model is to define how the

commands, throttle (u1), rudder (u2), pitch (u3), and roll (u4), relate to the PWM

inputs.

p1 = u1 + u2 + u3 + u4 + 1385.5

p2 = u1 − u2 + u3 − u4 + 1385.5

p3 = u1 − u2 − u3 + u4 + 1385.5

p4 = u1 + u2 − u3 − u4 + 1385.5

These equations can be also be expressed as the commands in terms of the inputs;

The 1385.5 µsec value refers to the pulse-width for all four motors in hover.




u1

u2

u3

u3




=




1
4

1
4

1
4

1
4

1
4
−1

4
−1

4
1
4

1
4

1
4

−1
4
−1

4

1
4
−1

4
1
4

−1
4



·




p1

p2

p3

p3



−




1385.5

0

0

0




The resulting nonlinear mathematical model is used in an embedded MATLAB

function in Simulink (Figure E.4), and provided inputs ranging from -1 to +1. The

system responded as expected.
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Figure E.4: Open-Loop Test Setup for the Quadrotor. Throttle, rudder, pitch, and
roll commands were varied from -1 to +1 to observe the response of the
quadrotor dynamics model. The model behaved as expected.
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