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Abstract

Evaluating the quality of software and circuit obfuscators is a research goal of

great interest. However, there exists little research about evaluation of obfuscation ef-

fectiveness through analyzing and investigating redundancies found in the obfuscated

variants.

In this research, we consider programs represented as structural combinational

circuits and then analyze obfuscated variants of those circuits through a tool that pro-

duces functionally equivalent variants based on subcircuit selection and replacement.

We then consider how Boolean logic and reduction affects the size and levelization of

circuit variants, giving us a concrete metric by which to consider obfuscation effec-

tiveness. To accomplish these goals, we create an experimental environment based on

a set of predefined circuits, a set of predefined algorithms which produce variants of

those circuits, and a collection of logic reduction techniques and tools. We build logic

reduction techniques using predefined patterns and predefined functions expressed as

truth tables.

As a contribution, we characterize and evaluate the effectiveness of obfuscating

algorithms based on these reduction techniques. We show, for the circuits we observe,

optimization on size is affected by ordering of the specific reduction patterns and

functions. We also show, for the circuits we observe, reduction is affected by the

specific obfuscating algorithm used to produce the variant. Based on these results,

we provide a promising measurement of interest to compare both circuit variants and

obfuscating algorithms.
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Removing Redundant Logic Pathways

in Polymorphic Circuits

I. Introduction

1.1 Background

Software obfuscation remains a research area of great interest. If possible, proving

or demonstrating that we can protect software from adversarial actions holds

great interest to both military and civilian communities. In general, obfuscation

seeks to find suitable variants of an original program or circuit that accomplishes

the same function as the original. The suitability of the variant is determined by

whether or not the variant demonstrates some security property of interest [8]. In

most cases, we link the security property to driving up the cost of reverse engineering

or demonstrating that recovery of certain program information is equivalent to the

work of solving a known hard problem [6, 7, 13].

If we consider simple straight-line programs represented as combinational cir-

cuits, we can focus more precisely on what actually defines obfuscation and consider

measurements of those attributes. In this research, we experiment with and char-

acterize a polymorphic circuit generator that creates functionally equivalent circuits

by using a mixture of random and deterministic subcircuit selection/replacement al-

gorithms applied sequentially. Using this approach, such a generator, when given

an original circuit P, produces a circuit P’ with the same function by using a se-

quence of iterative selections and replacements on circuit P. Each individual selection

and replacement represents an obfuscation on a small scale: the engine replaces each

subcircuit selected with a functionally equivalent replacement subcircuit.

Our research focuses on how to characterize and measure circuit obfuscation that

uses such selection/replacement algorithms. Specifically, we analyze the nature of the

structural and logic changes produced by subcircuit selection/replacement. Based
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on the logic and component properties of the selection and replacement operations

themselves, we characterize specific trends that occur within a circuit that undergoes

transformation. A question of great interest is ”how much” of the transformations

introduced via subcircuit selection and replacement algorithms can be “undone” via

optimization or logic minimization. The answer to this question possibly provides

a measurable basis to characterize the degree of “actual” obfuscation that is taking

place. By looking at the effect of subcircuit transformations themselves, we formulate

an approach for answering this question and organize our research accordingly.

1.2 Research Objectives

Based on these goals, we describe the main objectives of our research as follows:

1. Produce and analyze obfuscated variants of combinational circuits created using

iterative subcircuit selection and replacement.

2. Devise methods to remove identifiable artifacts of circuit variants based on logic

and component analysis.

3. Characterize circuit obfuscation effectiveness using reduction methods and de-

termine principles of successful deobfuscation.

To accomplish these objectives, we utilize a polymorphic circuit generator (CORGI,

Circuit Obfuscation via Randomization of Graphs Iteratively) developed by McDon-

ald et al. [14–16, 18, 21] known as CORGI. The whitebox obfuscation aspect of the

CORGI framework specifically uses subcircuit selection and replacement as its trans-

formation basis.

To accomplish our first objective, we generate the obfuscated circuit variants

using specific generation options defined by CORGI. We then use the circuit transfor-

mation history (or journal) produced during a CORGI experiment to identify obfus-

cation patterns that occur. Using these patterns, we create a strategy for reduction

based on the logic attributes associated with each pattern.
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For the second objective, we define patterns that have specific logic that is

conducive to reduction or minimization. Classic examples of such reduction may be

seen in whitebox circuit structures such as buffers, double inverters, constant 0/1

gates, and so forth. Using this approach, we devise ten circuit reduction algorithms

which represent the pattern-based approach of logic minimization. We also create

two reduction algorithms that use functional identification (based on the truth table)

to find logic structures suitable for minimized replacement. These algorithms try to

find whitebox structures whose functions are simple AND, OR, NAND, and NOR

logic patterns.

For the last objective, we characterize obfuscation by using these circuit reduc-

tion techniques under various experimental conditions. We consider the effect of using

these patterns in a combined fashion based on either predetermined order or random

sequences and present conclusions based on our observations. We analyze our results

to see how size correlates with various approaches to producing the circuit variant

(the obfuscating algorithm). Ultimately, we provide results which give definable mea-

sures for the effectiveness of obfuscation and give a basis for comparing obfuscating

algorithms themselves.

1.3 Organization

We organize the remainder of the thesis as follows. Chapter II provides an

overview of reverse engineering and obfuscation and explains the CORGI circuit gen-

eration engine. Chapter III defines our methodology including analysis of circuit ob-

fuscation log files and creation of circuit reduction algorithms. Chapter IV presents

the results of experiments using circuit reduction techniques and our analysis. Chap-

ter V gives our conclusions along with our contributions and discussion of future work

for our reduction techniques.
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II. Literature Review

This chapter presents a background review of the literature pertaining to the

research subjects related to this research work. Section 2.1 describes the con-

cept of reverse engineering. Section 2.2 summarizes theoretical obfuscation with the

description of virtual black box obfuscation, indistinguishability obfuscation, and

best-possible obfuscation. Section 2.3 shows that the overview of CORGI, Circuit

Obfuscation via Randomization of Graphs Iteratively [18].

2.1 Reverse Engineering

Aronson, R.B. [1] defines reverse engineering as

“the process of systematic evaluation of a product for the purpose of repli-
cation.”

Chikofsky and Cross [5] describes reverse engineering as

“the process of analyzing a subject system to identify the system’s compo-
nents and their interrelationships and create representations of the system
in another form or at a higher level of abstraction.”

As we can see from these definitions, reverse engineering can be used to repro-

duce commercial or military systems by analyzing them. Since it makes possible to

reduce cost and time, there are many researches and attempts to reverse engineering

for their advantages. Reverse engineering is used in many situations such as when

the original manufacturer of a product no longer produces a product, when there is

inadequate documentation of the original design, and when the original manufacturer

no longer exists, but a customer needs the products [2]. In contrast to these benefi-

cial motivations, reverse engineering can be exploited with negative objectives such as

copying other nations’ technologies, devices or information that have been obtained

by the industrial spy. Obfuscation is defense against the malicious exploitations of

reverse engineering.

2.2 Obfuscation

Meriam-Webster Dictionary [17] presents obfuscate as

4



“to make obscure” or “to be evasive, unclear, or confusing”

Wiktionary Dictionary [19] describes obfuscation as

“The option to alter computer code, preserving its behavior but concealing
its structure and intent”

In other words, obfuscation provides an ability to hide system structure and

intent in order to make other people confused. Barak et al. [3] introduced the first

formalized publication of program (or circuit) obfuscation. They claim that an ob-

fuscator must have the following property:

1. functionality property, For every program P , O(P ) describes a program that

compute the same function as P .

2. polynomial slowdown property, The size and run time of O(P ) are at most

polynomial larger than that of P . That is, there is a polynomial p such that for

every program P , |O(P )| ≤ p(|P |).

3. virtual black-box (VBB) property, For any probabilistic polynomial time

turning machine (PPT) A, there is a PPT S and a negligible function α such

that for all programs P ,

|Pr[A(O(P )) = 1]− Pr[SP (1|P |) = 1]| ≤ α(|P |) (2.1)

We say that the obfuscator O is efficient if it runs in polynomial time.

Unfortunately, Barak, et al. [3] proved that it is impossible to construct a uni-

versal obfuscator under such requirements. In terms of results, there exists a set of

programs that cannot be obfuscated under the VBB definition. As an alternative to

VBB obfuscation, Barak et al. propose the idea of indistinguishability obfuscation.

2.2.1 Indistinguishability Obfuscation. We define an indistinguishability

obfuscator in the same way as a circuit obfuscator, without replacing the “virtual

black box” property with the following:
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• indistinguishability property, For any PPT A, there is a negligible function

α such that for any two circuits C1, C2 which compute the same function and

are of the same size k,

|Pr[A(O(C1))]− Pr[A(O(C2))]| ≤ α(k) (2.2)

As we can know in VBB obfuscation, the VBB property compares an obfuscated

circuit to a simulator that has only black box access to the original circuit. However,

the indistinguishability property compares the obfuscations of two different circuits,

C1 and C2. Since this property weakens the VBB definition, it demonstrates that

obfuscation (at least in the information theoretic sense) is not achievable but may be

achievable under other definitions that are of interest.

2.2.2 Best-Possible Obfuscation. In another study, Goldwasser and Roth-

blum [9] clarify the notion of best-possible obfuscation that guarantees that when

an obfuscated program O(P ) leaks some information, any other program P which

computes the same functionality also leaks the same information. The best-possible

obfuscation is defined in the same way as circuit obfuscator, without substituting the

“virtual black box” property by the following:

• Computational/Statistical/Perfect Best-Possible Obfuscation, For all

large enough input lengths, for any polynomial size circuit adversary A, there

exists a polynomial size simulator circuit S such that for any circuit C1 ∈ Cn

and for any circuit C2 ∈ Cn that computes the same function as C1 and such

that |C1| = |C2|, the two distributions A(O(C1)) and S(C2) are computational-

ly/statiscally/perfectly indistinguishable.

Goldwasser and Rothblum [9] prove that all best-possible obfuscators are indis-

tinguishability obfuscators. They also show that an efficient best-possible obfuscator

is an efficient indistinguishability obfuscator. Unfortunately, there is no feasible ob-
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fuscator including the indistinguishability obfuscation or best-possible obfuscation

concepts until now.

2.3 CORGI

Many obfuscators are widely available through both commercial and open source

products that replace an original program with an obfuscated program. To facilitate

research aimed at defining the fundamental nature of whitebox obfuscation in the

circuit realm, McDonald et al. developed a circuit generating algorithm known as

CORGI, Circuit Obfuscation via Randomization of Graphs Iteratively, at the Air

Force Institute of Technology (AFIT). CORGI operates on programmatic logic em-

bodied in Boolean logic circuits using iterative sequences of probabilistic and deter-

ministic transforms. CORGI analysis primarily revolves around running experiments

on some original combinational logic circuit and producing one or more variants under

a set of experimental options. Analysis typically considers whether CORGI produces

a distribution of circuits with a specific (hiding) property or characteristic of interest.

Such experiments give basis for either characterizing one algorithm choice over an-

other or with defining metrics that reflect security properties of interest. The major

components of a CORGI experiment are circuit representation, experimental config-

uration, subcircuit selection, and subcircuit replacement. We give a brief summary

of these components as follows:

2.3.1 Circuit Representation. While sequential circuits have memory and

feedback loops (cycle), combinational circuits have no state. Since we can decom-

pose sequential circuits into combinational circuits, CORGI considers only combina-

tional logic. Independent observations by Huth and Ryan [11] also point out that

we only need a simple grammar to compute everything that can be computed by

large languages like C and Java. As another benefit, a simple logic grammar pro-

vides understandability because we need only three logic functions: NOT(!), AND(&),

and OR(‖). There are other commonly used logic functions such as NAND, NOR,
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Figure 2.1: ISCAS Benchmark Circuit c17

XOR, and XNOR, but we can represent these functions using various combinations

of NOT , AND, and OR.

Combinational logic circuits are widely used within both the hardware and

software domain. At the 1985 International Symposium of Circuits and Systems

(ISCAS), the Institute of Electrical and Electronics Engineers, Inc. (IEEE) introduced

a set of benchmark circuits, ISCAS-85 benchmark circuits [10]. They are particularly

useful for our research because they embody a variety of functions with a varying

degree of input size, output size, and circuit size. A list of these circuits can be found

at [4]. The smallest circuit, c17, is shown in Figure 2.1, with its syntactic listing in

BENCH format. c17 is of interest to us because it represents a small-scale NAND-

only logic component (i.e., small input size, small output size, small gate size) which

might be found in abundance within a larger circuit or component.

2.3.2 Experimental Configuration. To create semantically equivalent circuit

variants, CORGI uses a two-step iteration process which includes subcircuit selection

followed by subcircuit replacement. We have two selection/replacement options such

as random and smart [12]. If we leave the choices of the algorithm completely open

to a probabilistic dice-roll made by the algorithm, we term the selection/replacement

option as random. If some criteria or user preference is used to guide or replace a

probabilistic choice made by the algorithm, we term the selection/replacement option
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as smart. CORGI has four options which guide subcircuit selection or replacement

under these possibilities:

1. Random selection: Select a subcircuit Csub ⊂ C at random.

2. Random replacement : Select a replacement circuit Crep ∈ δCrep at random.

3. Smart selection: Only select subcircuits which have a particular property. If

the subset of allowable selections contains more than one subcircuit, then one

may be selected at random or based on another user-specified criteria.

4. Smart replacement : Similar to smart selection, only select replacement circuits

from the library which have a particular property. If the subset of allowable se-

lections contains more than one subcircuit, then one may be selected at random

or based on another user-specified criteria.

We define an obfuscation experiment as a 5-tuple: (C, n, ξ, σ, τ) [12]. C is an

original circuit, n is the number of iterations, ξ is a set of selection algorithms with

cardinality |ξ| = n where si ∈ ξ implies the selection algorithm performed during

iteration i, σ is a set of selection algorithms with cardinality |σ| = n where ri ∈ σ

implies the replacement algorithm performed during iteration i, and τ is a set of gates

which are given selection priority during the incremental execution of the experiment.

2.3.3 Subcircuit Selection/Replacement. Given an experiment defined as the

tuple (C, n, ξ, σ, τ), ξ represents a set of selection algorithms and si ∈ ξ implies the

selection algorithm used during iteration i. A subcircuit selection operation is defined

as Csub = s(C, x, γ, τ) [12] with several characteristic attributes. A circuit C is the

input to the algorithm, x is the (intermediate gate) size of the selection subcircuit,

γ ∈ S is the particular strategy (whether smart or random), and τ is an optional set

of gates that provide limiting criteria for the selection strategy itself.

The set S of possible selection strategies (described below) must include all

members defined until now and CORGI has the following set currently: S = {Random-

SingleGate, RandomTwoGates, RandomLevelTwoGates, LargestLevelTwoGates, Out-
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putLevelTwoGates, FixedLevelTwoGates, RandomAlgorithm}. The output of the

algorithm Csub is a circuit whose signature and SIZE(Csub) constructs the basis

for functionally equivalent alternatives and replacement. For example, iteration i

that uses the RandomLevelTwoGate strategy would be described as si = s(C, 1,

RandomLevelTwoGate, ∅), if we assume no experiment level criteria for selection/re-

placement.

Let Φ represent the set of all gates in a circuit C and let gx represent a gate gx ∈
Φ. CORGI has six different subcircuit-selection strategies [12] for the experiment.

The RandomAlgorithm strategy chooses any selection strategy in a random, uniform

manner for a single iteration of the experiment and there are selection strategies as

follow:

1. RandomSingleGate: Choose g1 ∈ Φ in a random, uniform manner.

2. RandomTwoGates : Choose g1 ∈ Φ in a random, uniform manner. Choose

g2 ∈ Φ where g2 �= g1 and where the replacement of the circuit (g1, g2) does not

create a cycle.

3. RandomLevelTwoGates : Choose g1 ∈ Φ in a random, uniform manner. Choose

g2 ∈ Φ where g2 �= g1 and where level(g2) = level(g1)±1 or level(g2) = level(g1)

and where the replacement of the subcircuit [g1, g2] does not create a cycle.

4. LargestLevelTwoGates: Choose g1 ∈ Φ such that |level(g1)| = �max where

�max represents the maximum size of all levels within the circuit: �max =

�{|level(gx)| | gx ∈ Φ}. Choose g2 ∈ Φ where g2 �= g1 and where level(g2)

= level(g1)− 1 or level(g2) = level(g1) and where the replacement of the sub-

circuit [g1, g2] does not create a cycle.

5. OutputLevelTwoGates : Choose g1 ∈ Φ where g1 is a distinguished intermediate

gate (i.e, an output of the circuit). Choose g2 ∈ Φ where g2 �= g1 and where

level(g2) = level(g1)− 1 or level(g2) = level(g1) and where the replacement of

the subcircuit [g1, g2] does not create a cycle.
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6. FixedLevelTwoGates : Choose g1 ∈ Φ where, for some user-provided level criteria

k, level(g1) = k . Choose g2 ∈ Φ where g2 �= g1 and where level(g2) = level(g1)−
1 or level(g2) = level(g1) and where the replacement of the subcircuit [g1, g2]

does not create a cycle.

7. RandomAlgorithm: Choose any selection strategy γ ∈ S in a random, uniform

manner. We may also weight one algorithm more heavily than others, and we

do so programmatically.

Given an experiment defined as the tuple (C, n, ξ, σ, τ), σ represents a set of

replacement algorithms and ri ∈ σ implies the replacement algorithm used during

iteration i. A subcircuit replacement operation is defined as Crep = r(Csub, z, ψ,Ω) [12]

with several characteristic attributes. Csub is the circuit chosen for replacement, z is

the requested gate size of the replacement circuit, ψ indicates criteria that determines

how we generate the replacement circuit library, and Ω indicates the basis choice of

the replacement circuit.

Let δ represent the circuit family, i.e. the set containing all circuits CX-Y -S-Ω.

X is the input size, Y is the output size, S is the maximum number of gates, and Ω is

the basis, where Ω ∈ {AND, NAND, OR, NOR, XOR, XNOR, NOT}. CORGI first

creates a set of circuits δX-Y -S-Ω. From this set of circuits, CORGI chooses randomly

and uniformly as alternative variant for Csub from the functionally equivalent subset

δCsub
⊂ δn-m-s-Ω. CORGI then replaces Csub with Crep, where Crep ∈ δCsub

.

CORGI uses true/false queries that form a Boolean 6-tuple [12], which we define

as ψ in the description of a replacement operation: r(Csub, z, ψ,Ω). We may vary these

options for every replacement opportunity in an experiment, but typically choose a

set of options ψ that remain constant for the entire sequence of iterations. There are

true/fase options for every replacement opportunity in the experiment as follow:

1. RedundantGates: Should we allow gates that are identical to other gates based

on the inputs? That is to say, can we have two gates in a circuit such that the

truth table for each gate, based on all circuit inputs, is the same?
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2. AllowConstants : Should we allow the circuit immediate access to the constants

True and False? Gates that exhibit these properties may exist in a circuit, but

it may change the properties of a set of circuits if these constants are available

immediately.

3. DoubleInputs : Should we allow both inputs to a gate to originate in the same

place? For example, if DoubleInputs = true, CORGI can produce buffer us-

ing AND(input1, input1), NOT using NAND(input1, input1), Constant 0 using

XOR(input1, input1), and Constant 1 using XNOR(input1, input1).

4. SymmetricGates: Are gates symmetric? That is to say, should we consider a

gate with inputs (X1, X2) as equivalent to a gate with inputs (X2, X1)? This

will depend on which gate types are used.

5. SimpleOutputs: Which gates may be outputs? In an ideal circuit, any gate

may be an output. However, if we want to index a circuit by output signature,

outputs must be restricted to a specific set of gates. If SimpleOutputs = true,

we require outputs of the circuit to all be lowest level sinks in the graph of the

circuit. This option also prevents, for example, gates that are considered as

outputs but never actually used–which we refer to as dangling gates.

6. ExactCount : Does the set contain all circuits within a certain size bound or

only all circuits of an exact size? For example, if our circuit size is S = 4 and

ExactCount = false, enumerating δX-Y -S-Ω will create a family of circuits with

gate size 1, 2, 3, and 4, versus a family of circuits with gate size 4 if ExactCount

= true.
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III. Methodology

3.1 Problem Definition

The fundamental and important goal of this research is to analyze obfuscated vari-

ants of combinational circuits to find effective methods for removing artifacts of

the creation process itself. We compare this goal to how cryptanalysts use knowledge

of a cryptosystem under study to find weaknesses which might compromise the se-

curity of the overall encryption scheme. In our case, we consider whether knowledge

of the individual transformations that comprise an iterative selection/replacement

algorithm help us remove the redundant logic pathways that are introduced by the

algorithm into the variants that it produces. By examining not only the end-product

of an obfuscation experiment but also the creational history that produced it, we can

possibly determine if certain logic structures repeatedly arise. If those structures are

conducive to minimization or reduction, then we may standardize such patterns (if

they are found in the final variant) to a reduced form. The effort of finding variant

logic that is conducive to standardization provides the background data by which we

propose and implement a family of circuit reduction algorithms.

Once we find repeating logic patterns of interest, our next goal is to devise a

method to remove those same identifiable patterns that appear in circuit variants

produced by a polymorphic circuit generator (i.e, CORGI ). We accomplish this by

using the reverse logic of the identified patterns based on its specific logic attributes.

As an example, one reverse pattern may change a structure from three gates into two

gates as an inverse of a transformation that modifies two gates into three gates. To

achieve this goal, we describe in this chapter the algorithms we introduce that use

predetermined reduction patterns such as removing buffers, removing double invert-

ers, removing constant 0/1, and so forth. We also implement algorithms that are

based on predefined functions expressed as truth tables such as AND, OR, NAND,

NOR, etc. to broaden the types of patterns we may identify. The development of

such circuit reduction algorithms help to characterize the overall nature of whitebox

structural changes applied to a circuit by an obfuscating engine, ultimately giving
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us a better approximation to how much real variation or obfuscation a polymorphic

circuit generator creates.

As a last goal of this research, we desire to characterize and evaluate circuit ob-

fuscation based on these techniques so that we may compare obfuscating algorithms

one with another. An underlying assumption of our analysis is that circuits with

smaller size are easier to analyze and reverse engineer than larger ones. We desire

to know whether the ordering and arrangement of the reduction algorithms produce

better results (in terms of reduced size) and understand the reasons why if that is the

case. In terms of effectiveness, we ultimately want to determine at which point over-

lapping selections and replacements produce irreducible or hard to reduce variation.

By moving towards these goals, we can begin to understand whether combinations

of small (inefficient or rudimentary) changes to a circuit produce logic structures and

pathways that cannot be removed (or understood) by reverse engineers. In this work,

we would like to know specifically what the effect of highly random, small replace-

ments on small circuits will produce towards that end.

3.2 Generating Circuit Variants

3.2.1 Defining Obfuscation Experiments. As explained in the Chapter II,

CORGI implements experimentation by using a sequence of two-step iterations where

each iteration includes a subcircuit selection followed by subcircuit replacement. In

this research, we specifically consider random selection and random replacement op-

tions to generate circuit variants that we need. We also establish feasible CORGI

obfuscation options such as subcircuit selection algorithm, library generation option

and replacement gate size as described in next subsections. The number one criteria

that establishes an experiment is the number of iterations. Larger iterations, as we

would expect, produce circuits with larger size if we continually replace a selected

subcircuit with a subcircuit that is larger in size.
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3.2.2 Selection Options. As previously stated, CORGI has several dif-

ferent strategies that describe how to select a subcircuit for replacement. For our

purposes, we consider only RandomSingleGate, RandomTwoGates, RandomLevelT-

woGates, LargestLevelTwoGates, OutputLevelTwoGates, and FixedLevelTwoGates strate-

gies. Of these, two are purely random (RandomSingleGate and RandomTwoGates)

whereas the other four are smart in that they have predefined criteria. To maximize

randomness of the algorithm while having some small degree of determinism, the

RamdomAlgorithm strategy, for each iteration of an experiment, chooses one of the

six algorithms mentioned here uniformly as the selection strategy. We can also guide

a CORGI experiment to have certain high-level goals that are independent of the

selection algorithm chosen. For example, we can define experiments with a goal that

all gates within the circuit are replaced topologically over time. Such high-level goals

help tailor individual selection strategies by providing a set of possible candidates

for one or more of gates that are chosen. We consider such high-level goals to be

deterministic, experiment-level options.

3.2.3 Replacement Options. When generating possible replacements for

subcircuits during the iterations of an experiment, we choose FFFTTT and TFTTTT as

Boolean values of the library generation option. As previously explained, CORGI

uses true/false queries that form a Boolean 6-tuple as the library generation option.

These options consist of RedundantGates, AllowConstants, DoubleInputs, Symmetric-

Gates, SimpleOutputs, and ExactCount. Since the RedundantGates option and the

DoubleInputs option generate more redundancies on the obfuscated circuit [12], we

define two additional versions of each CORGI experiment, one using FFFTTT and one

using TFTTTT. By using these two specific option families, we can evaluate circuits that

have an expected high number of patterns that we expect would be easily reduced

versus circuits that we believe would have higher irreducible logic.

As another experiment option, we can choose, for a given subcircuit selection,

the size of the subcircuit that we replace it with. In our particular experiments, we
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choose three or four for the replacement gate size. Namely, if the RandomAlgorithm

strategy chooses the RandomSingleGate algorithm, the experiment selects subcircuits

containing only one gate and replaces it with subcircuits containing three or four

gates. If the RandomAlgorithm strategy chooses any other algorithm in our subset of

interest, the experiment selects subcircuits containing exactly two gates and replaces

them with subcircuits containing three or four gates. Therefore, with the assumption

that big replacement can be decomposed into a set of small replacements, we use only

three or four for the replacement gate size.

3.2.4 Circuits. To conduct CORGI experiments using the above options,

we must also consider the actual circuits under consideration. We use two different

circuits that are merged (in parallel) from three independent circuits. Figure 3.1

illustrates the graphs of these circuits. Figure 3.1(a) shows a composite circuit with

three copies of the C17 circuit; Figure 3.1(b) shows a composite circuit based on one

C17 circuit and two randomly generated circuits with roughly equal number of inputs,

outputs, and gate size to C17.

These circuits illustrate a rudimentary visual feature that is useful for consider-

ing the effects of both circuit variation and circuit reduction. When we examine the

graphs of circuit variants produced by CORGI, the variants demonstrate one of two

properties in terms of their graph: 1) either the variant circuit graph contains two

or three independent (but larger) subgraphs, or 2) the variant circuit graph contains

a single graph with merged nodes. As a very simple measure, variants that do not

exhibit a merged graph would be considered harder to analyze or reverse engineer

than variants that do exhibit independent subgraphs. If our proposed reduction se-

quences can take a variant with a merged single graph and reduce it to a circuit with

independent subgraphs, we may also conclude that the actual obfuscation was not

effective (at least in terms of hiding the topography of components).

For our purposes, we setup CORGI experiments to run 1000 iterations of selec-

tion/replacement and take checkpoints of the variation process at the 20, 50, 100, 500,
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Figure 3.1: Original Circuit Graphs.
(a) circuit C17 + C17 + C17.
(b) circuit R17′ + C17 +R17′′.

and 1000 iteration points. Given the starting size of our original circuits at around

20 gates, 1000 iterations represents an extreme upper bound on circuit size blowup

for circuits in real world applications. Figure 3.2 illustrates a variant circuit graph

produced by an experiment on the C17 + C17 + C17 circuit seen in Figure 3.1(a).

The experiment uses 500 iterations with a 3 gate replacement size and FFFTTT as

the library generation option. Appendix A.1 and B.1 shows the circuit variants for

the original circuits C17 + C17 + C17 and R17′ + C17 + R17′′ at different iteration

levels.

3.3 Analysis of Obfuscated Circuit Variants

3.3.1 Pattern Recognition. To discover kinds of patterns associated with

iterative substitution/replacement algorithms, we manually analyze variants of com-

binational circuits using log files from CORGI experiments. For example, Figure 3.3

illustrates the log file and corresponding circuit variant graph generated by CORGI.

It shows that two gates, NAND(24, 26) and NAND(25, 34), are replaced with three

gates, AND(25, 34), NAND(24, 26) and NAND(25, 46). Since NAND(24, 26) does

not change except gate number, we consider only the change induced by replacing
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Figure 3.2: Obfuscated Circuit Variant Graph after applying 500 iterations, 3 gates
replacement, and FFFTTT library generation option to circuit C17 + C17 + C17.

NAND(25, 34) with AND(25, 34) and NAND(25, 46). By analyzing this transfor-

mation, we realize that subcircuits with a NAND gate may be replaced with a sub-

circuit consisting of an AND gate followed by a NAND gate. At the logic level, we

may begin to reason about this using a pattern-based approach.

In current or typical CORGI experimentation, combinational replacement logic

manifests primarily as a collection of dual (two-input) fan-in gates. We know also

that all combinational circuits with multiple fan-in gates can be decomposed into

dual fan-in gates as shown in Figure 3.4. Therefore, as a simplifying assumption for

our research, we consider subcircuits with two input gates.

To further our analysis, we examined circuit variants generated by iteratively

selecting two gates and replacing them with three gates. Our analysis of these variants

revealed the presence of many redundant buffers, inverters, and constant 0/1 gates

as shown in Figure 3.5. When using the CORGI replacement generation option

TFTTTT , these patterns occur quite often, mainly because this option allows gates
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Figure 3.3: Log/Graph Example in CORGI

Figure 3.4: Decomposing Multiple Fan-out Gate
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Figure 3.5: Redundant Gates
(a) Buffer
(b) Inverter
(c) Constant 0
(d) Constant 1

to have the same input value (i.e., a gate with a single input signal feeding both inputs

of the gate).

3.3.2 Pattern Classification. Even though CORGI generates patterns that

are typically considered reducible logic forms (at least when one gate and two gate

selections are in view), the overall effect of iteration may exploit these rudimentary

gates so that they combine with other gates in later substition/replacement opera-

tions. However, when these patterns are not reused and replaced in later experiments,

they become easily identifiable by basic pattern matching. Figure 3.6, 3.7 and 3.8 il-

lustrates the configurations of these basic patterns. The graph in Figure 3.6(a) shows

that when CORGI replaces one gate with two gates, it is possible that a buffer can be

inserted. We can relate this gate replacement operation to its truth table equivalent

and show in Figure 3.6(b) their correlation. Similarly, the gate replacement using an

inverter/constant would be possible using gate replacement from one gate into two

gates as shown in Figure 3.7(a) and 3.8(a).

CORGI also generates more specialized gate replacement as shown in Figure

3.9. The graph in Figure 3.9(a) shows when there is one NAND gate, the gate can be

merged with XNOR gate. Likewise, we can relate this structural gate replacement

using its truth table form as shown in Figure 3.9(b). As an important facet about

this type of replacement, we note that it is logically related to a larger family of gate

20



Figure 3.6: Gate Replacement using Buffer
(a) Gate Replacement
(b) Truth Table

Figure 3.7: Gate Replacement using Inverter
(a) Gate Replacement
(b) Truth Table
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Figure 3.8: Gate Replacement using Constant
(a) Gate Replacement
(b) Truth Table

Figure 3.9: Gate Replacement Example for the Special Case
(a) Gate Replacement
(b) Truth Table

replacements. For example, if the original gate in Figure 3.9(a) is an AND gate, a

functional equivalent to this would be the XNOR and AND gate pair seen in the

right side of the figure. The basis of our circuit reduction algorithm is to essentially

find such patterns and use their smaller equivalent structural form, while retaining

the overall circuit logic.

In contrast to two gate selection/three gate replacement, gate replacements from

two gates to four gates generated a wider variety of structural patterns, as we would

expect. Figure 3.10 illustrates an example of this replacement type. In this case,
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Figure 3.10: Complex Gate Replacement Example
(a) Gate Replacement
(b) Truth Table

we need to utilize truth table analysis in order to understand the logical effect of

the replacement. We consider these complex gate replacements specifically when we

implement circuit reduction techniques, which we describe in the next section.

3.4 Implementation of Circuit Reduction Algorithms

As the previous section describes, our methodology for creating reduction algo-

rithms begins by analyzing the circuit variants produced by CORGI. If we consider

the reverse pattern of the underlying logic that we observe, we have a basis to under-

stand how to remove or reduce such logic that still exists in the final circuit variant.

For example, if there exists a change from a single NAND(1, 2) to XNOR(1, 2) and

NAND(3, 2) as shown in Figure 3.9, we can consider the reverse structural change of

this from XNOR(1, 2) and NAND(3, 2) to NAND(1, 2) as shown in Figure 3.11.

Building upon our investigation of sample circuit variants, we build a wide

variety of predetermined reduction patterns that appear most frequently, giving us a

possibility to easily remove induced redundancy introduce by the variation process.

Ultimately, our goal would be to remove all new gates introduced by an obfuscating

algorithm. Realistically, we would like to remove as many as possible using just basic

pattern matching. Using this approach, we define and implement 10 patterns for

circuit reduction algorithms and describe them in sections 3.4.1 - 3.4.10.
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Figure 3.11: Reverse Logic Example of Figure 3.9
(a) Gate Replacement
(b) Truth Table

When complex gate replacements are in view, like those seen in Figure 3.10,

we use truth table analysis to increase our pattern search space above those provided

by our 10 basic circuit reduction techniques. Using this approach, we define and

implement two truth-table based reduction algorithms and describe them in sections

3.4.11 - 3.4.12.

3.4.1 Reduce Buffer. This algorithm implements the following reduction

logic:

• For each gate, if it is an AND/OR gate that has both inputs from the same

source, remove it as shown in Figure 3.12.

• For each gate, if it is a buffer, remove it as shown in Figure 3.12.

3.4.2 Reduce Inverter. This algorithm implements the following reduction

logic:

• For each gate, if it is an inverter(NAND/NOR/NOT ) that has both inputs

from the same source and a predecessor of the gate is a NOT gate, remove them

as shown in Figure 3.13(a).
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Figure 3.12: Reduction Algorithm 1(Reduce Buffer)
(a) Gate Replacement
(b) Truth Table

• For each gate, if it is an inverter(NAND/NOR/NOT ) that has both inputs

from the same source and a predecessor of the gate is a buffer, remove it and

change the buffer into a NOT gate as shown in Figure 3.13(b).

• For each gate, if it is an inverter(NAND/NOR/NOT ) that has both inputs

from the same source and a predecessor of the gate is a positive gate(AND/OR/

XOR), remove it and change the positive gate(AND/OR/XOR) into a negative

gate(NAND/NOR/XNOR) as shown in Figure 3.13(c).

• For each gate, if it is an inverter(NAND/NOR/NOT ) that has both inputs

from the same source and a predecessor of the gate is a negative gate(NAND/

NOR/XNOR), remove it and change the negative gate(NAND/NOR/XNOR)

into a positive gate(AND/OR/XOR) as shown in Figure 3.13(d).

3.4.3 Reduce Inverter with Successor XOR/XNOR. This algorithm imple-

ments the following reduction logic:

• For each gate, if it is an inverter(NAND/NOR/NOT ) that has both inputs

from the same source and a successor of the gate is an XOR gate, remove it

and change the XOR gate into an XNOR gate as shown in Figure 3.14(a).

• For each gate, if it is an inverter(NAND/NOR/NOT ) that has both inputs

from the same source and a successor of the gate is an XNOR gate, remove it

and change the XNOR gate into an XOR gate as shown in Figure 3.14(b).
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(a) Variation 1

(b) Variation 2

(c) Variation 3

(d) Variation 4

Figure 3.13: Gate Replacement and Truth Table of Reduction Algorithm 2
(Reduce Inverter)
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(a) Variation 1

(b) Variation 2

Figure 3.14: Gate Replacement and Truth Table of Reduction Algorithm 3
(Reduce Inverter with Successor XOR/XNOR)

3.4.4 Reduce Constant 0/1. This algorithm implements the following re-

duction logic:

• For each gate, if it is a constant 0 that its next gate is an AND gate, remove

it and change the AND gate into a constant 0 as shown in Figure 3.15(a) and

3.15(b).

• For each gate, if it is a constant 0 that its next gate is a NAND gate, remove

it and change the NAND gate into a constant 1. The gate replacement and

truth table of this logic resemble Figure 3.15(a) and 3.15(b) except change of

gate types.

• For each gate, if it is a constant 0 that its next gate is an OR/XOR gate,

remove it and change the OR/XOR gate into a buffer. The gate replacement

and truth table of this logic resemble Figure 3.15(a) and 3.15(b) except change

of gate types.
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• For each gate, if it is a constant 0 that its next gate is a NOR/XNOR gate,

remove it and change the NOR/XNOR gate into a NOT gate. The gate

replacement and truth table of this logic resemble Figure 3.15(a) and 3.15(b)

except change of gate types.

• For each gate, if it is a constant 1 that its next gate is a NOR gate, remove it

and change the NOR gate into a constant 0. The gate replacement and truth

table of this logic resemble Figure 3.15(a) and 3.15(b) except change of gate

types.

• For each gate, if it is a constant 1 that its next gate is an OR gate, remove it

and change the OR gate into a constant 1. The gate replacement and truth

table of this logic resemble Figure 3.15(a) and 3.15(b) except change of gate

types.

• For each gate, if it is a constant 1 that its next gate is an AND/XNOR gate,

remove it and change the AND/XNOR gate into a buffer. The gate replace-

ment and truth table of this logic resemble Figure 3.15(a) and 3.15(b) except

change of gate types.

• For each gate, if it is a constant 1 that its next gate is a NAND/XOR gate,

remove it and change the NAND/XOR gate into a NOT gate. The gate

replacement and truth table of this logic resemble Figure 3.15(a) and 3.15(b)

except change of gate types.

3.4.5 Reduce Constant 0/1 with Inverter Inputs. This algorithm implements

the following reduction logic:

• For each gate, if it is a constant 0/1 that has only an inverter as input, remove

the inverter as shown in Figure 3.16(a) and 3.16(b).

3.4.6 Reduce Two Gates to AND/NAND/OR/NOR. This algorithm im-

plements the following reduction logic:
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(a) Variation 1

(b) Variation 2

Figure 3.15: Gate Replacement and Truth Table of Reduction Algorithm 4
(Reduce Constant 0/1)
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(a) Variation 1

(b) Variation 2

Figure 3.16: Gate Replacement and Truth Table of Reduction Algorithm 5
(Reduce Constant 0/1 with Inverter Inputs)

• For each gate, if it is an AND/XNOR gate and its next gate is an AND gate,

remove it as shown in Figure 3.17(a) and 3.17(b).

• For each gate, if it is an AND/XNOR gate and its next gate is a NAND gate,

remove it. The gate replacement and truth table of this logic resemble Figure

3.17(a) and 3.17(b) except change of gate types.

• For each gate, if it is an OR/XOR gate and its next gate is an OR gate, remove

it. The gate replacement and truth table of this logic resemble Figure 3.17(a)

and 3.17(b) except change of gate types.

• For each gate, if it is an OR/XOR gate and its next gate is a NOR gate, remove

it. The gate replacement and truth table of this logic resemble Figure 3.17(a)

and 3.17(b) except change of gate types.
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(a) Variation 1

(b) Variation 2

Figure 3.17: Gate Replacement and Truth Table of Reduction Algorithm 6
(Reduce Two Gates to AND/NAND/OR/NOR)

3.4.7 Reduce Two Gates to Buffer/NOT/Constant 0/1. This algorithm

implements the following reduction logic:

• For each gate, if it is an AND gate and its next gate is an OR gate, remove it

and change the OR gate into a buffer as shown in Figure 3.18.

• For each gate, if it is an OR gate and its next gate is an AND gate, remove it

and change the AND gate into a buffer. The gate replacement and truth table

of this logic resemble Figure 3.18 except change of gate types.

• For each gate, if it is an AND gate and its next gate is a NOR gate, remove it

and change the NOR gate into a NOT gate. The gate replacement and truth

table of this logic resemble Figure 3.18 except change of gate types.

• For each gate, if it is an OR gate and its next gate is a NAND gate, remove it

and change the NAND gate into a NOT gate. The gate replacement and truth

table of this logic resemble Figure 3.18 except change of gate types.
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Figure 3.18: Reduction Algorithm 7
(Reduce Two Gates to Buffer/NOT/Constant 0/1)
(a) Gate Replacement
(b) Truth Table

• For each gate, if it is a NOR gate and its next gate is an AND gate, remove it

and change the AND gate into a constant 0. The gate replacement and truth

table of this logic resemble Figure 3.18 except change of gate types.

• For each gate, if it is a NOR gate and its next gate is a NAND gate, remove

it and change the NAND gate into a constant 1. The gate replacement and

truth table of this logic resemble Figure 3.18 except change of gate types.

3.4.8 Reduce Two XOR/XNOR Gates to Buffer/NOT . This algorithm

implements the following reduction logic:

• For each gate, if it is anXOR/XNOR gate and its next gate is anXOR/XNOR

gate, remove it and change the XOR/XNOR gate into a buffer as shown in

Figure 3.19(a) and 3.19(b).

• For each gate, if it is anXOR/XNOR gate and its next gate is anXNOR/XOR

gate, remove it and change the XNOR/XOR gate into a NOT gate as shown

in Figure 3.19(c) and 3.19(d).
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(a) Variation 1

(b) Variation 2

(c) Variation 3

(d) Variation 4

Figure 3.19: Gate Replacement and Truth Table of Reduction Algorithm 8
(Reduce Two XOR/XNOR Gates to Buffer/NOT )
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(a) Variation 1

(b) Variation 2

Figure 3.20: Gate Replacement and Truth Table of Reduction Algorithm 9
(Reduce Gate with Opposite Inputs)

3.4.9 Reduce Gate with Opposite Inputs. This algorithm implements the

following reduction logic:

• For each gate, if it is anAND/NOR/XNOR gate that has only opposite inputs,

change them into a constant 0 as shown in Figure 3.20(a).

• For each gate, if it is an OR/NAND/XOR gate that has only opposite inputs,

change them into a constant 1 as shown in Figure 3.20(b).

3.4.10 Reduce AND/OR/NAND/NOR Gates with Inverter Inputs. This

algorithm implements the following reduction logic:

• For each gate, if it is an AND gate that has only inverters as inputs, change it

into a NOR gate and remove the inverters as shown in Figure 3.21.

• For each gate, if it is an OR gate that has only inverters as inputs, change it

into a NAND gate and remove the inverters. The gate replacement and truth

table of this logic resemble Figure 3.21 except change of gate types.
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Figure 3.21: Reduction Algorithm 10
(Reduce AND/OR/NOT Gates with Inverter Inputs)
(a) Gate Replacement
(b) Truth Table

• For each gate, if it is a NAND gate that has only inverters as inputs, change

it into an OR gate and remove the inverters. The gate replacement and truth

table of this logic resemble Figure 3.21 except change of gate types.

• For each gate, if it is a NOR gate that has only inverters as inputs, change it

into an AND gate and remove the inverters. The gate replacement and truth

table of this logic resemble Figure 3.21 except change of gate types.

3.4.11 Reduce V pattern. For each V pattern, if it has a truth table equal

to predefined functions such as AND, OR, NAND, NOR, XOR, XNOR, buffer,

NOT , constant 0/1, and combinations of these, change the pattern into the equivalent

reduced form as shown in Figure 3.22.

3.4.12 Reduce Diamond pattern. For each Diamond pattern, if it has a

truth table equal to predefined function such as AND, OR, NAND, NOR, XOR,

XNOR, buffer, NOT , constant 0/1, and combinations of these, change the pattern

into the equivalent reduced form as shown in Figure 3.23(a) and 3.23(b).
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Figure 3.22: Reduction Algorithm 11(Reduce V pattern)
(a) Gate Replacement
(b) Truth Table

(a) Variation 1

(b) Variation 2

Figure 3.23: Gate Replacement and Truth Table of Reduction Algorithm 12
(Reduce Diamond pattern)

36



Table 3.1: Experimental Setup for Circuit Reduction
Obfuscated Options Reduction Options

Selection Gate Library Obfuscation Circuit Reduction Reduction
Algorithm Replaced Generation Iteration Type Algorithm Round

Random 3 FFFTTT 20 C17− C17− C17 Random 10
Algorithm 4 TFTTTT 50 R17′ − C17− R17′′ Algorithm

100
500
1000

3.5 Evaluation of Circuit Obfuscation

3.5.1 Experimental Setup. As described in Section 3.2, we generate function-

ally equivalent variants of two different circuits (C17−C17−C17, R17′−C17−R17′′)

using a specific set of experiment options. We summarize these experimental config-

uration options in Table 3.1. Using these options, we produce a total of 20 different

variants for each circuit, giving us a set of 40 circuits with which to consider the effect

of reduction. For each particular circuit in our variant set, we normalize them by

applying our set of 12 reduction techniques (described in Sections 3.4.1 - 3.4.12) in a

sequential manner. We define a reduction round as the application of these 12 individ-

ual reduction algorithms one after the other, where the reduced circuit form produced

by one reduction technique becomes the input to the next reduction technique. We

note that there exists at least 12! possibilities for ordering the individual techniques

themselves within a reduction round. We therefore define a reduction experiment as a

starting circuit variant and the application of an ordered sequence of our 12 reduction

algorithms, in some iterative fashion. As the final experiment parameter, we may

run multiple reduction rounds (i.e., apply the same 12 individual techniques again)

on the same variant in an iterative manner. As Table 3.1 illustrates, we use 10 re-

duction rounds and a random ordering of the individual reduction algorithms for our

experimental purposes. Once we choose a random ordering, that ordering remains

the same for the entire 10 rounds of a reduction experiment. Because full enumer-

ation of all possible algorithm orderings is not computationally feasible (O(n!)), we

chose a random approach as the best starting point to characterize how much circuit

reduction is affected by algorithm ordering. We also look to see if there is a lower
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bound on the number of rounds where we no longer observe size reduction on the

variant circuit. We use 10 as a rough upper bound on number of rounds to run for

each reduction experiment based on our observations while running over 500 different

reduction experiments. Based on a fixed reduction round size of 10, we can apply our

set of circuit reduction algorithms at most 120 times, where no algorithm is applied

more than 12 times itself.

Given the set of 40 circuit variants under consider, we describe the basic algo-

rithm for our experimental approach in the following pseudocode. Let each reduction

technique be represented by a function Rk which takes as input a circuit C and pro-

duces a functionally equivalent version C ′; k is in the range 1..12, representing one of

the algorithms described in Sections 3.4.1 - 3.4.12. The specific algorithm Rk takes

a circuit and iterates through the entire gate list of the circuit. As this process oc-

curs, if the particular pattern indicated by the reduction technique is encountered, the

appropriate reduction is performed. The algorithm accomplishes this by traversing

through a single pass of the circuit gate list.

We define a reduction round RR as a 12-tuple consisting of an ordered sequence

of reduction techniques. For example, RR =R2, R4, R5, R10, R1, R11, R12, R7, R3, R8,

R6, R9 represents a reduction round where the techniques are applied in the following

sequential order: 2, 4, 5, 10, 1, 11, and so forth. The index order of the reduction

algorithms represents a single permutation of the total ordering possibilities. We let

procedure reductionExperiment(circuit C)

1: C0 ← C
2: Generate reduction round RR using random permutation // 12 reduction algo-

rithms
3: for rounds = 1 to MAXROUNDS do // MAXROUNDS = 10 reduction rounds
4: for x = 1 to 12 do
5: Cx ← RRx(Cx−1)
6: end for
7: end for
8: C ′ ← C12

9: Generate log file
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RRx represent the xth element of the 12-tuple RR. In our example, RR1 represents

reduction algorithm 2 (R2), which is Reduce Inverter. In other words, for that par-

ticular reduction round, Reduce Inverter will be the first reduction technique applied

to a circuit. Given an original circuit variant C, a reduction experiments produces 12

reduced circuit forms in the following manner: for each round x, Cx = RRx(Cx−1).

The reduction experiment outputs a final reduced circuit form C ′, corresponding to

the output of the last circuit reduction technique applied.

We analyze log files generated by reduction experiments and make observations

based on different measures. The log file includes gate size, circuit level, CPU time,

execution number of each algorithm per a reduction round and so on. We use this

information to characterize and evaluate the strength of circuit obfuscation. We

describe results of experimentation and our subsequent analysis further in Chapter

IV.

3.5.2 Experimental Speculations. An important research question of inter-

est in this thesis concerns how to characterize and evaluate the strength of circuit

obfuscation using metrics such as gate size. We assume, in general, that a circuit

with reduced size is easier to reverse engineer or perform adversarial analysis on than

one that is larger. An underlying assumption is that if we reduce a circuit variant

close to its original size, we will actually recover a structure that is largely similar

to the original. This gives us a measurable framework to know to what extent true

obfuscation (or complexity in analysis) has actually taken place. We offer the follow-

ing speculations as assumptions which will guide analysis of the data produced by

executing our experimental methodology.

• If the obfuscating algorithm uses four gates as a replacement size, we suppose

that reduction experiments would reduce those variants less when compared to

variants produced by obfuscating algorithms that use three gate replacement

options (assuming all other experimental options are the same). Our insight

here is that four gate replacements have a wider variety of structures to choose
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from and thus provide possibility for more complex entanglement among gates

in the obfuscated circuit variant which would not be covered by our 12 basic

patterns. Also, four gate replacement, when two gates are chosen for each

subcircuit, doubles the size of the obfuscated circuit variant as well.

• If the obfuscating algorithm uses TFTTTT as a library generation option for

replacement circuits, we suppose that reduction experiments would reduce those

variants more when compared to variants produced by obfuscating algorithms

that use FFFTTT as a library generation option (assuming all other experimen-

tal options are the same). Our insight here centers on the fact that TFTTTT

replacement subcircuits have a higher number of basic (easily reducible) pat-

terns based on duplicated signals and dual input gates (which are logical buffers

and 0/1 constants). Therefore, we would assume that basic pattern matching

would produce higher reduction rates (as a percentage of total circuit size) based

on empirical observation.

• If the obfuscating algorithm uses a higher number of selection/replacement iter-

ations (or rounds), we suppose that reduction experiments would reduce those

variants less when compared to variants produced by obfuscating algorithms

that use lower number of rounds (assuming all other experimental options are

the same). This speculation is based on the general assumption that some com-

plexity is introduced over an iterative transformation sequence, and that longer

iterations give more possibility for producing patterns that are not covered by

our basic forms.

• We speculate that the specific order of circuit reduction algorithms (the per-

mutation that represents the sequence of algorithms in a reduction round tuple

RR) will affect reduction. Our insight here comes from an observation that some

reduction techniques will produce structures that can then be reduced further

by other techniques.
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Chapter IV presents detailed analysis of the methodology we present in this

chapter. We detail the data results of the experiments we performed, detail summary

analysis and data trends, and analyze our speculations regarding reduction trends.
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IV. Results

4.1 Overview

This chapter discusses the results of executing the research methodology described

in Chapter III. We analyze a set of 40 circuit variants, perform reduction ex-

periments on them, and then analyze their minimized form using gate size as our

primary metric to characterize and evaluate circuit obfuscation. Additionally, we

explore circuit reduction effects based on order of circuit reduction algorithms.

4.2 Circuit Reduction

As previously stated, in order to apply our circuit reduction algorithms, we used

obfuscated circuit variants using three/four gate replacement, FFFTTT/TFTTTT

library generation options, and iteration numbers in the range 20/50/100/500/1000.

This CORGI experiment setup classified the experiment results by four categories,

3/FFFTTT , 3/TFTTTT , 4/FFFTTT and 4/TFTTTT .

In order to evaluate each circuit obfuscation option, we calculate reduction per-

centages after 20/50/100/500/1000 iterations using our circuit reduction algorithms

with obfuscated circuit C17− C17− C17 and R17′ − C17− R17′′. We calculate the

reduction percentage as (removed gate counts)÷(original gate counts)×100 as shown

in Table 4.1. Figure 4.1 provides a plot of these data.

As shown in Table 4.1 and Figure 4.1, the circuit obfuscation using four gate

replacement and FFFTTT library generation option shows a reduction result that has

removed gates less than other circuit obfuscations. Therefore, we can know that the

FFFTTT library generation option makes less redundant circuit because the option

does not allow redundant gates that are identical to other gates based on the inputs

and double inputs to a gate to originate in the same place. We also know that four

gate replacement makes less redundant circuit because four gate replacement causes

more complex gate replacement than three gate replacement.

Also shown in Table 4.1 and Figure 4.1, the obfuscated circuit C17−C17−C17

after 1000 iterations with 3 gate replacement and TFTTTT library generation option
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Table 4.1: Average Reduction Percentage using Obfuscated Circuit Variants
(a) Obfuscated Circuit C17− C17− C17

3/FFFTTT 3/TFTTTT 4/FFFTTT 4/TFTTTT

20 Iterations 44.74 42.50 25.00 55.93
50 Iterations 58.90 68.49 21.14 55.74
100 Iterations 60.80 78.74 25.33 62.88
500 Iterations 75.80 80.18 26.35 75.62
1000 Iterations 77.41 84.22 31.56 73.46

(b) Obfuscated Circuit R17′ − C17−R17′′

3/FFFTTT 3/TFTTTT 4/FFFTTT 4/TFTTTT

20 Iterations 45.95 61.11 21.05 67.24
50 Iterations 63.24 76.12 21.85 50.41
100 Iterations 65.49 82.11 28.83 66.81
500 Iterations 72.81 84.37 29.00 72.16
1000 Iterations 79.77 84.59 30.47 75.55

(a) Obfuscated Circuit C17− C17− C17

(b) Obfuscated Circuit R17′ − C17−R17′′

Figure 4.1: Average Reduction Percentage using Obfuscated Circuit Variants
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shows that the best reduction result, 84.22% reduction percentage, and the obfuscated

circuit R17′ − C17−R17′′ after 20 iterations with 4 gate replacement and FFFTTT

library generation option shows that the worst reduction result, 21.05% reduction

percentage. These results are analyzed in next two subsections.

4.2.1 The Best Reduction. As previously stated, the obfuscated circuit

C17−C17−C17 after 1000 iterations with 3 gate replacement and TFTTTT library

generation option generates the best reduced circuit. The metrics such as gate counts

and level counts are as shown in Table 4.2. Figure 4.2 provides a plot of these data. As

shown in Table 4.2 and Figure 4.2, reduction percentage of gate counts is in between

83.12% and 85.58% and reduction percentage of level count is in between 84.53%

and 86.79%. This statistics shows that this option brings about less powerful circuit

obfuscation because our reduction algorithms reduce more gates and levels than other

circuit obfuscation options.

4.2.2 The Worst Reduction. As previously stated, the obfuscated circuit

R17′ −C17−R17′′ after 20 iterations with 4 gate replacement and FFFTTT library

generation option generates the best reduced circuit. The metrics such as gate counts

and level counts are as shown in Table 4.3. Figure 4.3 provides a plot of these

data. As shown in Table 4.3 and Figure 4.3, reduction percentage of gate count

is 21.05% and reduction percentage of level count is 21.43%. This statistics shows

that this option brings about more powerful circuit obfuscation because our reduction

algorithms reduce less gates and levels than other circuit obfuscation options.

4.3 Ordering and Reduction Round

To evaluate each reduction algorithm’s ordering and reduction round, we cal-

culate removed gate counts per each reduction round using the best case, the ob-

fuscated circuit C17− C17− C17 after 1000 iterations with 3 gate replacement and

TFTTTT library generation option described in Table 4.1 and Figure 4.1. However,

the worst case, the obfuscated circuit R17′ − C17 − R17′′ after 20 iterations with 4
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Table 4.2: Gate Counts and Level Counts of the Best Reduction Result
(C17− C17− C17, 3/TFTTTT, 1000 iteration)

Original Reduced(Avg) Reduced(Best) Reduced(Worst)

Gates 1096 173(84.22%) 158(85.58%) 185(83.12%)
Levels 265 40(84.91%) 35(86.79%) 41(84.53%)

(a) Gate Counts

(b) Level Counts

Figure 4.2: Gate Counts and Level Counts of the Best Reduction Result
(C17− C17− C17, 3/TFTTTT, 1000 iteration)
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Table 4.3: Gate Counts and Level Counts of the Worst Reduction Result
(R17′ − C17−R17′′, 4/FFFTTT, 20 iteration)

Original Reduced(Avg) Reduced(Best) Reduced(Worst)

Gates 57 45(21.05%) 45(21.05%) 45(21.05%)
Levels 17 14(21.43%) 14(21.43%) 14(21.43%)

(a) Gate Counts

(b) Level Counts

Figure 4.3: Gate Counts and Level Counts of the Worst Reduction Result
(R17′ − C17− R17′′, 4/FFFTTT, 20 iteration)
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gate replacement and FFFTTT library generation option, is not suitable to explore

algorithm’s order and reduction round because the option has too few reduced gate

counts. Therefore, we choose the worst case with 1000 iterations; that is the obfus-

cated circuit R17′ − C17 − R17′′ after 1000 iterations with 4 gate replacement and

FFFTTT library generation option.

4.3.1 The Best Reduction. In order to evaluate each reduction algorithm at

each reduction round, we calculate removed gate counts after 1000 iterations using

our circuit reduction algorithms with obfuscated circuit C17− C17− C17 as shown

in Table 4.4(a). Figure 4.4(a) provides a plot of these data. We tried to find the best

result when our circuit reduction algorithms are randomly executed. We found that

the sequence 1→12→3→7→9→10→5→6→8→11→2→4 generates the best reduction

result. This result also shows that algorithm 1, reduces buffer, discharged its duty

during this reduction process because TFTTTT library generation option makes more

buffers than FFFTTT library generation option. We can also know that some reduc-

tion algorithm releases a complex link among some gates. For example, algorithm 6,

reduces two gates by making AND/NAND/OR/NOR, of the second reduction round

removes two gates that can’t be found in the first reduction round.

In order to evaluate each reduction algorithm at each reduction round, we cal-

culate removed gate counts after 1000 iterations using our circuit reduction algo-

rithms with obfuscated circuit C17 − C17 − C17 as shown in Table 4.4(b). Figure

4.4(b) provides a plot of these data. We tried to find the worst result when our

circuit reduction algorithms are randomly executed. We found that the sequence

4→1→6→12→10→7→5→3→8→11→9→2 generates the worst reduction result. This

result also shows that algorithm 2, reduces inverter, discharged its duty during this

reduction process. This result supports our speculation that TFTTTT library gen-

eration option generates more redundant gates such as inverter. We also see that

algorithm 10, reduces AND/OR/NAND/NOR gates that have only inverters as in-

puts, in the second reduction round removes two gates that can’t be found in the first
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Table 4.4: Removed Gate Counts of each Reduction Algorithm using Obfuscated
Circuit C17− C17− C17 with 3/TFTTTT Option

(a) The Best Case

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Round 1 238 13 74 24 9 0 3 58 19 4 60 130
Round 2 112 0 36 5 3 2 2 19 3 2 33 25
Round 3 27 0 6 1 2 0 1 2 0 0 6 8
Round 4 2 0 0 0 0 0 0 1 0 0 4 1
Round 5 1 0 0 0 0 0 0 0 0 0 2 0
Round 6 0 0 0 0 0 0 0 0 0 0 0 0
Round 7 0 0 0 0 0 0 0 0 0 0 0 0
Round 8 0 0 0 0 0 0 0 0 0 0 0 0
Round 9 0 0 0 0 0 0 0 0 0 0 0 0
Round 10 0 0 0 0 0 0 0 0 0 0 0 0

(b) The Worst Case

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Round 1 96 299 50 13 4 24 4 106 22 0 13 70
Round 2 51 79 19 0 2 4 1 8 0 2 1 14
Round 3 13 8 1 0 0 0 0 1 0 0 0 5
Round 4 0 0 1 0 0 0 0 0 0 0 0 0
Round 5 0 0 0 0 0 0 1 0 0 0 0 0
Round 6 0 0 0 0 0 0 0 0 0 0 0 0
Round 7 0 0 0 0 0 0 0 0 0 0 0 0
Round 8 0 0 0 0 0 0 0 0 0 0 0 0
Round 9 0 0 0 0 0 0 0 0 0 0 0 0
Round 10 0 0 0 0 0 0 0 0 0 0 0 0
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(a) The Best Case

(b) The Worst Case

Figure 4.4: Removed Gate Counts of each Reduction Algorithm using Obfuscated
Circuit C17− C17− C17 with 3/TFTTTT

49



reduction round. Therefore, it verifies some reduction algorithm unties a complicated

link among some gates.

4.3.2 The Worst Reduction. In order to evaluate each reduction algorithm

at each reduction round, we calculate removed gate counts after 1000 iterations using

our circuit reduction algorithms with obfuscated circuit R17′−C17−R17′′ as shown

in Table 4.5(a). Figure 4.5(a) provides a plot of these data. We tried to find the best

result when our circuit reduction algorithms are randomly executed. We found that

the sequence 12→3→5→6→10→2→11→9→8→1→4→7 generates the best reduction

result. This result also shows that algorithm 7, reduces two gates by making buffer-

/NOT/constant, discharged its duty during this reduction process. This supports

that FFFTTT library generation option generates more obfuscation pattern than re-

dundant patterns including buffer/inverter. As described in the previous section, we

can also know that some reduction algorithm releases a complex connection among

some gates. For example, algorithm 2, reduces inverter, of the fifth reduction round

removes one gate that can’t be found in the fourth reduction round.

In order to evaluate each reduction algorithm at each reduction round, we cal-

culate removed gate counts after 1000 iterations using our circuit reduction algo-

rithms with obfuscated circuit R17′ − C17 − R17′′ as shown in Table 4.5(b). Fig-

ure 4.5(b) provides a plot of these data. We tried to find the worst result when

our circuit reduction algorithms are randomly executed. We found that the sequence

4→9→7→11→10→8→2→5→1→12→3→6 generates the worst reduction result. This

result also shows that algorithm 4, reduces constant 0/1, discharged its duty during

this reduction process. This result supports our speculation that FFFTTT library

generation option generates more complex obfuscation patterns than other obfusca-

tion options. We also see that algorithm 1, reduces buffer, in the second reduction

round removes twelve gates that can’t be found in the first reduction round. There-

fore, it verifies some reduction algorithm unties a complicated link among some gates.
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Table 4.5: Removed Gate Counts of each Reduction Algorithm using Obfuscated
Circuit R17′ − C17− R17′′ with 4/FFFTTT Option

(a) The Best Case

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Round 1 49 1 0 92 0 1 128 1 65 7 4 84
Round 2 8 79 0 12 0 46 20 0 8 9 9 2
Round 3 2 5 0 3 2 10 2 0 0 3 1 0
Round 4 0 0 0 0 0 2 0 0 0 1 0 0
Round 5 0 1 0 0 0 0 0 0 0 0 1 0
Round 6 0 1 0 0 0 0 0 0 0 0 0 0
Round 7 0 0 0 0 0 0 0 0 0 0 0 0
Round 8 0 0 0 0 0 0 0 0 0 0 0 0
Round 9 0 0 0 0 0 0 0 0 0 0 0 0
Round 10 0 0 0 0 0 0 0 0 0 0 0 0

(b) The Worst Case

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Round 1 0 0 80 138 0 70 82 0 12 32 42 99
Round 2 12 0 8 18 0 6 15 0 6 5 3 0
Round 3 1 0 0 2 0 0 3 0 1 0 1 0
Round 4 1 0 0 0 0 0 1 0 0 0 0 0
Round 5 0 0 0 0 0 0 0 0 0 0 0 0
Round 6 0 0 0 0 0 0 0 0 0 0 0 0
Round 7 0 0 0 0 0 0 0 0 0 0 0 0
Round 8 0 0 0 0 0 0 0 0 0 0 0 0
Round 9 0 0 0 0 0 0 0 0 0 0 0 0
Round 10 0 0 0 0 0 0 0 0 0 0 0 0
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(a) The Best Case

(b) The Worst Case

Figure 4.5: Removed Gate Counts of each Reduction Algorithm using Obfuscated
Circuit R17′ − C17− R17′′ with 4/FFFTTT
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Table 4.6: Remaining Redundant Gate Counts in the Reduced Circuit Variants
(a) Reduced Circuit C17− C17− C17

3/FFFTTT 3/TFTTTT 4/FFFTTT 4/TFTTTT

Buffer 0 0 0 0
Inverter 4 25 18 83
Constant 0/1 0 19 0 21

(b) Reduced Circuit R17′ − C17−R17′′

3/FFFTTT 3/TFTTTT 4/FFFTTT 4/TFTTTT

Buffer 0 0 0 0
Inverter 1 28 15 88
Constant 0/1 0 12 0 26

4.4 Evaluation

4.4.1 Remaining Gates. As shown in Table 4.6, all buffers in the obfus-

cated circuit variants are removed. However, there are some remaining inverters and

constants after applying our circuit reduction algorithms. Why are these gates in

the reduced circuit variants? The answer is that the connection between the gate

and other gates is tangled in accordance with a repeated circuit obfuscation. There-

fore, we can know that the obfuscation iteration is a critical factor about the circuit

reduction.

4.4.2 Obfuscation Options. Until now, we explored the circuit obfuscation

option such as gate replacement size, library generation option and obfuscation itera-

tion and then acquired evaluation data about the circuit obfuscation option’s strength

as shown in Table 4.7.

First of all, the four gate replacement size generates a stronger obfuscated cir-

cuit than three gate replacement size because it four gate replacement size brings

about complex entanglement among each gate of the obfuscated circuit variant. Sec-

ondly, the FFFTTT library generation option makes a robust obfuscated circuit than

TFTTTT library generation option because FFFTTT option has less reducible gates

than TFTTTT option. Lastly, more obfuscation iterations produces a powerful obfus-
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Table 4.7: Evaluation of Circuit Obfuscation Option’s Strength
Comparison of Circuit Obfuscation Options

Gate Replacement Size 4 > 3
Library Generation Option FFFTTT > TFTTTT
Obfuscation Iteration 1000 > 500 > 100 > 50 > 20

cated circuit than fewer obfuscation iterations because more obfuscation causes more

twisted connection among with each gate than fewer obfuscation.
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V. Conclusions

In this chapter, we summarize the contribution of our research effort and provide

recommendations for future work in the area of circuit reduction and obfuscation

analysis.

5.1 Contributions

5.1.1 Characterizing Circuit Obfuscation. We present a concrete charac-

terization of circuit obfuscation based on knowledge of the obfuscating engine and

application of basic rules of Boolean logic. We present in this research a compre-

hensive experimental framework that considers a wide range of experimental options

used to produce functionally equivalent circuit variants from an obfuscating engine.

We use our reduction experiments to characterize obfuscation according to several

factors: gate replacement size (three and four gate replacement), subcircuit genera-

tion options (FFFTTT/standard and TFTTTT/redundant), and iteration number

(20/50/100/500/1000). We show how such options affect reduction and provide gen-

eral conclusions along these configuration lines.

5.1.2 Applying and Ordering Circuit Reduction Algorithms. We present a

concrete set of reduction algorithms using basic structural patterns and truth-table

logic forms. These algorithms form the basis for a larger characterization suite which

may be used to analyze circuits variants produced from a wide-variety of circuit ob-

fuscating engines. Though we apply our analysis to the CORGI generation engine,

our methodology works equally well on any obfuscator that transforms combinational

logic gates and provides a concrete measurement scheme. We also show how order-

ing of individual algorithms produces higher levels of reduction and give insight as

to why certain orderings are preferable. Our data provides insight into lower and

upper bounds for reduction rounds and gives us average case measures for trends in

obfuscation strength.
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5.2 Future Work

5.2.1 Improve Reduction Algorithm for the Remaining Gates. Our set of

reduction algorithms does not remove some types of redundant gates such as inverters

and constants where those gates have complicated links between gates. However,

since the circuits of interest in our experimental framework (C17 − C17 − C17 and

R17′−C17−R17′′) did not include those specific gate patterns, it is possible we may

reduce them with other patterns and reduction algorithms if they are present in other

circuit forms. Future new patterns and reduction algorithms would need to consider

complicated and twisted connections among gates in the circuit. Future patterns

would also need to consider recursive combinations of algorithms since the current

reduction techniques only uses a single pass through the gate list of the circuit. We

expect that such modifications would provide further gate size reduction on the same

sample set.

5.2.2 Increase Search Space. One drawback to our current algorithmic ap-

proach is that our search space for finding patterns is limited. Since we have limited

memory and processing time available, we cannot use best case algorithms that would

fully explore all possible patterns and pattern size spaces. Our current patterns do

not extend the boundaries of the search beyond a small number of successor and

predecessor gates. For example, our circuit reduction algorithms examine subcircuits

with only two/three/four gates. However, if we allow an expansion of search space to

catch larger subcircuits, our reduction techniques may reduce more patterns. We ex-

pect future research would characterize the tradeoff space (in terms of computational

power/time/memory) of increasing the search space and correlate that to higher size

reduction levels. Ultimately, such characterization would give a more concrete rela-

tion to the amount of work an adversary would need to exert to accomplish reverse

engineering or circuit analysis.

5.2.3 Increase Metric Space. In this research, we only consider gate size for

evaluating obfuscation effect. Future research should incorporate a wide variety of
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metrics and consider measures which have more clear correlation to specific reverse

engineering goals.

5.2.4 Increase Circuit Space. In this research, we only use two very small

and basic circuits. Future research would widen the set of candidate circuits (starting

with those in the ISCAS-85 Benchmark set) and produce variants along the same

lines that are laid out in this experimental framework. This analysis would provide

a much more general understanding of how the type of circuit may specifically effect

both obfuscation and reduction.

5.2.5 Generate Colored Graph of Reduced Circuit. In his research, Williams

[20] introduces a technique that provides a quick, visual description of what CORGI

iterations accomplish through the use of colors, shape, numbers and ancestry val-

ues. However, the graphs do not support coloring methods when circuit reduction

techniques are used. Since William’s effort centers on measuring ancestral entropy,

our techniques for reduction would provide an independent verification method to

compare entropy values against. If we improve William’s colored graph to show the

coloring of reduced circuits, we can also compare a reduced circuit with an original

circuit to visually understand the effect of obfuscation algorithms. As future work, we

would also seek to correlate the entropy values of William’s to our reduction statistics.
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Appendix A. Circuit Graphs for C17− C17− C17

A.1 Obfuscated Circuit Variant Graphs

1. Obfuscated C17−C17−C17 (3 gates replacement, FFFTTT): Figure B.1, Figure

B.2, · · · , and Figure B.5 display graphs of obfuscated circuit variants that we

use in this research. The RandomAlgorithm strategy is applied to the original

circuits with 20, 50, 100, 500, and 1000 iterations. We also select three gates

as a replacement size, and then choose FFFTTT as a library generation option.

2. Obfuscated C17 − C17 − C17 (3 gates replacement, TFTTTT): Figure B.6,

Figure B.7, · · · , and Figure B.10 display graphs of obfuscated circuit variants

that we use in this research. The RandomAlgorithm strategy is applied to the

original circuits with 20, 50, 100, 500, and 1000 iterations. We also select three

gates as a replacement size, and then choose TFTTTT as a library generation

option.

3. Obfuscated C17 − C17 − C17 (4 gates replacement, FFFTTT): Figure B.11,

Figure B.12, · · · , and Figure B.15 display graphs of obfuscated circuit variants

that we use in this research. The RandomAlgorithm strategy is applied to the

original circuits with 20, 50, 100, 500, and 1000 iterations. We also select four

gates as a replacement size, and then choose FFFTTT as a library generation

option.

4. Obfuscated C17 − C17 − C17 (4 gates replacement, TFTTTT): Figure B.16,

Figure B.17, · · · , and Figure B.20 display graphs of obfuscated circuit variants

that we use in this research. The RandomAlgorithm strategy is applied to the

original circuits with 20, 50, 100, 500, and 1000 iterations. We also select four

gates as a replacement size, and then choose TFTTTT as a library generation

option.
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Figure A.1: Obfuscated Circuit Variant Graph after applying 20 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(38 gates, 6 levels)

Figure A.2: Obfuscated Circuit Variant Graph after applying 50 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(73 gates, 11 levels)
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Figure A.3: Obfuscated Circuit Variant Graph after applying 100 iterations, 3
replacement sizes, and FFFTTT library generation option to circuit C17+C17+C17.
(125 gates, 21 levels)

Figure A.4: Obfuscated Circuit Variant Graph after applying 500 iterations, 3
replacement sizes, and FFFTTT library generation option to circuit C17+C17+C17.
(500 gates, 84 levels)
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Figure A.5: Obfuscated Circuit Variant Graph after applying 1000 iterations, 3
replacement sizes, and FFFTTT library generation option to circuit C17+C17+C17.
(943 gates, 155 levels)
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Figure A.6: Obfuscated Circuit Variant Graph after applying 20 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(40 gates, 8 levels)

Figure A.7: Obfuscated Circuit Variant Graph after applying 50 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(73 gates, 15 levels)
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Figure A.8: Obfuscated Circuit Variant Graph after applying 100 iterations, 3
replacement sizes, and TFTTTT library generation option to circuit C17+C17+C17.
(127 gates, 28 levels)

Figure A.9: Obfuscated Circuit Variant Graph after applying 500 iterations, 3
replacement sizes, and TFTTTT library generation option to circuit C17+C17+C17.
(550 gates, 127 levels)
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Figure A.10: Obfuscated Circuit Variant Graph after applying 1000 iterations, 3
replacement sizes, and TFTTTT library generation option to circuit C17+C17+C17.
(1096 gates, 265 levels)
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Figure A.11: Obfuscated Circuit Variant Graph after applying 20 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit C17+C17+C17.
(60 gates, 10 levels)

Figure A.12: Obfuscated Circuit Variant Graph after applying 50 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit C17+C17+C17.
(123 gates, 22 levels)
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Figure A.13: Obfuscated Circuit Variant Graph after applying 100 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit C17+C17+C17.
(229 gates, 41 levels)

Figure A.14: Obfuscated Circuit Variant Graph after applying 500 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit C17+C17+C17.
(1074 gates, 322 levels)
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Figure A.15: Obfuscated Circuit Variant Graph after applying 1000 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit C17+C17+C17.
(2129 gates, 692 levels)
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Figure A.16: Obfuscated Circuit Variant Graph after applying 20 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit C17+C17+C17.
(59 gates, 14 levels)

Figure A.17: Obfuscated Circuit Variant Graph after applying 50 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit C17+C17+C17.
(122 gates, 25 levels)
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Figure A.18: Obfuscated Circuit Variant Graph after applying 100 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit C17+C17+C17.
(229 gates, 57 levels)

Figure A.19: Obfuscated Circuit Variant Graph after applying 500 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit C17+C17+C17.
(1054 gates, 290 levels)
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Figure A.20: Obfuscated Circuit Variant Graph after applying 1000 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit C17+C17+C17.
(2099 gates, 605 levels)
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A.2 Reduced Circuit Variant Graphs

1. Reduced C17-C17-C17 (3 gates replacement, FFFTTT): Figure B.21, Figure

B.22, · · · , and Figure B.25 display graphs of reduced circuit variants that we

produce in this research. The twelve circuit reduction algorithms are randomly

applied to the obfuscated circuit variants with 10 reduction rounds.

2. Reduced C17-C17-C17 (3 gates replacement, TFTTTT): Figure B.26, Figure

B.27, · · · , and Figure B.30 display graphs of reduced circuit variants that we

produce in this research. The twelve circuit reduction algorithms are randomly

applied to the obfuscated circuit variants with 10 reduction rounds.

3. Reduced C17-C17-C17 (4 gates replacement, FFFTTT): Figure B.31, Figure

B.32, · · · , and Figure B.35 display graphs of reduced circuit variants that we

produce in this research. The twelve circuit reduction algorithms are randomly

applied to the obfuscated circuit variants with 10 reduction rounds.

4. Reduced C17-C17-C17 (4 gates replacement, TFTTTT): Figure B.36, Figure

B.37, · · · , and Figure B.40 display graphs of reduced circuit variants that we

produce in this research. The twelve circuit reduction algorithms are randomly

applied to the obfuscated circuit variants with 10 reduction rounds.
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Figure A.21: Reduced Circuit Variant Graph after applying 20 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(21 gates, 4 levels)

Figure A.22: Reduced Circuit Variant Graph after applying 50 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(30 gates, 8 levels)
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Figure A.23: Reduced Circuit Variant Graph after applying 100 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(49 gates, 10 levels)

Figure A.24: Reduced Circuit Variant Graph after applying 500 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(100 gates, 19 levels)
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Figure A.25: Reduced Circuit Variant Graph after applying 1000 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(192 gates, 43 levels)
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Figure A.26: Reduced Circuit Variant Graph after applying 20 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(23 gates, 7 levels)

Figure A.27: Reduced Circuit Variant Graph after applying 50 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(23 gates, 7 levels)
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Figure A.28: Reduced Circuit Variant Graph after applying 100 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(25 gates, 9 levels)

Figure A.29: Reduced Circuit Variant Graph after applying 500 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(83 gates, 26 levels)
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Figure A.30: Reduced Circuit Variant Graph after applying 1000 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(123 gates, 30 levels)
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Figure A.31: Reduced Circuit Variant Graph after applying 20 iterations, 4 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(45 gates, 8 levels)

Figure A.32: Reduced Circuit Variant Graph after applying 50 iterations, 4 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(96 gates, 17 levels)
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Figure A.33: Reduced Circuit Variant Graph after applying 100 iterations, 4 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(170 gates, 34 levels)

Figure A.34: Reduced Circuit Variant Graph after applying 500 iterations, 4 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(782 gates, 223 levels)
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Figure A.35: Reduced Circuit Variant Graph after applying 1000 iterations, 4 re-
placement sizes, and FFFTTT library generation option to circuit C17 +C17 +C17.
(1458 gates, 436 levels)
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Figure A.36: Reduced Circuit Variant Graph after applying 20 iterations, 4 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(25 gates, 5 levels)

Figure A.37: Reduced Circuit Variant Graph after applying 50 iterations, 4 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(53 gates, 12 levels)
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Figure A.38: Reduced Circuit Variant Graph after applying 100 iterations, 4 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(83 gates, 23 levels)

Figure A.39: Reduced Circuit Variant Graph after applying 500 iterations, 4 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(232 gates, 76 levels)
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Figure A.40: Reduced Circuit Variant Graph after applying 1000 iterations, 4 re-
placement sizes, and TFTTTT library generation option to circuit C17 +C17 +C17.
(480 gates, 130 levels)
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Appendix B. Circuit Graphs for R17′ − C17−R17′′

B.1 Obfuscated Circuit Variant Graphs

1. Obfuscated R17′ − C17 − R17′′ (3 gates replacement, FFFTTT): Figure B.1,

Figure B.2, · · · , and Figure B.5 display graphs of obfuscated circuit variants

that we use in this research. The RandomAlgorithm strategy is applied to the

original circuits with 20, 50, 100, 500, and 1000 iterations. We also select three

gates as a replacement size, and then choose FFFTTT as a library generation

option.

2. Obfuscated R17′ − C17 − R17′′ (3 gates replacement, TFTTTT): Figure B.6,

Figure B.7, · · · , and Figure B.10 display graphs of obfuscated circuit variants

that we use in this research. The RandomAlgorithm strategy is applied to the

original circuits with 20, 50, 100, 500, and 1000 iterations. We also select three

gates as a replacement size, and then choose TFTTTT as a library generation

option.

3. Obfuscated R17′ − C17 − R17′′ (4 gates replacement, FFFTTT): Figure B.11,

Figure B.12, · · · , and Figure B.15 display graphs of obfuscated circuit variants

that we use in this research. The RandomAlgorithm strategy is applied to the

original circuits with 20, 50, 100, 500, and 1000 iterations. We also select four

gates as a replacement size, and then choose FFFTTT as a library generation

option.

4. Obfuscated R17′ − C17 − R17′′ (4 gates replacement, TFTTTT): Figure B.16,

Figure B.17, · · · , and Figure B.20 display graphs of obfuscated circuit variants

that we use in this research. The RandomAlgorithm strategy is applied to the

original circuits with 20, 50, 100, 500, and 1000 iterations. We also select four

gates as a replacement size, and then choose TFTTTT as a library generation

option.
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Figure B.1: Obfuscated Circuit Variant Graph after applying 20 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(37 gates, 9 levels)

Figure B.2: Obfuscated Circuit Variant Graph after applying 50 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(68 gates, 15 levels)
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Figure B.3: Obfuscated Circuit Variant Graph after applying 100 iterations, 3
replacement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(113 gates, 27 levels)

Figure B.4: Obfuscated Circuit Variant Graph after applying 500 iterations, 3
replacement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(434 gates, 78 levels)
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Figure B.5: Obfuscated Circuit Variant Graph after applying 1000 iterations, 3
replacement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(880 gates, 166 levels)
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Figure B.6: Obfuscated Circuit Variant Graph after applying 20 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′.
(36 gates, 8 levels)

Figure B.7: Obfuscated Circuit Variant Graph after applying 50 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′.
(67 gates, 18 levels)
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Figure B.8: Obfuscated Circuit Variant Graph after applying 100 iterations, 3
replacement sizes, and TFTTTT library generation option to circuit R17′ + C17 +
R17′′. (123 gates, 43 levels)

Figure B.9: Obfuscated Circuit Variant Graph after applying 500 iterations, 3
replacement sizes, and TFTTTT library generation option to circuit R17′ + C17 +
R17′′. (563 gates, 177 levels)

89



Figure B.10: Obfuscated Circuit Variant Graph after applying 1000 iterations, 3
replacement sizes, and TFTTTT library generation option to circuit R17′ + C17 +
R17′′. (1116 gates, 364 levels)
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Figure B.11: Obfuscated Circuit Variant Graph after applying 20 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(57 gates, 17 levels)

Figure B.12: Obfuscated Circuit Variant Graph after applying 50 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(119 gates, 40 levels)
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Figure B.13: Obfuscated Circuit Variant Graph after applying 100 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(222 gates, 60 levels)

Figure B.14: Obfuscated Circuit Variant Graph after applying 500 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(1076 gates, 322 levels)
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Figure B.15: Obfuscated Circuit Variant Graph after applying 1000 iterations, 4
replacement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(2133 gates, 614 levels)
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Figure B.16: Obfuscated Circuit Variant Graph after applying 20 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit R17′ + C17 +
R17′′. (58 gates, 15 levels)

Figure B.17: Obfuscated Circuit Variant Graph after applying 50 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit R17′ + C17 +
R17′′. (123 gates, 26 levels)
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Figure B.18: Obfuscated Circuit Variant Graph after applying 100 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit R17′ + C17 +
R17′′. (226 gates, 56 levels)

Figure B.19: Obfuscated Circuit Variant Graph after applying 500 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit R17′ + C17 +
R17′′. (1049 gates, 336 levels)
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Figure B.20: Obfuscated Circuit Variant Graph after applying 1000 iterations, 4
replacement sizes, and TFTTTT library generation option to circuit R17′ + C17 +
R17′′. (2094 gates, 607 levels)
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B.2 Reduced Circuit Variant Graphs

1. Reduced R17′−C17−R17′′ (3 gates replacement, FFFTTT): Figure B.21, Figure

B.22, · · · , and Figure B.25 display graphs of reduced circuit variants that we

produce in this research. The twelve circuit reduction algorithms are randomly

applied to the obfuscated circuit variants with 10 reduction rounds.

2. Reduced R17′−C17−R17′′ (3 gates replacement, TFTTTT): Figure B.26, Figure

B.27, · · · , and Figure B.30 display graphs of reduced circuit variants that we

produce in this research. The twelve circuit reduction algorithms are randomly

applied to the obfuscated circuit variants with 10 reduction rounds.

3. Reduced R17′−C17−R17′′ (4 gates replacement, FFFTTT): Figure B.31, Figure

B.32, · · · , and Figure B.35 display graphs of reduced circuit variants that we

produce in this research. The twelve circuit reduction algorithms are randomly

applied to the obfuscated circuit variants with 10 reduction rounds.

4. Reduced R17′−C17−R17′′ (4 gates replacement, TFTTTT): Figure B.36, Figure

B.37, · · · , and Figure B.40 display graphs of reduced circuit variants that we

produce in this research. The twelve circuit reduction algorithms are randomly

applied to the obfuscated circuit variants with 10 reduction rounds.
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Figure B.21: Reduced Circuit Variant Graph after applying 20 iterations, 3 replace-
ment sizes, and FFFTTT library generation option to circuit R17′ +C17+R17′′. (20
gates, 7 levels)

Figure B.22: Reduced Circuit Variant Graph after applying 50 iterations, 3 replace-
ment sizes, and FFFTTT library generation option to circuit R17′ +C17+R17′′. (25
gates, 7 levels)
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Figure B.23: Reduced Circuit Variant Graph after applying 100 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(39 gates, 11 levels)

Figure B.24: Reduced Circuit Variant Graph after applying 500 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(115 gates, 29 levels)
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Figure B.25: Reduced Circuit Variant Graph after applying 1000 iterations, 3 re-
placement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(155 gates, 37 levels)
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Figure B.26: Reduced Circuit Variant Graph after applying 20 iterations, 3 replace-
ment sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′. (14
gates, 3 levels)

Figure B.27: Reduced Circuit Variant Graph after applying 50 iterations, 3 replace-
ment sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′. (16
gates, 5 levels)
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Figure B.28: Reduced Circuit Variant Graph after applying 100 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′.
(20 gates, 9 levels)

Figure B.29: Reduced Circuit Variant Graph after applying 500 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′.
(80 gates, 23 levels)
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Figure B.30: Reduced Circuit Variant Graph after applying 1000 iterations, 3 re-
placement sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′.
(147 gates, 45 levels)
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Figure B.31: Reduced Circuit Variant Graph after applying 20 iterations, 4 replace-
ment sizes, and FFFTTT library generation option to circuit R17′ +C17+R17′′. (45
gates, 14 levels)

Figure B.32: Reduced Circuit Variant Graph after applying 50 iterations, 4 replace-
ment sizes, and FFFTTT library generation option to circuit R17′ +C17+R17′′. (94
gates, 32 levels)
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Figure B.33: Reduced Circuit Variant Graph after applying 100 iterations, 4 re-
placement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(158 gates, 43 levels)

Figure B.34: Reduced Circuit Variant Graph after applying 500 iterations, 4 re-
placement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(761 gates, 205 levels)
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Figure B.35: Reduced Circuit Variant Graph after applying 1000 iterations, 4 re-
placement sizes, and FFFTTT library generation option to circuit R17′+C17+R17′′.
(1471 gates, 429 levels)
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Figure B.36: Reduced Circuit Variant Graph after applying 20 iterations, 4 replace-
ment sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′. (19
gates, 5 levels)

Figure B.37: Reduced Circuit Variant Graph after applying 50 iterations, 4 replace-
ment sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′. (55
gates, 16 levels)
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Figure B.38: Reduced Circuit Variant Graph after applying 100 iterations, 4 re-
placement sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′.
(59 gates, 16 levels)

Figure B.39: Reduced Circuit Variant Graph after applying 500 iterations, 4 re-
placement sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′.
(227 gates, 62 levels)
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Figure B.40: Reduced Circuit Variant Graph after applying 1000 iterations, 4 re-
placement sizes, and TFTTTT library generation option to circuit R17′+C17+R17′′.
(419 gates, 127 levels)
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