
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2009

Characterizing Component Hiding Using Ancestral Entropy Characterizing Component Hiding Using Ancestral Entropy

Jason A. Williams

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Williams, Jason A., "Characterizing Component Hiding Using Ancestral Entropy" (2009). Theses and
Dissertations. 2471.
https://scholar.afit.edu/etd/2471

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2471?utm_source=scholar.afit.edu%2Fetd%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Characterizing Component Hiding Using

Ancestral Entropy

THESIS

Jason A. Williams, Captain, USAF

AFIT/GCE/ENG/09-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/09-12

Characterizing Component Hiding Using Ancestral

Entropy

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Jason A. Williams, BSCE

Captain, USAF

March 26, 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/09-12

Abstract

In this research, the problem of software protection and the attributes that

define that protection is considered. Specifically, how to protect programs defined

as structural combinational logic gates. Obfuscation is one technique for protecting

such circuits and involves replacing an original circuit with a functionally equivalent

variant that has some definable hiding property. The difficulty of reverse engineering

versus identifying and recovering the original components or sub-circuits within an

original circuit is compared. With a polymorphic circuit engine that produces seman-

tically equivalent variations of standard benchmark circuits the level of component

hiding across variants with different physical configurations is determined to provide

an entropy-based attribute to assess whether components are merged at the structural

level. Specific types of obfuscating transformations with respect to component hiding

using ancestral entropy are compared as well as the measure of uncertainty related to

origination of a gate within a circuit.

iv

Acknowledgements

First and foremost, I owe a large debt of gratitude to my wife for suggesting

I attend AFIT, supporting me in preparing this thesis and throughout my military

career. Any success of mine is equally yours. To my daughters, I thank you for

reminding me what is truly important. I love you all very much.

Professionally, I owe a debt of gratitude to my thesis advisor, Lt Col Todd

McDonald, Dr. Yong Kim, and Maj Eric Trias for asking the hard questions and

providing guidance. Thank you.

Jason A. Williams

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

Table of Contents . vi

List of Figures . ix

List of Tables . xv

List of Symbols . xvii

List of Abbreviations . xviii

I. Introduction . 1
1.1 Scope . 1

1.2 Problem Definition . 2
1.2.1 Airframes . 2
1.2.2 Spacecraft . 3

1.2.3 Hainan Island . 3
1.3 Reverse Engineering Legality . 5

1.4 Goals and Hypothesis . 5

1.5 Organization . 6

II. Literature Review . 7
2.1 Obfuscation . 7
2.2 Black Box and White Box Analysis 7

2.3 Reverse Engineering . 8

2.4 Embedded Systems . 11

2.5 Side channel attacks . 12
2.6 Invasive attacks . 13
2.7 Algorithm Overview . 13

2.7.1 Gate Selection . 14
2.7.2 Gate Replacement . 15

2.8 Selection and Replacement Example 18

2.9 Gate Level Ancestry . 22

2.9.1 Ancestry File Structure . 23

2.9.2 Computing Ancestry . 24

2.10 Entropy . 27

vi

Page

III. Methodology . 29

3.1 Problem Definition . 29
3.1.1 Goals and Hypothesis . 29

3.1.2 Approach . 30

3.2 System boundaries . 30

3.3 System Services . 30

3.4 Workload . 31
3.5 System Parameters . 32

3.6 Performance Metrics . 33
3.7 Factors . 34
3.8 Evaluation Technique . 34

3.9 Experimental Design . 37

3.10 Adding Color and Shape to each Gate 37

3.11 Component Hiding . 42

3.12 Methodology Summary . 43

IV. Results . 45
4.1 Three Gate Replacement C-17 Series Circuits 45

4.1.1 FixedLevelTwoGates Experiment 46

4.1.2 OutputLevelTwoGates . 50

4.1.3 LargestLevelTwoGates . 51

4.1.4 RandomLevelTwoGates . 52
4.1.5 RandomTwoGates . 53
4.1.6 RandomAlgorithm . 55

4.1.7 Series Circuits Results Summary 56

4.2 Three Gate Replacement C-17 Parallel Circuits 64

4.2.1 FixedLevelRandomTwoGates 65
4.2.2 OutputLevelRandomTwoGates 66

4.2.3 LargestLevelRandomTwoGates 66

4.2.4 RandomLevelTwoGates . 67
4.2.5 RandomTwoGates . 68
4.2.6 RandomAlgorithm . 69

4.2.7 Parallel Circuits Results Summary 70

4.3 Three and Four Gate Replacement Circuit Reduction 71

4.4 Four Gate Replacement C-17 Series Circuits 81

4.5 Four Gate Replacement C-17 Parallel Circuits 81

4.6 Validation . 97
4.7 Summary . 98

vii

Page

V. Conclusions . 101
5.1 Goals and Hypothesis . 101

5.2 Contributions . 101
5.2.1 Component Hiding Effectiveness 101

5.2.2 Introduction of the Colored Graphs 101

5.3 Future Work . 102
5.3.1 Color Graph Improvements 102

5.3.2 Execute at Runtime . 102
5.3.3 Modify FixedLevelTwoGates Algorithm 102

5.3.4 Validation . 103

Appendix A. Three Gate Replacement Series Circuit Variant Graphs and
Charts . 104

Appendix B. Three Gate Replacement Parallel Circuit Variant Graphs and
Charts . 140

Appendix C. Four Gate Replacement Series and Parallel Circuit Variant
Charts and Graphs . 164

Bibliography . 179

Vita . 181

viii

List of Figures
Figure Page

1.1 B-29 and Tu-4 . 3

1.2 B-1 Lancer and Tu-160 BlackJack 3

1.3 U.S. Shuttle and Russian Buran 4

1.4 Spacecraft in Transport . 4

2.1 C432 High Level Abstraction . 9

2.2 74238 Carry Look-Ahead Adder 10

2.3 Directed and Undirected Graphs 15

2.4 Cycle in a Replacement Circuit . 17

2.5 Two Gate Selection . 18

2.6 Three Gate Replacement with New Control Flow 19

2.7 C-17 Benchmark Circuit and BENCH File 20

2.8 Graph Representing C-17 Benchmark Circuit 20

2.9 Selection and Replacement Example 21

2.10 Iteration 2 Selection and Replacement 21

2.11 Iteration 3 Selection and Replacement 22

2.12 Baseline Circuit with Ancestry . 24

2.13 1st Iteration . 25

2.14 Ancestry Example Circuit, 15th Iteration 26

3.1 Circuit Transformation System (CORGI) 31

3.2 C-17 Series Circuits . 34

3.3 High Level C-17 Parallel Circuits 35

3.4 File Creation Flow Chart . 36

3.5 C-17 Parallel Circuit Maintaining Structure 38

3.6 C-17 Series Circuit Maintaining Structure 38

3.7 Basic Graph of a Circuit . 39

3.8 Matching Results for 3 Levels . 41

ix

Figure Page

3.9 Component Hiding Cases . 44

4.1 High Level Series C-17 Circuits 46

4.2 Fixed Level C-17 5 Input Circuits 48

4.3 Average Ancestral Entropy Intervals for 5 Input Series Circuit . . . 57

4.4 Average Ancestral Entropy Intervals for 5 ‘Split’ Input Series Circuit 58

4.5 Average Ancestral Entropy Intervals for 11 Input Series Circuit . . 59

4.6 Percentage of Original Gates in Series Circuits 60

4.7 Boxplot from 2-Sample t Test of Average Output Ancestral Entropy

with Random Algorithms on Series Circuits 61

4.8 Boxplot from 2-Sample t Test of Average Node Ancestral Entropy

with Random Algorithms on Series Circuits 62

4.9 Boxplot from 2-Sample t test of Average Level Ancestral Entropy

with Random Algorithms on Series Circuits 63

4.10 C-17 Parallel Circuits . 64

4.11 Average Ancestral Entropy Intervals for Shared Input Parallel Circuit 72

4.12 Average Ancestral Entropy Intervals for Individual Input Parallel

Circuit . 73

4.13 Percentage of Original Gates in Parallel Circuits 74

4.14 Boxplot from 2-Sample t Test of Average Output Ancestral Entropy

with Random Algorithms on Parallel Circuits 75

4.15 Boxplot from 2-Sample t Test of Average Output Ancestral Entropy

with Random Algorithms on Parallel Circuits 76

4.16 Boxplot from 2-Sample t Test for Average Output Ancestral Entropy

with Random Algorithms on Parallel Circuits 77

4.17 3 Gate Replacement C-17 Circuit Variant at 1000 iterations 78

4.18 3 Gate Replacement C-17 Circuit Reduced 78

4.19 4 Gate Replacement C-17 Circuit Variant at 1000 iterations 79

4.20 4 Gate Replacement C-17 Circuit Reduced 80

4.21 Average Ancestral Entropy Intervals for 5 Input Series Circuit with

a 4 Gate Replacement . 83

x

Figure Page

4.22 Average Ancestral Entropy Intervals for 5 ‘Split’ Input Series Circuit

with a 4 Gate Replacement . 84

4.23 Average Ancestral Entropy Intervals for 11 Input Series Circuit with

a 4 Gate Replacement . 85

4.24 Percentage of Original Gates in Series Circuits 86

4.25 Boxplot from 2-Sample t Test for Average Output Ancestral Entropy

with Random Algorithms on Series Circuits with a 4 Gate Replacement 87

4.26 Boxplot from 2-Sample t Test for Average Node Ancestral Entropy

with Random Algorithms on Series Circuits with a 4 Gate Replacement 88

4.27 Boxplot from 2-Sample t Test for Average Level Ancestral Entropy

with Random Algorithms on Series Circuits with a 4 Gate Replacement 89

4.28 Average Ancestral Entropy Intervals for Shared Input Parallel Cir-

cuit with a 4 Gate Replacement 92

4.29 Average Ancestral Entropy Intervals for Individual Input Parallel

Circuit with a 4 Gate Replacement 93

4.30 Boxplot from 2-Sample t Test of Average Output Ancestral Entropy

with Random Algorithms on Parallel Circuits 94

4.31 Boxplot from 2-Sample t Test of Average Node Ancestral Entropy

with Random Algorithms on Parallel Circuits 95

4.32 Boxplot from 2-Sample t Test of Average Level Ancestral Entropy

with Random Algorithms on Parallel Circuits 96

4.33 Baseline Individual Input Parallel C-17 Circuit 98

4.34 Reducing C-17 Parallel Circuit with Duplicate Inputs and Redun-

dant Gates to Independent Components 99

4.35 Reducing C-17 Parallel Circuit with Duplicate Inputs and Redun-

dant Gates One Iteration Before Component Separation 99

4.36 Reducing C-17 Parallel Circuit with No Duplicate Inputs or Redun-

dant Gates to Independent Components 100

4.37 Reducing C-17 Parallel Circuit with No Duplicate Inputs or Redun-

dant Gates One Iteration Before Component Separation 100

A.1 FixedLevelTwoGates 5 Input C-17 Series Variant Circuits 104

xi

Figure Page

A.2 FixedLevelTwoGates 5 Input C-17 Series Graphs 105

A.3 FixedLevelTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits . 106

A.4 FixedLevelTwoGates 5 ‘Split’ Input C-17 Series Graphs 107

A.5 FixedLevelTwoGates 11 Input C-17 Series Variant Circuits 108

A.6 FixedLevelTwoGates 11 Input C-17 Series Graphs 109

A.7 OutputLevelTwoGates 5 Input C-17 Series Variant Circuits 110

A.8 OutputLevelTwoGates 5 Input C-17 Series Graphs 111

A.9 OutputLevelTwoGates 5 ‘Split’Input C-17 Series Variant Circuits 112

A.10 OutputLevelTwoGates 5 ‘Split’ Input C-17 Series Graphs 113

A.11 OutputLevelTwoGates 11 Input C-17 Series Variant Circuits . . . 114

A.12 OutputLevelTwoGates 11 Input C-17 Series Graphs 115

A.13 LargestLevelTwoGates 5 Input C-17 Series Variant Circuits 116

A.14 LargestLevelTwoGatesl 5 Input C-17 Series Graphs 117

A.15 LargestLevelTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits 118

A.16 LargestLevelTwoGates 5 ‘Split’ Input C-17 Series Graphs 119

A.17 LargestLevelTwoGates 11 Input C-17 Series Variant Circuits . . . 120

A.18 LargestLevelTwoGates 11 Input C-17 Series Graphs 121

A.19 RandomLevelTwoGates 5 Input C-17 Series Variant Circuits . . . 122

A.20 RandomLevelTwoGates 5 Input C-17 Series Graphs 123

A.21 RandomLevelTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits 124

A.22 RandomLevelTwoGates 5 ‘Split’ Input C-17 Series Graphs 125

A.23 RandomLevelTwoGates 11 Input C-17 Series Variant Circuits . . 126

A.24 RandomLevelTwoGates 11 Input C-17 Series Graphs 127

A.25 RandomTwoGates 5 Input C-17 Series Variant Circuits 128

A.26 RandomTwoGates 5 Input C-17 Series Graphs 129

A.27 RandomTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits . . 130

A.28 RandomTwoGates 5 ‘Split’ Input C-17 Series Graphs 131

A.29 RandomTwoGates 11 Input C-17 Series Variant Circuits 132

xii

Figure Page

A.30 RandomTwoGates 11 Input C-17 Series Graphs 133

A.31 RandomAlgorithm 5 Input C-17 Series Variant Circuits 134

A.32 RandomAlgorithm 5 Input C-17 Series Graphs 135

A.33 RandomAlgorithm 5 ‘Split’ Input C-17 Series Variant Circuits . . 136

A.34 RandomAlgorithm 5 ‘Split’ Input C-17 Series Graphs 137

A.35 RandomAlgorithm 11 Input C-17 Series Variant Circuits 138

A.36 RandomAlgorithm 11 Input C-17 Series Graphs 139

B.1 FixedLevelTwoGates Shared Input C-17 Parallel Variant Circuits 140

B.2 FixedLevelTwoGates Shared Input C-17 Parallel Charts 141

B.3 FixedLevelTwoGates Individual Input C-17 Parallel Variant Cir-

cuits . 142

B.4 FixedLevelTwoGates Individual Input C-17 Parallel Charts 143

B.5 OutputLevelTwoGates Shared Input C-17 Parallel Variant Circuits 144

B.6 OutputLevelTwoGates Shared Input C-17 Parallel Charts 145

B.7 OutputLevelTwoGates Individual Input C-17 Parallel Variant Cir-

cuits . 146

B.8 OutputLevelTwoGates Individual Input C-17 Parallel Charts . . . 147

B.9 LargestLevelTwoGates Shared Input C-17 Parallel Variant Circuits 148

B.10 LargestLevelTwoGates Shared Input C-17 Parallel Charts 149

B.11 LargestLevelTwoGates Individual C-17 Parallel Variant Circuits . 150

B.12 LargestLevelTwoGates Individual Input C-17 Parallel Charts . . . 151

B.13 RandomLevelTwoGates Shared Input C-17 Parallel Variant Circuits 152

B.14 RandomLevelTwoGates Shared Input C-17 Parallel Charts 153

B.15 RandomLevelTwoGates Individual Input C-17 Parallel Variant Cir-

cuits . 154

B.16 RandomLevelTwoGates Individual Input C-17 Parallel Charts . . . 155

B.17 RandomTwoGates Shared Input C-17 Parallel Variant Circuits . . 156

B.18 RandomTwoGates Shared Input C-17 Parallel Charts 157

B.19 RandomTwoGates Individual Input C-17 Parallel Variant Circuits 158

xiii

Figure Page

B.20 RandomTwoGates Individual Input C-17 Parallel Charts 159

B.21 RandomAlgorithm Shared Input C-17 Parallel Variant Circuits . . 160

B.22 RandomAlgorithm Shared Input C-17 Parallel Charts 161

B.23 RandomAlgorithm Individual Input C-17 Parallel Variant Circuits 162

B.24 RandomAlgorithm Individual Input C-17 Parallel Charts 163

C.1 RandomLevelTwoGates 5 Input C-17 Series 4 Gate Replacement

Charts . 164

C.2 RandomLevelTwoGates 5 ‘Split’ Input C-17 Series 4 Gate Replace-

ment Charts . 165

C.3 RandomLevelTwoGates 11 Input C-17 Series 4 Gate Replacement

Charts . 166

C.4 RandomTwoGates 5 Input C-17 Series 4 Gate Replacement Charts 167

C.5 RandomTwoGates 5 ‘Split’ Input C-17 Series 4 Gate Replacement

Charts . 168

C.6 RandomTwoGates 11 Input C-17 Series 4 Gate Replacement Charts 169

C.7 RandomAlgorithm 5 Input C-17 Series 4 Gate Replacement Charts 170

C.8 RandomAlgorithm 5 ‘Split’ Input C-17 Series 4 Gate Replacement

Charts . 171

C.9 RandomAlgorithm 11 Input C-17 Series 4 Gate Replacement Charts 172

C.10 4 Gate Replacement RandomLevelTwoGates Individual Input C-17

Parallel Charts . 173

C.11 4 Gate Replacement RandomTwoGates Individual Input C-17 Par-

allel Charts . 174

C.12 4 Gate Replacement RandomAlgorithm Individual Input C-17 Par-

allel Charts . 175

C.13 4 Gate Replacement RandomLevelTwoGates Shared Input C-17 Par-

allel Charts . 176

C.14 4 Gate Replacement RandomTwoGates Shared Input C-17 Parallel

Charts . 177

C.15 4 Gate Replacement RandomAlgorithm Shared Input C-17 Parallel

Charts . 178

xiv

List of Tables
Table Page

2.1 ISCAS ’85 Benchmark Circuits . 8

2.2 Results per Iteration for RandomTwoGate Algorithm 19

2.3 Experiment BENCH Files . 20

2.4 BENCH and Ancestry File Example 23

2.5 Maximum Ancestral Entropy Values 28

3.1 Factors and Levels . 35

3.2 Gate Operation and Matching Shape 40

3.3 Coloring Schemes . 40

4.1 C-17 Series Experiments Ancestry Files 47

4.2 P-Values from 2-Sample t Test comparing RandomAlgorithm against

RandomTwoGates and RandomLevelTwoGates Using Series Circuits 64

4.3 P-Values from 2-Sample t Test comparing RandomAlgorithm against

RandomTwoGates and RandomLevelTwoGates Using Parallel Cir-

cuits . 71

4.4 RandomLevelTwoGates 3 and 4 Gate Replacement Comparison, Se-

ries Circuits . 82

4.5 RandomTwoGates 3 and 4 Gate Replacement Comparison, Series

Circuits . 82

4.6 RandomAlgorithm 3 and 4 Gate Replacement Comparison, Series

Circuits . 82

4.7 P-Values from 2-Sample t Test comparing RandomAlgorithm against

RandomTwoGates and RandomLevelTwoGates Using Series Cir-

cuits with a 4 Gate Replacement 82

4.8 RandomLevelTwoGates 3 and 4 Gate Replacement Comparison,

Parallel Circuits . 90

4.9 RandomTwoGates 3 and 4 Gate Replacement Comparison, Parallel

Circuits . 90

4.10 RandomAlgorithm 3 and 4 Gate Replacement Comparison, Parallel

Circuits . 90

xv

Table Page

4.11 P-Values from 2-Sample t Test comparing RandomAlgorithm against

RandomTwoGates and RandomLevelTwoGates Using Parallel Cir-

cuits with a 4 Gate Replacement 91

4.12 Reduction Results . 97

xvi

List of Symbols
Symbol Page

C Original, un-obfuscated circuit . 13

Ω Gate replacement basis . 13

Φ The set of all gates in a circuit . 14

γ Gate Selection Strategy . 15

S The size of a circuit . 16

xvii

List of Abbreviations
Abbreviation Page

DoD Department of Defense . 1

AT Anti-Tamper . 1

EPITS Essential Program Information Technologies 1

RDT&E Research, Development, Test and Evaluation 2

SCPA Semiconductor Chip Protection Act 5

ISCAS International Symposium on Circuits and Systems 7

SEC Single Error Correcting . 8

ALU Arithmetic Logic Unit . 8

DED Double Error Detecting . 8

CLA Carry Look Ahead . 10

RFID Radio Frequency Identification 11

EMA Electromagnetic analysis . 12

CORGI Circuit Obfuscation via Randomization of Graphs Iteratively . 13

DAG Directed Acyclic graph . 15

SUT System Under Test . 30

RBG Red, Blue, and Green . 102

xviii

Characterizing Component Hiding Using Ancestral

Entropy

I. Introduction

Current military operations have United States military assets and technologies

spread throughout the world. Many of these operations include multinational

forces with access to U.S. equipment. Agreements with our allies and the Department

of Defense (DoD) contractors to participate in foreign sales, the loss or capture of

military assets, and overseas computer product fabrication increase the risk of our

adversaries reverse engineering U.S. equipment. To reduce access to information,

the DoD has established an anti-tamper (AT) policy to protect U.S. assets. DOD

5200.1-M defines the processes by which information, technologies and systems that

are essential to the successful development of new DoD systems are identified and

protected. Essential Program Information Technologies, and/or Systems (EPITS)

are the critical elements of a system that make it unique and valuable to the U.S.

defense forces. The EPITS are those items that would cause degradation of combat

effectiveness, shorten the lifetime, or allow a foreign activity to neutralize a U.S.

system [5]. To protect this critical information, the U.S. military uses a wide variety

of AT techniques.

1.1 Scope

This thesis uses a circuit variant creator to mask the physical appearance of cir-

cuit components to complicate particular reverse engineering efforts. Entropy serves

to identify if a gate from a circuit or sub-circuit variant is derived from a specific

component of the original circuit.

1

1.2 Problem Definition

Software and hardware obfuscation is essential when designing critical equip-

ment that an adversary may obtain. The DoD budgeted over 75 billion dollars for

Research, Development, Test and Evaluation (RDT&E) in 2008 [4]. When an ad-

versary doesn’t have to spend the time or money to develop equivalent equipment,

the financial investment in developing the equipment and any time is shortened. If

an adversary has complete or partial access to DoD equipment or designs they gain

information the DoD didn’t intend them to have. Just a few examples are both new

and old technologies, U.S. military and commercial design strategies, and information

gathering techniques. Below, several examples illustrate this very thing.

1.2.1 Airframes. During WWII, Joseph Stalin refused to allow American

B-29 aircraft to land in Russia because they were not at war with Japan and did

not want to fight a war on two fronts. Unfortunately, several U.S. crews were forced

to divert to Russia and land after completing bombing missions on Japan and the

aircraft and crew were detained by the Russians. The crew were eventually returned,

but three B-29 Superfortresses, two damaged and one completely in tact, were kept

by Russia and never returned. Stalin thought after the war that he would need long

range bomber capability to reach North America to prevent any aggression from the

Americans. Estimating it would take five years to develop his own long range aircraft,

he copied the B-29 bolt for bolt [11], saving development time and money. The B-39

Superfortress is shown in the top half of Figure 1.1; the bottom half is the Russian

Tu-4.

One Russian military aircraft that bears a striking resemblance to U.S. aircraft

is the Tu-160 long range bomber. As Figure 1.2 shows, both aircraft have the same

basic shape, size, and both have variable-sweep wings. Although many aircraft are

designed to counter a threat from an adversary, it is most likely no coincidence that

the resulting aircraft appear so similar.

2

Figure 1.1: B-29 and Tu-4

Figure 1.2: B-1 Lancer and Tu-160 BlackJack

1.2.2 Spacecraft. Another example of U.S. developed equipment copied by

our adversaries is the NASA Space Shuttle. The Russian Buran orbiter is strikingly

similar to the U.S. version, as shown in Figure 1.3. The Russians copied as much

from the American version of the space shuttle as possible to guarantee the successful

development of the Buran orbiter [20]. Not surprisingly, the Russians also copied the

U.S. idea for transporting the orbiter. As Figure 1.4 illustrates, the Russians used

the AN-225 MYIRA aircraft to transport their orbiter where NASA uses a modified

Boeing 747.

1.2.3 Hainan Island. In 2001 a U.S. EP-3 reconnaissance aircraft and a

Chinese Shenyang J-8 collided in international airspace approximately 70 miles from

the Chinese island of Hainaan. Due to the damage from the accident, the EP-3 was

3

Figure 1.3: U.S. Shuttle and Russian Buran

Figure 1.4: Spacecraft in Transport

forced to make an emergency landing on Hainaan Island. The crew was released

after 12 days, but the aircraft was in the hands of the Chinese for a total of 94 days.

According to a UPI press release [10], the EP-3 couldn’t have landed at a better place

for China and a worse place for U.S. military intelligence,

“Hainan island is host to one of China’s largest electronic-signals-intelligence
complexes and is manned by experts who can glean critical information
on the aircraft’s capabilities if they gain access to the Navy’s EP-3...”
Pentagon sources said.

It is unknown what information the Chinese learned from having access to this re-

connaissance aircraft, but this is a prime example of why anti-tamper measures are

essential. Effective hardware and software protection need to be developed to protect

U.S. technologies.

4

1.3 Reverse Engineering Legality

The Semiconductor Chip Protection Act of 1984 (SCPA) stipulates that copying

all or part of a chip for purposes of analyzing its layout is legal. However, simply

copying a design is illegal. For copying to be legal, the reverse engineered chip must

be substantially different than the original. For the chip manufacturer to protect the

product, it is in their best interest to design it with a reverse engineer in mind, keeping

the layout as difficult to understand as possible [18]. Although the law doesn’t apply

internationally and will not be respected by our military adversaries, it is important

to follow this guidance to protect U.S. financial investments and military technologies.

The SCPA sets the stage for research in circuit level obfuscation and circuit component

hiding to increase the difficulty of reverse engineering U.S. technology.

1.4 Goals and Hypothesis

If an adversary attempts to reverse engineer a circuit variant, how can the dif-

ficulty of this effort in comparison to the reverse engineering the original circuit be

characterized? If a new gate is introduced into a circuit derived from two independent

circuits or sub-circuits, what is the level of difficulty for the reverse engineer to undo

this transformation? An analysis of circuit transformations is performed on function-

ally equivalent circuits to define a measure of hiding specific circuit components. The

first goal of this research is to define the term component hiding. Commonly used

and easily identifiable components or sub-components of a circuit are identified and

their structure changed to increase the difficulty of reverse engineering. Hiding these

components is critical to thwarting some reverse engineering techniques. The second

goal of this thesis is to compare circuit transformations that create circuit variants to

identify component hiding properties. The third goal is to define an attribute that

reflects the obfuscating properties a circuit variant provides. This protects programs

from being easily copied and protects the DoD’s financial investment as well as in-

creasing the level of difficulty for our adversaries to reverse engineer U.S. military

technology. Can this be accomplished using a polymorphic circuit engine based on

5

iterative selection and replacement? Can the uncertainty of component identification

and the work required by an adversarial reverse engineer be measured? To test this

different circuit configurations are used, how sub-circuits are merged by different se-

lection and replacement algorithms and de-merged via a circuit reduction program is

investigated.

1.5 Organization

This thesis is organized as follows. Chapter II provides the background research

and sets the stage for this research effort. Chapter III describes in detail the method

used to perform the experiments. Chapter IV describes the results of the experiments.

Chapter V summarizes the contributions of this thesis and discusses future work in

this research area. Appendix A contains figures illustrating the results of three gate

replacement experiments performed using series circuits. Appendix B contains figures

illustrating the results of three gate replacement experiments performed using parallel

circuits. Appendix C contains figures illustrating the results of experiments performed

using four gate replacement algorithms on series and parallel circuits.

6

II. Literature Review

2.1 Obfuscation

Obfuscation, according to Webster [13] means to “make obscure” or to “confuse”.

Obfuscation in general means to make something harder to understand. In the

computer world, obfuscation means to alter software by concealing the structure and

intent of the code, while preserving the behavior [15]. Obfuscation can be viewed

as a semantic-preserving transformation of a computer program that transforms the

original program into a variant which complicates the understanding of the algorithm

and data structures. It also prevents extracting valuable information from the source

code of the program [16].

2.2 Black Box and White Box Analysis

The first type of analysis a reverse engineer could do is black box analysis.

This is often looked at as analyzing the behavior of a circuit. McDonald considers

software behavior as the black box functional characteristics of a circuit reflected by

all possible input and output combinations, or denotational semantics [12]. In the case

of black box analysis, the reverse engineer has no access to the internal workings of a

circuit and doesn’t know the physical input and output relationship. He must try all

possible combinations of inputs and measure each corresponding output to determine

the function of the circuit. Limiting the reverse engineer to black box analysis is the

best result a circuit obfuscator can achieve and this analysis is unavoidable for low

level control logic circuits that are truly random [8]. Forcing the reverse engineer

to try all combinations is effective even in relatively small circuits. For example,

the International Symposium on Circuits and Systems (ISCAS) ’85 circuits listed in

Table 2.1 have inputs that number from 32 to 233. The smallest circuit has 232, or

4,294,967,296 possible input combinations. At 1 second to test each input combination

and record every output, all possibilities are covered in just over 136 years. If every

test takes only 1 millisecond, it will still take nearly 50 days to test all combinations

in this small circuit.

7

Circuit Function Inputs Outputs Logic

Gates

Major

Func-

tional

Blocks

C-432 27-channel interrupt
controller

36 7 160 5

C-499 32-bit SEC circuit 41 32 202 2

C-880 8-bit ALU 60 26 383 7

C-1355 32-bit SEC circuit 41 32 546 2

C-1908 16-bit SEC/DED cir-
cuit

33 25 880 6

C-2670 12-bit ALU and con-
troller

233 140 1,193 7

C-3540 8-bit ALU 50 22 1,669 11

C-5315 9-bit ALU 178 123 2,307 10

C-6288 16x16 multiplier 32 32 2,406 240

C-7552 32-bit adder and com-
parator

207 108 3,512 8

Table 2.1: ISCAS ’85 Benchmark Circuits

The second type of analysis is white box analysis. This analyzes circuit recon-

struction, commonly referred to as the structural topology. In white box analysis, the

reverse engineer has access to the sequence of the inputs and outputs and the internal

gate structure of the circuit. To the reverse engineer, having white box access is a

huge improvement because white box analysis might identify commonly used compo-

nent structures, such as adders, multipliers, multiplexers, and accumulators. These

common components can be grouped together to form a high level functional unit

that is easier to understand. Figure 2.1 is a high level look at the 36 input, 160 gate

C-432 benchmark circuit. If this can be converted from a series of gates into a high

level module, time consuming process of black box analysis can be avoided.

2.3 Reverse Engineering

Reverse engineering, according Chikofsky and Cross [3], is

“...regularly applied to improve your own products, as well as analyze a
competitor’s products or those of an adversary in a military or national-
security situation.”

8

Figure 2.1: C432 High Level Abstraction

They continue to say that reverse engineering is the process of analyzing a system

to identify the components and their relationships, and to create a representation

of the system in another form or at a higher level of abstraction. It is a process

of examination, not a process of change or replication. M.G Reckoff defines reverse

engineering as

“the process of developing a set of specifications for a complex hardware
system by an orderly examination of specimens of that system.”

The process is done by someone other than the developer of the system and without

the benefit of having access to any of the original system drawings for the purpose of

making a clone of the original hardware system [19].

Reverse engineers use many techniques to determine the functionality of a circuit

component. One white-box technique described in [8], visibly looks for functional

modules that are often used in industry to determine what the component or portion

of a component does. Identifying these modules greatly simplifies reverse engineering

by reducing the level of black box analysis. Even if the high-level designs are not

available, looking for typical designs used in circuit production, identifying commonly

9

used sub-components of a design, or extracting the circuit from the net list makes

it easier to transform the circuit into a high-level functional model. By hiding the

visible signatures of these modules, a common reverse engineering technique can be

eliminated. For example, in Figure 2.2 every input to the 74238 Carry Look-Ahead

(CLA) adder (a module of the C-7552 benchmark circuit), except the carry-in bit

(C0), passes through a NAND and NOR gate. Every output, other than the carry-

out bit, comes from a XOR gate.

Figure 2.2: 74238 Carry Look-Ahead Adder

Identifying standard gate level designs such as these allow reverse engineers to

make certain assumptions about functionality. After a more detailed inspection of the

suspected adder, the reverse engineer will look for the carry look-ahead components.

10

Once this technique is applied to other commonly used components (i.e., compara-

tors, multiplexers, decoders and counters), a high level model of the full design can

be created that is much easier to understand. Once the functionality is identified,

the circuit can be copied and used as needed. In the commercial sector, the reverse

engineer can improve on the design and produce a component that may work better

and cost less, since reversing often has a lower cost than the research and develop-

ment of the new component. In the military sector, the reverse engineer now better

understands the capability of the reversed system. This information can be used to

create similar systems that may limit or negate our military advantage or decrease

the time we have that advantage.

2.4 Embedded Systems

Embedded systems are commonly used today in nearly every device we use.

They are found in mobile phones, credit cards, automobiles, mp3 players, comput-

ers, wrist watches, appliances, televisions, etc. The market for embedded systems

has grown over the years as the demand for smaller devices with more functionality

increases. This demand increases the competition to produce smaller, faster, more

reliable devices. In the commercial sector, this competition creates friendly and un-

friendly opportunities for reverse engineers to examine the competition’s products for

new and improved designs, new production techniques, or any other proprietary in-

formation which may give them an advantage. In the military sector, understanding

an embedded system provides clues to weapon system functionality, cryptographic

implementations and weaknesses, and ways to bypass security measures, to name but

a few.

By the very fact these embedded systems are small, security problems are cre-

ated. Keeping the devices small and fast, may limit the types of cryptography that

can be used effectively. Many embedded devices can be easily reverse engineered if

proper protection is not applied [14]. For example, the Mifare Classic Radio Fre-

quency Identification (RFID) tokens were reverse engineered and its cipher broken.

11

Using knowledge of how this cipher operates, capitalizing on a random number gen-

erator implementation flaw, and using inexpensive mechanical means to expose the

circuits on the chip to identify repeated gate structures the functionality of the circuit

was determined. One possible defense to reverse engineering was

“Tamper-proofing can be used to protect secret keys from attackers, but
provided little help against hardware reverse-engineering because the struc-
ture of the circuits will always be preserved. The implementation, how-
ever, could be obfuscated to increase the complexity of the circuit detec-
tion.”

Obfuscation will not make this approach infeasible but the degree obfuscation will

increase the effort and cost to reverse engineer a circuit is unknown. The measure

of circuit variant quality is determined by hiding the circuit components a reverse

engineer looks for when performing this type of hardware reverse engineering.

2.5 Side channel attacks

According to Drimer [6],

“Side channel attacks rely on device-external measurable manifestations of
internal processes to deduce secret data or mode of operation by exploiting
the implementation rather than the algorithmic construction.”

One side channel attack method is using electromagnetic analysis (EMA). This

attack relies on circuits producing magnetic fields due to the movement of electricity

during internal operations of the circuit. These fields can be measured outside of the

circuit using carefully tuned antennas, even without doing any physical modifications

to the circuit [7]. These results show that if properly set up, the EMA attacks can be

more efficient and produce better signal to noise ratios than equivalent power analysis

attacks. There are two kinds of emanations, direct and unintended [1] [2]. The direct

emanations are caused by current flowing through a circuit and the unintended are

caused by electrical and magnetic coupling between wires and components. The main

advantage of electromagnetic attacks versus power analysis attacks is electromagnetic

attacks can be localized to a particular portion of a chip where the activity of interest

12

takes place. Also, the listening devices can be mounted on the device’s original packing

[6], removing the risk of damaging the circuit in a more invasive attack.

2.6 Invasive attacks

Invasive attacks physically probe the device to extract information. This pro-

cess removes the material that protects the metal interconnects of the circuit using

chemicals and/or mechanical means, or means as complicated as using a laser cutter

or focused ion beams [6]. When using this method it is necessary to have the expertise

and knowledge of how the circuits are manufactured and the proper location to insert

any probes. Any circuit obfuscation makes this process more difficult.

2.7 Algorithm Overview

A tool that aids in module or component hiding is Circuit Obfuscation via

Randomization of Graphs Iteratively(CORGI) [15]. CORGI allows a designer to easily

transform a circuit into a functionally equivalent, but visibly different circuit by using

different selection and replacement algorithms to remove and replace logic gates in

a circuit. In the case of component hiding, the original circuit C, is transformed

to C ′ by some obfuscation function O on C, where O(C) = C ′ and C and C ′ are

semantically equivalent; ∀x ∈ [0, 1]n : C(x) = C ′(x), where n is the input size of C.

CORGI takes in a directed graph based representation of a given circuit and is versatile

enough to perform several functions on it. The original circuit C and defines its

class CX−Y −S−Ω, where X is the input size, Y is the output size, S is the maximum

number of gates, and Ω is the basis (i.e., AND, NAND, NOR, XOR, OR, XNOR).

CORGI selects a subset of the circuit’s gates, based on the defined selection strategy

and makes an equivalent subset replacement based on the replacement parameter

(e.g., replacing two gates with three new functionally equivalent gates). The CORGI

discussion below assumes white box protection with experiments where algorithms

are sequenced semantic-preserving structural transformations based on random or

deterministic choices arranged in some random or deterministic manner. A circuit

13

obfuscator is a program that selects semantically equivalent variants of the original

circuit as replacement circuits. One obfuscation measurement goal maximizes the

randomness between the intermediate gates of C and its variant C ′ [15]. The term

gates is used when discussing logic in combinational circuits and the term node is used

when discussing graphs. Since the nodes in a graph represent the gate level structure

of a circuit, these terms are used interchangeably.

2.7.1 Gate Selection.

2.7.1.1 Selection Strategies. There are several parameters that define

how the gates of a circuit or sub-circuit are selected for replacement. These parameters

may be chosen individually or chosen at random by selecting the RandomAlgorithm

selection strategy. For notational purposes let Φ represent the set of all gates in the

circuit, and gx represent a gate such that gx ∈ Φ. The selection options defined in [15]

are as follows:

• RandomSingleGate - Choose g1 ∈ Φ in a random, uniform manner.

• RandomTwoGates - Choose g1 ∈ Φ in a random, uniform manner. Choose

g2 ∈ Φ such that g1 6= g2 and where the replacement of the sub-circuit (g1, g2)

will not cause a cycle.

• RandomLevelTwoGates - Choose g1 ∈ Φ in a random, uniform manner. Choose

g2 ∈ Φ such that g1 6= g2 and where level(g2) = level(g1) or level(g2) ± 1 and

where the replacement of the sub-circuit (g1, g2) will not cause a cycle.

• LargestLevelTwoGates - Choose g1 ∈ Φ such that |level(gx)| = lmax represents

the maximum size of all levels within the circuit: lmax = ⊔{|level(gx)| | (gx) ∈

Φ}. Choose g2 ∈ Φ where g2 6= g1 and where level(g2) = level(g1) or level(g2) =

level(g1)+1 and where the replacement of the sub-circuit (g1, g2) will not cause

a cycle.

• OutputLevelTwoGates - Choose g1 ∈ Φ where g1 is a distinguished intermediate

gate (i.e., an output of the circuit). Choose g2 ∈ Φ where g1 6= g2 and where

14

level(g2) = level(g1) + 1 or level(g2) = level(g1) and where the replacement

sub-circuit (g1, g2) will not cause a cycle.

• FixedLevelTwoGates - Choose g1 ∈ Φ where, for some user-provided level cri-

teria k, level(g1) = k. Choose g2 ∈ Φ where g2 6= g1 and where level(g2) =

level(g1) + 1 or level(g2) = level(g1) and where the replacement of the sub-

circuit (g1, g2) will not cause a cycle.

• RandomAlgorithm - Choose any selection strategy γ ∈ S in a random, uniform

manner. One algorithm may also weigh more heavily than others, and is done

so programatically.

2.7.2 Gate Replacement. CORGI models programs as combinational Boolean

circuits. Since combinational circuits do not contain feedback loops, a combinational

circuit over Ω is a directed acyclic graph (DAG) having nodes that either map to a

function in Ω, referred to as gates, having nodes in degree 0 referred to as inputs, and

having one or more intermediate nodes as an output. The basis sets AND, OR, NOT,

AND, NOT, OR, NOT, NAND and NOR are known to be complete, meaning any

given circuit can be recreated using only the gates given the previous sets.

Figure 2.3: Directed and Undirected Graphs

15

Figure 2.3 [15] illustrates several directed and undirected graph examples. They

are:

(a) An undirected graph with no cycles

(b) A directed graph with no cycles

(c) A undirected graph with one cycle(1-2-3-4-1 and 1-4-3-2-1)

(d) A directed graph with one cycle (1 → 2 → 3 → 4 → 1)

(e) An undirected multi-graph with one cycle (4-6)

(f) A directed acyclic multi-graph with no cycles

2.7.2.1 Replacement rules. Other criteria that determine how a sub-

circuit is replaced is defined by whether or not to allow the following:

• SymmetricGates - Are symmetric gates allowed? For example, are gates with

inputs X1, X2 considered equivalent to gates with inputs X2, X1?

• AllowConstants - Are circuits granted immediate access to the constants True

and False? Gates that have these properties may exist in a circuit, but it may

change the properties of a set of circuits if these constants are immediately

available.

• RedundantGates - Are gates allowed that are identical to other gates based on

the inputs? Can there be two gates in a circuit where the truth table for each

gate, based on all circuit inputs, is the same?

• DuplicateInputs - Are inputs to a gate allowed to originate from the same

source?

• ExactCount - Does the set of replacement circuits contain all circuits with a

certain size bound, or only circuits of an exact size? For example, if the circuit

size is S= 4 and ExactCount = false, enumerating δX−Y −S−Ω creates a family

of circuits with gate sizes 1, 2, 3 and 4, where if ExactCount = true the family

of circuits will all have a size of 4.

16

• SimpleOutputs - Which gates will be defined as outputs? It may be necessary

to index a circuit by an output signature and these must be restricted to specific

gates. If SimpleOutputs = true, the outputs are then pushed to the lowest level

of the graph. This option also prevents what is referred to as dangling gates;

gates being considered as outputs that are never actually used.

2.7.2.2 Avoiding a cycle. As defined above, the first gate in a two gate

replacement, g1, is chosen based on the user defined selection strategy. The second

gate, g2, is chosen in the same manner as long as it doesn’t create a cycle. An example

of a possible cycle is illustrated in Figure 2.4. The two gates selected for substitution,

Csub, cannot be replaced without creating a cycle. The new replacement sub-circuit

Crep has an output that provides an input to the NAND gate C, who’s output is also

an input to Crep. These two gates are rejected as a replacement option and another

attempt is made to find a replacement that doesn’t cause a cycle. Assuming Crep

is larger than two gates, if all possible replacements for the two gate substitution

cause a cycle, the algorithm either stops executing and no replacement is made, or

the algorithm replaces g1 with a three gate equivalent. The two gate replacement case

is guaranteed to work because even if no new gates are found to replace the two gates

selected, the two gate selection can always be replaced with itself.

Figure 2.4: Cycle in a Replacement Circuit

Figures 2.5 and 2.6 illustrate a two gate selection with a three gate replacement.

Gates 31 and 32 are selected for replacement using the RandomTwoGates algorithm.

17

Figure 2.5: Two Gate Selection

These gates are replaced by the three gate combination formed by gates 41, 42 and

43. In Figure 2.5 there is no control flow from input 1 to the output of gate 23. After

the replacement, a new control flow is introduced. This new control flow introduction

is an important result useful for component hiding; it allows independent, unrelated

sub-circuits to merge into one circuit.

2.8 Selection and Replacement Example

The following example illustrates the selection and replacement algorithm. Start-

ing with the C-17 benchmark circuit in Figure 2.7, the corresponding BENCH file is

created. This BENCH file is the input to the selection and replacement algorithm.

In this example the RandomTwoGates algorithm is used with a two gate selection

and three gate replacement strategy. Table 2.2 lists the selection and replacements

performed for the first three iterations and Table 2.3 contains the original BENCH

18

Figure 2.6: Three Gate Replacement with New Control Flow

Table 2.2: Results per Iteration for RandomTwoGate Algorithm

Iteration Selected Gates Replacement Gates
1 23, 19 23, 24, 25
2 16, 10 26, 27, 28
3 27, 11 29, 30, 31

file and the BENCH files for the first three iterations. Figure 2.8 is the graph of the

original BENCH file and the starting point of the algorithm. Figures 2.9-2.11 show

the gate level selection and replacement for the first three iterations of the algorithm.

In this example the inputs, NAND gates, and OR gates are represented by trapezoids,

hexagons, and ellipses, respectively.

In the first iteration of the algorithm gates 23 and 19 are chosen for replacement.

These two gates are replaced with the three gate equivalent 23, 24, and 25. Gate 24

is an identical match to gate 19. Gate 25 is a two input OR gate (buffer) and gate 23

remains the same with the output of 25 replacing the output of 19. In iteration two,

19

Figure 2.7: C-17 Benchmark Circuit and BENCH File

Figure 2.8: Graph Representing C-17 Benchmark Circuit

Table 2.3: Experiment BENCH Files
Iteration 0 Iteration 1 RIteration 2 Iteration 3
INPUT(1) INPUT(1) INPUT(1) INPUT(1)
INPUT(2) INPUT(2) INPUT(2) INPUT(2)
INPUT(3) INPUT(3) INPUT(3) INPUT(3)
INPUT(6) INPUT(6) INPUT(6) INPUT(6)
INPUT(7) INPUT(7) INPUT(7) INPUT(7)

OUTPUT(22) OUTPUT(22) OUTPUT(22) OUTPUT(22)
OUTPUT(23) OUTPUT(23) OUTPUT(23) OUTPUT(23)

11 = NAND(3, 6) 11 = NAND(3, 6) 11 = NAND(3, 6) 29 = NAND(3, 6)
10 = NAND(1, 3) 24 = NAND(7, 11) 24 = NAND(7, 11) 30 = OR(29, 29)
16 = NAND(2, 11) 10 = NAND(1, 3) 26 = OR(1, 1) 24 = NAND(7, 30)
19 = NAND(7, 11) 16 = NAND(2, 11) 25 = OR(24, 24) 26 = OR(1, 1)
22 = NAND(10, 16) 25 = OR(24, 24) 27 = NAND(2, 11) 25 = OR(24, 24)
23 = NAND(16, 19) 22 = NAND(10, 16) 28 = NAND(3, 26) 28 = NAND(3, 26)

23 = NAND(16, 25) 22 = NAND(27, 28) 31 = NAND(2, 29)
23 = NAND(25, 27) 22 = NAND(28, 31)

23 = NAND(25, 31)

20

(a) Selection (b) Replacement

Figure 2.9: Iteration 1 Selection and Replacement
(a) and (b)

(a) Selection (b) Replacement

Figure 2.10: Iteration 2 Selection and Replacement
(a) and (b)

21

(a) Selection (b) Replacement

Figure 2.11: Iteration 3 Selection and Replacement
(a) and (b)

gates 10 and 16 are chosen for replacement and replaced with gates 26, 27, and 28.

Gates 27 and 28 provide the same functionality as 10 and 16. Gate 26 is another buffer

added to the circuit. The last iteration performs the same function of introducing a

new buffer to the circuit. Although this example doesn’t introduce new control flow

or introduce any new gates to the circuit that are not buffers, it does illustrate the

basic gate selection and replacement.

2.9 Gate Level Ancestry

This section provides an introduction to gate level ancestry. An ancestor is

defined by Webster [13] as a precursor of a more recent group. Thus, any new gate

introduced is of direct descent from an ancestor or group of ancestors, just as a child is

a direct descendant from it’s parents. This is used to generate ancestry data for each

gate in a circuit. Ancestry data is used to generate the colored graphs and calculate

ancestral entropy, which is defined in Chapter III.

22

2.9.1 Ancestry File Structure. Care must be taken when creating the base-

line ancestry files for experiments. The file must match the same structure as the

BENCH file being used for the initial experiments. Anomalies in the colored graphs

can generally be traced back to an error in the initial ancestry file. The ancestry

file starts with an initial state for every identified sub-circuit or sub-component. For

example, for two circuits or sub-circuits each line of the sub-component will have an

assigned ancestry value of (1,0), (0,1) or (1,1). Table 2.4 provides an example of a

BENCH file and the corresponding ancestry file. This file should end with ‘ances-

try.txt’ for the software to perform properly. The descriptions following the # sign

are not necessary but are useful in identifying the function of each gate.

Table 2.4: BENCH and Ancestry File Example
BENCH File Ancestry file
INPUT(1) 1(1,0,0)
INPUT(2) 2(1,0,0)
INPUT(3) 3(1,0,0)
INPUT(6) 6(1,0,0)
INPUT(7) 7(1,0,0)

OUTPUT(32) 32
OUTPUT(33) 33

10 = NAND(1, 3) 10(1,0,0) #NAND(1, 3)
11 = NAND(3, 6) 11(1,0,0)#NAND(3, 6)
19 = NAND(11, 7) 19(1,0,0) #NAND(11, 7)
16 = NAND(2, 11) 16(1,0,0) #NAND(2, 11)
12 = NAND(10, 16) 12(1,0,0) #NAND(10, 16)
13 = NAND(16, 19) 13(1,0,0) #NAND(16, 19)

20 = NAND(12, 3) 20(0,1,0) #NAND(12, 3)
21= NAND(3, 6) 21(0,1,0) #NAND(3, 6)
29 = NAND(21, 7) 29(0,1,0) #NAND(21, 7)
26 = NAND(13, 21) 26(0,1,0) #NAND(13, 21)
22 = NAND(20, 26) 22(0,1,0) #NAND(20, 26)
23 = NAND(26, 29) 23(0,1,0) #NAND(26, 29)

30 = NAND(22, 3) 30(0,0,1) #NAND(22, 3)
31 = NAND(3, 6) 31(0,0,1) #NAND(3, 6)
39 = NAND(31, 7) 39(0,0,1) #NAND(31, 7)
36 = NAND(23, 31) 36(0,0,1) #NAND(23, 31)
32 = NAND(30, 36) 32(0,0,1) #NAND(30, 36)
33 = NAND(36, 39) 33(0,0,1) #NAND(36, 39)

#end of original gates

23

New nodes created by the selection and replacement algorithm are stored in a

log file that contains the events of every iteration of the experiment. This log file

is the input when generating ancestry files for every iteration. Each iteration the

previous ancestry file is read, along with the log file, and the new ancestry values are

computed and written to a new ancestry file.

2.9.2 Computing Ancestry. The ancestry value of each node is computed

from the baseline ancestry file. This file is created by the user and sub-circuits are

defined as required. Figure 2.12 and the ancestry file in Table 2.4 has three sub-

circuits (defined as A, B, and C), each with its unique ancestry values (i.e., A=(1,0,0),

B=(0,1,0) and C=(0,0,1)). These baseline ancestry values are used to generate the

ancestry values of any nodes introduced into the circuit. For example, in Figure 2.13

nodes 30 and 39 from Figure 2.12 are replaced with nodes 40, 41 and 42. The ancestry

value for node 41 has not changed because it has the same inputs and performs the

same function as node 30 so the ancestry values are preserved.

Figure 2.12: Baseline Circuit with Ancestry

24

Figure 2.13: 1st Iteration

The ancestry for each gate is computed by examining the ancestry values of the

parent nodes of the replaced gate. CORGI only uses two input gates, so there are

only two parent nodes, X and Y , for each new node. If n is the number of sub-circuits

in the baseline ancestry file, then X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} are

the sets of ancestry values for the parent nodes and the new ancestry set for the new

node Z is Z = {z1, z2, ..., zn} and is computed as follows:

for i = 1 to n

if xi = 0 or yi = 0

then zi = xi + yi

if xi ≥ yi

then zi = xi + 1

else zi = yi + 1

The ancestry value for node 40 is (1,0,1), meaning that there is one ancestor

from circuit A, no ancestors from circuit B, and 1 ancestor from circuit C. The an-

cestry of node 41 is dependent on the ancestry of node 40, so the ancestry algorithm

25

Figure 2.14: Ancestry Example Circuit, 15th Iteration

26

calculates the independent nodes first, then the nodes with dependencies. Node 42

has a double input from the output of node 40, so the ancestry value is (2,0,2). Figure

2.14 illustrates the introduction of gates that have ancestors from circuits A, B, and

C. Nodes 73, 76, and 77 have all three ancestry values greater than zero. The parent

to node 73 are nodes 63 and In3 with respective ancestry values of (0,3,3) and (1,0,0).

These two values sum to (1,3,3).

2.10 Entropy

It is assumed that a circuit with nodes that have equal ancestry values from all

original sub-circuits provides better obfuscation than a circuit with nodes where some

sub-circuits are not represented. To evaluate this ‘goodness’, entropy measures the

level of uncertainty that a specific node or gate originates from a defined component.

A circuit with higher entropy is expected to be more difficult to reduce than a circuit

with lower entropy. In [17], Rajgopal uses spatial entropy to measure the energy in

a combinational circuit. Similarly, this research defines ancestral entropy, to measure

the effectiveness of circuit variant producing algorithm in terms of component hiding,

which is defined in Chapter III. Ancestral entropy (see Definition 5) is

H(P) = −
∑

i∈N

pilog2(pi) (2.1)

where pi is the probability of the gate being from a defined component i. When

the probability of each of the ancestry values are equal, this is the maximum entropy

value, H(P)max. The baseline ancestry value, (i.e., when only one ancestry component

is greater than 0), is the minimum entropy value, H(P)min, which equates to zero.

For example, for the ancestry values (0,0,1) and (12,12,12),

H(P)min = −1log2(1) = 0

27

and

H(P)max = −(−1/3 ∗ log2(1/3) − 1/3 ∗ log2(1/3) − 1/3 ∗ log2(1/3)) = 1.58493

respectively. The H(P)max a tuple has equal values because that gate has an equal

number of ancestors from each of the defined sub-circuits. Therefore, the gate is

equally likely to have originated from any of the three original sub-circuits. This

attribute provides a way to compare the transformation algorithms on like circuits.

Table 2.5 contains the maximum ancestral entropy values discussed in this research.

Table 2.5: Maximum Ancestral Entropy Values

1 ancestor 2 ancestors 3 ancestors 4 ancestors
H(P)max = 0 H(P)max = 1 H(P)max = 1.585 H(P)max = 2

28

III. Methodology

3.1 Problem Definition

When obfuscating software or hardware no effective way of measuring how well

the obfuscation will perform against an attack has been developed. The

level of difficulty facing the reverse engineer is a function of his experience, domain

knowledge, available tools, and the software or hardware implementation.

3.1.1 Goals and Hypothesis. The goals of this research are to define com-

ponent hiding, compare the circuit transformations (i.e., the output of the CORGI

selection algorithms), and to develop an attribute that reflects the obfuscating prop-

erties a circuit variant provides (i.e., define an attribute for the CORGI selection

algorithms to identify a circuit variant with the best component hiding properties).

We hypothesize the iterative selection and replacement algorithms provide mea-

surable component hiding properties, resulting in the circuit transformations not eas-

ily undone by a circuit reducer (or a reverse engineer). A polymorphic circuit engine

based on iterative selection and replacement (CORGI) alters circuits to hide circuit

or sub-circuit components. Component hiding, defined later, adds difficulty to the

reverse engineering effort by preventing a reverse engineer from grouping gates into a

higher level functional model, thus reducing the amount of black box analysis. CORGI

provides a graph of each iteration when creating a circuit variant. This graph shows

circuit changes, but doesn’t provide sufficient visual information on how the changes

are occurring. Creating an ancestry value for each gate in the circuit measures how

much each circuit changes during each iteration and it provides a history for each

node, as well as a colored graph as a visual representation. Using CORGI to select

and replace gates in a circuit and comparing this circuit variant to the original pro-

vides information about the quality of a circuit variant based on the different selection

algorithms used. Entropy measures the uncertainty of whether a gate belongs to an

original component.

29

3.1.2 Approach. Baseline circuits and configurations are identified (i.e.,

series, parallel, shared inputs, etc.), as well as the parameters CORGI uses to create

the circuit variant. Experiments on series and parallel circuits using different CORGI

selection algorithms identifies the contribution of each algorithm to the creation of a

circuit variant. Ancestry information and changes to each baseline circuit are recorded

at every iteration providing a history of gate level transformations.

3.2 System boundaries

The System Under Test (SUT) is the Circuit Transformation System (CORGI)

shown in Figure 3.1. The specific components under test are the following selection

and replacement algorithms:

1. RandomTwoGates selection and replacement algorithm

2. RandomLevelTwoGates selection and replacement algorithm

3. LargestLevelTwoGates selection and replacement algorithm

4. OutputLevelTwoGates selection and replacement algorithm

5. FixedLevelTwoGates selection and replacement algorithm

6. RandomAlgorithm selection and replacement algorithm

These algorithms are applied to each of the series and parallel circuits described

in this section. A comparison of the resulting circuit variant determines the obfusca-

tion effectiveness of the selection algorithm for that circuit.

3.3 System Services

The service provided by the system is the selection and replacement of logic

gates based on the system parameters. Changes to the circuit are recorded in a graph

file, a bench file, a log file, and an ancestry file. The first possible system output

are the files representing a functionally equivalent circuit variant. A second possible

30

Figure 3.1: Circuit Transformation System (CORGI)

output are files representing a circuit variant that is not functionally equivalent. The

last possibility is that nothing occurs, signifying a failure of the system.

3.4 Workload

The workload of this system is three tiered. The first workload is a circuit bench

file that specifies the circuit or sub-circuits and their configuration. This may be a

stand alone circuit or sub-circuits connected in series or parallel with independent or

shared inputs. CORGI accepts bench files as input for the gate selection algorithms

and provides a bench file and a graph file as an output for each iteration, along with

a log file that stores the details of each iteration. This log file, along with a user

provided ancestry file, is the second workload and generates ancestry information for

31

each iteration of the selection and replacement algorithm. The third workload is the

previously generated graph and ancestry files for each iteration. These files are used

to produced the final colored graph that visually displays the ancestry of each gate

in the circuit and file that contains the ancestral entropy calculation for each node,

the average ancestral entropy at each level and at the output of the circuit. Figure

3.1 illustrates how the workload and output are related.

3.5 System Parameters

The system parameters for this research are as follows:

1. Selection and Replacement Algorithm

• RandomTwoGates

• RandomLevelTwoGates

• LargestLevelTwoGates

• OutputLevelTwoGates

• FixedLevelTwoGates

• RandomAlgorithm

2. Circuit Type

• C-17 Benchmark Circuit

3. Circuit Configurations

• Series Configuration

• Parallel Configurations

4. Number of gates replaced

• Replace Two Gates With 3 gates

• Replace Two Gates With 4 gates

32

The C-17 benchmark circuit, shown in Figure 2.7 is used because it is a small

circuit composed of NAND gates and is part of the ISCAS ’85 suite of benchmark

circuits. This circuit is representative of the many small sub-circuits found in larger

circuits, such as adders, multiplexors, and decoders. This circuit is examined in four

different series and parallel configurations. Some of the configurations use independent

inputs to each circuit, while others share some, or all, of the inputs. Figures 3.2 and

3.3 illustrate the four C-17 circuit configurations.

The six different selection and replacement algorithms are tested to determine if

any one algorithm outperforms another, in terms of obfuscation properties. Multiple

circuit types are chosen to see if different algorithms perform better on series or

parallel circuits with different configurations. Using the replacement parameters of

three and four gates test whether one type of replacement is better than another.

Smart selection, in the case of the RandomTwoGates replacement algorithm, means

at least one original node is used in every selection and replacement iteration until

all original nodes have been replaced at least once prior to any two new nodes being

selected for replacement. Allowing duplicate inputs and redundant gates provides

easier gate replacement and improves the chances independent circuits will have gates

selected for replacement, allowing earlier merging of circuits.

3.6 Performance Metrics

Three different performance metrics are used to measure obfuscation. The first

is the number of circuits or sub-circuits removed from the original circuit based on

the calculated ancestry information. The colored graph shows the gate ancestry and

new colors represent gates that have an ancestor from different circuits (defined in

the original ancestry file). The more original sub-circuits, or components of a circuit

removed and new circuits introduced, the better the obfuscation. The second mea-

surement is the percentage of original gates remaining in a circuit. A lower percentage

of original gates remaining in the final circuit variant correlates with a better level of

obfuscation. The final measurement calculates the ancestral entropy of every node,

33

(a) 5 Inputs (b) 11 Inputs

Figure 3.2: C17 Series Circuits (a) and (b)

each level, and outputs of the circuit. Measuring the uncertainty of the ancestry pro-

vides an attribute for comparing the effectiveness of obfuscation each of the circuit

variants provide.

3.7 Factors

Table 3.1 contains the factors and levels for this research effort. The six se-

lection and replacement algorithms are the experiment factors. Each algorithm uses

five different circuits and performs a two gate selection with a three and four gate

replacement. This results in 60 experiments, which are performed three times each.

3.8 Evaluation Technique

CORGI is used to simulate a random walk from the original circuit to the final

circuit variant. CORGI uses SmartSelectionAlgorithm.java program for each iteration

of the experiment. This code allows the user to specify the type of selection and re-

placement algorithm, the number of iterations to perform, the number of experiments

to repeat, whether to allow duplicate input gates and redundant gates, the number

34

(a) Shared Inputs (b) Independent Inputs

Figure 3.3: C-17 Parallel Circuits (a) and (b)

Table 3.1: Factors and Levels

Factor Level
Algorithm Circuit Configuration Inputs Gates

Type Replaced
RandomTwoGates C-17 Series 5 3
RandomLevelTwoGates 4
OutputLevelTwoGates 5 ‘Split’ 3
FixedLevelTwoGates 4
LargestLevelTwoGates 11 3
RandomAlgorithm 4

Parallel Shared 3
4

Independent 3
4

of gates to select, the number of replacements and many other parameters. A log

file and graph files are produced that are used later. The flow chart in Figure 3.4

shows which files are needed to create subsequent files. The selection and replacement

algorithm uses the baseline BENCH file to generate a BENCH file and graphml file

for every iteration of the experiment. A log file that records the operations performs

during every iteration. The baseline ancestry file is created from the baseline BENCH

file and, along with the log file, creates the ancestry files for every iteration. To color

the graphs the graphml files and the ancestry files generate new graphml files that

35

provide color, shape, number, and ancestry information for each node in the circuit

at every iteration. Entropy is computed using the BENCH files and the ancestry files.

Ancestral entropy is calculated for each node, at the output of the circuit, and at

every level of the circuit.

Figure 3.4: File Creation Flow Chart

The ColorGraph.java program uses the ancestry files, along with the original

graph files, to create a colored graph for every iteration that visually represents how

gates are related to one another as well as a file that identifies when new sub-circuits

are introduced or removed, based on their ancestry. These graphs identify any sub-

circuits removed, any trends for new gates introduced and the percentage of gates no

36

longer associated with a single sub-circuit. The GetEntropy.java program also uses

the ancestry files to compute the ancestral entropy of each gate in the circuit, the

average ancestral entropy at each circuit level and at the outputs.

3.9 Experimental Design

The replacement rules discussed in Section 2.7.2.1 for three gate replacement

experiments are set to false except DuplicateInputs and RedundantGates. This set-

ting allows for the introduction of new circuit control flow when executing a three gate

replacement. However, many new gates introduced act as buffers (e.g., two input OR

and AND gates). The introduction of the new control flow will allow many of these

buffers to be replaced in future circuit variants. These two settings are set to false in

the four gate replacement experiments because new control flows are still introduced.

Initial experiments indicate there is no benefit to performing a two gate selection

with a two gate replacement on independent parallel circuits or series circuits as there

is no increase in entropy. When duplicate inputs and redundant gates were disallowed

independent circuits did not merge. Every algorithm, except RandomTwoGates, did

not change the structure of the circuits or introduce any new gates. Figure 3.5 contains

the results for a two gate replacement strategy on a parallel circuit for all of the selec-

tion and replacement algorithms except RandomTwoGatse. The RandomTwoGates

experiments did introduce new matching gates. But, since no change resulted to the

physical layout of the circuits it provided no component hiding characteristics. Figure

3.6 displays the same results for a series circuit. Although these gates were replaced

several times over in both figures, the circuit structure remains identical.

3.10 Adding Color and Shape to each Gate

To visualize the circuit transformations, the graphs generated by the chosen

algorithm incorporate colors for circuit or sub-circuit identification and shapes for

gate operation. These colors and shapes can be easily changed in the source code.

37

Figure 3.5: C-17 Parallel Circuit Maintaining Structure

Figure 3.6: C-17 Series Circuit Maintaining Structure

38

Figure 3.7: Basic Graph of a Circuit

The gate shapes are defined in Table 3.2 and different colors identify original circuits

and sub-circuits and the addition of new circuits or sub-circuits. Figure 3.7 illustrates

the the basic graph created by the algorithm. This graph has no distinguishing colors,

shapes, or labels for each node.

The binary value of the number of defined sub-circuits in the ancestry file pro-

vides unique colors to the graph. A three digit ancestry allows up to 7 colors (8 if

you include (0,0,0)). When determining the color of a gate the ancestry values are

taken from the parents of the new gate, summed, and converted converted to color

values. If the ancestry value component is greater than or equal to one, the new

color component is one. Otherwise, the color component is a zero. For example, if

the parent ancestry values were (4,0,2) and (1,0,2) resulting ancestry value sums to

(5,0,3) resulting in a color value of (1,0,1). This provides the same color for all nodes

with the same ancestor relationships.

Choosing the initial ancestry values limits the color results display ancestry.

First, assume a three component circuit with initial ancestry values of (0,0,1), (0,1,0),

39

Table 3.2: Gate Operation and Matching Shape

Gate Operation Node Shape
AND Rectangle
NAND Hexagon
OR Ellipse
NOR Octagon
XOR Triangle
XNOR Diamond

Table 3.3: Coloring Schemes

Ancestry 1 Ancestry 2 Sum
First Level

001 010 011
001 100 101
010 100 110

Second Level
001 011 011
001 101 101
001 110 111
010 011 011
010 101 111
010 111 111
100 011 111
100 101 101
100 111 111

Third Level
011 101 111
011 110 111
110 101 111

and (1,1,0). With all three combinations of addition the possible results are (0,1,1),

(1,1,1), and (1,1,0). The uniqueness of each gate is not properly represented by a

color if the goal is to identify every level of ancestry. When (0,1,0) and (1,1,0) are

summed, the result for determining color is (1,1,0), which is the assigned color value

for an original sub-circuit. Choosing the initial values of (0,0,1), (0,1,0), and (1,0,0)

will provide correct coloring for the first level, but fails for much of the second level.

Table 3.3 and Figure 3.8 illustrate examples of this. The first level is the possible

combinations of addition for the three original ancestry values. The second level is

40

the possible combinations of one of the original values summed with the results from

the first level. The third level shows the addition combinations of the results from

the first level. By the third level all of the resulting sums are the same. Color values

containing all ones are the nodes with ancestors from every pre-defined component.

Different schemes may allow more children nodes to be colored differently than both

parent nodes before running out of options. With a three sub-circuit ancestry there

can be only 7 colors in the graph (i.e., binary 000 to 111). It is not recommended

to use (0,0,0) since this does nothing under addition and will not result in a color

change for newly introduced nodes. It is possible to use a four or five digit ancestry

scheme while only having 2 or 3 identified sub-circuits. This provides up to 32 colors

to identify sub-circuits. The software currently allows the use of 15 colors, but can

be easily modified. This provides more options but the same problems in Table 3.3

apply.

Figure 3.8: Matching Results for 3 Levels

41

3.11 Component Hiding

To properly describe component hiding the following definitions are provided:

Definition 1. Circuit: A directed, acyclic graph D(V,E) of inputs, logic gates

and outputs where 1) V is the set of nodes of the circuit where each node is ei-

ther an input with an assigned value or a gate with a corresponding Boolean function

f : {0, 1}x{0, 1} → {0, 1}, 2) E is the set of wires that connect nodes, 3) the gate set

G of a circuit is the set of all gate nodes within V , 4) inputs are nodes in the graph

with no fan-in and 5) outputs are distinguished nodes.

Definition 2. Component: Given a gate set G and an input set I of a circuit P

and an integer k > 1, where k is the number of components, a set C of components

{c1,...,ck} partitions G and I into k disjoint sets of inputs and/or gates.

Definition 3. Component Hiding: Given 1) an original circuit P with a gate

set Gand and input set I and 2) a set C which divides G and I into k disjoint

components {c1, c2,, ck}, any functionally equivalent variant P ′ of P with gate set

G′ accomplishes component hiding if and only if, for all gates g ∈ G′, maximal un-

certainty exists regarding the relationship of any gate g to any original component

{c1, c2,, ck}.

Definition 4. Ancestry: Given m number of gates in a circuit, k number of defined

components in a circuit, and a tuple T = {t1, t2, ..., tk−1, tk} assigned to each gate gm

in a circuit, where t describes the composition of gm in terms of the nth component.

Definition 5. Ancestral Entropy: Let P = (pi, ..., pn) be a probability distribution

on the set of N = (1, ..., n) components in a circuit. The entropy of P is the function

H(P) = −
∑

i∈N

pilog2(pi), where N is the number of components in a circuit and

pi is the probability of a gate being from a defined component i. Maximum ancestral

entropy, H(P)max, is achieved when pi = pi+1 = ... = pn−1 = pn. H(P)min is achieved

when pi = 1.

42

There are four cases to consider when discussing component hiding. They are

listed below using Figure 3.9 as an example.

• Case 1. Input from the circuit boundary and output to a component: Compo-

nent A receives the inputs from the circuit boundary and its output is connected

to the internal component B.

• Case 2. Input from a component and output to a component: Internal compo-

nent B receives the inputs from component A and its output is connected to

component C.

• Case 3. Input from a component and output to the circuit boundary: Compo-

nent C receives its inputs from internal component B and provides output to

the circuit boundary.

• Case 4. Input from the circuit boundary and output to the circuit boundary:

Component D receives the inputs from the circuit boundary and provides output

to the circuit boundary.

To measure the level of component hiding, GetAncestry.java uses the log file and

an ancestry file that identifies sub-circuits or sub-components of the initial circuit to

generate ancestry files for every iteration in the experiment. This ancestry information

is used to measure the uncertainty a node in the circuit belongs to any previously

identified component.

3.12 Methodology Summary

The main goals of this research are to define component hiding, compare the

CORGI selection and replacement algorithms, identify obfuscating properties, and

define an attribute that reflects these properties. A baseline circuit is used (i.e.,

C-17 sub-circuits in series and parallel configurations) as input to the six selection

algorithms and an entropy-based calculation is used to define an attribute that reflects

the component hiding properties of each algorithm.

43

Figure 3.9: Component Hiding Cases

The factors studied are six CORGI selection and replacement algorithms; Ran-

domTwoGates, RandomLevelTwoGates, RandomAlgorithm, LargestLevelTwoGates,

FixedLevelTwoGates, and OutputLevelTwoGates. The input to the algorithms are

series and parallel circuits in BENCH format and the output is ancestry files, BENCH

files, entropy files, and colored graph files. These resulting files are evaluated and com-

pared to determine which algorithm creates circuit variants with better component

hiding properties for a given workload.

44

IV. Results

Component hiding is an important operation that can complicate reverse engi-

neering efforts. If sub-circuits are hidden from a reverse engineer he cannot

group logic gates into a higher level model, forcing him to do a black box analysis

of the circuit. The following experiments show how the different CORGI selection

and replacement algorithms perform. Ancestral node entropy, circuit level entropy

and output level entropy values are compared to determine which algorithms provide

better component hiding properties using different types of circuits. This chapter

is divided into the following sections: Section 4.1 discusses three gate replacement

series circuits, Section 4.2 discusses three gate replacement parallel circuits, Section

4.3 describes the results of reducing three and four gate replacement circuits, Section

4.4 and 4.5 discuss the results of the four gate replacement series and parallel circuits

respectively and Section 4.6 discusses validation.

4.1 Three Gate Replacement C-17 Series Circuits

Two series circuit configurations are used to test each of the six algorithms. The

results are compared and an algorithm is chosen that creates the best circuit variants

with obfuscating properties. The operation of each algorithm is explained in Section

2.7.1.1, but is summarized here as well. The two high level series designs used in this

research are illustrated again in Figure 4.1.

The five input series circuit shown in Figure 4.1(a) are a series of three C-17

circuits with shared inputs. This circuit is used in two different experiments for each

algorithm. CORGI selection algorithms often allow a sub-circuit(s) to be completely

replaced by the new gates introduced to the circuit. The removal of a circuit affects

the entropy calculation, and is explained below. This first C-17 sub-circuit in each

case has five inputs and two outputs. Two outputs and three of the initial inputs serve

as inputs to the second sub-circuit. The same holds true for the final C-17 sub-circuit.

The only difference in the two experiments is how the ancestry file is created. Shown

in Table 4.1, Ancestry File A connects all of the inputs to the first C-17 sub-circuit.

45

(a) Shared Inputs (b) Individual
Inputs

Figure 4.1: High Level C-17 Series Circuits
(a) and (b)

The Ancestry File B connects two inputs to the first C-17 sub-circuit, two inputs to

the second C-17 sub-circuit, and one input to the last C-17 sub-circuit. The only

change required in the ancestry file is the assignment of ancestry to the input values.

This circuit is referred to as the five ‘split’ input circuit. These input configurations

are illustrated in Figure 4.2.

The experiments in Sections 4.1.1-4.1.6 select two gates for replacement and

performs a three gate equivalent replacement on the series circuits. Sections 4.2.1-

4.2.6 contains the parallel circuit experiments. The results of these experiments are

summarized in Section 4.1.7 and 4.2.7, respectively.

4.1.1 FixedLevelTwoGates Experiment.

4.1.1.1 Five Inputs Circuit Experiment. The fixed level algorithm

selects the first gate for replacement from a pre-defined level k. The second gate

is either chosen from level k or level k + 1. In this experiment, k is set to level

one resulting in all replacements being made at level one or level two. Level zero

is the output level. These replacements cause gates to be added to the kth level of

the graph [15]. As illustrated in Figure A.1, the graph becomes tall and narrow,

while preserving the upper and lower portions of the graph (i.e., the levels above

46

Table 4.1: C-17 Series Experiments Ancestry Files

Ancestry File A Ancestry File B
#INPUTS #INPUTS
1(1,0,0) 1(1,0,0)
2(1,0,0) 2(1,0,0)
3(1,0,0) 3(0,1,0)
6(1,0,0) 6(0,1,0)
7(1,0,0) 7(0,0,1)

#OUTPUTS #OUTPUTS
32 32
33 33

10(1,0,0) #NAND(1, 3) 10(1,0,0) #NAND(1, 3)
11(1,0,0) #NAND(3, 6) 11(1,0,0) #NAND(3, 6)
19(1,0,0) #NAND(11, 7) 19(1,0,0) #NAND(11, 7)
16(1,0,0) #NAND(2, 11) 16(1,0,0) #NAND(2, 11)
12(1,0,0) #NAND(10, 16) 12(1,0,0) #NAND(10, 16)
13(1,0,0) #NAND(16, 19) 13(1,0,0) #NAND(16, 19)

20(0,1,0) #NAND(12, 3) 20(0,1,0) #NAND(12, 3)
21(0,1,0) #NAND(3, 6) 21(0,1,0) #NAND(3, 6)
29(0,1,0) #NAND(21, 7) 29(0,1,0) #NAND(21, 7)
26(0,1,0) #NAND(13, 21) 26(0,1,0) #NAND(13, 21)
22(0,1,0) #NAND(20, 26) 22(0,1,0) #NAND(20, 26)
23(0,1,0) #NAND(26, 29) 23(0,1,0) #NAND(26, 29)

30(0,0,1) #NAND(22, 3) 30(0,0,1) #NAND(22, 3)
31(0,0,1) #NAND(3, 6) 31(0,0,1) #NAND(3, 6)
39(0,0,1) #NAND(31, 7) 39(0,0,1) #NAND(31, 7)
36(0,0,1) #NAND(23, 31) 36(0,0,1) #NAND(23, 31)
32(0,0,1) #NAND(30, 36) 32(0,0,1) #NAND(30, 36)
33(0,0,1) #NAND(36, 39) 33(0,0,1) #NAND(36, 39)

#end of original gates #end of original gates

47

(a) 5 Input (b) 5 ‘Split’ Input

Figure 4.2: Fixed Level C-17, 5 Input Circuits
(a) and (b)

and below the fixed level and one level higher). Notice the circuit outputs and the

upper portion of the graphs do not change. If the fixed level is selected to be level

zero, this algorithm performs the same function as the output level algorithm. For all

fixed level experiments, the original gates are not replaced when creating the circuit

variants. This can be seen in Figure A.1 as early as iteration 50. The upper portion

of the graph maintains its structure, preserving two of the three original circuits.

Because the fixed level is set to one for this experiment, outputs are never selected

for replacement, guaranteeing they remain part of the original circuit.

Illustrated in Figure A.2(a), the average circuit level ancestral entropy reaches

H(P)max in levels 1 to 309. The entropy values above level 309 represent most of

the original circuit and therefore, have lower entropy values. Because the gates to be

48

replaced are selected in levels one and two, these levels of the graph quickly reach,

or nearly reach H(P)max causing most of the nodes in the 1000th iteration to have

high entropy values. The average output level ancestral entropy in Figure A.2(b)

maintains a zero value because the outputs are never replaced. Of the 1023 nodes 973

have ancestors from all three sub-circuits, 966 of these have an ancestral entropy value

of 1.569 or higher which is 99% of H(P)max. However, much of the original circuit has

not been replaced at all. The orginal circuit has 18 nodes (all with H(P)min value)

while the 1000th iteration has 15 nodes that have a H(P)min value.

4.1.1.2 Five ‘Split’ Inputs Circuit Experiment. This circuit configura-

tion is identical to the five input circuit, except the ancestry file connects the inputs

to each of the sub-circuits. The graphs in Figure A.3 are structurally the same as

the five input graphs. However, the extrusion of gates has a H(P)max = 1, not 1.585

because of the way the ancestry file connects the inputs to each sub-circuit. The

upper rightmost sub-circuit remains unchanged resulting in the new nodes added to

the graph only having two non-zero ancestry values. In other words, each new node

only has ancestors from two of the three original circuits.

Examining Figure A.4, the average circuit level ancestral entropy is .997 or

greater from level one to level 324. This highlights the extrusion of gates and pro-

duces gates with ancestors from two of the original three sub-circuits. The average

output ancestral entropy is still zero because the output nodes are still part of an

original sub-circuit. Of the nodes in the circuit, 97.36% have ancestors from two

of the three subcircuits, while no nodes have ancestors from all three sub-circuits.

The remaining nodes are direct descendents of an original sub-circuit, while 14 of the

original 18 gates remain in the circuit.

4.1.1.3 Eleven Inputs Experiment. In this circuit configuration the

sub-circuit share no inputs but to keep them in series the output of the first circuit

feeds the inputs for the second, and the output of the second circuit feeds the input

of the third circuit. This configuration is shown in Figure A.5(a) clearly isolates each

49

of the sub-circuits. The average circuit level entropy has a maximum value equal to

one because the the uppermost left circuit doesn’t become part of any circuit variant,

resulting in all new gates having a maximum of two non-zero ancestry values. Again,

the output nodes are never modified so the average output ancestral entropy is equal

to zero. Also, 96% of the nodes in the circuit have ancestors from two of the original

sub-circuits, while no nodes have ancestors from all three sub-circuits. At the 1000th

iteration, 15 of the 18 gates still remain in the circuit. These results are similar to

the five ‘split’ input experiment as Figure A.6 displays.

4.1.2 OutputLevelTwoGates. The output level algorithm selects the first

gate for replacement from the output level (i.e., level zero) and the second from

either level zero or level one and makes an equivalent three gate replacement. This

algorithm performs very similar to the fixed level algorithm when the fixed level equals

one, except in this case the output gates are replaced.

4.1.2.1 Five Inputs Circuit Experiments. All new gates introduced to

the circuit are descendants of the bottom most circuit, causing the graphs in Figure

A.7 to become very tall and narrow. The results shown Figure A.8 are nearly identical

to the fixed level experiments, except for the average output ancestral entropy. Here

H(P)max is 1 because all gates introduced have ancestors from the bottommost and

topmost circuits. There are 987 out of 1023 nodes with ancestors from two sub-

circuits, and no nodes with ancestors from all three. As Figure A.7(b) shows, the

upper rightmost circuit contributes ancestry information from only one of the input

nodes. Ancestral entropy values of .85 or higher occur in 986 nodes which is 53.8%

of H(P)max. Again, much of the original circuit has not been replaced. The orginal

circuit has 18 nodes (all with H(P)min value) while the 1000th iteration has 15 nodes

that have a H(P)min value.

4.1.2.2 Five ‘Split’ Inputs Circuit Experiments. In this configuration,

all new gates introduced are descendants of the bottommost circuit. Figure A.9

50

illustrates the introduction of new nodes to the bottom two levels of the circuits. A

total of 15 of 18 original gates remain in the circuit. All new nodes introduced have

an ancestral entropy of H(P)min. The average ancestral entropy for every level, node

and output in the circuit is also H(P)min because all new nodes are descendants from

only one original sub-circuit. The two rightmost sub-circuits in iteration zero are

preserved. Figure A.10 illustrates these results.

4.1.2.3 Eleven Inputs Experiment. This experiments results are the

same as the five ‘split’ input experiment. Levels zero and one both belong to the

bottommost circuit, resulting in new nodes having only one circuit ancestor. Again,

15 of the 18 original nodes remain in the circuit. The two leftmost circuits from

iteration zero are preserved. These results are illustrated in Figures A.11 and A.12.

4.1.3 LargestLevelTwoGates. The largest level algorithm chooses the first

gate from the hierarchical level with the highest number of gates, and the second gate

from the same level or the level above. This selection results in shorter and wider

circuits.

4.1.3.1 Five Inputs Circuit Experiments. In this experiment, most of

the gates are introduced in the middle of the circuit. Figure A.13 shows an increase

in width of the graph, even in the early iterations. This circuit has 71 levels, with an

average ancestral circuit level entropy of .95. There are 39 levels with the ancestral

entropy of 1 or greater. As Figure A.14 shows, the outputs are not replaced so the

they maintain the value of H(P)min. This circuit is much more balanced than the

previous circuits. There are 736 out of 1017 nodes with all three sub-circuit ancestors

and 13 of 18 original gates remaining in the circuit. There are 466 nodes that are

at least 99% of H(P)max while 731 nodes are at least 90% of H(P)max. This is

expected because in early iterations the largest levels contains nodes from all of the

defined sub-circuits, making it more likely for new nodes to have ancestors from all

sub-circuits.

51

4.1.3.2 Five ‘Split’ Inputs Circuit Experiments. In this circuit the

output ancestral entropy maintains the original value because outputs are never re-

placed. The maximum entropy value for experiment is 1 because the right uppermost

circuit in Figure A.15(a) is preserved. Two ancestors are in 776 of 1017 nodes, while

no nodes have ancestor from all three original sub-circuits. The circuit contains 13 of

18 original nodes.

4.1.3.3 Eleven Inputs Experiment. This circuit has 72 levels with an

average circuit level ancestral entropy of .44. Ten of the levels have entropy values of

at least .85, and 17 are at least .8, 679 of 1022 nodes have ancestral entropy values

between .9 and 1, inclusive, 673 nodes have ancestral entropy between .95 and 1, while

446 nodes are greater or equal to .99. One ancestor from an original sub-circuit is

in 323 nodes, 699 have two ancestors, no gates have ancestors from all three original

sub-circuits, and 15 of 18 original circuits remain. Figures A.17 and A.18 illustrate

this.

4.1.4 RandomLevelTwoGates. The random level algorithm selects the first

gate from the circuit in a random, uniform manner. The second gate is selected

either from same level, the level above, or the level below the first selected gate.

Although this algorithm is more random than the aforementioned algorithms and is

likely to produce better component hiding properties, it limits the number of possible

replacement sub-circuits because both gates selected for replacement are from adjacent

or equivalent levels.

4.1.4.1 Five Inputs Circuit Experiments. The resulting circuit has 129

levels; 70 are above the H(P)min value of zero with respective ancestral averages of

.39 and .73. At the 500th iteration the average output ancestral entropy is 1.164. The

circuit contains only 2 of 23 original gates. There are a total of 511 nodes in the

circuit and 340 have one circuit ancestor, 108 have two ancestors, and 63 have three

52

ancestors. Only seven nodes are 99% of H(P)max, and 51 nodes are 90% of H(P)max

(1.585). Figures A.19 and A.20 illustrate this.

4.1.4.2 Five ‘Split’ Inputs Circuit Experiments. This configuration

introduces a sub-graph at 6th iteration and removes this sub-graph from the graph

at the 79th iteration. This is not an original circuit being removed. There are the

same 129 levels, since this is the same circuit as the five input experiment, with 113

above the H(P)min value of zero. The total average ancestral entropy average is .64

and the average for nodes with values above zero is .73, the same as in the five input

circuit. At the 500th iteration the average output ancestral entropy is .996. There

are a total of 511 nodes in the circuit and 197 have one original circuit ancestor, 257

have two ancestors, and 57 have ancestors from three original sub-circuits. Only two

of the original 18 gates remain in the circuit as Figures A.21 and A.22 show.

4.1.4.3 Eleven Inputs Experiment. There are 207 levels with 64 levels

at H(P)min and 92 levels greater than zero or equal to one in this circuit. 52 nodes

have entropy values greater than one. The average ancestral entropy for each level in

the circuit is .66. The average for the nodes greater than zero is .95, meaning that on

average every node has ancestors from two out of three circuits. At the 500th iteration

the average output ancestral entropy is 1.56 which is 98.4% H(P)max. At the 1000th

iteration it is 1.468, which is 92.6% of H(P)max. All original gates in the circuit have

been replaced at least once. Figures A.23 and A.24 illustrates this.

4.1.5 RandomTwoGates. The random two gate selection algorithm chooses

the first gate in a random, uniform manner. The second gate is chosen in the same

way. This algorithm is truly the most random and is expected to produce the best

component hiding properties for each of the circuit variants.

4.1.5.1 Five Inputs Circuit Experiments. This circuit, because of how

the ancestry file is built with the all inputs connected to one sub-circuit, has two

53

of the original circuits replaced with new gates at iteration 66 and 72. There are

449 levels with an average ancestral entropy of .169. There are only 91 levels with

ancestral entropy values greater than zero because the upper rightmost circuit in

Figure A.25(a) dominates the graph as both of the other original circuits get removed

from the graph in early iterations. Figure A.25(e) shows only one remaining node

from the original bottommost circuit in Figure A.25(a). At the 1000th iteration the

average ancestral entropy at the outputs is 1.516, 882 gates have only one ancestor

from an original circuit, 63 have two ancestors, and 74 have three. All original gates

are replaced at least once in this circuit.

4.1.5.2 Five ‘Split’ Inputs Circuit Experiments. As in the five input

circuit, there are 449 levels with an average ancestral entropy per level of 1.126. There

are 417 levels that have a greater than zero entropy value. Of these, the average is

1.215. There are 285 levels that have an entropy value greater than one and their

average is 1.446. At the 1000th iteration the output ancestral entropy average is 1.559.

At the 710th iteration this average is 1.539. There are 177 gates with ancestors from

only one of the original circuits, 244 with ancestors from two and 598 gates with

ancestors from three. There are 150 gates with an ancestral entropy value of 99% of

H(P)max and there are 569 gates with an ancestral entropy value of 90% H(P)max.

All original gates have been replaced at least once. Figures A.27 and A.28 illustrate

this.

4.1.5.3 Eleven Inputs Experiment. In this circuit there are 401 levels

with an average ancestral entropy per level of .858, 345 of the levels are greater than

zero, while 152 levels are at least one. The average output ancestral entropy at the

1000th iteration is 1.516 and first reaches this value at the 561st iteration. There are

257 gates with ancestors from only one original circuit, 463 with ancestors from two

circuits, and 304 with ancestors from three circuits. There are 15, 191, and 270 nodes

with ancestral entropy values of 99%, 95%, and 90% of H(P)max respectively. All

original gates have been replaced at least once as Figures A.29 and A.30 show.

54

4.1.6 RandomAlgorithm. The random algorithm chooses one of the pre-

viously described algorithms at random and performs its function. The algorithms

can be weighted programmatically but are equally weighted herein. This algorithm

is not expected perform as well as the random two gate selection because all of the

algorithms, except for random two gate, are deterministic in nature. Furthermore,

because the fixed level in the FixedLevelTwoGates algorithm is set to one, it behaves

similarly to the OutputLevelTwoGates algorithm.

4.1.6.1 Five Inputs Circuit Experiments. In this circuit two of the

three original circuits are removed at iteration 113 and 176. There are 355 levels in

this circuit. The average ancestral entropy for all levels is 1.136. 102 of the levels are

H(P)max, while 227 are at least equal to one (two ancestors). The output ancestral

entropy is 1.58 (nearly H(P)max) and reaches this value at the 80th iteration. There

are 254 gates with one ancestor, 225 with two ancestors, and 522 with three ancestors.

There are 405 nodes that are at least 99% of H(P)max, 440 that are at least 95% of

H(P)max, and 492 that are at least 90% of H(P)max. The average node ancestral

entropy is 1.023. All original gates in the circuit are replaced at least once. Figures

A.31 and A.32 illustrate this.

4.1.6.2 Five ‘Split’ Inputs Circuit Experiments. The five ‘split’ input

circuit has 355 levels with 102 of them equivalent to H(P)max, 231 of the levels have

an entropy value of at least one. The average output ancestral entropy value at the

1000th iteration is 1.58, and is 1.56 at the 500th iteration. There are 116 gates with

one ancestor, 524 with two ancestors, and 467 with three ancestors. There are 152

nodes that are at least 99% of H(P)max, 339 that are at least 95% of H(P)max, and

429 that are at least 90% of H(P)max. All original gates in the the circuit have been

replaced at least once. Figures A.33 and A.34 illustrate this.

4.1.6.3 Eleven Inputs Experiment. This circuit has 391 levels with an

average level ancestral entropy value of 1.264. 374 of the levels are at least zero, and

55

299 are at least one. The output ancestral entropy reaches 1.58 at the 409th iteration

and is H(P)max at the 1000th iteration. There are 131 gates with one circuit ancestor,

194 gates with two ancestors, and 687 gates with three ancestors. All original gates

in the circuit have been replaced at least once. Figures A.35 and A.36 illustrate this.

4.1.7 Series Circuits Results Summary. These results illustrate the func-

tion performed by each algorithm. Since the component hiding properties are of in-

terest, any further examination of the FixedLevelTwoGates, LargestLevelTwoGates

and OutputLevelTwoGates algorithms is excluded. The FixedLevelTwoGates and

OutputLevelTwoGates algorithms extrude new gates from the bottom of the circuit

while many of the components to hide are left untouched. The OutputLevelTwoGates

algorithm can produce the full range of ancestral entropy values at the outputs based

on how the sub-circuits are defined, while affecting few or none of the original sub-

circuits. The LargestLevelTwoGates algorithm introduces gates to the largest level,

while making few changes to other parts of the circuit. Figure 4.3-4.5 show the con-

fidence intervals for the results of each algorithm and circuit configuration.

The results of RandomLevelTwoGates, RandomTwoGates and RandomAlgo-

rithm are similar and don’t focus circuit transformations on one part of the circuit.

These algorithms replace most or all of the original gates in the circuits at least

once, which is necessary to hide circuit components. The confidence intervals for

the percentage of original gates remaining in the circuit is illustrated in Figure 4.6.

The results of the RandomAlgorithm experiments are not significantly different than

the RandomTwoGates and RandomLevelTwoGates results for the five input average

output level ancestral entropy, the 11 input average output and circuit level ances-

tral entropy and for the five ‘split’ input node and circuit level average ancestral

entropy. In the four remaining experiments the results are significantly different than

RandomTwoGates and RandomLevelTwoGates and the entropy values are higher.

A 2-Sample t test is performed comparing RandomAlgorithm against RandomT-

woGates and RandomLevelTwoGates. Resulting boxplots are shown in Figures 4.7-

56

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.3: Average Ancestral Entropy Intervals for 5 Input Series Circuit (a), (b)
and (c)

57

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.4: Average Ancestral Entropy Intervals for 5 Split Input Series Circuit (a),
(b) and (c)

58

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.5: Average Ancestral Entropy Intervals for 11 Input Series Circuit (a), (b)
and (c)

59

(a) Percentage of Original gates in 5 Input Circuits

(b) Percentage of Original gates in 5 Split Input Cir-
cuits

(c) Percentage of Original gates in 11 Input Circuits

Figure 4.6: Percentage of Original Gates in Series Circuits (a), (b) and (c)

60

(a) Boxplot for 5 Input Circuits

(b) Boxplot for 5 Split Input Circuits

(c) Boxplot for 11 Input Circuits

Figure 4.7: Boxplot from 2-Sample t Test of Average Output Ancestral Entropy with
Random Algorithms on Series Circuits (a), (b) and (c)

61

(a) Boxplot for 5 Input Circuits

(b) Boxplot for 5 Split Input Circuits

(c) Boxplot for 11 Input Circuits

Figure 4.8: Boxplot from 2-Sample t Test of Average Node Ancestral Entropy with
Random Algorithms on Series Circuits (a), (b) and (c)

62

(a) Boxplot for 5 Input Circuits

(b) Boxplot for 5 Split Input Circuits

(c) Boxplot for 11 Input Circuits

Figure 4.9: Boxplot from 2-Sample t Test of Average Level Ancestral Entropy with
Random Algorithms on Series Circuits (a), (b) and (c)

63

Table 4.2: P-Values from 2-Sample t Test comparing RandomAlgorithm against Ran-
domTwoGates and RandomLevelTwoGates Using Series Circuits

Entropy 5 Input 5 ‘Split’ Input 11 Input
Output Level .137 .273 .136
Node .005 .595 .002
Circuit Level .013 .459 0.000

4.9. Table 4.2 contains the p values from the 2-Sample t test. RandomAlgorithm

performs significantly better than RandomTwoGates and RandomLevelTwoGates in

terms of node and circuit level ancestral entropy for the 5 and 11 Input experiments.

4.2 Three Gate Replacement C-17 Parallel Circuits

The parallel C-17 circuits show how independent or geographically separated

circuits are hidden by taking advantage of circuit merging during the creation of the

circuit variants. Figure 4.10 shows the high level parallel circuit configurations. The

algorithms perform the same function as described earlier.

(a) Independent Inputs (b) Shared Inputs

Figure 4.10: C-17 Parallel Circuits
(a) and (b)

The shared input circuit in Figure 4.10(b) is composed of three C-17 sub-circuits,

all using the same five inputs. The outputs of each sub-circuit are routed through a

series of AND gates providing two circuit outputs.

64

The parallel circuits are three independent C-17 circuits with independent in-

puts. This configuration is chosen because these circuits represent like circuits that

are unrelated geographically separated circuits. Figure 4.10(a) illustrates this circuit

configuration.

4.2.1 FixedLevelRandomTwoGates.

4.2.1.1 Shared Inputs. The final circuit variant has 253 levels. The

average ancestral entropy for each level is 1.86. Three levels have an average ancestral

entropy value of zero (all original gates), 11 levels have an average number of ancestors

from one original sub-circuit, 10 from two sub-circuits, and 229 levels from three sub-

circuits. The average output ancestral entropy is zero because the fixed level is set

to one, so the outputs are never selected for replacement. There are 33 nodes in the

circuit with only one ancestor from an original sub-circuit, 44 with two ancestors, 69

with three ancestors, and 881 with four ancestors. This information may be misleading

because much of the original circuit is retained, but all new gates with four ancestors

are extruded from the bottom of the circuit. The average node ancestral entropy is

1.99, while the H(P)max value for this four component circuit equals 2, 830 nodes have

an ancestral entropy of at least 99% of H(P)max, while 881 nodes have an ancestral

entropy of at least 95% of H(P)max. The circuit contains 16 of the 22 original gates.

These results are illustrated in Figure B.6.

4.2.1.2 Individual Inputs. In this circuit there are 143 levels. The

average ancestral entropy for each level is 1.376. Six levels have an entropy value of

zero (one ancestor), 14 levels have an average ancestral entropy value between zero

and one (ancestry values from two sub-circuits), while 124 have an entropy value

greater than one (ancestry values from three sub-circuits). There are 89 nodes with

only one sub-circuit ancestor, 45 nodes with two ancestors and 899 nodes with three

ancestors. 839 nodes have an ancestral entropy of at least 99% of H(P)max, while

892 nodes have an ancestral entropy of at least 95% of H(P)max and 898 nodes have

65

an ancestral entropy of at least 90% of H(P)max. The circuit contains 11 of the 18

original gates. These results are illustrated in Figures B.3 and B.4.

4.2.2 OutputLevelRandomTwoGates.

4.2.2.1 Shared Inputs. There are 143 levels in this circuit. The average

level ancestral entropy for all levels is 1.525, while H(P)max = 2 for this circuit. Four

levels have an entropy value of zero, 18 have an entropy value of one, and 451 have an

entropy value between one and 1.585 which is the H(P)max value for a 3 component

circuit. The output ancestral entropy average is 1.585 at the 1000th iteration, and

reaches it at the 868th iteration. There are 29 gates in the circuit with only one sub-

circuit ancestor, 31 with two ancestors and 967 with three ancestors. There are no

nodes with all four ancestors. Because the gates selected for replacement come from

the bottom two levels of the graph, 18 of the 22 original gates remain in the circuit.

These results are illustrated in Figures B.5 and B.6.

4.2.2.2 Individual Inputs. This circuit has 186 levels with an average

ancestral entropy for all levels of 1.42. There are 7 levels with an ancestral entropy

value equal to zero, 11 levels with a value of one, and 168 levels with an entropy value

greater than one. The average output ancestral entropy reaches H(P)max at the

640th iteration. There are 72 nodes with one sub-circuit ancestor, 43 nodes with two

ancestors and 918 nodes with three ancestors, 863 nodes have an ancestral entropy of

at least 99% of H(P)max, while 917 nodes have an ancestral entropy of at least 95% of

H(P)max and 918 nodes have an ancestral entropy of at least 90% of H(P)max. The

circuit contains 12 of the 18 original gates. These results are illustrated in Figures

B.7 and B.8.

4.2.3 LargestLevelRandomTwoGates.

4.2.3.1 Shared Inputs. This circuit has 63 levels with an average

ancestral entropy for all levels of .814. There are 7 levels with an ancestral entropy

66

value of zero, 27 levels with a value between zero and one, and 29 levels greater than

one. The output ancestral entropy equals zero because the output gates are never

replaced. There are 220 nodes with only one sub-circuit ancestor, 338 nodes with two

ancestors, and 465 nodes with three ancestors. Although H(P)max for this circuit is 2,

the maximum entropy value that can be reached is 1.585 because there are no nodes

in this circuit containing ancestors from all original sub-circuits. 15 of 22 original

gates remain in the circuit. These results are illustrated in Figures B.9 and B.10.

4.2.3.2 Individual Inputs. There are 64 levels in this circuit with an

average ancestral entropy for all levels of 1.025. There are four levels with an ancestral

entropy value of zero, 25 levels with a value between zero and one, and 35 levels with

a value greater than one. Again, the output ancestral entropy equals zero because the

output gates are never replaced, 404 nodes have an ancestral entropy of at least 99%

of H(P)max, while 620 nodes have an ancestral entropy of at least 95% of H(P)max

and 624 nodes have an ancestral entropy of at least 90% of H(P)max; 10 of 18 original

gates remain in the circuits. These results are illustrated in Figures B.11 and B.12.

4.2.4 RandomLevelTwoGates.

4.2.4.1 Shared Inputs. There are 227 levels in this circuit with an

average ancestral entropy for all levels of .989. There are 17 levels with an ances-

tral entropy value of zero (only one sub-circuit ancestor), 111 levels with a value

between zero and one (two sub-circuit ancestors), 59 levels with a value between 1

and 1.585 (three sub-circuit ancestors), and 40 levels with a value greater than 1.585

(four sub-circuit ancestors). The average output ancestral entropy is 1.96 after the

513th iteration (98% of H(P)max). There are 293 nodes with one sub-circuit ancestor,

336 nodes with two ancestors, 221 nodes with three ancestors and 153 nodes with

four ancestors. The average node ancestral entropy is .96; 63 nodes have an ancestral

entropy of at least 99% of H(P)max, while 142 nodes have an ancestral entropy of at

least 95% of H(P)max and 153 nodes have an ancestral entropy of at least 90% of

67

H(P)max (all nodes with four ancestors have generally evenly balanced ancestry val-

ues). Only 1 of 22 original gates remains in the circuits. These results are illustrated

in Figures B.13 and B.14.

4.2.4.2 Individual Inputs. There are 188 levels with an average ances-

tral entropy for all levels of .73. There are 13 levels with an ancestral entropy value of

zero, 139 level with a value between zero and one, and 36 levels with a value greater

than one. The average output ancestral entropy is .9 after iteration 811 (56.7% of

H(P)max). There are 333 nodes with one ancestor, 430 nodes with two ancestors and

253 nodes with three ancestors. The average node ancestral entropy is .77. There

are 73 nodes with an ancestral entropy of at least 99% of H(P)max, while 176 nodes

have an ancestral entropy of at least 95% of H(P)max and 232 nodes have an ancestral

entropy of at least 90% of H(P)max. Only 1 of 18 original gates remains in the circuit.

These results are illustrated in Figures B.15 and B.16.

4.2.5 RandomTwoGates.

4.2.5.1 Shared Inputs. There are 355 levels with an average ancestral

entropy for all levels of .77. There are 56 levels with an ancestral entropy value of

zero, 202 levels with a value between zero and one, 90 levels with a value between

1 and 1.585 and 7 with a value greater than 1.585. The average output ancestral

entropy is 1.774 after the 875th iteration (88.5% of H(P)max). There are 384 nodes

with one sub-circuit ancestor, 407 nodes with two ancestors, 222 nodes with three

ancestors and 11 nodes with four ancestors. The average node ancestral entropy is

.725. No nodes have an ancestral entropy of at least 99% of H(P)max, while 11 nodes

have an ancestral entropy of at least 95% of H(P)max. All original gates in the circuit

have been replaced at least once. These results are illustrated in Figures B.17 and

B.18.

68

4.2.5.2 Individual Inputs. There are 344 levels with an average an-

cestral entropy for all levels of .822. There are 25 levels with an ancestral entropy

value of zero, 218 levels with a value between zero and one and 101 levels with a

value greater than one. The average output ancestral entropy is 1.34 after the 991st

iteration (84.5% of H(P)max). There are 321 nodes with one sub-circuit ancestor,

394 nodes with two ancestors and 313 nodes with three ancestors. The average node

ancestral entropy is .81. There are 66 nodes with an ancestral entropy of at least 99%

of H(P)max, while 214 nodes have an ancestral entropy of at least 95% of H(P)max

and 263 nodes have an ancestral entropy of at least 90% of H(P)max. All original

gates have been replaced at least once. These results are illustrated in Figures B.19

and B.20.

4.2.6 RandomAlgorithm.

4.2.6.1 Shared Inputs. In this circuit there are 282 levels with an

average ancestral entropy for all levels of 1.21. There are 42 levels with an ancestral

entropy value of zero, 74 levels with a value between zero and one, 39 levels with

a value between 1 and 1.585 and 127 with a value greater than 1.585. The average

output ancestral entropy is 1.99 after iteration 875 (99.5% of H(P)max). There are

324 nodes with one sub-circuit ancestor, 141 nodes with two ancestors, 270 nodes

with three ancestors and 271 nodes with four ancestors. The average node ancestral

entropy is 1.05. 108 nodes have an ancestral entropy of at least 99% of H(P)max,

while 258 nodes have an ancestral entropy of at least 95% of H(P)max and 271 nodes

have an ancestral entropy at least 90% of H(P)max. All original gates in the circuit

have been replaced at least once. These results are illustrated in Figures B.21 and

B.22.

4.2.6.2 Individual Inputs. This circuit has 251 levels with an average

ancestral entropy for all levels of .905. There are 32 levels with an ancestral entropy

value of zero, 106 levels with a value between zero and one, and 113 levels with a

69

value greater than one. The average output ancestral entropy is 1.58 after iteration

991 (99.7% of H(P)max). There are 259 nodes with one ancestor, 243 nodes with two

ancestors and 528 nodes with three ancestors. The average node ancestral entropy

is .997. 219 nodes have an ancestral entropy of at least 99% of H(P)max, while 391

nodes have an ancestral entropy of at least 95% of H(P)max and 451 nodes have an

ancestral entropy of at least 90% of H(P)max. All original gates in the circuit have

been replaced at least once. These results are illustrated in Figures B.23 and B.24.

4.2.7 Parallel Circuits Results Summary. These parallel circuit results il-

lustrate the functions performed by each algorithm. As with the series circuits the

component hiding properties are of greatest interest and any further examination

of the FixedLevelTwoGates, LargestLevelTwoGates and OutputLevelTwoGates algo-

rithms is excluded. Figure 4.11-4.12 illustrate the confidence intervals for the result

of each algorithm and circuit configuration.

These results are similar to the results in the series experiments. Random-

LevelTwoGates, RandomTwoGates and RandomAlgorithm, provide similar results

and don’t focus circuit transformations only one part of the circuit. In all three

experiments, RandomLevelTwoGates replaces all original nodes but one, while Ran-

domTwoGates and RandomAlgorithm replace all original nodes in the circuit. This

is a necessary attribute if a circuit is to have any component hiding properties. The

confidence intervals for the percentage of original gates remaining in the circuit is

illustrated in Figure 4.13.

A 2-Sample t test is performed comparing RandomAlgorithm to RandomLevelT-

woGates and RandomTwoGates. The resulting boxplots are shown in Figures 4.14-

4.16. Table 4.3 contains the p values from the 2-Sample t test. RandomAlgorithm is

significantly different than RandomLevelTwoGates and RandomTwoGates in terms

of circuit level entropy using the shared input circuit and in terms of output level

entropy using the individual input circuit. The shared input node entropy p value of

70

Table 4.3: P-Values from 2-Sample t Test comparing RandomAlgorithm against Ran-
domTwoGates and RandomLevelTwoGates Using Parallel Circuits

Entropy Shared Input Individual Input
Output Level .267 .002
Node .060 .079
Circuit Level .019 .500

.060 is close to being different than the others, and more experiments are needed to

determine if this is better.

4.3 Three and Four Gate Replacement Circuit Reduction

Allowing redundant and symmetric gates as replacements causes many buffers

or constant output gates to be inserted into the circuit. The initial assumption is the

insertion of these buffers allows better circuit transformations in future experiment

iterations. However, this is not the case. In [9], Kim shows using a circuit reduction

algorithm and three gate replacement circuits that allow redundant and symmetric

gates can be nearly reduced back to the original circuit configuration. Figure 4.17,

shows a circuit variant after 1000 iterations using the RandomAlgorithm algorithm.

The original circuit contains 18 gates and the variant contains 1096 gates. Figure

4.18, illustrates the circuit variant after being reduced. This circuit contains only 123

gates. His results show performing fewer iterations to create the circuit variant allows

circuits to be reduced even closer to the original.

However, reducing circuit variants created with a two gate selection and four

gate replacement were unsuccessful. Figure 4.19 shows a circuit variant at the 1000th

iteration. Figure 4.20 illustrates the reduced circuit. The gate count in the original is

1096 gates, while the reduced version has 496. When using a two gate selection and

a four gate replacement it is not necessary to allow redundant or symmetric gates to

cause independent circuits to merge, resulting in a circuit that is not as easily reduced.

The next section examines the entropy properties of the algorithms when performing

four gate replacements.

71

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.11: Average Ancestral Entropy Intervals for Shared Input Parallel Circuit
(a), (b) and (c)

72

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.12: Average Ancestral Entropy Intervals for Individual Input Parallel Circuit
(a), (b) and (c)

73

(a) Percentage of Original gates in Shared Input Circuits

(b) Percentage of Original gates in Individual Input Circuits

Figure 4.13: Percentage of Original Gates in Parallel Circuits (a) and (b)

74

(a) Boxplot for Shared Input Parallel Circuits

(b) Boxplot for Individual Input Parallel Circuits

Figure 4.14: Boxplot from 2-Sample t Test of Average Output Ancestral Entropy with
Random Algorithms on Parallel Circuits (a) and (b)

75

(a) Boxplot for Shared Input Parallel Circuits

(b) Boxplot for Individual Input Parallel Circuits

Figure 4.15: Boxplot from 2-Sample t Test of Average Output Ancestral Entropy with
Random Algorithms on Parallel Circuits (a) and (b)

76

(a) Boxplot for Shared Input Parallel Circuits

(b) Boxplot for Individual Input Parallel Circuits

Figure 4.16: Boxplot from 2-Sample t Test of Average Output Ancestral Entropy with
Random Algorithms on Parallel Circuits (a) and (b)

77

Figure 4.17: 3 Gate Replacement C-17 Circuit Variant at 1000 iterations

Figure 4.18: 3 Gate Replacement C-17 Circuit Reduced

78

Figure 4.19: 4 Gate Replacement C-17 Circuit Variant at 1000 iterations

79

Figure 4.20: 4 Gate Replacement C-17 Circuit Reduced

80

4.4 Four Gate Replacement C-17 Series Circuits

The two gate selection with a four gate replacement experiments produce similar

entropy results as the three gate replacement experiments. This section illustrates the

confidence intervals and the boxplots for series and parallel four gate replacement cir-

cuits. The series circuits used here are the same circuits used in the three gate replace-

ment experiments. Four gate replacements are evaluated redundant and dual input

gates are not allowed to be introduced into the circuit. Since the FixedLevelTwoGate,

OutputLevelTwoGate and the LargestLevelTwoGate algorithms don’t remove many

of the of original gates of a circuit, they are not discussed here.

Comparing the four gate replacement results in Appendix C with the three gate

replacements in Appendix A, the four gate replacement experiments generally have

higher ancestral entropy results for the RandomLevelTwoGates, RandomTwoGates

and RandomAlgorithm experiments. These results are displayed in Tables 4.4-4.6.

The average ancestral entropy intervals and percentage for original gates for

each experiment are shown in Figures 4.21-4.24. These figures illustrate the aver-

age ancestral entropy for RandomAlgorithm is either greater or the same as Ran-

domTwoGates and RandomLevelTwoGates. In every experiment RandomAlgorithm

replaces all original gates in the circuit.

Boxplots from the 2-Sample t test comparing RandomAlgorithm against Ran-

domLevelTwoGates and RandomTwoGates are displayed in Figures 4.25-4.27. Table

4.7 contains the p values from the 2-Sample t test. RandomAlgorithm does not per-

form differently than RandomTwoGates and RandomLevelTwoGates for any four gate

replacement series experiment.

4.5 Four Gate Replacement C-17 Parallel Circuits

Tables 4.8-4.10 illustrate the relationship between the three and four gate re-

placement parallel circuits. From this, the RandomAlgorithm four gate replacement

experiments generally produce higher entropy values than its three gate counter part.

81

Table 4.4: RandomLevelTwoGates 3 and 4 Gate Replacement Comparison, Series
Circuits

Average Ancestral Entropy Gates with
Inputs OutputLevel Circuit Level Node 3 Ancestors

3 5 1.18 .393 .36 63
5 ‘Split’ 1 .64 .633 57
11 1.584 .66 .71 150

4 5 1.547 .6844 .7796 228
5 ‘Split’ 1.4785 1.135 1.168 400
11 .97 .9132 .923 131

Table 4.5: RandomTwoGates 3 and 4 Gate Replacement Comparison, Series Circuits

Average Ancestral Entropy Gates with
Inputs OutputLevel Circuit Level Node 3 Ancestors

3 5 1.516 .169 .1567 63
5 ‘Split’ 1.56 1.126 1.118 598
11 1.516 .858 .858 304

4 5 1.501 .533 .495 11
5 ‘Split’ 1.541 1.122 1.083 338
11 1.584 1.17 .1.155 365

Table 4.6: RandomAlgorithm 3 and 4 Gate Replacement Comparison, Series Circuits

Average Ancestral Entropy Gates with
Inputs OutputLevel Circuit Level Node 3 Ancestors

3 5 1.585 1.356 1.024 522
5 ‘Split’ 1.581 1.585 1.107 467
11 1.584 1.265 1.227 687

4 5 1.578 .849 .869 281
5 ‘Split’ 1 1.056 1.057 209
11 1 .939 .994 176

Table 4.7: P-Values from 2-Sample t Test comparing RandomAlgorithm against Ran-
domTwoGates and RandomLevelTwoGates Using Series Circuits with a 4
Gate Replacement

Entropy 5 Input 5 ‘Split’ Input 11 Input
Output Level .316 .793 .715
Node .181 .343 .844
Circuit Level .085 .548 .485

82

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.21: Average Ancestral Entropy Intervals for 5 Input Series Circuit with a 4
Gate Replacement (a), (b) and (c)

83

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.22: Average Ancestral Entropy Intervals for 5 ‘Split’ Input Series Circuit
with a 4 Gate Replacement (a), (b) and (c)

84

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.23: Average Ancestral Entropy Intervals for 11 Input Series Circuit with a
4 Gate Replacement (a), (b) and (c)

85

(a) Percentage of Original gates in 5 Input Circuits with a
4 Gate Replacement

(b) Percentage of Original gates in 5 ‘Split’ Input Circuits

(c) Percentage of Original gates in 11 Input Circuits

Figure 4.24: Percentage of Original Gates in Series Circuits with a 4 Gate Replace-
ment (a), (b) and (c)

86

(a) Boxplot for 5 Input Series Circuits

(b) Boxplot for 5 Split Input Series Circuits

(c) Boxplot for 11 Input Series Circuits

Figure 4.25: Boxplot from 2-Sample t Test of Average Output Ancestral Entropy with
Random Algorithms on Series Circuits with a 4 Gate Replacement (a),
(b) and (c)

87

(a) Boxplot for 5 Input Series Circuits

(b) Boxplot for 5 Split Input Series Circuits

(c) Boxplot for 11 Input Series Circuits

Figure 4.26: Boxplot from 2-Sample t Test of Average Node Ancestral Entropy with
Random Algorithms on Series Circuits with a 4 Gate Replacement (a),
(b) and (c)

88

(a) Boxplot for 5 Input Series Circuits

(b) Boxplot for 5 Split Input Series Circuits

(c) Boxplot for 11 Input Series Circuits

Figure 4.27: Boxplot from 2-Sample t Test of AverageLevel Ancestral Entropy with
Random Algorithms on Series Circuits with a 4 Gate Replacement (a),
(b) and (c)

89

Comparing the four gate replacement charts in Appendix C with the three gate re-

placement charts in Appendix B it appears the random algorithm four gate replace-

ment produces higher ancestral entropy than the three gate replacement experiments.

Table 4.11 contains the p values from the 2-Sample t test comparing RandomA-

lgorithm against RandomTwoGates and RandomLevelTwoGates. RandomAlgorithm

is significantly different than the other two algorithms in 4 of the 6 values.

Table 4.8: RandomLevelTwoGates 3 and 4 Gate Replacement Comparison, Parallel
Circuits

Average Ancestral Entropy Gates with
Inputs OutputLevel Circuit Level Node Max # Ancestors

3 Shared 1.9635 .9893 .9647 153
Individual .9032 .7322 .7788 253

4 Shared .9685 .996 1.049 87
Individual .5715 .8584 .8633 54

Table 4.9: RandomTwoGates 3 and 4 Gate Replacement Comparison, Parallel Cir-
cuits

Average Ancestral Entropy Gates with
Inputs OutputLevel Circuit Level Node Max # Ancestors

3 Shared 1.344 .8222 .8128 313
Individual 1.774 .7736 .725 11

4 Shared 1.684 .5257 .5536 3
Individual 1.0383 1.233 1.2185 418

Table 4.10: RandomAlgorithm 3 and 4 Gate Replacement Comparison, Parallel Cir-
cuits

Average Ancestral Entropy Gates with
Inputs OutputLevel Circuit Level Node Max # Ancestors

3 Shared 1.9932 1.206 1.0536 271
Individual 1.5814 .9046 .9974 528

4 Shared 1.999 1.0353 .9676 203
Individual 1.568 1.0659 1.1215 373

90

Table 4.11: P-Values from 2-Sample t Test comparing RandomAlgorithm against
RandomTwoGates and RandomLevelTwoGates Using Parallel Circuits
with a 4 Gate Replacement

Entropy Shared Input Individual Input
Output Level .028 .003
Node .001 .704
Circuit Level .001 .443

91

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.28: Average Ancestral Entropy Intervals for Shared Input Parallel Circuit
with a 4 Gate Replacement (a), (b) and (c)

92

(a) Output Ancestral Entropy Results

(b) Node Ancestral Entropy Results

(c) Circuit Level Ancestral Entropy Results

Figure 4.29: Average Ancestral Entropy Intervals for Individual Input Parallel Circuit
with a 4 Gate Replacement (a), (b) and (c)

93

(a) Boxplot for Shared Input Parallel Circuits

(b) Boxplot for Individual Input Parallel Circuits

Figure 4.30: Boxplotfrom 2-Sample t Test of Average Output Ancestral Entropy with
Random Algorithms on Four Gate Replacement Parallel Circuits (a) and
(b)

94

(a) Boxplot for Shared Input Parallel Circuits

(b) Boxplot for Individual Input Parallel Circuits

Figure 4.31: Boxplot from 2-Sample t Test of Average Node Ancestral Entropy with
Random Algorithms on Four Gate Replacement Parallel Circuits (a) and
(b)

95

(a) Boxplot for Shared Input Parallel Circuits

(b) Boxplot for Individual Input Parallel Circuits

Figure 4.32: Boxplot from 2-Sample t Test of Average Level Ancestral Entropy with
Random Algorithms on Four Gate Replacement Parallel Circuits (a) and
(b)

96

Table 4.12: Reduction Results

Iteration: 300 100 300 100
RandomAlgorithm H(P) Gate Reduction(original → reduced)
2-4 Duplicate and Redundant Gates
Series .641 .646 617→175 218→61
Parallel .78 .32 611→101 218→32
2-4, No Duplicate or Redundant Gates
Series .87 .67 614→473 218→168
Parallel 1.12 .71 618→414 218→145

4.6 Validation

An immediate independent validation tool is Kim’s [9] reduction software. This

reduction tool was designed knowing how CORGI generates gate replacements. The

expectation is circuits with higher ancestral entropy will reduce less than circuits with

low ancestral entropy. Also, given a circuit with independent components (i.e., the

independent input parallel circuit) and a circuit variant that reduces to independent

components the ancestral entropy should be less than the ancestral entropy of a circuit

that does not reduce to independent components.

Table 4.12 displays the results of reduction on the two series and parallel cir-

cuit variants created using RandomAlgorithm with a two gate selection and a four

gate replacement. Circuits with higher entropy do reduce less. Both the 100 and

300 iteration series circuit allowing duplicate inputs and redundant gates have a 72%

reduction and a 23% reduction when they are not allowed. Both the 100 and 300 iter-

ation parallel circuit allowing duplicate inputs and redundant gates have a reduction

of approximately 85%. When duplicate inputs and redundant gates are not allowed

there is only an approximate reduction of 33%. This supports the expectation that

circuits with higher ancestral entropy reduce less.

Circuits also should require less iterations to be performed before the reducer

fails to separate the circuit into independent components. Starting with the circuit in

Figure 4.33 several circuit variants are created allowing duplicate inputs and redun-

dant gates. As displayed in Figures 4.34 and 4.35, at the 19th iteration of creating

97

the variant (H(P) = .0247) the circuit is reduced to three independent components

and at the 28th iteration (H(P) = .078) the reducer cannot separate the variant into

multiple independent components. When disallowing duplicate inputs and redundant

gates the reducer separates the 18th iteration (H(P) = .178) into three independent

components and cannot separate it after the 24th iteration (H(P) = .212) and are

illustrated in Figures 4.36 and 4.37.

Although this is just one example it appears that circuits with higher ancestral

entropy are more difficult to reduce to individual components than circuits with lower

entropy. More experiments must be performed to verify this.

Figure 4.33: Baseline Individual Input Parallel C-17 Circuit

4.7 Summary

These results show that RandomAlgorithm creates circuit variants with higher

average ancestral entropy values at the outputs, circuit levels, and for every node in

the circuit than the other CORGI algorithms. RandomTwoGates performed nearly

as well or better than RandomAlgorithm in some cases. More experiments need to be

performed to determine if one is truly better than the other based on whether removing

original sub-circuits in early iterations will cause the ancestral entropy values to be

lower. However, these two algorithms outperform the other CORGI algorithms in

terms of providing component hiding characteristics to a circuit variant.

High Ancestral entropy and the ability to reduce a circuit appear to have a direct

correlation. Circuits with higher ancestral entropy were not reduced as well as other

and were more difficult to separate the parallel circuit into independent components.

98

(a) Circuit Variant at Iteration 19 (b) Reduced Variant

Figure 4.34: Reducing C-17 Parallel Circuit with Duplicate Inputs and Redundant
Gates to Independent Components

(a) and (b)

(a) Circuit Variant at Iteration 28 (b) Reduced Variant

Figure 4.35: Reducing C-17 Parallel Circuit with Duplicate Inputs and Redundant
GatesOne Iteration Before Component Separation

(a) and (b)

99

(a) Circuit Variant at Iteration 18 (b) Reduced Variant

Figure 4.36: Reducing C-17 Parallel Circuit with No Duplicate Inputs or Redundant
Gates to Independent Components

(a) and (b)

(a) Circuit Variant at Iteration 25 (b) Reduced Variant

Figure 4.37: Reducing C-17 Parallel Circuit with No Duplicate Inputs or Redundant
Gates One Iteration Before Component Separation

(a) and (b)

100

V. Conclusions

This chapter discusses the contribution of this research and future work.

5.1 Goals and Hypothesis

The terms component hiding and ancestral entropy are defined and described

using ancestral entropy as a measure of component hiding. The iterative selection and

replacement algorithms are assumed to provide measurable component hiding prop-

erties, resulting in the circuit transformations not being easily undone by a circuit

reducer (or a reverse engineer). Series and parallel combinational circuits with differ-

ent configurations are compared and the component hiding properties are identified.

5.2 Contributions

5.2.1 Component Hiding Effectiveness. Ancestral entropy measures the

uncertainty a node or gate in a circuit derived from a specific sub-circuit. The ances-

tral entropy is calculated for each node, the average at each level in the circuit, and

the average at the output nodes. These entropy values provide useful information

to compare the effectiveness of the selection and replacement algorithms in terms of

component hiding. It also provides the data necessary for creating the colors in the

graphs used in this research.

5.2.2 Introduction of the Colored Graphs. The colored graphs are an im-

provement over the current graphs output by the CORGI. The the use of colors,

shape, numbers and ancestry values allow for a quick, visual description of what each

iteration of an algorithm is doing. Circuit merging and removal is easily identified by

the introduction or removal of a color from the graph. The graph coloring process

also creates a file identifying the iteration number when a new color is introduced in

the graph and when a color is removed from the graph. It defines what color nodes

are present, how many nodes of each color, and the total number of nodes for each

iteration. Providing a shape for each node provides an immediate indication of the

101

gate operation and aids in the identification of buffer circuits that could easily be

reduced. Adding the node number, gate type, and ancestry information to each node

label adds a trace capability back to the BENCH and ancestry files to verify proper

operation of the selection and replacement algorithm, the ancestry algorithm, and the

entropy algorithm developed in this research.

5.3 Future Work

5.3.1 Color Graph Improvements. The appearance of the colored graphs

could be further improved with the implementation of a red, blue and green (RBG)

or similar coloring scheme. Using the ancestry values as weighted color values will

provide graphs that show color variations and visually indicate the ancestors, and the

weight of the ancestry, of each node in the circuit. The current implementation does

not allow coloring of the optimized circuits when using the CORGI circuit reducing

program. This improvement will provide a visual representation of the reduced circuits

and will be useful in analyzing them.

5.3.2 Execute at Runtime. The current implementation for computing an-

cestry, entropy and coloring the graphs are all done by reading files created during

the initial execution of the algorithm. Although this is done intentionally for use on

previous experiments, it is worthwhile to perform these functions during runtime. It is

also worthwhile to add the option to include or not include computing these functions

during the experiment, due to the increase in runtime.

5.3.3 Modify FixedLevelTwoGates Algorithm. The fixed level in FixedLevelT-

woGates algorithm is selectable by the user. It is beneficial, especially since Rando-

mAlgorithm is likely to be the best algorithm for component hiding, to have the

ability to set the fixed level to the level below the input level. A modification to

have the first gate selected from the levelmax − 1 and the second gate from either

levelmax−1 or levelmax−2 is needed. This will cause the RandomAlgorithm to select

102

gates for replacement in a more uniform manner by not having two algorithms make

replacements at or near the output level. Allowing replacements to be made near

the input level will most likely provide better component hiding properties than the

current implementation

5.3.4 Validation. To validate the reduction tool works properly and that

ancestral entropy is a viable measurement for component hiding we need to test

the circuit variants against commercial circuit reducing tools. Kim’s algorithm [9]

may or may not provide enough reduction to determine if the four gate replacement

experiments provide component hiding attributes. In an ideal setting reverse engineers

would be used to determine the ease of reducing any circuit variants and identifying

weaknesses in the creation of the circuit variants.

103

Appendix A. Three Gate Replacement Series Circuit Variant Graphs

and Charts

This appendix contains the graphs and charts for the series circuits discussed in

Chapter IV. These charts and graphs are from one experiment only and are

provided to show trends of each algorithm.

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50 (d) Iteration 100

Figure A.1: FixedLevelTwoGates 5 Input C-17 Series Variant Circuits
(a),(b),(c) and (d)

input

104

(a) (b)

(c) (d)

Figure A.2: FixedLevelTwoGates 5 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

105

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50 (d) Iteration 100

Figure A.3: FixedLevelTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits
(a),(b),(c) and (d)

106

(a) (b)

(c) (d)

Figure A.4: FixedLevelTwoGates 5 ‘Split’ Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

107

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50 (d) Iteration 100

Figure A.5: FixedLevelTwoGates 11 Input C-17 Series Variant Circuits
(a),(b),(c) and (d)

108

(a) (b)

(c) (d)

Figure A.6: FixedLevelTwoGates 11 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

109

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50 (d) Iteration 100

Figure A.7: OutputLevelTwoGates 5 Input C-17 Series Variant Circuits
(a),(b),(c) and (d)

110

(a) (b)

(c) (d)

Figure A.8: OutputLevelTwoGates 5 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

111

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50 (d) Iteration 100

Figure A.9: OutputLevelTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits
(a),(b),(c) and (d)

112

(a) (b)

(c) (d)

Figure A.10: OutputLevelTwoGates 5 ‘Split’ Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

113

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50 (d) Iteration 100

Figure A.11: OutputLevelTwoGates 11 Input C-17 Series Variant Circuits
(a),(b),(c) and (d)

114

(a) (b)

(c) (d)

Figure A.12: OutputLevelTwoGates 11 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

115

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.13: LargestLevelTwoGates 5 Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (e)

116

(a) (b)

(c) (d)

Figure A.14: LargestLevelTwoGates 5 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

117

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.15: LargestLevelTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (d)

118

(a) (b)

(c) (d)

Figure A.16: LargestLevelTwoGates 5 ‘Split’ Input C-17 Series - Iteration 1000
(a),(b),(c), and (d)

119

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.17: LargestLevelTwoGates 11 Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (e)

120

(a) (b)

(c) (d)

Figure A.18: LargestLevelTwoGates 11 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

121

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.19: RandomLevelTwoGates 5 Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (e)

122

(a) (b)

(c) (d)

Figure A.20: RandomLevelTwoGates 5 Input C-17 Series - Iteration 500
(a),(b),(c) and (d)

123

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.21: RandomLevelTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (d)

124

(a) (b)

(c) (d)

Figure A.22: RandomLevelTwoGates 5 ‘Split’ Input C-17 Series - Iteration 500
(a),(b),(c), and (d)

125

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.23: RandomLevelTwoGates 11 Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (e)

126

(a) (b)

(c) (d)

Figure A.24: RandomLevelTwoGates 11 Input C-17 Series - Iteration 500
(a),(b),(c) and (d)

127

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.25: RandomTwoGates 5 Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (e)

128

(a) (b)

(c) (d)

Figure A.26: RandomTwoGates 5 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

129

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.27: RandomTwoGates 5 ‘Split’ Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (d)

130

(a) (b)

(c) (d)

Figure A.28: RandomTwoGates 5 ‘Split’ Input C-17 Series - Iteration 1000
(a),(b),(c), and (d)

131

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.29: RandomTwoGates 11 Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (e)

132

(a) (b)

(c) (d)

Figure A.30: RandomTwoGates 11 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

133

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.31: RandomAlgorithm 5 Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (e)

134

(a) (b)

(c) (d)

Figure A.32: Random Algorithm 5 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

135

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.33: RandomAlgorithm 5 ‘Split’ Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (d)

136

(a) (b)

(c) (d)

Figure A.34: RandomAlgorithm 5 ‘Split’ Input C-17 Series - Iteration 500
(a),(b),(c), and (d)

137

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure A.35: RandomAlgorithm 11 Input C-17 Series Variant Circuits
(a),(b),(c), (d), and (e)

138

(a) (b)

(c) (d)

Figure A.36: RandomAlgorithm 11 Input C-17 Series - Iteration 1000
(a),(b),(c) and (d)

139

Appendix B. Three Gate Replacement Parallel Circuit Variant

Graphs and Charts

This appendix contains the graphs and charts for the parallel circuits discussed

in Chapter IV. These charts and graphs are from one experiment only and are

provided to show trends of each algorithm.

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50 (d) Iteration 100

Figure B.1: FixedLevelTwoGates Shared Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

140

(a) (b)

(c) (d)

Figure B.2: FixedLevelTwoGates Shared Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

141

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure B.3: FixedLevelTwoGates Individual Input C-17 Parallel Variant Circuits
(a),(b),(c),(d) and (e)

142

(a) (b)

(c) (d)

Figure B.4: FixedLevelTwoGates Individual Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

143

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50 (d) Iteration 100

Figure B.5: OutputLevelTwoGates Shared Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

144

(a) (b)

(c) (d)

Figure B.6: OutputLevelTwoGates Shared Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

145

(a) Iteration
0

(b) Iteration 20 (c) Iteration 50

(d) Iteration 100 (e) Iteration 200

Figure B.7: OutputLevelTwoGates Individual Input C-17 Parallel Variant Circuits
(a),(b),(c), (d) and (e)

146

(a) (b)

(c) (d)

Figure B.8: OutputLevelTwoGates Individual Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

147

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100

Figure B.9: LargestLevelTwoGates Shared Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

148

(a) (b)

(c) (d)

Figure B.10: LargestLevelTwoGates Shared Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

149

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100

Figure B.11: LargestLevelTwoGates Individual Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

150

(a) (b)

(c) (d)

Figure B.12: LargestLevelTwoGates Individual Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

151

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100

Figure B.13: RandomLevelTwoGates Shared Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

152

(a) (b)

(c) (d)

Figure B.14: RandomLevelTwoGates Shared Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

153

(a) Iteration 0 (b) Iteration 20

(c) Iteration 50 (d) Iteration 100

Figure B.15: RandomLevelTwoGates Individual Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

154

(a) (b)

(c) (d)

Figure B.16: RandomLevelTwoGates Individual Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

155

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100

Figure B.17: RandomTwoGates Shared Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

156

(a) (b)

(c) (d)

Figure B.18: RandomTwoGates Shared Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

157

(a) Iteration 0 (b) Iteration 20

(c) Iteration 50 (d) Iteration 100

Figure B.19: RandomTwoGates Individual Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

158

(a) (b)

(c) (d)

Figure B.20: RandomTwoGates Individual Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

159

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100

Figure B.21: RandomAlgorithm Shared Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

160

(a) (b)

(c) (d)

Figure B.22: RandomAlgorithm Shared Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

161

(a) Iteration 0 (b) Iteration 20 (c) Iteration 50

(d) Iteration 100

Figure B.23: RandomAlgorithm Individual Input C-17 Parallel Variant Circuits
(a),(b),(c) and (d)

162

(a) (b)

(c) (d)

Figure B.24: RandomAlgorithm Individual Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

163

Appendix C. Four Gate Replacement Series and Parallel Circuit

Variant Charts and Graphs

This appendix contains the graphs and charts for the four gate replacement series

and parallel circuits discussed in Chapter IV. These charts and graphs are from

one experiment only and are provided to show trends of each algorithm.

(a) (b)

(c) (d)

Figure C.1: RandomLevelTwoGates 5 Input C-17 Series 4 Gate Replacement - Itera-
tion 1000

(a),(b),(c) and (d)

164

(a) (b)

(c) (d)

Figure C.2: RandomLevelTwoGates 5 ‘Split’ Input C-17 Series 4 Gate Replacement
- Iteration 1000

(a),(b),(c) and (d)

165

(a) (b)

(c) (d)

Figure C.3: RandomLevelTwoGates 11 Input C-17 Series 4 Gate Replacement - Iter-
ation 1000

(a),(b),(c) and (d)

166

(a) (b)

(c) (d)

Figure C.4: RandomTwoGates 5 Input C-17 Series 4 Gate Replacement - Iteration
1000

(a),(b),(c) and (d)

167

(a) (b)

(c) (d)

Figure C.5: RandomTwoGates 5 ‘Split’ Input C-17 Series 4 Gate Replacement - It-
eration 1000

(a),(b),(c) and (d)

168

(a) (b)

(c) (d)

Figure C.6: Random Two Gate 11 Input C-17 Series 4 Gate Replacement - Iteration
1000

(a),(b),(c) and (d)

169

(a) (b)

(c) (d)

Figure C.7: RandomAlgorithm 5 Input C-17 Series 4 Gate Replacement - Iteration
1000

(a),(b),(c) and (d)

170

(a) (b)

(c) (d)

Figure C.8: RandomAlgorithm 5 ‘Split’ Input C-17 Series 4 Gate Replacement - It-
eration 1000

(a),(b),(c) and (d)

171

(a) (b)

(c) (d)

Figure C.9: RandomAlgorithm 11 Input C-17 Series 4 Gate Replacement - Iteration
1000

(a),(b),(c) and (d)

172

(a) (b)

(c) (d)

Figure C.10: 4 Gate Replacement RandomLevelTwoGates Individual Input C-17 Par-
allel - Iteration 1000

(a),(b),(c) and (d)

173

(a) (b)

(c) (d)

Figure C.11: 4 Gate RandomTwoGates Individual Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

174

(a) (b)

(c) (d)

Figure C.12: 4 Gate RandomAlgorithm Individual Input C-17 Parallel - Iteration
1000

(a),(b),(c) and (d)

175

(a) (b)

(c) (d)

Figure C.13: 4 Gate RandomLevelTwoGates Shared Input C-17 Parallel - Iteration
1000

(a),(b),(c) and (d)

176

(a) (b)

(c) (d)

Figure C.14: 4 Gate RandomTwoGates Shared Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

177

(a) (b)

(c) (d)

Figure C.15: 4 Gate RandomAlgorithm Shared Input C-17 Parallel - Iteration 1000
(a),(b),(c) and (d)

178

Bibliography

1. Agrawal, Dakshi, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
“The EM side-channel(s): Attacks and assessment methodologies”, 2001. URL
http://www.research.ibm.com/intsec/emf-paper.ps.

2. Agrawal, Dakshi, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
“The EM Side-Channel(s)”. CHES ’02: Revised Papers from the 4th International
Workshop on Cryptographic Hardware and Embedded Systems, 29–45. Springer-
Verlag, London, UK, 2003. ISBN 3-540-00409-2.

3. Chikofsky, Elliot J. and James H. Cross II. “Reverse Engineering and Design
Recovery: A Taxonomy”, January 1990.

4. Office of the Under Secretary of Defense, (Comptroller) Of-
fice. “RDT&E Programs (R-1)”, 2007. URL
http://www.defenselink.mil/comptroller/defbudget/fy2008 r1.pdf.

5. Directive, 5200.1-M DoD. Acquisition Systems Program Protection. the Assistant
Secretry of Defense for Command, Control, Communications and Intelligence,
March 1994.

6. Drimer, Saar. “Volatile FPGA design security – a survey (v0.96)”, April 2008.
URL http://www.cl.cam.ac.uk/~sd410/papers/fpga security.pdf.

7. Gandolfi, K., C. Mourtel, and F. Olivier. “Electro-
magnetic Analysis: Concrete results”, May 2001. URL
http://www.gemplus.com/smart/rd/publications/pdf/GM001ema.pdf.

8. Hansen, Mark C., Hakan Yalcin, and John P. Hayes. “Unveiling the ISCAS-85
benchmarks: a case study in reverse engineering”. IEEE Design and Test of
Computers, 16(3):72–80, 1999. URL http://dx.doi.org/10.1109/54.785838.
Compilation and indexing terms, Copyright 2008 Elsevier Inc.

9. Kim, Han Seok. Removing Redundant logic Pathways in Polymorphic Circuits.
Master’s thesis, Air Force Institute of Technology, 2009.

10. Kukis, Mark and Katherine Arms. “Bush to
China: Return Plane, Crew”, April 2001. URL
http://www.military.com/Content/MoreContent1?file=standoff.

11. Mayo, Wayland et al. “Russian B-29 Clone - The TU-4 Story”, 2008. URL
http://www.rb-29.net/HTML/03RelatedStories/03.03shortstories/.

12. McDonald, Jeffrey T. Enhanced Security for Mobile Agent Systems. Ph.D. thesis,
Florida State University, 2006.

13. Mish, Frederick C. (editor). Merriam-Webster’s collegiate dictionary. Merriam-
Webster, Incorporated, Springfield, MA, 10 edition, 2001. ISBN 0-87779-710-2.

179

14. Nohl, Karsten, David Evans, and Henryk Plotz. “Reverse-Engineering a Crypto-
graphic RFID Tag”. 187–193. 2008.

15. Norman, Ken. Architecture for White-box Obfuscation Using Randomized Subcir-
cuit Selection And Replacement. Master’s thesis, Air Force Institute of Technol-
ogy, 2008.

16. “PreEmptive Solutions”, Jan 2008. URL http://www.preemptive.com/.

17. Rajgopal, Suresh and Akhilesh Tyagi. “Spatial Entropy - A Unified Attribute to
Model Dynamic Communication in VLSI Circuits (Under the direction of Kye S.
Hedlund and Akhilesh Tyagi)”, 1992.

18. Rauch, John G. “THE LAW ON REVERSE ENGINEERING”. IEEE Spectrum,
30(8):47–48, -08 1993.

19. Rekoff, M. G. Jr. “ON REVERSE ENGINEERING.” (Univ of Alabama in Birm-
ingham, Dep of Electrical Engineering, Birmingham, AL, USA) Source: IEEE
Transactions on Systems, Man and Cybernetics, SMC-15(2):244, -04 1985. Doi:
pmid:.

20. Scott, Jeff. “Buran Space Shuttle”, November 2003. URL
http://www.aerospaceweb.org/question/spacecraft/q0153.shtml.

180

Vita

Captain Jason A. Williams graduated from Ashland-Greenwood High School in

Ashland, Nebraska. He entered undergraduate studies at the University of Nebraska in

Lincoln, Nebraska where he graduated with a Bachelor of Science degree in Computer

Engineering in 2003. He was commissioned through Officer Training School in 2004.

Captain Williams entered the US Air Force in 1990. He was first assigned to the

558th Civil Engineering Squadron, Nellis AFB, Nevada as a Metal Fabrication Spe-

cialist. He was assigned as an instructor to the 366th Training Squadron, Detachment

6, at the Naval Construction Training Center, Mississippi in September 1995. He was

awarded the Naval Construction Training Center Instructor of the year and the 366th

Training Squadron Junior Instructor of the year in 1997. He also earned the Master

Instructor Certificate in 1998. His next assignment was at Kunsan AB, South Korea,

where he was assigned as a Facilities Maintenance Manager in 2000. While in Korea,

he was selected to participate in the Airman Education Commissioning Program. His

next assignment was at the University of Nebraska, Air Force ROTC Detachment

465, Nebraska, in 2001. He completed a Bachelor of Science Degree in Computer

Engineering in 2003. After completing Officer Training School in 2004, he was as-

signed to the Air Armament Center, Eglin AFB, Florida. In 2006 he was re-assigned

to the Air Force Research Laboratory at Eglin AFB. While there, he was selected to

attend the Air Force Institute of Technology at Wright-Patterson AFB, Ohio and was

assigned there in 2007. Upon graduation, he will remain at Wright-Patterson AFB

for his assignment to the Air Force Research Laboratory.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

181

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26-03-2009 Master’s Thesis May 2007–Mar 2009

Characterizing Component Hiding
Using Ancestral Entropy

08-183

Williams, Jason A.

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/09-12

Dr. Robert L. Herklotz
Air Force Office of Scientific Research, AFMC
801 North Randolph Street, Rm 732
Arlington VA 22203-1977
703–696–9544 (DSN: 426) robert.herklotz@afosr.af.mil

AFOSR/NL

Approval for public release; distribution is unlimited.

In this research, the problem of software protection and the attributes that define that protection is considered. Specifically, how to protect programs defined as

structural combinational logic gates. Obfuscation is one technique for protecting such circuits and involves replacing an original circuit with a functionally equivalent

variant that has some definable hiding property. The difficulty of reverse engineering versus identifying and recovering the original components or sub-circuits within

an original circuit is compared. With a polymorphic circuit engine that produces semantically equivalent variations of standard benchmark circuits the level of

component hiding across variants with different physical configurations is determined to provide an entropy-based attribute to assess whether components are merged

at the structural level. Specific types of obfuscating transformations with respect to component hiding using ancestral entropy are compared as well as the measure

of uncertainty related to origination of a gate within a circuit.

software obfuscation, component hiding, entropy, ancestry, combinational circuit

U U U UU 201

Lt Col J. Todd McDonald

937–255–3636 x4639, jmcdonal@afit.edu

	Characterizing Component Hiding Using Ancestral Entropy
	Recommended Citation

	C:/Documents and Settings/Jason/Desktop/ThesisFromPC/WilliamsThesisFinal/WilliamsThesis.dvi

