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AFIT/GAP/ENP/09-M02 

Abstract 

The usefulness of imaging Fourier transform spectroscopy (IFTS) when looking 

at a rapidly varying turbine engine exhaust scene was explored by characterizing the 

scene change artifacts (SCAs) present in the plume and the effect they have on the 

calibrated spectra using the Telops, Inc.-manufactured Field-portable Imaging 

Radiometric Spectrometer Technology, Midwave Extended (FIRST-MWE).  It was 

determined that IFTS technology can be applied to the problem of a rapidly varying 

turbine engine exhaust plume due to the zero mean, stochastic nature of the SCAs, 

through the use of temporal averaging.  The FIRST-MWE produced radiometrically 

calibrated hyperspectral datacubes, with calibration uncertainty of 35% in the 1800 – 

2500 cm-1 (4 – 5.5 µm) spectral region for pixels with signal-to-noise ratio (SNR) greater 

than 1.5; the large uncertainty was due to the presence of SCAs.  Spatial distributions of 

temperature and chemical species concentration pathlengths for CO2, CO, and H2O were 

extracted from the radiometrically calibrated hyperspectral datacubes using a simple 

radiative transfer model for diesel and kerosene fuels, each with fuel flow rates of 300 

cm3/min and 225 cm3/min.  The temperatures were found to be, on average, within 212 K 

of in situ measurements, the difference attributed to the simplicity of the model.  

Although no in situ concentration measurements were made, the concentrations of CO2 

and CO were found to be within expected limits set by the ambient atmospheric 

parameters and the calculated products of the turbine engine, on the order of 1015 and 

1017 molecules/cm3, respectively. 
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HYPERSPECTRAL IMAGING OF A TURBINE ENGINE EXHAUST PLUME TO 

DETERMINE RADIANCE, TEMPERATURE, AND CONCENTRATION SPATIAL 

DISTRIBUTIONS 

 

I. Introduction 

Motivation 

The Field-portable Imaging Radiometric Spectrometer Technology, Midwave 

Extended (FIRST-MWE) is an imaging Fourier transform spectrometer (IFTS) recently 

developed by Telops, Inc, designed for the purpose of hyperspectral imaging.  

Hyperspectral imaging is capable of providing a wealth of information, even when the 

target and observer are separated by great distances.  Specifically, hyperspectral imaging 

of turbine engine exhaust plumes has the potential to collect unprecedented levels of 

information about a target, including spatial distributions of spectral radiance, 

temperature, and chemical species in the plume.  This information, obtained passively 

and without the need for in situ measurements, is valuable to many communities, 

including academia, industry, and the federal government.   In order to harness this 

information, it is necessary to first determine whether IFTS technology is capable of 

obtaining high quality data from high frequency turbulent events, such as a turbine engine 

exhaust plume.  It is then necessary to develop techniques that enable the observer to 

quickly distill this information into a useful subset of data.  This is an ability highly 

prized in the field of target detection that has not yet been achieved.  This research is the 
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first of many efforts designed to bring this future operational capability one step closer to 

reality. 

When remotely sensing turbine engine exhaust plumes with a hyperspectral 

imager, three dimensions of information are obtained, two spatial and one spectral.  

These three dimensions of information are referred to collectively as a hyperspectral 

datacube.  In the case of this research, the hyperspectral datacube is comprised of 

apparent spectral radiance.  The hyperspectral datacubes contain vast amounts of 

information on the target of interest, including distributions of total apparent radiance, 

temperatures, and chemical species concentration pathlengths.  The ability to quickly 

obtain these distributions without the need for in situ measurements is valuable to many 

fields, including turbine engine maintenance, turbine engine design validation, and target 

identification.   

Problem Statement 

The goal of this effort is to demonstrate the capability of IFTS technology to 

obtain high quality hyperspectral datacubes remotely collected against the exhaust plume 

of a turbine engine, despite the high frequency variations in the plume.  This is 

accomplished by demonstrating the production of spatially and spectrally resolved 

hyperspectral datacubes of radiometrically calibrated apparent spectral radiance, and 

presenting the uncertainty in the spectral radiance measurement.  This goal is furthered 

by developing processes that extract spatial distributions of relative temperature and 

chemical species concentration from the hyperspectral datacube collected using the 

Telops FIRST-MWE.   
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Overview 

To this end, a review of current efforts in the field of hyperspectral sensing of 

turbine engines is presented, as well as the characterization of the processes necessary to 

produce calibrated data using the Telops FIRST-MWE.  These background topics can be 

found in Chapter II.  A description of the experimental setup is provided in Chapter III.  

Characterization of the FIRST-MWE, to include characteristics of the focal plane array 

(FPA) and scene change artifacts (SCAs) are presented in Chapter IV.  Focal plane array 

characterization includes a determination of the non-uniformity correction (NUC) and 

spectral gain and offset.  The error analysis and radiative transfer equations necessary to 

produce calibrated spectral distributions, temperature and concentration distributions, and 

calibration uncertainties are presented in Chapter V.  In Chapter VI, results and analysis 

are presented for spectral radiance, temperature, and concentration pathlength spatial 

distributions.   

Due to the normal distribution of SCAs, it was determined that IFTS technology 

is capable of collecting high quality hyperspectral datacubes, despite the large amount of 

variation present in the turbine engine exhaust plume.  Due to the large variation caused 

by SCAs, the calibrated spectra were found to have 35% uncertainty in the 1800 – 2500 

cm-1 (4 − 5.5 µm) region for pixels with signal-to-noise ratio (SNR) greater than 1.5.  

Temperature measurements were compared with results from the spatial distributions, 

with average agreement within 212 K, and concentration pathlengths for CO2 and CO 

were within reasonable limits.  The lower limit was the atmospheric concentrations, 

2.5x1017, 9.4x1015, and 4.3x1015 molecules/cm3 for H2O, CO2, and CO, respectively, and 

the upper limit was calculated from the turbojet chemical species emissions for diesel 
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fuel to be 7.9x1017, 8.3x1017, and 4.2x1016 molecules/cm3 for H2O, CO2, and CO, 

respectively, and for kerosene fuel these were determined to be 8.8x1017, 8.1x1017, and 

4.1x1016 for H2O, CO2, and CO, respectively.  Discrepancies between in situ temperature 

measurements and temperatures extracted from the spectra are attributable to the many 

approximations and assumptions made in order to produce a computationally efficient, 

tractable model.  This document demonstrates the capability of the Telops FIRST-MWE 

to produce spatially and spectrally resolved hyperspectral datacubes of calibrated 

apparent spectral radiance collected against the exhaust plume of a turbine engine, and 

the use of that information in the initial steps of building the capability to extract 

temperature and chemical species concentration pathlength distributions. 
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II. Background 

Much work has been accomplished in the field of characterizing aircraft plume 

emission.  Most of the efforts to date have been spent looking at the spectral content of 

the plume and the spatial distribution of temperatures separately, but only recently have 

the two been merged through the development of hyperspectral imaging devices.  In 

order to effectively communicate a method of determining spatially distributed turbine 

exhaust gas temperatures and species concentrations using a Telops FIRST-MWE, it is 

first necessary to conduct an overview of the hyperspectral imaging technology 

incorporated in the Telops FIRST-MWE, as well as a summary of the unclassified related 

efforts in the fields of spectroscopic and imaging characterization of turbine engine 

exhaust plumes.  This preparation will provide better understanding of the subsequent 

sections. 

Hyperspectral Imaging Technology Overview 

Hyperspectral imaging devices are relatively new data collection tools, the first of 

which was the airborne visible infrared imaging spectrometer (AVIRIS ) developed by 

the National Air and Space Administration (NASA) and the Jet Propulsion Laboratory 

(JPL), first operational in 1989 [1].  The application of hyperspectral imaging to 

characterizing turbine exhaust plumes is even more recent.  Due to potential unfamiliarity 

in this technology area, a description of the characteristics of hyperspectral imaging 

devices will be covered.  Additionally, the use of a hyperspectral imager to determine the 

spatial distribution of temperatures and chemical species concentrations requires an 

intimate familiarity with the imaging device to ensure a complete dataset is collected.    
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With these considerations, it is prudent to provide an overview of hyperspectral imagers 

in general, with more specific information focused on the temporal interferometer type 

hyperspectral imagers.   

Advantages of Imaging Fourier Transform Spectrometers. 

Hyperspectral imaging devices are spatial and spectral data collection tools, 

where two dimensions of spatial and one dimension of spectral information are recorded.  

The spectral information recorded by a hyperspectral imager is collected simultaneously 

in narrow, adjacent spectral bands, generating a spectrum for each pixel of the scene [2].  

Hyperspectral sensors include two classes, dispersive spectrometers and interferometers.  

Additionally, within each class of sensor there are two sub-classes.  Within the dispersive 

spectrometer class, there are spectrometers that use gratings and those that use prisms.  

Within the interferometer class, there are spatial interferometers, in which one of the 

spatial dimensions is collected in time, which are typically based on Sagnac’s 

interferometer [3], and temporal interferometers, in which the spectral dimension is 

collected in time,  which are based on Michelson’s interferometer [4].  As stated 

previously, this paper focuses on the characteristics of the temporal interferometer, and 

will hence forth be referred to generally as an interferometer.  A basic understanding of 

the non-imaging interferometer is assumed, as well as the basics of the gaseous effluent 

model, both of which have been described in numerous places [4, 5, 6, 7]. 

The interferometer class of hyperspectral imagers has both advantages and 

disadvantages compared to dispersive imaging spectrometers.  The Fellgett multiplexing 

advantage and the Jacquinot advantage are two classic advantages; however, additional 

advantages of interferometers will also be discussed.   
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The Fellgett advantage refers to the increase in SNR an interferometer-based 

imaging spectrometer has compared to a dispersive imaging spectrometer due to the 

number of frames collected in the creation of one interferogram.  The following equation 

shows the SNR varies with the square root of the number of frames collected [5] 

  (1) 

where N is the number of frames collected in a single scan of the interferometer, F is a 

factor due to the method of apodization, and Ns is the number of photoelectrons detected 

due to the signal.  Noise terms are in the denominator: Nb

A second advantage is the natural spectral calibration an interferometer-type 

imaging spectrometer employs compared to the complex process of spectrally calibrating 

a dispersive spectrometer, called the Connes advantage.  Typically, a metrology Helium 

Neon (HeNe) laser is used to trigger frame collections for the interferogram.  With the 

ability to obtain precise knowledge of the wavelength of the laser, and the optical axis 

location on the FPA, the error in the triggering is very small and only due to the 

uncertainty in mirror position and optical axis location.  Because the HeNe laser travels 

different distances to reach each pixel on the FPA away from the optical axis, an 

 is the number of 

photoelectrons detected due to the background, which manifests itself as shot noise; the 

second term is dark current noise; the third is electronics noise; the fourth is quantization 

noise; and the fifth is spatial noise.  Because of the ease at which one can increase the 

number of frames collected, within the limitations of the Nyquist frequency, it is possible 

to increase the SNR of an interferogram-based spectrometer over that of a dispersive 

spectrometer. 
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additional multiplicative factor is introduced in the spectral axis.  It is possible to account 

for the different pathlengths the HeNe travels to all pixels across the FPA.  This precision 

spacing of the interferogram translates to a precision calibration of the spectral axes when 

the Fourier transform is computed [5, 8]. 

One additional advantage an interferometer holds over a dispersive spectrometer 

is the straightforward control over spectral resolution.  The equation for spectral 

resolution is   

  (2) 

where OPDmax

2

 is the maximum optical path difference, the greatest distance the 

interferometer's movable mirror travels from the point of zero path difference (ZPD).  

The spectral resolution is determined by the distance the movable mirror travels, i.e. the 

maximum OPD, in the collection of the interferogram.  The ability to increase mirror 

travel distance is completely determined by the design of the system.  This allows for 

very high resolution spectra to be collected, with one hundredth of a wavenumber 

resolution possible [ , 9].  In a dispersive system, the spectral resolution is fixed, and 

limited by the size of the FPA. 

Although interferometers have advantages over dispersive spectrometers, there 

are also disadvantages which should be covered for completeness.  One of the primary 

disadvantages that plague interferometers but not dispersive spectrometers is the decrease 

in SNR due to an increase in the number of spectral bands.  To gain spectral resolution 

means to increase the number of spectral bands.  As the number of bands increases, the 

SNR decreases due to the increased background noise contribution from each band.  

Equation (3), the noise equivalent spectral radiance (NESR) of the system, is a measure 
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of the noise.  The integral of all non-scene wavelengths increases the noise compared to 

that of a dispersive spectrometer [10].   

  (3) 

where σn
2 is the combined noise of the system, AΩ is the optical throughput, τd is the 

integration time, h is Planck’s constant, c is the speed of light, τb is the spectral 

background factor, which when combined with Ls(λ), the signal spectral radiance, creates 

the background spectral radiance.  τs is the spectral transmission factor of the signal, and 

λ0

All wavelengths of the incident background sum together to increase NESR, 

while only the wavelength of the signal acts to decrease it.  This leads to an overall 

increase in NESR on the order of the square root of the number of spectral bands [

 is the wavelength of the signal.   

10].  

This number of spectral bands can be quite large due to the large spectral range and small 

spectral resolution obtainable by imaging interferometers.  As mentioned previously, a 

resolution of one hundredth of a wavenumber is achievable.  With detectors responsive 

over thousands of wavenumbers, the decrease in SNR can be a factor of more than 100.  

This introduces an issue requiring significant consideration when sensing low signal 

targets; either longer integration times or less spectral resolution may be necessary to 

achieve a suitable SNR.   

Increased resolution causes not only increased noise, but also an increase in the 

amount of time required to collect an interferogram.  Because higher resolutions require 

the arm of the interferometer to sweep a greater maximum optical path difference, greater 

resolution requires more time [11].  If the time needed to collect an interferogram is 
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longer than the time constant of the scene, there will be scene change artifacts in the 

spectrum.  SCAs are spectral manifestations of a changing scene, and they result in 

increased variation in the spectra.  Due to an inability to separate the cause of variations 

in the spectra, i.e. variations due to SCAs as opposed to variations due to noise, SCAs act 

to decrease SNR [11].  It is necessary either to ensure collections are fast enough to 

minimize scene change artifacts, or attempt to account for the decrease in SNR through 

additional data averaging. 

Advantages of the Midwave Infrared Band. 

The midwave infrared (MWIR) band is typically defined as 2000 – 3333 cm-1 (3 

− 5 µm), however because the FIRST-MWE is responsive in the region 1818 – 6666 cm-1 

(1.5 − 5.5 µm), this region will be referred to as the extended midwave band.  There are 

many advantages to using the extended midwave band compared to other regions of the 

electromagnetic spectrum.  Three advantages relevant to this work are that the 

atmospheric transmittance is very high, with the exception of a carbon dioxide (CO2) 

absorption band centered at 2325 cm-1 (4.3 µm) and a few water vapor (H2O) absorption 

bands centered at 1800 cm-1 (5.5 µm), 3700 cm-1 (2.7 µm), and 5500 cm-1

Although the atmosphere is comprised mostly of nitrogen (N

 (1.8 µm), the 

background radiation from the sun and earth are at a local minimum, and for the specific 

case of turbine engine exhaust plumes, most of the spectral emission falls within this 

band. 

2), at 78.08%, 

oxygen (O2), at 20.95%, argon (Ar), at 0.93%, and CO2, at 0.038%, H2O can also exist in 

amounts varying from 0 – 4% by volume, with an average around 1% [12].  H2O and 

CO2 account for most of the atmospheric absorption that takes place in the extended 
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midwave band.  The absorption lines of H2O and CO2

 

 can be seen in Figure 1, which 

shows the atmospheric transmittance in the extended midwave band over an 11.2 m path 

in a standard temperature and pressure atmosphere.  This figure was generated using the 

line-by-line radiative transfer model (LBLRTM) with data from the high-resolution 

transmission molecular absorption (HITRAN) database. 

Figure 1. Atmospheric transmittance through 11.2 m of standard temperature and pressure 
atmosphere in the extended midwave band.  The absorption features are due to H2O and CO2

The extended midwave band also has the distinct advantage of being located near 

a local minimum of spectral radiance from both the sun and earth, which occurs at 1736 

cm

. 

-1 (5.76 µm).  Both the earth and sun emit radiation with emissivity near unity, the 

earth at approximately 300 K and the sun at approximately 6000 K.  Figure 2 shows the 

local minimum of two peak-normalized blackbody functions representing solar and 

terrestrial emission.  The point where the two curves intersect is just below the extended 

midwave band.  By operating in a band that minimizes the solar and terrestrial spectral 

radiance, the impact of any background in the scene is reduced, improving the SNR.   
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Figure 2. Normalized spectral radiance of blackbody functions at temperatures representing the sun, 
6000 K, and earth, 300 K.  The local minimum occurs at 1736 cm-1

Related Work 

 (5.76 µm), near the edge of the 
extended midwave band. 

A turbine engine releases many chemical species, and the determination of these 

species concentrations is useful for multiple reasons previously mentioned.  The 

advantages of using a non-invasive method such as a non-imaging Fourier transform 

spectrometer (FTS) or IFTS versus using an invasive method are well documented [12, 

18].  Some advantages are put forth by Schäfer et al. [12] and include:  

…lower operational costs, easier handling, and the versatility to 
provide characterization of engine–turbine emissions early in the 
development cycle to allow for design alterations; avoidance of 
costly design and manufacture of extractive sampling rakes; 
avoidance of the need to demonstrate the representativeness of rake 
samples; avoidance of chemical changes that could occur within the 
probe extraction system before it reaches the analytical equipment; 
elimination of the risk of engine damage during measurement; an 
improved and expanded database of engine–turbine emissions. [12]
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Papers concerning both the spectral content of a plume [6, 12, 14, 15] as well as 

thermal images of a turbojet exhaust plume [7, 16] are widely available.  However, there 

is only a few published works combining the two via IFTS [17, 18].   

Single-pixel FTS of Plumes. 

Single-pixel FTS methods of determining chemical species concentrations have 

been employed in the study of aircraft exhaust with results within 20% to 30% of the 

standard invasive measurement technique [6, 12, 14].  Schäfer et al. [6] and Schurmann 

et al. [14] utilized a Kayser-Threde FTS mounted in a measurement vehicle to view 

aircraft at various airports throughout Europe.  The FTS was set up at multiple locations 

within the airport to collect spectra of aircraft engine emissions in different stages of 

operation (e.g. idle and taxi), as can be seen in Figure 3.   

 

Figure 3. Diagram of setup for experiments conducted by Schäfer et al., and Schurmann et al. [13, 
14] 

The concentrations of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide 

(NO) and nitrogen dioxide (NO2) were determined using a least squares fit of the data to 

the high-resolution transmission molecular absorption (HITRAN) database using multi-
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component air pollution software (MAPS), a proprietary software suite.  The spectrum is 

interpreted by MAPS using line-by-line calculations of the thermal emission and 

molecular absorptions of the air components.  The average emission index (EI) for each 

chemical species was calculated using [6, 14] 

   (4) 

Equation (4) assumes complete combustion of the kerosene fuel.  The EI is given 

in grams of the species per kilogram of fuel burned; M denotes the molecular weights and 

Q the column densities of the species.  A theoretical value of the emission index for CO2

6

 

was assumed to be 3159 g/kg, based on the calculation of the stoichiometric combustion 

of kerosene [ , 12].  These emission indices were then compared with those computed by 

the International Civil Aviation Organization (ICAO) via intrusive methods measured 

during engine certification.  The non-intrusive measurements were within 30% of the 

ICAO’s intrusive measurements. 

IR imagery of plumes. 

Much work on IR images of aircraft plumes has been accomplished, especially 

within the Department of Defense (DoD) [19-24].  However, many of these articles are 

classified and will not be discussed here.  Agboola et al. [16] has completed unclassified 

work containing IR imagery of aircraft engine plumes, and Brustet et al. [7] has 

completed detailed work on the spatial and temporal evolution of temperature within a 

hot plume. 

Agboola et al. [16] used an IR camera to collect data for the comparison of 

different flow nozzle designs for a turbofan engine.  The field of view of the camera 
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covered from the nozzle exit to six fan diameters downstream.  The IR imager was used 

to quantize the relative decrease in thermal emissions each of the different flow nozzle 

designs achieved compared with a baseline nozzle.  Examples of the IR images collected 

are shown in Figure 4. 

 
(a) 

 
(b) 

 
(c) 

 
(d)

Figure 4. (a) Exhaust Nozzle Configuration 1: Baseline flow nozzle. (b) Exhaust Nozzle Configuration 
17: Core chevron inward angle = 4.5°, core chevron outward angle = 10.25°.  (c) Exhaust Nozzle 
Configuration 7Y: Core chevron inward angle = 9.0°, core chevron outward angle = 15°.  (d) Exhaust 
Nozzle Configuration 7J: Core chevron inward angle = 13.2°, core chevron outward angle = 10.25°. 
[13] 

Note the lack of temperature or spatial scale; the IR imager collected only relative 

distributions of apparent band-integrated flux.  The plots shown in Figure 4 are baseline-

normalized to show the effect the different flow nozzles had on temperature.  However, if 

the IR imager had a linear response, with a priori knowledge of the baseline temperature 

and gain characteristics of the imager, it would be possible to make estimates of the 

temperatures for the plume of each model type.  Because only relative change in thermal 

emission was studied, the path length difference within the cylindrical plume was not 

accounted for, as would be necessary when taking absolute temperature measurements 

[7].   

Brustet et al. [7], using an AGA IR movie camera equipped with an indium 

antimonide (InSb) detector sensitive in the spectral region 2 – 5.8 µm, collected IR 
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imagery of an upward rising plume of unburnt hydrocarbons to characterize the spatial 

and temporal evolution of temperatures within the plume.  Although this plume is not due 

to turbine engine exhaust, many independent measurements were made in an effort to 

fully characterize this phenomenology.  To that end, temperature, pressure, relative 

humidity and wind speed measurements of the ambient atmosphere were made using 

multiple radiosonde launchings as well as instrumented aircraft fly-bys.  Additionally, 

source temperature measurements were taken, as well as plume geometry measurements, 

throughout the test.   

To get absolute radiometric data, special attention was paid to the optical depth of 

the plume.  Estimates of the emissivity of the plume were necessary to determine plume 

radiance and temperature.  It was shown via modeling work accomplished by Wyatt et al. 

[25], and Selby et al. [26] that for most of the plume height, the approximate optical path 

length was less than the plume radius.  Thus, an approximation of emissivity equal to 

unity was good for those sections of the plume.  This semi-opaque approximation 

simplified the model to allow the calculation of radiant energy of each pixel to be a 

function of the estimated plume penetration.  Isotherm plots were generated, an example 

of which can be seen in Figure 5.  The temperatures calculated using the IR camera were 

in agreement with the independent temperature measurements, and the structure was in 

agreement with the visible photographs showing plume contours. [7] 
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(a) 

 
(b)

Figure 5. (a) Isotherm plots of data taken from IR camera. (b) Photograph of plume at 
approximately the same time.  Note the similarity of spatial extent between plots and picture. [7] 

Imaging FTS of plumes. 

Rusch et al. [17] and Flores-Jardines et al. [18] used a Scanning Infrared Gas 

Imaging System of High Resolution (SIGIS HR) to collect hyperspectral images of 

commercial aircraft exhaust plumes.  The SIGIS HR, which can be seen in Figure 6, was 

comprised of a non-imaging FTS, an IR camera, a scanning mirror system equipped with 

stepper motors, two digital signal processing (DSP) boards, a computer and monitor.  The 

FTS, a Bruker OPAG 22, was equipped with a mercury cadmium telluride (MCT) single-

pixel detector responsive in the spectral region 680 – 3500 cm-1 (2.86 – 14.7 µm).  The 

IR camera had a Jenoptik Variocam Head.  The first DSP was dedicated to the FTS; it 

controlled the mirror movement, data acquisition, preprocessing of the spectral data, and 

communication with the PC.  The second DSP controlled the IR camera and collected 

images from the camera for viewing on the computer monitor.  The instantaneous field of 

view (IFOV) of the FTS was 15 mrad, 4 mrad when equipped with a telescope.  The 
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minimum step size of the scanning mirror was less than 0.1°, with a total field of regard 

of 285° by 80°. [17]  

 

Figure 6. The SIGIS HR with components identified. [17] 

Due to the experimental setup within an airport, it was necessary to minimize 

interference with airport operations and maximize collection time.  A fast (17 spectra per 

second), low resolution (56 cm-1) scan of the area of interest was performed by rastering 

the field of view using the scanning mirror.  A temperature distribution was generated as 

well as a spectral map, which was used to locate the optimal mirror orientation for 

obtaining high concentrations of chemical species.  To find regions with strong emission, 

calculations of peak CO2 intensity versus baseline intensity and band-integrated CO2 

intensity versus band-integrated baseline intensity were computed.  Once the scanning 

mirror was positioned on the pixel with the strongest CO2 emission, a high resolution 

scan (0.2 cm-1) was completed for the determination of chemical species concentrations.  

The system was automated to perform the alignment in as little time as possible, so as to 

allow for the maximum collection time possible.  As discussed previously, the high 

resolution collection had an SNR lower than a low resolution collection of the same 
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integration time, due to the increased number of spectral bins, so to achieve a suitable 

SNR coaddition of multiple datacubes was necessary. [17]   

Although this system was capable of hyperspectral operation, a raster scan of the 

field of view was necessary to acquire a hyperspectral datacube.  In some scenarios, this 

can be an advantage due to the relatively short collection time necessary to achieve the 

same SNR compared to an IFTS utilizing an array of pixels at the same spectral 

resolution; the ability to capture a scene with spatial extent on the order of the IFOV and 

with a small time constant (i.e. rapidly varying) is improved.  However, this can also be a 

disadvantage when collecting datacubes of scenes with a spatial extent larger than the 

IFOV and with a large time constant (i.e. slowly varying). 

Flores-Jardines et al. [18] used the SIGIS HR using the techniques described by 

Rusch et al. [17] to measure high resolution (0.2 cm-1

6

) spectral emissions of the exhaust 

plume of the CFM56-7B24 engine on a Boeing B737-7Q8.  Measurements were also 

taken against a diesel powered burner.  Temperature and chemical species concentration 

distributions were produced by comparing the collected spectrum to a theoretical 

spectrum via the least squares fitting algorithm.  The theoretical spectra and subsequent 

fitting were performed using MAPS, the same software suite as was used by Schäfer et 

al. [ , 12] and Schurmann et al. [14].  The MAPS software was able to estimate the 

concentrations of CO2, H2O, CO, and NO in the exhaust plume of both the CFM56-7B24 

engine and diesel powered burner.  The concentrations were then used to determine 

emission indices using Equation (4) in the same manner as Schäfer et al. and Schurmann 

et al.  The average of three measurements produced an emission index for CO of 29 g/kg, 
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compared to the ICAO result of 22 g/kg, and an emission index for NO of 4.21 g/kg 

compared to the ICAO result of 4.4 g/kg. [15]  

In a laboratory, Flores-Jardines et al. took measurements of a diesel powered 

burner exhaust plume using the same techniques as for the CFM56-7B24 engine.  The 

laboratory environment allowed time for a full raster scan of the burner plume at high 

temporal resolution (0.2 cm-1

Summary 

).  Using the same post-processing techniques as Rusch et 

al., a hyperspectral datacube of CO, NO, and temperature was produced from the data.   

A brief description was presented on a few of the advantages and disadvantages 

of IFTS over other forms of imaging spectroscopy, and a few of the advantages to the 

MWIR band were discussed.  The IFTS method provides flexibility in the selection of 

many collection parameters, and the MWIR band is ideal for remote detection of turbine 

engine exhaust plume emissions.  Related work was also discussed.  The SIGIS HR was 

optimized to find the region of greatest CO2 emission and determine the emission indices 

quickly and efficiently; the FIRST-MWE used in this research was not optimized in this 

way.  Due to the emergent nature and unique properties of the FIRST-MWE, it required 

much more post-processing to produce relevant data.  Although not yet optimized for 

speed, the FIRST-MWE has already demonstrated the benefit of collecting vast amounts 

of data when observing turbine engine exhaust emissions through the production of 

spatial distributions of temperature and chemical species concentration pathlength.  The 

following description of the experimental setup provides necessary background 

information for the post processing that follows. 
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III. Experimental Setup 

The Telops FIRST-MWE was used to collect hyperspectral imagery of a Turbine 

Technologies SR-30 turbojet in two experimental campaigns.  The first campaign, 

conducted on 01 July 2008, was reported on previously [27].  The second campaign was 

conducted on 05 November 2008 at building 194, Wright-Patterson Air Force Base 

(WPAFB), OH.  The second experimental campaign will be focused on due to the 

extended analysis performed on this data set. 

Physical Layout 

In the experimental campaign of 05 November, hyperspectral imagery of turbine 

engine exhaust was collected from a side-plume vantage point with the FIRST-MWE 

positioned 11.2 meters from the engine, as shown in Figure 7, (a) – (d). 

One issue uncovered during the July campaign was the need to use an extremely 

low integration time, 5 µsec, when collecting against the turbine engine, which was the 

lower limit the FPA could achieve.  This had the potential to produce corrupted data.  The 

short integration time was necessary in order to avoid saturation at ZPD.  In order to 

increase the integration time without saturation, the FIRST-MWE was fit with a variable 

diameter aperture at the aperture stop.  Figure 8, (a) – (d), show the Telops FIRST-MWE 

with and without the variable diameter aperture. 

This variable diameter aperture was set at 14% of the original aperture stop 

diameter for the duration of the campaign, which allowed the integration time to be set at 

a more reasonable 50 µsec for all collections.  Because the data used to calibrate the 

hyperspectral images were collected with the same aperture stop configuration, use of the 
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aperture made no impact on the calibration process.  If, however, the data were to be 

calibrated with blackbody data taken without the same diameter aperture, it would be 

necessary to include a factor relating the two aperture sizes in order to account for the 

decreased number of photons reaching the FPA.  Additionally, if the integration times 

were varied between the collections, a factor relating the integration times would be 

necessary as well.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. (a) Diagram of experimental setup at Building 194, WPAFB, OH (image courtesy of Google 
Images), (b) a view of the setup from the perspective of the Telops FIRST-MWE (foreground), (c) the 
Turbine Technologies SR-30 turbojet engine, thermocouple rake, and cold corner, (d) a view of the 
setup for the 5 November experimental campaign.  The Telops FIRST-MWE is the instrument on the 
right. 
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(a) 

 
(c) 

 
(b) 

 
(d)

Figure 8. (a) Variable aperture installed on the FIRST-MWE in order to reduce total radiance 
observed, (b) a close-up false color image clearly shows the setting of the variable aperture used 
throughout the experimental campaign, (c) a close-up view of variable aperture installed on the 
FIRST-MWE, (d) a close-up view of the front optic of the FIRST-MWE, without variable aperture 
installed. 

The FPA of the FIRST-MWE was spatially windowed from 320x 256 pixels to 

200x64 pixels in order to decrease collection time.  With a 0.35 mrad IFOV, the spatial 

resolution was 3.9x3.9 mm2 per pixel, with a total field of regard of 0.77x0.25 m2 at the 

object plane.  At a spectral resolution of 1 cm-1 and an integration time of 50 µsec, 

approximately one hyperspectral datacube was collected every five seconds.  Between 

one hundred fifty and two hundred hyperspectral datacubes were collected for each fuel 

type and engine setting combination, requiring up to 17 minutes of collection time per 
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setting.  The number of collections was chosen for future co-addition of data to increase 

the SNR.   

In addition to the measurements taken by the FIRST-MWE, six k-type 

thermocouples were positioned in the plume, and two k-type thermocouples were 

positioned outside and away from the plume.  The thermocouples measured a recovery 

temperature at a rate of 1.1 Hz.  The thermocouples did not capture static temperature 

because they do not account for the turbulence in the flow; however, static temperature 

can be obtained from recovery temperature, the details of which are discussed in 

Appendix A.  The six in-plume thermocouples were used for comparison with 

temperatures obtained via modeling.  Three thermocouples were positioned 

approximately 21 cm from the exit plane, one on the axis of the turbojet, the others offset 

by approximately 2 cm to the left and right.  Three thermocouples were positioned 

approximately 42 cm from the exit plane.  The positioning of the second row was offset 

from the first, with the right-most thermocouple placed along the axis of the turbine 

engine, the middle thermocouple approximately 2 cm to the left, and the left-most 

thermocouple placed approximately 2 cm more to the left.  The setup can be seen in 

Figure 9, (a) – (c).   

The SR-30 turbojet was operated with two types of fuel, low sulfur diesel and K-1 

kerosene [28, 29].  With each fuel type, the engine was run for an extended period before 

data collection to allow the system to achieve a stable operating condition.  The engine 

was operated at two fuel flow rate settings for each fuel type, 300 and 225 cm3/min.   
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(a) 

 
(b) 

 
(c) 

Figure 9. (a) A close-up view of the six thermocouples, looking down the axis of the turbine engine.  
The offset thermocouples, 42 cm from the exit plane, are out of focus, (b) a perspective view of 
thermocouple rake and turbine engine, (c) an axial view of the turbine engine and thermocouple 
rake.  The offset thermocouples, 42 cm from the engine exhaust exit plane, are out of focus. 

In order to further reduce the amount of background radiation, a custom built 

66x66x122 cm3 blackbody was placed in the background of the scene.  Figure 7, (b) and 

(c), shows the blackbody, which had a shape similar to a corner cube, exposed on only 

two sides to aid in preventing direct solar illumination.  A pump circulated water across 

the surface, keeping the blackbody near ambient temperature.  Due to issues related to 

chiller performance, it was not possible to achieve temperatures below ambient. 
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Weather data was collected by the Air Force Weather Agency (AFWA), 

Detachment 3, on Wright-Patterson AFB Area C.  The weather station provided the 

Meteorological Terminal Aviation Routine Weather Report (METAR), which was 

converted to International System (SI) units, as shown in Table 1.   

Table 1. Weather conditions reported for the experimental campaign conducted on 5 November 
2008, as provided by the Air Force Weather Agency.  The format is standard METAR, converted to 
SI units and test-site elevation. 

EST 
Time 
(24-

hour) 

Wind 
Speed 

(km/hr) 

Wind 
Direction 

(degrees from 
North) 

Visibility 
(km) 

Temperature 
(K) 

Dew 
Point 
(K) 

Relative 
Humidity 

(%) 

Static 
Pressure 

(kPa) 

0858 00 000 16 280 278 87 99.06 
0955 00 000 16 285 280 71 99.06 
1055 00 000 16 290 280 52 99.03 
1155 00 000 16 293 280 43 98.99 
1255 00 000 16 295 280 38 98.86 
1316 6 Variable 16 295 280 38 98.83 
1325 00 000 16 295 280 38 98.83 
1355 6 Variable 11 296 280 36 98.80 
1455 9 250 16 296 280 36 98.80 
1555 11 130 16 296 278 36 98.70 
1655 7 190 16 294 278 40 98.67 

 

The original pressure measurements provided by the METAR were collected at 

251 m elevation and reported in units of inches of mercury at sea level.  These 

measurements were converted to kPa at the test location elevation of 256 m using a 

correction based on the US Standard Atmosphere, 1974 [30, 31]. 

Although there are many steps necessary in order to calibrate the Telops FIRST-

MWE, no calibration process can be performed before data is collected; therefore, before 

data could be interpreted, it was necessary to utilize data collected against blackbodies 

during the experimental campaign in order to characterize the instrument.  Before, 

during, and after the data collection against the turbine engine, hyperspectral datacubes 
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were collected against blackbodies at two temperatures.  A total of five sets of blackbody 

files were collected, with twenty hyperspectral datacubes at two temperatures collected 

per set.  These would later be used in post-processing to characterize the FIRST-MWE 

and calibrate the data collected against the turbine engine exhaust plume. 

Summary 

The experimental setup was outlined, showing the major details of the 5 

November 2008 experimental campaign at WPAFB.  The FIRST-MWE was utilized to 

collect hyperspectral datacubes at 1-cm-1 spectral resolution and 4-mm2 spatial resolution 

per pixel against the academic class SR-30 turbojet engine, which was run with two fuel 

types, diesel and kerosene, and two fuel flow rates per fuel type, 300 cm3/min and 225 

cm3/min.  A cooled blackbody was used to create a uniform background.  Six 

thermocouples were placed in the plume for later comparison with temperatures extracted 

from the spectral information.  Weather data was recorded and reported by AFWA, 

Detachment 3, which is used later for determining lower limits on the concentrations 

within the plume extracted from the spectral information.   

No calibration was performed on the FIRST-MWE prior to testing.  In order to 

extract information from the spectrum for comparison with these measurements, it is 

necessary to perform a calibration of the data collected by the FIRST-MWE during post-

processing.  Characterization of the FPA, to include non-uniformity of the FPA, the 

detector spectral response, and the correlation between the two, as well as the impact 

SCAs have on the data, must be addressed in order to properly calibrate the spectra.  

These processes enable accurate interpretation of the data.   
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IV. Instrument Characterization 

As stated previously, the FIRST-MWE has many calibration details which must 

be completed before data can be calibrated and analysis can be accomplished.  

Additionally, there have been few publications characterizing the Telops FIRST family of 

instruments [32], none of which cover the details specific to the FIRST-MWE.   

In order to produce calibrated spectra, it is necessary to characterize the focal 

plane array (FPA) and understand the effect a rapidly varying scene will have on the 

ability to collected high SNR data.  FPA characterization includes identifying the non-

uniformity due to variations in the photon response and dark current at the individual 

pixel level, as well as the spectral response of the InSb detector and the spectral offset 

due to instrument self-emission.  Methods were developed to account for the effect scene 

change artifacts (SCAs) had on the SNR.  All instrument characterization work has been 

completed to a level sufficient to enable progression of the work.  In most cases, this 

means achieving bounds on the accuracy of a given method, and not optimization. 

Focal Plane Array Characterization 

FPA characterization is necessary for IFTS systems in order to calibrate the raw 

data output.  The FIRST-MWE does not have on-board software to correct variations 

across the array, and the spectral response of the detector was also unknown.  In order to 

account for the pixel-to-pixel variations, a NUC was accomplished.  To calibrate the raw 

data, it was necessary to determine the spectral response of the InSb detector. 
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Non-Uniformity Correction. 

The Telops FIRST-MWE was equipped with an Indigo Systems manufactured 

indium antimonide (InSb) FPA, which exhibited a variation in the pixel-to-pixel output 

for a similar photonic input.  This is known as non-uniformity of the FPA, which is 

usually caused by imperfections in the readout integrated circuit (ROIC) manufacturing 

process [33].  This non-uniformity has at least two sources, the pixel-to-pixel variation in 

photon response and the pixel-to-pixel variation in dark current.  Photon response can be 

described as the number of electrons generated for a number of photons incident on the 

InSb detector.  Dark current is the amount of current received from a pixel when no 

photons are incident on the InSb detector, a result of the reverse-biased ROIC [34].  Both 

causes of non-uniformity can be corrected in post-processing; by collecting hyperspectral 

datacubes of an object with known emissivity, the pixel-to-pixel variation in photon-

response and, if necessary, the pixel-to-pixel variation in dark current can be 

compensated for.   

This NUC was accomplished using two methods to better understand the impact 

variations in photon response versus dark current had on the uniformity of the FPA.  The 

first method could be completed either before or after Fourier transform because both the 

NUC and the Fourier transform are linear processes.  The second method relied on a 

theoretical blackbody emission spectrum, as given by Planck’s equation, and must be 

completed after the Fourier transform.   

The first method used only a gain term to account for the pixel-to-pixel variation 

in photon response, making the assumption that the dark current offset was minimal and 
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could be ignored.  The second method used an offset term in addition to the gain to 

account for the dark current present in the FPA.   

The first method used to correct the FPA relied on data collected from a single 

wide-area blackbody set at 80 °C.  If the instrument was ideal, the integrated spectrum of 

all pixels would be the same for each pixel.  It was observed, however, that the values at 

each pixel were not uniform across all pixels, attributable to both a non-uniformity of the 

pixels and a noise component.  With the assumption that the non-uniformity did not vary 

in time, performing an average over all the files of the same blackbody temperature 

reduced the noise component of the non-uniformity without affecting the pixel non-

uniformity.  Twenty hyperspectral datacubes were collected and averaged together to 

produce a single low-noise hyperspectral datacube.  The raw data was averaged over all 

spectral bins to produce a single value for each pixel.  This can be seen in Figure 10. 

 

Figure 10. The integrated spectrum of a blackbody radiator set at 80 °C.  The spectrum was 
averaged over twenty blackbody files of the same temperature to reduce noise.  The pixel-to-pixel 
variation seen is attributed only to differing photon responses at each pixel. 

The spectrally integrated pixel value was then used to correct the blackbody and 

turbine engine data by dividing by the median pixel value; this process was completed for 

all pixels.  The equation is given by 
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    (5) 

where  is the temperature-dependant integrated signal at each pixel, , is 

the photon response of each pixel, and  is the median value of , taken 

over all pixels after integrating the signal.   

The photon response was applied to the raw data in the following manner. 

    (6) 

or equivalently, 

   (7) 

where  is the photon response corrected spectrum at each pixel location, and 

 is the photon response corrected interferogram at each pixel location. 

When the single blackbody NUC was accomplished in the spatial domain, it 

insufficiently accounted for the non-uniformity of the FPA because it did not sufficiently 

correct different temperature blackbody inputs.  This prompted the incorporation of a 

two-point NUC to attempt to account for the non-trivial amount of DC bias.   

The two on-board blackbodies, set at 20 °C and 80 °C, respectively, were used.  

Twenty hyperspectral datacubes were collected at each temperature and averaged 

together to produce one low-noise hyperspectral datacube per temperature.   The photon 

response and dark current offset were found using the following set of equations. 

  (8) 

  (9) 

where   and  are the temperature-dependant signals observed 

by the FIRST, averaged over all spectral bins at each pixel and temperature, with i and j 
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pixel indices and temperatures °C and  °C; the photon response of each 

pixel is represented by    is Planck’s blackbody equation, averaged over all 

spectral bins, which represents the uniform signal;   is the dark current of each 

pixel.  These two equations and two unknowns were solved to find the gain and offset at 

each pixel.  Figure 11 shows, respectively, a representative FPA gain and offset produced 

via this method. 

The photon response and dark current offset were applied to the data in the 

following manner. 

   (10) 

By accounting for both the photon response and dark current offset, the two-point 

NUC captures much of the pixel-to-pixel variation of the FPA.  Although slight 

variations exist, later sections discuss the impact this has on the calibration process. 

Detector Spectral Response. 

In addition to non-uniformity in the photon response between pixels, the InSb 

material, which comprises the detector layer of the FPA, has a different response to each 

wavelength of light to which it is sensitive.  This is known as the spectral response of the 

detector.  According to Telops, the FIRST-MWE manufacturer, this InSb material has a 

non-uniform spectral response to light of 1818 – 6666 cm-1

In order to convert the spectral data collected by the FIRST-MWE into 

radiometric quantities and determine spatial distribution maps of temperature and 

chemical species concentrations, it was necessary to characterize the spectral response of 

the InSb detector of the FIRST-MWE.  The spectral response, in an ideal case, looks like 

 (1.5 − 5.5 µm) [35].   
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a sharp increase at the cutoff wavenumber, followed by a linear decrease toward zero 

with increasing wavenumber [34].  Figure 12 shows an example of what a spectral 

response curve looks likes.  This spectral response curve was computed for an InSb 

detector of an ABB Bomem MR-154 FTS.  The spectral response of the FIRST-MWE 

InSb detector should resemble this lineshape. 

 
(a) 

 
(b) 

Figure 11. The FPA non-uniform photon response (a) and dark current offset (b).  These gain and 
offset terms were calculated using blackbodies at two temperatures, and are used to perform a NUC 
on the FPA. 
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Figure 12. An example InSb detector spectral response curve, taken from a detector used in an ABB 
Bomem MR-154 FTS.  The spectral response of the FIRST-MWE detector should resemble this 
lineshape. 

The spectral response relates the observed signal to a radiometrically calibrated 

signal and instrument self-emission radiance,  

  (11) 

where  is the uncalibrated, non-uniformity corrected signal the instrument 

receives,  is the spectral response of the InSb photodetector,  is the 

calibrated spectral radiance of the scene and  is the calibrated spectral radiance of 

the instrument self-emission.  This can be rewritten as a first order linear equation,  

   (12) 

where  is the spectral gain, and  is the spectral offset, 

a product of the spectral gain and the instrument self-emission.  The assumption was 

made that the instrument self-emission is without a pixel-to-pixel variation. 
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By utilizing the known uniform spectrum of the on-board wide-area blackbody, 

the pixel-to-pixel variation is removed, .  Using a blackbody at 

two temperatures, Equation (12) reduces to two first-order linear equations with two 

unknowns,  and .   

   (13) 

   (14) 

where  is Planck’s blackbody radiation function at temperature T.  Even though 

the spectral response is theoretically the same for each pixel, in order to account for any 

residual non-uniformity in the FPA, the spectral response was calculated for each pixel.   

The spectral gain for each pixel was very noisy towards the upper end of the 

detector’s spectral range, owing to the fact that the blackbody signal was very low in that 

region, creating a low SNR.  Due to this large amount of noise, the spectral gain curves 

for each pixel were smoothed using a ninth order polynomial.  The ninth order 

polynomial was selected for ease of use; a three-piece cubic spline was able to fit the data 

with similar accuracy, but is not shown here. 

As can be seen in Figure 13, the spectral gain curves contained atmospheric 

absorption features due to the path between the blackbody, abutting the front optic, and 

the detector.  These absorption features are due to H2O in the 1800 – 2000 cm-1 (5 – 5.5 

µm) region, and CO2 in the 2250 – 2400 cm-1 (4.2 – 4.4 µm) region.  The H2O 

absorption features were small enough to disregard the impact they had on the 

polynomial fit, however, the CO2 absorption feature required masking of that spectral 

region.  Figure 13 shows the average spectral response as well as the average of the 
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polynomial fit to each pixel.  Figure 14 shows the spectral gain and offset for each pixel, 

as well as the average of each. 

 

Figure 13. The spectral response of the InSb detector, averaged over all pixels, as well as the average 
polynomial fit to each pixel spectral response curve.   

 
(a) 

 
(b)

Figure 14. The spectral response (a) and spectral offset (b) of each pixel, as well as the average and 
standard deviation of all pixels.  The outlying lines are due to bad pixels in the FPA.  A ninth order 
polynomial was fit to the spectral response.   
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Application of these values allows for the radiometric calibration of the turbine 

engine exhaust data.  Equation (15) shows the application of the spectral gain and offset 

to obtain calibrated spectra 

   (15) 

where  is the calibrated spectrum at each pixel, and  is the non-

uniformity corrected turbine engine exhaust spectra at each pixel.  Figure 15 shows an 

example calibrated spectrum. 

 

Figure 15. A spectrum collected by the FIRST-MWE.  One hundred fifty datacubes were averaged, 
followed by the application of the NUC and spectral gain and offset.  These data are at pixel (170, 32) 
of the diesel fuel type, 225 cm3

The calibration process was applied to both the average turbine engine exhaust 

plume hyperspectral datacube and the individual blackbody hyperspectral datacubes.  The 

individual blackbody hyperspectral datacubes, once calibrated, were used to determine 

the NESR of the instrument.  Telops has published a method of calculating the NESR of 

/min fuel flow rate. 
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their FIRST family of instruments [32], which was used here to produce an NESR for the 

FIRST-MWE.  The standard deviation in the spectrum of a representative pixel, taken 

over all off the calibrated blackbody hyperspectral datacubes, represents the NESR.  

Figure 16 shows the NESR computed by this method. 

 

Figure 16. The NESR of the Telops FIRST-MWE. 

Once the spectra have been calibrated, it is possible to begin analysis of the data.  

One final point on FPA characterization will be made prior to looking at the effects of a 

changing scene on the data.  This topic addresses the unresolved causes of FPA non-

uniformity. 

Spectral Response and Photon Response Correlation. 

It is interesting to note that the pixel-to-pixel photon response distributions, both 

single and two-point, were correlated to the spectral response of each pixel.  It was 

originally thought that a proper NUC should remove this correlation entirely.  Due to the 
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correlation between spectral gain and photon gain, it became evident that the NUC did 

not account for all pixel non-uniformity.  A suggestion that the FPA exhibited higher 

order non-uniformity was made, along with a suggestion that differences in optical 

coating thickness could lead to the correlation.  Although neither potential cause was 

fully explored, it was determined that by performing the two temperature non-uniformity 

correction, the correlation was greatly reduced.  Figure 17 (a), shows an example of the 

correlation observed when performing a NUC without an offset.  For the spectral gain, 

the spectral bin of peak response was selected, approximately 1970 cm-1

 
(a) 

 (5.1 µm). 

 
(b)

Figure 17. The photon response per pixel plotted against the spectral response per pixel in a peak 
emission region shows strong correlation between the two in the case when the offset is ignored (a), 
and shows very little correlation between the two in the case when the offset is included (b). 

When the NUC was performed in the spectral domain and included an offset, the 

correlation between photon response and spectral response dramatically reduced.  The 

correlation coefficient was originally greater than 0.8, and reduced to less than 0.08.  

Figure 17 (b) shows the photon response versus spectral response for the case of a two 

temperature NUC.  The decrease in correlation is due to the better non-uniformity 

correction of the two temperature method.  When performing the one temperature NUC, 
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not all causes of non-uniformity in the FPA were accounted for.  When calculating the 

spectral gain and offset, the spectral gain incorporated residual non-uniformity, which 

caused the correlation.  By including the offset term in the two temperature non-

uniformity correction, a dramatic reduction in correlation between the photon response 

and spectral response was observed.   

Scene Change Artifacts 

In addition to factors that impact the data within the instrument, there are factors 

outside the instrument which will impact the quality of the data collected.  Due to the 

nature of the object under observation, it was necessary to address the impact of a 

changing scene on the data.   

Scene change artifacts (SCAs) are variations in the interferogram due to 

variations in the scene under observation which occur when the time required to collect a 

hyperspectral datacube is longer than the time constant of the scene.  SCAs are not noise; 

they are a manifestation of the scene undergoing rapid changes in radiance, and thus are 

real phenomena.  In this study, SCAs were a direct result of the highly turbulent nature of 

the turbine engine exhaust, in which non-uniform hot gas emissions from the turbine 

produced temporary localized pockets differing in total apparent radiance.  Because it is 

not possible to separate SCAs from noise in a spectrum with SCAs, the result is an 

increase in spectral variation from that which would be obtained when observing a scene 

without SCAs.  The impact of SCAs on the variation of a spectrum can be seen in Figure 

18, which compares the NESR of the FIRST-MWE with a spectrum impacted by SCAs.  

The SCAs significantly increase the variation over the NESR of the instrument. 
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Figure 18. Visualization of the impact SCAs have on the variation in a spectrum, compared with the 
NESR of the instrument.  The variation due to SCAs is much greater than the NESR.  This data 
taken from diesel fuel, 225 cm3

In this study, the time constant of the scene is too small for the Telops FIRST-

MWE to collect a hyperspectral datacube free of SCAs.  In the collection of a single 

hyperspectral datacube, the Telops FIRST-MWE captures a two-dimensional image at 

each OPD mirror position the same way a single-pixel FTS sweeps through each OPD 

mirror position.  To achieve the 1-cm

/min flow rate, pixel (170, 32). 

In order to produce high signal-to-noise ratio data for analysis, it was necessary to 

minimize the impact SCAs had on the data.  Three methods were investigated for the 

purpose of increasing SNR in the spectra. 

-1 spectral resolution desired, the mirror necessarily 

swept through 18,956 mirror positions at a rate of approximately 250 µsec per OPD 

mirror position.  Figure 19 demonstrates that the time constant of the turbine exhaust was 
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not only less than the time required to collect a hyperspectral datacube, it was less than 

the 250 µsec required to collect data at each OPD mirror position.   

 
(a) 

 
(b) 

 
(c) 

Figure 19. The FPA at a single interferogram OPD mirror position (a), incremented by one OPD 
mirror position (b), and the difference between the two (c).  Scene change between the OPD mirror 
positions is detectable. 
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In addition to this constant scene change created by localized pockets of total 

apparent radiance, occasional flare-ups from the turbine engine were observed, which can 

be characterized as intense, localized bursts of total apparent radiance.  These flare-ups 

were of a short duration but very large in magnitude, producing peak values on the 

FIRST-MWE at OPD mirror positions other than the center-burst at ZPD.  Figure 20 

displays an interferogram from the diesel fuel, 225 cm3

 

/min flow rate set, file 50684, 

pixel (170, 32) containing a flare-up around an OPD of 0.38 cm.   

Figure 20. An interferogram taken from file with a flare-up at OPD mirror position 5882.  The 
interferogram was taken from pixel (170, 32), diesel fuel with a flow rate of 225 cm3/min. 

Figure 21 displays the FPA at OPD mirror position 5877, 5882, and 5887, 

showing the temporal and spatial propagation of the flare-up.  The three images displayed 

are separated temporally by approximately 1.25 ms. 
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(a) 

 
(b) 

 
(c) 

Figure 21. FPA images showing the temporal and spatial propagation of the flare up.  The top image 
(a) is from OPD mirror position 5877, the middle image (b) is from OPD mirror position 5882, and 
the bottom image (c) is from OPD mirror position 5887.  Each image is separated temporally by 
approximately 1.25 ms. 

Due to the extremely short time constant of the turbine engine exhaust, it is not 

possible to avoid the presence of SCAs in the data.  Without considering and accounting 
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for these SCAs, it would not be possible to perform further analysis of the data.  Figure 

22 displays the uncalibrated spectrum from pixel (170, 32), produced from the raw data 

without averaging to account for SCAs.   

 

Figure 22. Uncalibrated spectrum showing the poor SNR obtained without accounting for SCAs.  
The spectrum was taken from pixel (170, 32), diesel fuel with a flow rate of 225 cm3

Methods of accounting for SCAs have been discussed elsewhere [11, 27], 

however, these center on the prevention or reduction of SCAs without further analysis.  

Prevention is not a viable method in this scenario; however, it has been shown that by 

averaging across the interferogram position values for each pixel, a picture which appears 

to represent a constant view of the plume emerges [27].  This as can be seen in Figure 23, 

which shows the average over all OPD positions for two hyperspectral datacubes, and the 

difference between them.  Both of these hyperspectral datacubes were taken from the 

diesel fuel, 225 cm

/min. 

3/min data set, in which there were 311 hyperspectral datacubes 
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collected, numbered 50212 – 50428 and 50612 – 50705.  The two shown in Figure 23 are 

hyperspectral datacubes 50616 and 50684.  The scene observed for these two turbine 

engine exhaust plume has a very similar distribution for all datacubes in this data set.   

 
(a) 

 
(b) 

 
(c) 

Figure 23. The FPA images show the average over the interferogram dimension of hyperspectral 
datacube 50616 (a) and hyperspectral datacube 50684 (b), and the difference between the two (c).  
Both were collected against the turbine engine running diesel fuel at a 225 cm3/min fuel flow rate. 



 

47 

Because it removes all spectral information, an average along the interferogram 

dimension is not useful except to show the average total apparent radiance of the turbine 

engine exhaust plume.  In order to improve the SNR to a level sufficient to produce clean 

spectra, it is necessary to reclaim the SNR lost due to scene change.  It has been shown 

that averaging over multiple datacubes increases the SNR of the data, which carries the 

implication that the SCAs are stochastic phenomena [27].  However, it has been shown 

that flare-ups occur in addition to the normal SCAs that plague interferograms.  Unlike 

normal SCAs, which were both positive- and negative-valued relative to the mean signal, 

flare-ups are only positive-valued.  Figure 24 shows the distribution of values for one 

pixel and one interferogram position each, across all datacubes.  Figure 24 (a) is at an 

interferogram point with no flare-ups, while Figure 24 (b) is at a point with two flare-ups.  

Figure 24 (a) resembles a zero-mean, normally distributed distribution, while Figure 24 

(b) does not.   

 
(a) 

 
(b)

Figure 24. Histograms of an OPD mirror position without flare-ups (a), and an OPD mirror position 
with two flare-ups (b).  Each data point in the histogram is a hyperspectral datacube at the same 
pixel and OPD mirror position.  Both histograms only used datacubes taken while observing the 
turbine running diesel fuel with a 225 cm3/min fuel flow rate. 
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A chi-square goodness-of-fit test shows that the distribution of Figure 24 (a) is 

reasonably Gaussian, with a p-value of 0.40, while that of Figure 24 (b) fails the null 

hypothesis, with a p-value less than 0.05; the flare-ups bias the data away from zero-

mean.  In order to avoid this bias and obtain a less noisy spectrum, it would appear to be 

necessary to perform either data filtering to remove flare-ups from the dataset before 

computing a mean over the datacubes.  This was determined not to be the case.  Figure 25 

(a) is a plot of both the mean and median interferogram, taken over 156 datacubes, while 

Figure 25 (b) is a plot of the corresponding mean and median spectra.  The differences 

between the two spectra are on the order of the NESR of the instrument. 

While it is apparent that the mean interferogram contains biased data 

corresponding to locations of flare-ups, and that the median interferogram is much 

cleaner in that respect, this does not substantially impact the corresponding spectra.  

Similarly, when a filter is applied to remove flare-ups and all other SCAs more than four 

standard deviations from the mean, much cleaner mean interferograms are produced.  

However, any differences become insignificant when converted to spectra.  Additionally, 

data filtering has no appreciable difference when taking the median value.  Due to the 

infrequent occurrence of flare-ups, data filtering does not significantly impact the 

corresponding spectra.  Figure 26 is a plot of both the filtered and unfiltered mean 

interferogram, while Figure 27 is a plot of the corresponding filtered and unfiltered mean 

spectra, with residuals. 



 

49 

 
(a) 

 
(b) 

Figure 25. The mean (blue) and median (black) interferogram for pixel (170, 32), taken over 156 
hyperspectral datacubes (a).  The mean interferogram is biased towards positive values, while the 
median interferogram is not.  The mean (blue) and median (black) spectrum for pixel (170, 32) taken 
over 156 hyperspectral datacubes, with the Residuals and NESR of the instrument (b).  The spectra 
are very similar.   Both (a) and (b) were taken from hyperspectral datacubes observing diesel fuel 
with a flow rate of 225 cm3/min. 
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(a) 

 
(b)

Figure 26. (a) Unfiltered interferograms of pixel (170, 32), from 156 hyperspectral datacubes, and (b) 
the same hyperspectral datacubes, filtered to remove all points more than four standard deviations 
from the mean.  These interferograms were taken from hyperspectral datacubes observing diesel fuel 
with a flow rate of 225 cm3

 

/min. 

Figure 27. Mean spectra from filtered (black) and unfiltered (blue) interferograms.  The difference 
between the two (red) is negligible.  These spectra were taken from hyperspectral datacubes 
observing diesel fuel with a flow rate of 225 cm3/min. 
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Summary 

The important factors related to characterization of the Telops FIRST-MWE were 

presented.  The FPA characterization tools necessary to produce calibrated spectra, such 

as the NUC and the spectral gain and offset of the detector, were developed, and a brief 

analysis of the impact SCAs have on data was presented.  These tools enable the 

calibrated spectra to be analyzed for the uncertainty in the calibration, and fit a model to 

the data to extract temperature and chemical species concentration pathlength 

distributions.  The tools necessary for these steps, namely error analysis and the radiative 

transfer model, are developed next. 
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V. Data Processing 

With the incorporation of results obtained from the non-uniformity correction, 

spectral gain and offset correction, and scene change artifact reduction, calibrated data 

can be used to extract information from the hyperspectral datacubes.  In order to 

determine the uncertainty associated with the calibrated spectra, which represents one 

measure of the quality of the calibration, an error analysis was performed.  The error 

analysis also enabled the determination of the main sources of uncertainty, to target areas 

for future refinement of the implemented calibration techniques.  In order to extract 

spatial distributions of temperature and chemical species concentration pathlength, a 

simple radiative transfer model was constructed to fit to the calibrated data.  This simple 

radiative transfer model is developed here. 

Error Analysis 

Due to the inherent nature of remote sensing, there is uncertainty in the 

measurement of a source.  Instrument noise, SCAs, and other temporally varying 

parameters of the scene, such as atmospheric constituents, pressures and temperatures, 

contribute to variations in the data.  Averaging of the raw hyperspectral datacubes, which 

averages the variations as well, requires some consideration, and is discussed in 

Appendix B.  One advantage to averaging in the spectral domain is that it removes the 

need to propagate error through the Fourier transform equation.  For that reason, despite 

the requisite increase in computation time, this analysis was completed using the spectral 

domain averaging technique.   
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When calculating the mean spectra, a standard deviation of the spectral 

information of each pixel is also calculated, and can be used to represent the uncertainty 

in the measurement.  This is done for both the blackbodies and the turbine engine exhaust 

data.  Figure 28 shows standard deviation from the mean for a representative pixel, 

representing the average of two hundred spectra.  The spectral features of H2O and CO2, 

observed at 1800 – 2000 cm-1 (5 – 5.5 µm) and 2300 – 2400 cm-1

 

 (4.2 – 4.3 µm), 

respectively, are due to atmospheric absorbance along the path inside the instrument, 

between the front optic and the detector. 

Figure 28. The average, uncalibrated spectrum of pixel (170, 32) from an 80 °C blackbody (blue), 
with standard deviation (green). 

The standard deviation of the blackbody shown in Figure 28 was used to 

determine the uncertainty in the non-uniformity correction photon gain term.  The 

equation for calculating the photon gain is given by 
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   (16) 

where  is the non-uniformity correction photon gain;  and 

 are the hyperspectral datacubes integrated over the spectrum at blackbody 

temperatures   °C and  °C;   is Planck’s temperature-dependant 

blackbody radiation equation.  The terms in Equation (16) have an uncertainty associated 

with them, resulting from the variation across the blackbody files.  The equations 

determining the uncertainty are given by             

   (17) 

   (18) 

where  is the individual pixel and spectral position of the observed signal 

for a given temperature, and N is the number of spectral bins in the spectrum.  The 

variance of each pixel in the hyperspectral datacube integrated over the spectrum is given 

by , where  is the variance about each spectral bin.  There is 

no uncertainty associated with Planck’s equation. 

The equation for the variance in the photon response is given by  

   (19) 

where  is the variance in the photon response for each pixel. 

The equation for calculating the dark current offset is given by 

   (20) 

and the equation for the variance in the dark current offset is given by 

   (21) 
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Equation (10) has been rewritten here as a reminder of the application of the non-

uniformity correction, which can be utilized for both blackbodies and turbine engine 

exhaust data,   

   (10) 

 (20) 

where  is the non-uniformity corrected spectrum at each pixel,  is 

the raw hyperspectral datacube, averaged over all files of the same fuel type and flow 

rate.  The variance about each spectral position at each pixel is given by .   

Calculation of the variance of the spectral gain and offset is similar.   Recall 

Equation (12), the spectrum observed by the sensor, after non-uniformity correction, from 

a blackbody of temperature T, is given by 

   (12) 

where  is the observed spectrum, uniform across all pixels due to the non-

uniformity correction,  is the spectral gain term,  is Plank’s spectral 

radiance from a blackbody at temperature T, and  is the spectral 

offset term, a combination of the spectral gain and the instrument self-emission apparent 

spectral radiance.  By using a blackbody at two temperatures, the spectral gain and offset 

were obtained, 

   (21) 

   (22) 

The equations for calculating the variance in each is similar to that computed 

previously for the NUC gain,  
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  (23) 

   (24) 

where  is the variance in the spectral response, and  is the variance in the 

spectral offset. 

Because the spectral gain curve is known to be a smooth function, the spectral 

gain of each pixel was fit to a ninth order polynomial in order to smooth out the noise.  

Thus, the equation for the gain becomes 

   (25) 

where  are the polynomial coefficients.  To remove computational complexity, 

the previous calculation for the spectral gain variance is used, i.e. Equation (23).  The 

uncertainty associated with applying the spectral gain and offset to the blackbody and 

turbine engine exhaust data is straightforward.  The variance in the calibrated spectrum at 

each pixel in the hyperspectral datacube is  

 (26) 

Figure 29 shows an example calibrated spectrum compared against the theoretical 

planckian at the same temperature, as well as the residuals, the standard deviation of the 

calibrated data, and the NESR of the FIRST-MWE.  The CO2 absorption feature in 

Figure 29, observed at 2300 – 2400 cm-1 (4.2 – 4.3 µm), is due to atmospheric 

absorbance along the path inside the instrument, between the front optic and the detector.  

The increased variation in the spectrum is due to SCAs because this is a pixel from a 

single hyperspectral datacube, not an average. 



 

57 

 

Figure 29. A calibrated spectrum of pixel (170, 32) from a blackbody (green) with the theoretical 
planckian (blue).  The residuals (blue, subplot) of the calibrated spectrum against the planckian are 
on the same order as the uncertainty in the calibration (green, subplot), and the NESR of the FIRST-
MWE (red, subplot). 

In this way, the calibrated hyperspectral datacubes can be bounded by the 

uncertainty due to the variations in measurement.  These calibrated datacubes can now be 

used in a model fitting algorithm in order to obtain distributions of temperature and 

chemical species concentration pathlength. 

Model Production 

In order to show the capability of the Telops FIRST-MWE to extract spatial 

distributions of temperature and chemical species concentration pathlength, it is 

necessary to develop a model that can be fit to the data.  In order to use the model to 

extract physical properties from the plume, it is not sufficient to simply fit a curve to the 



 

58 

data; instead, it is necessary to build a model using the radiative transfer equations of the 

experimental setup in order to extract accurate physical information from the spectrum, 

such as plume temperature and chemical species concentration pathlengths.  The quality 

and fidelity of the model will determine the quality of the temperature and chemical 

species concentration predictions at each pixel.   

Development of the Spectral Model. 

The spectrum of each pixel in the calibrated hyperspectral datacube depends on 

many parameters which vary along the path between the FIRST-MWE detector and the 

cooled blackbody background.  The temperature of the cooled blackbody, the 

temperatures of the turbine engine exhaust plume, the absorption and emission 

coefficients of each chemical species, as well as their concentration, and the properties of 

the atmosphere between the two, such as temperature, pressure, and chemical species 

concentration, all impact the shape of the spectrum.  Additionally, the temporal evolution 

of the plume causes variations in spectral radiance per pixel, adding complexity to the 

interpretation of a temporally averaged spectrum.   

As a first step in the modeling process, two assumptions were made: the plume 

may be adequately modeled using a single temperature, and the average spectrum will be 

approximately represented by spectral emissions at an average temperature and 

concentration.  The average radiance of a temporally evolving emission spectrum is 

   (27) 

where  is the spectral emissivity of the plume, which depends on temperature, and, 

although not shown, chemical species concentration;  is the planckian function; 
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 is a radiance spectrum produced from the average temperature and 

chemical species concentrations. 

The two assumptions stated above are required at this early stage of model 

maturity in order to obtain reasonable results within a practical timeframe.  A detailed 

analysis is required to determine the accuracy and validity of these assumptions, which 

has not been accomplished at this time.  Therefore, the uncharacterized assumptions that 

a temporally evolving spectrum can be represented by a single average temperature and 

chemical species concentration will have an uncharacterized impact on the values 

extracted by the model. 

Figures 30 and 31 illustrate an example of one way in which the scene parameters 

impact the spectrum, the phenomenon of broader CO2 emission spectra for pixels closer 

to the engine exhaust exit plane. This widening of the CO2 emission line is due to higher 

rotational temperatures closer to the exit plane, moving energy into higher rovibrational 

transitions, which is consistent with the Maxwell-Boltzmann distribution.  This 

phenomenon can be observed at both high and low resolution, however, by comparing 

the spectra collected at 1 cm-1 with the spectra collected at 8 cm-1, it is possible to gain a 

sense of the advantage of increased spectral resolution; through visual inspection, it is 

apparent that the high resolution data is better able to show the spectral widening with 

temperature.  The high and low resolution normalized spectra can be seen in Figure 30 (a) 

and Figure 31 (a), respectively, which show the widening of the CO2 emission profile for 

higher temperatures.  The high and low resolution spectra correspond to pixels identified 

in Figure 30 (b) and Figure 31 (b), respectively.   
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(a) 

 
(b) 

Figure 30. Peak-normalized calibrated spectra at 1 cm-1 resolution from the 5 November 2008 
experimental campaign are shown overlaid (a), and correspond to the white pixels within the plume 
image (b).  These demonstrate the phenomenon of higher temperatures moving the energy into 
higher ro-vibrational transitions according to the Maxwell-Boltzmann distribution, and the increased 
ability to discern the temperature differences at higher resolution. 
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(a) 

 
(b) 

Figure 31. Peak-normalized calibrated spectra at 8 cm-1 resolution from the 1 July 2008 experimental 
campaign are shown overlaid (a), and correspond to the black outlined pixels within the plume image 
(b) [27].  These demonstrate the phenomenon of higher temperatures moving the energy into higher 
ro-vibrational transitions according to the Maxwell-Boltzmann distribution, and the increased ability 
to discern the temperature differences at higher resolution. 
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If all parameters were known, it would be possible, by incorporating all of the 

elements impacting the shape of the spectrum into a model, to replicate the calibrated 

spectrum observed at each pixel.  As in most remote sensing applications, it was not 

feasible to obtain in situ measurements of all necessary parameters at each pixel along the 

entire path between the background and detector.  Without the knowledge of exact 

temperatures, pressures, and chemical species concentrations in the plume or along the 

path between the plume and sensor, it becomes necessary to search for the best fit of the 

model to the data, fitting certain key parameters such as chemical species concentrations 

and temperatures of the plume at each pixel, and fitting chemical species concentrations 

in the atmosphere for the entire scene.  Without considering re-emission, the general form 

of this radiative transfer model is  

   

     

   

  

    (28) 

where  is the observed spectrum at the pixel 

indexed by i and j;  is the emissivity of the background;  is the planckian 

blackbody spectral radiance function at temperature,   and 

 are the atmospheric spectral transmittance and emissivity, respectively, 

along the path between the background and the plume;  and 
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 are the atmospheric spectral transmittance and emissivity, respectively, 

along the path between the plume and the FIRST-MWE;  and 

 are the spectral transmittance and emissivity, respectively, of the nth

 

 

layer of the plume at each pixel; , , and  are the temperatures of the 

background, plume, and atmosphere, respectively.  The diagram in Figure 32 gives a 

visual depiction of the radiative transfer model necessary to replicate the spectrum at 

each pixel.   

Figure 32. Diagram illustrating the radiative transfer model of the experimental setup. 

The model described in Equation (28) was attempted for a single pixel and two 

plume temperatures, however, it required several minutes of computation time to produce 

a single iteration.  The MATLAB scripts for this process are included in Appendix D.   
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This model is unsuitable for least squares fitting due to the number of variables 

required to be fit non-linearly; it is necessary to make simplifying assumptions.  As stated 

previously, in order to build a computationally efficient model, it was necessary to 

assume that the plume temperature and chemical species concentrations at each pixel 

could each be represented by a single average value, with the assumption that this 

represents the average spectrum.  This approximation considerably decreased the 

computation time of the model fit.   

Two assumptions regarding the radiance from the background were made.  One 

was to remove the plume transmittance, which would have required nonlinear fitting of 

the plume chemical species concentrations and temperatures, and the other was to 

approximate the emissivity as from a blackbody, .  The decision to remove 

plume transmittance was based on the notion that the plume absorption of the background 

radiance had a minimal impact on the emission spectrum.  Because plume emission is 

what is being fit, this could be ignored.   

Two approximations regarding the atmosphere were made.  It was determined that 

the path between the background and plume, approximately 1.2 m, was sufficiently small 

compared with the path between the plume and the FIRST-MWE, approximately 11.2 m, 

to ignore the transmission through and emission from that first path.  The emission from 

the second path was ignored as well, assumed to be of insufficient magnitude to warrant 

inclusion.   

Incorporating all these approximations, the radiometric model, which was used to 

replicate the spectrum for each pixel, conformed to the radiative transfer equation  
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    (29) 

where  and  are the average temperatures of the plume and atmosphere 

between the plume and FIRST-MWE, respectively. 

It is possible to simplify Equation (29) by making further approximations.  By 

assuming the plume and atmosphere are optically thin for the spectral region of interest, 

1800 – 3000 cm-1

   (30) 

 (3.3 – 5.5 µm), the spectral transmittance and emissivity of the plume 

and atmosphere are given by  

   (31) 

where  is the kth chemical species concentration multiplied by the 

pathlength at a pixel indexed by i and j, and  is the effective spectral 

molecular absorption cross section of the kth chemical species at that pixel.  The effective 

molecular absorption cross section is defined as a combination of the quantum-

mechanical dipole overlap matrix and the statistical temperature-dependent distribution 

of states [36].  The effective spectral molecular cross section for each molecule is 

retrieved from the HITRAN database, and incorporates the Maxwell-Boltzmann 

distribution with the dipole overlap matrix, making it temperature dependent.  The 

approximation in transmittance and emissivity is based on a series expansion of the 

exponential, which is valid for optically thin media.  The regime of optically thin media 

is subjective; however, a good rule of thumb is  for all 

spectral locations.  This relation was determined to hold for the turbine engine exhaust 

plume and atmosphere in question.  Equation (29) reduces to 
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   (32) 

In the spectral region of interest, the only molecules in the plume that emit 

enough to show in the spectra are H2O, CO2

  

, and CO.  Thus, the relation reduces further; 

 

   

   (33) 

where the only known parameter is , the spectral radiance 

observed by the sensor.  However, the temperature-dependent shape of 

, , , , and  

are known; the unknown parameter in each is the temperature, which is the same for the 

four plume effective cross sections, and the background temperature is the same for all 

pixels.  The concentration pathlengths of H2O, CO2

Additionally, a spectral axis multiplier was included to account for the different 

pathlengths the HeNe laser travels to each pixel.  Recall that the HeNe laser is used as the 

trigger for the collection of an interferogram point.  The path the HeNe laser travels is 

further for points on the FPA away from the optical axis than for the pixel on the optical 

axis.  The path difference results in a multiplicative factor for the spectral axis for the 

, and CO, the atmospheric chemical 

species concentrations, and the distribution of temperatures within the plume are 

unknown parameters.   
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pixels away from the optical axis, the magnitude depending on the distance from the 

optical axis.  Only a small correction is necessary to account for this difference, with 

values ranging from 0.9995 to 1.0005 across the entire FPA.   

One final approximation was incorporated.  The planckian blackbody functions of 

the background and any additional instrument self-emission were each replaced with a 

third order polynomial.  The planckian is smoothly varying, and is represented well by a 

third order polynomial.  The polynomial representing the background was multiplied by 

the atmospheric transmittance, while the polynomial representing the instrument self-

emission was not.  This was done in order to enable linear fitting of the coefficients 

instead of nonlinear fitting of the temperatures.  The final form of the radiative transfer 

equation used for spectral fitting is given by  

 (34)  

where  through  and  through , the polynomial coefficients, and , , 

and , the molecular concentration pathlengths, are the linear fit parameters; , 

the spectral axis multiplicative factor, the atmospheric concentrations of H2O, CO2

Spectral Model Fitting. 

, and 

CO, which impact the atmospheric transmittance, and  are nonlinear fit parameters. 

To determine the unknown values of the fit parameters, both linear and non-linear 

fitting algorithms were employed in order to fit the model to the observed spectra.  

Because of the many assumptions made in the production of the radiometric model used 
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for fitting, the potential that the model does not exactly replicate the data is high; in the 

case that the model does not exactly replicate the data, the model will not exactly match 

the spectrum, and the model must properly balance where to make the model fit the data.  

Because the goodness-of-fit measure was the minimization of squared error, it was 

necessary to weight the error in the spectra to account for a bias that occurred due to the 

large CO2 emission compared to the relatively small CO and H2O emission features.  

Without proper weighting, reduction of the CO2 error would take precedence; large 

errors in the fit of spectral emission features of CO and H2O would be permitted in order 

to reduce the error in the CO2 emission region.  To create a proper weighting, the 

spectrum of each pixel was integrated by region, 1800 – 2150 cm-1 (4.65 – 5.56 µm) for 

H2O, 2150 – 2250 cm-1 (4.44 – 4.65 µm) for CO, and 2250 – 2400 cm-1 (4.17 – 4.44 µm) 

for CO2

Before finding the plume temperature and chemical species concentration 

pathlengths for each pixel, the atmospheric concentrations of H

.  The largest value of the three integrated regions was divided by the number of 

spectral bins in each region.  This number became the weighting factor for each region of 

the spectrum to be used in the fitting algorithm. 

2O, CO2 and CO were 

determined using a subset of pixels.  Due to the short distance between the FIRST-MWE 

and turbine engine, as well as the physical layout of the test setup, excessive amounts of 

H2O, CO2, and CO were able to build along the path between the two during the 

experimental campaign.  This fact was only realized after the campaign was concluded, 

and it became important to find accurate values for the elevated concentrations of these 

chemical species along the path to properly account for atmospheric absorption of the hot 

plume emissions.  To find the atmospheric chemical species concentrations accurately, 



 

69 

but with minimal time, a computationally demanding recursive fit routine was 

implemented using representative pixels selected from across the FPA.  Figure 33 shows 

an image of the selected representative pixels.  The model fitting algorithm had two 

recursive loops, with three fitting routines, as illustrated with a flow chart in Figure 34.   

 

Figure 33. The seventeen pixels selected to represent the scene for determination of the atmospheric 
constituents.  The color scale is in units of W/cm2-Sr-cm-1

 

. 

Figure 34. Flow chart illustrating the model fitting algorithm.  Two loops, containing three least 
squares search routines, were used to determine the atmospheric constituents at representative 
pixels. 
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The outer loop contained a nonlinear least squares algorithm that varied 

parameters which had, approximately, no pixel-to-pixel variation. The parameters varied 

here were the atmospheric concentrations of CO2, H2O, and CO along the path between 

the FIRST-MWE and the scene.  The model was input with initial estimates for these 

atmospheric concentrations to allow progression to the inner loop.  These initial estimates 

were the approximate atmospheric levels, 388, 7425, and 177 parts per million by volume 

(ppmv) for CO2, H2

Once the initial estimates for the parameters in the first and second fitting routines 

were used to determine the linear coefficients, the plume temperature and spectral axis 

multiplier parameters were varied using a direct search algorithm in order to minimize 

the sum of squared error between the model and the calibrated data.  Once the parameter 

values were found that minimized the sum of square errors in the inner loop for each 

O, and CO, respectively [12].     

The inner loop contained the two other least squares fitting routines, which varied 

parameters that changed for each pixel.  The parameters fit with a nonlinear least squares 

algorithm were plume temperature and spectral axis multiplier.  Initial estimates of 310 K 

for the plume and unity for the multiplier were input in order to progress to the third 

fitting routine.   

The last fitting algorithm dealt only with parameters which could be fit using a 

linear least squares approach.  Chemical species concentration pathlengths were fit at this 

level.  As mentioned previously, in order to save time and computing resources, the 

planckian blackbody function representing the background was approximated as a cubic 

polynomial in order to enable linear fitting in the lowest level as well.  This reduced the 

computational complexity; otherwise the background had to be fit nonlinearly.   
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individual pixel, the outer loop parameters were varied and the whole process started over 

again.  These loops were continued until values were found for all parameters which 

minimized the summed error of all representative pixels. 

The atmospheric concentrations of CO2, H2O, and CO absorbing along the path 

between the turbine engine exhaust plume and sensor, as found by minimizing the sum of 

squared error, were 800 ppmv, 1624 ppmv, and 402 ppmv, respectively.  With normal 

values in the range of 388 ppmv, 6300 ppmv, and 177 ppmv, respectively, the values 

found through fitting are elevated over normal atmospheric concentrations for CO2 and 

CO, which was expected given the previously described experimental setup, which 

allowed a build-up of plume emissions along the path between the FIRST-MWE and 

turbine.  The value is low for H2O, which was difficult for the model to fit due to the 

small magnitude of the H2

This recursive algorithm was implemented on a subset of pixels in order to make 

the problem of identifying atmospheric parameters tractable.  Once these parameters were 

found, an iterative process was applied which utilized only the inner loop from the 

previous algorithm.  The plume temperature, spectral axis multiplier, and chemical 

species concentrations were found for all pixels by fitting the model to the calibrated data 

with the least amount of squared error.  This process was completed for each pixel, and 

required approximately 18 hours of computation time.  The values for plume temperature 

and chemical species concentration pathlengths were used to build spatial distributions of 

plume temperature and chemical species concentration pathlength.  Figures 35-37 show 

sample pixels of the model fit to the spectrum at different locations throughout the scene.  

O spectral features. 
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Due to the low resolution of the entire spectral range, Figures 35-37 show close-up views 

of the CO and CO2 spectral emission regions for selected pixels.

 
(a) 

 
(b) 

 
(c) 

 
(d)

Figure 35. The model (red) fit to the spectrum (black) with residuals (blue) and NESR (green) at 
pixel (170, 31) (a), pixel (100, 31) (b), pixel (60, 31) (c), and pixel (24, 31) (d).  All are with diesel fuel 
at a 225 cm3/min flow rate.   
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(a) 

 
(b) 

 
(c) 

 
(d)

Figure 36. The model (red) fit to the CO emission spectrum (black) with relative residuals (blue) at 
pixel (170, 31) (a), pixel (100, 31) (b), pixel (60, 31) (c), and pixel (24, 31) (d).  All are with diesel fuel 
at a 225 cm3

  

/min flow rate. 
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(a) 

 
(b) 

 
(c) 

 
(d)

Figure 37. The model (red) fit to the CO2 emission spectrum (black) with relative residuals (blue) at 
pixel (170, 31) (a), pixel (100, 31) (b), pixel (60, 31) (c), and pixel (24, 31) (d).  All are with diesel fuel 
at a 225 cm3

Summary 

/min flow rate. 

The error analysis equations necessary to produce uncertainty bounds on the 

calibrated spectrum, as well as the radiative transfer equations governing the model, were 

developed.  Error analysis provides one way to judge the quality of the calibration 

process, indicating how much uncertainty is added to the spectra when calibration is 

performed.  Additionally, the error analysis provides insight into the greatest causes of 

uncertainty.  The radiative transfer equations used to build the model were developed as a 



 

75 

way to fully explain the parameters involved in the spectral fitting, and to motivate an 

explanation of the spectral fitting process.   

The uncertainty bounds produced from the error analysis are presented with the 

calibrated apparent radiance results in the following chapter.  The temperature and 

chemical species concentration spatial distributions extracted from the hyperspectral 

datacubes via the radiative transfer model are also presented.  These results combine to 

showcase the ability of the FIRST-MWE to remotely collect high quality hyperspectral 

datacubes, and how even a simple model applied to the data can produce valuable 

information about a turbine engine exhaust plume. 
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VI. Results and Analysis 

Spatial distributions of total apparent radiance, plume temperature, and plume 

chemical species concentration pathlengths, as well as apparent spectral radiance at select 

pixels, are presented for two fuel types and two engine settings.  These results exhibit the 

capability of the FIRST-MWE to collect high quality hyperspectral datacubes, calibrate 

with small relative uncertainty, and fit a simple radiative transfer model in order to 

remotely collect information on a turbine engine exhaust plume.   

The spatial distributions are oriented in the same manner as the image of the test 

setup, taken by the bore-sighted visible camera of the FIRST-MWE, as seen in Figure 38; 

the engine is on the right edge of the scene with the exhaust pointing to the left, through 

the thermocouple rake.  The red outline gives the approximate field of view (FOV) of the 

MWIR detector on the FIRST-MWE. 

 

Figure 38. Visible image of the test setup as taken by the FIRST-MWE bore-sighted camera.  The 
engine is on the right edge of the screen with the exhaust pointing to the left, through the 
thermocouple rake.  The red outline gives the approximate FOV of the MWIR detector on the 
FIRST-MWE. 
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The spectral radiance of each pixel was obtained by performing the processes of 

hyperspectral datacube averaging, non-uniformity correction computation and 

application, and spectral gain and offset computation and application; all have been 

discussed previously.  The plume temperature and chemical species concentration 

pathlength distributions were obtained by finding a single plume temperature and 

chemical species concentration pathlength for each of the three chemical species of 

interest which best fit the model to the spectral data. 

The apparent spectral radiance plots show the uncertainty in the result, which is 

due to the SCAs in the turbine engine exhaust scene, as well as the variation in the 

blackbody files used for computing the NUC and spectral gain and offset.   

Apparent Radiance 

The apparent radiance distributions from the turbine engine exhaust plume are 

shown in two forms, the spatial distribution of total apparent radiance and the apparent 

spectral radiance at example pixels.  Figure 39 shows a visible image from the bore-

sighted camera on the FIRST-MWE, showing the approximate FOV of the FIRST-MWE.  

Figure 40 shows the spatial distribution of total apparent radiance across the FPA for the 

diesel and kerosene fuels, with fuel flow rates of 300 and 225 cm3

 

/min.   

Figure 39. A visible image taken from the bore-sighted camera on the FIRST-MWE, showing the 
approximate FOV of the MWIR detector. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 40. Total apparent radiance distribution, diesel Fuel at a 300 cm3/min flow rate (a) and 225 
cm3/min flow rate (b), kerosene Fuel at a 300 cm3/min flow rate (c) and 225 cm3/min flow rate (d).  
The color scale is in units of W/cm2-Sr-cm-1.  
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The total apparent radiance distribution provides a time-averaged view of the 

plume.  Due to the hyperspectral datacube averaging performed, each spatial distribution 

represents the mean total apparent radiance over the entire set of datacube collections, 

between 15 and 17 minutes.  Although each fuel type and flow rate produces different 

values on a per-pixel basis, the spatial extent and gradient of the plume is consistent.  

This speaks to the accuracy of the data processing methods. 

The apparent spectral radiance of the averaged spectra of several pixels is shown 

in Figures 41 and 42 for the case of the kerosene fuel with 225 cm3/min fuel flow rate, 

along with the relative uncertainty in the measurement as computed in the error analysis 

section.  The corresponding position of each pixel is shown in Figure 43.   

The equations for uncertainty bounds developed in the previous chapter were 

applied in the computation of the uncertainties found in Figures 41 and 42.  The 

uncertainty is due to the SCAs impacting the SNR of the scene, as well as the uncertainty 

associated with the blackbody files used for calibration.  Using the error analysis 

equations of Chapter V, a 1% standard deviation in the raw average blackbody 

hyperspectral datacube results in a standard deviation of 4.4% in the calibrated average 

blackbody hyperspectral datacube.  Thus, future employment of more stable wide-area 

blackbodies, control over environmental conditions, and other variation-reducing 

techniques, a minimization of the raw blackbody uncertainty can be produced, which will 

reduce the uncertainty in the calibrated hyperspectral datacubes of the turbine engine 

exhaust plume. 
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(a) 

 
(b) 

Figure 41. A calibrated spectrum (blue) with the calibration uncertainty (green) and the FIRST-
MWE NESR (red) shown for pixel (170, 31) (a), and pixel (100, 31) (b), with kerosene fuel at a 225 
cm3/min flow rate. 
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(a) 

 
(b)

Figure 42. A calibrated spectrum (blue) with the calibration uncertainty (green) and the FIRST-
MWE NESR (red) shown for pixel (60, 31) (a), and pixel (24, 31) (b), with kerosene fuel at a 225 
cm3/min flow rate. 
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Figure 43. A total apparent radiance distribution showing the pixels selected for showcasing the 
uncertainty associated with the calibrated data.  The white pixels in the image represent the spectra 
shown in Figures 41 and 42. 

The main contributors to the uncertainty in the calibrated spectra were SCAs.  

Based on the error analysis equations, a 1% standard deviation in the raw average turbine 

engine exhaust hyperspectral datacube produced an average standard deviation of 1.9% in 

the calibrated average turbine engine exhaust hyperspectral datacube.  Although this 

resulted in a smaller contribution to calibration uncertainty per raw hyperspectral 

datacube percent uncertainty than that of the blackbody data, due to SCAs, there is a 

much larger raw percent uncertainty associated with the turbine engine exhaust than the 

blackbodies.  Figure 44 shows the average relative uncertainty of the blackbody scene 

and the turbine engine exhaust scene.  It is apparent that the uncertainty due to SCAs was 

much greater than that due to the blackbodies. 

Due to SCAs, the variations are not uniformly distributed across the turbine 

engine exhaust scene.  Regions where the plume is varying dramatically from one 

interferogram point to the next will produce spectra with larger variations.  Figure 44 (b) 

gives a visual representation of the distribution of the standard deviation in the spectra, 

averaged over the spectral domain.   
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(a) 

 
(b) 

Figure 44. Spatial distribution of the percent standard deviation in the spectra of each pixel, 
averaged over the spectral dimension for a blackbody (a) and for the turbine engine exhaust scene 
(b).  As expected, the pixels within the plume exhibit more variation than those outside the plume, 
and much more than the blackbody.  The color scales are in percent. 

In general, there are two ways to reduce the impact of SCAs on the uncertainty, 

which is found in the collection of the turbine engine exhaust hyperspectral datacubes.  If 

the time scale of the SCAs was close in magnitude to the required time to collect a 

hyperspectral datacube, it would be beneficial to explore methods of decreasing the 

amount of time required to collect the hyperspectral datacubes.  In order to decrease the 

hyperspectral datacube collection time, it is necessary to decrease spectral resolution, 

spatial resolution or integration time.  However, as described in Equation (3), reducing 
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the time required to collect the hyperspectral datacubes by decreasing the integration time 

increases the noise by a factor of , which is counter to the objective.  If the 

application allows for less resolution, it is possible to decrease spectral or spatial 

resolution without negatively impacting the SNR.   

However, for the specific case in question here, the time scale of the turbine 

engine exhaust plume is too short to completely remove SCAs from the distribution via 

these methods.  Another way to reduce the impact of SCAs, when the variation is 

approximately normally distributed, is to increase the integration time of each 

interferogram point collection to an amount long enough to capture the normal 

distribution within each.  By increasing the integration time in this manner, the 

approximately average value at that interferogram position is obtained, and SCAs are 

reduced.   

In light of the error propagation comparison performed above, reducing the 

standard deviation in the calibration files has a larger percent impact on the uncertainty in 

the calibration, however the variations cause by SCAs result in a much larger overall 

uncertainty in the calibrated spectrum.  By maintaining better control of the calibration 

parameters, such as reducing the variation in blackbody temperature and using 

temperatures that tightly bound the scene temperature, it is possible to improve the 

uncertainty calculations.  It is also beneficial that the calibration measurements can be 

performed in the laboratory as opposed to the field, ensuring ample time for multiple 

collections.  The most beneficial method of reducing the uncertainty in the calibrated 

spectrum is to reduce the presence of SCAs via the methods described previously. 
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In addition to the uncertainty calculated in the error analysis section, another 

method of gauging the quality of a calibrated spectrum is the comparison of the signal 

level to the Noise Equivalent Spectral Radiance (NESR), as described in Equation (3) and 

presented in Chapter IV.  Whether the calibrated spectrum is on the same order of 

magnitude as the NESR or ten orders of magnitude greater, this comparison gives insight 

into the quality of the data.  Refer to Figure 16 to see the NESR of the FIRST-MWE. 

The NESR of the FIRST-MWE was compared against the spatial distribution of 

total apparent radiance in order to provide insight into the regions where model fitting 

should provide accurate results.  For spectra that are on the same order of magnitude as 

the NESR, the model will be fitting to noise.  In these regions, the SNR is simply not 

high enough to produce reliable results, due to either low temperatures, small 

concentrations of emitting chemicals, or a combination of the two.  Figure 45 shows the 

spatial distribution of the SNR of the total apparent radiance for the entire 200x64 pixel 

array collected in the experimental campaign. 

 

Figure 45. The spatial distribution of SNR.  This was computed by taking the average NESR 
compared with the average signal at each pixel. 
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There are many pixels in the scene where the SNR is large, mainly concentrated 

in the regions immediately in the path of the turbine engine exhaust plume.  For these 

pixels, it is reasonable to expect the model to determine sensible values for plume 

temperature and chemical species concentration pathlengths.  Figure 46 gives an example 

of the calibrated spectrum compared to the NESR of FIRST-MWE.   

 

Figure 46. Calibrated spectrum of pixel (170, 32), from the kerosene fuel at a 225 cm3

There are also many pixels in the scene where the SNR is very close to unity, if 

not less.  Figure 47 gives an example of the calibrated spectrum of the same magnitude as 

the NESR of the FIRST-MWE.  For the regions of the scene where the SNR is near or 

below unity, it is unreasonable to expect proper temperature and chemical species 

concentration pathlength results.  For that reason, regions where the SNR is low have 

/min flow rate, 
and the NESR of the FIRST-MWE.  
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been omitted from further analysis.  The temperature and concentration pathlength 

distributions are presented in the subsequent sections. 

 

Figure 47. Calibrated spectrum of pixel (15, 30), from the kerosene fuel at a 225 cm3

Temperature Spatial Distributions 

/min flow rate 
and the NESR of the FIRST-MWE.  

The temperature spatial distributions from the turbine engine exhaust plume are 

presented in Figure 48 for all four fuel type and flow rate combinations.  The spatial 

distributions of temperature for the four fuel type and flow rate combinations are 

compared against one another to highlight the similarities and differences between the 

spatial distributions.  The fuel flow rate has a large impact on the distribution of 

temperatures, while the fuel type does not.  Additionally, the temperatures of specific 

pixels are compared against the in situ measurements taken by the thermocouples.  These 

measurements were in agreement to within approximately 212 K, with much of the 
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difference attributed to the approximations required to obtain a computationally efficient 

expression for the radiative transfer model. 

Distribution Comparisons. 

The temperature spatial distributions exhibit expected trends.  For both fuel types, 

the temperature distribution produced by the model fitting the 300 cm3/min flow rate 

hyperspectral datacubes produced a greater spatial extent compared to the temperature 

distribution produced by the model fitting the 225 cm3/min flow rate hyperspectral 

datacubes.  For pixels further from the turbine engine exhaust exit plane, it is possible to 

visually detect a negative temperature gradient of larger magnitude in the temperature 

distribution produced from the 225 cm3/min flow rate data compared with that produced 

with the 300 cm3/min flow rate data.  The 225cm3

The ratio of temperature distributions of differing fuel type highlights the 

similarities between the diesel and kerosene fuels.  Figure 50 shows the ratio of the 

temperature distribution of diesel fuel to kerosene fuel for fuel flow rate settings 300 

cm

/min flow rate appears to mix with the 

ambient atmosphere closer to the turbine engine exhaust exit plane. 

By comparing temperature distributions through ratios, it is possible to highlight 

the similarities and differences found between the four fuel type and fuel flow rate 

combinations.  Figure 49 enables visualization of the differences found between the two 

fuel flow rates used in the experiment.  It is possible to discern that the higher fuel flow 

rate produced an increased temperature and greater spatial extent of the exhaust plume 

for both fuel types. 

3/min and 225 cm3/min.  It is evident that the change in flow rate has a greater impact 

on the temperature than the fuel type.    
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(a) 

 
(b) 

 
(c) 

 
(d)

Figure 48. Spatial distribution of temperatures determined by the model for diesel fuel at a 300 
cm3/min flow rate (a), diesel fuel at a 225 cm3/min flow rate (b), kerosene fuel at a 300 cm3/min flow 
rate (c), and kerosene fuel at a 225 cm3/min flow rate (d).  The color scale is in Kelvin. 
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(a) 

 
(b) 

Figure 49. A distribution showing the ratio of the temperature distributions of the two fuel flow 
rates, 300 cm3/min to 225 cm3/min, for diesel (a) and kerosene (b).  The ratio highlights the fact that 
the 300 cm3

 
(a) 

/min flow rate produces higher temperatures for both fuel types. 

 
(b) 

Figure 50. A distribution showing the ratio of the temperature distributions of the two fuel types, 
diesel to kerosene, for 300 cm3/min (a), and 225 cm3/min (b).  The ratio highlights the similarities 
between the temperature distributions produced by the two fuel types. 
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In Situ Comparisons. 

In addition to comparisons between fuel types and flow rates, it is possible to use 

the temperatures of the in situ thermocouple to gauge the quality of the model fit to the 

data.  In order to accomplish this comparison, two regions of pixels have been selected.  

Because a full path through the plume is not visible through the thermocouples, it is not 

possible to determine temperatures at the pixels occupied by the thermocouples.  To 

achieve a temperature similar to that which would be at the thermocouple location, the 

temperatures of the pixels identified in Figure 51 have been averaged to determine the 

approximate temperature at the thermocouples.  They are the same distance away from 

the exhaust exit plane, and only a few pixels below the thermocouple locations. 

 

Figure 51. Pixels used to identify the model determined temperature equivalent to the temperatures 
measured by the thermocouples.  The pixels in each region were averaged together to provide a 
single temperature for comparison. 

The average temperature for both regions was computed for each fuel type and 

flow rate combination.  Table 2 lists the average static temperatures associated with two 

regions of the scene corresponding to the two thermocouple locations, and the percentage 

difference between the two.  Region one corresponds to the set of thermocouples 

approximately 21 cm from the exhaust plume exit plane, and region two corresponds to 
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the set of thermocouples approximately 42 cm from the exhaust plume exit plane.  Eight 

pixels in region one and nine pixels in region two were averaged together to produce the 

approximate temperatures representative of the thermocouples, as determined by the 

model.  The recovery temperatures captured by the thermocouples were converted to 

static temperatures, as discussed in Appendix A. 

Table 2. Model determined average temperatures associated with two regions of the scene 
corresponding to the two thermocouple locations, thermocouple static temperatures for the axial 
position, and the difference between the two.  Region one corresponds to the set of thermocouples 
approximately 21 cm from the exhaust plume exit plane, and region two corresponds to the set of 
thermocouples approximately 42 cm from the exhaust plume exit plane.   

Fuel 
Type, 
Flow 
Rate 

Thermocouple 
One, Average 

Static 
Temperature 

(K) 

Region One, 
Average 

Temperature 
(K) 

Difference 
(K) 

Thermocouple 
Two, Average 

Static 
Temperature 

(K) 

Region Two, 
Average 

Temperature 
(K) 

Difference 
(K) 

Diesel 
300 

cm3
719 

/min 
968 249 522 734 212 

Diesel 
225 

cm3
699 

/min 
907 208 505 685 180 

Kerosene 
300 

cm3
702 

/min 
979 277 525 728 203 

Kerosene 
225 

cm3
668 

/min 
874 206 503 662 159 

 

Due to the many approximations and assumptions necessary to produce a 

radiative transfer model capable of running in a reasonable amount of time, the model 

was biased to higher temperatures in the plume at each pixel, but remained within 

approximately 212 K, on average.  Because it is assumed that the highest average exhaust 

plume temperatures will occur on the axis of the turbine engine, only the thermocouples 

on the axis of the turbine engine were used.  These axial thermocouples at the 21 cm and 

42 cm positions were the middle thermocouple and the right thermocouple, respectively.  
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Figure 52 shows the data collected from all three thermocouples at the 21 cm and 42 cm 

positions, which verifies the assumption that the highest temperatures were found to be 

on-axis. 

 
(a) 

 
(b)

Figure 52. Thermocouple temperature measurements taken over the course of approximately 20 
minutes of turbine engine run time at 21 cm (a) and 42 cm (b) from the exhaust plume exit plane, 
converted to static temperature in K.  The on-axis thermocouples exhibited the highest temperatures, 
as expected.  The sharp increase in temperature is due to the initial startup of the turbine engine. 

In addition to the thermocouples, Turbine Technologies specifications for the SR-

30 turbojet show an outlet exhaust temperature of 993 K [37].  The highest temperature 

observed at the location of exhaust exit plane as determined by the model, is 1251 K, a 

difference of 258 K, and the average temperature observed at the location of the exit 

plane as determined by the model is 1182 K, a difference of 189 K. 

The temperatures measured by the thermocouples were consistently low 

compared with the temperatures calculated via modeling by approximately 212 K on 

average.  These differences speak to the lack of fidelity in the model, and not on the 

capability of the FIRST-MWE to collect quality spectra; the spectra were there with 

decent SNR, as shown previously.  The inability to determine accurate temperatures is 
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due to the many approximations necessary to make the model tractable for spectral 

fitting.  In addition to the approximations and assumptions used in the radiative transfer 

model, a potential contributing factor to the difference exhibited is the approximation of 

values used in converting the recovery temperature to static temperature.   Analysis of the 

sensitivity of these values has not been completed at this time. 

Concentration Spatial Distributions 

The CO2, H2O, and CO concentration pathlength distributions, in molecules/cm2, 

from the turbine engine exhaust plume are presented in Figures 53-55 for all fuel type 

and flow rate combinations.  The spatial distributions of CO2 concentration pathlength 

for the four fuel type and flow rate combinations are compared against one another to 

highlight the similarities and differences between the spatial distributions.  The fuel type 

has a large impact on the distribution of concentration pathlength, while the fuel flow rate 

has less of an impact.   

Additionally, theoretical lower and upper limits for the concentrations are 

calculated and compared with selected pixels for all three chemical species.  The 

theoretical lower limits for CO2, H2O, and CO are the molecular concentrations in the 

ambient atmosphere for the test-day conditions.  The theoretical upper limits for CO2 and 

H2O are the concentrations of molecules produced by the turbine engine assuming a 

perfectly efficient combustion process.  The theoretical upper limit for CO is the 

concentration of molecules produced by the turbine engine assuming 50% combustion 

efficiency.  The concentration pathlength distributions are found to be within the limits 

determined for CO2 and CO.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 53. Spatial distribution of CO2 concentration pathlength for diesel fuel at a 300 cm3/min flow 
rate (a), diesel fuel at a 225 cm3/min flow rate (b), kerosene fuel at a 300 cm3/min flow rate (c), and 
kerosene fuel at a 225 cm3/min flow rate (d).  The color scale is in molecules/cm2.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 54. Spatial distribution of H2O concentration pathlength for diesel fuel at a 300 cm3/min flow 
rate (a), diesel fuel at a 225 cm3/min flow rate (b), kerosene fuel at a 300 cm3/min flow rate (c), 
kerosene fuel at a 225 cm3/min flow rate (d).  The color scale is in molecules/cm2. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 55. Spatial distribution of CO concentration pathlength for diesel fuel at a 300 cm3/min flow 
rate (a), diesel fuel at a 225 cm3/min flow rate (b), kerosene fuel at a 300 cm3/min flow rate (c), 
kerosene fuel at a 225 cm3/min flow rate (d).  The color scale is in molecules/cm2

Distribution Comparisons. 

. 

The spatial distributions exhibit expected trends.  For all chemical species and 

fuel types, with the exception of CO with diesel fuel, the concentration pathlength 

distribution produced by the model from the 300 cm3/min flow rate data produces higher 
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concentration pathlengths and a greater spatial extent compared to the concentration 

pathlength distribution produced from the 225 cm3/min flow rate data.  The concentration 

pathlength distribution produced from the 225 cm3/min flow rate data has a lower 

concentration pathlength for all chemical species, and it exhibits more diffusion into the 

ambient atmosphere at a location closer to the turbine engine exhaust exit plane. 

By comparing chemical species distributions through ratios, it is possible to 

highlight the similarities and differences found between the concentration pathlength 

distributions of the four fuel type and flow rate combinations.  By displaying a 

distribution of the ratio of concentration pathlength distributions for the two fuel flow 

rates, Figure 56 enables visualization of the similarity in the CO2

 
(a) 

 spatial distributions 

found between the two fuel flow rates used in the experiment.   

 
(b) 

Figure 56. A distribution showing the ratio of the concentration pathlength distributions of the two 
fuel flow rates, 300 cm3/min to 225 cm3/min, for diesel (a) and kerosene (b).  The ratio distribution 
highlights the fact that the flow rates produce similar concentration pathlength distributions for both 
fuel types. 
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The distribution showing the ratio of CO2 concentration pathlength distributions 

of differing fuel type highlights the differences between the diesel and kerosene fuels.  

Figure 57 shows a distribution of the ratio of the CO2 concentration pathlength 

distribution of diesel fuel to kerosene fuel for both fuel flow rate settings, 300 cm3/min 

and 225 cm3

 
(a) 

/min. 

 
(b) 

Figure 57. A distribution showing the ratio of the concentration pathlength distributions of the two 
fuel types, diesel to kerosene, for 300 cm3/min (a), and 225 cm3/min (b).  The ratio distribution 
highlights the differences between the CO2

Based on a simple analysis of the fuel constituents, it is possible to show that the 

two fuels release similar amounts of CO

 concentration pathlength distributions produced by the 
two fuel types. 

2, but that the diesel fuel releases more, 

indicating that a ratio slightly greater than unity is to be expected.  The average diesel 

fuel formula is C12H23, and the average kerosene fuel formula is C12H26.  Using these 
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formulas and assuming a balanced combustion and complete reaction, the equation 

governing the fuel chemistry is 

   (35) 

where  is the fuel formula, x is the number of carbon atoms and y the number of 

hydrogen atoms;  is the oxygen diatomic.  The amount of CO2

   (36) 

 released, , is 

obtained by 

where  g/mol is the molecular weight of CO2, and  is the 

molecular weight of the fuel.  The CO2 released for diesel and kerosene are 3.162 and 

3.106 g CO2/g fuel, respectively.  The similarity between these values indicates that 

differences between fuel types will be small, but assuming a similar combustion 

efficiency for the two fuel types, diesel fuel will have more CO2

Lower and Upper Limits on Concentrations. 

 in the exhaust plume 

than kerosene.   

In situ chemical species measurements were not performed, and thus it is not 

possible to determine the accuracy of the chemical species concentration pathlength 

spatial distributions.  However, it is possible to compare the concentration pathlengths 

produced by the model to the limits which the chemical species concentrations should 

take on.  By calculating the lower and upper bounds the chemical species concentrations 

must reside between, it is possible to evaluate, in an approximate way, the results 

produced by the model.  By assuming an axial symmetry of the plume, approximate 

pathlengths are obtained from the scene in order to convert to concentration.  The 
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concentrations determined by the model in the hot parts of the plume should not be less 

than normal atmospheric levels, and should not be more than the turbine engine releases.   

The only chemical species in the atmosphere that was directly measured was 

H2O.  This equates to a 10200 ppmv concentration of H2O in the ambient atmosphere.  

The atmospheric levels for CO2 and CO must be taken from the average daily values of 

388 ppmv and 177 ppmv, respectively.  These concentrations equate to 2.5x1017, 

9.4x1015, and 4.3x1015 molecules/cm3 for H2O, CO2, and CO, respectively.  The upper 

limit is calculated from the total engine flow using the conservation of mass.   For diesel 

fuel, these were determined to be 7.9x1017, 8.3x1017, and 4.2x1016 molecules/cm3 for 

H2O, CO2, and CO, respectively, and for kerosene fuel these were determined to be 

8.8x1017, 8.1x1017, and 4.1x1016 for H2O, CO2, and CO, respectively.  The calculations 

used to determine these limits are shown in Appendix C. 

Figure 58 shows the model fit to the spectrum at pixel (165, 28), where the SNR 

was 9.3.  The approximate pathlength through the plume was 2.4 cm, achieved by 

assuming an axial symmetry, and using the spatial information provided by the 

distributions.  The model fit the spectrum well in the CO2 and CO spectral regions, and 

determined concentrations of 9.1x1016 molecules/cm3 of H2O, 1.4x1017 molecules/cm3 of 

CO2, and 1.8x1016 molecules/cm3 of CO.  The data was from the kerosene fuel, 225 

cm3

Figure 59 shows the model fit to the spectrum at pixel (167, 35), where the SNR 

was 10.9, and the approximate pathlength through the plume was 2.4 cm.  The model fit 

the spectrum well in the CO

/min flow rate dataset. 

2 and CO spectral regions, and determined concentrations of 

8.8x1016 molecules/cm3 of H2O, 1.3x1017 molecules/cm3 of CO2, and 1.6x1016 
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molecules/cm3 of CO.  The data was from the kerosene fuel, 225 cm3

Figure 60 shows the model fit to the spectrum at pixel (170, 32), where the SNR 

was 17.3, and the approximate pathlength through the plume was 2.4 cm.  The model fit 

the spectrum in the CO

/min flow rate 

dataset. 

2 and CO spectral regions, and determined concentrations of 

1.1x1017 molecules/cm3 of H2O, 1.6x1017 molecules/cm3 of CO2, and 2.3x1016 

molecules/cm3 of CO.  The data was from the kerosene fuel, 225 cm3

 
(a) 

/min flow rate set. 

 
(b) 

 
(c) 

 
(d)

Figure 58. The model (red) fit to the spectrum (black) of pixel (165, 28), where the SNR was 9.3 and 
the pathlength approximately 2.4 cm.  The residuals (blue) and NESR (green) are also shown.  The 
full spectral region (a), as well as the regions of H2O (b), CO (c), and CO2 (d) are shown.  The 
concentrations of CO2, H2O, and CO were determined by the model to be 1.4x1017, 9.1x1016, and 
1.8x1016 molecules/cm3, respectively.   
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(a) 

 
(b) 

 
(c) 

 
(d)

Figure 59. The model (red) fit to the spectrum (black) of pixel (167, 35), where the SNR was 10.9 and 
the pathlength approximately 2.4 cm.  The residuals (blue) and NESR (green) are also shown.  The 
full spectral region (a), as well as the regions of H2O (b), CO (c), and CO2 (d) are shown.  The 
concentrations of CO2, H2O, and CO were determined by the model to be 1.3x1017, 8.8x1016, and 
1.6x1016 molecules/cm3

  

, respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d)

Figure 60. The model (red) fit to the spectrum (black) of pixel (170, 32), where the SNR was 17.3 and 
the pathlength approximately 2.4 cm.  The residuals (blue) and NESR (green) are also shown.  The 
full spectral region (a), as well as the regions of H2O (b), CO (c), and CO2 (d) are shown.  The 
concentrations of CO2, H2O, and CO were determined by the model to be 1.6x1017, 1.1 x1017, and 2.3 
x1016 molecules/cm3

The examples in Figures 58 – 60 illustrate the ability of the model to determine 

concentrations of CO

, respectively. 

2, H2O, and CO that are generally within the bounds set by the 

atmospheric concentration levels at the lower limit, and concentrations output by the 

plume.  The chemical species that did not always fall within the bounds was H2O, which 

had the fewest spectral features with lowest SNR, making it doubly difficult for the 
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model to fit.  It is not possible at this time to say more regarding the quality or accuracy 

of the concentration pathlength spatial distributions without further analysis. 

Summary 

Spatial distributions of apparent radiance, temperature, and concentration 

pathlengths of CO2, H2

Concentration pathlength distributions were presented for CO

O and CO were presented, as well as apparent spectral radiance 

plots of selected pixels.  The apparent spectral radiance plots included calibration 

uncertainty limits, which provided insight into the quality of the calibrated spectra.  A 

spatial distribution of the average percent standard deviation was also presented, showing 

the main cause of calibration uncertainty is due to SCAs created by variations in the 

plume.  A technique to decrease the calibration uncertainty was described, focusing on 

one way in which turbine engine exhaust plume spectra could be collected while 

minimizing SCAs. 

The spatial distributions of temperature were presented with a brief comparison 

between the temperature distributions from the different fuel types and fuel flow rates 

used in the operation of the turbine engine.  The temperature appears to vary greatly with 

fuel flow rate, and minimally with fuel type.  A comparison with the in situ thermocouple 

measurements was conducted, with temperatures differing by more than 200 K.  This 

difference is attributed to the low fidelity of the model, and not the capability of the 

FIRST-MWE to collect high quality calibrated spectra. 

2, H2O, and CO.  

The CO2 distributions were compared with each other, showing the variation in fuel type 

had a greater impact on the distribution than the variation in flow rate.  This variation was 
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developed by looking at the CO2 release rates for diesel and kerosene, which verified the 

finding that diesel fuel should release slightly more CO2 than kerosene fuel, assuming the 

turbine engine is operating at similar combustion efficiencies.  Lower and upper bounds 

on the concentration of CO2, H2O, and CO were presented along with the results of 

selected pixels.  By approximating the pathlength within the plume, using an axial 

symmetry approximation, the concentrations of CO2, H2O and CO were determined.  It 

was found that CO2 and CO fell within the concentration bounds, while H2O was found 

to have a concentration too low.  Due to the model’s ability to extract concentrations of 

CO2 and CO that were within bounds, this discrepancy is attributed to the small number 

and SNR of the spectral emission features of H2O. 
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VII. Conclusions 

A review of current efforts in the field of hyperspectral sensing of turbine engines 

was presented, as well as the characterization of the processes necessary to produce 

calibrated data using the Telops FIRST-MWE.  These background topics were located in 

Chapter II.  A description of the experimental setup was provided in Chapter III.  

Characterization of the FIRST-MWE, to include characteristics of the focal plane array 

(FPA) and scene change artifacts (SCAs) were presented in Chapter IV.  Focal plane 

array characterization included a determination of the non-uniformity correction (NUC) 

and spectral gain and offset for the FIRST-MWE.  The error analysis and radiative 

transfer equations necessary to produce calibrated spectral distributions, temperature and 

concentration distributions, and calibration uncertainties were presented in Chapter V.  In 

Chapter VI, a discussion of results and analysis was completed for spectral radiance, 

temperature, and concentration pathlength spatial distributions.   

The goal of this effort was to demonstrate the capability of IFTS technology to 

obtain high quality hyperspectral datacubes remotely collected against the exhaust plume 

of a turbine engine.  This was accomplished by demonstrating the production of spatially 

and spectrally resolved hyperspectral datacubes of radiometrically calibrated apparent 

spectral radiance, presenting the uncertainty in the spectral radiance measurement, and 

developing processes that extract spatial distributions of relative temperature and 

chemical species concentration from the hyperspectral datacube using the Telops FIRST-

MWE. 
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The impact of SCAs was explored in detail, with the result that temporal 

averaging of hyperspectral datacubes reduced the impact of SCAs while increasing SNR, 

without the need for data filtering.  By averaging enough hyperspectral datacubes, the 

impact of SCAs can be minimized and a recognizable spectrum appears with information 

about the relative concentrations and approximate temperatures throughout the scene.   

This result was the first work accomplished towards determining the validity of 

applying IFTS technology to highly turbulent turbine engine exhaust plumes.  

Additionally, this result, which demonstrated the utility of IFTS technology in 

applications involving highly turbulent turbine engine exhaust plumes, enabled further 

research into the extraction of temperature and chemical species concentration pathlength 

distributions. 

Due to the large variation in the spectra introduced by SCAs, the calibrated 

spectra were found to have 35% uncertainty in the 1800 – 2500 cm-1

In situ temperature measurements were compared with results extracted from the 

spectra, with agreement within 212 K, and concentration pathlengths for CO

 (4 − 5.5 µm) region 

for pixels with signal-to-noise ratio (SNR) greater than 1.5.  These calibrated 

hyperspectral datacubes of turbine engine exhaust plumes represent the first achieved to 

date.  They enable future comparison with computational fluid dynamics models 

produced by engine manufacturers, and the potential for computation of emission indices 

without need for costly and time consuming in situ measurements.     

2 and CO 

were found to be within expected limits.  Discrepancies between in situ temperature 

measurements and temperatures extracted from the spectra were attributed to the many 

approximations and assumptions made in order to produce a computationally efficient, 



 

109 

tractable model.  Disagreement between the calculated lower limit of H2O concentrations 

and the concentrations extracted from the spectra were attributed to the weak and 

infrequent H2

Future Work 

O spectral emissions.  These results represent the first documented 

extraction of turbine engine exhaust plume temperature and chemical species 

concentration spatial distributions from an IFTS collected hyperspectral datacube.  

Additionally, the milestones achieved by these initial results lay out a path toward better 

accuracy in the production of temperature and concentration pathlength distributions. 

Through the methods demonstrated here, it has been shown that IFTS technology 

is able to collect hyperspectral datacubes of high quality despite the presence of SCAs in 

the data.  The datacubes were calibrated with low uncertainty, and spatial distributions of 

spectral radiance were produced.  Through further analysis, temperature and chemical 

species concentration pathlength distributions were obtained.  This work demonstrates a 

novel capability, and with additional effort, will produce even more remarkable results.  

Some areas where the presented work would most greatly benefit from additional 

attention are highlighted in the following section.   

With further analysis, it is possible to achieve more accurate results in the 

temperature and chemical species concentration pathlength distributions.  To that end, 

three areas of additional research are proposed: experimental work to characterize the 

equipment, modeling work to refine the fitting techniques, and theoretical work to more 

fully comprehend the impact of assumptions.   
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The recommended experimental work involves performing in situ measurements 

of the chemical species concentrations, taking in situ measurements of the total and static 

pressures in order to accurately convert thermocouple recovery temperature to static 

temperature, and accurately measuring the characteristics of the turbine engine under 

study while collecting hyperspectral datacubes. 

In order to accurately measure the characteristics of the turbine engine under 

study, it is highly recommended that installation of additional or improved 

instrumentation to capture accurate values for the engine fuel flow rate, thrust, and 

exhaust gas temperature is accomplished.  It is critical for any future experimental 

campaign to fully document the performance parameters of the engine under study during 

remote hyperspectral data collection, to enable repeatability and further analysis. 

The recommended theoretical work includes studying the impact of the 

assumption that average plume temperatures and chemical species concentration 

pathlengths are able to represent temporally averaged spectra of a changing temperature 

and chemical species concentration pathlengths.  An additional point of research is 

studying the expected differences between the fuel types and flow rates, based on a more 

comprehensive understanding of fluid dynamics and chemical kinetics. 

The recommended modeling work focuses efforts on the underlying causes of the 

differences in temperatures between the spectrally extracted temperatures and the 

thermocouples.  A potential path of research explores the impact a temperature and 

chemical species concentration gradient within the plume, as well as the impact 

instantaneous magnitude fluctuations, has on the spectrum.  
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Exploration of the temperature gradient has been accomplished to a minimal 

degree.  A radiometric model accounting for two separate, radially distributed 

temperature regions within the plume was developed.  This model was only applicable 

for pixels on the center line of the plume because it was not able to account for differing 

path lengths, a critical factor when using multiple temperatures.  The model was 

unfeasible to implement due to the computational intensity, requiring thousands of hours 

of computation time for a single distribution.   

Another path of exploration involves the assumption of axial symmetry in the 

turbine engine exhaust plume.  Using the two-dimensional spatial distribution of spectral 

radiance, it is possible to perform an inverse Abel transform of the data to retrieve the 

radial distribution of spectral radiance.  Work citing the usage of Abel transforms has 

been included [38, 39], and scripts have been written in MATLAB for this application, 

which can be found in Appendix D.   

The Abel transform method requires the assumption of axial symmetry.  Work 

has been accomplished to characterize the temperature variation in the exhaust output of 

the Turbine Technologies SR-30 turbojet, which has shown a non-uniform, non-

symmetric variation in temperature [40].  In order to acquire suitable data for an Abel 

transform, data collection against a turbine engine manufactured for commercial use 

would be necessary, due to the axial symmetry and relatively uniform flow commercial 

turbines are designed to exhibit.  Using this methodology against a commercial aircraft 

turbine engine would also demonstrate the applicability to the user community. 

One additional area of future work is an acoustic vibration survivability study.  

This study would determine the safe operating distance the Telops FIRST-MWE must 
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maintain when collecting against commercial aircraft turbine engines in order to remain 

operationally sound.  The commercial aircraft turbine engines emit strong acoustic 

vibrations, which impact the operation of an IFTS due to the requirement to know the 

mirror position very precisely.  Characterizing this susceptibility would aid in 

determining the operational usefulness of the Telops FIRST-MWE and the 

methodologies developed here. 

Final Remarks 

This document demonstrated the capability IFTS technology to produce spatially 

and spectrally resolved hyperspectral datacubes of calibrated apparent spectral radiance 

collected against the exhaust plume of a turbine engine, despite the turbulent exhaust 

flow of the turbine engine exhaust plume.  That information was used in the initial steps 

of building the capability to extract temperature and chemical species concentration 

pathlength distributions, which produced the first results developed by this method.  

Although the spatial distributions require additional work, this first step has shown the 

value in this research area, and has highlighted paths to even better results. 
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Appendix A. Recovery and Static Temperature 

The thermocouples reported recovery temperature measurements instead of static 

temperature measurements.  Static temperature is what was extracted from the exhaust 

plume spectra, so a conversion was necessary.  The recovery temperature is related to 

static temperature by 

   (37) 

where  is the static temperature,  is the recovery temperature measured by the 

thermocouples, r is the boundary layer recovery number, M is the Mach number, and 

 is the specific heat ratio.  The boundary layer recovery number, Mach number, 

and specific heat ratio are approximated using the recovery temperature measurements 

and the atmospheric pressure.  This gives approximate values of  M = 0.7, and 

, for the thermocouples located 21 cm from the exhaust plume exit plane, and 

 M = 0.7, and  for the thermocouples located 42 cm from the exit plane 

[41].  These values were used in the reporting of temperatures in Table 2. 
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Appendix B. Data Averaging Methods 

As discussed in Chapter IV, it is necessary to average or find the median of the 

data over all datacubes in order to reduce the affect of SCAs on SNR.  This process of 

data averaging, although straightforward, presented some unexpected results attributable 

to the phase correction method implemented while performing the discrete Fourier 

transform.  Two theoretically equivalent methods of data averaging were explored.  The 

results were the same, but not without first uncovering an unresolved issue with the phase 

correction.  The first method averaged hyperspectral datacubes in the spectral domain, the 

second in the spatial domain. 

Although it requires significantly more processing time, averaging hyperspectral 

datacubes in the spectral domain, after the Fourier transform, has advantages over 

averaging in the spatial domain before the Fourier transform.  The size of the data is 

reduced to only the frequency band of interest, producing an order of magnitude 

reduction in the size of the hyperspectral datacube.   The error analysis is simpler as well, 

removing the need to propagate error through the Fourier transform.   

To average the hyperspectral datacubes in the spectral domain, the raw data at 

each pixel was Fourier transformed with a Hamming apodization function and a Mertz 

phase correction over the spectral range 1600 – 3000 cm-1

To average the raw hyperspectral datacubes in the interferogram domain, all 

hyperspectral datacubes were averaged together, forward sweep direction separate from 

 (3.33 – 6.25 µm).  The 

Hamming apodization function removes spectral noise at the cost of resolution, and the 

Mertz phase correction accounts for any unevenness in the interferograms due to mirror 

sampling, which would otherwise cause energy to remain in the imaginary component.   
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the reverse mirror sweep direction, producing a mean and standard deviation for each 

pixel’s interferogram for the two directions.  The two average interferograms were then 

Fourier transformed using a Hamming apodization function and Mertz phase correction, 

and averaged together in the spectral domain. 

An issue arose when comparing the average spectra using the two methods.  

Figure 61 shows the two uncalibrated spectra, averaged in the spectral domain and the 

spatial domain, respectively.  In Figure 61 (b), the spectral region of interested, 2500 – 

5000 cm-1 (2 – 4 µm) has been focused on in order to emphasis the issue at hand.  The 

spectral features of H2O and CO2, observed at 1800 – 2000 cm-1 (5 – 5.5 µm) and 2250 – 

2400 cm-1

 
(a) 

 (4.2 – 4.4 µm), respectively, are due to atmospheric absorbance along the path 

inside the instrument, between the front optic and the detector. 

 
(b)

Figure 61. A spatial domain average (blue) and a spectral domain average (green) of twenty 
hyperspectral datacubes observing a blackbody at 80 °C, over the spectral range 1800 – 5000 cm-1 (2 
– 5.56 µm) (a), and 2500 – 5000 cm-1 (2 – 4 µm) (b).  The spatial average performed only a single 
Mertz phase correction, while the spectral average performed twenty.  The non-zero energy in the 
spectrum of the spectral domain average at wavenumbers greater than 3000 cm-1 (3.33 µm) is 
unphysical. 
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As can be seen in Figure 61, the spatial domain averaged spectra approaches zero 

signal at higher wavenumbers, and the spectral domain averaged spectra does not.  Both 

the spectral response and the radiance from the 80 °C blackbody under observation 

approach zero in this region, which means that energy has been added during the spectral 

domain average process, which is unphysical. 

It was postulated that the increased signal in the wavenumber region above 3000 

cm-1

 
(a) 

 (3.33 µm) was due in some way to the Mertz phase correction; either the theory or 

the implementation of theory was to blame.  To test this, the interferogram at each pixel 

from each hyperspectral datacube in the set was Fourier transformed with a Hamming 

apodization function, but without a Mertz phase correction.  The complex spectra were 

averaged in the spectral domain, and the Mertz phase correction was implemented to 

produce the averaged hyperspectral datacube.  Figure 62 shows this reduced the signal 

seen in the high wavenumber region of the spectra. 

 
(b)

Figure 62. A spectral domain average with only one phase correction (blue) and a spectral domain 
average with multiple phase corrections (green), observing a blackbody at 80 °C, over the spectral 
range 1800 – 5000 cm-1 (2 – 5.56 µm) (a), and 2500 – 5000 cm-1 (2 – 4 µm) (b).  The singly phase 
corrected spectrum approaches zero signal at high wavenumbers, and the multiply phase corrected 
spectrum does not. 
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Although the root cause has not been identified, it has been determined that with 

the current implementation, multiple applications of Mertz phase correction impacts the 

resultant spectrum when dealing with discrete data.  With the new method of correcting 

phase, there is essentially no difference between the spectra produced via averaging in the 

spectral domain versus averaging in the spatial domain.   
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Appendix C. Atmospheric Constituent Concentrations 

The lower and upper limits of the chemical species concentrations were 

determined using information pulled from a number of sources.  The lower bound for the 

chemical species concentrations in the hot part of the plume was the atmospheric 

concentration.  At this theoretical limit, the plume is emitting no CO2, H2

Measurements of atmospheric H

O, or CO.  The 

emission features are due solely to atmospheric chemical species heated by the hot gas of 

the turbine.   

2O were collected by the AFWA, reported in 

Table 1 as Dew Point.  Conversion from Dew Point to the concentration of H2O in ppmv 

and molecules/cm3 is performed by first computing the vapor pressure of H2

    

O, , 

using the Goff-Gratch equation; 

   

   (38) 

where  is the steam point, and  is the ambient temperature.  Once the vapor 

pressure of H2

   (39) 

O is determined, it is used to compute the ambient humidity ratio, ; 

where  is the ambient pressure as reported in Table 1, and taken as an average value 

of 98.9 kPa.  The humidity ratio is used to determine the ppmv [42]; 

   (40) 
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where  is the concentration of H2O in ppmv. 

No measurements were taken to determine the CO2 and CO concentrations during 

the experimental campaign of 5 November, so the standard outdoor atmospheric 

concentrations of CO2 and CO are used.  They are 388 ppmv and 177 ppmv for CO2 and 

CO, respectively [12, 43].   

The chemical species concentrations, now in ppmv, must be converted to 

molecules/cm3 for comparison with the model output.  Conversion from ppmv to 

molecules/cm3

   (41) 

 requires the Ideal Gas Law,  

where  is the number density of chemical species x in molecules/cm3,  is the 

atmospheric concentration of chemical species x in ppmv,  is 

Boltzmann’s constant, and  is the ambient temperature.  

The upper limit of the chemical species concentrations is based on the chemical 

species production of the SR-30 turbojet.  A number of steps are necessary to produce the 

factor by which the ambient concentrations will scale to represent the upper limit of 

concentrations within the plume.   

It is necessary to assume a combustion efficiency of 100% for the determination 

of CO2 and H2O concentrations, and a combustion efficiency of 90% for the 

determination of CO concentrations.  In this manner, realistic maximum values are 

achieved for each chemical species.   

Assuming 100% combustion efficiency, and a balanced combustion reaction 

equation, the fuel chemistry will follow Equation (35), repeated here for convenience; 
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   (35) 

Assuming a diesel fuel formula of C12H23 and a kerosene fuel formula of C12H26

   (42) 

, 

the reaction equations look like 

   (43) 

for diesel and kerosene, respectively.  From the reaction equations, the CO2 and H2

   (44) 

O 

release rates are determined for both fuel types, 

   (45) 

where  for both fuel types;  for diesel and  for kerosene; 

 for diesel and .  The release rates for 

CO2 and H2

Assuming the engine is a control volume, the conservation of mass holds and the 

total flow in will equal the total flow out.  By calculating the air flow in, the H

O are  and , 

respectively, for diesel and  and 

, respectively, for kerosene. 

2O flow in, 

the fuel flow in, the H2O flow out, the CO2 flow out, and the air flow out, it is possible to 

determine the turbine engine exhaust plume humidity ratio, , and the turbine 

engine exhaust plume CO2

   (46) 

 ratio, ; 

   (47) 
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   (48) 

where , and  are the fuel, air, and H2O reactants, respectively, and 

, and  are the CO2, H2

The three in-flows are the same for both fuel types.  The fuel flow into the control 

volume is easily obtained by assuming a specific gravity of diesel and kerosene to both 

be approximately equal to 0.82.  300 cm

O, and air products, respectively. 

3/min equates to approximately 4 g/s, and 225 

cm3/min equates to approximately 3 g/s.  However, there is no difference in the resulting 

limits due to varying fuel flow rates, so only the 300 cm3/min fuel flow rate is utilized 

here.  The air flow into the control volume is based on an air-to-fuel-ratio of 62:1 for the 

SR-30 turbojet [44].  The air in-flow is simply 62 times the fuel in-flow.  The H2O in-

flow is the air in-flow multiplied by the previously calculated ambient humidity ratio, 

. 

The three out-flows are specific to the fuel type because they are dependent upon 

the release rates.  The CO2 and H2O out-flows are the fuel in-flow rate multiplied by the 

CO2 and H2O release rates, respectively.  The air out-flow is determined through 

knowledge of all the other mass flow rates, using the conservation of mass. 

The last step is to convert the turbine engine exhaust plume humidity ratio and 

CO2 ratio to ppmv or molecules/cm3

   (49) 

 using Equations (40) and (41).  The  

In order to determine the upper bound on the CO concentrations, the same process 

is applied; however the combustion reaction equation is modified to account for only 

90% efficiency.  For diesel and kerosene, the equations become, respectively, 
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   (50) 

 The release rates are calculated in the same way, with 

 for diesel and for kerosene.  The balance of 

masses is slightly different; 

   (51) 

   (52) 

where  is the CO product out-flow and  is the turbine engine exhaust 

plume CO ratio, in g CO/g Air.  The CO product can be converted to ppmv or 

molecules/cm3 using Equations (40) and (41). 
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Appendix D. MATLAB Scripts 

The following sets of MATLAB scripts were written in order to determine 

temperature and chemical species concentration pathlength distributions.  The first set 

contains the scripts used to produce the results presented in Chapter VI.  These scripts are 

based on a single plume temperature and single concentration pathlength per chemical 

species, and as such were the most computationally efficient and practical. 

The second set of scripts was used to produce a two-temperature model, which 

was only good for pixels on the axis of the turbine engine because it was not designed to 

account for changing pathlengths through the plume.  This model requires several 

minutes to run per pixel, and is therefore an unrealistic solution to the temperature 

gradient problem. 

The third set of scripts is incomplete; they were intended to enable an inverse 

Abel transform to be completed spectrally.  The Abel transform, based on a Fourier and 

inverse Hankel transform, was never implemented on data.   

Model Fitting Scripts 

The following MATLAB scripts were written to perform model fitting.  These 

scripts contain the three least squares fitting algorithms, fitting the previously described 

model to the spectral data.  The first algorithm, named CO2 Path Recursive Loop 

Weights, performs the nonlinear fitting of the atmospheric concentrations of CO2, H2O, 

and CO using the bounded direct search function fminsearchbnd and calls the second 

algorithm.  The second algorithm, titled CO2 Fit Loop Weights, performs the nonlinear 

fitting of the plume temperature and spectral axis multiplier using the bounded direct 
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search function fminsearchbnd, and calls the third algorithm.  The third algorithm, titled 

Fit Basis Functions Weights v2, performs linear fitting of the chemical species 

concentration pathlengths and the baseline polynomial coefficients using the weighted 

least squares function lscov. 

CO2 Path Recursive Loop Weights. 

%% Header 
clear all 
close all 
clc 
global MATLAB_DIRECTORY; 
MATLAB_DIRECTORY = '/home/afiten3/gap09m/sbowen/MatlabScripts/'; 
addpath(genpath(MATLAB_DIRECTORY)); 
  
Filepath = ['/home/scratch2/sbowen/20081105/'... 
    '20081105-EngineTestKeroseneFuel/offset_corrected/']; 
Datapath = [Filepath 'Figures']; 
cd(Filepath); 
  
prefix = 'LowRPM'; 
  
%% Optimize CO2 and Background Temp 
func = @(param) CO2_fit_loop_Weights... 
    (prefix,Filepath,param(1),param(2),param(3)); 
[x fval exitflag output] = fminsearchbnd... 
    (func,[505 1507 3989],[380 177 0],[800 40000 4000]); 
  
save([prefix '_Optimize_CO2_H2O_CO_Weights_TC'],'x') 
 

CO2 Fit Loop Weights. 

function sseT = CO2_fit_loop_Weights(prefix,Filepath,co2,h2o,co) 
  
global MATLAB_DIRECTORY; 
MATLAB_DIRECTORY = '/home/afiten3/gap09m/sbowen/MatlabScripts/'; 
addpath(genpath(MATLAB_DIRECTORY)); 
  
cd(Filepath); 
  
load([prefix, '_Datacube_Mean_Spectra_Cal']); 
load('sig_1680'); 
%% Setup Atmospheres: 
wavenumbers = sig; 
pathlength = 11.2E-3;   % 11.2 m 
N = 18956;              % number of IFG points 
T_atm = 292.61;         % atm temperature in Kelvin from FIRST-MWE 
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atmos = gen_std_atmos('co2',co2,'h2o',h2o,'co',co,... 
    'pathlength',pathlength,'nu_min',min(wavenumbers),'nu_max',... 
    max(wavenumbers),'N',N,'temperature',T_atm); 
atmos.ILS.function = 'hamming'; 
  
[nu,transmittance] = compute_transmittance(atmos,wavenumbers); 
  
%% Model Fit 
  
Temp = zeros(xSize,ySize); 
  
iXX = [124:-1:117 67:-1:59]; 
iYY = [33 35]; 
for iX = 1:length(iXX) 
    if iX < 9, iY = 1; else iY = 2; end 
  
    nu_min = 1800; nu_max = 3000; 
    ix = sig>nu_min&sig<nu_max; 
    nu = sig(ix); 
    L_obs = squeeze(real(EngineRPM_cal(iXX(iX),iYY(iY),ix)))'; 
    transmittance_nu = transmittance(ix); 
    f = @(iT) sum( (fit_basis_fcns_weights_noplot_v2... 
        (nu,L_obs,transmittance_nu,iT(1),iT(2)) - real(L_obs)').^2 ); 
    Tmp = fminsearchbnd(f,[478 1.0000],[275 0.9995],[1500 1.0005]); 
    Temp(iXX(iX),iYY(iY)) = Tmp(1); 
    sse_tmp = f(Tmp); 
    if iX == 1 
        sseT = sse_tmp; 
    else 
        sseT = sseT +sse_tmp; 
    end 
    [mdl conc] = fit_basis_fcns_weights_noplot_v2... 
        (nu,L_obs,transmittance_nu,Temp(iXX(iX),iYY(iY)),Tmp(2)); 
    disp(sprintf('%d error, column %03d of %03d, row %03d of %03d',... 
        sse_tmp,iXX(iX),iYY(iY))); 
end 
  
disp(sprintf('%d total error.',sseT)); 
 

Fit Basis Functions Weights v2. 

function [mdl,conc] = fit_basis_fcns_weights_v2(nu,L_obs,trans,p1,p4) 
  
% Load molecular cross sections - normalize for numerical stability 
nu = nu*p4; 
B1 = planckian(nu,p1); 
h2o = abs_xs( 1,p1,nu)'.*B1;    m_h2o  = max(h2o);  h2o  = h2o/m_h2o; 
co2 = abs_xs( 2,p1,nu)'.*B1;    m_co2  = max(co2);  co2  = co2/m_co2; 
co  = abs_xs( 5,p1,nu)'.*B1;    m_co   = max(co);   co   = co/m_co; 
  
% Stuff for baseline correction 
offset = ones(size(nu(:))); 
slope = nu(:)/max(nu); 
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quad = slope.^2; 
cubic = slope.^3; 
  
% Build A matrix for linear fit 
A = [h2o' co2' co' offset slope quad cubic]; 
A = vtimes(A,trans(:)); 
A = [A offset slope quad cubic]; 
  
% Add weights 
h2o_reg  = 1:263; 
co_reg   = 264:490; 
co2_reg  = 491:723; 
else_reg = 724:1440; 
  
L_int_h2o  = abs(trapz(L_obs(h2o_reg))); 
L_int_co   = abs(trapz(L_obs(co_reg))); 
L_int_co2  = abs(trapz(L_obs(co2_reg))); 
L_int_else = abs(trapz(L_obs(else_reg))); 
  
L_int_h2o_N  = L_int_h2o/length(h2o_reg); 
L_int_co_N   = L_int_co/length(co_reg); 
L_int_co2_N  = L_int_co2/length(co2_reg); 
L_int_else_N = L_int_else/length(else_reg); 
  
div = max([L_int_h2o_N L_int_co_N L_int_co2_N]); 
  
W_h2o  = (div*length(h2o_reg))/L_int_h2o; 
W_co   = (div*length(co_reg))/L_int_co; 
W_co2  = (div*length(co2_reg))/L_int_co2; 
W_else = (L_int_else_N*length(else_reg))/L_int_else; 
  
Weights = [ones(length(h2o_reg),1).*... 
    W_h2o; ones(length(co_reg),1).*... 
    W_co; ones(length(co2_reg),1).*... 
    W_co2; ones(length(else_reg),1).*W_else]; 
  
% Do the linear fit 
[x,x_err] = lscov(A,real(L_obs)',Weights); 
for ii = 1:3 
    if x(ii) < 0, x(ii) = 0; end 
end 
mdl = A*x; 
conc = x./[m_h2o; m_co2; m_co; 1; 1; 1; 1; 1; 1; 1; 1]; 
baseline1 = x(4).*A(:,4)' + x(5).*A(:,5)' +... 
    x(6).*A(:,6)' + x(7).*A(:,7)'; 
baseline2 = x(8).*A(:,8)' + x(9).*A(:,9)' +... 
    x(10).*A(:,10)' + x(11).*A(:,11)'; 
  
ax(1) = subplot(6,1,1:3);    
plot(nu,real(L_obs),'k','LineWidth',1);hold all; 
plot(nu,mdl,'r','LineWidth',1);hold off; 
legend('Data','Model') 
title( ['Temp: ' num2str(round(p1)) ' K, Err: ' ... 
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    num2str(sum( (mdl-real(L_obs)').^2),'%0.2E')] ); 
prettyPlot; set(gca,'XTickLabel',[]); 
  
ax(2) = subplot(6,1,4);      
plot(nu,abs(real(L_obs)-mdl')/max(abs(real(L_obs)-mdl')),'b'); 
legend(['Residuals: ' ... 
    num2str(round(10^8*max(abs(real(L_obs)-mdl')))/10^8)]); 
prettyPlot; set(gca,'XTickLabel',[]); 
  
ax(3) = subplot(6,1,5);      
plot(nu,(x(1).*A(:,1)')/max(x(1).*A(:,1)')); hold all; 
plot(nu,(x(2).*A(:,2)')/max(x(2).*A(:,2)'));  
plot(nu,(x(3).*A(:,3)')/max(x(3).*A(:,3)')); hold off;  
legend(['H_2O: ' num2str(round(10^8*max(x(1).*A(:,1)'))/10^8)],... 
    ['CO_2: ' num2str(round(10^7*max(x(2).*A(:,2)'))/10^7)],... 
    ['CO: ' num2str(round(10^8*max(x(3).*A(:,3)'))/10^8)]);   
set(gca,'XTickLabel',[]); prettyPlot;  
  
ax(4) = subplot(6,1,6);      
plot(nu,baseline1/max(abs(baseline1)));hold all;  
plot(nu,baseline2/max(abs(baseline2)));hold off;  
legend(['Baseline 1: ' ... 
    num2str(round(10^7*max(abs(baseline1)))/10^7)],... 
    ['Baseline 2: ' num2str(round(10^7*max(abs(baseline2)))/10^7)]);  
xlabel('Wavenumbers [cm^{-1}]');prettyPlot; 
linkaxes(ax,'x'); 
drawnow; 
end 

Two-Temperature Model Scripts 

Much like the single-temperature scripts above, these scripts were written to 

perform model fitting.  The scripts contain three least squares fitting algorithms, fitting 

the model described in Equation (28) to the spectral data for two plume temperature 

regions.  The first algorithm, named CO2 Path Recursive Loop 2 Zones, performs the 

nonlinear fitting of the atmospheric concentrations of CO2, H2O, and CO using the 

bounded direct search function fminsearchbnd and calls the second algorithm.  The 

second algorithm, titled CO2 Fit Loop 2 Zones, performs the nonlinear fitting of chemical 

species concentration pathlengths in two plume regions, two plume temperatures, a 

background temperature, and the spectral axis multiplier using the bounded direct search 

function fminsearchbnd, and calls the third algorithm.  The third algorithm, titled Fit 
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Basis Functions 2 Zones, forms the model from the parameters given by the second 

algorithm.  

CO2 Path Recursive Loop 2 Zones. 

%% Header 
clear all 
close all 
clc 
global MATLAB_DIRECTORY; 
MATLAB_DIRECTORY = '/home/afiten3/gap09m/sbowen/MatlabScripts/'; 
addpath(genpath(MATLAB_DIRECTORY)); 
  
Filepath = ['/home/scratch2/sbowen/20081105/'... 
    '20081105-EngineTestKeroseneFuel/offset_corrected/']; 
Datapath = [Filepath 'Figures']; 
cd(Filepath); 
  
prefix = 'LowRPM'; 
  
%% Optimize CO2 and Background Temp 
func = @(param) CO2_fit_loop_2zones... 
    (prefix,Filepath,param(1),param(2),param(3),param(4)); 
[x fval exitflag output] = fminsearchbnd... 
    (func,[505 1507 3989 312],[380 177 0 260],[800 40000 4000 800]); 
  
save([prefix '_Optimize_2Zones_CO2_H2O_CO_TB'],'x') 
 

CO2 Fit Loop 2 Zones. 

function sseT = CO2_fit_loop_2zones(prefix,Filepath,co2,h2o,co,iTB) 
  
global MATLAB_DIRECTORY; 
MATLAB_DIRECTORY = '/home/afiten3/gap09m/sbowen/MatlabScripts/'; 
addpath(genpath(MATLAB_DIRECTORY)); 
  
cd(Filepath); 
  
load([prefix, '_Datacube_Mean_Spectra_Cal']); 
load('sig_1680'); 
%% Setup Atmospheres: 
wavenumbers = sig; 
pathlength = 11.2E-3; % 11.2 m 
N = 18956;            % number of IFG points 
T_atm = 292.61;       % atm temperature in Kelvin from Telops FIRST-MWE 
  
atmos = gen_std_atmos('co2',co2,'h2o',h2o,'co',co,... 
    'pathlength',pathlength,'nu_min',min(wavenumbers),... 
    'nu_max',max(wavenumbers),'N',N,'temperature',T_atm); 
atmos.ILS.function = 'hamming'; 
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[nu,transmittance] = compute_transmittance(atmos,wavenumbers); 
  
%% Model Fit 
  
Temp = zeros(xSize,ySize); 
iXX = [170 100 1]; 
iYY = [9 32 56]; 
  
for iX = 1:length(iXX) 
for iY = 1:length(iYY) 
    nu_min = 1800; nu_max = 3000; 
    ix = sig>nu_min&sig<nu_max; 
    nu = sig(ix); 
    L_obs = squeeze(real(EngineRPM_cal(iXX(iX),iYY(iY),ix)))'; 
    transmittance_nu = transmittance(ix); 
    f = @(iT) sum( (fit_basis_fcns_2zones_noplot... 
        (nu,L_obs,transmittance_nu,iT(1),iT(2),iT(3),iT(4),... 
        iT(5),iT(6),iT(7),iT(8),iTB,iT(10),iT(11)) -... 
        real(L_obs)).^2 ); 
    f([1E17 1E17 1E17 1E17 1E16 1E16 1000 1000 300 290 1.0000]) 
    [Tmp fval exitflag output] = fminsearchbnd(f,... 
        [1E17 1E17 1E17 1E17 1E16 1E16 1000 500  300 290 1.0000],... 
        [1E10 1E10 1E10 1E10 1E10 1E10 275  275  260 260 0.9995],... 
        [1E19 1E19 1E19 1E19 1E19 1E19 1500 1500 360 360 1.0005]); 
    if exitflag == 0 
        [Tmp fval exitflag output] = fminsearchbnd(f,... 
        Tmp,... 
        [1E10 1E10 1E10 1E10 1E10 1E10 275  275  260 260 0.9995],... 
        [1E19 1E19 1E19 1E19 1E19 1E19 1500 1500 360 360 1.0005]); 
    end 
    if exitflag == 0 
        [Tmp fval exitflag output] = fminsearchbnd(f,... 
        Tmp,... 
        [1E10 1E10 1E10 1E10 1E10 1E10 275  275  260 260 0.9995],... 
        [1E19 1E19 1E19 1E19 1E19 1E19 1500 1500 360 360 1.0005]); 
    end 
    if exitflag == 0 
        [Tmp fval exitflag output] = fminsearchbnd(f,... 
        Tmp,... 
        [1E10 1E10 1E10 1E10 1E10 1E10 275  275  260 260 0.9995],... 
        [1E19 1E19 1E19 1E19 1E19 1E19 1500 1500 360 360 1.0005]); 
    end 
    sse_tmp = f(Tmp); 
    if iX == 1 
        sseT = sse_tmp; 
    else 
        sseT = sseT +sse_tmp; 
    end 
    disp(sprintf('%d error, pixel %03d, %03d',... 
        sse_tmp,iXX(iX),iYY(iY))); 
end 
end 
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disp(sprintf('%d total error.',sseT)); 
 

Fit Basis Functions 2 Zones. 

function [mdl,conc] = fit_basis_fcns_2zones(nu,L_obs,trans,... 
    q1_1,q1_2,q2_1,q2_2,q3_1,q3_2,p1,p2,p3,p4) 
% q1 is H2O concentration 
% q2 is CO2 concentration 
% q3 is CO concentration 
% p1 is plume zone 1 (hot) temp 
% p2 is plume zone 2 temp 
% p3 is background temp 
% p4 is HeNe wavelength modifier 
  
% Load molecular cross sections - normalize for numerical stability 
nu = nu*p4; 
B1 = planckian(nu,p1); 
B2 = planckian(nu,p2); 
B3 = planckian(nu,p3); 
  
h2o_1  = q1_1*(abs_xs( 1,p1,nu)');    
h2o_2  = q1_2*(abs_xs( 1,p2,nu)');   
co2_1  = q2_1*(abs_xs( 2,p1,nu)'); 
co2_2  = q2_2*(abs_xs( 2,p2,nu)'); 
co_1   = q3_1*(abs_xs( 5,p1,nu)');  
co_2   = q3_2*(abs_xs( 5,p2,nu)'); 
back   = B3; 
  
ep1 = (h2o_1 + co2_1 + co_1); 
ep2 = (h2o_2 + co2_2 + co_2); 
tp1 = (1 - ep1); 
tp2 = (1 - ep2); 
  
mdl = (back.*tp1.*(tp2.^2) +... 
    ep2.*B2.*tp1.*tp2 +... 
    ep1.*B1.*tp2 + ep2.*B2).*trans; 
  
conc = [q1_1 q1_2 q2_1 q2_2 q3_1 q3_2]; 
plot(nu,mdl,'g','LineWidth',2);hold on; 
plot(nu,real(L_obs),'b');hold off; 
legend('Model','Data'); 
title( ['Temp: ' num2str(round(p1)) ' K, Err: '... 
    num2str(sum( (mdl-real(L_obs)).^2),'%0.2E')] ); 
prettyPlot;  
drawnow; 
 

Abel Transform Script 

The MATLAB script, Inverse Abel was intended to enable an inverse Abel 

transform to be completed spectrally.  The inverse Abel transform script, based on a 



 

131 

built-in Fourier transform function, fft, and an inverse Hankel transform function, 

Inverse_Hankel, which itself was based on the function Hankel_transform, written by 

Guizar-Sicairos et al [45], was able to transform a theoretical top hat function, but was 

never implemented with real data. 

Hankel Transform. 

%% This routine implements Hankel transforms of integer order based 
%% on a Fourier-Bessel series expansion. The algorithm is based on a 
%% recently published research work (please cite if used): 
  
%% M. Guizar-Sicairos and J. C. Gutierrez-Vega, Computation of 
%% quasi-discrete Hankel transforms of integer order for propagating 
%% optical wave fields, J. Opt. Soc. Am. A 21, 53-58 (2004). 
  
%% The numerical method features great accuracy and is energy  
%% preserving by construction, it is especially suitable for iterative 
%% transformation processes. Its implementation, requires the  
%% computation of zeros of the m-th order Bessel function of the first 
%% kind where m is the transformation order. 
  
%% An array of the first 3001 Bessel functions of order from zero to 
%% four can be found in the "c.mat" array. If a greater transformation 
%% order is required the zeros may be found numerically.  
  
%% With the c.mat array, as included, Hankel transforms of order 0-4 
%% may be computed, with up to 3000 sampling points. A trasformation, 
%% and inverse transformation example is given below. 
  
%% This routine was tested under Matlab 6.5 R13 
  
%%%%%%%%%%%%%%%%%%%%%%% 
%% Input parameters  %% 
%%%%%%%%%%%%%%%%%%%%%%% 
  
R = 4;          % Maximum sampled radius (time or space, 
                % how many points are used in transform) 
N = 250;        % Number of sampling points (accuracy of result) 
ord = 0;        % Transformation order 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Matrix and vectors computing  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This operations may only be performed once for iterative algorithms 
  
load('I:\My Documents\Thesis\Hankel\c.mat'); 
c = c(ord+1,1:N+1); 
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V = c(N+1)/(2*pi*R);    % Maximum frequency 
r = c(1:N)'*R/c(N+1);   % Radius vector 
v = c(1:N)'/(2*pi*R);   % Frequency vector 
  
[Jn,Jm] = meshgrid(c(1:N),c(1:N)); 
C = (2/c(N+1))*besselj(ord,Jn.*Jm/c(N+1))./... 
    (abs(besselj(ord+1,Jn)).*abs(besselj(ord+1,Jm))); 
% C is the transformation matrix 
  
m1 = (abs(besselj(ord+1,c(1:N)))/R)';    
% m1 prepares input vector for transformation 
m2 = m1*R/V;                             
% m2 prepares output vector for display 
clear Jn 
clear Jm 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Transformation example  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% The n-th order Hankel transform of a generalized top-hat function 
%% is obtained and compared with the analytic solution, please change 
%% transformation order from 0 to 4 to see additional results. 
  
f = (r.^ord).*(r<=1);        %% Generalized top-hat function (input) 
F = f./m1;                   %% Prepare vector for transformation 
F2 = C*F;                    %% Obtain the Hankel transform 
Fretrieved = C*F2;           %% Inverse hankel transform 
  
fretrieved = Fretrieved.*m1; %% Prepare vector for display 
f2 = F2.*m2;                 %% Prepare vector for display 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
%%   Display results  %% 
%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure,  
subplot(2,1,1), plot(r,f), hold on,... 
    plot(r,fretrieved,':r'), hold off, xlim([0 4]), 
xlabel('r'), 
title(sprintf('%d,%d,%d',R,N,ord)); 
legend('Input function','Retrieved function with IHT'), 
v2 = linspace(1e-10,5,300); 
fanalytic = besselj(ord+1,2*pi*v2)./v2; 
subplot(2,1,2), plot(v,f2,'.r'), hold on,... 
    plot(v2,fanalytic), hold off, xlim([0 5]), 
legend('Transformation results','Analytic Solution'), 
xlabel('v') 
  
%% All codes were written by Manuel Guizar Sicairos. 
 

Inverse Hankel. 

function [C r v m1 m2] = Inverse_Hankel(R,N,ord) 
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%  
% [C r v m1 m2] = Inverse_Hankel(R,N,ord), where  
%  
%     R is the maximum sampled radius (time) 
%     N is the number of sampling points 
%     ord is the transformation order 
%  
%     C is the transformation matrix 
%     r is the radius vector 
%     v is the frequency vector 
%     m1 prepares the input vector for transformation 
%     m2 prepares the output vector for display 
     
load('I:\My Documents\Thesis\Hankel\c.mat'); 
c = c(ord+1,1:N+1); 
  
V = c(N+1)/(2*pi*R);    % Maximum frequency 
r = c(1:N)'*R/c(N+1);   % Radius vector 
v = c(1:N)'/(2*pi*R);   % Frequency vector 
  
m1 = (abs(besselj(ord+1,c(1:N)))/R)';    
% m1 prepares input vector for transformation 
m2 = m1*R/V;                             
% m2 prepares output vector for display 
  
[Jn,Jm] = meshgrid(c(1:N),c(1:N)); 
  
% C is the transformation Matrix 
C = (2/c(N+1))*besselj(ord,Jn.*Jm/c(N+1))./... 
    (abs(besselj(ord+1,Jn)).*abs(besselj(ord+1,Jm))); 
  
end 
 

Inverse Abel. 

function [rf r] = Inverse_Abel(f) 
% f is a 1 X ?? vector of an integrated pixel column from an  
% axially symmetric distribution 
% rf is the new radial function 
% r is the radius vector 
addpath('I:\My Documents\Thesis\Hankel');     % Path to the c.mat file. 
R = length(func); 
N = length(func); 
ord = 0; 
  
[C r v m1 m2] = Inverse_Hankel(R,N,ord); 
  
f1 = fft(f); 
rf = (C*(f1'./m2)).*m1; 
end 
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