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AFIT/GAE/ENY/09-M05 

Abstract 

 

The purpose of this research was to develop testing methods capable of analyzing 

the performance of a miniature flapping wing mechanism that can later be adapted to a 

flapping wing micro air vehicle (MAV).  A previously designed and built flapping only 

mechanism was used for testing, while a previously designed flapping and pitch 

mechanism was fabricated utilizing an Objet Eden 500V 3-dimensional printer and its 

operation demonstrated.   The flapping mechanism was mounted on a six component 

force balance.  Force and moment data were collected for a variety of wing sets at 

different flapping frequencies.  The testing was conducted using wings composed of 

aluminum tubing and/or stainless steel wire for frame material, and thin latex as 

membrane material.  The normal and axial force averages were taken with the force 

balance and compared.  The axial force measurement was verified using an air bearing 

table and a load cell as a secondary means of measurement.  Time accurate force data 

was also taken.  A non-intrusive photogrammetry method using laser dot projection was 

developed allowing for the shape of the wing during flapping to be measured.  The result 

was that approximately 98 data points representing wing shape and orientation were 

collected at 1000 Hz.  Comparisons were made between laser dot projection 

photogrammetry and a more a traditional method using potentially intrusive marked 

targets for photogrammetry, with good correspondence.  Differences in force data were 

then analyzed with the insight gained regarding wing shape.  This research demonstrates 
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the capability to study the forces and moments involved in flapping flight as well as 

shape changing of wings during flapping flight.           
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BIOMIMETIC MICRO AIR VEHICLE TESTING DEVELOPMENT  

AND SMALL SCALE FLAPPING-WING ANALYSIS 

 
 
 

1. Introduction 

 

1.1 Motivation 

 
 Birds and insects are the original masters of flight; it has been only in the last 

century that man has successfully ventured into the air.  Over the past century, man has 

pushed some of the boundaries of flight well past anything that natural flyers are capable 

of, yet there are certain areas within the flight envelope in which birds and insects still 

have the upper hand.  In the past, size has been the major limitation, but as the size of 

sensors and electronics shrinks, and the capabilities in micro-manufacturing increase, the 

flight regime currently dominated by small natural flyers is within reach and therefore is 

of greater interest.   

 Micro Air Vehicles (MAV) is the term that has been given to air vehicles in this 

flight regime.  According to DARPA, MAVs are smaller than 15 cm in their largest 

dimension and are "affordable, fully functional, militarily capable, small flight vehicles in 

a class of their own" (McMichael, 1997).  Others have suggested that MAVs must have a 

maximum weight of 100 grams (Ho and others, 2003).  The Air Force Institute of 

Technology (AFIT) is working with Air Force Research Labs (AFRL) to develop a fully 

functional MAV analysis and development center.   
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 The uses of such vehicles are endless, particularly as the size of all types of 

sensors decreases.  Releasing a flock of MAVs equipped with cameras could provide a 

valuable tool for providing real-time battlefield intelligence to both soldiers in the fight 

and to operational commanders.    MAVs, equipped with listening and imaging devices, 

disguised as insects or birds could infiltrate enemy headquarters and send back valuable 

information (AFRL Air Vehicles Directorate, 2008).   

 The small scale and slow speed of flight requires an entirely new approach to 

vehicle design.  With the exception of helicopters, flight over the past century has been 

accomplished primarily by separating the task of producing lift from the task of 

producing thrust.  Jet or propeller engines produce thrust which pushes the aircraft 

through the air.  The motion of the air over the wings produces lift.  Natural flyers use 

flapping wings to produce both lift and thrust.   

 Hover is a requirement of many MAV missions.  This requirement drives 

selection of either rotary wing MAVs or flapping wing MAVs.  Rotary wing MAVs are 

known to have decreases in efficiency and ability to tolerate wind gusts as scale decreases 

(Svanberg, 2008).  Flapping flight has been shown to be beneficial at the low Reynolds 

numbers (104-105) that correspond to small scale and low velocity (Ho and others, 2003).  

Further research into the dynamics of flapping flight in the unsteady region is crucial to 

the development of practical MAVs.  These MAVs must be capable of forward flight, as 

well as hover.  As hovering flight is both the most challenging to achieve, and the easiest 

to simulate, it is often the starting point of research into flapping flight.   

 Studies have shown that for both birds and insects, the shape of the wing often 

changes throughout the stroke.  Birds do this through actuation of the internal skeleton in 
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the wing, while insects only actuate the wing at the wing root and often rely on the 

inherent flexibility of their wings to produce beneficial deformation (Ansari, Zbikowski, 

and Knowles, 2006b; Combes and Daniel, 2003:2999).  Some studies have demonstrated 

a benefit for lift and thrust production in flapping wings due to flexibility (Ho and others, 

2003).  In order to design wings that will produce an optimal shape through deformation 

during flapping, there must be a method of measuring the shape of the wing during 

flapping.    

 One way to assess the overall effectiveness of a flapping mechanism, and its 

wings, is often quantified by the amount of average lift and thrust it can produce 

throughout its stroke per unit of input power. These values can be used to optimize 

mechanism design, wing design, and even stroke profile to meet the lift and thrust 

requirements for flight.  Time-accurate force and moment data for the mechanism are 

required to better understand what is occurring within the wing stroke.     

 Flapping wing MAVs have endless potential.  To unleash that potential, more 

research is needed to gain a better understanding of the dynamics of flapping flight.  To 

facilitate this research, test methods must be developed that can be used to experiment 

with different aspects of the problem.   

 

1.2 Research Focus and Goals 

 
The purpose of this research was to assist AFRL in developing a bench test set-up 

which could be utilized to analyze and develop MAVs.  A method was to be developed 

for taking measurements of the forces and moments associated with the flapping motion 

of a test mechanism utilizing a six component force balance.  A high speed camera 
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system was used to capture images of a flapping wing throughout its stroke, and a non-

intrusive technique was developed for measuring the shape and location of the wing 

throughout flapping.   

The first step was to mount the flapping mechanism to a six component strain 

gauge based force balance.  A LabView program had to be developed to read the voltage 

from each of the six channels of the force balance.  Post processing scripts also needed to 

be developed to convert the voltage data into force and moment data.  Force data was 

analyzed both as a time average for continuous flapping at a given frequency and 

temporally throughout a stroke.  A linear air bearing table and load cell was to be used to 

validate the axial force average measured by the force balance.    

The second component of this research was to develop laser dot projection 

photogrammetry.  Placing a grid of target dots on a wing and recording high speed 

images during flapping gives a method of measuring the shape of the wing through 

photogrammetry.  By using lasers dots as targets, the change in mass properties of the 

wing inherent with the use of traditional target marking methods is avoided.   
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2. Literature Review 

 

2.1 Natural Flyers 

 
 Flying animals, such as birds, bats, and insects, represent examples of functional 

flapping wing flight.  These animals have had to master flight for their own survival, and 

in doing so have given us a blueprint for how to achieve effective flight with flapping 

wing MAVs.  Hovering flight of diptera, or two winged flies, is considered by S. A. 

Ansari, Zbikowski, and Knowles (Ansari, Zbikowski, and Knowles, 2006a).  In hover, it 

is shown that flies flap their wings in a figure eight pattern, with the leading edge always 

constant, meaning that throughout the flapping stroke the wing pitches so that the same 

edge of the wing is always leading the wing through the air.  

Figure 1 shows the path of the wing tip throughout a stroke.  According to 

Ellington, the wing speed is not constant throughout the stroke; the wing quickly 

accelerates at the beginning of the halfstroke and decelerates at the end of the halfstroke 

with constant speed during the midstroke in between (Ellington, 1984).   

 

Figure 1:  Insect Wingtip Motion (Ansari, Zbikowski, and Knowles, 2006a) 
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When looking at a large bird soaring through the air, one would notice that it 

rarely flaps its wings.  This would suggest that there are certain regions of flight in which 

flapping is most efficient, and certain regions in which soaring, which is essentially fixed 

wing flight, is most efficient.  Consequently, for natural flyers the wingspan cut-off 

between these two methods of flight is approximately 15 cm, the same dimension 

assigned as the maximum wingspan for MAVs (Ho and others, 2003).  Traditional 

aerodynamics attempts to describe quasi-steady flow, while Ho and others prescribe that 

the nature of most flapping flight is inherently unsteady in nature.  To help quantify the 

degree of unsteadiness in flapping flight, the authors used the advance ratio (J).   

ܬ      ൌ ௎

ଶ஍௙௕
     (1)  

Where U is the forward velocity, Φ is the total flapping angle in radians, f is the flapping 

frequency, and b is the wing span.  The cut-off region between flight in the unsteady 

region and flight in the quasi-steady region is determined to be approximately at an 

advance ratio of one.  Values of J < 1 are in the unsteady flow region while values of J > 

1 are in the quasi-steady flow region (Ho and others, 2003).   

 Ellington looks at insect flight, particularly those insects utilizing only one set of 

flapping wings.  Insect flapping frequencies and wing area have been found to be tied to 

the insects mass in the following way (Dudley, 2000):  

ܵ ן ݏݏܽ݉
ଶ

ଷൗ      (2)  

݂ ן ݏݏܽ݉
ିଵ

ସൗ      (3)  

Where S is the wing area and f is the wing beat frequency.  Although not all insects 

follow this pattern directly, there is a trend that suggests these relationships would be a 

good starting point for flapping wing MAV design.  As with other types of flight, an 
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important parameter is the Reynolds number.  Ellington defined the Reynolds number for 

hovering flapping flight using the following equation: 

 ܴ݁ ൌ ௖ҧ௎ഥ೅

ఔ
ൌ ସ஍௡ோమ

ఔ஺ோ
     (4)  

where  

    ܿҧ = 2R/AR = mean chord 

    ௧ܷതതത = 2ΦnR = mean wing tip velocity 

    R = b/2 = wing length 

    AR = Aspect Ratio 

    Φ = Wing beat amplitude in radians 

    n = flapping frequency 

    ν = viscosity 

The primary axis in which the wings are flapped is called the stroke plane. The stroke 

plane is perpendicular to the primary aerodynamic force, which for hovering flight is lift, 

therefore during hovering flight the stroke plane is horizontal.  The flight of a bumblebee 

was studied, and it was determined that while in hover, the wing rotates through 

approximately 120o between half-strokes, causing the leading edge to remain constant.  

The flexibility of most insect wings causes twisting that gives the root of the wing an 

effective angle of attack of 10o to 20o greater than the tip.  Insect maneuverability and 

control is achieved through a combination of adjusting the stroke plane, adjusting the 

center of gravity, and adjusting the frequency and amplitude of flapping each individual 

wing (Ellington, 1999).  How an insect adjusts other parts of its body during flight was 

investigated by Chakravarthy and others, and will be discussed in more detail in section 

2.6. 
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2.2 Flapping Mechanisms 

 
 There have been many attempts to mimic the flapping motion used by natural 

flyers. There are three primary degrees of freedom associated with flapping wings.  In-

plane motion is the motion in the stroke plane, and is perpendicular to the direction of 

flight.  Out-of-plane motion is the motion perpendicular to the stroke plane and pitching 

motion is twisting of the wing along its primary axis.  Banala and Agrawal at the 

University of Delaware created a mechanism that is capable of all three degrees-of-

motion.  It utilized a five bar mechanism for both the in-plane and out-of-plane motion, 

and a four bar mechanism for the twisting motion.  This allows the mechanism to produce 

the figure-eight wing tip pattern that insects are known to exhibit in flight.  A picture of 

the mechanism is shown in Figure 2 (Banala and Agrawal, 2005). 

 

Figure 2:  University of Delaware Mechanism (Banala and Agrawal, 2005) 
 Other researchers have achieved pitching motion through the use of servomotors 

located in-line with the wing.  An encoder was linked to the servo such that the pitch 
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angle would be reversed at the end of each halfstroke.  This forced the angle of attack to 

be such that thrust was produced during both the upstroke and the downstroke.  A strain 

gauge force transducer was also mounted in-line with the servomotor and the wing.  The 

force transducer measured the force normal to the surface of the wing at all time.  This 

flapping mechanism was setup for flapping in a water tank.  It was suggested that inertial 

and gravitational loading on the force transducer could be determined from numerical 

analysis or by conducting identical experimentation in air.  A drawing of the mechanism 

is shown in Figure 3 (Isaac, Colozza, and Rowles, 2006). 

 

Figure 3:  University of Missouri Mechanism (Isaac, Colozza, and Rowles, 2006) 
 
 

  Another mechanism was developed at Cranfield University.  This mechanism 

was designed to provide figure-eight tip motion along with pitching, particularly rapid 

pitch reversal at the top and bottom of the stroke.  This was accomplished with a 

mechanism that utilized three distinct parts, a four-bar mechanism for figure-eight 

generation, wing articulations to transfer motion to the wings, and a Geneva wheel for 
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rapid pitch reversal at the halfstrokes.  A Geneva wheel is a mechanical device used to 

produce rotary motion of a particular angle from each rotation of constant rotary motion.  

This is precisely what is needed for rapid pitch reversal at the halfstrokes.  The 

mechanism was capable of +/- 45o of sweeping motion, and successfully achieved rapid 

pitch reversal at the top and bottom of the stroke.  A diagram of the workings of the 

mechanism is shown in Figure 4 (Zbikowski, Galinski, and Pedersen, 2005). 

 

Figure 4:  Four Bar Linkage Mechanism (Zbikowski, Galinski, and Pedersen, 2005) 
 
 
 
 

2.3 Wing Design 

 
 Ellington suggests that wings should incorporate twist from the root to the tip, and 

this twist must be reversed during the half stroke.  He suggests that preliminary flapping 
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wing vehicles should consist of “simple sail-like construction”, with a stiff leading edge, 

a chordwise support member at the root of the wing, and a membrane connected to them 

(Ellington, 1999).  Wilson and Wereley used these principles to construct the wings 

shown in Figure 5.  They used the following equation from Ellington, along with design 

goals to determine the wing length, R, to be 10 cm.   

    ݉ ൌ 0.387 ஍మ௡మோర஼ಽ

஺ோ
     (5)  

The variables in Equation 5 are the same as in Equation 4 with the added variable CL 

representing the lift coefficient.  The span to chord ratio for each individual wing was 

taken to be 2.5:1 as is common for insects.  Wing frames were constructed with carbon 

fiber rods, while tissue paper was used for the membrane and was attached to the frame 

using epoxy.  Stiffness of the wing varied based on the thickness of the carbon fiber used 

as well as the frame design.   His experimentation with these wings concluded that wings 

IV and V had the best aerodynamic performance (Wilson and Wereley, 2007). 
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Figure 5: Carbon Fiber frame Wings used by Wilson and Wereley (Wilson and 
Wereley, 2007) 

 
 

 The effect of flexibility on thrust production for flapping wings was studied by 

Heathcote, Martin, and Gursul.  Steel plates of varying thicknesses were attached to an 

airfoil and oscillated in a water tank.  The results showed an increase in thrust production 

for the flexible plate.  Images of the flapping showed that there was a phase lag between 

the leading edge and the trailing edge.  This phase lag is essentially equivalent to a 

pitching motion, effectively causing a negative pitch during the downstroke, and a 

positive pitch during the upstroke, which allowed for thrust production throughout the 

stroke (Heathcote, Martin, and Gursul, 2004).   

 Ho and others studied the effect of leading edge flexibility on lift production.  

They found that for the cicada type wings tested, flexibility of the leading edge 

diminished lift production in the unsteady region at which flapping wings are beneficial.  

The results and the wings used are shown in Figure 6.  This is likely due to the disruption 
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of the leading edge vortex caused by the constant deformation of the leading edge (Ho 

and others, 2003).   

 

Figure 6:  Effect of Leading Edge Flexibility (Ho and others, 2003) 
 
 

 They also studied the effect of flexibility on thrust production by comparing thrust 

production from wings with identical frames but with membranes of different flexibility.  

The mylar membrane wing was more flexible then the paper membrane wing, and 

produced a higher thrust coefficient, particularly as the advance ratio decreased toward 

hovering flight.  Overall results demonstrate the advantages flexibility in flapping wings 

can provide when applied properly (Ho and others, 2003).   

 The effect of spanwise camber in flapping wings was investigated by Hong and 

Altman.  Digital Particle Image Velocimetry was done on the flow field around a 

flapping flat plate wing, as well as a flapping wing with spanwise camber.  The forces 

and the velocity of the air above and below the wing were measured throughout the 

stroke.  It was determined that for the cambered wing more lift was produced during the 

downstroke, than negative lift was produced during the upstroke, resulting in a net lifting 
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force greater than for a flat plate.  The greatest difference in lift between the uncambered 

wing and the cambered wing was during the downstroke.  It was found that the cambered 

wing produces more force during the first half of the downstroke, while the uncambered 

produces more force on the second half of the downstroke (Hong and Altman, 2006).   

Hu and others used a force-moment sensor cell mounted underneath the flapping 

mechanism to study the effects of wing flexibility in flapping and gliding flight.  The 

force-moment sensor cell is capable of measuring forces in all three orthogonal directions 

as well as the torques, or moments, about these directions.  They sampled data for 60 

seconds at 1,000 Hz for each experiment run.  Lift and thrust time averaged values were 

determined from the measurements.  Data was taken for a wooden membrane wing 

(rigid), a nylon membrane wing (flexible), and a latex membrane wing (most flexible).  

The schematic of the three different wings tested is shown in Figure 7.  All three wings 

have identical rigid graphite frames.  Results showed comparable forces for all three 

wings at low speed and low angle of attack (<10o).  Higher orientation angles resulted in 

higher lift and drag coefficients for the flexible wings, but a nearly constant lift to drag 

ratio.  At higher freestream velocities, approximately 8 m/s, the overall aerodynamic 

performance was higher for the flexible wing then for the rigid wing.  During flapping 

flight the flexible wings produced more thrust than the rigid wings.  At higher flight 

speeds, flapping did not produce enough thrust to counteract drag, resulting in overall net 

drag, particularly at high flapping frequencies.  Results again show that the benefit of 

flapping flight is predominantly in the unsteady regime.  Flexibility was shown to be 

beneficial to lift and thrust production for advance ratios of less than approximately 0.5 

(Hu, Kumar, Abate, and Albertani, 2009). 
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Figure 7:  Effects of Membrane Flexibility (Hu, Kumar, Abate, and Albertani, 2009)  
 

 
2.4 Force Measurement 

 
 Force measurement for flapping wing vehicles has traditionally been done with 

force cells that utilize a strain gauge.  A strain gauge typically utilizes an electrical circuit 

called a Wheatstone bridge.  A Wheatstone bridge allows precise measurement of the 

resistance of one of its legs.  Changing the cross-sectional area of a wire changes the 

electrical resistance of the wire.  When a force is applied to the wire, strain, or a 

stretching of the wire, occurs.  In general, within the elastic region, the stress applied can 

be determined by multiplying the strain by the modulus of elasticity of the wire.  The 

geometry of the resistor can then be used to determine the forces that caused the strain, or 

elongation.  The elongation produces a change in cross-sectional area, and therefore a 
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change in resistance.  This resistance can then be measured as a voltage through use of 

the Wheatstone bridge.   

 Wilson and Wereley used load cells that utilized strain gauges in their 

experiments to measure flapping wing lift.  They directly applied the load cell to the root 

of the wing in such a way as to measure the lifting force produced by the wing as shown 

in Figure 8.  Since the wing was mounted vertically, the lifting force in these experiments 

is perpendicular to the stroke plane.  Force data was taken over the entire cycle and 

averaged to give the overall lift at a given frequency (Wilson and Wereley, 2007).   

 

Figure 8:  Force Measurement Set-Up with Strain Gauge at Wing Root (Wilson and 
Wereley, 2007) 

 
 

Singh and Chopra utilized a similar technique to measure the aerodynamic and 

inertial loads with strain gauges.  They set up the strain gauges along the root of the wing 

so that the two orthogonal bending moments could be sensed.  With this method they 

were able to determine the forces that were acting on the wing in the directions normal 

and tangential to the wing chord throughout the stroke.  In order to translate this data into 

a more useful coordinate frame, or in terms of lift and thrust, they used Hall effect 
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sensors and tapered magnets.  The Hall sensors have an output that depends on magnetic 

field strength.  The tapered magnets passing through the sensor allowed the angle of 

rotation of the pitch axis as well as the flapping motion of the mechanism to be measured.  

The data from the Hall effect sensors yielded time accurate position data on the wing, 

which could then be differentiated to determine wing velocity.  Meaningful relationships 

between the measured forces and velocity of the wing could then be examined (Singh and 

Chopra, 2006).  

Jadhav and Massey, at the Georgia Institute of Technology, used a different 

approach to force measurement.  They used a test setup in which forces were calculated 

through the measurement of motion.  A simple flapping mechanism utilizing in-plane 

flapping and passive pitch motion was devised and mounted to a vertical aluminum rod 

with two linear bearings, allowing the device to slide up and down the rod freely.  The 

mechanism was then suspended in place with springs.  This entire setup was mounted on 

a linear air bearing that would allow free motion in the x-direction, again the system was 

constrained in the x-direction using springs.  Position transducers were used to sense 

movement in the vertical and horizontal direction.  The forces that the mechanism 

produced during flapping were then calculated by applying the spring constants to the 

displacement data.  The set-up is shown in Figure 9.  Flexible wings with a carbon-fiber 

frame and a thin membrane made of two sheets of fiberglass, each 0.0025 in thick, were 

created to mimic bat wings.  Inertial effects were determined and subtracted out of the 

results by gathering flapping data using aluminum rod wings with the same mass 

properties, but with no membrane.  A high speed camera system was synchronized to the 

data acquisition system so that position data could be accurately compared to the 
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resulting force data.  The flexibility of the wing was evident in the results.  The tip of the 

wing was shown to lag the root by over 60o at the center of the upstroke.  As anticipated, 

the design of the mechanism allowed for passive pitching motion throughout the stroke 

(Jadhav and Massey, 2006).   

 

Figure 9:  Set-up for Force Measurement through Position Sensing (Jadhav and 
Massey, 2006) 

 
 

A six component strain gauge based force balance was used by Shkarayev and 

Silin to measure the forces associated with a flapping wing MAV in a wind tunnel.  Force 

measurements at different advance ratios, and dihedral angles were taken.  The normal 

force was defined as the force parallel to the stroke plane and thrust was defined as 

perpendicular to the stroke plane.  These forces were determined by averaging the force 

balance measurements over time.  The dihedral angle is the angle between the horizontal 

and the center of the flapping stroke.  It was found that a dihedral angle was required for 

the production of normal force, and that an overall increase in dihedral provided benefit 
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to both normal force and thrust.  The stroke plane angle, essentially the angle of attack, 

was also varied.  Although lifting force does trail off when stroke plane angle 

approaching 90o, the flapping wing mechanism did not exhibit a point of abrupt stall as is 

the case with fixed wing flight (Shkarayev and Silin, 2009).    

 

2.5 Force Separation 

 
 Wing deformation during flapping flight occurs in both natural flyers as well as 

man-made flapping mechanisms.  Often this wing deformation is significant enough to 

drastically affect the aerodynamics of the wing.  Therefore, in order to create an accurate 

model of the wing throughout the flapping stroke, the deformation of the wing must be 

analyzed.  To properly model the deformation of the wing, the reason for the deformation 

must be determined.  There are two primary forces acting on the wing that could cause its 

deformation, aerodynamic forces, caused by the air, and inertial forces, caused by the 

acceleration of the wing’s mass.  If the aerodynamics of the wing are the primary forces 

causing deformation, then any model must calculate the aerodynamic forces and the 

deformation continuously through the simulation time steps.  If the inertial forces are 

primary, then the deformation of the wing throughout the stroke can be determined 

separately from the aerodynamics and simply applied to the model (Combes and Daniel, 

2003).    

Combes and Daniel conducted an experiment at the University of Washington to 

try to determine which of these two forces dominate.  They created a chamber in which 

they could replace the air with helium, thereby reducing the density inside the chamber.  

A hawkmoth wing was flapped, and forces were measured both in air and in the helium 
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filled chamber.  Deformation measurements from the atmospheric tests and the helium 

filled chamber testes were comparable which suggests that the contribution to wing 

deformation by inertial loading is significantly greater then contributions from 

aerodynamic loading (Combes and Daniel, 2003).   

 Wilson and Wereley also did some interesting work to separate the inertial from 

the aerodynamic force for flapping wings.  Their work utilized a 16’ diameter cylindrical 

acrylic vacuum chamber which they pulled down to 27 in Hg, or about a 90% vacuum.  

Figure 10 shows their test setup (Wilson and Wereley, 2007).  

 

Figure 10:  Vacuum Chamber for Separating Inertial and Aerodynamic Forces  
(Wilson and Wereley, 2007) 

 
 

Singh and Chopra utilized the same vacuum chamber to determine the inertial 

loads on flapping wing experiments.  Their mechanism utilized a sensorless speed 

controller to adjust the power given to the motor, and therefore to adjust the flapping 
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frequency of the mechanism.  Less power is needed for flapping in the vacuum so the 

voltage had to be adjusted from the level used in the free atmosphere tests in order to 

obtain the same flapping frequency.  The measured forces from the vacuum chamber 

experiment were then subtracted from the measured forces in the atmospheric tests in 

order to determine the aerodynamic loading on the wings.  Results showed that the mean 

thrust inside the vacuum chamber was approximately 17% of the mean thrust in 

atmospheric tests, suggesting that approximately 83% of the mean thrust measurement 

can be attributed to aerodynamic forces (Singh and Chopra, 2008).  

 Other methods for isolating and subtracting inertial forces have been used.  Hong 

and Altman used high speed cameras to estimate inertial forces.  With the high speed 

cameras they were able to determine the angular velocity and angular acceleration of the 

wing at different points throughout the stroke.  With this information, as well as the mass 

properties of the wing, they were able to use simple physics to determine the inertial 

forces acting on the wing.  The inertial forces at certain locations in the stroke were found 

in this method, and then polynomial function was fit to the data.  The inertial forces could 

then be subtracted from measured values (Hong and Altman, 2006).   

 

2.6 Photogrammetry 

 
The process of using multiple synchronized cameras to capture three dimensional 

data about wings in flapping motion is not a new one.  Carruthers and others used high 

speed video cameras to capture the landing of an eagle.  The landing maneuver was used 

because of its predictability.  The eagle always landed on the handlers arm, and always 

landed into the wind.  Two cameras were used to capture the landing of the eagle.  A 
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MatLab code was utilized that matches pixels for points on the wing that are visible to 

both cameras.  Points used included the outline of the wing as well as some points within 

the bottom surface.  Points that could be considered connected where grouped together 

into ‘veins’.  The wing was split into 55 strips, which were each split into 100 sections 

for analysis.  The angle of attack of each section and strip was determined.  A time 

sequence with minimal feather deflection was used to validate the MatLab code.  It was 

determined that the algorithm used successfully computed the basic shape of the eagles 

wing (Carruthers, Taylor, Walker, and Thomas, 2007).   

Stewart and Albertani have done work in which a Visual Image Correlation (VIC) 

system was used to determine the deformation of flexible flapping wings.  The VIC 

system uses images from two high speed cameras, set up as shown in Figure 11, as well 

as stereo triangulation to measure in-plane and out-of-plane displacements.  A random 

speckle pattern is used in this system and was applied to flexible wings, as well as to a 

rigid plate that was fixed to the inboard section of the wing.  The rigid plate gave a 

method of measuring the rigid motion of the wing due to the flapping.  Using the speckle 

pattern on the rigid plate, the software is able to determine the wing kinematics, or the 

rigid body flapping motion of the wing.  The 3D data that represents the wing kinematics 

can be used to create a transformation matrix.  This transformation matrix gives a method 

of separating the kinematics of the wing from the deformation of the wing.   It is applied 

to the 3D data acquired from the speckle pattern on the flexible portion of the wing to 

determine the deformation of the wing (Stewart and Albertani, 2007).   



23 
 

 

Figure 11:  Visual Image Correlation Validation Set-Up  
(Stewart and Albertani, 2007) 

 
 

The effect of wing flexibility was studied through the use of videogrammetry by 

Lunsford and Jacob.  They used wings with a clear 2 mil polyethylene membrane that 

was marked with a 9 x 4 grid of fiducial markers.  Because the membrane was clear, the 

marks could be used when viewing the membrane from either side.  A LabView trigger 

was used to sync the force measurement from two load cells to the image capture from 

two high speed cameras.  PhotoModeler was used to perform photogrammetry on the 

wings during flapping.  Due to the flexibility, some of the corner points were not present 

in images from both cameras at some points in time.  Analysis of the results shows that 

the wing does not deflect uniformly.  An example of the clear wings used and example 

results from PhotoModeler are shown in Figure 12 (Lunsford and Jacob, 2009).   
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Figure 12:  Example Clear Wing with Grid (left) and PhotoModeler Results (right) 
(Lunsford and Jacob, 2009) 

 
 

Chakravarthy, Albertani, Gans, and Evers used two high speed cameras to 

research the flight of butterflies in their natural habitat.  They set-up the cameras in a 

butterfly vivarium and captured images of multiple butterflies performing multiple flight 

maneuvers.  Images were captured at 100-200 Hz.  Using software, certain body parts of 

the butterfly, including the abdomen, wings, head and antenna, were tracked during 

certain categories of flight including takeoff, landing, flapping flight, gliding flight, 

hovering and wing morphing.  Results showed that during take-off and steady flight the 

abdomen and the wing tips move out of phase with one another.  As the wing tips move 

downward, the abdomen moves upward.  As demonstrated in the research, this type of 

information can be used to design control systems for flapping wing MAVs 

(Chakravarthy, Albertani, Gans, and Evers, 2009).   

 Photogrammetry requires a consistently recognizable location on the wing so that 

the same location can be identified in images taken from different angles.  Each of these 

studies have met this requirement either by using distinguishable features of bird or insect 

wings, or by applying some type of marking to man-made wings. 
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2.7 Dot Projection Photogrammetry 

 
One limitation of traditional photogrammetry practices is that dots, or targets, on 

the wing are required in order to consistently mark the same points in each photo.  For 

traditional rigid wings used in fixed wing flight this is not a problem since placing targets 

does not make a significant change to the dynamics of the wing.  With small flapping 

wing vehicles, the wings themselves can be less than one gram.  Placing adhesive targets 

on a wing that is so light can significantly change its mass properties, and therefore 

change the dynamic motion of the wing.  For this reason it would be desirable to project 

dots on the wing with a laser.   

Jones and Pappa used a white light slide projector to put light targets on an F-18 

E/F wing for tracking.  The wing was placed on a traverse to provide measured 

movement, and two cameras were used to capture images.  Both projected dots and retro-

reflective targets were used, with results showing that the projected dots and the retro-

reflective targets both gave similar results.  A laser was also used to project a dot pattern 

on a MAV.  Accuracy of this method was limited by the speckle pattern that is produced 

by lasers reflecting off of a rough surface.  The speckle pattern limited the consistancy of 

the centroid marking technique.  The variation in marking laser targets was higher than 

the variation in marking retro-reflective targets (Jones and Pappa, 2002).   

Dot-projection photogrammetry and videogrammetry was also studied for use on 

space structures by Pappa, Black, Blandino, Jones, Danehy, and Dorrington.  One of the 

experiments done was to project dots on a plate that was swinging at a known frequency.  

Video of the plate, with the projected dots was taken and analyzed.  The configuration is 

shown in Figure 13.  The results of the dot projection videogrammetry were in-line with 
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the results using retro-reflective targets as well as the anticipated results from the known 

motion of the plate.  Another experiment demonstrated the ability of dot projection 

videogrammetry to pick up on vibrations.  A two-meter matte solar-sail was excited with 

an electrodynamic shaker.  A laser vibrometer was used to measure the frequency 

response function yielding a mode of 3.34 Hz.  Next a LCD projector was used to project 

50 targets, and two video cameras recorded data at 15 frames per second.  Analysis of the 

video yielded a mode at 3.47 Hz.  These experiments demonstrated the versatility and 

capabilities of a dot projection system for use in photogrammetry (Pappa and others, 

2003).  

 

Figure 13: Swinging Plate Configuration for Testing Dot Projection Targeting 
Method (Pappa and others, 2003) 
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3. Methodology 

 

3.1 Experimental Apparatus and Setup 

 
 3.1.1 Flapping Mechanism.    

 Two flapping mechanisms were designed in SolidWorks and built.  Prior work 

from Svanberg describes in detail the design and fabrication methods of a flapping only 

mechanism (Svanberg, 2008).  Only minor modifications and repairs were done to the 

flapping mechanism developed by Svanberg.  The main modification was the 

replacement of the pivot arm.  The original pivot arm shown in Figure 14 has a hole in 

which an extension of the leading edge of the wing is inserted.  A small set screw was 

used to hold in the wing and prevent it from twisting in the hole.  The condition of the set 

screw deteriorated as repeated use caused stripping of the plastic into which it was 

fastened.   

 

Figure 14:  Original Pivot Piece 
 

 

 The initial solution to this problem was development of the pivot piece shown in 

Figure 15.  A metal insert which housed a set screw was secured to the top of the pivot 
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piece.  This prevented the wing root from twisting within the hole and secured the wing 

to the mechanism during flapping. 

 

Figure 15:  Pivot Piece with Set Screw 
 

 

 The pivot piece shown in Figure 15 solved the initial problem, although a second 

problem was encountered when using the aluminum tubing framed wings, discussed in 

more detail in the section 3.1.2.  During flapping, all of the forces from the wing are 

concentrated at the attachment point.  In this case the only attachment point was the 

extension of the leading edge.  The forces generated during flapping caused inelastic 

bending of the aluminum tubing at the connection point to the pivot arm.  Again, the 

pivot piece was re-designed to solve this problem.   

 The solution was to attach the wing to the pivot piece at both the leading edge as 

well as the root chord.  The final pivot piece used in testing is shown in Figure 16.  This 

method of attachment not only split the forces between two connection points, it also 

prevented the wing from twisting.    
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Figure 16:  Final Pivot Piece Used 
 
 

 The two degree-of-freedom flapping with pitch mechanism described by 

Svanberg was also fabricated (Svanberg, 2008).  The operation of the mechanism was 

demonstrated in SolidWorks before construction and is shown in Figure 17.   

 

Figure 17:  SolidWorks Demonstration of Flapping with Pitch Mechanism 
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 As designed, the mechanism is capable of +/-35o in pitch during the stroke.  

Figure 18 shows how the pitching angle changes throughout the stroke as calculated 

using SolidWorks.  An Objet Eden 500V 3-dimensional printer was used to print the 

parts designed in SolidWorks.  The Du-Bro ball links used in the flapping only 

mechanism, shown in Figure 19, were used in the flapping with pitch mechanism for both 

the flapping push rods and the pitching push rods.   

 

Figure 18:  SolidWorks Calculation of Pitch Angle throughout Stroke for Flapping 
and Pitch Mechanism 
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Figure 19:  Connecting Rods used in Flapping Only and Flapping with Pitch 
Mechanism (Svanberg, 2008) 

 
 

 Some adjustments to the original design were made.  Bearings were added to the 

inside of the pitch housing to ensure smooth rotation of the pitching shaft.  The pitching 

shaft was also modified to allow for attachment of the pitching pushrod, and to ensure 

proper clearance while flapping.  Operation of the mechanism from different camera 

angles is shown in Figure 21.  The pitching motion of the wing through the stroke is 

demonstrated best in the images from camera 2.  Both mechanisms used are shown in 

Figure 20. 

 

Figure 20:  Flapping Mechanisms: (a) Flapping Only Mechanism (Svanberg, 2008) 
(b) Flapping with Pitch Mechanism 
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Figure 21:  Flapping with Pitch Mechanism in Operation 
 
 

3.1.2 Wing Construction. 

 Initial work was done using the carbon fiber frame and mylar membrane wings 

developed by Svanberg (Svanberg, 2008). These wings produced thrust, but had 

limitations with regard to this research.  The trailing edge and wing tip only contained the 

membrane edge with no structural support from frame material.  For purposes related to 

repeatability, it was desired to have more structure to the wing to facilitate the 
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development of the laser dot projection method.  The clear mylar membrane material also 

presented a problem.  It did not provide adequate reflection of the laser grid.  The 

possibility of utilizing the laser dot projection on the clear mylar membrane wings was 

investigated and is presented in section 4.2.   

For this reason, it was desired to develop a set of wings that would provide both 

interesting force results, as well as provide an interesting platform for photogrammetry.  

To meet these criteria, a set of wings were developed so that the effects of spanwise 

camber could be investigated.  These wings have the same dimensions as wing number 3 

used in Svanberg’s experiments (Svanberg, 2008).  They have a leading edge length of 3 

inches and a chord length of 1.5 inches, producing approximately a 10 inches total 

wingspan for the entire mechanism.   The wings developed are shown in Figure 22.   

Natural rubber latex provided a membrane material that was opaque, so that the 

laser dots could be easily seen when projected on it.  The latex material used was 

approximately 0.006 inches thick, had a tensile strength of approximately 400 psi, and an 

ultimate elongation of 750%.  A rectangular frame design was selected which provided 

support around the entire planform of the wing.  It was desired to test both stiff and 

flexible wings that were both straight and had spanwise camber.  Aluminum tubing 

(0.625” OD, 0.587” ID) was used for the tube frame wings, and six strands of (0.01” 

diameter) stainless steel wire twisted together were used for the wire frame wings.  

Spanwise camber was applied to wing sets of each frame material such that the ratio of 

the distance from root to tip along the curve of the wing to the straight line distance from 

root to tip was approximately 0.95.  This is in reference to work by Pennycuick which 

determined that the span of a cormorant during flight, when normalized by the maximum 
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span, varied from 0.7 to 1 during the stroke, demonstrating that birds apply spanwise 

camber adjustments in flight (Pennycuick, 1989).   

 

Figure 22:  Wings Used in Testing 
 

 

The aluminum tube frame wings were relatively stiff.  The wire frame wings were 

flexible to the point that flexure was visible throughout the stroke.  The latex membrane 

was attached by spreading out and pinning latex to a board as shown in Figure 23.  The 

frame was sprayed with Elmer`s Multi-Purpose Spray Adhesive and then pressed onto the 

latex.  The glue was allowed to dry for approximately 1 hour, at which point the latex 
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was trimmed around the frame.   As validation of measurement methods was of primary 

concern, this construction method was adequate for our purposes, although is limited in 

repeatability.  Experimentation more concerned with detailed analysis of wing 

performance may require a different, more precise construction method.   

 

Figure 23:  Attachment of Latex Membrane to Wing Frames 
 
  

 Review of test results from these wing sets lead to the development of a wing set 

that was a hybrid of the two different frames.  Aluminum tubing was used for all portions 

of the wing except the trailing edge and half of the tip chord, for which a single strand of 

stainless steel wire was used.  Figure 24 shows the wing frame design.  Latex was used 

for the membrane and was attached as before.  This wing design allowed for some 

flexibility of the wing while keeping the overall planform of the wing relatively constant.   
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Figure 24:  Hybrid Frame Wing 
 

 

3.1.3 Testing Equipment. 

 The equipment used can be broken down into two categories.  Equipment used for 

force measurement, and equipment used for high speed video and photogrammetry.   

 Force data was collected primarily using a six component force balance built by 

Modern Machine and Tool Co.  The force balance is strain gauged based and capable of 

measuring normal force, axial force, side force, pitch moment, roll moment, and yaw 

moment in the ranges specified in Table 1. 

The force balance was mounted inside a stainless steel sting, and the sting was 

mounted to a stand which was attached to the table.  The setup is shown in Figure 25.  

The mechanism was mounted to the force balance using a piece designed in SolidWorks 

and printed using the Objet Eden 500V 3-D printer.  The force balance mount was 

designed to put the center of gravity of the mechanism above the center of gravity of the 

balance.  This extends the range of the pitch moment measurement by ensuring that the 

pitch moment is near zero when the mechanism is at rest.   
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Table 1:  Force Balance Load Ranges 
Component Measurement range  

Normal Force +/- 4 lbs  (+/‐ 1814 g) 

Axial Force +/- 2 lbs  (+/‐ 907 g) 

Yaw Force +/- 2 lbs  (+/‐ 907 g) 

Pitch Moment +/- 2 in-lbs  (+/‐ 23,043 g‐mm)

Roll Moment +/- 4 in-lbs  (+/‐ 46,043 g‐mm)

Yaw Moment +/- 2 in-lbs  (+/‐ 23,043 g‐mm)

 

 

Figure 25:  Force Balance Set-Up 
 

 

A National Instruments data acquisition system and LabView 8.5 were used to 

collect the data.  The six channels of the balance were connected to six of the eight 

available channels on a SCXI-1314 terminal block in accordance with the force balance 

manual.  A connection diagram for channel 1, the normal force, is shown in Figure 26.   
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Figure 26:  Normal Force Example of Force Balance Wiring to SCXI-1314 Module 
 
  

 The terminal block was then connected to a SCXI-1520 universal strain gauge 

input module.  This system is specifically designed for use with Wheatstone bridge based 

strain gauges.  An excitation voltage of five volts was used.  Initial analog signal 

conditioning was accomplished within the SCXI-1520 hardware for each channel 

individually.  The signal is amplified in accordance with the anticipated voltage range 

specified by the user.  The anticipated voltage range was specified in the calibration book 

by the balance manufacturer, and is shown in Table 2 along with the corresponding 

amplification values determine by the National Instruments system.  After the signal is 

amplified, an adjustable anti-aliasing low-pass analog filter is applied to the signal to help 

to decrease higher frequency noise on the measurement signal.   

A task within LabView was setup to sample the voltage from the strain gauge.  A 

‘voltage with excitation’ task was used instead of the traditional ‘strain’ task.  This was 

done because all of the calibration and sensitivity information given for the balance is 

based on voltage, not strain. The task reads data from all six channels at the same time.  

The data is then separated into individual channels so that the amplification values 

selected by the system for each channel could be viewed.  Potentiometers are electrical 
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devices that are have variable resistance and can be used to control voltage in low power 

circuits.  Fine and coarse potentiometers are used within the data acquisition hardware to 

control the voltage output of each channel.  They were adjusted for so that the unloaded 

zeroes for each channel of the balance were as close as possible to the values specified in 

the force balance calibration book that was provided by the balance manufacturer.  The 

potentiometer values are also specified in Table 2. 

Table 2:  Parameters of Force Balance Channels 
Channel  Voltage Range 

+/‐ (mV) 
Amplification Unloaded 

Zero (mV) 
Coarse 

Potentiometer 
Fine 

Potentiometer 

Normal 
Force 

10.244  870  ‐0.518  62  2127 

Axial Force  5.16  1000  0.82  62  2131 

Pitch 
Moment 

5.688  1000  0.146  62  2151 

Roll 
Moment 

6.688  1000  ‐0.282  62  2060 

Yaw 
Moment 

5.639  1000  0.859  62  2087 

Side Force  5.085  1000  0.388  62  2071 

 

Analog filtering was available at values of 10Hz, 100Hz, 1kHz, and 10kHz.  

Analog filters are used to solve the aliasing problem in spectral analysis.  The anti-

aliasing filter frequency should be selected such that it is half the sample rate or lower.  

High frequency content was not required for our purposes, so an analog filter of 100Hz 

was chosen.  With a sample rate of 200 Hz (0.005 sec), this filter substantially reduced 

noise.   

 A screen shot of the LabView Virtual Instrument (VI) developed is shown in 

Figure 27, and the block diagram is shown in Figure 28.  The signal is broken into six 

channels, and each channel is output to a plot on the screen.  This allowed the data being 

measured by the balance to be viewed in real time.  A button was put on the screen to 
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turn on and off the data collection function.  Data was written to the specified file after 

every 10 points were acquired, which corresponds to every 0.05 seconds.  No digital 

signal processing was accomplished within LabView.  The raw voltage data for all six 

channels was saved as the output file.  This ensured that no data was lost and digital 

signal processing parameters could be adjusted after the data was taken.   MatLab was 

used for post processing.   

 

Figure 27:  LabView VI Used for Data Acquisition 
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Figure 28:  Block Diagram of LabView VI 
 
 

 A secondary method, developed by Svanberg, was used to measure the average 

axial force, and to validate the force balance measurements (Svanberg, 2008).  This 

method involved the use of a load cell and an air bearing table.  The linear air bearing 
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table, shown in Figure 29, uses four linear air bearings that slide on two stainless steel 

rails.  A 24” x 18” aluminum plate is mounted on the air bearings.  When the bearings are 

supplied with compressed air it provides for near frictionless motion of the table along 

the rails.  Mounting the mechanism to the top of the air bearing allows the aerodynamic 

force that the mechanism creates during flapping to be directly transferred to the air 

bearing table, which in turn can be measured by a load cell (Svanberg, 2008).  Validation 

was required to ensure the balance and data acquisition system were functioning 

properly. 

 

Figure 29:  Linear Air Bearing Table Set-up 
 

 

 A strain gauge transducer load cell made by Interface was mounted to the rigid 

frame of the air bearing table such that the force from the frictionless platform could be 

measured, shown in Figure 30.  The air bearing table was angled slightly so that the load 

cell was under constant loading.  Initially the load cell was connected to a separate digital 

display, and the reading was manually recorded for each case.  This method proved in-

effective for small measurements that changed constantly with flapping.  To remedy this 

situation the load cell was connected to the data acquisition system used for the force 



43 
 

balance.  The load cell is also strain gauge based, and there were available channels on 

the data acquisition system so the strain gauge was simply ‘plugged in’ to an available 

port on the terminal block.  The load cell channel was added to the LabView VI used for 

the force balance so that the load cell voltage could be recorded along with the voltages 

from the force balance.  The excitation voltage for the load cell was set to 10 V and a 

calibration was accomplished.  The slope of the calibration curve was applied to the 

voltage readings in post processing to get the measured force in grams.  Once the force 

balance measurement technique was shown to give comparable results to the load cell 

measurement technique, the load cell was no longer used.   

 

Figure 30:  Load Cell Mounting 
 
  

 Control of the flapping mechanism speed was accomplished by controlling the 

power supplied to the DC motor.  This was accomplished using an Instek laboratory DC 

power supply shown in Figure 31.  The wires from the mechanism motor were attached 

to the power supply in front.  The coarse adjustment current knob was turned on and left 

constant.  The fine adjustment voltage knob was used to control the motor speed, and 

therefore the flapping frequency.   
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Figure 31:  Power Supply Used to Control Mechanism Flapping Frequency 
 
 

 An 115V Monarch Phaser Strobe was used to estimate the flapping frequency of 

the mechanism.  An optical sensor was mounted in front of the mechanism looking back 

on the crankshaft.  A piece of reflective tape was placed on the crankshaft.  The optical 

sensor records each time the reflective tape passes through its beam, and the frequency of 

the flapping is displayed on the strobe light screen.  This gave an estimate of flapping 

frequency, while actual flapping frequency was determined from the Power Spectral 

Density (PSD) of the force measurements as discussed in section 3.2.1.   

 A vacuum chamber was designed and built to separate the inertial loads from the 

aerodynamic loads.  The chamber was designed in SolidWorks, a rendering is shown in 

Figure 32.  The total dimensions were approximately 24" x 24" x 24".  The bottom plate 

is made of an aluminum plate 0.75" thick.  Holes were machined in the bottom plate so 

that plates containing sealed pass-through ports for data, electrical power, and a pressure 

sensor could be attached.  The connection to the vacuum pump was through the smaller 

hole in the aluminum plate.  The other five sides were made of Acrylic plates 0.944" 
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thick.  Circular o-rings are used around the top and the bottom while linear o-rings are 

used on the vertical edges.  Threaded rods with wing-nuts were used along the corners to 

connect the sides.   

 

Figure 32:  Vacuum Chamber Design 
 

 

 Once assembled, suction was applied using a Welch model 2585B-01 vacuum 

pump.  The corners and vertical edges did not seal properly, and only about a half 

vacuum was achieved.  The vertical edges were then bonded using Weld-On #16 solvent 

cement, and the bottom of the chamber was sealed to the aluminum using caulking.  Once 

an adequate vacuum was finally achieved, the deflection of the side plates put enough 

force on the threaded rods to crack the acrylic side pieces in two places.  As a safety 

precaution this part of the project was placed on hold and the chamber will need to be 

redesigned.  No vacuum testing was accomplished as part of this effort.   
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The high speed video images used for photogrammetry were captured using a four 

camera system supplied by AFRL.  The cameras used were Photron MC2 High Speed 

Digital cameras.  These cameras are capable capturing images at 2000 Hz at resolution of 

512 x 512.  The camera head and lens, shown in Figure 33a, are separate from the camera 

body, shown in Figure 33b.  The camera heads were mounted on tri-pods on either side of 

the flapping mechanism.  Tamron A031 AF 28-200mm F/3.8-5.6 XR Di Aspherical (IF) 

Macro Zoom Lenses were used for testing.  The overall set-up is shown in Figure 34.  

Photron FASTCAM Viewer 3 was used for image acquisition and PhotoModeler 6 from 

Eos Systems Inc. was used for photogrammetry.  While all data presented was acquired 

with the AFRL camera system, preliminary work was done utilizing AFIT's three camera 

system.   

  
Figure 33:  High Speed Cameras (a) Camera Head (b) Camera Body 
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Figure 34:  Overall Set-up for High Speed Video Acquisition 
 

 

 Two Lasiris Lasers Diodes made by StockerYale and purchased through Edmund 

Optics were used for dot projection.  One of the lasers used is shown in Figure 35.  These 

lasers are fairly small and inexpensive; they are operated at 7 mW and 101mA.  

Projection heads are available for these lasers that split the light into many different 

patterns.  A projection head was selected which created a seven by seven square 

structured light dot array for each laser, giving 98 total points for the combination of two 

lasers.  When the projection head is attached, these lasers are considered Class II and do 

not require eye protection.   
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Figure 35:  Laser Diode 
 
 

 The two lasers were mounted above the wing such that the best coverage 

throughout the stroke was achieved, as shown in Figure 36.  This was difficult because of 

the fact that the size of the projected dot array on the wing varies with the distance of the 

wing from the laser.  The laser array overall size increases as the surface moves away 

from the laser.  While good coverage was achieved in the middle of the stroke, coverage 

became sparse at the bottom of the stroke and the wing was not fully covered at the top of 

the stroke.  Because the lasers are relatively inexpensive, additional lasers could be 

purchased and focused at other locations in the stroke to alleviate this problem.  

Improvement in this area could also have been achieved by straightening, or collimating, 

the laser array with a lens so that the beams are parallel and the grid size remains constant 

with distance. 
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Figure 36:  Laser Dot Projection Set-Up 
 
 

3.2 Experimental Procedure  

 
3.2.1 Force Measurement. 

Force measurements were taken for the wings discussed in section 3.1.2.  The 

method for force measurement was as follows.  First, wing sets were attached to the 

mechanism, giving an overall wingspan of approximately 10 inches (0.254 m).  Next the 

mechanism was secured to the force balance.  The LabView VI described in section 3.1.3 

was run.  Before turning on the mechanism, a data set is taken which serves as a tare file.  

All data sets were taken by recording data at 200 Hz for at least 16 seconds.  Next the 

voltage to the flapper motor was turned up until the flapper started moving.  A data set 

was taken, the approximate frequency was recorded from the phaser strobe, and the 

voltage and current draw from the motor was recorded.  The voltage was increased, and a 

new data set, frequency, voltage, and current were taken.  This was repeated at 
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approximately seven different frequency points within the frequency range.  The lowest 

frequency at which the mechanism can continuously operate is approximately 2.5-3 Hz.  

This limit is due to the need to overcome the static friction in the mechanism.  The 

highest frequency is limited by the power of the motor and is based on the weight of the 

wing. It was approximately 7.5-8 Hz for the wings examined in these tests.  Once data is 

captured at seven frequency points the mechanism was turned off.  The mechanism was 

looked over to ensure that it was still in good working order and that the wings were 

intact.  Another tare file was taken and the process was repeated.  This was done for each 

wing set approximately 10-15 times.   

Data was also taken for the axial component using the load cell and air bearing 

table system.  The process was the same, but with one added step.  Before the tare file 

was taken, compressed air was supplied to the table.  Once the air bearing table was 

pressurized, the table was allowed free contact with the load cell.  To do this, a bolt that 

was in place to protect the load cell was loosened to allow free contact.  The power wire 

to the mechanism and the data lines from the balance were taped so that they applied as 

little force as possible to the air bearing table.  Since the load cell was wired into the 

same acquisition system, no additional steps were required; the load cell voltages were 

recorded in the same data file for post processing.   

 Post processing of the force balance voltage data taken from LabView was done 

in MatLab.  Data files for each run were saved in separate folders, allowing automation 

of post processing.  Once the data was read into MatLab, the interaction matrix was 

applied.  When multiple strain gauges are used together to measure different components 

of force, as is the case in a six component balance, it is impossible to fully separate the 
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forces.  For instance, forces applied purely in the axial direction will cause some change 

in voltage on the normal channel.  Values for the interactions between the six 

components were provided by the manufacturer in the 27 x 6 interaction matrix which is 

shown in Appendix A.  These interactions between the voltages on each channel must be 

taken into account in order to determine the actual force that was applied.  The interaction 

matrix provided was determined by the manufacturer by performing a static calibration.  

From conversations with Dr. Albertani, it was noted that improvement might be achieved 

by performing some type of dynamic calibration to ensure the accuracy of dynamic 

measurements (Albertani, 2008).  The method below was used to apply the interaction 

matrix in post processing; a summary of the process is shown in figure__.  

1. Using equation 5, convert the measured voltage from each channel to lbs (or 

in-lbs) by applying constants determined from the unloaded zeros, voltage 

ranges, and measurement ranges for each channel that are given by the 

balance manufacturer 

݊݅ ݎ݋ ݏሺ݈ܾ ݀ܽ݋݈ ݀݁ݎݑݏܽ݁ܯ െ ሻݏܾ݈ ൌ ெ௔௫ ௅௢௔ௗ

ሺ௏೘ೌೣି௏ೠ೙೗೚ೌ೏೐೏ሻ
כ ௠ܸ௘௔௦௨௥௘ௗ    (5)  

2. Determine the initial values of the 27 interaction parameters on the left hand 

side of the interaction matrix (Appendix A) where abbreviates are as follows:  

NF=Normal Force, AF=Axial Force, PM=Pitch Moment, RM=Roll Moment, 

YM=Yaw Moment, and SF=Side Force.   

3. For each of the six components determine the resolved force/moment by 

multiplying each of the interaction parameters by the corresponding value, in 

the corresponding column of the interaction matrix and then subtracting this 
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result from the measured value.  The equation for the normal force is shown in 

equation 6.  

௥௘௦௢௟௩௘ௗܨܰ ൌ ௠௘௔௦௨௥௘ௗܨܰ െ ሾܨܣ כ ூெܨܣ ൅ ܯܲ כ ூெܯܲ ൅ ܯܴ כ ூெܯܴ ൅

ܯܻ כ ூெܯܻ ൅ ܨܵ כ ூெܨܵ ൅ ଶܨܰ כ ଶܨܰ
ூெ ൅ ሺܰܨ כ ሻܨܣ כ ሺܰܨ כ ሻூெܨܣ ൅

ሺܰܨ כ ሻܯܲ כ ሺܰܨ כ ሻூெܯܲ ൅ ሺܰܨ כ ሻܯܴ כ ሺܰܨ כ ሻூெܯܴ ൅ ሺܰܨ כ ሻܯܻ כ

ሺܰܨ כ ሻூெܯܻ ൅ ሺܰܨ כ ሻܨܵ כ ሺܰܨ כ ሻூெܨܵ ൅ ଶܨܣ כ ଶܨܣ
ூெ ൅ ሺܨܣ כ ሻܯܲ כ

ሺܨܣ כ ሻூெܯܲ ൅ ሺܨܣ כ ሻܯܴ כ ሺܨܣ כ ሻூெܯܴ ൅ ሺܨܣ כ ሻܯܻ כ ሺܨܣ כ ሻூெܯܻ ൅

ሺܨܣ כ ሻܨܵ כ ሺܨܣ כ ሻூெܨܵ ൅ ଶܯܲ כ ଶܯܲ
ூெ ൅ ሺܲܯ כ ሻܯܴ כ ሺܲܯ כ ሻூெܯܴ ൅

ሺܲܯ כ ሻܯܻ כ ሺܲܯ כ ሻூெܯܻ ൅ ሺܲܯ כ ሻܨܵ כ ሺܲܯ כ ሻூெܨܵ ൅ ଶܯܴ כ ଶܯܴ
ூெ ൅

ሺܴܯ כ ሻܯܻ כ ሺܴܯ כ ሻூெܯܻ ൅ ሺܴܯ כ ሻܨܵ כ ሺܴܯ כ ሻூெܨܵ ൅ ଶܯܻ כ ଶܯܻ
ூெ ൅

ሺܻܯ כ ሻܨܵ כ ሺܻܯ כ ሻூெܨܵ ൅ ଶܨܵ כ ଶܨܵ
ூெሿ    (6) 

In equation 6 the subscript IM represents the corresponding value in the NF 

column of the interaction matrix.  This needs to be done for each force and 

moment.  Luckily by utilizing matrix mathematics this can be done simply 

with matrix multiplication using equation 7. 

௥௘௦௢௟௩௘ௗܨ ൌ ௠௘௔௦௨௥௘ௗܨ െ ܥ כ  (7)      ܯܫ

Where Fresolved is a matrix 1x6 in dimension representing the six resolved 

forces/moments, Fmeasured is a matrix 1 x 6 in dimension representing the six 

measured forces/moments, C is a matrix 1 x 27 in dimension representing the 

27 interaction parameters (NF, AF, PM, etc…), and IM is the interaction 

matrix which is 27 x 6 in dimension.   

4. Subtract the resolved values from the measured values.  If the maximum 

difference for each component is low enough, in this case less than 1e-14, 
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then the resolved values are the final values with the interaction matrix 

applied.  If the difference is not low enough additional iteration is required.  

Repeat steps two and three but use the values calculated in the first iteration to 

determine the 27 interaction parameters.  Repeat iteration until the maximum 

difference between consecutive iterations is sufficiently low.   

5. Convert back into voltage for additional processing.   

 

Figure 37:  Summary of Interaction Matrix Application Process 
 

 

The interaction matrix was applied to the data at each time step.  The next step in 

post processing was subtracting the tare file.  The interaction matrix was applied to the 

average voltages from the tare file.  These values were then subtracted from data taken at 



54 
 

each time step.  Next the data was converted to grams or gram-mms.  The resulting data 

set represents the inertial and aerodynamic forces and moments produced by the 

mechanism during the time period recorded.   

The frequency of the given data set was determined from spectral analysis.  Since 

the fast Fourier transform was used in the processing, the number of data points per block 

needs to be a power of two.  A block size of 1024 was used, and a hanning window 

applied.  This block size will produce 512 frequency data points over the Nyquist range 

of 0-100 Hz.  Since data was sampled for at least 16 seconds, there was a minimum of 

three unique blocks of data.  A 50% overlap was chosen, and the PSD values from each 

block averaged.  An estimate of the frequency of flapping, taken from the phaser strobe, 

was used to determine a range in which to look for the peak on the PSD.  The frequency 

location of the highest peak of the averaged PSD within the range was taken as the 

frequency of flapping for that data set.  This method gives the average flapping frequency 

for the data set to within approximately +/- 0.1 Hz. An example of the PSD for a flapping 

frequency of 6.25 Hz is shown in Figure 38b along with a time series of voltage readings 

from the Normal Force channel shown in Figure 38a.  As shown, the highest peak is at 

the flapping frequency, and additional peaks are seen at each harmonic of the flapping 

frequency.   
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Figure 38:  (a) Example Time Series at 6.25 Hz flapping frequency (b) Example 
Power Spectral Density at 6.25 Hz flapping frequency 

 
  

Post processing of load cell data was also done in MatLab.  The process was 

much simpler.  The load cell data from the tare file was averaged and subtracted from the 

file.  The calibration slope was applied to the voltage reading to give the measurement in 

grams. 

The average normal and axial forces were compared for the four wing sets.  The 

data acquisition process did not require a constant set of flapping frequencies for each 

run.  This made the determination of overall averages and error bars for the combination 

of all runs more challenging.  The solution was to break the frequency range into 

sections, each 0.4 Hz wide.  Each data point, which represents the average value of 

normal or axial force from a given data set, was separated into a section based on its 

frequency value.  Once sorted, sections with at least four data points were used.  The 

force values were averaged, and the standard deviation was determined.  The error bars 

were determined by applying a 95% confidence interval to the standard deviation as 
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specified in the Barlow, Rae and Pope textbook (Barlow, 1999).  The frequency value for 

the data point was taken as the average of the frequency values within the section.  Since 

the frequencies are averaged, the calculated standard deviation will be larger than the 

actual standard deviation supported by the data. 

 

3.2.2 High Speed Images/Photogrammetry. 

The experimental procedure for gathering the high speed images used for 

photogrammetry began by attaching the proper wing set to the mechanism, and mounting 

the mechanism to the force balance.  For consistency, the mechanism was mounted to the 

force balance for photogrammetry experiments as well as force measurement 

experiments.  A piece of balsa wood was marked with dots spaced at 0.25" and was 

attached to the mechanism.  This served as a set of stationary reference points used in the 

photogrammetry process.   

The lasers were positioned above the wing and were adjusted to provide the best 

coverage of the wing at the midstroke while also providing the best possible coverage 

throughout the rest of the stroke.  An image of the laser grid positioned on a wing is 

shown in Figure 39; the arrows labeled ‘x’ and ‘y’ represent the coordinate frame used, 

the z direction is defined perpendicular to the x-y plane and positive upward.  Although 

the color of the lasers is different, the cameras produce black and white images so the 

laser grids look identical.   
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Figure 39:  Flapping Mechanism with Laser Dot Grid 
 

 

Once the lasers were positioned, the cameras were positioned.  The cameras were 

located in sets of two on either side of the table holding the mechanism.  All four cameras 

were focused on the port wing.  Two cameras were pointed and focused on the upper 

portion of the stroke, and two cameras were pointed and focused on the lower portion of 

the stroke.  Cameras were positioned and focused such that the entire flapping stoke was 

captured, and such that the reference points were captured.  The overall set-up is shown 

in Figure 34.   

Images were captured at 1000 fps with a shutter speed set to 1/1000 seconds.  The 

apertures on the lenses were completely opened, to an F-stop of 3.8, so as to allow in as 

much light as possible.  Although the laser grid showed up in the images at this setting 

with no additional lights, in order to see the reference points clearly, and to see the 
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motion of the wing, additional lighting was needed.  Additional lights were turned on and 

adjusted until the reference points were visible. The additional lights were too bright to 

point directly at the mechanism.  For best results the lights were turned on, but pointed 

away from the mechanism.   

The image acquisition system used has many different options for triggering the 

acquisition of images; the 'end' trigger mode was selected.  This method continuously 

records until the trigger is activated at which point it stops recording and saves the last 

8,188 images recorded.   Once all lasers and cameras were positioned and focused, the 

data acquisition system began recording.  The mechanism was then turned on.  After a 

few seconds of flapping, the triggering device was pushed to stop the image acquisition; 

then the mechanism was turned off.  Images from each camera were saved for two 

consecutive cycles.  The flapping frequency was determined from the number of images 

for a cycle.    

Validation of the laser dot projection technique was done by comparing 

photogrammetry results using marked targets to photogrammetry results using laser 

projected targets for a stationary wing.  The curved tube frame wing was used in the 

validation.  The wing surface was marked with a marker, placing dots at approximately 

the same spacing as the laser grid.  The marked wing was attached to the mechanism, and 

the mechanism mounted.  The wings were positioned at the midstroke, and the 

mechanism taped so that the wings could not move.  The lasers were positioned so that 

the grid covered approximately the same area as the marker dots, and the cameras were 

focused on the wing and reference dots as before.  The lasers were turned off, and a few 

images were taken of the stationary wing at a shutter speed of 1/125 seconds.  This 
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allowed sufficient light to clearly see the marker targets.  The lasers were then turned on, 

taking care not to touch the mechanism or the cameras.  The shutter speed was adjusted 

to 1/1000 seconds which was fast enough to allow the laser dots to over-power the 

marker dots, but slow enough to allow the reference dots to be clear.   A few images were 

taken of the stationary wing with the laser grid.  This procedure gave images of an 

identical wing using two different methods. 

Calibration allows PhotoModeler to take things like lens distortion, focus 

distance, and zoom into account when determining the 3D location of points. Calibration 

of the cameras was done after every test session, or any time the cameras were adjusted.  

Each camera was calibrated independently, according to instructions from the 

PhotoModeler software.  The calibration grid used is shown in Figure 40.  The data 

acquisition system has the ability to record a single image each time the trigger is pushed.  

This method was used to take 12 images of the calibration grid for each camera.   

 

Figure 40:  PhotoModeler Calibration Grid 
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 By mounting the calibration grid to a flat plate, images could be taken at multiple 

angles by simply rotating and tilting the grid.  PhotoModeler requires 12 images taken of 

the grid; three different tilt angles from each of the four directions.  Multiple grid sizes 

were made available, and the one that covered the most area in the field of view while in 

focus was selected.  An example calibration images is shown in Figure 41.   

 

Figure 41:  Example Calibration Image 
 
 

 After all of the images, and calibration images were taken, photogrammetry could 

be accomplished.  The first step was to perform calibration within PhotoModeler for each 

camera.  A camera calibration project was selected, and the calibration images from one 

camera imported.  Camera calibration was run.  The camera calibration project was 

saved.  This was done for each of the four cameras.   

 Once all of the cameras were successfully calibrated, a PhotoModeler Video 

(PMV) project was started.  The images to be analyzed were imported and matched to the 



61 
 

camera calibration file corresponding to the camera used to record the images.  The PMV 

project is set up in multiple epochs; each epoch contains four images, one from each 

camera, that correspond to the same point in time.   

 The process was begun by marking points in the first epoch to be analyzed.  The 

laser dots and the reference frame dots were marked using sub-pixel marking.  This is a 

precise method for consistently marking the center of a light or dark multi-pixel target.  

Many of the dots were marked automatically, but some were done manually.   

 Once all of the dots on all the images were sub-pixel marked, they were 

referenced together.  Referencing is a method of signifying which points in different 

images correspond to the same point in space.  When enough points are manually 

referenced, PhotoModeler was able to orient the photos, meaning that 3D position 

information is calculated for each point.  After the photos were oriented, automatic 

referencing was done for the rest of the points.  The reference dots were then used to 

identify the origin, the scale, and the x and y axis directions.  By processing the project, 

the 3D locations of the points are adjusted to the assigned coordinate system.   

 Each point is assigned a residual when the epoch is processed.  A table of residual 

values is a valuable tool for determining if there are points with large marking residuals.  

Marking residuals are discrepancies between where a mark is on a given photo and where 

the program interprets the mark's location on the photos taken from different camera 

angles.  Errors in marking and referencing were corrected until all of the residuals were 

less than one pixel for each camera view.  The value and direction of the residuals could 

also be viewed using vectors at each point in each photo.  This tool was used to ensure 
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that the residuals were in random directions.  Residuals that point in the same direction or 

in a circular pattern could be a sign of a bad calibration. 

 One of the potential drawbacks of laser dot projection versus printed dot 

photogrammetry is that when the targets are projected onto the surface they move along 

the contour of the surface.  Meaning that for each image in time, a given laser dot is in a 

different place on the surface of the wing.  This allows for an overall view of changes in 

the wing’s contour, but does not provide deflection data of each point on the wing.  When 

viewing the three dimensional position of the points after processing, boundaries cannot 

be determined using only laser dot projection.  To help with this visualization, four 

additional points were added; one at each corner of the wing.  Since there was no target 

on the corners of the wing these points were not sub-pixel marked; they were placed 

manually by placing a mark on the image where the corner appeared.  Inconsistency in 

this marking method increases the inaccuracy of the corner points, although the accuracy 

of the corner points is not as critical as they only serve as a reference frame to help 

visualize the outline of the wing.    

 Once an epoch was processed successfully, a tracking tool was used to move to 

the next epoch.  PhotoModeler has two options for tracking points, 2D tracking and 3D 

tracking. The 3D tracking option was used.  In this method the initial point for search in 

the photos in the new epoch is found by projecting the 3D position of each point from the 

previous epoch onto the photos in the new epoch.  For the most part, the automated 

tracking method accurately tracks and references the points, but it is not perfect.  To keep 

the accuracy of referencing, and marking in each epoch, the tracking was done one frame 
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at a time.  Referencing and marking was adjusted as required to ensure accuracy before 

moving to the next epoch.   

 A screen shot of PhotoModeler is shown in Figure 42.  The four photos are in the 

center, each with marked points, shown as crosses, corresponding to the centroid of the 

laser dots.  The 3D viewer to the right was a useful tool to ensure that the overall shape of 

the wing was as expected.  A 'points quality' table, located below the 3D viewer, was 

used to view the residuals of all of the points, and to help find points that were poorly 

marked or referenced.   

 

Figure 42:  PhotoModeler Screen Shot 
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 The same process was used for the stationary validation.  The marker dots were 

sub-pixel marked and referenced in one project, and laser dots in another.  As with all 

PhotoModeler analysis, the 3D position data was exported to a text file, and further 

analyzed in MatLab.   

 Due to the time consuming nature of the photogrammetry process, only portions 

of the stroke were analyzed.  Additional lasers and additional camera angles may be 

needed if analysis of the entire stroke, particularly for a highly flexible wing, was desired.  

The midstroke had the best coverage from the laser grid, so 26 image sets from the 

downstroke and 26 image sets from the upstroke were analyzed for the tube frame 

straight wing and the tube frame curved wing.  Initially these wings were chosen because 

they had little flexure during the stroke which provided a simple case for preliminary trial 

of the laser dot projection method.  The portions of the stroke analyzed are shown in 

Figure 43 and Figure 44.  A combination of a preference to use the frames with the best 

dot coverage, and a preference to look at the same location in the stroke for each case 

drove the selection of these locations.   
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Figure 43:  Photogrammetry Analysis Area for Curved Tube Frame Wings 
 

 

Figure 44:  Photogrammetry Analysis Area for Straight Tube Frame Wings 
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 Since the tube frame wings showed promising results, a wing with some 

flexibility was desired for analysis.  For this reason the hybrid frame wing was developed 

and portions of its stroke analyzed.  Thirty frames from the upstroke and downstroke 

were analyzed.  The analysis area is shown in Figure 45. 

 

Figure 45:  Photogrammetry Analysis Area for Hybrid Frame Wings 
 
 

 For the validation of the laser dot projection method, comparison to traditionally 
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was not trivial.   

50 100 150 200 250

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Frames

L
o

ca
tio

n 
in

 S
tr

o
ke

Portion of stroke analyzed

Frame 116 Frame 146 Frame 192 Frame 222

 Upstroke
     Analysis Area 

Downstroke   
       Analysis Area    

Top of Stroke

Bottom of Stroke



67 
 

 

Figure 46:  Images Used for Comparison of Marker Dots to Laser Dots 
 

 

In order to compare the results, there needed to be some method of modeling the 

shape of the wing surface for each case.  A type of interpolation was used to accomplish 

this task.  Bicubic splines are traditionally used to estimate a function for a dependent 

variable over a grid of two, evenly spaced, independent variable.  Because neither the 

marker dots nor the laser dots are exactly evenly spaced, a traditional bicubic spline 

routine could not be used on the data points.  Instead, a radial basis function method was 

used.  MatLab codes, developed by Travis Wiens and available from the MathWorks 

website, were used to apply this radial basis function method (Wiens, 2008).  The codes 

are available in Appendix B.   

 The radial basis function method considers that every known point affects every 

other known point according to some function, the radial basis function, of the radial 

distance between the two points (Press and others, 2007).  The radial distance between 

two points is taken as the square root of the sum of the squares of the difference in each 
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independent variable.  In this case the x and y values of the points are treated as the 

independent variables.  The below equation from Numerical Recipes is the basis for the 

radial basis function method.   

௝ݖ ൌ ∑ ௝,௜൯ேೖݎ௜߶൫ݓ
௜ୀଵ     (8)  

In Equation 8, zj is an element in a vector of the dependent values, in this case the z-value 

of the known points; Nk is the number of known data points gathered from the 

photogrammetry process; φ(r) is the radial basis function described later; and w is a 

vector of Nk length which represents the weight of each of the radial basis function 

values.  The radial basis function is a function of the radial distance, rj,i, between the jth 

known or unknown point, and the ith known point.  The radial distance is found from the 

difference in the x-value of the two points, Δxj,i, and the difference in the y-value of the 

two points, Δyj,i, as shown in Equation 9.     

௝,௜ݎ ൌ ට∆ݕ௝,௜
ଶ ൅ ௝,௜ݔ∆

ଶ      (9)  

௝,௜ݔ∆ ൌ ௝ݔ െ   ௜       (10)ݔ

௝,௜ݕ∆ ൌ ௝ݕ െ   ௜       (11)ݕ

In Equations 9-11, x and y are vectors of the x-values of the known points and the y-

values of the known points respectively, each of these vectors is of length Nk.    The 

radial distance, r, of each point from each other point, is determined from the magnitude 

of the vector between the two points in the x-y plane, as shown in Equations 9-11.  These 

radial distances are inputs to the radial basis function from Equation 8.  Essentially this 

method assumes that the z-value of each known grid point is based on a linear 

combination of the weighted radial basis function, φ(r), evaluated at each value of r.    
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The left hand side of Equation 8 is the z-value of the jth known grid point.  This 

leaves the values of w, the weights, as the only unknowns.  The w vector is of size 1 x Nk. 

Evaluating Equation 8 for a single known grid point results in one equation with Nk 

unknown values in the vector w.  By evaluating this equation for each of the Nk known 

grid points the system of equations is expanded to Nk equations for Nk unknown which 

can be solved linearly for the values of the vector w.   

Once the values of w are found, Equation 8 can be used to find the z-value at any 

value of x and y within the region covered by the known grid.  To do this, the radial 

distance between the desired point and every known data point is found with Equations 9-

11, and the radial basis function evaluated for these radial distances.  The weights are 

applied to the radial basis function values, and the results summed in accordance with 

Equation 8 to give the z-value for the input x and y values.  This method gives a way of 

determining an estimate for the z-value at any value of x and y.   

There are many different types of radial basis functions, φ(r), presented in 

Numerical Recipes.  Different functions were experimented with, and the thin-plate 

spline found to give satisfactory results.  Equation 12 is the thin-plate spline radial basis 

function. 

    ߶ሺݎሻ ൌ ଶlog ሺݎ ௥

௥బ
ሻ      

߶ሺ0ሻ ൌ 0     (12)  

The variable r0 represents a scale factor which can be used to fine tune the results. In this 

case r0 was set equal to one (Press, 2007).  

  The steps followed to utilize this method are as follows: 
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1) Create a Nk x Nk matrix containing all of the values of rj,i representing the 

radial distances between each known data point and each other known data 

point.  Each row of the matrix would be the distance between the jth point and 

each other point.  For instance, r1,2 would be the radial distance between point 

1 and point 2.  It would be determined by Equations 9-11 

2) Solve the radial basis function, Equation 12, for each value of r, giving a Nk x 

Nk matrix called Φ. 

3) Equation 8 can be expressed in matrix form using Equation 13.  In Equation 

13, the vector z, and the matrix Ф are known.  Solving for the unknown, w, 

yields Equation 14.  Evaluating Equation 14 gives the weights, w. 

ݖ ൌ ݓ כ Φ      (13)  

ݓ     ൌ ݖ כ   ሺΦሻ    (14)ݒ݊݅

4) The weights, w, can then be used to find the value of the dependent variable, 

z, at any desired combination of independent variables, x and y. Define xd and 

yd as the combination of independent variables for which a z-value is desired. 

The radial distance, r, between each of the desired points and each of the 

known points is determined from Equations 9-11 by setting xj and yj equal to 

xd and yd respectively.  This yields a matrix r of size Nd x Nk, where Nd is the 

number of desired points, and Nk is the number of known gird points.  

Equation 12 is then solved for each point in the matrix r to give Ф.   

5) Finally Equation 13 can be solved to give the z-value of all of the desired 

points.   
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 The radial basis function method described above was done for the results from 

the marker dots and from the laser dots.  Results were then compared by sampling at 

known x and y positions, and comparing the z position data.  The same method was also 

used to model a surface for the hybrid frame wing and the curved wire frame wing.   
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4. Results 

 

4.1 Force Measurements 

 
 Note that in all results shown, a negative axial force corresponds to positive 

thrust, while positive normal force corresponds to positive lifting force.  Also note that all 

forces are expressed in grams instead of newtons; conversion to newtons would be 

required for calculation of any thrust of lift coefficients.   

The wire frame wings were used to validate the force balance measurements by 

comparing the axial force measurements taken using the air bearing table to 

measurements taken using the force balance.  Figure 47 shows axial force data acquired 

with the load cell and axial force data acquired with the force balance taken at the same 

time.  The load cell validates the capability of the balance; small differences could be 

attributed to friction in the air bearing table, or disruption of airflow from the wings by 

the balance stand.   
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Figure 47:  Axial Force Comparison of Load Cell and Force Balance Measurement 
Techniques 

 
 

 From Figure 48 and Figure 49 it can be seen that the spanwise camber of the wing 

does have an effect on the production of a normal force (z-direction).  For both the tube 

frame wings and the wire frame flexible wing, the cambered wing produces higher 

normal forces than an identical wing without spanwise camber.  This is consistent with 

the findings of Hong and Altman, who found that for a wing with spanwise camber, more 

positive force is produced on the downstroke than negative force produced on the 

upstroke (Hong and Altman, 2006).  The spanwise camber does not apparently produce 

the same axial force for this particular wing geometry.  For the wire frame flexible wings, 

the straight wings produced more axial force than the curved wing, while for the rigid 
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tube frame wings there was no increased axial force with increased frequency for either 

wing set.  Notice, from Figure 48, that there is a spike, at approximately 4.1 Hz, in the 

measured normal and axial forces taken from the curved tube frame wing set.  

Investigation into data sets near this spike revealed that a flapping frequency of 

approximately 4.1 Hz for this wing set yields a lower ratio of standard deviation to mean 

than data sets taken at higher and lower flapping frequencies.  Resonance could be 

playing a role, but work is needed in this area to clarify the cause.  Further investigation 

would be required to draw concrete conclusions regarding the reasons for the spikes in 

normal and axial force.   

Comparison of the straight wings, including the hybrid wing, is shown in Figure 

50.  The axial force for the wire frame wing is significantly higher than for the tube frame 

wing.  This could be due to the fact that the wire frame wing is significantly more flexible 

then the tube frame wing.  Ho and others observed that flexible wings in flapping 

produced thrust, while stiff wings did not (Ho and others, 2003).  Since the attachment 

point of the wings is at the leading edge, the flexibility will cause the trailing edge to lag 

behind the leading edge, as demonstrated by Heathcote, Martin, and Gursul and as is 

evident from Figure 59, at least for a significant portion of the upstroke and downstroke.  

This lag essentially causes a positive pitch angle on the upstroke and a negative pitch 

angle on the downstroke, or essentially a positive angle of attack with regard to the 

motion through the air throughout the stroke.  This allows axial force to be produced in 

the forward direction throughout the stroke (Heathcote, Martin, and Gursul, 2004).  

Minimal normal force was produced by any of the straight wings, although the hybrid 

wing did produce some increase in normal force with increased flapping frequency.   
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A comparison of the wings with spanwise curvature is shown in Figure 51.  

Notice that the rigid tube frame wing produced more normal force then the flexible wire 

frame wing.  Because of the curvature of the wing, when the airflow is impinging on the 

top of the wing, as in the upstroke, the surface is more aerodynamic than when the 

airflow impinges on the bottom of the wing, as in the downstroke.  This could attribute to 

the increased normal force for the curved wings.  The rigidity of the tube frame wing 

ensures that overall shape of the wing is upheld throughout the stroke, while the 

flexibility of the wire frame wing could also be contributing to the normal force 

production as will be discussed later.   
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Figure 48:  Force Comparison for Straight and Curved Tube Frame Wings with 
95% Confidence Error Bars (a) Axial Force (b) Normal Force 
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Figure 49:  Force Comparison for Straight and Curved Wire Frame Wings with 
95% Confidence Error Bars (a) Axial Force (b) Normal Force 
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Figure 50:  Force Comparison for Different Frame Straight Wings with 95% 
Confidence Error Bars (a) Axial Force (b) Normal Force 
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Figure 51:  Force Comparison for Different Frame Curved Wings with 95% 
Confidence Error Bars (a) Axial Force (b) Normal Force 

 
 

 Most testing was done with the one degree-of-freedom flapping mechanism, but 

some force data was taken from the two degree-of-freedom flapping with pitch 
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mechanism.  The rigid tube frame straight wings were used with the two degree-of-

freedom mechanism.  The results are compared to the results from the one degree-of-

freedom mechanism using the same wings; they are shown in Figure 52.  Notice that by 

pitching the wing to provide for a positive angle of attack throughout the stroke, axial 

force is produced.    The results are in-line with the finding of many other researchers 

(Isaac, Colozza, and Rolwes, 2006; Birch and Dickinson, 2003; Jadhav and Massey, 

2007; Wilson and Wereley, 2007).   

 Measurements were also taken with the two degree-of-freedom mechanism 

operating in the reverse direction.  The motor leads were switched so that the wing 

always had a negative angle of attack, in other words the wing pitch was positive on the 

downstroke and negative on the upstroke.  The results are shown in Figure 53.  As 

expected, the wing produces positive axial force when the rotation was reversed, although 

more net force was produced when the mechanism was used as designed.  Since the 

connection point is at the leading edge, any additional passive pitching of the wing due to 

aerodynamic or inertial forces is such that it will add to the active pitching when the 

mechanism is operated in the proper direction.  When operated in reverse, the additional 

passive pitching of the wing will subtract from the active pitching.  The increased normal 

force when operated in reverse is curious.  Further analysis would be required to draw 

conclusions regarding the cause.   
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Figure 52:  Force Comparison for Straight Tube Frame Wings in Different 
Mechanisms with 95% Confidence Errorbars (a) Axial Force (b) Normal Force 
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Figure 53:  Force Comparison for Operation of Flapping with Pitch Mechanism 
with 95% Confidence Errorbars (a) Axial Force (b) Normal Force 

 
 

 Although the time averaged force data was used for most analysis, the time-

accurate force data was also taken.  Data sets from the tube frame and the wire frame 
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wing sets with a flapping frequency of 6.25 Hz are presented.  The averaged axial force at 

this frequency was higher for the flexible wire frame wing then it was for the rigid tube 

frame wing.  The temporal axial and normal forces over four cycles are shown in Figure 

54.  The third set of data in the plot represents the magnitude of the forces when the 

mechanism is flapped with no wings attached.  The cross-correlation of the data sets was 

used to determine the time shift that would best match the signals.   

Notice that a higher peak magnitude of force is produced by the more rigid tube 

framed wing.  The rigid nature of the wing forces it to completely change direction more 

rapidly at the beginning and end of each stroke.  More force is transferred to the 

mechanism in order to quickly stop the inertia of the wing.  The fact that the forces from 

the tube frame wings had a wider range throughout the stroke can be quantified by 

looking at the standard deviation.  Over the time period plotted in Figure 54, the standard 

deviations for the tube frame wings were 117 grams and 50 grams for the normal and 

axial forces respectively.  While for the wire frame wings the standard deviations were 60 

grams and 35 grams for the normal and axial forces respectively.  The standard 

deviations for the mechanism flapping with no wings were 11 grams and 6 grams for the 

normal and axial forces respectively.  Measuring the mechanism with no wings can serve 

as a method of quantifying the noise in the signal generated only from the operation of 

the mechanism.   

 



84 
 

 

Figure 54:  Temporal Axial and Normal Force Data for Straight Tube and Wire 
Frame Wings Flapping at 6.25 Hz (a) Axial Force (b) Normal Force 

 
 

Data taken when flapping only the frame can give a means of estimating the 

inertial forces involved in the cycle.  This was done for the straight tube frame wing.  The 

membrane was removed, the frame was attached to the mechanism, and it was flapped at 

approximately 6.2 Hz.  The temporal results are shown in Figure 55.  As can be seen, 
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flapping the frame produces a smaller range of forces than does flapping the wing.  This 

shows that the forces generated from flapping the wings are a combination of the inertial 

and aerodynamic forces.  Further experimentation, possibly through operation in a 

vacuum chamber, would be required to more accurately determine and subtract the 

inertial forces from the aerodynamic forces. 

 

Figure 55:  Temporal Axial and Normal Force Data for Straight Tube Frame Wings 
and Frame Only flapping at 6.25 Hz (a) Axial Force (b) Normal Force 
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Auto-correlation is a mathematical method of determining the consistency of a 

repeating pattern within a signal.  An auto-correlation was done on the axial force data 

from the straight tube and wire frame wings.  Comparison of the two auto-correlations is 

presented in Figure 56.  Each auto-correlation was normalized by the square of the root 

mean square value for the data.  This essentially sets the magnitude to one for zero lag.    

 

Figure 56:  Auto-correlation of Axial Force Time Series Data for Straight Tube and 
Wire Frame Wings (flapping frequency = 6.25Hz) 

 
 

 The tube frame wing has slightly higher peaks at the multiples of each period.  

This suggests that the cycles are more consistent for the more rigid wing.  The wire frame 
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wing has many peaks in between the multiples of the periods.  This suggests that there 

are frequencies in the data other then the primary flapping frequency.   

 

4.2 High Speed Images and Photogrammetry 

 
 Note that for all photogrammetry results, the axis is set so that the positive x 

direction is toward forward, or parallel to the axis of the balance.  The positive y direction 

is positive out along the length of the wing, and the positive z direction is upward, and in 

the direction of the flapping motion.   

 Results of photogrammetry using marker dots on a still wing were compared to 

photogrammetry results using laser dots on the same still wing.  The wing used was the 

curved aluminum frame wing.  Figure 57 shows the 3D location of the dots from the two 

different methods.   

 

Figure 57:  Marker Dot and Laser Dot Photogrammetry Results 
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 The procedure outlined in section 3.2.2 was used to form a surface that could be 

used to estimate the location in the z direction. An evenly spaced grid of 20 x 40 points 

representing a 1" x 2" section in the center of the wing was used to compare the results.  

For each of the grid points, the locations in the z axis for the laser dot surface and for the 

marker dot surface were determined using the RBF method.  The average of the absolute 

value of the difference between the z values of each of the grid points was 0.0109" with a 

standard deviation of 0.0079".  This represents an average difference of approximately 

0.4% of the wing’s span.  Figure 58 shows the surfaces created using the two different 

sets of data, evaluated over the evenly spaced grid.  Notice that for approximately half of 

the wing, the marker dot surface is higher, while for the other half, the laser surface is 

higher.  In fact, when the difference in the z values of the grid are averaged without 

taking the absolute values, the result is -0.00022".   These results show very close 

correlation between the two methods, validating the laser dot projection method as an 

accurate method of determining the overall shape of a surface.   
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Figure 58:  Surface Comparison of Photogrammetry Results from Two Different 
Marking Techniques 

 
 

 The next step was to utilize this method on the wing sets during flapping.  All 

wing sets where photographed at 1000 fps while flapping at approximately 6.2 Hz.  

Figure 59 shows the wire frame curved wing and the wire frame straight wing at nine 

locations throughout the stroke.  Labels show the position in the stroke, where T 

represents the flapping period and is equal to approximately 0.16 seconds.  As can be 

seen, significant flexibility occurs during the stroke.  The curved wing appears to be 

straightening on the downstroke and curving on the upstroke, which has been shown to 

be a characteristic of the flapping stroke of some birds (Pennycuick, 1989).  This could 

contribute to the increased lifting force when compared to the straight wing.  As 

anticipated, flexibility is also shown during flapping of the straight wire frame wing.   
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Figure 59:  Images Taken of Wire Frame Wings Flapping at 6.2 Hz, T is the 
Flapping Period 

 
 

 A limitation of the laser dot projection method is demonstrated by taking a closer 

look at a few of the images from the curved wire frame wings during flapping.  Figure 60 

and Figure 61 shows all four camera views for two of the frames shown in Figure 59.  

Notice that in the first set of images, the laser dots provide relatively equal coverage over 

the entire wing, where as in the second set of images, there are hardly any laser dots 

visible on the wing.  Since the laser dots are not attached to the wing, maintaining 

coverage throughout the stroke can be difficult, particularly for highly flexible wings.  

The use of additional laser grids could help to solve this problem.  Another method may 
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be to first take high speed images of the wing during flapping and determine the general 

position of the wing at the portion of the stroke that is of interest.  Then, focus the laser 

grids so that the wing is fully covered at that portion of the stroke.   

 

Figure 60:  Curved Wire Frame Wings during flapping from four camera angles 
with good laser grid coverage 
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Figure 61:  Curved Wire Frame Wing during flapping from four camera angles 
with bad laser grid coverage 

 
 

 Because of the highly flexible nature of the wire frame wings, and the challenges 

presented above, photogrammetry analysis was only performed on a two image sets from 

the curved wire frame wing, which will be discussed later.  Images of the rigid tube frame 

wings are presented from all four camera angles in Figure 62 and Figure 63.  As can be 

seen, there is no visible flexure of these wings throughout the stroke.  This provides a 

simpler platform for initial testing of the laser dot projection technique.   
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Figure 62:  Images of Curved Tube Frame Wing flapping at 6.2 Hz 
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Figure 63:  Images of Straight Tube Frame Wing flapping at 6.2 Hz 
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 The PhotoModeler 6 software was used to produce 3D position data for each of 

the laser dots and reference dots in the images analyzed, as discussed in section 3.2.2.  

Figure 64 shows one particular image along with a 3D plot of the corresponding laser 

dots and reference grid.  The blue dots represent the corners, the green dots represent the 

reference grid, and the blue x marks represent the laser dots.     

 

Figure 64:  Example Photogrammetry Results from Curved Tube Frame Wing 
 
 

 Multiple images from each analyzed section are shown in Figure 65.  It is difficult 

to see from the still images, but when viewing the 3D plots frame-by-frame you will 

notice that the points representing the laser gird only move significantly in the z 

direction.  This is due to the fact that the lasers are above the wing, shinning down 

vertically.  The only motion of the points in the x and y direction is due to the fact that 

the grid is not parallel, and the reference grid is not exactly perpendicular to the laser 

center axis.   
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Figure 65:  Photogrammetry Results throughout the stroke for each section 
analyzed 

 
 

 Comparison of the straight and the curved tube frame wings when viewed from 

the front at four different stroke positions during the downstroke is shown in Figure 66.  

The upstroke comparison is shown in Figure 67.  Notice that throughout the downstroke 
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the curved wing seems to straighten slightly, while during the upstroke it seems to 

become more curved.  This could contribute to the additional lift generation demonstrated 

by the curved wing.  By extending during the downstroke, effectively the wing area 

perpendicular to the flow is increasing.  During the downstroke, the resistance the air 

provides to the flapping motion is equivalent to lift.  Since the wing area perpendicular to 

the flow is increased, more air must be pushed out of the way, so more lift will be 

produced.  During the upstroke, the opposite occurs; the wing area perpendicular to the 

flow is decreased causing less negative lift.  Since more positive lift is created during the 

downstroke than negative lift is created during the upstroke, a net lifting force results.  

These results were demonstrated by Hong and Altman (Hong and Altman ,2006).   

 To investigate this further, the curvature of the wing was measured by modeling 

the shape of the wing surface using the radial basis function as discussed in section 3.2.2.  

An evenly spaced grid of 20 x 40 points along the surface was used, 20 points along the 

x-direction and 40 points along the y-direction.  The distances between each of the points 

in the rows of 40 were summed to give the distance along the surface.  This distance was 

divided by the straight line distance between the inward and outward most points on the 

grid.  This gave a measure of curvature.  Throughout the analyzed portion of the stroke, 

no significant changes in the curvature were found.  For this wing the increased lift likely 

comes from less drag on upper surface when moving through the air on the upstroke than 

on the lower surface moving through the air on the downstroke.   
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Figure 66:  Front view Comparison of Curved and Straight Tube Frame Wings at 
four positions during the Downstroke 
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Figure 67:  Front view Comparison of Curved and Straight Wings at four positions 
during the Upstroke 

 
 

 As stated, the rigid tube frame wings were initially chosen for analysis because 

the rigid nature of the wings allowed for easier analysis.  Successful analysis led to the 

desire to look at wings with slightly more flexure.  The hybrid straight wing flapping at 

the same frequency, 6.2 Hz, was analyzed.  Images of the wing during flapping, shown in 

Figure 68, demonstrate that there is noticeable flexure, particularly at the trailing edge of 

the tip.   
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Figure 68:  Hybrid Wing flapping at 6.2 Hz 
 

 

 Analysis was done on the wing for 30 frames on the upstroke and 30 frames on 

the downstroke, as shown in Figure 45.  A surface was modeled through the wing using 

the radial basis function method described in section 3.2.2.  The rectangular grid used to 

create the plots of the surface in Figure 69 contains 20 x 40 regularly spaced points on the 

wing.  The boundaries of the grid in the x direction were found by adding 0.1” to the 

minimum x value on the laser grid and subtracting 0.1” from the maximum x value on the 

laser grid.  The boundaries in the y direction were found by adding 0.2” to the minimum 

y value on the laser grid and subtracting 0.2” from the maximum y value on the laser 

grid.   
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Figure 69:  Surface of Hybrid Wing, blue surface represents the wing surface; green 
dots represent the reference grid 

 
 

 Approximations of the pitch angle of the root and the tip of the wing were 

determined from the surface model.  The values of the points on the outermost edge of 

the rectangular grid were used to determine the tip pitch angle.  The points were projected 

into the x-z plane, ignoring the y component, and the slope of a best fit line was 

calculated.  The arc-tangent of the slope of the best fit line was taken as the tip pitch 

angle.  The root pitch angle was determined in the same way with the innermost edge of 

the rectangular grid.  The twist of the wing is simply the tip pitch angle minus the root 

pitch angle.  This is an approximate method which diminishes in accuracy as the angle of 

the wing with the horizontal increases.   

 From Figure 70 and Figure 71 it is evident that the pitching angle and the wing 

twist is significantly higher during the upstroke than during the downstroke.  As 
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suggested by other research, this flexibility could be what is causing the axial and normal 

forces shown in Figure 50 (Heathcote, Martin and Gursul, 2004; Ho and others, 2003).   

 

Figure 70:  Pitching Angle throughout Analysis Region for Hybrid Wing 
 

 

Figure 71: Wing Twist throughout Analysis Region for Hybrid Wing 
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The way the shape of the wing changes throughout the stroke can be difficult to 

visualize because of the flapping motion of the wing.  Stewart and Albertani developed 

an analysis approach that separates rigid-body-motion of the wing from the deformation 

of the wing during flapping.  They used the VIC system to measure the motion of a flat 

plate, attached to the inboard section of the wing, during flapping.  This motion was used 

to develop a Homogeneous Transformation Matrix (HTM), which was applied to the 

motion of the flexible portions of the wing.  Applying the HTM to the motion of the 

flexible portion of the wing yields the deformation without the wing motion (Stewart and 

Albertani, 2007).   

A simplified approach to that of Stewart and Albertani was taken to quantify the 

deformation of the wing.  A surface was modeled for the wing at each point using the 

RBF method.  A linear best fit line, in the y-z plane, was calculated for the points at the 

forward most edge of the surface grid.  Since the leading edge of this particular wing was 

made of aluminum, there was minimal flexibility in the spanwise direction at the leading 

edge, therefore the slope of best fit line is a good approximation of the flapping angle.  

The approximate location of the pivot point for the wing was estimated by averaging the 

intersection points of the best fit lines from each frame.  The pivot point and the flapping 

angle were used to adjust the y and z values for each grid point to the wing reference 

frame.  The wing reference frame origin is located at the pivot point, and reference frame 

moves with the wing according to the flapping angle.  Finally a surface was modeled to 

the adjusted grid system.  Essentially this method estimates the flapping angle by 

simulating the wing as a rigid flat plate.  The surface in the new reference frame is 

essentially the difference between the surface formed by a flapping rigid flat plate and the 



104 
 

surface from the actual wing during flapping.  Results are shown for one frame during the 

downstroke and one frame during the upstroke in Figure 72 and Figure 73 respectively.  

These figures clearly show the difference in pitch and twist between the upstroke and the 

downstroke.  This process isolates the wing deformation by subtracting the flapping 

angle.    

 

Figure 72:  Deformation of Hybrid Wing during the Downstroke 
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Figure 73:  Deformation of Hybrid Wing during the Upstroke 
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production of normal force, but further investigation would be needed to make any 

definitive conclusions.  This demonstrates the ability to use the laser dot projection 

photogrammetry method to draw conclusions regarding the reasons for force production.   

 

Figure 74:  Analysis of the Curve Wire Frame Wing flapping at 6.2 Hz (a) Surface 
of Wing (b) Curvature of Leading Edge  

 
 

Some synthetic and natural flapping wings utilize a clear membrane.  Attempts 

were made to apply the laser dot projection method to the clear mylar membrane used in 

experiments conducted by Svanberg.  The wing tested is wing number 3 in Figure 75 

(Svanberg, 2008).  It is has the same dimensions as the other wings tested, but has a 

carbon fiber frame and clear mylar membrane.  The wing was attached to the mechanism, 

and the lasers were projected onto the surface.  Images were taken at 1000 fps while the 

wing was flapping at approximately 4.7 Hz.   
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Figure 75:  Carbon Fiber Framed and Mylar Membrane used by Svanberg 
(Svanberg, 2008) 

 
 

Images taken at two different times during flapping are shown in Figure 76.  The 

first set of images represents the image set that shows the best laser dot coverage from 

cameras 1 and 2, while the second set of images shows the best coverage from cameras 3 

and 4.  As you can see, only about 20-30 laser dots are visible in each image.  Upon 

closer inspection you will notice that the laser dots visible in one image do not match the 

laser dots visible in the other image in the set.  With minimal dot coverage, and with no 

matching dots, analysis using photogrammetry would not be possible for this type of 

membrane material without some kind of systematic improvement.  Although the laser 

dot projection technique shows promise, completely clear membranes may be a case 

which requires a different method.   
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Figure 76:  Images of Laser Grid Projected onto Clear Mylar Membrane Wings at 
two different locations in the stroke 
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5. Conclusions 

 

5.1 Results Summary and Conclusion 

 
 This research aimed to develop tools and methods to be used for the development 

and analysis of flapping wing MAVs.  Methods were developed for studying the forces 

and moments associated with flapping flight.  Laser dot projection photogrammetry was 

developed as a non-intrusive method of measuring the shape of flapping wings.  Wing 

flexure is often the mechanism for producing the specific forces required for flapping 

flight.  In order to develop wings and mechanisms that produce these forces, the wing 

flexure required to produce the forces must be measured.  It is desired to measure these 

flexures non-intrusively so that the properties of the wings measured are identical to the 

properties of the wings used.     

 Two mechanisms were used in testing.  A one degree-of-freedom mechanism 

capable of flapping only, designed and built by Svanberg, was used for most testing.  The 

two degree-of-freedom mechanism capable of flapping and pitch that was designed by 

Svanberg was fabricated (Svanberg, 2008).  Each mechanism was mounted to a force 

balance for testing.  These mechanisms were designed for use in this bench test set-up, 

but were not designed to be capable of flight. 

 A data acquisition system was developed in LabView for measuring the voltage 

output from the six cannels of a six component force balance capable of detecting very 

small loads.  The normal force, axial force, side force, pitch moment, roll moment, and 

yaw moment were all measured.  Post processing techniques were developed that apply 
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the interaction matrix to the measurements and convert the voltage to force or moment 

units.  

 Two laser diodes were used to project a grid of 14 x 14 laser dots onto flapping 

wings.  Four high speed digital cameras were used to capture images of the laser grid 

projected on the wings during flapping.  PhotoModeler 6 software was used to analyze 

the images and to produce 3D position data for each of the laser grid dots on the wing.   

 The majority of tests were performed using the one degree-or-freedom 

mechanism (Svanberg, 2008; Curtis, Reeder, Svanberg and Cobb, 2009).  Different wing 

types were developed to study the effect of flexibility, and the effect of spanwise 

curvature on force production, as well as to serve as a test bed for the measurement 

methods described above.  Two different frame materials were used.  Aluminum tubing 

was used to produce a rigid frame, while stainless steel wire was used to produce a 

flexible frame.  Latex material was used for the membrane of the wings.  Straight wings 

and wings with spanwise curvature were tested for each frame material.  Wings were 

flapped at multiple frequencies within each run, and multiple runs were accomplished.  

Time averaged axial and normal forces were determined for each wing.  Force balance 

data indicate that the flexible wings produce benefits to thrust production while the wings 

with spanwise curvature produce benefits to lift production when the one degree-of-

freedom flapping mechanism was used.  The rigid tube frame wings were tested in the 

two degree-of-freedom mechanism.  Pitching the wings such that the angle of attack was 

always positive generated axial force as anticipated.  Force measurement results from 

both mechanisms were largely as expected based on literature (Ho and others, 2003; 

Heathcote, Martin, and Gursul, 2004; Hong and Altman, 2006; Isaac, Colozza, and 
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Rolwes, 2006; Birch and Dickinson, 2003; Jadhav and Massey, 2007; Wilson and 

Wereley, 2007). 

 A validation of the laser dot projection method was done by marking the curved 

tube frame wing with marker dots in a grid with approximately the same spacing as the 

laser grid.  Images were taken from the four cameras of the still wing with the marker 

dots, then the laser grid was projected on to the wing and images were taken.  The two 

sets of images were analyzed.  A radial basis function method was used to model the 

shape of the wing.  The average difference between the two shapes from the two different 

target types provides assurance that the laser dot projection approach is appropriate. 

 Laser dot projection images were taken for each of the four wings described 

above while flapped at 6.2 Hz.  Synchronized high-speed imaging showed the highly 

flexible nature of the wire frame wings.  The wire frame straight wing showed flexibility 

that could have contributed to the increased thrust production.  The tube frame wing sets 

were found to be fairly rigid which accommodated good coverage by the laser dot grid 

throughout the stroke.  The tube frame wing sets were analyzed using PhotoModeler 6 

photogrammetry software.  The 3D position data gained from the photogrammetry 

accurately tracked the kinetic motion of the wing.     

 A hybrid wing was developed in order to demonstrate the ability of the laser dot 

projection in studying flexibility.  The hybrid wing was designed so that the overall 

planform would remain relatively constant while the trailing edge, particularly at the tip, 

would deform.  The frame was a combination of the aluminum tube and the stainless steel 

wire used in the first set of wings.  Laser dot projection analysis was done on the hybrid 

wing.  A shape was modeled to the wing, and the pitch of the wing throughout the stroke 
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was investigated.  The wing was found to have a pitching angle of approximately 15o 

higher for the upstroke than for the downstroke.  Analysis of two image sets from the 

curved wire frame wing demonstrated that the flexible wire frame wing was 4% longer 

during the downstroke as compared to the same location during the upstroke.  A simple 

method of subtracting the flapping motion of the wing from the photogrammetry results 

in order to view only the shape change of the wing was developed.  The ability to study 

the changing shape of a flexible wing using the laser dot projection photogrammetry 

method was demonstrated.   

  

5.2 Desired Impact of this Research 

 
 The information presented here should give an introductory look to some 

measurement techniques involved in the study of flapping wing models.  The techniques 

presented should give the ability to analyze certain aspects of flapping flight.  The dot 

projection technique gives a tool that can be used to study the shape deformation for both 

man-made and natural flyers.  The Air Force may need to decide between many different 

avenues for the development of its arsenal of MAVs.  Although flight testing will be 

required, the bench test set-up developed should provide a means of evaluating overall 

MAV designs.  The techniques developed here should provide AFRL with a tool to use in 

the development and analysis of MAVs for use on the future battlefield.   
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5.3 Recommendations for Future Experimentation 

 
 Further work should be done to investigate improvements on the measurement 

techniques presented.  A full dynamic calibration of the force balance should be 

performed to ensure the accuracy of dynamic measurements and to determine a 

maximum sample frequency for which data remains accurate.  Integrating the force 

balance data acquisition system with control inputs on a flapping wing mechanism would 

be the first step in development of control algorithms for MAVs.  Developing a method 

utilizing the data acquisition system to record a real-time measurement of the flapping 

frequency would provide increased accuracy.   

 The development of a vacuum chamber should be continued.  Force 

measurements taken in a vacuum provide a means of differentiating inertial forces from 

aerodynamic forces.  High speed images and photogrammetry of wings flapping in a 

vacuum could also help determine the main factor causing deformation for different wing 

types.   

 The laser dot projection technique should be further validated by comparison to 

other photogrammetry techniques during flapping.  Filters could be added to two of the 

cameras, filtering out the laser light.  Traditionally marked targets could be added to the 

wings.  When flapped, two of the cameras capture the marker dots while two capture the 

laser dots.  Photogrammetry could be performed on the images using the two different 

methods and results compared.  Another area for improvement of laser dot projection 

would be in collimating the laser grid.  By shining the grid through a lens, the laser 

beams making up the grid could be made parallel to one another, decreasing the problem 

of variable coverage at different locations in the stroke.   
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 Finally, efforts should be made to synchronize the force data acquisition system 

with the camera system.  A method of measuring forces and deformations at the same 

point in time would be a valuable tool.   
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Appendix A:  Interaction Matrix 
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Appendix B:  Radial Basis Function Code (Wiens, 2008) 

This code determines the weights from the known data points: 
 
train_thin_plate_spline.m 
 
function [a, xc]=train_thin_plate_spline(x,y) 
%[a, xc]=train_thin_plate_spline(x,y) 
%Trains a thin plate spline Radial Basis Function Network. 
%Inputs: 
% x - network input formatted as N_dimension rows and N_points columns 
% y - desired network output. Row vector with N_points columns 
%Outputs: 
% a - basis function weights.   
% x_c - basis function centres formatted as N_dimension rows and 
N_centres columns.  This will be equal to x 
  
%Copyright Travis Wiens 2008 
% This program is free software: you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation, either version 3 of the License, or 
% (at your option) any later version. 
%  
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
%  
% You should have received a copy of the GNU General Public License 
% along with this program.  If not, see <http://www.gnu.org/licenses/>. 
% 
% If you would like to request that this software be licensed under a 
less 
% restrictive license (i.e. for commercial closed-source use) please 
% contact Travis at travis.mlfx@nutaksas.com 
  
xc=x;%basis function centres 
N=size(x,2);%number of points 
r=zeros(N);%basis function radii 
for i=1:N 
    for j=1:N 
        r(i,j)=sqrt(sum((xc(:,i)-x(:,j)).^2)); 
    end 
end 
  
E=r.^2.*log(r);%apply thin plate spline RBF 
E(find(r==0))=0;%avoid -inf 
  
a=y/E;%use mrdivide to solve system of equations. For large systems it 
may  
%make more sense to use an online method such as recursive least 
squares 
%(RLS) 
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 This code uses the weights to determine the dependant variable for any 

combination of independent variables.   

sim_thin_plate_spline.m 

function y_hat=sim_thin_plate_spline(x,x_c,a); 
%y_hat=sim_thin_plate_spline(x,x_c,a); 
%This simulates a thin plate spline radial basis function. 
%Inputs: 
% x - network input formatted as N_dimension rows and N_points columns 
% x_c - basis function centres formatted as N_dimension rows and 
N_centres 
%   columns 
% a - basis function weights.  Row vector with N_centres columns 
  
%Copyright Travis Wiens 2008 
% This program is free software: you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation, either version 3 of the License, or 
% (at your option) any later version. 
%  
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
%  
% You should have received a copy of the GNU General Public License 
% along with this program.  If not, see <http://www.gnu.org/licenses/>. 
% 
% If you would like to request that this software be licensed under a 
less 
% restrictive license (i.e. for commercial closed-source use) please 
% contact Travis at travis.mlfx@nutaksas.com 
  
N_c=size(x_c,2);%number of RBF centres 
N_p=size(x,2);%number of points 
  
r=zeros(N_c,N_p);%basis function radii 
for i=1:N_c 
    for j=1:N_p 
        r(i,j)=sqrt(sum((x_c(:,i)-x(:,j)).^2)); 
    end 
end 
  
E=r.^2.*log(r);%thin plate spline radial basis function 
E(find(r==0))=0;%avoid -inf 
  
y_hat=a*E;%apply weights 
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