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Abstract

This study is based on the merger of two separate theories to further the efficiency

with which joined-wing structural models are designed. The first theory is Geometrically

Exact Beam Theory (GEBT). GEBT is a small strain beam theory which is capable

of accurately capturing the geometric bend-twist coupling in beam elements that are

experiencing large global deformations. This is crucial to the joined-wing problem as it

is geometrically nonlinear. The second theory concerns Equivalent Static Loads (ESL).

These ESL consist of a load vector that produces the same nodal displacements and

rotations as those computed from a pure nonlinear analysis. The ESL displacements

and rotations are then used to calculate ESL stresses. By merging these two theories

into a single structural optimization effort, computational cost is reduced by orders

of magnitude when compared to purely nonlinear response optimization efforts. It is

shown that the final design obtained by the optimization is the same for both types of

analysis. The final result is a much simpler model than a detailed finite element model

of the joined-wing aircraft that can be optimized without significant loss in fidelity in

a fraction of the time required for a single nonlinear response optimization cycle using

finite element analysis.
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Structural Optimization of Joined-Wing Beam Model

with Bend-Twist Coupling

Using Equivalent Static Loads

I. Problem Statement

The joined-wing configuration presented by Wolkovich in his 1986 paper has at-

tracted much interest due to the advantages presented by such a configuration.

Chief among these advantages are an increase in stiffness when compared to a classic

wing and tail arrangement for a given weight when designed correctly [3]. Optimization

efforts on joined-wing aircraft have steadily increased in complexity from fully stressed

design [4] to efforts that incorporate the linear [5] and nonlinear [6] dynamic response

using equivalent static loads. All of the aforementioned work has been done using finite

element analysis as, until recently, beam theory was unable to fully capture the nonlinear

geometric bend-twist coupling observed in the joined wing [7–10].

Figure 1.1: Boeing Sensorcraft design as proposed to Air Force Research Laboratory
(AFRL)

The motivation for this research effort stems directly from the immense computa-

tional effort required to solve nonlinear problems with thousands of degrees of freedom.

An example of a complex joined-wing model that to date has only been analyzed using

finite element analysis is the Boeing Sensorcraft, shown in Fig. 1.1. This design has

1



been proposed to the Air Force Research Laboratory (AFRL) as a possible solution to

a high altitude, long range, long endurance surveillance platform which will leverage the

unique geometry of the joined-wing design in the deployment of its sensor arrays. Such

a complex design would almost certainly benefit from an optimization effort which could

include sizing of the wing box dimensions, the angles in both planform and head on

views of the joined-wing, aerodynamic loads, and sensor effectiveness based on displace-

ment of the wing from a nominal configuration in flight. Based on the cost of a single

static nonlinear analysis on a model of the Boeing design, it is clear that an optimization

that considers all of these design variables in a nonlinear response optimization would

be unwieldy at best and intractable at worst. In an effort to reduce this computational

overhead, this research explores the use of nonlinear structural analysis on a beam model

of the joined-wing in a linear optimization routine using equivalent static loads in lieu of

the nonlinear static response due to tip loads.

Early studies on the joined-wing show that bending due to a vertical tip load (with

respect to the longitudinal axis of the vehicle) does not occur in the plane normal to the

wing chord, but rather in the direction perpendicular to the plane created by the axes

of the fore and aft wings [3]. This out-of-plane bending is then coupled with a twisting

of the wing structure due to the geometry of the wings.

Simpler, classic wing box designs were often modeled as an Euler-Bernoulli beam

and then sized using fully stressed design techniques for isotropic materials. As comput-

ers became more powerful in the 90’s, finite element analysis allowed for accurate cal-

culations involving complex cross-sections with non-isotropic material properties. While

the results from finite element analysis are valuable in the design of complex structures,

they are still time consuming. A simple yet complete beam theory would drastically

reduce computational effort via a reduction in the number of elements, but an adequate

beam model did not exist before Hodges’ work on his intrinsic beam theory [11]. With

continuing refinement and validation, a number of structural specialists have developed

successful FEM beam formulations based on Hodges’ theory with an eye towards heli-

copter rotor design applications [12–19]. Recent strain-based methods have been applied

to the analysis and design of various equivalent-beam wing structures [20, 21]. Geo-
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(a) Planform (b) View looking forward

Figure 1.2: Planform and view looking forward of joined-wing consisting of eight beam
elements.

metrically Exact Beam Theory (GEBT) is an alternate beam element formulation with

mixed displacement and force variables (as opposed to strain variables). Hodges’ in-

trinsic beam theory incorporates all possible geometric nonlinear coupling combinations

including geometric bend-twist coupling reported by Blair and Stritz [10]. That devel-

opment motivated Yu in the broader development of GEBT with the goal of supporting

gradient-based design optimization of slender aeroelastic wing concepts.

At the same time, Park et al. developed an optimization scheme for linear [5]

and nonlinear [6] joined-wing structures based on equivalent static loads. Simply put,

the displacements from the nonlinear analysis are used to develop a load vector that

yields the same set of displacements when applied to a linear stiffness matrix. This

two-step method starts with the converged solution of the nonlinear structural system,

then applies a linear approximation technique to the current design. The equivalent load

vector, or equivalent static loads (ESL), are then used in the linear response optimization

until convergence is achieved. The entire process then repeats until the equivalent static

loads for two consecutive nonlinear evaluations have converged.

The effort reported in this thesis document is a combination of GEBT and ESL as

developed by Yu and Park respectively. A current limitation of this implementation of

GEBT is the inability to accommodate loads applied to the wing tip beyond the wing

joint. Therefore, only a design where the wings are joined at the wing tip is considered.

3



Load conditions will include only static vertical loads applied to the joint at the wing

tip.

The goals of this research are first to develop a pilot application of the merger of

GEBT and ESL. This merger leads to the second goal, which is to demonstrate the util-

ity of GEBT in a computationally efficient design optimization process of a joined-wing

concept using the method of equivalent static loads. The simplest possible realization

which will exhibit geometric bend-twist coupling in a joined wing is shown in Fig. 1.2.

Second, show that a low degree of freedom model of the joined wing is capable of cap-

turing geometric bend/twist coupling exhibited in the joined-wing design. This thesis

reports on the success of this demonstration. GEBT will continue to be developed in a

series of steps that increase its usefulness in a computationally efficient aeroelastic design

optimization process applied to highly flexible concepts.
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II. Background

This research relies on three main bodies of work as foundational material. The

first is the joined-wing design itself. The second is Geometrically Exact Beam

Theory and its associated Variational Asymptotic Method and Variational Asymptotic

Beam Section theories for analysis of beam elements. Third, Equivalent Static Loads will

be discussed as a means of reducing computational effort to solve nonlinear structural

optimization problems.

2.1 The Joined-Wing Aircraft

The joined-wing aircraft design is not a new concept within the history of manned

flight. The novelty of the joined-wing is that the tools necessary to analyze the complex

structural and aerodynamic properties were not available until the mid to late 1980’s.

History’s first known successful flight of a joined-wing design was made by Reinhold

Platz in 1922 [1]. The Platz joined-wing glider featured two wings joined at the tip, with

the split upper forward wing being used to control both pitch and roll by the pilot. The

lower aft wing was fixed and supplied most of the lift as shown in Fig. 2.1.

Other designers experimented with the joined-wing, but it wasn’t until Wolkovitch

was granted his patent in 1982 and presented an overview of the design’s merits that

aircraft designers began to consider the configuration as feasible [2]. Wolkovitch’s patent

application drawing is shown in Fig. 2.2. Several advantages are attributed to the joined-

wing design when compared to a conventional aircraft design, including light weight, high

stiffness, low induced and parasite drag, direct lift control, and good stability and control

[3].

These advantages have since prompted much research into the joined-wing design.

Structural optimization of the joined-wing design was investigated by Gallman and Kroo

in 1996. They used two structural design methods: one a fully stressed design and the

second a minimum weight design [4]. They concluded that the fully stressed design us-

ing nonlinear analysis tools approximates the minimum weight structure very well with a

time savings in computational effort. More recently, the Air Force Research Laboratory

(AFRL) has shown interest in the joined-wing design concept as a surveillance platform
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Figure 2.1: 1922 Platz glider [1]

with long range and endurance as key performance parameters. Blair and Canfield devel-

oped an integrated design method for the joined-wing aimed at merging the aerodynamic

and structural designs into one all encompassing process [22]. They concluded that the

geometric nonlinearities inherent in the joined-wing require a nonlinear analysis for loads

that result in large deformations. In that vein, numerous studies have been performed on

the joined-wing using the finite element method, with models having as many as 3,000

elements being considered for a single nonlinear analysis on a half span model [6].

2.2 Geometrically Exact Beam Theory (GEBT)

The most fundamental aspect of elasticity is Hooke’s Law, which in 1D form is

F = −kx (2.1)

where k is the stiffness of the element, x is the displacement of the element, and F is

the axial force applied to the element. When expanded beyond the 1D axial problem,
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(a) Isometric view (b) Planform view

(c) Side view (d) Front view

Figure 2.2: Joined-wing aircraft design proposed by Wolkovitch in his patent applica-
tion. [2]
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application of Euler-Bernoulli beam theory considers only a 4x4 stiffness matrix due to

the selection of displacement and slope at the two nodes as the degrees of freedom un-

der consideration. The assumption that planar surfaces remain in plane and normal to

the longitudinal axis under deformation allows shear deformation to be neglected. Timo-

shenko expands on the Euler-Bernoulli beam theory by considering planar surfaces which

remain plane, but not normal to the longitudinal axis of the beam element. Inclusion of

the angle of shearing in the two directions of the beam element cross section increases

the degrees of freedom to 6, resulting in a 6x6 stiffness matrix.

With an eye towards helicopter rotor blade design, Hodges began an investigation

into beam theory in the mid 1980’s that would eventually result in a generalized beam

theory that is not burdened by several assumptions that are often required when con-

ducting analysis of long, slender beams. He presented his mixed variational formulation

beam theory in 1989 and notes that his work is the assemblage of three sets of previous

works [11].

First is a kinematical basis for deformed beams. Danielson and Hodges used the

polar decomposition theorem to obtain an accurate yet compact expression for the strain

in a beam or rod experiencing large deflections [23]. The polar decomposition theorem

facilitates this by decomposing the total deformation of any element into a pure strain

and a pure rotation. Danielson and Hodges concluded that strain components are explicit

functions of position within the cross section and implicit functions of the length along

the beam axis x1. There are a total of seven implicit functions, dependent on strain

(γ11) and transverse shear (γ12 and γ13) of the reference line, bending strains (κ2 and

κ3), and warp amplitude (ψ). In 1988, Danielson and Hodges developed both an intrinsic

and explicit version of their beam theory [24]. The intrinsic beam theory is for static,

nonlinear beams and is expressed in terms of the generalized strains described in Ref. [23]

and is applicable when generalized forces and moments applied at the ends of the beam

are known. The explicit theory by contrast is applicable when the generalized transverse

and rotational displacements are known in conjunction with the warp amplitude (ui, θi,

and ψ respectively). Thus, Danielson and Hodges put forward theories that addressed

the global kinematics of deformed beams using Cartesian tensors and matrix notation,
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eliminating the need for curvilinear coordinate systems and reducing the size of the

equations required.

Second, Atilgan and Hodges expanded on Parker’s 1979 work in Ref. [25]. Parker

showed that, using a perturbation procedure based on scaling of the axial variations, St.

Venant’s semi-inverse solutions for bending and torsion of rods and beams could be used

to describe beams undergoing large displacements and rotations. Parker also stated that

the classical solution for beam flexure is composed of two parts: a bending solution and

a varying curvature along the axis of the beam. The use of asymptotic analysis, such as

that used by Parker, allowed Atilgan and Hodges to conclude a linear 2D cross-section

deformation analysis can be used to determine the appropriate stiffness for use in the

1D nonlinear beam global analysis [26].

Third, Reissner derived strain measures from internal beam forces and virtual work

using an intrinsic analysis [27, 28]. This intrinsic analysis supports the later work by

Danielson and Hodges which was based strictly on kinematics [23]. The agreement be-

tween the two approaches indicates that the general equations to describe strain measures

are now available to the engineering community.

Building upon the three principles just described, Hodges applies a variational

approach using Hamilton’s principle that concludes with a mixed variational formulation

for a geometrically exact beam theory [11]. The advantages with this formulation lie in

the compact matrix form in which the theory is expressed, along with the absence of any

approximations in the geometry of the deformed elements along the reference line (i.e.

beam axis) or the cross section. Hodges also notes that the mixed formulation allows

the use of simple shape functions consisting of constant values for field variables along

the beam element. Discontinuities in field variables between elements are also possible,

which eliminates the requirement of numerical quadrature over the elements. Instead,

a 1x1 quadrature is performed at the center of each element to obtain an approximate

stiffness, mass, etc.

Hodges’ theory has been expanded to use the Timoshenko approach by including

the shear terms, but still relies on the presence of small strains while not restricting dis-

placements and rotation variables. This trait is due to the derivation of the theory from
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geometrically nonlinear, three dimensional elasticity theory. In the last two decades the

geometrically exact canonical equations of motion for beams have been presented sep-

arately by Borri and Mategazza, Hodges, and Bauchau and Kang [11, 29, 30]. This

body of work lends itself to expressing energy in terms of variables compatible with large

global displacements and rotations. Hodges’ Geometrically Exact Beam Theory (GEBT)

requires the cross-sectional elastic constants, EI, GJ , etc. as the inputs to the equations

used for solving for the displacements and rotations. While this approach allows for the

use of complex beam structures, it leaves the user with the task of providing the cross-

sectional constants before the calculation can proceed. In GEBT, the stiffness matrix

for a prismatic isotropic material is

C =




EA 0 0 0 0 0

0 GAxx 0 0 0 0

0 0 GAzz 0 0 0

0 0 0 GJ 0 0

0 0 0 0 EIxx 0

0 0 0 0 0 EIzz




(2.2)

where EA is the axial rigidity, EIxx is the bending rigidity about the global X-axis,

EIzz is the bending rigidity about the global Z-axis, GJ is the torsional rigidity, GAxx is

the shear rigidity in the global X-direction, and GAzz is the shear rigidity in the global

Z-direction. The 1D displacement vector ε is defined as

ε = bγ11 2γ12 2γ13 κ1 κ2 κ3cT (2.3)

where γ11 is the extensional strain of the reference line, 2γ12 and 2γ13 are the transverse

shear strain measures, and κi are the twist and bending generalized strain measures [12].

The force vector applied to the beam is

F = bF1 F2 F3 M1 M2 M3cT (2.4)
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where Fi is the force in the X, Y, or Z direction, respectively, and Mi is the moment

about the X, Y, or Z-axis. Using the mixed formulation in GEBT, the 1D constituitive

relation for isotropic materials is





F1

F2

F3

M1

M2

M3





=




EA 0 0 0 0 0

0 GAxx 0 0 0 0

0 0 GAzz 0 0 0

0 0 0 GJ 0 0

0 0 0 0 EIxx 0

0 0 0 0 0 EIzz








γ11

2γ12

2γ13

κ1

κ2

κ3





(2.5)

There are at present two implementations of GEBT in code. Yu has made avail-

able a Fortran 90/95 based version that as of this writing is only capable of addressing

linear static problems. The GEBT implementation used in this research is a prototype

Mathematica code that allows nonlinear analysis of the joined-wing. The inputs to the

GEBT implementation are the applied load, the number of elements, the total length of

all beam elements, and the cross sectional properties for each element described in Eq.

(2.5). The GEBT implementation returns forces, moments, displacements, and rotations

for each element, as well as the reaction forces at the constrained nodes (fore and aft

wing roots in the case of this research effort). The forces, moments, displacements, and

rotations are reported at the center of each beam element. It is possible to extrapo-

late nodal displacements and rotations by starting at the wing root and using a linear

interpolation

unode i = unode i−1 + 2(uelem i − unode i−1) (2.6)

where unode i is the nodal displacement, unode i−1 is the nodal displacement at the previous

node, and uelem i is the displacement at the mid section of the beam element.

2.3 Variational Asymptotic Beam Sectional Analysis (VABS)

The Variational Asymptotic Beam Sectional Analysis (VABS) is a method which

uses cross sectional properties in a 2D analysis based on the variational asymptotic
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method (VAM). Some of the background on VABS is described in Section 2.2. The 1D

nonlinear beam analysis and the 2D cross-sectional analysis were derived in the context

of the VAM developed by Berdichevskii in 1976 [31]. Berdichevskii dealt with nonhomo-

geneous anisotropic beams. Hodges et al. extended the work to include prismatic beams

[7]. The application of VAM to beam theory requires that the 3D strain energy of a

beam is asymptotically reduced in two distinct steps to yield a 1D beam strain energy

equation. This 1D strain energy equation is decoupled from the 2D cross-sectional anal-

ysis, allowing the complex 3D problem to be split into two separate problems. Popescu

and Hodges offer a definition of ‘asymptotically correct’:

By asymptotically correct, we mean that an expansion of the approximate
solution in terms of a small parameter agrees with a similar expansion of the
exact solution up to a certain order in the small parameter [32].

Yu et al. expanded Hodges’ work to handle Timoshenko like modeling of initially curved

and twisted beams to address short wavelength motions caused by shear effects [9]. At

the same time, he updated an engineering software package known as VABS III, hereafter

called VABS, to include the latest refinements to Hodges’ model. VABS is a computer

program based on the VAM which allows users to analyze composite beam cross sections

accurately and quickly using finite element methods with the processing power found in

the average desktop computer [33].

An input file is required that describes the cross section, material properties, coordi-

nate transformation, and forces and moments applied to the element under consideration

[34]. The cross section is defined by a set of nodes that refer only to points within the

cross section, and have no relation at all to the nodes depicted in Fig. 1.2. For this

research, VABS is used to supply highly reliable calculations of the nonlinear stresses

resulting from the forces and moments calculated in the nonlinear analysis by GEBT [8].

2.4 Calculation of Equivalent Static Loads

The geometric nonlinearity of the joined-wing leads the designer down a difficult

path. A linear optimization is not likely to be adequate, or perhaps even safe as noted

by Kim et al. [6]. During cruise and maneuvering flight, Kim et al. showed that the
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maximum tip von Mises stress in a geometric nonlinear analysis could be as much as

10 times the maximum von Mises stress in a linear analysis, while displacements in the

nonlinear case were 5 times the maximum displacements in the linear analysis. From

this it is clear that a linear analysis, while fairly simple to implement, is not sufficient

when considering design of a structure that exhibits highly nonlinear responses.

The alternative to the linear response optimization has been a full nonlinear re-

sponse optimization. The major drawback to any nonlinear problem lies in the large

computational effort involved in calculating a solution. This increase in effort is due

to the numerical approach of convergence to a solution using multiple intermediate lin-

earizations. Sensitivity calculations in the optimization contribute to the total effort as

well. Analytic sensitivity calculation and the finite difference method are the two com-

mon approaches to obtaining sensitivities. Although computationally expensive, finite

difference techniques are easy to implement. Analytical evaluations of sensitivity have

advantages and drawbacks that are opposite of the finite difference method. Analytical

means are cheap in terms of computational effort, but are often either very complex or

simply undetermined in large, complex nonlinear problems. With the use of the finite

difference method, it follows that any increase in the number of design variables will

directly affect the length of time required to perform each iteration in the optimiza-

tion process. In an effort to circumvent large numbers of nonlinear operations, a linear

approximation to the nonlinear response optimization problem has been proposed.

Lee, et al. define equivalent loads (EL) as loads for linear analysis which generate

the same response fields as those of nonlinear analysis [5]. In the optimization problem in

this research, equivalent static loads (ESL) are used to define a linear approximation of

the displacement field resulting from a nonlinear response to an applied load. The ESL

are then passed to the optimization routine allowing a linear response optimization to

be performed, resulting in less computational effort required to determine a solution to

the optimization problem. After convergence of the linear approximation, the design is

reevaluated using a nonlinear analysis on the linear approximation design and checked for

convergence. When the equivalent static loads are no longer changing from one iteration

to the next, the optimization problem has converged.
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2.4.1 ESL for Displacement Constraints. The first step in calculating an equiv-

alent static load is to perform a nonlinear analysis

K(b)zn = f (2.7)

where K(b) is the nonlinear stiffness matrix, zn is the nonlinear nodal displacement

vector, and f is the applied load vector. Due to the dimensional reduction of the 3D

beam problem when using VAM, the cross sectional analysis becomes a linear 2D prob-

lem involving the cross sectional stiffness properties [34]. This is different than the

approach described by Lee and Kim where the stiffness matrix is a function of both the

design variables b and the displacement vector zn [5, 6]. Equivalent static loads fz
eq for

displacements are computed from

fz
eq = KL(b)zn (2.8)

where KL(b) is the linear stiffness matrix, zn is from the nonlinear analysis from Eq.

(2.7).

2.4.2 ESL for Stress Constraints. Similarly, the equation for the equivalent

static load (ESL) for stresses fσ
eq is

fσ
eq = KL(b)zσ

n (2.9)

where zσ
n is the displacement vector calculated from the nonlinear stress result described

[5]. In the research presented here, an alternate means of calculating the equivalent

stresses is used. This alternate approach uses the same equivalent static loads vector

calculated for the displacement constraint case and is presented in MSC Nastran’s im-

plementation of the ESL routine [35]. The equivalent static load for displacement does

not produce the same set of stresses as the nonlinear analysis, so the stress ratio correc-

tion from Lee, et al. is retained [5]. The stress ratio α is defined as

α =
σNL−V M

σL−V M

(2.10)
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which is calculated prior to entering the linear response optimization. The von Mises

stress from nonlinear analysis is σNL−V M , and the von Mises stress from the linear

approximation using equivalent static loads is σL−V M . In the optimization routine, it

is applied to the linear stress calculation using linear Euler-Bernoulli beam theory. The

stress vector approximation σ
′
L−V M is defined as

σ
′
L−V M = α σL−V M (2.11)

where σL is the stress vector calculated using fz
eq as the load before the correction

factor α is applied. The vector σ
′
L−V M is used to determine the von Mises stress in

each element. These values are then used in stress constraint violations such that

σ
′
L−V M ≤ σV M−allowable (2.12)

where σV M−allowable is the von Mises stress constraint defined in the optimization

problem.
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III. Methodology

3.1 Model Definition

The model is described in Cartesian coordinates using a global right hand coordi-

nate system with the wing tip as the origin. The stream wise direction (the direction

the airflow would go if the vehicle were in flight) is along the positive global X-axis.

The positive Y-axis is directed out the span through the wing tip, and is normal to the

longitudinal axis of the aircraft. The positive Z-axis is directed in the upward direction.

The beam elements are oriented so that the area exposed to the free stream flow is the

height of each beam multiplied by its length as shown in Fig. 3.1.

Figure 3.1: View looking aft showing beam element orientation (not to scale)

Wolkovitch states that the effect of joint location has a great impact on the effi-

ciency gains claimed by joined-wing aircraft [3]. He estimates that joint locations from

60% to 100% of the wing span should be evaluated in order to truly find an optimum

design. Due to a limitation of the implementation of GEBT used in this research, there

is no consideration of a joined wing with any structure beyond the wing joint itself. This

research considers both 8 and 16 beam element models. Regardless of the number of

elements, the location of the wing tip and the fore and aft wing root locations does not

change. The coordinates for the wing roots are shown in Table 3.1.
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Table 3.1: Simple Joined-Wing Model Configuration

Dimension Value
(m)

x(fore root) -7.173
y(fore root) -12.000
z(fore root) -3.215
x(aft root) 7.173
y(aft root) -12.000
z(aft root) 3.215
c chord 1.500
h height 0.150
ts skin thickness 0.015
tw web thickness 0.015

The model under examination here is a simple box beam of isotropic material as

shown in Figure 3.2, and the cross sectional elastic constants for a thin walled box beam

are

Figure 3.2: Cross section of simple box beam

EA = 2E[cts + (h− 2ts)tw] (3.1)

EIxx = E

[
ch3

12
− (c− 2tw)(h− 2ts)

3

12

]
(3.2)

EIzz = E

[
hc3

12
− (h− 2ts)(c− 2tw)3

12

]
(3.3)

GJ =
4GA

2

∫ s

0
1
t
ds

(3.4)

GJ =
2Gc2h2

( c
ts

+ h
tw

)
(3.5)
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GAxx = 2Gcts (3.6)

GAzz = 2G(h− 2ts)tw (3.7)

where c is the chord, h is the height, ts is the thickness of the top and bottom skins,

and tw is the thickness of the web. For the simple geometry under consideration, Eqs.

(3.1) - (3.7) are used to determine the cross-sectional properties. Equation (3.4) is the

general form of the torsion constant equation for thin walled sections of any shape [36].

Equation (3.5) is the form used in the calculations in this research as applied to a thin

walled box beam. For more complex cross sections, VABS is well suited to performing

this task but is not required for this simple cross section.

While it is possible to apply loads to any node in the model, the loads are limited

here to static loads at the wing tip in the positive global Z-axis direction. A small 500

N load allows comparison of displacement results from linear and nonlinear analyses to

ensure correlation early in the setup of the optimization problem. The design applied tip

load, Papplied = 33,670 N, is that described by Blair in Ref. [10]. Table 3.2 shows the force

and moment results and Table 3.3 shows the displacement results for the 500 N test case

for both the nonlinear solution using GEBT and a linear solution using Euler-Bernoulli

beam theory.

The element forces and moments are in the local beam coordinate system while the

nodal displacements and rotations are in the global coordinate system. There is excellent

agreement between these two sets of data. This research focuses on the displacement

term u3 at node 5, which is where the displacement constraint defined in Eq.(3.10) is

enforced. The nonlinear solution from GEBT is 0.001132 m. When the equations in

GEBT are linearized, the tip deflection is still 0.001132 m. The linear solution using

Euler-Bernoulli is 0.001141 m, a difference of 0.8%. The linear beam model used is not

a Timoshenko, which means the shear correction terms are not considered. The cause of

this difference is not known at this time, although the nonlinear and linear solutions in

GEBT are the same, so linearization of GEBT does not seem to be the cause.

Larger loads are expected to result in nonlinear deformation when applied to the

system. Furthermore, GEBT should yield a nonlinear response while the Euler-Bernoulli
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Table 3.2: 500 N test load force and moment results from nonlinear and linear analysis
with all elements set to initial design variable values as given in Table 3.1

Analysis Element F1 F2 F3 M1 M2 M3

(N) (N-m)
1 758 -437 -24.4 128 233 -5450
2 758 -437 -24.4 128 145 -3880
3 758 -437 -24.4 128 57 -2310

GEBT 4 758 -437 -24.4 128 -30 -745
5 -758 437 -24.5 -128 30 -745
6 -758 437 -24.4 -128 -57 -2310
7 -758 437 -24.4 -128 -145 -3880
8 -758 437 -24.4 -128 -232 -5450
1 758 -437 -24.4 128 233 -5450
2 759 -437 -24.4 128 145 -3880
3 759 -437 -24.4 128 57 -2310

Euler- 4 759 -437 -24.4 128 -30 -745
Bernoulli 5 -759 437 -24.5 -128 30 -745

6 -759 437 -24.4 -128 -57 -2310
7 -759 437 -24.4 -128 -145 -3880
8 -758 437 -24.4 -128 -232 -5450

solution remains linear when the same tip load is applied to both models. Table 3.4 shows

the force and moment results while Table 3.5 shows the displacement and rotation results

for Papplied = 33,670 N for both the nonlinear solution using GEBT and a linear solution

using Euler-Bernoulli beam theory.

Agreement between linear and nonlinear analysis at Papplied = 33,670 N is shown

in Table 3.5. The nonlinear response is highlighted best by examining the response in

the u2 direction and rotation θ2 at node 5 in Table 3.5. Although still very small, the

value predicted by the nonlinear solver for θ2 is now on the order of 10−6, an increase of

10 orders of magnitude over the numerically zero result for the same value in the linear

analysis. Likewise, the u2 deflection has appeared and is the same order of magnitude as

the other nodes in the nonlinear case, where the linear solution predicts no displacement

in the global Y axis. The displacement used in the optimization, u3 at the wing tip (node

5), is 76.26 mm in the nonlinear analysis and 76.84 mm in the linear analysis, a 0.8%

difference. Closer inspection of the data shows that the behavior of the displacements in
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Table 3.3: 500 N test load displacement and rotation results from nonlinear and linear
analysis with all elements set to initial design variable values as given in Table 3.1

Analysis Node u1 u2 u3 θ1 θ2 θ3

(µm) (rad)
2 -42 -2 105 5.86e-05 -1.85e-05 2.28e-05
3 -156 -7 381 9.86e-05 -2.46e-05 4.09e-05
4 -317 -8 749 1.20e-04 -1.85e-05 5.43e-05

GEBT 5 -501 0 1132 1.23e-04 -4.99e-10 6.31e-05
6 -317 8 749 1.20e-04 1.84e-05 5.43e-05
7 -156 7 381 9.87e-05 2.46e-05 4.09e-05
8 -42 2 105 5.86e-05 1.84e-05 2.28e-05
2 -43 -3 110 5.79e-05 -1.83e-05 2.29e-05
3 -158 -8 388 9756e-05 -2.44e-05 4.10e-05
4 -320 -9 757 1.19e-04 -1.83e-05 5.44e-05

Euler- 5 -505 0 1141 1.22e-04 -1.70e-18 6.31e-05
Bernoulli 6 -320 9 757 1.19e-04 1.83e-05 5.44e-05

7 -158 8 388 9.75e-05 2.44e-05 4.10e-05
8 -43 3 110 5.79e-05 1.83e-05 2.29e-05

the u2 and u3 directions as well as F3 and M1 show a noticeable and expected departure

from linear behavior predicted by Euler-Bernoulli.

3.2 Material and Geometric Properties

The model in this research is made of isotropic prismatic aluminum beams. The

cross section is a thin-walled box with four variables as shown in Fig. 3.2. Material

properties used were for aluminum, with a fixed Young’s modulus E of 70.0 GPa and

shear modulus G of 26.31 GPa. The stress criteria used were von Mises stress, defined

as

σV M =

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2

12 + σ2
23 + σ2

31)

2
(3.8)

where σij are the components of the 3D stress tensor. Equation (3.8) can be applied

to both the nonlinear and linear stresses obtained from GEBT and Euler-Bernoulli,

respectively. For the stresses computed using Euler-Bernoulli linear beam theory, the

von Mises stresses are calculated at both ends of each beam element at all four corners.

These points are shown as gray triangles in Fig. 3.3. In the Mathematica implementation
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Table 3.4: 33,670 N load force and moment results from nonlinear and linear analysis
with all elements set to initial design variable values as given in Table 3.1

Analysis Element F1 F2 F3 M1 M2 M3

(kN) (kN-m)
1 51.1 -29.5 -1.81 7.74 16.0 -366
2 51.1 -29.4 -1.61 8.69 9.46 -261
3 51.2 -29.4 -1.49 9.02 3.64 -155

GEBT 4 51.2 -29.3 -1.44 9.04 -1.75 -50.1
5 -50.9 29.6 -1.85 -8.18 2.30 -50.2
6 -50.9 29.6 -1.80 -8.21 -4.12 -156
7 -50.9 29.5 -1.67 -8.56 -10.1 -262
8 -51.0 29.4 -1.48 -9.52 -1.53 -368
1 51.1 -29.4 -1.62 8.54 15.5 -367
2 51.1 -29.5 -1.63 8.53 9.65 -262
3 51.1 -29.5 -1.63 8.54 3.81 -156

Euler- 4 51.1 -29.6 -1.63 8.54 -2.01 -50.2
Bernoulli 5 -51.1 29.6 -1.63 -8.54 2.01 -50.2

6 -51.1 29.5 -1.63 -8.54 -3.81 -156
7 -51.1 29.5 -1.63 -8.54 -9.65 -262
8 -51.1 29.4 -1.62 -8.54 -15.5 -367

Table 3.5: 33,670 N load displacement and rotation results from nonlinear and linear
analysis with all elements set to initial design variable values as given in Table 3.1

Analysis Node u1 u2 u3 θ1 θ2 θ3

(mm) (rad)
2 -2.85 -0.18 7.23 3.94e-03 -1.39e-03 1.49e-03
3 -10.5 -0.61 25.9 6.58e-03 -1.75e-03 2.72e-03
4 -21.3 -0.80 50.6 8.02e-03 -1.26e-03 3.65e-03

GEBT 5 -33.8 -0.34 76.3 8.31e-03 -2.27e-06 4.25e-03
6 -21.3 0.34 50.3 8.19e-03 1.22e-03 3.67e-03
7 -10.5 0.32 25.4 6.71e-03 1.56e-03 2.79e-03
8 -2.86 0.09 6.97 3.94e-03 1.09e-03 1.58e-03
2 -2.91 -0.17 7.39 3.90e-03 -1.23e-03 1.54e-03
3 -10.6 -0.51 2.61 6.57e-03 -1.64e-03 2.76e-03
4 -21.5 -0.59 51.0 8.00e-03 -1.23e-03 3.67e-03

Euler- 5 -34.0 0.00 76.8 8.21e-03 -1.21e-16 4.25e-03
Bernoulli 6 -21.5 0.59 51.0 8.00e-03 1.23e-03 3.67e-03

7 -10.6 0.51 26.1 6.57e-03 1.64e-03 2.76e-03
8 -2.91 0.17 7.39 3.90e-03 1.23e-03 1.54e-03
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of GEBT used in this research, stresses are not returned directly. As mentioned earlier,

the GEBT outputs are forces and moments. These forces and moments are calculated at

the center of each beam element in the beam element’s local coordinate system, relieving

the user of the need to apply a transformation from the global to local coordinate system.

Calculation of the 3D nonlinear stresses and strains are computed by the current

Fortran implementation of VABS. The inputs for VABS are the description of the cross

sectional geometry, material properties, and forces and moments applied to the element.

VABS calculates all cross sectional properties for the stiffness matrix prior to analysis,

and returns 3D stress and strain tensors at any point in the cross section desired by

the user at the midpoint of the beam element. In this research, a cross section for the

thin wall box beam is defined using 20 nodes which are grouped into four elements.

These elements comprise the top and bottom skins and the fore and aft webs. These

elements of the cross section are shown in Fig. 3.4. Each element is defined by eight

nodes, six of which are shared with other elements. As a result, the stress and strain

outputs are calculated at each node for each element, resulting in 32 outputs for stress

recovery, not 20. The stresses reported at the same node twice are averaged to give a

single stress tensor. The cross section is shown as the shaded section with green circles

denoting the stress recovery points used in the von Mises stress calculations in Fig.

3.3. The corners shown at the midpoint cross section relate to the ends of the beam

for comparison purposes. To allow comparison between the GEBT/VABS nonlinear

and the Euler-Bernoulli linear stresses, the von Mises stresses obtained from the linear

analysis at the ends of the beam are averaged. This approach works due to the constant

force and linear moment distributions across a given element. These averaged linear von

Mises stresses compare very well to VABS for the 500 N linear test case at the midpoint

cross-section of each beam element.

3.3 Structural Optimization Problem

For each beam element the chord and height of the wing box as well as the thickness

of the skins (upper and lower surfaces) and webs (fore and aft surfaces) are all design

variables as shown in Fig. 3.2. If the design variables of the eight beams listed in Fig. 1.2
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Figure 3.3: Simple box beam showing locations of von Mises stress calculations

are linked, there are only four design variables. In the case where each of the eight beam

element’s four design variables are independent of the others, there are thirty-two design

variables. Upper and lower bounds were defined for each of the four design variables. It

is important to note that the constraint on the height of the box beam is a percentage of

the current value of the chord. As a result, this height constraint must be continuously

updated in the optimization loop as values of the chord changes. If the height constraint

is not updated, it is possible that the optimization will return a result that is inconsistent

with this constraint. In the displacement optimization problem, vertical global Z-axis

deflection at the wing tip is the design constraint. The values were either a direct

result of the GEBT nonlinear analysis or Eq. (3.11) when using ESL. Although initially

considered as two separate problems during development, the displacement and stress
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Figure 3.4: Cross section view showing nodes used by VABS to calculate stress recovery
points.

constrained optimization problem is formulated as:

Find b = bc h ts twcT

to minimize M(b)

subject to |utip| ≤ uz−dir allowed

σV M ≤ σV M allowed

0.500 ≤ c ≤ 2.500 m (3.9)

0.05 c ≤ h ≤ 0.15 c m

0.005 ≤ ts ≤ 0.015 m

0.005 ≤ tw ≤ 0.015 m

The mass of the model with all values set to the initial design variables shown in Ta-

ble 3.1 is 3764.8 kg. A MATLAB sequential quadratic programming (SQP) optimization

routine is used for the optimization.
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3.4 Integration between Mathematica and MATLAB

Research was performed in a Linux environment due to the need to call Mathe-

matica from within the MATLAB code during the optimization process. A script used

to handle writing the calculated cross-sectional properties EI, GJ , et al. to a text

file. Mathematica is then called using a shell command and the Mathematica program

(GEBT) is executed. GEBT initializes its variables, then reads the input files created

by MATLAB to obtain cross-sectional data. Nonlinear analysis is then conducted, with

displacement, rotation, force and moment resultants returned in a single matrix that is

then written to a comma separated value (CSV) file. The MATLAB script resumes by

reading the CSV file and transforming the Mathematica output into MATLAB format.

The values returned from GEBT are at the mid point of each element, so a linear shape

function is applied to determine nodal displacements and rotations using Eq. (2.6)

3.5 Nonlinear Optimization using GEBT

Two different approaches to the optimization problem are investigated. In the first

approach, which will be referred to as GEBT, a full nonlinear response optimization is

carried out using GEBT as the nonlinear solver. The second approach, which will be

referred to as GEBT-ESL, is the linear response optimization using ESL in conjunction

with the GEBT nonlinear solver. In the nonlinear response optimization, the optimiza-

tion is driven by a full nonlinear analysis. The optimization starts with a nonlinear

analysis of the model, defines upper and lower bounds on the design variables, and then

hands the model off to SQP. The nonlinear analysis is completed by a Mathematica im-

plementation of GEBT each time the objective and constraint equations are calculated

within SQP using the current values of all design variables. The joined-wing analysis

does not have explicit equations programmed that can be used to calculate

∂ utip(b)

∂ bi

(3.10)

which is the partial derivative of the wing tip displacement with respect to each design

variable. The gradient based search method employed by SQP requires a sensitivity anal-
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ysis with respect to each design variable be performed on the current design, including

each finite difference calculation used to determine the search direction.

The output from GEBT is then processed into terms that are used in the constraint

equations for displacement and stress as shown in Fig 3.5(a).

3.6 Nonlinear Optimization using GEBT with ESL

The second approach investigated also uses the Mathematica implementation of

GEBT for nonlinear analysis in an outer loop to determine displacements and von Mises

stresses. However, a set of equivalent loads calculated with a linear stiffness matrix before

beginning optimization is shown in Fig. 3.5(b) and is used in a linear design analysis.

The equivalent loads are used with the current linear stiffness matrix to calculate a set

of approximate nonlinear displacements from

{d} = [KL(b)]−1{f z
eq} (3.11)

where d is the displacement vector, KL(b) is the linear stiffness matrix using the design

variables of the current iteration, b is the vector of design variables, and fz
eq is the

equivalent static loads vector for displacements that was calculated in the outer loop.

From the displacements d, stresses are calculated using Euler-Bernoulli beam theory.

The element stresses are then used to calculate the von Mises stress for each element

using Eq. (3.8) Within the optimization inner loop, these approximate displacements

and stresses will be used in the evaluation of the constraint equations in Eq. (3.10).

Once SQP has converged to a solution, the results are returned to the outer loop, where

the nonlinear analysis is performed again, and the process repeats until the convergence

criteria,

εconverge =
‖f z

eq‖k
∞ − ‖f z

eq‖k−1
∞

‖f z
eq‖k∞

(3.12)

is met in the outer loop, where the ‖f z
eq‖k

∞ term is the infinity norm of the equivalent

static load vector for the current nonlinear evaluation and ‖f z
eq‖k−1

∞ is the infinity norm

of equivalent static load vector for the previous nonlinear evaluation. This convergence

tolerance is satisfied as shown in Fig. 3.5.
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(a) GEBT (b) GEBT-ESL

Figure 3.5: Flow charts showing the difference between pure nonlinear optimization
(GEBT) and nonlinear optimization with equivalent static loads (GEBT-ESL).

27



3.7 Limit Load Calculations

Initial efforts to perform the nonlinear optimization revealed peculiarities in the

joined-wing optimization problem. In the first run attempted, the optimizer set all design

variables to minimum gage after the first step in an attempt to minimize the weight of

the structure. The problem arises that, when the minimum gage design as defined in this

research is sent to GEBT for a nonlinear response analysis, the analysis fails. The issue

is hinted at in a message returned by Mathematica, stating that the Jacobian used in

the calculation of the solution is singular, and that the design should be adjusted in an

effort to obtain a well behaved Jacobian. After failing to harness a flag from this error

message as a means of triggering a ‘bad design’ indicator in MATLAB, an alternative

approach is presented.

Figure 3.6: Load-deflection curve showing linear and nonlinear behavior. Pcritical is
located at the peak of the nonlinear curve and indicates failure of the design.

Elasticity theory describes the load-deformation curve and uses it to show linear-

elastic and nonlinear-elastic regions of deformation. If the load on a specimen continues

to increase beyond the yield stress, behavior of the material cannot be predicted with

GEBT. The analysis by GEBT shows this failure in the form of the poorly conditioned
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stiffness matrix. The stiffness matrix becomes poorly conditioned due to the geometric

nonlinearity effects. Geometric nonlinearities con manifest themselves either in an un-

stable stiffness matrix due to buckling (cannot be inverted) or by the presence of large

nonlinear strain terms which render the stiffness matrix numerically ill conditioned (re-

sults unreliable). The solution to determining this failure criterion is to generate the

load-deformation curve each time the constraints are evaluated to find the value of a

Pcritical that is defined as the point where the deflection returned from the nonlinear

solver is less than the previous value on the curve. A graphical example of this location

is provided in Fig.3.6 where the nonlinear curve is at a maximum value of approximately

6.3 m. Furthermore, it is clear that operating near this region of the curve could be

disastrous in a real world design, so a safety factor Psafe is defined

Psafe =
Pcritical

1.5
(3.13)

and used as a constraint on the optimization problem as

Papplied < Psafe. (3.14)

It is possible to calculate a nonlinear optimization of this problem with less com-

putational effort. Using rounded off values of the design variables, a comparison can be

made that eliminates a large percentage of the nonlinear analysis overhead. For example,

the following set of design variables are handed to the optimizer for step kn:

c = 1.2573874

h = 0.1088356 (3.15)

ts = 0.0623400

tw = 0.0500000
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and are rounded off to four decimal places. The rounded off values for step kn are

c = 1.2574

h = 0.1088 (3.16)

ts = 0.0623

tw = 0.0500

which are stored for comparison during the next step in the optimization. During a

finite difference method, the small value added to the design variables is on the order of

10−6 or smaller. In this example, 10−6 is used, so that the design variables for the next

iteration kn+1 are

c = 1.2573884

h = 0.1088366 (3.17)

ts = 0.0623410

tw = 0.0500010

which rounded off to four decimal places are the same values shown in Eqs. (3.17).

When a comparison is made between the rounded set of design variables for step kn

and kn+1 they are found to be equivalent regarding the change in the shape of the load-

displacement curve. There is still sufficient change when using the unrounded design

variables to calculate the required displacement and stress sensitivities needed for SQP

to choose the appropriate search direction. Now that the load-deflection curve is not

changing with the finite difference calculations, it is then extended to the calculation of

the critical and safe loads for a given design. Since the results for Pcritical and Psafe do

not change after the first finite difference calculation, these nonlinear analyses do not

need to be performed and can be removed while using the previous values for Pcritical

and Psafe in a constraint.

Upon further investigation, it is clear that knowing the actual limit load is unnec-

essary if the design is safe. This is because the direction of search taken in the optimizer
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will not be based on a constraint violation of the limit load. It is enough to know that

Psafe is not less than the applied load. With this in mind, further time savings can be

had by limiting the upper limit of the load-deformation curve calculation to no more than

1.5 times the applied tip load and implementing an active set strategy for the gradient

calculation. This will ensure adequate determination of the constraint violations while

removing all extraneous nonlinear calls in a nonlinear response optimization.

3.8 Limit Load Estimation Techniques

3.8.1 Polynomial Curve Fit with Equivalent Static Loads at Limit Load. In

order to make a fair assessment in the gains offered by the use of ESL a means of including

the limit load in the GEBT-ESL inner loop is desired. Also, inclusion of the limit load

constraint should also guarantee that the limit load will not be violated by the final

design returned from the optimizer. A second order polynomial curve fit is an important

piece to an inner loop approximation of the limit load that can be applied as a constraint.

Instead of defining the limit load curve with a constant step size, a selection of four to

five points in the vicinity of the applied load and desired limit load are evaluated using

GEBT. These loads then return a displacement vector for the loads under consideration.

The use of a quadratic curve fit algorithm will result in the polynomial

P (u) = a0 + a1u + a2u
2 (3.18)

where a0, a1, and a2 are the coefficients when the curve fit algorithm is supplied with the

calculated displacements. This means Eq. (3.18) will return a load when supplied with a

new displacement. To determine the displacement in the inner loop, a separate set of ESL

are calculated in the outer loop for the limit load calculation using the maximum load

used in the calculation of the curve fit data points in GEBT to return the true nonlinear

wing tip displacement. Differentiating Eq. (3.18) with respect to tip displacement,

dP (u)

du
= a1 + 2 ∗ a2u (3.19)
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which if set equal to zero can be solved for ulimit. Then using this new value for ulimit

in Eq. (3.18) will produce an estimate of Plimit as shown in Fig. 3.7. Using ulimit

an ESL can be calculated for the limit load displacement. Within the inner loop, the

ESL at the limit load will generate different deflections at the limit load as the design

variables are updated. Results with this Plimit estimation technique within the GEBT-

ESL displacement constraint problem are shown in Table 4.4

The use of this method of Plimit estimation does yield some improvements over the

calculation where Plimit is ignored as a constraint. In stiffer structures, the constraint

appears to allow for a more efficient design, but at the cost of additional computational

cost as shown in Table 4.4. This tradeoff of computational effort for much improved

reliability is considered worth the investment. By comparing Fig. 4.1 to Fig. 4.2 it is

clear there is improvement in the optimized mass of the structure when the wing tip

deflection is constrained to 0.25 and 0.35 m. At the other end of the scale, use of the

limit load estimation led to results at displacement constraint values that were previously

unattainable for the 32-DV and 64-DV problems.

3.8.2 Polynomial Curve Fit with Updated Slope Term. Another possible ap-

proach to the estimation of Plimit is to update the a1 or slope term in Eq. (3.18) inside

the inner loop. The setup is the same in the outer loop as described in the previous

section. When the polynomial is handed to the inner loop, a different calculation is

performed. A ratio

ã1 =
ũapplied

uapplied

a1 (3.20)

where uapplied is the tip deflection calculated by GEBT in the outer loop at the applied

load, a1 is the coefficient of the polynomial calculated in the outer loop, ũapplied is the

inner loop wing tip deflection estimated using ESL at the applied load, and ã1 is the

updated value for the slope in the inner loop. The change in slope allows an update to

the limit load in the linear analysis. This update method yields results similar to those

provided in the previous section with no obvious advantage at this time.
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Figure 3.7: Plot showing the nonlinear load deflection curve using the incremental
step method (blue solid line), the linear load deflection curve (green solid line), and the
2nd order polynomial curve fit for the limit load using a sampling of 5 points.

3.9 Trust Region Strategy

Move limits play a vital role in the ability of the nonlinear response optimization

to converge. The fixed reduction of the move limit does not always allow the overall

MATLAB routine to converge to a solution that improved upon the 4-DV case when

starting with the same initial design variables, even though SQP successfully converged in

the inner optimization loop. Dynamic move limits can be used to allow the optimization

routine to adjust the step size while searching for the optimal solution, but require

additional information to work properly. A definition of when to expand, contract, or

keep the current move limits is needed. Introduction of a trust region strategy proved to

be an acceptable solution where the trust ratio φ is defined as

φ =
ψk−1 − ψk

ψk−1 − ψ̃k

(3.21)
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where ψk−1 is the value of merit function based on the nonlinear analysis before the

optimization loop, ψk is the value of the merit function based on the nonlinear analysis

after the optimization loop, and ψ̃k is the value of the merit function using the equivalent

static loads. The merit function used in the displacement constraint problem was defined

as

ψ =
√

(utip − utip allow)2 (3.22)

where utip is the vertical displacement of the wing tip node and utip allow is the allowed

displacement of the same node. The trust region strategy allows the outer loop of

the optimization to dynamically choose whether to maintain, expand, or contract the

allowable move limits for the inner loop ESL optimization based on the value of φ after

each result from the inner loop is returned. If a set of design variables are rejected, the

values used to enter the inner optimization loop are restored and optimized again with

contracted move limits. If φ indicates an improvement in the design, the move limits are

kept the same. If φ shows a great improvement in the design, then the move limits are

expanded in an attempt to allow the design to reach the optimum more quickly.
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IV. Results and Discussion

The results for the nonlinear optimization problem are presented here. Wing box

shape and sizing is accomplished using the methods described in Chapter 3 and

integration of GEBT and ESL is an effective combination to reduce computational ef-

fort while maintaining accuracy in the final solution. There are also some benefits to

increasing the number of beam elements in the structure, at the expense of increasing

the computational expense compared to smaller numbers of beam elements/degrees of

freedom. Finally, although there is no mention in the literature regarding limit load

criteria or constraints, it is shown here to be an important safety consideration which

must be accounted for in the design optimization process.

4.1 Four Design Variables - Displacement Constraints

4.1.1 Nonlinear Optimization (GEBT). The full nonlinear response optimiza-

tion solution with uzallow = 0.25 m is shown in Table 4.1. The mass of the optimized

structure is 1183.1 kg. Note that the results for all elements are the same due to the

design variable linking in the 4-DV case. The results presented in Table 4.1 are the

same when the limit load is calculated every time the constraints are evaluated and

takes 4 hours 24 minutes to complete. Eliminating unneccessary calculation of the full

load-deflection curve from the finite differencing calls using the rounded design variable

comparison resulted in a run time of 33 minutes 34 seconds, a 92% time savings over the

full analysis. A comparison of different approaches to the 4-DV dispacment constraint

optimization problem is shown in Table 4.2.

Computationally, the addition of the limit load constraint is significant. The limit

load for the initial set of design variables is more than 250,000 N, which requires 50 calls

to the nonlinear solver with a step size of 5,000 N to determine this value. Other step

sizes will change the required number of calls, but as Psafe approaches the applied load, a

finer step size may be required to accurately determine if the design meets the limit load

constraint. Computing the limit load calculation for every step in the finite differencing

routine dramatically increases the time required to perform the optimization, on the

order of hours instead of minutes or seconds.
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Table 4.1: Solution to 4-DV displacement constraint nonlinear response optimization
where uzallow = 0.25 m

Element c h tskin tweb

(m) (m) (m) (m)
1 1.3339 0.2005 0.0050 0.0050
2 1.3339 0.2005 0.0050 0.0050
3 1.3339 0.2005 0.0050 0.0050
4 1.3339 0.2005 0.0050 0.0050
5 1.3339 0.2005 0.0050 0.0050
6 1.3339 0.2005 0.0050 0.0050
7 1.3339 0.2005 0.0050 0.0050
8 1.3339 0.2005 0.0050 0.0050

4.1.2 Nonlinear Optimization with Linear Approximation (GEBT-ESL). When

equivalent static loads are introduced, they replace the full nonlinear analysis inside SQP

with a linear approximation. This means inside the inner loop, there is no difficulty with

a cumbersome constraint evaluation. As a result of using ESL and not requiring a limit

load constraint, the time savings is three orders of magnitude between the full nonlinear

GEBT and the GEBT-ESL solutions. It should be noted that the optimization for

GBT-ESL did not evaluate the limit load constraint in any way. This frees GEBT-ESL

from the computational effort required for nonlinear optimization that is largely due to

calculating this constraint. Also, it is shown in Table 4.1 and Table 4.2 that the final

solutions for each method return the same objective function value, Psafe, and design

variable values. The only changes are in computational effort and time required. Note

that the values for Psafe shown are calculated after the optimization is complete using

the final design variable vector b and is not included in the time required to arrive at the

solution. The results for the 4-DV displacement constraint problem using GEBT-ESL

without limit load calculations are shown in Table 4.3 and Fig. 4.1.

4.2 Thirty-two Design Variables - Displacement Constraints

4.2.1 Move Limits and Move Reduction. Increasing the number of design

variables for the displacement constraint scenario is studied. In this case, eight elements

with four design variables each are all independent of each other for a total of thirty-two

design variables (32-DV). Initially, it was believed that the code would be identical to that
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Figure 4.1: Pareto curve showing change in optimized mass as the tip deflection con-
straint is varied for 4, 32, and 64-DV cases

Figure 4.2: Pareto curve showing change in optimized mass as the tip deflection con-
straint is varied for 4, 32, and 64-DV cases with a 2nd order polynomial curve fit estimate
of Plimit applied as a constraint in the inner loop.
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Table 4.2: Comparison of different solution techniques when applied to the four design
variable optimization problem with a displacement constraint.

Solution uzallow fobj Move Move Time Nonlinear Psafe

Method (m) (kg) Limit Reduction Required Calls (kN)
GEBT 0.25 1183.1 0.09 0.7 4 h 23 m >10,000 297
GEBT-DV compare 0.25 1183.1 0.09 0.7 33 m 34 s 1821 297
GEBT-DV compare 0.25 1183.1 0.09 0.7 8 40 s 304 297
with 2 x Load check
GEBT-ESL 0.25 1183.1 0.09 0.7 8 s 4 297

of the 4-DV problem with independent values for c, h, ts, and tw. When an optimization

is performed without move limits or use of the limit load calculation described in Section

3.7, the design shown in Table 4.5 is returned, with fobj = 861.6 kg and Psafe = 20 kN.

Time required for the analysis is 1 minutes 43 seconds, which is reasonable considering

the increased number of design variables over the 4-DV case. The critical issue here is

the violation of Psafe when checked at the end of the optimization. The advantage in

computational time seen in the 4-DV case in GEBT-ESL disappears with the increase

in the number of design variables.

Different approaches could potentially solve this issue, however caution must be

exercised in selecting the method lest the advantages gained in using the equivalent

static loads will disappear. Most obviously, the use of the limit load calculation originally

described in the 4-DV nonlinear analysis could be used. It is still very costly, however, to

calculate the load-deformation curve for each step of the optimization. This approach is

not recommended as a result. A second possibility is the use of a trust region strategy in

the outer loop of the ESL routine that will detect a violation of the limit load constraint

and reduce the allowable change in design variables for a given nonlinear analysis. The

reduction of the move limit continues until either the next step does not violate the limit

load or the solution has converged. A third option is that move limits could be prescribed

for each individual design variable, or made relative to each design variable as opposed

to using absolute move limits for all DVs. If using relative move limits and the initial

value of c is 1.5 m, while ts is 0.015 m, it may be desirable to allow the value of c to

vary ± 0.1 m while ts is only allowed to vary ± 0.001 m per iteration. This technique

becomes more important the larger the difference in magnitude of the design variables
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Table 4.3: Optimization results for beam elements with displacement constraints.

Solution uz−allow fobj Move Move Time Nonlinear Psafe

Method (m) (kg) Limit Reduction Required Calls (kN)
0.25 1183.1 0.1 0.5 12 s 4 297
0.35 1057.1 0.1 0.5 9 s 4 207
0.45 972.3 0.1 0.5 10 s 5 160
0.55 909.8 0.1 0.5 12 s 6 127

4-DV 0.65 861.1 0.1 0.5 12 s 6 107
GEBT-ESL 0.75 821.7 0.1 0.5 13 s 7 93

0.85 789.0 0.1 0.5 14 s 7 80
0.95 761.3 0.1 0.5 14 s 7 73
1.05 737.5 0.1 0.5 14 s 7 70
1.15 716.7 0.1 0.5 17 s 7 63
1.25 698.4 0.1 0.5 19 s 9 57
0.25 1177.8 0.09 0.7 55 s 11 120
0.35 804.9 0.09 0.7 77 s 14 127
0.45 727.7 0.10 0.5 30 s 7 97
0.55 691.6 0.09 0.7 58 s 11 80

32-DV 0.65 664.4 0.10 0.5 73 s 18 77
GEBT-ESL 0.75 642.0 0.08 0.5 30 s 7 60

0.85 623.7 0.09 0.7 40 s 8 53
0.95 608.6 0.10 0.5 25 s 7 47
1.05 595.2 0.09 0.7 38 s 8 43
1.15 584.3 0.10 0.5 58 s 11 40
1.25 - - - - - -
0.25 843.6 0.07 0.5 210 s 6 147
0.35 771.6 0.07 0.5 162 s 6 107
0.45 723.5 0.07 0.5 124 s 6 87
0.55 700.4 0.07 0.5 254 s 8 60

64-DV 0.65 663.1 0.07 0.5 164 s 7 53
GEBT-ESL 0.75 641.9 0.07 0.7 161 s 7 47

0.85 625.0 0.08 0.5 265 s 10 40
0.95 610.4 0.08 0.5 143 s 7 40
1.05 598.5 0.09 0.7 141 s 7 36
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Table 4.4: Optimization results for beam elements with displacement constraints and
Psafe polynomial curve fit estimation routine incorporated

Solution uz−allow fobj Move Move Time Nonlinear Psafe

Method (m) (kg) Limit Reduction Required Calls (kN)
0.25 1183.1 0.1 0.5 21 s 16 293
0.35 1057.1 0.1 0.5 21 s 16 207
0.45 972.3 0.1 0.5 21 s 16 157
0.55 909.8 0.1 0.5 21 s 16 133

4-DV 0.65 861.1 0.1 0.5 21 s 16 110
GEBT-ESL 0.75 821.7 0.1 0.5 27 s 21 97

0.85 789.0 0.1 0.5 27 s 21 87
0.95 761.4 0.1 0.5 28 s 21 73
1.05 737.5 0.1 0.5 27 s 21 67
1.15 716.9 0.1 0.5 27 s 21 60
1.25 698.4 0.1 0.5 27 s 21 53
0.25 985.1 0.09 0.7 310 s 178 120
0.35 792.6 0.09 0.7 194 s 126 127
0.45 727.6 0.10 0.5 68 s 42 97
0.55 691.7 0.09 0.7 58 s 35 80

32-DV 0.65 663.8 0.10 0.5 198 s 133 77
GEBT-ESL 0.75 640.9 0.08 0.5 207 s 133 60

0.85 622.0 0.09 0.7 201 s 133 53
0.95 606.0 0.10 0.5 243 s 133 47
1.05 596.7 0.09 0.7 228 s 140 43
1.15 584.0 0.10 0.5 198 s 109 40
1.25 576.0 0.10 0.5 348 s 231 40
0.25 864.0 0.9 0.7 869 s 91 47
0.35 772.3 0.4 0.7 162 s 28 95
0.45 723.8 0.4 0.7 183 s 28 69
0.55 689.9 0.4 0.7 196 s 35 69

64-DV 0.65 663.0 0.5 0.5 223 s 42 59
GEBT-ESL 0.75 642.0 0.5 0.7 350 s 63 48

0.85 624.9 0.5 0.5 172 s 35 45
0.95 610.9 0.5 0.5 171 s 35 41
1.05 598.0 0.5 0.5 231 s 49 37
1.15 598.0 0.5 0.8 318 s 49 37
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being considered, as it will allow slower changes to the design that will more likely keep

the design in the feasible design space as iterations occur.

Using move limits while ignoring inner loop calculation or approximation of the

limit load, GEBT-ESL returns designs that meet the Pcritical value but still violate the

Psafe constraint.There are also other difficulties that arise. When using the initial design

variable values in Table 3.1, and an outer loop move limit on all design variables of 0.15

m, the design shown in Table 4.6 is the result. Of greatest concern is the fact that

neither the front or aft wing tapers smoothly from the root to the tip in the chord and

height variables. Also, the objective function value fobj = 1706.3 kg is approximately

a 500 kg increase over the 4-DV solution already calculated, so this cannot be the true

global minimum. The fixed move limits do not afford the optimization problem the time

needed to converge to a true minimum solution. When the move limits were expanded

to allow SQP to move the design more quickly, the final result did not meet the limit

load constraint.

Experimentation with different starting design variables showed that it is possible

to improve upon the 4-DV GEBT-ESL results. When the initial values for the opti-

mization were set to the values obtained for the 4-DV solution, GEBT-ESL was able to

improve upon the 4-DV result. For move limit = 0.1 m and move reduction = 70 %, fobj

= 1097.5 kg and had a Psafe = 37 kN. This is a valid design satisfying all constraints,

even though no limit load calculations were being performed during the optimization.

As a result, only 1 min 43 sec were required to converge to the solution.

Note the only issue in Table 4.7 is that the the value of h for element 1 (0.1340 m) is

less than the value for element 2 (0.1780 m). This violates the smooth taper from root to

tip sought after in the design. While not strictly necessary, intuition would indicate that

a smooth taper would be the lightest design in both a displacement or stress constrained

optimization problem.

Adjusting the move limit to 0.05 m and leaving the move reduction at 70% returns

the best solution seen to this point. The design satisfies all constraints, has a smooth

taper from root to tip in both wings, and does not require calculation of the limit load

within the algorithm. The value of the objective function is fobj = 1122.9 kg, Psafe = 40
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Table 4.5: Design variables by element for 32-DV GEBT-ESL design with no move
limits or limit load calculation.

Element chord height skin web
1 1.8943 0.2842 0.0050 0.0083
2 1.6624 0.2494 0.0050 0.0082
3 1.3128 0.1969 0.0050 0.0082
4 0.7047 0.1057 0.0050 0.0084
5 0.5000 0.0250 0.0050 0.0010
6 0.5000 0.0250 0.0050 0.0010
7 0.5000 0.0250 0.0050 0.0010
8 0.5000 0.0250 0.0050 0.0010

Table 4.6: Design variables by element for 32-DV GEBT-ESL design with move limit
= 0.15 m and move reduction = 70 % with no limit load calculation. Initial design
variables are those used in Table 3.1.

Element chord height skin web
1 1.3982 0.1332 0.0089 0.0177
2 1.4477 0.1487 0.0089 0.0145
3 1.0647 0.1439 0.0089 0.0136
4 0.8934 0.0899 0.0089 0.0090
5 0.8883 0.0888 0.0089 0.0089
6 0.9214 0.1136 0.0089 0.0113
7 1.0496 0.1493 0.0089 0.0114
8 0.9901 0.1485 0.0089 0.0121
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Table 4.7: Design variables by element for GEBT-ESL design with move limit = 0.10
m and move reduction = 70 % with no limit load calculation. Initial design variables are
the solution to the 4-DV 0.25 m tip displacement constraint optimization problem.

Element chord height skin web
1 1.7252 0.1340 0.0050 0.0113
2 1.1904 0.1780 0.0050 0.0077
3 0.8935 0.1340 0.0050 0.0062
4 0.8935 0.1340 0.0050 0.0058
5 0.8935 0.1340 0.0050 0.0058
6 1.0401 0.1534 0.0050 0.0073
7 1.3493 0.1942 0.0050 0.0088
8 1.4743 0.2151 0.0050 0.0087

kN, and time required is 1 min 22 sec. Initial design variables were the solution design

variables to the 4-DV displacement constraint problem for 0.25 m. The use of another

answer to begin this process is the only weak point of this algorithm.

When the trust region strategy described in Section 3.9 is properly implemented,

the 32-DV problem results shown in Table 4.3 are obtained. In particular, for all but the

first case where the tip displacement is constrained to 0.25 meters, the 32-DV results offer

an average 28.7% reduction in mass compared to the 4-DV results while satisfying all

constraints. The cost here is an average four times increase in time required to determine

the final solution over the 4-DV problem. However, these increased times are all still only

between 25 and 77 seconds total for the solution. This level of design variable refinement

seems to offer the best compromise in the displacement constraint problems in terms of

time required, value of the objective function, and the value of the limit load, Psafe.

4.3 Sixty-four Design Variables - Displacement Constraints

Refining the mesh to a total of 16 beam elements yields results consistent with

those from the previous two cases as shown in Tables 4.3 and 4.4 and Figures 4.1 and

4.2. In general, the objective function value either decreases or is within 1% of the value

of the eight element mesh. An increase in computational effort is present as the number

of finite difference calculations is doubled. The time cost is approximately four times

that of the eight element mesh with little improvement in overall design. The exception

is the case with the tip displacement constraint set to 0.25 meters. It appears that the
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larger, stiffer models (i.e. higher mass) with smaller allowed tip displacements may stand

to lose more mass with a more refined mesh.

4.4 Four Design Variables - Stress Constraints

Optimization is performed using GEBT-ESL on an eight element model where

the von Mises stress constraint for aluminum with a 1.5 times safety factor applied

is 179 MPa. Cases with 4 and 32 independent design variables are considered. The

least amount of computational effort is required for the 4-DV problem, while the 32-DV

problem allowed refinement in the optimized structure. In particular, Table 4.8 shows

for the 32-DV case that all but one element are within 10% of the applied nonlinear

stress constraint. Also shown is that elements 5 and 8 actually exceed the allowed

stress constraint by 5% and 2%, respectively. This discrepancy arises from the outer

loop convergence criteria used in the problem. The convergence tolerance is defined in

Eq. (3.12). This outer loop tolerance must be set to 10−2 to allow convergence. If set

to a tighter tolerance, the optimizer may enter an endless loop where the convergence

tolerance ε is never satisfied. With this relatively “loose” convergence criteria, differences

between the approximate and actual calculated nonlinear stresses will show up in the

second digit. Furthermore, it should be noted that all of the values presented in Table

4.8 are the largest von Mises stresses chosen from values at the four corners of the mid-

point cross section. This method satisfies the goal of this research by showing that the

constraints can be applied effectively. With further refinement of the approach, tighter

tolerances and evaluation of the stresses at the nodes vice the mid point of the beam will

yield even more accurate designs.

4.5 Thirty-two Design Variables - Stress Constraints

The solution to the 32-DV stress constraint problem required 7 nonlinear evalua-

tions and 207 seconds to return the results shown in Table 4.8. This design is the most

flexible one presented in research that is known to satisfy displacement, stress, and limit

load constraints. Note the design has fully stressed members in elements 1 through 4

with a well behaved taper for both chord and height while skin thickness is minimum
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Table 4.8: Optimization results for beam elements with stress constraints.

Solution fobj Psafe utip elem c h ts tw σvm

Method (kg) (kN) (m) (m) (m) (m) (m) (MPa)
1 1.0164 0.1525 0.0050 0.0055 177
2 1.0164 0.1525 0.0050 0.0055 121
3 1.0164 0.1525 0.0050 0.0055 72

4-DV 908.6 127 0.5591 4 1.0164 0.1525 0.0050 0.0055 33
GEBT-ESL 5 1.0164 0.1525 0.0050 0.0055 32

6 1.0164 0.1525 0.0050 0.0055 76
7 1.0164 0.1525 0.0050 0.0055 131
8 1.0164 0.1525 0.0050 0.0055 179
1 1.3897 0.2085 0.0050 0.0071 179
2 1.1894 0.1784 0.0050 0.0063 179
3 0.8748 0.1312 0.0050 0.0085 180

32-DV 662.7 53 0.7771 4 0.5003 0.0250 0.0050 0.0384 179
GEBT-ESL 5 0.5000 0.0250 0.0050 0.0050 57

6 0.5000 0.0250 0.0050 0.0050 90
7 0.5000 0.0250 0.0050 0.0050 95
8 0.5000 0.0250 0.0050 0.0050 140

gage for all 8 elements. The interesting variable behavior is in the web thickness for ele-

ments 3 and 4. The skin thickness in element 3 is larger that elements 1 and 2, although

only by roughly 20 - 40%. Element 4, on the other hand, is roughly 5 to 7 times larger

than the thicknesses inboard of it. From an aerodynamic point of view, this is the easiest

place to have a non-tapering dimension without impact to external planform and profile.

Geometric bend/twist coupling is evident in Fig. 4.3. Both wings have a discon-

tinuity at the 3/4 span point, but inboard of that point both wings appear to be fairly

smooth in their nodal rotations. Considering all nodes except for the wing tip for the aft

wing shows the geometric nonlinearity that drives the need for GEBT as the nonlinear

solver. The twist in the aft wing approaches 1 degree of twist at 1/4 span before reversing

to more than -4 degrees of twist at the 3/4 span node. This change in sign as well as the

magnitude of the twist indicates the wing is undergoing considerable deformation apart

from the calculated tip deflection of 0.7771 m. In fact, the inboard half of the aft wing

will be experiencing a positive increase in angle of attack while the outborad section of

the aft wing experiences over 4 degrees less angle of attack. This disparity in loading

conditions could lead to flutter or failure when aerodynamic forces are considered.
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Figure 4.3: Plot taken from 32-DV stress constraint optimization showing twist in fore
(blue solid line) and aft (red dashed line) wings as a function of normalized distance from
the wing root.

Within the stress constraint optimization problem von Mises stresses are calculated

for 32 different points in an 8 element structure. Each element compares the maximum

von Mises stress present to the stress constraint defined in Eq. (3.10). The calculation of

the von Mises stress produces a vector of nonlinear to linear stress ratios α defined in Eq.

(2.10). As the optimization process returns to the outer loop to update the nonlinear

analysis, a new α is calculalted. Instead of converging to unity, α does not converge to

anything meaningful. The stresses and stress ratio from the initial design and the final

design for the 32-DV stress constraint problem is shown in Table 4.9.

It is possible that the random nature of the values for α in Table 4.9 is a function

of using the displacement based equivalent static loads and the stress ratio as described

by MSC in their implementation of ESL [35]. It is unknown at this time if using the

stress equivalent static loads described by Lee, et al. will produce a different result [5].
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Table 4.9: Stress ratio results for 32-DV stress constraint problem

First Iteration Final Design

Element σNL−V M σL−V M α σ
′
L−V M σNL−V M σL−V M α σ

′
L−V M

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

1

31.2 31.2 1.00 31.2 177.0 179.0 0.99 177.0
21.8 19.8 1.10 21.8 105.0 99.2 1.06 105.0
33.2 32.9 1.01 33.2 179.0 175.0 1.03 179.0
20.0 21.6 0.93 20.0 94.1 94.8 0.99 94.1

2

21.4 22.2 0.96 21.4 176.0 216.0 0.82 176.0
16.6 15.5 1.07 16.6 109.0 141.0 0.78 109.0
23.4 22.1 1.06 23.4 179.0 138.0 1.30 179.0
15.1 15.4 0.98 15.1 97.7 62.8 1.56 97.7

3

11.9 13.4 0.89 11.9 175.0 315.0 0.56 175.0
11.1 10.9 1.02 11.1 111.0 240.0 0.46 111.0
13.9 11.6 1.20 13.9 180.0 39.6 4.54 180.0
10.0 9.1 1.11 10.0 96.7 37.5 2.58 96.7

4

3.8 4.2 0.90 3.8 179.0 774.0 0.23 179.0
5.7 5.5 1.03 5.7 150.0 729.0 0.21 150.0
5.3 2.0 2.73 5.3 174.0 382.0 0.45 174.0
5.7 3.2 1.80 5.7 134.0 427.0 0.31 134.0

5

5.7 7.8 0.73 5.7 20.6 189.0 0.11 20.6
3.6 6.2 0.58 3.6 38.4 243.0 0.16 38.4
5.7 1.9 3.00 5.7 44.1 170.0 0.26 44.1
4.9 1.7 2.85 4.9 56.8 115.0 0.49 56.8

6

10.9 12.9 0.85 10.9 89.5 138.0 0.65 89.5
12.1 15.8 0.76 12.1 18.4 104.0 0.18 18.4
9.9 6.8 1.45 9.9 49.8 50.2 0.99 49.8
14.1 9.7 1.45 14.1 60.0 83.6 0.72 60.0

7

16.3 17.4 0.94 16.3 94.5 330.0 0.29 94.5
21.6 24.6 0.88 21.6 57.5 318.0 0.18 57.5
15.0 13.2 1.14 15.0 68.6 179.0 0.38 68.6
23.8 20.4 1.17 23.8 79.9 191.0 0.42 79.9

8

22.0 22.2 0.99 22.0 78.3 152.0 0.52 78.3
31.0 33.1 0.94 31.0 106.0 206.0 0.51 106.0
20.6 19.8 1.04 20.6 55.4 23.5 2.35 55.4
33.3 30.8 1.08 33.3 140.0 30.7 4.56 140.0
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4.6 Failure to Converge to Displacement Constraint

There exist some combinations of move limits, move reductions, and allowable tip

deflection that produce results that do not converge according to Eq. (3.12). An example

of this is shown in Fig. 4.4. Due to the nonlinearity of the joined-wing problem, it is

possible for the linear solution to converge within the inner loop after making changes in

design variables that have greater sensitivity than the linear anlaysis is able to capture,

even if a trust region strategy is employed. As a result, the ensuing outer loop nonlinear

analysis with GEBT provides a tip displacement that is significantly different than the

value at the end of the inner loop optimization. The disconnect then comes with the

reduction in move limits before the next inner loop begins. When the step size is too

small, the inner loop will not be able to move away from the “bad” set of design variables

enough to get out of the region in the design space where the nonlinear analysis is so

sensitive. A possible solution could be to apply the displacement constraint as a specific

criterion in the trust region strategy in conjunction with the merit function shown in

Eqs. (3.21) and (3.22).

4.7 Convergence from Outside the Limit Load Feasible Design Space

After applying the limit load approximation technique described in Section 3.8.2,

a test was designed to determine how well the approximation technique dealt with a

design that fails the limit load test. The chosen design was the lower limit, or minimum

gage, for all design variables as shown in Eq. (3.10) in a 32-DV displacement constraint

problem. The allowable tip deflection, uzallow, was 0.70 m.

The first issue that arose was the trust region strategy described in Section 3.9

worked as desired. This meant that even though the linear response optimization at-

tempted to increase the size of the design variables to produce a more robust structure,

the trust region strategy negated these attempts due to a failure on the part of the new

solution to improve upon the mass of the structure. Since the design is at a minimum

possible mass of 398.94 kg when all design variables are minimum gage, the TR strategy

believes it has the best solution available, regardless of the optmimzers efforts to achieve

a feasible design.
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Figure 4.4: Three plots showing behavior of 32-DV nonlinear wing tip deflection at-
tempting to converge to utip = 1.15 m, mass, and value of the the tolerance, Equation
(3.12)

With the trust region strategy turned off, the optimizer was able to change the

design variables in a manner that increased the stiffness and mass of the design. However,

as stated previously, the convergence of this problem to a feasible design is still sensitive

to the chosen move limits and move reduction ratio defined in the problem. Move limits

of 0.5 and 1.5 applied to all design variables were too small and too large, respectively

when paried with a 70% move reduction. However, when a move limit of 1.0 is combined

with a 50% move reduction, the design shown in Table 4.10 is the result. This design

is significant in that fobj = 726.1 kg, and Psafe = 67 kN, a feasible design. It does not,

however, lie on the Pareto curve for the 32-DV displacement problem shown in Fig. 4.2.

The estimated value of fobj is 652 kg for a displacement constraint problem where uzallow

= 0.70 m. The other interesting characteristic is that the optimizer chose a path that

results in both wings tapering, instead of one going to minimum gage as is common
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Table 4.10: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.70
m. Limit load estimated using ratio method described in Section 3.8.2.

Element c h tskin tweb

(m) (m) (m) (m)
1 1.0263 0.1539 0.0050 0.0050
2 0.8759 0.1211 0.0050 0.0050
3 0.6653 0.0879 0.0050 0.0050
4 0.5000 0.0607 0.0050 0.0050
5 0.5005 0.0751 0.0050 0.0050
6 0.7495 0.1124 0.0050 0.0050
7 1.0512 0.1577 0.0050 0.0050
8 1.2630 0.1783 0.0050 0.0050

when starting from the initial design variable values shown in Table 3.1. It is possible

that more experimentation with move limits and move reduction ratio would produce an

optimized design that lies on the Pareto front while remaining feasible with respect to

the limit load and starting from an infeasible design. However, the larger issue lies with

the incompatibillity of the trust region with the minimum gage initial design. Either

a means of determining when to use the trust region needs to be defined, or all initial

design variables should be chosen such that the initial design has greater mass than the

anticipated final design.

50



V. Conclusions

5.1 Overview of Research Effort

A full nonlinear response optimization on the joined-wing design is presented. De-

sign variables relating to the cross section of a simple box beam were sized using

an SQP optimization routine. Geometrically exact beam theory is shown to be an effec-

tive tool in modeling the geometric nonlinearities exhibited by the joined-wing design.

Further discretization of the fore and aft wings to a total of 16 elements with 64 de-

sign variables did not significantly improve on the optimized design in the displacement

constraint problem. Considering this and the fact that the time required increased on

average four times, it is clear that the 8 element, 32 design variable model offers the best

compromise in time required and final optimized mass of the structure.

5.2 Conclusions

The use of equivalent static loads with GEBT are shown to be an effective solution

method while offering significant savings in computational effort required. There exist

unexplained sensitivities in the use of displacement based equivalent static loads that

occasionally permit the optimization routine to converge to a displacement constraint

in the nonlinear solution that is not the same as the applied constraint in the linear

approximation. It is believed that these sensitivities are due at least in part to the

move limit and move reduction allowed from iteration to iteration when a trust region

strategy is applied. The current research has only applied the trust region strategy to the

displacement constraint problem, so evaluation of the trust region effects do not apply

to stress constraint problems at this time.

The need for consideration of additional constraints is shown. In particular, the

limit load criterion and the requirement that the design remain feasible with respect to

the limit load is a key safety consideration. While a finite difference approach to sensitiv-

ity analysis is used, the determination of this constraint is problematic. The easiest and

computationally costliest approach is to recompute the load-deflection curve whenever a

change is made to the design variables. This method renders the use of equivalent static

loads ineffective due to the number of nonlinear calculations required to determine the

51



load-deflection curve for each iteration in the linear response optimization. An alternate

means of determining the limit load using a second order polynomial approximation

which updates the slope term during the linear FEM optimization was presented and

shown to be effective.

5.3 Future Work

Future work should focus on determining the how the move limit and move reduc-

tion sizes affect the solution so that more general optimization problems can be set up

with less interaction required on the part of the user. This will require a more detailed

analysis of the logic employed in the trust region strategy currently employed. It is also

planned that the trust ratio would be expanded to include stress constraint problems as

well as displacement constraints.

Also, working to implement the stress based equivalent static loads (SBESL) de-

scribed by Lee et al. [5] and making a comparison between SBESL and the results

presented in this research would be beneficial. While MSC has opted for the simpler

implementation shown here, it remains to be seen if there is an appreciable difference

in results when using one method or the other. The expectation at this time is that α

would reduce to unity when the optimizatino returns a final solution. If there is little to

no difference between SBESL and the method used in this research, it begs the question

of how important is the source data for the stress case as long as a stress ratio correction

is applied.

A scale model of an optimized design made of aluminum box tubes is planned for

laboratory experimentation to compare and contrast to the results obtained using the

method outlined in this research. Tip loads and joint loads are planned on a design that

locates the wing joint at less than 100% span of the forward wing.

Finally, incorporation of shape optimization of planform will allow a greater level

of optimization based on aerodynamic, structural, and sensor effectiveness sensitivities.

Consideration for this implementation must include the application of coordinate trans-

formation from a change in angles in both sweep and dihedral for both wings. With these

design variables included, a very complete and robust design analysis can be conducted
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on airfoil shapes and orientation which should show the path to the most efficient design

for the joined-wing Sensorcraft concept.
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Appendix A. Optimization Results for 4-DV Optimization with

Displacement Constraints

The following tables show the cross sectional dimensions of the final design obtained

for 4, 32, and 64-DV problems with varying displacement constraints applied.

Table A.1: Design variables by element for 4-DV GEBT-ESL design, P-limit estimation
used for limit load calculation.

uallow c h tskin tweb

(m) (m) (m) (m)
0.25 1.3368 0.2005 0.0050 0.0050
0.35 1.1954 0.1793 0.0050 0.0050
0.45 1.0010 0.1650 0.0050 0.0050
0.55 1.0299 0.1545 0.0050 0.0050
0.65 0.9753 0.1463 0.0050 0.0050
0.75 0.9311 0.1397 0.0050 0.0050
0.85 0.8945 0.1342 0.0050 0.0050
0.95 0.8634 0.1295 0.0050 0.0050
1.05 0.8367 0.1255 0.0050 0.0050
1.15 0.8135 0.1220 0.0050 0.0050
1.25 0.7931 0.1190 0.0050 0.0050
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Appendix B. Optimization Results for 32-DV Optimization with

Displacement Constraints

The following tables show the cross sectional dimensions of the final design obtained

for 4, 32, and 64-DV problems with varying displacement constraints applied.

Table B.1: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.25
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 1.3969 0.1777 0.0050 0.0050
2 1.3969 0.1069 0.0050 0.0050
3 1.3969 0.0719 0.0050 0.0050
4 1.3969 0.0719 0.0050 0.0050
5 1.3969 0.0719 0.0050 0.0050
6 1.3969 0.1063 0.0050 0.0050
7 1.3969 0.1759 0.0050 0.0050
8 1.4818 0.2218 0.0050 0.0050

Table B.2: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.35
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5775 0.0300 0.0050 0.0050
2 0.5775 0.0300 0.0050 0.0050
3 0.5775 0.0300 0.0050 0.0050
4 0.5775 0.0300 0.0050 0.0050
5 0.7161 0.1074 0.0050 0.0050
6 1.1824 0.1770 0.0050 0.0050
7 1.5100 0.2260 0.0050 0.0050
8 1.7775 0.2660 0.0050 0.0050
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Table B.3: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.45
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.6587 0.0985 0.0050 0.0050
6 1.0924 0.1639 0.0050 0.0050
7 1.3913 0.2087 0.0050 0.0050
8 1.6363 0.2449 0.0050 0.0050

Table B.4: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.55
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.6192 0.0922 0.0050 0.0050
6 1.0186 0.1525 0.0050 0.0050
7 1.2963 0.1942 0.0050 0.0050
8 1.5238 0.2274 0.0050 0.0050

Table B.5: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.65
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5939 0.0888 0.0050 0.0050
6 0.9630 0.1442 0.0050 0.0050
7 1.2206 0.1828 0.0050 0.0050
8 1.4313 0.2145 0.0050 0.0051

56



Table B.6: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.75
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5634 0.0845 0.0050 0.0050
6 0.9197 0.1380 0.0050 0.0050
7 1.1670 0.1750 0.0050 0.0050
8 1.3583 0.2037 0.0050 0.0050

Table B.7: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.85
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5440 0.0816 0.0050 0.0050
6 0.8815 0.1322 0.0050 0.0050
7 1.1174 0.1676 0.0050 0.0050
8 1.3011 0.1952 0.0050 0.0050

Table B.8: Design variables by element for 32-DV GEBT-ESL design, uallow = 0.95
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5355 0.0803 0.0050 0.0050
6 0.8484 0.1273 0.0050 0.0050
7 1.0696 0.1604 0.0050 0.0050
8 1.2549 0.1882 0.0050 0.0050
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Table B.9: Design variables by element for 32-DV GEBT-ESL design, uallow = 1.05
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5163 0.0774 0.0050 0.0050
6 0.8301 0.1245 0.0050 0.0050
7 1.0386 0.1558 0.0050 0.0050
8 1.2033 0.1805 0.0050 0.0050

Table B.10: Design variables by element for 32-DV GEBT-ESL design, uallow = 1.15
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0265 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5119 0.0762 0.0050 0.0050
6 0.8113 0.1217 0.0050 0.0050
7 1.0017 0.1500 0.0050 0.0050
8 1.1669 0.1731 0.0050 0.0050

Table B.11: Design variables by element for 32-DV GEBT-ESL design, uallow = 1.25
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.8196 0.1220 0.0050 0.0050
2 0.6969 0.0957 0.0050 0.0050
3 0.6969 0.0394 0.0050 0.0050
4 0.6969 0.0349 0.0050 0.0050
5 0.6969 0.0375 0.0050 0.0050
6 0.7245 0.1087 0.0050 0.0050
7 0.8531 0.1231 0.0050 0.0050
8 0.9362 0.1356 0.0050 0.0050
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Appendix C. Optimization Results for 64-DV Optimization with

Displacement Constraints

The following tables show the cross sectional dimensions of the final design obtained

for 64-DV problems with varying displacement constraints applied.

Table C.1: Design variables by element for 64-DV GEBT-ESL design, uallow = 0.25
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0288 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5000 0.0250 0.0050 0.0050
6 0.5000 0.0250 0.0050 0.0050
7 0.5000 0.0250 0.0050 0.0050
8 0.5000 0.0250 0.0050 0.0050
9 0.5902 0.0885 0.0050 0.0050
10 0.9638 0.1446 0.0050 0.0050
11 1.2166 0.1825 0.0050 0.0050
12 1.4304 0.2146 0.0050 0.0050
13 1.6155 0.2423 0.0050 0.0050
14 1.7868 0.2680 0.0050 0.0050
15 1.9419 0.2910 0.0050 0.0050
16 2.0895 0.3134 0.0050 0.0050
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Table C.2: Design variables by element for 64-DV GEBT-ESL design, uallow = 0.35
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5000 0.0250 0.0050 0.0050
6 0.5000 0.0250 0.0050 0.0050
7 0.5000 0.0250 0.0050 0.0050
8 0.5000 0.0250 0.0050 0.0050
9 0.5198 0.0780 0.0050 0.0050
10 0.8544 0.1282 0.0050 0.0050
11 1.0881 0.1632 0.0050 0.0050
12 1.2801 0.1920 0.0050 0.0050
13 1.4434 0.2165 0.0050 0.0050
14 1.5896 0.2384 0.0050 0.0050
15 1.7251 0.2588 0.0050 0.0050
16 1.8452 0.2768 0.0050 0.0050

Table C.3: Design variables by element for 64-DV GEBT-ESL design, uallow = 0.45
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5000 0.0250 0.0050 0.0050
6 0.5000 0.0250 0.0050 0.0050
7 0.5000 0.0250 0.0050 0.0050
8 0.5000 0.0250 0.0050 0.0050
9 0.5000 0.0750 0.0050 0.0050
10 0.7840 0.1176 0.0050 0.0050
11 0.9975 0.1496 0.0050 0.0050
12 1.1669 0.1750 0.0050 0.0050
13 1.3196 0.1979 0.0050 0.0050
14 1.4535 0.2180 0.0050 0.0050
15 1.5741 0.2361 0.0050 0.0050
16 1.6860 0.2529 0.0050 0.0050
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Table C.4: Design variables by element for 64-DV GEBT-ESL design, uallow = 0.55
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 1.6297 0.2442 0.0050 0.0050
2 1.5151 0.2273 0.0050 0.0050
3 1.3929 0.2089 0.0050 0.0050
4 1.2607 0.1891 0.0050 0.0050
5 1.1120 0.1668 0.0050 0.0050
6 0.9427 0.1411 0.0050 0.0050
7 0.7385 0.1096 0.0050 0.0050
8 0.5000 0.0486 0.0050 0.0050
9 0.5000 0.0250 0.0050 0.0050
10 0.5000 0.0250 0.0050 0.0050
11 0.5000 0.0250 0.0050 0.0050
12 0.5000 0.0250 0.0050 0.0050
13 0.5000 0.0250 0.0050 0.0050
14 0.5000 0.0250 0.0050 0.0050
15 0.5000 0.0250 0.0050 0.0050
16 0.5000 0.0250 0.0050 0.0050

Table C.5: Design variables by element for 64-DV GEBT-ESL design, uallow = 0.65
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5000 0.0250 0.0050 0.0050
6 0.5000 0.0250 0.0050 0.0050
7 0.5000 0.0250 0.0050 0.0050
8 0.5000 0.0250 0.0050 0.0050
9 0.5000 0.0597 0.0050 0.0050
10 0.7009 0.1046 0.0050 0.0050
11 0.8825 0.1324 0.0050 0.0050
12 1.0311 0.1547 0.0050 0.0050
13 1.1613 0.1742 0.0050 0.0050
14 1.2751 0.1912 0.0050 0.0050
15 1.3814 0.2065 0.0050 0.0050
16 1.4800 0.2205 0.0050 0.0050
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Table C.6: Design variables by element for 64-DV GEBT-ESL design, uallow = 0.75
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5000 0.0250 0.0050 0.0050
6 0.5000 0.0250 0.0050 0.0050
7 0.5000 0.0250 0.0050 0.0050
8 0.5000 0.0250 0.0050 0.0050
9 0.5000 0.0540 0.0050 0.0050
10 0.6756 0.1001 0.0050 0.0050
11 0.8425 0.1264 0.0050 0.0050
12 0.9842 0.1476 0.0050 0.0050
13 1.1056 0.1658 0.0050 0.0050
14 1.2123 0.1819 0.0050 0.0050
15 1.3162 0.1963 0.0050 0.0050
16 1.4012 0.2094 0.0050 0.0050

Table C.7: Design variables by element for 64-DV GEBT-ESL design, uallow = 0.85
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5001 0.0250 0.0050 0.0050
2 0.5001 0.0250 0.0050 0.0050
3 0.5001 0.0250 0.0050 0.0050
4 0.5001 0.0250 0.0050 0.0050
5 0.5001 0.0250 0.0050 0.0050
6 0.5001 0.0250 0.0050 0.0050
7 0.5000 0.0250 0.0050 0.0050
8 0.5001 0.0250 0.0050 0.0050
9 0.5001 0.0494 0.0050 0.0050
10 0.6511 0.0970 0.0050 0.0050
11 0.8134 0.1220 0.0050 0.0050
12 0.9428 0.1414 0.0050 0.0050
13 1.0627 0.1594 0.0050 0.0050
14 1.1627 0.1744 0.0050 0.0050
15 1.2533 0.1878 0.0050 0.0050
16 1.3425 0.1999 0.0050 0.0050
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Table C.8: Design variables by element for 64-DV GEBT-ESL design, uallow = 0.95
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5000 0.0250 0.0050 0.0050
6 0.5000 0.0250 0.0050 0.0050
7 0.5000 0.0250 0.0050 0.0050
8 0.5000 0.0250 0.0050 0.0050
9 0.5000 0.0461 0.0050 0.0050
10 0.6349 0.0941 0.0050 0.0050
11 0.7871 0.1179 0.0050 0.0050
12 0.9142 0.1371 0.0050 0.0050
13 1.0235 0.1535 0.0050 0.0050
14 1.1191 0.1679 0.0050 0.0050
15 1.2077 0.1806 0.0050 0.0050
16 1.2923 0.1921 0.0050 0.0050

Table C.9: Design variables by element for 64-DV GEBT-ESL design, uallow = 1.05
m. No move limits or limit load calculation.

Element c h tskin tweb

(m) (m) (m) (m)
1 0.5000 0.0250 0.0050 0.0050
2 0.5000 0.0250 0.0050 0.0050
3 0.5000 0.0250 0.0050 0.0050
4 0.5000 0.0250 0.0050 0.0050
5 0.5000 0.0250 0.0050 0.0050
6 0.5000 0.0250 0.0050 0.0050
7 0.5000 0.0250 0.0050 0.0050
8 0.5000 0.0250 0.0050 0.0050
9 0.5000 0.0424 0.0050 0.0050
10 0.6225 0.0934 0.0050 0.0050
11 0.7738 0.1161 0.0050 0.0050
12 0.8820 0.1323 0.0050 0.0050
13 0.9966 0.1495 0.0050 0.0050
14 1.0873 0.1631 0.0050 0.0050
15 1.1657 0.1749 0.0050 0.0050
16 1.2363 0.1854 0.0050 0.0050
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Appendix D. Third Possible Limit Load Estimation Technique

The discussion on limit loads and ways to estimate them in Sections 3.7 and 3.8.2

covered approaches used in this research. A potential third option exists which

is based on the sensitivity of the limit loads with respect to the design variables. This is

shown as

P̃lim = Plim +∇P T
lim∆X (D.1)

where P̃lim is the approximate limit load, Plim is the limit load about which the sensitiv-

ities exist, ∇P T
lim is the vector of partial derivatives of Plim with respect to each design

variable, and ∆X is the vector of change in the value of the design variables. Analytic

sensitivities of the limit load could be easily used with the other information already

available to provide a quick estimate of the limit load. Calculation of analytic sensitivi-

ties should be included in future work as a tool to further refine the optimization of the

joined-wing beam model used in this research.
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