
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-1-2019

Autonomous and Resilient Management of All-Source Sensors for Autonomous and Resilient Management of All-Source Sensors for

Navigation Assurance Navigation Assurance

Juan D. Jurado

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Signal Processing Commons

Recommended Citation Recommended Citation
Jurado, Juan D., "Autonomous and Resilient Management of All-Source Sensors for Navigation
Assurance" (2019). Theses and Dissertations. 2361.
https://scholar.afit.edu/etd/2361

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F2361&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2361?utm_source=scholar.afit.edu%2Fetd%2F2361&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AUTONOMOUS AND RESILIENT MANAGEMENT OF ALL-SOURCE

SENSORS FOR NAVIGATION ASSURANCE

DISSERTATION

Juan D. Jurado, Major, USAF

AFIT-ENG-DS-19-S-006

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this dissertation are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-DS-19-S-006

AUTONOMOUS AND RESILIENT MANAGEMENT OF ALL-SOURCE SENSORS

FOR NAVIGATION ASSURANCE

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Electrical Engineering

Juan D. Jurado, B.S.E.E., M.S.E.E, M.S.FTE

Major, USAF

September 2019

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-DS-19-S-006

AUTONOMOUS AND RESILIENT MANAGEMENT OF ALL-SOURCE SENSORS

FOR NAVIGATION ASSURANCE

Juan D. Jurado, B.S.E.E., M.S.E.E, M.S.FTE
Major, USAF

Approved:

Robert C. Leishman, Ph.D. (Chairman)

John F. Raquet, Ph.D. (Member)

Christine M. Schubert Kabban, Ph.D. (Member)

Donald T. Venable, Ph.D. (Member)

Date

Date

Date

Date

Accepted:

Adedeji B. Badiru
Dean, Graduate School of Engineering and Management

Date

3 July 2019

3 July 2019

3 July 2019

3 July 2019

9 July 2019

AFIT-ENG-DS-19-S-006
Abstract

All-source navigation has become increasingly relevant over the past decade with the

development of viable alternative sensor technologies. However, as the number and type

of sensors informing a system increases, so does the probability of corrupting the system

with sensor modeling errors, signal interference, and undetected faults. Though the latter of

these has been extensively researched, the majority of existing approaches have constrained

faults to biases, and designed algorithms centered around the assumption of simultaneously

redundant, synchronous sensors with valid measurement models, none of which are

guaranteed for all-source systems. This research aims to provide all-source multi-sensor

resiliency, assurance, and integrity through an autonomous sensor management framework.

The proposed framework dynamically places each sensor in an all-source system into one

of four modes: monitoring, validation, calibration, and remodeling. Each mode contains

specific and novel realtime processes that affect how a navigation system responds to sensor

measurements. The monitoring mode is driven by a novel sensor-agnostic fault detection,

exclusion, and integrity monitoring method that minimizes the assumptions on the fault

type, all-source sensor composition, and the number of faulty sensors. The validation

mode provides a novel method for the online validation of sensors which have questionable

sensor models, in a fault-agnostic and sensor-agnostic manner, and without compromising

the ongoing navigation solution in the process. The remaining two modes, calibration and

remodeling, generalize and integrate online calibration and model identification processes

to provide autonomous and dynamic estimation of candidate model functions and their

parameters, which when paired with the monitoring and validation processes, directly

enable resilient, self-correcting, plug-and-play open architecture navigation systems.

iv

Table of Contents

Page

Abstract . iv

Table of Contents . v

List of Figures . ix

List of Tables . xi

List of Acronyms . xii

I. Introduction . 1

1.1 Summary of Related Research . 2
1.1.1 Sensor Management Frameworks 2
1.1.2 Fault Detection, Exclusion, and Integrity Monitoring 2
1.1.3 Sensor Initialization and Validation 3
1.1.4 Online Sensor Calibration . 3
1.1.5 Online Model Identification . 3

1.2 Research Contributions . 4
1.3 Outline . 6

II. Background . 7

2.1 Notational Conventions . 7
2.2 Estimation and Detection Fundamentals 9

2.2.1 Linear Regression . 10
2.2.2 Non-linear Regression . 11
2.2.3 Ridge Regression . 13
2.2.4 Weighted Least Squares . 14
2.2.5 Smoothing Splines . 15
2.2.6 Model Selection . 16
2.2.7 Maximum Likelihood Estimation 18
2.2.8 Binary Detection . 19

2.3 Residuals and Their Properties . 22
2.3.1 Mean . 22
2.3.2 Variance . 23
2.3.3 Nonindependence . 23

2.4 The Navigation Problem . 23

v

Page

2.4.1 Relation to Model Estimation . 23
2.4.2 Reference Frames . 24
2.4.3 Inertial Navigation . 26
2.4.4 All-Source Navigation . 29

2.5 Recursive Model Estimation . 30
2.5.1 Kalman Filter . 30
2.5.2 Extended Kalman Filter . 32

III. Autonomous and Resilient Management of All-source Sensors for Navigation . 35

3.1 Introduction . 35
3.2 Related Work . 38
3.3 An Autonomous and Resilient Sensor Manager 41

3.3.1 Framework Implementation . 42
3.3.1.1 Sensor Initialization . 43
3.3.1.2 Monitoring Mode . 44
3.3.1.3 Validation Mode . 46
3.3.1.4 Calibration Mode . 47
3.3.1.5 Remodeling Mode . 49
3.3.1.6 Implementation Summary 50

3.3.2 Example Scenarios . 51
3.3.2.1 Example 1: Temporary sensor anomaly 52
3.3.2.2 Example 2: Multiple sequential faults 57

3.4 Chapter Summary . 62

IV. Sensor-Agnostic All-source Residual Monitoring 63

4.1 Introduction . 63
4.2 Background . 64

4.2.1 Basic Threshold Methods . 64
4.2.2 Least Squares Methods . 65
4.2.3 Filtered Methods . 66
4.2.4 Contributions . 67

4.3 Methodology . 68
4.3.1 Multi-Sensor Multi-Filter Notation 68
4.3.2 Fault Detection Test Statistic . 69
4.3.3 Fault Identification Process . 71

4.3.3.1 Single Serial Faults . 71
4.3.3.2 Simultaneous Faults . 74

4.3.4 Integrity Assumptions and Guarantees 77
4.4 Simulation Results . 84

4.4.1 RAIM Comparisons . 84

vi

Page

4.4.2 All-source Performance . 86
4.5 Chapter Summary . 88

V. Real-time Validation for Plug-and-play Sensors 89

5.1 Introduction . 89
5.2 Background . 90
5.3 Methodology . 92
5.4 Simulation Results . 97
5.5 Chapter Summary . 104

VI. A Complete Online Algorithm for Air Data System Calibration 106

6.1 Introduction . 106
6.2 Background . 107

6.2.1 Altitude Methods . 108
6.2.2 Airspeed Methods . 109
6.2.3 External Reference Methods . 113
6.2.4 Contributions . 114
6.2.5 Outline . 114

6.3 Methodology . 115
6.3.1 Flight Technique . 115
6.3.2 Required Data . 116
6.3.3 AoA and AoS Corrections . 117
6.3.4 Ambient Temperature Optimization 118
6.3.5 BSEKF Implementation . 119
6.3.6 Akaike Spline Model . 122

6.4 Results . 123
6.5 Chapter Summary and Future Work . 127

VII. A Regression-Based Methodology to Improve Estimation of Inertial Sensor
Errors Using Allan Variance Data . 137

7.1 Introduction . 137
7.2 Allan Variance . 141

7.2.1 Slope Method . 142
7.2.1.1 Quantization Error . 143
7.2.1.2 Angle/Velocity Random Walk 143
7.2.1.3 Bias Instability . 144
7.2.1.4 Acceleration/Angular Rate Random Walk 145
7.2.1.5 Rate Ramp . 145

7.3 An autonomous method for estimating noise strength 150

vii

Page

7.4 Simulation . 152
7.5 Application to STIM-300 IMU Analysis 155
7.6 Chapter Summary and Future Work . 165

VIII. Summary and Conclusions . 166

Bibliography . 169

viii

List of Figures

Figure Page

2.1 Example of linear smoothing spline. 17

2.2 Example binary detection LRT. 21

2.3 Illustration of navigation reference frames. 27

2.4 Illustration of body and wind reference frames. 28

3.1 Proposed state transition diagram for ARMAS framework 45

3.2 Trajectory comparison between Aircraft 1 and Aircraft 2, Example 1. 54

3.3 ARMAS mode history for Sensor B, Example 1. 54

3.4 Trajectory comparison between Aircraft 1 and Aircraft 2, Example 2. 60

3.5 ARMAS mode history for Sensor B, Example 2. 60

3.6 ARMAS mode history for Sensor A, Example 2. 61

4.1 Illustration of the multi-sensor multi-filter test statistic matrix, T. 75

4.2 Example SAARM HPL: No fault present. 80

4.3 Example SAARM HPL: Undetected fault. 81

4.4 Example SAARM HPL: Unidentified culprit. 82

4.5 Example SAARM HPL: Culprit identified. 83

5.1 Example 2D trajectory comparison, 2D velocity sensor, bias = 20 [m/s] 101

5.2 Example residual d2 comparison, 2D velocity sensor, bias = 20 [m/s] 102

5.3 Mean position RSS error comparison, all fault types 103

5.4 Fault detection ROC curve comparison, bias = 30 [m/s] 105

6.1 Illustration of the Tower Fly-by. 110

6.2 Illustration of the wind triangle. 110

6.3 Data processing flow for JMOSS algorithm. 124

6.4 Illustration of JMOSS BSEKF output on forward pass. 129

ix

Figure Page

6.5 Illustration of JMOSS BSEKF output on backward pass. 130

6.6 JMOSS results for a single test point. 131

6.7 JMOSS results when combining all test points. 132

6.8 Results from Level Turn test points. 133

6.9 Results from Cloverleaf test points. 134

6.10 Results from Tower Fly-by test points. 135

6.11 Results comparison across all methods. 136

7.1 Illustration of Allan variance slope method for quantization noise. 147

7.2 Illustration of Allan variance slope method for common noise processes. 148

7.3 Monte-Carlo results comparison, slope and ARMAV. 157

7.4 Illustration of ARMAV model on accelerometer measurements. 162

7.5 Illustration of ARMAV model on gyroscope measurements. 163

x

List of Tables

Table Page

3.1 List of desired resilient sensor management objectives. 39

3.2 ARMAS example implementation summary. 55

3.3 Key events and RSS position error comparison, Example 1. 56

3.4 Key events and RSS position error comparison, Example 2. 59

4.1 Sensor-filter configuration for layer J1, I = 5 sensors 77

4.2 Sensor-filter configuration for layer J2, I = 5 sensors 78

4.3 Fault detection and identification comparison, simulated pseudoranges 86

4.4 Sensor configuration for all-source scenarios 87

4.5 Fault detection and identification performance, all-source simulations 88

5.1 Sensor validation fault detection comparison, 2D velocity sensor 101

6.1 Summary of flight conditions for JMOSS experiments. 116

6.2 Summary of flight conditions for comparison methods. 116

6.3 Required data parameters for JMOSS algorithm. 117

6.4 Metric comparison for ADS calibration algorithms. 127

7.1 Summary of Allan deviation slopes for common IMU noise processes. 149

7.2 Summary of true noise coefficients for Monte-Carlo simulation 158

7.3 Mean percent relative bias comparison, slope vs. ARMAV. 159

7.4 Actual estimation bias comparison, slope vs. ARMAV, no quantization. 160

7.5 Actual estimation bias comparisons, slope vs. ARMAV, no rate ramp. 161

7.6 Allan variance analysis results for STIM-300 IMU. 164

xi

List of Acronyms

Acronym Definition

ACF Autocorrelation Function

ARMAS Autonomous and Resilient Management of All-source Sensors

ARMAV Autonomous Regression Method for Allan Variance

ADC Air Data Computer

ADS Air Data System

AIC Akaike Information Criterion

AoA Angle of Attack

AoS Angle of Sideslip

ASM Akaike Spline Model

ANT Autonomy and Navigation Technology

BSEKF Backwards Smoothing Extended Kalman Filter

DCM Direction Cosine Matrix

DGPS Differential Global Positioning System

EKF Extended Kalman Filter

FOGM First Order Gauss-Markov

FTLF F-Test for Lack of Fit

GPS Global Positioning System

HPL Horizontal Protection Level

HIL Horizontal Integrity Limit

IAS Indicated Airspeed

IEEE Institute of Electrical and Electronics Engineers

IID Independent Identically Distributed

IMU Inertial Measurement Unit

xii

Acronym Definition

INS Inertial Navigation System

JMOSS Jurado-McGehee Online Self-Survey

KF Kalman Filter

LRT Likelihood Ratio Test

MLE Maximum Likelihood Estimation

MMAE Multiple Model Adaptive Estimation

MMSE Minimum Mean Squared Error

MSE Mean Squared Error

MVUE Minimum Variance Unbiased Estimator

OLS Ordinary Least Squares

PD Probability of Detection

PDF Probability Distribution Function

PF Probability of False Alarm

PI Prediction Interval

PSD Power Spectral Density

APNT Assured Position Navigation and Timing

RAIM Receiver Autonomous Integrity Monitoring

RSS Root Sum Squared

RSR Resilient Sensor Recovery

ROC Receiver Operating Characteristic

RVPS Real-time Validation for Plug-and-play Sensors

SAARM Sensor-Agnostic All-source Residual Monitoring

SLAM Simultaneous Localization and Mapping

SPE Static Position Error

SSE Sum of Squared Errors

xiii

Acronym Definition

TAS True Airspeed

TFB Tower Fly-by

TSE Taylor Series Expansion

UKF Unscented Kalman Filter

VINS Visual-Inertial System

VIF Variation Inflation Factor

WGN White Gaussian Noise

xiv

AUTONOMOUS AND RESILIENT MANAGEMENT OF ALL-SOURCE SENSORS

FOR NAVIGATION ASSURANCE

I. Introduction

Over the past two decades, the United States Air Force has focused on complementing

its reliance on the Global Positioning System (GPS) for navigation and timing solutions

through the use of alternative navigation sources and sensors. Additionally, senior leaders

within the Air Force have recently stated one of the top priorities for the service “to cost-

effectively modernize to increase the lethality of the force and drive innovation to secure

our future.” [104]. With this in mind, the Air Force Institute of Technology’s Autonomy

and Navigation Technology (ANT) Center has made its vision to provide “defense-focused

autonomy and navigation, anywhere, anytime, using anything.”

Unlike the well-understood, synchronous, and redundant nature of the GPS multi-

sensor constellation, all-source navigation systems tend to be heterogeneous in composi-

tion, with each sensor proven only within a well-controlled environment, and not guaran-

teed to be synchronous or redundant. Additionally, as the number of sensors and measure-

ment domains that are exploited for navigation purposes increases, so does the probability

of corrupting the navigation solution with errors in sensor modeling, unexpected signal in-

terference, and or undetected faults. Therefore, in order to fulfill this vision, alternative

(non-GPS) all-source navigation technology must be brought up to a level of operational

readiness that allows its use in a manner that is resilient, and thus capable of not only de-

tecting when any of the above failure modes are present, but also of assuring navigation

integrity in their presence, and self-correcting and recovering from such failures, all in an

autonomous, real-time, plug-and-play architecture.

1

This dissertation details a wide-ranging research effort aimed at solving the “all-source

navigation assurance problem,” through the development of an online autonomous and

resilient sensor management framework. Each component of the framework in focused

on solving a portion of the overall problem set, which includes: all-source fault detection

and exclusion, integrity monitoring, sensor initialization and validation, online sensor

calibration, and online model identification. Existing and related research in each of

the problem subsets is briefly summarized below and further expounded in each of its

corresponding chapters of this dissertation.

1.1 Summary of Related Research

1.1.1 Sensor Management Frameworks.

As discussed in Chapter 3, sensor management in navigation has been mostly focused

on managing sensors from a resources perspective by selecting optimal sensor subsets

based on available computational load. Though also important for real-time operational

all-source systems, computational load management is not the focus of this research, as it

does not address any of the problem subsets identified above. Other research efforts in the

area of Visual-Inertial System (VINS) navigation have proposed the use of online statistical

tests to trigger camera calibration routines. This line of research addresses a portion of the

fault detection and sensor calibration problem subsets, but only focuses on a system with a

single sensor, and the statistical tests used are typically custom-tailored for camera systems.

1.1.2 Fault Detection, Exclusion, and Integrity Monitoring.

As shown in Chapter 4, multi-sensor fault detection and exclusion, and integrity

monitoring have been extensively researched in the area of GPS navigation. Typically,

each satellite in the GPS constellation is regarded as a different (albeit identical in nature

and synchronous) sensor in the multi-sensor system, and the “fault” is usually defined as

an unmodeled bias that is assumed to only affect one of the sensors (satellites) at any given

time, which allows for rigorous computations of system integrity using the probability of a

2

missed (bias) detection. Though adequate for homogeneous and synchronously redundant

sensors like GPS, these techniques are inadequate for our research, since the assumptions

and conditions necessary for fault detection and system integrity cannot be guaranteed in

an all-source environment.

1.1.3 Sensor Initialization and Validation.

Online sensor initialization and validation constitutes a key enabling technology for

self-correcting and plug-and-play navigation systems. As discussed in Chapter 5, though

the problem is statistically similar to multi-sensor fault detection, the primary objective has

traditionally been to provide navigation solution integrity with the assumption that each

sensor in the system is equally likely to experience a fault, and that each sensor is properly

modeled at the start of the navigation process. These assumptions are invalid for all-source

sensors with questionable sensor models that are initialized “on-the-fly”, or sensors that

have been previously taken offline and are to be re-initialized after experiencing a fault.

1.1.4 Online Sensor Calibration.

A common technique for improving the resiliency of a particular all-source sensor

technology is to provide a means for the online calibration of specific sensor model

parameters (e.g., lever arms, rotation matrices, scale factors, etc.). As discussed in

Chapter 3, many online calibration methods exist across a variety of sensor technologies.

One research area with significant recent advances is online calibration of a VINS.

However, as mature as these point-examples may be, they still only tend to focus on a

particular sensor, and often do not address the tasks of detecting the need for calibration or

independently evaluating the effectiveness of the calibration results.

1.1.5 Online Model Identification.

As described in Chapter 3, another class of existing methods for improving resiliency

is to provide a means for the online alteration the sensor model functional form to account

for missing parameters or changing environmental conditions (e.g., time-changing biases,

3

stochastic clock errors, temperature effects, etc.). This line of research is typically referred

to as multiple-model estimation, or model identification. Current research in this area tends

to be divided between continuous estimation of sensor and process noise covariances and

model selection from a finite set of competing models. However, most techniques tend

to focus on permanent failure modes that require the model identification process to run

continuously. Similar to online calibration, these techniques also tend to lack independent

validation of model identification results.

1.2 Research Contributions

Having defined the overall all-source resiliency problem set, and the gaps in each

of the related problem subsets, we now define the research contributions provided in this

dissertation. In general, this research aims to provide all-source multi-sensor resiliency,

assurance, and integrity through an autonomous sensor management framework. The

proposed framework dynamically places each sensor in an all-source system into one of

four modes of operation: monitoring, validation, calibration, and remodeling. Each mode

contains specific and novel realtime processes that affect how a navigation system responds

to sensor measurements. The monitoring mode is driven by a novel sensor-agnostic fault

detection, exclusion, and integrity monitoring method that minimizes the assumptions on

the fault type, all-source sensor composition, and the number of faulty sensors. The

validation mode provides a novel method for the online validation of sensors which

have questionable sensor models, in a fault-agnostic and sensor-agnostic manner, and

without compromising the ongoing navigation solution in the process. The remaining two

modes (calibration and remodeling) generalize and integrate online calibration and model

identification processes to provide autonomous and dynamic estimation of candidate model

functions and their parameters. When paired with the monitoring and validation methods,

these processes directly enable resilient, self-correcting, plug-and-play open architecture

navigation systems. In addition to the overall framework and the novel methods enabling

4

the monitoring and validation modes, this research also contributes two novel online sensor

calibration methods for Pitot-static, and inertial measurement sensors, respectively. Both

of these calibration methods can be regarded as complementary to the overall research

thrust by contributing to the list of available sensors supported in the calibration mode of

the framework. The specific research contributions claimed in this dissertation can then be

tracked to each problem subset and described as:

(1) A novel navigation assurance framework that provides:

(i) Twelve coherently interlaced resilient sensor management functions,

(ii) An object-oriented integrity interface for dynamic filter management, and

(iii) An open system architecture enabling self-correcting navigation systems.

(2) A novel sensor-agnostic residual monitoring method that provides:

(i) Generalized all-source multiple-fault detection and exclusion,

(ii) Asynchronous and cross-domain detection redundancy, and

(iii) A robust measure of system integrity without constraining the fault type.

(3) A novel all-source plug-and-play sensor validation method that enables:

(i) Initialization of offline sensors without corrupting the navigation solution,

(ii) Improved sensor model fault detection over standard residual monitoring, and

(iii) Protection of system integrity during validation using only a single filter.

(4) A novel online and complete Air Data System calibration method that:

(i) Calibrates four key speed-dependent parameters in a single experiment,

(ii) Eliminates the need for costly external calibration reference sources,

(iii) Does not require the need to sustain transonic or supersonic speeds, and

(iv) Provides a novel smoothing spline model suitable for transonic characterization.

(5) A novel autonomous, regression-based method for Allan variance analysis that:

(i) Meets or exceeds the standard analysis method for usual data lengths,

(ii) Outperforms the standard analysis method for reduced data lengths, and

(iii) Eliminates the need for human input across varying sensor types.

5

1.3 Outline

The remainder of this dissertation is divided into seven additional chapters. Chapter 2

contains the mathematical background and notation used throughout the dissertation as well

as a general summary of statistical modeling, model diagnostics, and remedial measures

and the methods used for estimating navigation solutions. Given the breadth and depth of

topics covered across the aforementioned research contributions, each chapter in Chapters 3

through 7 contains specific background, methodology, results, and conclusions for the

subset of topics covered therein. Chapter 3 develops the general framework needed to

provide multi-sensor resiliency, assurance, and integrity in an all-source environment.

Chapter 4 focuses on all-source fault detection and exclusion and integrity monitoring,

which enable the monitoring objective of the overall framework. Meanwhile, Chapter 5

discusses the developments in real-time sensor initialization and validation, which support

the framework’s validation objective. Chapters 6 and 7 provide the methodology, results,

and conclusions for two novel Pitot-static, and inertial sensor calibration algorithms,

respectively, which complement the online calibration objective of the overall framework.

Finally, Chapter 8 summarizes the entire research effort, major findings and research

contributions, and sets the vision for future work in the area of all-source resilient

navigation.

6

II. Background

While subsequent chapters in this dissertation contain specific research background

topics needed to understand their contributions, this chapter offers the foundational

background needed to understand the concepts of estimation, regression, and detection

and how they apply to navigation. Section 2.1 outlines the general notational conventions

used throughout this dissertation. Section 2.2 summarizes estimation and detection

fundamentals. Section 2.3 describes the expected properties of residual error terms and how

they can be used to analyze model performance. Finally, Section 2.4 frames the navigation

problem in the context of model regression, while Section 2.5 summarizes how recursive

estimation techniques are used to solve the navigation problem.

2.1 Notational Conventions

Scalars: Scalars are represented by either upper or lowercase characters in italics, e.g., a

or A.

Vectors: Vector quantities are represented by lowercase characters in bold, e.g., a. Unless

specifically stated otherwise, all vectors should be interpreted as column vectors.

Vector Components: The scalar components of a vector are represented with subscripts

indicating their entry, e.g., the kth entry in the vector a is denoted ak.

Vector Subscripts: Vectors annotated with subscripts (e.g., xk) indicate distinct versions

of the vector. In the context of recursive estimation, such as the Kalman Filter (KF)

algorithm, it indicates a discrete time sample of its argument.

Time Indices: When subscript notation such as xk is impractical, a discrete time index

such as x(tk) may be also be used to indicate a discrete time sample of its preceding

vector.

7

Estimated Variables: Variables that represent an estimate of a particular quantity are

represented with the circumflex accent, e.g., â.

A Priori and A Posteriori Estimates: When describing the operation of a KF algorithm,

it is necessary to distinguish between estimates computed before (a priori) or after (a

posteriori) a measurement update. In such instances, a “minus” character superscript

is added to the variable for a priori estimates while a “plus” character superscript is

added to a posteriori estimates, e.g., â−k or â+
k and â(t−k) or â(t+

k).

Matrices: Matrices are represented by uppercase characters in bold, e.g., A or Ψ.

Transpose: The superscript (·)T denotes the transpose operator.

Identity and Zero: The vectors 0, 1 contain all zeros and all ones, respectively.

Additionally, the matrix I is the identity matrix. When it is not clear from the context,

they will be subscripted with their dimensionality.

Reference Frames: If a vector is expressed in a specific reference frame, a superscript

letter is used to designate the reference frame, e.g., pa is a vector in the a-frame.

Multi-Sensor Parameters In the context of multi-sensor and multi-filter navigation,

parameters obtained from a particular sensor or filter source are denoted with a

bracketed superscript. For example, the measurement vector z[i] is obtained from

Sensor i, while the estimated measurement vector ẑ[j] is obtained from Filter j.

Direction Cosine Matrices: Direction Cosine Matrices (DCMs) representing a rotation

from frame a to frame b are denoted by Cb
a.

Natural Logarithm: The operator log(·) indicates the natural logarithm unless otherwise

noted.

8

Statistical Notation: A statistical expectation is denoted E [·]. The statistical distribution

of a random variable is denoted via ∼. For example, if a random vector a at time

k follows the multivariate normal distribution with mean vector µk and covariance

matrix Σk, it is denoted ak ∼ N (µk,Σk).

2.2 Estimation and Detection Fundamentals

Model estimation refers to determining the statistical relationship between a set of

predictor variables and a response variable through a number of estimated coefficients

or model parameters. In classical estimation, the values of a reasonable set of predictor

variables are recorded along with the corresponding response variable values in a properly

designed experiment. Then, the values of the coefficients relating predictor variables to

the response variable are determined using any number of estimation techniques. The

type of estimation technique varies, depending on the relationship between predictor

variables, unknown coefficients, and response variables. In general, an attempt is always

made to utilize an optimal estimator, such as a Minimum Variance Unbiased Estimator

(MVUE), which guarantees unbiased coefficient estimates with the lowest variance

possible. However, depending on the conditions of the experiment or the relationship

among the predictor variables, one may choose to accept biased coefficient estimates in

order to further minimize variance as done in the ridge regression technique [68] discussed

later in this chapter. Classical model estimation forms the basis for the more applicable

online model estimation techniques summarized in later sections. Under classical model

estimation, the coefficient estimation technique varies greatly depending on the relationship

between the predictor variables and the unknown coefficients, leading to linear and non-

linear regression techniques.

9

2.2.1 Linear Regression.

In linear regression, the relationship between observations of a response variable and

the corresponding values of their predictor variables is given by

y = Xβ + ε, (2.1)

where y is a N × 1 vector containing the response variable observations, X is a N × M

matrix containing N observations of each of the M predictor variables, β is a M × 1 vector

containing the unknown model coefficients to be estimated, and ε is a N × 1 vector of

normal Independent Identically Distributed (IID) error terms with

ε ∼ N
(
0, σ2I

)
. (2.2)

The optimal (MVUE) estimator for this type of problem is referred to as Ordinary

Least Squares (OLS) as proven in the Gauss-Markov Theorem [68]. Based on OLS, the

optimal estimate of β is given by the least-squares projection of the vector Xβ onto the

subspace containing y and computed using the normal equations

XTy = XTXβ (2.3)

=⇒ β̂ =
(
XTX

)−1
XTy. (2.4)

The estimated model coefficients then yield the estimated model response using

ŷ = Xβ̂ (2.5)

= X
(
XTX

)−1
XTy (2.6)

= Hy, (2.7)

where the matrix H, referred to as the “hat” matrix, obtained by substituting (2.4) into (2.5),

plays a significant role in the model diagnostic techniques. The resulting residual terms are

10

given by

e = y − ŷ (2.8)

= y −Hy (2.9)

= (I −H) y. (2.10)

Finally, the estimated covariance matrix of the residual terms is given by

P =
eTe

N − M
(I −H) (2.11)

= s2 (I −H) , (2.12)

where the quantity eTe is referred to as the Sum of Squared Errors (SSE), s2 is referred to

as Mean Squared Error (MSE) and

E
[
s2
]

= σ2. (2.13)

2.2.2 Non-linear Regression.

Often, the relationship between predictor variables and model coefficients cannot

be described by the linear operation Xβ. In this case, we turn to nonlinear regression

techniques [8]. The nonlinear regression model is given by

y = f[X,β] + ε, (2.14)

where y is a N×1 vector containing the response variable observations, f is a N×1 nonlinear

function of predictor variables and model coefficients, X is a N × M matrix containing

N observations of each of the M predictor variables, β is a P × 1 vector containing the

unknown model coefficients to be estimated, and ε is a N × 1 vector of IID error terms with

the same properties as described in (2.2). It is important to note that in the nonlinear case,

the number of predictor variables (M) and the number of model coefficients (P) does not

have to match as it did in the linear case. In this case, the optimal estimator is still given by

least squares, but additional linear approximations must be applied to the problem in order

11

to find a solution. Using the Gauss-Newton method [8] as one of many available methods,

we begin with an initial guess of the model coefficients β̂0 and use the first-order Taylor

Series Expansion (TSE) of f in order to iteratively improve the guess until convergence.

The first-order TSE of f about β0 is given by

f[X,β] ≈ f[X, β̂0] +
∂f[X,β]
∂β

∣∣∣∣∣
β̂0

(
β − β̂0

)
(2.15)

=⇒ η(β) = η(β̂0) + V0δ0, (2.16)

where η(β) is the model response given X and β, the matrix V0 represents the Jacobian

matrix of f with respect to the variables β evaluated at β̂0, and the vector δ0 is the difference

between the unknown true parameter values β and the current guess β̂0. Next the model

residuals given the current guess are given by

e(θ) = y − η(θ) ≈ y −
[
η(β̂0) + V0δ0

]
(2.17)

=
[
y − η(β̂0)

]
− V0δ0 (2.18)

= e0 − V0δ0 (2.19)

=⇒ e0 = V0δ0. (2.20)

Minimizing the approximate residual sum of squares ‖e0 − V0δ0‖
2 is equivalent to solving

the least squares system given by (2.20), which yields the Gauss Increment for the initial

guess, δ0, using

VT
0 e0 = VT

0 V0δ0 (2.21)

=⇒ (Q1R1)T e0 = (Q1R1)T Q1R1δ0 (2.22)

=⇒ RT
1 QT

1 e0 = RT
1 R1δ0 (2.23)

=⇒ QT
1 e0 = R1δ0 (2.24)

=⇒ δ0 =
(
RT

1 R1

)−1
RT

1 QT
1 e0 (2.25)

=
(
RT

1 R1

)−1
VT

0 e0, (2.26)

12

where V0 = [Q1Q2][R1R2]T is the QR decomposition of V0 utilized to take advantage of

the sparseness of V0 when inverting it. Next, the initial guess, β̂0, is updated using

β̂1 = β̂0 + δ0, (2.27)

which allows for the computation of a new Jacobian matrix, V1, new estimated residuals,

e1, and a new Gauss Increment, δ1. The process is then repeated until

|δk+1 − δk| < γ, (2.28)

where γ is a predetermined convergence threshold appropriate for the problem. Given

the invertibility of R is highly dependent on its condition, and the fact that R may be

ill-conditioned if the initial guess, β̂0, is significantly far from its optimal value, the

”Levenberg-Marquardt” compromise [8][75] calls for the addition of a small bias prior

to inverting R1 using

δk =
(
RT

1 R1 + λI
)−1

VT
k ek, (2.29)

where λ is a small conditioning factor appropriate for the problem that stabilizes the

algorithm in a similar fashion to the ridge regression technique [44], which will be

discussed in the next section.

Once convergence has been achieved, the final model coefficients, β f can be used to

produce the final residual vector e f , leading to similar computations of MSE and covariance

matrix, P as shown in (2.11) by letting M = P. For further information on the Gauss-

Newton and other nonlinear regression and optimization techniques (e.g., Newton-Rapson),

the reader is directed to the works of Arora [5] and Bates [8].

2.2.3 Ridge Regression.

Ridge regression refers to a class of biased estimators, proposed to solve the

problem of multicollinearity, or dependence among predictor variables (i.e., columns in

X). Multicollinearity does not affect the reliability of the fitted model as a whole, but does

13

affect the inferences that may be drawn upon individual model coefficients or predictor

variables. Since this problem was encountered in the research contained in Chapter 7,

its mitigating procedure (ridge regression) is briefly summarized. Although not directly

categorized as a residual-based model diagnostic, multicollinearity can be detected via

the Variance Inflation Factor diagnostic test [68]. The ridge regression technique [44]

introduces a small biasing constant, λ, to the normal equations such that

XTy =
(
XTX + λI

)
β (2.30)

=⇒ β̂ =
(
XTX + λI

)−1
XTy, (2.31)

which stabilizes the ill-conditioned XTX matrix, making it invertible in a similar fashion

as the Levenberg-Marquardt conditioning bias from Section 2.2.2. The result is slightly

biased, yet much less variable estimates of the model coefficients β̂, which are more likely

to be close to their true values than their unbiased counterparts. Further information such

as the optimal choice of λ can be found in [68].

2.2.4 Weighted Least Squares.

The effects of heteroscedasticity, or unequal error term variances can be mitigated

via a weighted least squares technique [68]. Recalling the true error terms are assumed

to be distributed as shown in (2.2), we can modify the diagonal covariance matrix σ2I to

account for changing variances. Given a set of error term variances σ2
k , . . . , σ

2
N , let the set

of weights, wk be defined as

wk =
1
σ2

k

, k = 1, . . . ,N, (2.32)

then the corresponding weight matrix, W, is given by

W =



w1 0 . . . 0

0 w2 . . . 0
...

... . . .
...

0 0 . . . wN


. (2.33)

14

Next, the normal equations from (2.3) can be modified to produce estimated model

coefficients using

XTWy =
(
XTWX

)
β (2.34)

=⇒ β̂ =
(
XTWX

)−1
XTWy, (2.35)

which can also be derived using Maximum Likelihood Estimation (MLE) as shown in the

OLS case. The obvious complication with this technique is that true error term variances

are seldom known. To alleviate this complication, [68] provides several techniques for

estimating the variances needed to build W. Additionally, W can be used to discount, or

de-weight, suspected observations such as outliers or observations where data quality is

known to be lower compared to the rest of the observed data. The latter use is exploited

in Chapter 6 to de-weight known low-quality Pitot-static sensor data during turns, as later

described.

2.2.5 Smoothing Splines.

Often, model transformations are useful in modifying the nature of the regression

function in order to satisfy the conditions or assumptions for optimality. A common

problem found in classical regression is a lack-of-fit determination by the F-Test for Lack

of Fit (FTLF), which can be symptomatic of a mismatch between the true underlying

functional form between y and X (in both the linear and nonlinear cases) and the form

specified in the fitted model. In some cases, the functional form may not exist in closed

form or apply to the entire domain of the predictor variables. In these cases, it may be

useful to use the concept of a smoothing spline [89] as will be shown in the developments

of Chapter 6. In the linear context, a second-order smoothing spline follows the form

y =


1 x1 x2

1 (x1 − s1)2
+ . . . (x1 − sP)2

+

...
...

...
... . . .

...

1 xN x2
N (xN − s1)2

+ . . . (xN − sP)2
+

β + ε, (2.36)

15

where each sp, p = 1, . . . , P, referred to as a knot, is a preselected inflection point

along the domain of x, and the operator ()+ denotes negative values of its argument are

set to zero, which is equivalent to multiplying by the Heaviside function centered at

the knot location. Several works of literature are dedicated at selecting the optimal sp

locations [31][89][90][102]. When splines are used in this research, the knot locations

will be selected using data quantiles as shown in [89]. It is important to note if a

nonlinear regression technique is used, the knot locations themselves can be set as unknown

parameters to be estimated as long as the observed data contains enough independent

information for stable estimation. One of the main benefits of using smoothing splines

is the ability to provide excellent fit using windowed polynomials even if the observed data

is clearly not polynomial in nature. Even further, smoothing splines can be successfully

used when the true functional form between y and X is unknown. Figure 2.1 illustrates

a fitted smoothing spline with eight knots adequately modeling a clearly non-polynomial

function using second order polynomials.

2.2.6 Model Selection.

Model selection refers to the class of techniques used to analyze the overall

effectiveness of a chosen model. One common criterion is simply the amount of

unexplained variation left in the observed data after fitting the model (i.e., SSE or MSE).

However, more robust criteria tend to balance error reduction with model complexity (i.e.,

number of model coefficients in β). One of the more popular criterion in model selection,

Akaike Information Criterion (AIC) [2], is rooted in information theory and is given by

AIC(P) = N log(s2
P) − N log(N) + 2P, (2.37)

where P is the number of model coefficients (i.e., the dimension of β), N is the number of

observations (i.e., the dimension of y) and s2
P is the SSE of the model with P parameters

16

Figure 2.1: Example of a fitted smoothing spline model with eight knots selected using

quantiles [89]. The second-order polynomial smoothing spline is able to model an

exponential functional form with no prior knowledge.

17

included. Additionally, for small sample sizes, an adjusted AIC is given by

AICc(P) = AIC(P) +
2P(P + 1)
N − P − 1

. (2.38)

Although the adjustment given in (2.38) is only necessary for N/P ratios less than 40 [2],

the value of the adjustment tends to decrease dramatically as N increases, allowing for the

use of AICc ubiquitously, regardless of sample size. As later shown in Chapter 3, AIC

is used as the model selection criteria in the remodeling mode of the overall framework.

Additionally, in Chapter 6, AIC is combined with the concept of smoothing splines in order

to autonomously select an appropriate number of knots while balancing error reduction and

model complexity.

2.2.7 Maximum Likelihood Estimation.

MLE [62] refers to the concept of estimating model parameters, β, through the

optimization, or maximization, of the associated model likelihood function. The likelihood

function is simply the joint Probability Distribution Function (PDF) of the observed data,

y, viewed as a function of β, given y. Given a model of the form shown in (2.1) with

error terms given by (2.2), the likelihood function of the model coefficients, β, given the

observed data, y is given by

L (β|y,X) =
1√
|2πσ2I|

e−
1

2σ2 (y−Xβ)T(y−Xβ), (2.39)

where the linear model Xβ can be replaced by a nonlinear function f[X,β] in the nonlinear

case. Given the exponential form of (2.39), it is often convenient to take its natural

logarithm prior to maximizing the function. This leads to the log-likelihood function

log(L) = L = −
1
2

log
(
|2πσ2I|

)
−

1
2σ2

(y − Xβ)T (y − Xβ) , (2.40)

and the optimization problem given by

arg max
β

L = arg max
β

(y − Xβ)T (y − Xβ) , (2.41)

18

which is solved by setting the first-order derivative of L to zero, yielding

∂L

∂β
= 0 =

∂

∂β

(
yTy − 2βTXTy + βTXTXβ

)
(2.42)

=
(
0 − 2XTy + 2XTXβ

)
(2.43)

=⇒ XTXβ = XTy (2.44)

=⇒ β̂MLE =
(
XTX

)−1
XTy, (2.45)

which is identical to the optimal estimator in the linear model given by (2.4). This same

procedure can be applied to the nonlinear function f[X,β] given it is once-differentiable

with respect to β. MLE estimation is part of a broader set of estimation applications, under

which OLS fits, as shown by the above result. Although MLE has additional benefits,

such as the ability to handle arbitrary error term distributions or specify known (possibly

unequal) error term variances, the majority of the concepts leveraged in the proposed

framework are specific to OLS theory and normally distributed error terms. Further

information on MLE estimation of linear and nonlinear models is found in [8][62][68].

2.2.8 Binary Detection.

Although not directly used in parameter estimation, detection theory plays a

significant role in statistical hypothesis testing as well as many model diagnostic

techniques. Classical detection theory is described in [63] and can be generally thought

of as classifying a received signal (e.g., a sensor measurement) into one of many plausible

originating sources or distributions. In the binary case, a received measurement can be

thought of as originating from one of two possible distributions. The detection problem

then reduces to choosing (possibly multivariate) thresholds for classification based on

desired Probability of Detection (PD) and Probability of False Alarm (PF) rates. In general,

19

a binary detection problem can be defined using

H0 : p(x|H0) = p0(x) (2.46)

H1 : p(x|H1) = p1(x) (2.47)

=⇒
p1(x)
p0(x)

H1

≷
H0

λ, (2.48)

where λ is a likelihood ratio threshold that is proportional to the desired PD and PF. The

Likelihood Ratio Test (LRT) described in (2.48) can then be solved for x such that

f (x)
H1

≷
H0

γ, (2.49)

where f (x) is a function of the vector x, and γ is a scalar-valued threshold on the function

output. In the case where x is one-dimensional, then f (x) reduces to x, and the LRT

becomes a simple threshold on the value of x. The corresponding PD and PF rates are

then given by

pD =

∫
Γ1

p1(x)dx, (2.50)

pF =

∫
Γ1

p0(x)dx, (2.51)

where Γ1 is the set of x values such that f (x) > γ. The values of PD and PF vary from zero

to one and constitute unique points along the so-called Receiver Operating Characteristic

(ROC) curve. Figure 2.2 illustrates a simple one-dimensional binary detection scenario

using univariate Gaussian distributions for H0 and H1 along with the corresponding ROC

curve. In statistics, pF can also be described as a hypothesis test’s significance level, α.

Based on Wilks’ Theorem [84], the (possibly multivariate) integral in (2.51) can be related

to a corresponding Chi-Square (denoted χ2) distribution given a desired α, with number of

degrees of freedom based on the differences in p1 and p0. This relationship gives rise to a

multitude of χ2-based tests such as the ones used in Chapters 4 and 5.

20

Figure 2.2: Example LRT for binary detection using univariate Gaussian distributions. The

Γ1 region corresponds to x > γ and drives PD and PF based on which distribution is

integrated. The ROC curve on the bottom graph illustrates the possible combinations of

PD and PF for the given problem as well as the operating point based on the chosen γ. The

corresponding λ value is equal to the ROC slope at the operating point.

21

2.3 Residuals and Their Properties

As previously alluded to, and shown in (2.8), model residuals, e, are defined by the

difference between the fitted model response, ŷ, and the actual observed response, y. The

residual vector is thought of as the “observed” error terms, as opposed to the true error

terms, which are defined by

ε = y − ŷ (2.52)

= y − E
[
y
]
, (2.53)

which are assumed to be IID normal random variables with zero mean and constant

variance as shown in (2.2). The overarching term given to the techniques to be discussed

in this section is “residual analysis,” in which the properties of the observed error terms are

compared against the expected properties of the true error terms to assess the adequacy of

the fitted model and its assumptions. Three residual properties are commonly studied in

residual analysis: mean, variance, and independence.

2.3.1 Mean.

The mean of the N residuals for a fitted model is given by

ē =

∑N
k=1 ek

N
, (2.54)

and as enforced by OLS, the sum of residuals always equals zero, which makes the mean

of residuals always equal to zero [68]. As such, the mean of residuals cannot be used to

assess the mean of the true error terms, since residuals are constructed, by definition, to

be zero mean based on the model estimation technique. However, as later discussed, this

property can indeed be exploited when analyzing KF residuals [76], since the difference

between actual and expected sensor measurements does not necessarily equal zero and can

pinpoint the existence of un-modeled sensor biases.

22

2.3.2 Variance.

The variance of the N residuals for a fitted model is given by (2.11). Additionally, per

(2.13), s2 is an unbiased estimator for the variance of the true error terms σ2. As previously

noted, the variance of the true error terms, ε, is assumed to be constant throughout the N

observations. Therefore, the variance of the observed error terms, e, can be analyzed across

the observations to validate this assumption.

2.3.3 Nonindependence.

In a similar fashion to their mean, residual terms are by definition dependent random

variables since they all involve the fitted model ŷ. However, serial correlation among the

residual terms does point at a number of potential problems with the fitted model including

missing predictor variables, and temporal, cyclical, or spatially correlated effects that were

not accounted for in the original model.

2.4 The Navigation Problem

Having defined the necessary mechanisms for classical, or offline, model estimation,

we now turn our attention to the general motivating problem for this research: navigation.

Navigation in the context of this research refers to the real-time estimation of navigation

parameters, which describe a vehicle’s position, velocity, and attitude (or subset of these)

within a defined reference frame.

2.4.1 Relation to Model Estimation.

Navigation is rooted in the estimation of key vehicle properties, usually called states.

These states often include the estimated current three-dimensional position, velocity, and

attitude of the vehicle as well as their time histories and covariances. As such, the concept

of navigation is deeply related to model estimation. The navigation states can be regarded

as unknown model coefficients, β (later referred to as system states x). Such states are

to be estimated recursively and in real-time by combining (via weighted least squares)

known vehicle dynamics and external sensor measurements, y (later referred to as z), which

23

can be mapped to the navigation states via a measurement model X (later referred to as

H). Although the concepts are similar, the requirement for online or real-time estimation

makes classical model estimation techniques discussed in previous sections not completely

suitable. Fortunately, an adaptation of such, found in the KF algorithm [59] and discussed

in a later section, lends itself not only for efficient estimation of kinematic errors, but for

the online integration of external measurements. As it will be later shown, although the

concept of online model estimation has been well developed thus far in existing literature,

the accompanying diagnostic and remedial measures are not as well-defined as those found

in classical estimation. Herein lies a key contribution of the proposed framework.

2.4.2 Reference Frames.

Navigation reference frames are fundamentally important when expressing the

position, velocity, and orientation of a vehicle. In general, the following major reference

frames defined in [95] are used throughout this research.

The true inertial frame (I-frame) - a theoretical reference frame in which Newton’s

laws of motion apply. The frame is defined by a non-accelerating, non-rotating

orthonormal basis in R3. Because of the relative nature of the universe, the true

inertial frame has no predefined origin or orientation.

The Earth-centered inertial frame (i-frame) - an orthonormal basis in R3, with its origin

at the center of mass of the Earth. The x and y axes are located on the equatorial plane

with the x-axis pointing towards Aries. The z-axis points towards the North Pole. The

i-frame is a non-rotating frame, but it does accelerate with respect to the true inertial

frame due to the relative rotation between celestial bodies. However, for terrestrial

navigation purposes, it can be considered an inertial reference frame. The i-frame is

illustrated in Figure 2.3.

24

The Earth-centered Earth-fixed frame (e-frame) - an orthonormal basis in R3, with its

origin also at the Earth’s center of mass. The e-frame is rigidly attached to the Earth,

with the x-axis on the equatorial plane pointing toward the Greenwich meridian, the

z-axis aligned with the North Pole, and the y-axis on the equatorial plane pointing

toward 90 degrees East longitude. Because the e-frame is a true Cartesian reference

frame, some navigation computations are simplified. The e-frame is illustrated in

Figure 2.3.

The Earth-fixed navigation frame (n-frame) - an orthonormal basis in R3, with its

origin located at a predefined location on the Earth, typically on the surface. The

Earth-fixed navigation frame’s x, y, and z axes point in the North, East, and

down directions relative to the origin, respectively. In this frame, down is defined

geometrically as a vector normal to the Earth ellipsoid, which on average, is aligned

with the local gravity vector. The Earth-fixed navigation frame remains fixed to the

surface of the Earth. While this frame is not useful for very-long distance navigation,

it can simplify the navigation kinematic equations for shorter navigation routes. The

n-frame is illustrated in in Figure 2.3. Though the Earth-fixed n-frame was used

in Chapter 6, it is important to note long-term navigation problems usually employ a

local-level navigation frame, where the origin is moved with the vehicle, as described

in [95].

The aircraft body frame (b-frame) - an orthonormal basis in R3, rigidly attached to the

aircraft with its origin located on the aircraft’s center of mass. The x, y, and z axes

point out the nose, right wing, and bottom of the aircraft, respectively. Strap-down

inertial sensors are fixed to the b-frame, although they may not be located at the

origin or aligned with the axes. The b-frame is illustrated in Figure 2.4.

25

The wind frame (w-frame) - an orthonormal basis in R3, rigidly attached to the aircraft

with its origin located on the aircraft’s center of mass. The x axis is aligned with

the direction of the aircraft’s velocity vector relative to the airmass, the z axis is

perpendicular to the x axis, in the plane of symmetry of the aircraft, and is positive

below the aircraft. Finally, the y axis completes the right-handed coordinate system.

The w-frame is necessary when using Pitot-static airspeed measurements and is

usually rotated about the b-frame via the Angle of Attack (AoA) and Angle of

Sideslip (AoS). The w-frame is illustrated in Figure 2.4.

2.4.3 Inertial Navigation.

Inertial navigation is based on the concept that, starting from a known location,

attitude, and velocity, a vehicle’s current position and attitude can be estimated by

integrating measured changes in velocity and rotation. Inertial navigation measurement

devices such as an Inertial Measurement Unit (IMU) consist of accelerometers, which

measure specific forces, and gyroscopes (commonly referred to as gyros), which measure

rotational rates relative to the I-frame. When equipped with a navigation computer capable

of integrating measured changes into a position, velocity, and attitude solution, the entire

system is referred to as an Inertial Navigation System (INS). In general, there are two types

of INSs: platform and strap-down. A platform INS mounts three orthogonal accelerometers

onto a gimbaled platform that maintains the vertical accelerometer aligned with local

gravity via gyroscopic rigidity. In turn, the gyroscopes used to maintain spatial rigidity

are used to read off the vehicle’s attitude. In contrast, a strap-down INS consists of a

simple three-axis IMU rigidly mounted onto the vehicle with its motion sensors mounted

orthogonally and aligned with the vehicle’s b-frame. Consequently, the gyroscopes are

used to estimate the vehicle’s orientation relative to the I-frame, along which the specific

forces measured by the accelerometers are integrated by the navigation computer. Although

26

Figure 2.3: Illustration of Earth centered i-frame, e-frame, and n-frame. The e- and i-

frames are rigidly attached to the Earth’s center of mass, while the n-frame is attached to

the surface of the Earth. The i-frame is non-rotating with respect to inertial space, while

the e-frame rotates along with the Earth’s rotation. The n-frame is aligned with north, east,

and local gravity vectors.

27

Figure 2.4: Illustration of aircraft b-frame and w-frame. Both frames are rigidly attached

to the aircraft’s center of mass. The b-frame and w-frame are rotated by Angle of Attack,

α, and Angle of Sideslip, β, due to the relative orientation between the aircraft body and

the wind mass.

28

more computationally complex, strap-down INSs reduce mechanical complexity, size,

and power requirements needed for navigation, especially when aided by an external

measurement sensor. This development subsequently enabled the integration of Micro

Electro-Mechanical INSs onto small-scale devices such as quad-rotors and mobile phones.

The specific mathematical processes governing navigation computers, including the so-

called INS mechanization equations are detailed in [95]. In Chapter 7, a novel method

for autonomously calibrating accelerometer and gyroscope error models is detailed as a

specific online calibration example within the proposed framework.

2.4.4 All-Source Navigation.

The concept of inertial navigation summarized in the previous section can now

be expanded into the main motivational thrust for this research, known as all-source

navigation. As foreshadowed in Chapter 1, inertial navigation alone is subject to “drift,” or

a growing error in navigation state estimation due to the buildup of small incremental errors

during each recursion of the mechanization equations. Since inertial navigation is a dead-

reckoning technique, errors accumulate during each iteration. The problem of drift has

been traditionally solved by incorporating a trusted, external measurement update in the KF

algorithm. Furthermore, the most common external measurement source has traditionally

been GPS position updates. Since GPS provides an absolute position measurement (as

opposed to a relative position), using it as a measurement update source tends to reset the

errors built-up from the INS-only solution between GPS updates. A considerable amount

of literature has been dedicated to researching optimal ways of integrating GPS and INS

using differing KF-based feedback and correction loops [18][76][77][95]. However, recent

research efforts have shifted focus onto alternative sources of INS aiding in order to combat

increasing reliance on GPS. Each major effort in this context has focused on a particular

external sensor, such as visual features [97][98], radar signals [60], magnetic fields [22],

and Very Low Frequency emissions [27], to name a few. The concept of navigating

29

”anywhere, anytime, using anything” is the essence of all-source navigation. In each of the

aforementioned applications, researchers tend to develop unique optimization techniques

in order to use the intended sensor adequately. However, no general approach has been

developed to provide a resilient and assured solution in all-source applications.

2.5 Recursive Model Estimation

2.5.1 Kalman Filter.

The Kalman Filter (KF), developed by Rudolf Kalman in 1960 [59] provides a method

for the optimal combination of measurements made by multiple sensors. The KF uses

Bayesian statistics to combine dynamics and measurements models, which provides a

solution estimate with the lowest possible variance or uncertainty. This section outlines

the basic principles behind the KF as outlined by Maybeck [76][77]. The physical system

dynamics are modeled using the form

ẋ(t) = Fx(t) + Bu(t) + Gw(t), (2.55)

where x is a vector containing the system states of interest, u is a vector containing system

control inputs and w is a vector of white Gaussian noise sources with

E [w(t)] = 0, (2.56)

E
[
w(t)wT(t + τ)

]
= Qδ(τ), (2.57)

while the matrices F, B and G contain constant coefficients, which specify linear

combinations of the vectors they multiply.

In order to implement the KF algorithm in a computer system, the continuous-time

model must be discretized to account for system propagation between samples. The

discrete process noise strength matrix Qd and the discrete control input matrix Bd are

obtained by changing the limits of integration to capture a single time step ∆t within

the general solution to the system, which is given by Maybeck [77] and VanLoan [96].

30

Additionally, the discrete state transition matrix, which is used to propagate system states

and derived from the system dynamics model, is given by

Φ = eF∆t. (2.58)

Linear discrete measurements from the various sensors are modeled by

zk = Hxk + vk, (2.59)

where z is a vector of sensor measurements and v is a vector of discrete-time, white

Gaussian noise sources with

E [vk] = 0, (2.60)

E
[
vkvT

l

]
= Rδkl, (2.61)

while the matrix H contains constant coefficients, which specify linear combinations of the

system state vector x. Since the system is linear, the KF algorithm guarantees a Minimum

Mean Squared Error (MMSE) optimal solution for estimating the system states.

The quantities of interest estimated by the KF are contained within the random vector

x. The KF provides the probability density function for x at each discrete time step,

conditioned on noise corrupted measurements provided by sensors. The KF algorithm

begins with initial conditions, which include the initial state estimate vector x̂0 and its

uncertainty, which is contained by the covariance matrix P0. The initial conditions are

propagated from one discrete time step to the next using the discrete state transition matrix

such that

x̂−k+1 = Φx̂+
k + Bduk, (2.62)

P−k+1 = ΦP+
kΦ

T + Qd. (2.63)

As linear measurements become available at discrete time intervals, the propagated

state estimates and their covariance are optimally combined with the incoming measure-

31

ments using the Kalman gain matrix K, which is given by

Kk = P−k HT
[
HP−k HT + R

]−1
. (2.64)

The state estimates and covariances are updated with the Kalman gain matrix from

(2.64) using

x̂+
k = x̂−k + Kk

[
zk −Hx̂−k

]
, (2.65)

P+
k = (I −KkH) P−k . (2.66)

As shown in Equations (2.65) and (2.66), the Kalman gain matrix serves as an optimal

weighting factor that gives adequate preference to either the propagated or measured

estimates, given their individual uncertainties, in order to minimize mean squared error.

2.5.2 Extended Kalman Filter.

If a particular system cannot be adequately represented using linear dynamics or

measurement models, the linear KF algorithm does not guarantee optimal solutions.

However, in certain cases, linear approximations to nonlinear systems can still yield

accurate estimates. In such cases, the Extended Kalman Filter (EKF) is used. The basic

system dynamics equation for a nonlinear system are given by

ẋ(t) = f [x(t),u(t), t] + G(t)w(t), (2.67)

where f is a vector containing functions which represent the system. In turn, the nonlinear

measurement equation is given by

zk = h [xk, tk] + vk, (2.68)

where h is a vector of functions which model the sensor. The main goal is to linearize

nonlinear models about their nominal estimates in order to use the conventional linear

Kalman update equations. To do so, the states are redefined using the perturbation model

given by

δx(t) , x(t) − x̂(t), (2.69)

32

where δx(t) represents the difference between the true state vector and its estimate. In order

to propagate the system from initial conditions or a previous measurement to the time of

the next measurement, the EKF integrates the nonlinear dynamics function over the discrete

time difference using

x̂−k+1 =

∫ tk+1

tk
f[x(t),u(t), t]dt + x̂+

k , (2.70)

while the state covariance matrix is propagated using (2.58), (2.63) and a linearized

dynamics model matrix F given by

Fk =
∂f
∂x

∣∣∣∣∣
x̂+

k

. (2.71)

In order to update the propagated state estimates using incoming (possibly nonlinear)

measurements, the measurements must first be predicted by evaluating the measurement

model function with the most recent estimate using

ẑk = h
[
x̂−k , tk

]
, (2.72)

δzk = zk − ẑk, (2.73)

where δz is called the pre-update measurement residual, or innovation, and represents the

difference between the actual and predicted measurements.

In order to combine the propagated and measured state estimates, the nonlinear

measurement function h is linearized to obtain Hk in a similar fashion to Fk using

Hk =
∂h
∂x

∣∣∣∣∣
x̂−k
. (2.74)

The linearized matrix H is then used in (2.64) to obtain a Kalman gain matrix, and the

measurement update equation reduces to

δx̂+
k = Kkδzk, (2.75)

due to the use of perturbation state estimates and measurements. The perturbation state

δx̂, which starts at zero during each filter recursion, is updated using (2.75) and added

33

to the nominal trajectory to produce a nominal estimate. Prior to the next recursion, the

perturbation state is reset to zero. Since the EKF does not guarantee optimal solutions,

it must often be tuned prior to use by adding process noise and selecting specific initial

conditions. Tuning increases filter stability and usually increases solution uncertainty.

34

III. Autonomous and Resilient Management of All-source Sensors for Navigation

This chapter develops the general strategy for providing all-source multi-sensor

resiliency, assurance, and integrity through an autonomous sensor management framework.

The proposed framework dynamically places each sensor in an all-source system into one

of four modes: monitoring, validation, calibration, and remodeling. Each mode contains

specific and novel realtime processes that affect how a navigation system responds to

sensor measurements. The framework is developed by first defining the set of desired

resilient sensor management objectives, then developing novel approaches for achieving

these objectives in an all-source and real-time environment, and finally by interlacing

the processes governing each desired objective using a common application programming

interface, all in a fault- and sensor-agnostic manner. The benefits of using the proposed

framework are demonstrated by comparing all-source navigation performance against

conventional filtering using two simulated scenarios including multiple sequential sensor

failures and incorrectly modeled sensors. The research developed in this chapter has been

published in [52] and [54].

3.1 Introduction

Over the past two decades, a significant portion of navigation research has been

devoted to alternative means of precision navigation and timing, through the modeling

and testing of non-traditional sensors (e.g., vision [97], radio [27], magnetic [22], etc.).

As research matures in each of these sensor areas, multi-sensor alternative navigation is

quickly becoming an operational possibility. However, with each additional sensor allowed

into a navigation system comes the increased possibility of corrupting the navigation

solution due to sensor model misspecification and undetected sensor failures or anomalies.

Therefore, a robust method of managing sensors with questionable models is now necessary

35

to ensure navigation solutions are accurate and resilient against errors in sensor modeling,

unexpected signal interference, or undetected sensor faults, all in a plug-and-play or online

fashion.

Some research has been conducted in the areas of managing navigation sensors for

computational requirements [25], managing self-correcting Simultaneous Localization and

Mapping (SLAM) sensors [65], and validating ad-hoc sensor networks [82]. However,

there are currently no frameworks, to the author’s knowledge, that formalize the definitions

and interface between the processes of detecting faulty sensors, estimating sensor model

parameters, and adapting sensor model functions, all in an online fashion and while

protecting the integrity of the navigation solution. There is, however, compartmentalized

research in related areas, where common navigation challenges related to multi-sensor

navigation and sensor modeling have been solved, albeit in limited scope and usually aimed

at specific sensor technologies. These related research areas are summarized below.

The first and arguably most critical step in resilient sensor management is fault detec-

tion and exclusion. Multi-sensor fault detection and exclusion has been traditionally ac-

complished through statistical analysis of redundant snapshot measurements [36][86][93],

solution separation vectors [15][16][20][21][66][108][109], or filtered residuals [11][12]

[13][110]. However, most research has focused on the specific multi-sensor problem posed

by the GPS constellation, where each satellite is regarded as a different (albeit identical in

nature and synchronous) sensor in the multi-sensor system, and the “fault” is defined as an

unmodeled bias that is assumed to only affect one of the sensors (satellites) at any given

time; conditions which are not guaranteed in an all-source environment.

Nonetheless, detection and exclusion of a faulty sensor is only the first step of the

problem in creating a resilient sensor management system. Since many sensor faults may

be caused by model misspecification or temporary anomalies, there also exists a need

36

to recover these failure modes (and continue using the sensor in question) through the

autonomous and online modification of the specified sensor model.

One common method for overcoming sensor misspecifications is to estimate variable

sensor model parameters that may have changed during navigation (e.g., lever arms,

rotation matrices, scale factors, etc.). This type of sensor model modification is often

referred to as calibration. There are a large number of online calibration examples across

many sensor fields such as magnetometers [10], accelerometers [105], gyroscopes [67],

lasers [71], audio sensors [79], Pitot-static sensors [56], to name a few. One such research

area with significant recent advances is online calibration of a VINS [29][47][64][74][106].

As mature as these calibration research areas may be, they still only tend to focus on a

particular sensor or sensor combination (e.g., visual and inertial or magnetic and inertial),

and often do not address the tasks of detecting the need for calibration and independently

evaluating the effectiveness of the calibration results. Additionally, they do not adequately

address other types of sensor model modifications that may be needed for resiliency.

A second class of methods for overcoming sensor misspecifications is to alter the

functional form of the sensor model to account for missing parameters or changing

environmental conditions (e.g., time-changing biases, stochastic clock errors, temperature

effects, etc.). This type of sensor model modification is often referred to as multiple-

model estimation or model identification. Current literature in this area tends to be

divided between continuous estimation of sensor and process noise covariances [3][14][99]

and multiple model estimation using a finite set of competing models [24][30][43].

However, most techniques tend to focus on permanent failure modes that require the model

identification process to run continuously. Similar to online calibration, these techniques

also tend to lack independent validation of model identification results.

This chapter proposes a novel framework that contributes both a common language

and a set of critical functions and their interactions, that together provide sensor-

37

agnostic, statistically rigorous, and resilient sensor management. The proposed framework

combines fault detection and exclusion, sensor model validation, online calibration, and

online model identification into four interconnected modes of operation: monitoring,

validation, calibration, and remodeling. In doing so, it is able to provide resilient

and assured navigation for all-source applications, thereby directly enabling continued

navigation operations across a greater range of sensor anomalies. The complete set of

resiliency functions or objectives directly enabled through the proposed framework is

summarized in Table 3.1. The remainder of this chapter is divided into three sections.

Section 3.2 describes related work in the areas of sensor management frameworks, fault

detection and identification, multiple-model estimation, and sensor model validation.

Section 3.3 illustrates the proposed framework and modes of operation in detail, and

provides simulation results for two multi-sensor navigation scenarios. Finally, Section 3.4

summarizes the contributions of the research in this chapter and areas for future work.

3.2 Related Work

Though no framework combining the aforementioned functions from Table 3.1 been

found in literature, several works have been found whose contributions were leveraged as

part of the framework development process. These works are briefly described below.

Statistical hypothesis testing forms an integral part of the fault detection, model

validation, and adaptive estimation tasks. In general, most hypothesis tests can be

stated using an LRT [63], by assigning competing statistical distributions to each of the

hypotheses in the test. Such LRTs are useful since their distribution tends to be Chi-

Square [23], regardless of the distributions of the competing hypotheses, and especially

if the competing hypotheses are assumed to be normally distributed. Integrity monitoring

and fault detection and exclusion research in the area of GPS and INS integration such

as [19][20][37][48][49][78][86][100][103] use LRTs and test statistics to detect faulty

38

Table 3.1: List of desired resilient sensor management objectives.

Mode Section Resilient sensor management objectives

Monitoring 3.3.1.2

Provide sensor-agnostic fault detection and exclusion

Ensure fault-agnostic system integrity

Trigger sensor model remedial measures

Validation 3.3.1.3

Initialize offline sensors without compromising integrity

Validate questionable sensor models in real-time

Provide independent verification of remedial measures

Calibration 3.3.1.4

Augment state-space with specified model parameters

Follow a prescribed estimation sequence for observability

Reduce state-space after specified termination criteria

Remodeling 3.3.1.5
Dynamically spawn multiple-model filter bank

Select best candidate model using statistical criteria

Delete filter bank after specified termination criteria

GPS measurements, and more importantly, predict system performance in the presence

of undetected faults. Meanwhile, the work in [110] makes use of multiple filters to identify

biased satellite measurements and exclude them from affecting the solution, thereby

providing a form of system integrity. Leveraging the existing research in the area of GPS,

our monitoring mode contains a novel approach for all-source fault detection and exclusion,

and integrity monitoring, which is developed and validated in Chapter 4.

While our monitoring test provides the ability to detect and exclude faults across the

set of online sensors (i.e., sensors currently informing the navigation solution), there also

exists a need to initialize offline sensors by validating their stated measurement models

while protecting the navigation solution. This challenge, which we are referring to as

39

the sensor validation problem, is virtually unaddressed (at the time of writing) in current

research. The validation problem is further complicated by the fact that many navigation

sensors require the estimation of additional states needed in their measurement model (e.g.,

clock errors, biases, scale factors, etc.), and estimating these additional states would require

allowing sensor measurements from the sensor in question to affect the navigation solution.

Leveraging the partial update implementation [17] of the Kalman-Schmidt filter [81], our

validation mode contains a novel approach for the real-time validation of offline sensors that

allows for the estimation of sensor-unique states while protecting the navigation solution

and maintaining system integrity. This method is developed and validated in Chapter 5.

Fault detection and exclusion, and independent model validation comprise just two

(albeit the most important) objectives in our resilient sensor management framework. The

goal, especially in the area of emerging and alternative sensors, is not only to detect and

prevent mismodeled sensors from affecting the navigation solution, but also to dynamically

modify their stated models in order to enable their continued use. The research in [65]

proposes a multi-phased process that accomplishes a subset of tasks from our proposed

framework. Namely, the VINS calibration method proposed therein continually estimates

camera extrinsic parameters and statistically compares, via a LRT, their short-term and

long-term estimates. If the short-term and long-term estimates are statistically different, a

three-phased calibration routine is initiated. Finally, the calibration routine is terminated

once the covariance of the estimated parameters exhibits desired convergence criteria. In

the context of our proposed framework, the research in [65] provides a VINS-centric sensor

manager that meets a subset of the objectives contained in our monitoring mode, and most

of the objectives contained in our calibration mode. However, it is focused on a single

sensor and is specifically designed to work with VINSs. Additionally, it does not provide a

method for independent validation of the calibration results.

40

When perceived sensor faults are not recoverable by re-calibrating the sensor model

parameters, we may also consider the possibility of an incorrectly stated measurement

function. Since a particular measurement function may be incorrectly stated in an infinite

number of ways, the task of finding the most appropriate sensor model function is

usually solved by fitting a finite set of models in a multiple model technique such as

[30][43]. Alternatively, some may choose to estimate certain stochastic model parameters

continuously such as [3][14][99]. All of these methods for overcoming incomplete or

incorrectly stated model functions provide general examples of the objectives contained in

our remodeling mode. The specific remodeling technique shown in our example scenarios

from Section 3.3.2 uses a parallel filter bank with multiple parallel models, much like the

aforementioned research. However, it also uses statistical model selection criteria such

as AIC [2] to select the most likely model, and additionally independently validates the

selection results using our test in the validation mode.

3.3 An Autonomous and Resilient Sensor Manager

We now introduce a novel, autonomous method for resilient sensor management

that performs all the previously identified functions by expounding on the building

blocks contained in the previous research from Section 3.2, and coherently weaving their

functionality into a sensor-agnostic framework. The proposed framework, henceforth

referred to as Autonomous and Resilient Management of All-source Sensors (ARMAS),

statistically evaluates sensor performance and places each sensor into one of four

operating modes: monitoring, validation, calibration, and remodeling. ARMAS then

provides resilient sensor management by controlling how a navigation filter responds to

measurements from a particular sensor based on that sensor’s mode. Table 3.1 (shown

previously) summarizes the key functionality provided by each mode of operation.

41

3.3.1 Framework Implementation.

In general, the ARMAS framework is designed around an online or plug-and-play

environment, applies to all navigation sensors, does not require sensor-specific tuning,

and can be adapted to any filtering technique. The examples illustrated in Section 3.3.2

were developed in MATLAB® using the SCORPION estimation framework [61] for filter

spawning and measurement processing. It is important to note that the proposed framework

was designed around the plug-and-play concept of operation, assuming sensors are serially

added onto an ongoing navigation process. The only assumption imposed onto the initial

ongoing navigation process is that the navigation solution is consistent (i.e., its estimates

are unbiased, and the estimated error covariance matches actual performance). This

assumption does not preclude a “weak” sensor (i.e., large measurement error covariance)

from being the only sensor in the system. It simply dictates that if there is only a single

sensor in the system when a new sensor is added, its residual statistics are assumed to

be accurate. Figure 3.1 illustrates a proposed state transition diagram that coherently

transitions sensors through the various modes of operation. The following sections

expound on each of the modes of operation and provide general guidelines for proper

implementation.

To facilitate further discussion on ARMAS development, we will adapt the stochastic

estimation convention from [76] for multi-sensor applications. Consider a navigation

problem of the form

ẋ(t) = f [x(t), ε(t),u(t), t] + G(t)w(t), (3.1)

where x is the N × 1 navigation state vector containing the vehicle’s core navigation states

(position, velocity, attitude, time, etc.), ε is an M × 1 vector containing additional states

needed to account for measurement errors, u is the control input vector, G is an (N+M)×W

linear operator, and w is a W × 1 white Gaussian noise process with a W ×W continuous

process noise strength matrix Q. The discretized [96] non-linear system is then solved using

42

the EKF algorithm [76][77]. The state estimates are propagated using the (possibly) non-

linear state dynamics model, and updated using measurements from available sensors. In

a multi-sensor environment with J sensors, the jth sensor provides Z-dimensional discrete

measurements, z[j]
k , at time tk, which are modeled as

z[j]
k = h[j] [

x(t), ε[j](t),u(t), t,p[j]] + v[j]
k , (3.2)

where h[j] is a (possibly) non-linear measurement function for sensor j, ε[j] is a L×1 (L ≤

M) subset of ε consisting of the additional states required for processing measurements for

sensor j (e.g., a clock error process, constant bias, etc.), p[j] is a P× 1 vector of observable

model parameters for h[j] selected by the user (e.g. a lever arm, scale factor, etc.), and v[j]
k

is a Z × 1 discrete white Gaussian noise process with covariance matrix R[j]
k . Given the

estimated quantities x̂−k , ε̂[j]−
k , p̂[j], the Z × 1 measurement residual, r[j]

k , at time t = tk for

sensor j is given by

r[j]
k = z[j]

k − h[j]
[
x̂−k , ε̂

[j]−
k ,uk, tk, p̂

[j]
k

]
. (3.3)

Additionally, the residual vector from (3.3) is expected to follow the distribution

r[j]
k ∼ N

(
0

Z×1
,S[j]

k

)
, (3.4)

S[j]
k = H[j]

k P−k H[j]T

k + R[j]
k , (3.5)

where H[j]
k is the Z × (N + M) Jacobian of h[j] about the current estimate, and P−k is the

(N + M) × (N + M) state estimation error covariance matrix at time t = tk. In this context,

the goal of ARMAS is to ensure incoming measurements z[j]
k truly adhere to their stated

models by analyzing the statistical distribution of their residuals; and if not, protecting the

core navigation solution, x̂, while attempting to modify ε[j] and/or p[j] to enable continued

sensor use.

3.3.1.1 Sensor Initialization.

As previously stated, ARMAS places each sensor into one of four operating modes

plus a failed state. In a plug-and-play environment with an ongoing navigation process,

43

each new sensor is initialized into one of two modes: monitoring or validation. This initial

placement is based on how confident users may be in the current model available for a

particular sensor. For example, sensors that have well understood models and stochastic

processes, such as a GPS receiver in a threat-free environment, could be considered

“trusted”, and placed directly into monitoring mode, while emerging alternative sensors

with more questionable error models could be considered “untrusted” and placed into

validation mode. To take advantage of this functionality, an ARMAS user can specify

the initial trust for each sensor (e.g., trusted or untrusted), or provide a default setting for

all new sensors.

3.3.1.2 Monitoring Mode.

Monitoring mode is used to detect, identify, and exclude faulty sensors in a multi-

sensor problem. In this context, a faulty sensor refers to a sensor whose stated model

is not consistent with its observed performance, which could be caused by temporary

or permanent failures, as well as dynamic changes to the sensing environment (e.g.,

atmosphere, terrain, multi-path, etc.). Sensors in monitoring mode are able to fully affect

the navigation solution provided to the user since they are trusted. This poses a challenge to

detecting model divergence using a single-filter solution, since the effects of a mismodeled

sensor on the navigation solution are not easily attributable to a particular sensor. An

example of this problem is a strong (i.e., low measurement noise strength) sensor with an

unmodeled bias that “pulls” the filter solution away from truth to absorb the bias. In that

case, the faulty sensor’s residuals would be statistically valid, while potentially making

the residuals from weaker yet not faulty sensors, invalid. Any method that can robustly

detect, attribute, and exclude sensor faults can be used in this mode. For our particular

all-source implementation, we created a novel multi-filter, sensor-agnostic fault detection

and exclusion approach that does not constrain faults to biases, or to single sensors, and

can guarantee system performance with a specified false alarm rate, α, and integrity error

44

V

C

R

V

V

M
pass

pass

pass

pass

fail

fail

fail

no change

unable

fail

converged

model change

FV
pass

RSR - off

RSR - on

fail

Otrusted

untrusted

O - offline
M - monitor
V - validate
C - calibrate
R - remodel
F - failed

Figure 3.1: Proposed state transition diagram for ARMAS framework. New sensors

(offline) begin in either validate or monitor mode. A failed monitoring test starts a

calibration and remodeling loop, whose effectiveness is evaluated by the validation test.

The loop continues until the validation test is passed or the sensor model selection is

unchanged. Failed sensors can be periodically re-validated to recover from temporary

anomalies using RSR.

45

bound, αI . The specific details of our implementation are found in Chapter 4 and [58].

The monitoring test is run continuously for every sensor in monitoring mode, with a test

decision produced for each sensor at a user-defined rate. The test is failed if a fault is

detected and attributed to the sensor in question, and passed otherwise. If the test is

passed, the sensor in question remains in monitoring mode. Otherwise, the sensor is no

longer allowed to affect the solution and is placed into validation mode, where its stated

model is independently validated against the other (trusted) sensors. To take advantage of

monitoring functionality, an ARMAS user needs to specify the following:

1. The monitoring period (e.g., number of samples or time elapsed between tests).

2. The fault detection false alarm rate, α.

3. The integrity monitoring error bound, αI .

3.3.1.3 Validation Mode.

Validation mode is used to statistically validate an untrusted sensor model using

information from trusted sensors. Sensors in validation mode are only able to affect

state estimates for their unique states, ε[j], while the core navigation states, x, are only

affected by trusted sensors (i.e., sensors in monitoring mode). This poses a challenge when

initializing or processing measurements from an untrusted sensor since we are to consider

the stochastic distribution of all filter states while only allowing an untrusted measurement

update from sensor j to affect ε[j]. An example of this challenge would be estimating

a receiver clock error without allowing the receiver to affect the navigation solution, and

while preventing the clock error estimate from absorbing any other missing error sources.

To solve this challenge in a plug-and-play environment, we developed a novel method for

initialization and validation of a sensor with a questionable sensor model that can estimate

sensor-unique states, ε[j], while protecting the integrity of the core navigation solution,

x, using only the existing main filter. Employing the partial update [17] formulation of

46

the Kalman Schmidt filter [81], measurement updates from a sensor in validation mode

are only able to affect its sensor-unique states, ε[j], while measurement updates from

sensors in monitoring mode (i.e., trusted) are able to affect all filter states. This not only

protects the core navigation solution during the estimation of ε[j], but it also improves

fault detection performance since sensor faults are prevented from being absorbed into the

core navigation solution. The specific details of our implementation are found in Chapter

5 and [57]. Similar to monitoring mode, a validation test is run continuously for every

sensor in validation mode, with a test decision produced at a user-defined rate. The mode

transition from validation mode is determined by both the results of the validation test

and the previous ARMAS mode of the sensor in question. As illustrated in Figure 3.1,

validation mode is used to externally validate sensor models after failing a monitoring test,

completing a calibration sequence, and completing a remodeling selection. Additionally,

validation mode can be used to periodically re-evaluate permanently failed sensors to check

for passage of temporary anomalies that might have caused an insuperable failure. This

process is referred to as Resilient Sensor Recovery (RSR). To take advantage of validation

functionality, an ARMAS user needs to specify the following:

1. The validation period (e.g., number of samples or time elapsed between tests).

2. The fault detection false alarm rate, α.

3. Which states used in h[j] are core navigation states (i.e., x).

4. Which states used in h[j] are sensor-unique states (i.e., ε[j]).

5. If RSR is enabled, the RSR period (i.e., how often to attempt post-fail validation).

3.3.1.4 Calibration Mode.

Calibration mode is used to dynamically re-estimate variable model parameters when

a sensor model has been identified as faulty. Sensors enter calibration mode after having

47

failed an initial or post-monitoring validation test, and are considered untrusted until they

can be validated and placed back into monitoring mode. In calibration mode, the functional

form of the sensor model is assumed correct, but certain model parameters, p[j], inside the

measurement model function from (3.2) are to be re-estimated. The parameter estimation

may also require specific sequencing (i.e., estimate subsets of p[j] in a specified order) in

order to maintain observability, which in turn requires specifying sequencing criteria, or a

method for determining when a step in the sequence is complete. An example of this type

of problem would be the camera calibration algorithm described in [106], where the camera

extrinsic parameters (lever arm and orientation) are estimated separately (orientation first,

then lever arm) in order to maintain observability, and the transition between sequence

steps is driven by convergence of the associated state covariance matrix. For our particular

implementation, we generalized the calibration process into a set of simple instructions

provided by users such that any sensor calibration method that can be expressed in terms

of a sequenced state vector augmentation and corresponding sequence transition criteria

can be easily and autonomously executed. The parameter estimation is performed using a

calibration sub-filter that is initialized based on a copy of the main filter whenever a sensor

enters calibration mode. Once all steps in the stated calibration sequence are completed, the

sensor in question is placed back into validation mode to externally validate the calibration

results against trusted sensors as described above. It is also important to note here that since

sensors in calibration mode are considered untrusted, their measurement updates during a

calibration sequence are only able to affect estimates for ε[j] and p[j], which tends to

increase observability on p[j] since estimates for x are provided by trusted sensors. To take

advantage of calibration functionality, an ARMAS user needs to specify the following:

1. Which parameters in h[j] are to be estimated during calibration (i.e., p[j]).

2. The initial estimate for each parameter (i.e., p[j]
0 (i), i = 1, . . . , P).

3. The initial uncertainty for each parameter (i.e., σ[j]
0 (i), i = 1, . . . , P).

48

4. The sequence group for each parameter (i.e., when to start estimating).

5. Transition criteria for each parameter (i.e., when to stop estimating).

Subsequently, if the sensor in question enters calibration mode, ARMAS automatically

augments the filter states using the provided initial estimates and uncertainties for the first

group in the sequence, then transitions to the next group once every group member has met

its transition criteria, until all groups are completed.

3.3.1.5 Remodeling Mode.

Remodeling mode is used to dynamically modify the functional form of the

measurement model when a sensor model has been identified as faulty. Sensors enter

remodeling mode after failing a post-calibration validation test or if a calibration routine

was not provided. Similar to other modes, sensors in remodeling mode are considered

untrusted until they can be validated and placed back into monitoring mode. In remodeling

mode, the functional form of the sensor model is now assumed incorrect. This poses

a challenge since a measurement function h[j] could be incorrectly stated in an infinite

number of ways. To solve this, we leverage user experience for each sensor application to

create a reasonable and finite set of S model options that are dynamically evaluated if the

sensor in question enters remodeling mode. Then, we use a statistical test to select the best

model from the set. An example of this type of problem would be a VINS user that initially

only models radial lens distortion, but includes the option to also model tangential lens

distortion if the camera sensor ever enters the remodeling mode. Similarly, a laser range

finder user may elect to initially attempt a First Order Gauss-Markov (FOGM) error model,

but include the option to try second-order, constant bias, or the combination thereof, if the

sensor ever enters remodeling mode. Any method that can evaluate multiple models and

statistically select the most appropriate one can be used in this mode. For our particular

implementation, we leveraged Multiple Model Adaptive Estimation (MMAE) research

such as [24][30][43], but used Akaike Information Criterion (AIC) [2] for the model

49

selection decision since it balances model complexity with error reduction. Additionally,

we only evaluate multiple models when the sensor in question enters remodeling mode,

spawning S remodeling sub-filters initialized as copies of the main filter, and collecting

residuals using (3.3) until all remodeling termination criteria are met. Once a model

selection decision is made, the sensor in question along with the selected model are placed

into validation mode. Similarly to calibration mode, sensors in remodeling mode are

untrusted and only able to affect estimates of ε[j] and p[j], which strengthens the model

selection process since it is heavily influenced by external and trusted sensors. To take

advantage of remodeling functionality, an ARMAS user needs to specify the following:

1. A list of candidate measurement models (i.e., h[j]
i i = 1, . . . , S).

2. The initial estimate for all sensor-unique states in each model (i.e., ε[j]
i0

i = 1, . . . , S).

3. The initial covariance for all sensor-unique states in each model (i.e., Σ[j]
i0
, i =

1, . . . , S).

4. The remodeling termination criteria (e.g., number of samples, time period, covari-

ance, etc.).

Subsequently, if the sensor in question enters remodeling mode, ARMAS automatically

spawns S parallel filters using the main filter statistics for the core states, x, and the

provided initial estimates and covariances for each set of sensor-specific states in each

candidate model.

3.3.1.6 Implementation Summary.

As shown in the previous sections, ARMAS provides an autonomous method

for implementing various sensor model management functions given a minimal set of

additional specifications for each sensor beyond the usual modeling requirements. It is

important to note, certain functions including multi-sensor fault detection and identification

as well as RSR, are available without any additional sensor-centric specifications, and using

50

only default settings. Table 3.2 summarizes the additional information required to enable

ARMAS functionality for each mode of operation.

3.3.2 Example Scenarios.

This section describes two example scenarios that relied on the ARMAS framework

for resilient sensor management. It is important to note that these are simply two examples

of how the proposed framework could be used. A user of the framework has the flexibility

to adopt the framework to the specific problem at hand. In both scenarios, the use

of ARMAS enabled continued operations in cases that would have resulted in either

significant navigation solution errors or irrecoverable sensor failures. Consider a two-

dimensional navigation problem with two vehicles (Aircraft 1 and Aircraft 2) obtaining

their navigation solutions from an EKF driven by a 2D kinematic model given by

ẋ(t) =


ẋp(t)

ẋv(t)

ẋa(t)

 =


xv(t)

xa(t)

− 1
τa

xa(t)

 +


0

0

w(t)

 , (3.6)

where xp is the vehicle’s 2D position in [m], xv is the 2D velocity in [m/s], xa is the 2D

acceleration in [m/s2] and driven by a FOGM process with time constant τa = 90 [s], and

w(t) is a 2D white Gaussian noise process with E
[
w(t)w(t + τ)T

]
= Qδ(τ) and

Q = (1.5 × 10−3)2 I
2×2

[m2/s5]. (3.7)

The initial state estimate, x̂(0), and state error covariance, P(0), for both vehicles at

the beginning of each scenario is given by

x̂(0) =

[
0 0 100 0 0 0

]T
, (3.8)

P(0) = diag
([

1 1 10 10 1.5 × 10−3 1.5 × 10−3
]2
)
. (3.9)

Each vehicle obtains discrete measurement updates from three sensors (Sensor A,

Sensor B, and Sensor C). Sensor A is a two-dimensional position sensor with a model

51

given by

z[A]
k = s � xpk + v[A]

k , (3.10)

v[A]
k ∼ N

(
0

2×1
, 1002 I

2×2

)
, (3.11)

where s = [sx sy]T is a two-dimensional scale factor, � denotes the Hadamard product, and

I is an identity matrix. Sensor B is a two-dimensional, eight-satellite pseudorange sensor

with a model given by

z[B]
k =


∥∥∥t1 − xpk

∥∥∥
...∥∥∥t8 − xpk

∥∥∥

 +


bk

...

bk

 + v[B]
k , (3.12)

v[B]
k ∼ N

(
0

8×1
, 202 I

8×8

)
, (3.13)

where ti is the two-dimensional position of satellite i, xpk is the two-dimensional position

of the vehicle at time tk, and bk is a FOGM process simulating a simple receiver clock

error with time constant τB = 3600 [s] and σ2 = 80002 [m2]. Finally, Sensor C is a

two-dimensional velocity sensor with the model

z[C]
k = xvk + v[C]

k , (3.14)

v[C]
k ∼ N

(
0

2×1
, 502 I

2×2

)
. (3.15)

3.3.2.1 Example 1: Temporary sensor anomaly.

In this scenario, ARMAS was used to detect the presence of a temporary anomaly in

Sensor B. Aircraft 1 was equipped with a standard EKF while Aircraft 2 used ARMAS.

ARMAS specifications for this scenario were as follows:

• The significance level for monitoring and validation was set to 0.05.

• The monitoring period was defined by time elapsed and set to 20 [s].

• The validation period was defined by time elapsed and set to 60 [s].

52

• The RSR period was defined by time elapsed and set to 60 [s].

• The core navigation states were defined as all states shown in (3.6) (e.g., xp, xv, xa).

• Sensor B included a sensor-unique state, bk, as defined in (3.12).

• There were no calibration routines or remodeling options specified for any sensor.

At the start of the scenario, all sensors in Aircraft 2 were in monitoring mode. After

five minutes, a temporary anomaly defined by an unmodeled bias, which grew from 0 [m]

to 1500 [m] over 10 minutes, was applied to the fourth entry in z[B]
k from (3.12). As shown

in Figure 3.2, Aircraft 1 had no means to detect the growing Sensor B bias, causing its

solution to drift from the truth. In contrast, Aircraft 2 was equipped with ARMAS and

therefore, was able to quickly identify the mismatch between the solution versions across

the three sensors, and identify Sensor B as the cause of the divergence. Next, as shown

in Figure 3.3, Sensor B failed the monitoring test, and was placed into validation mode,

where it also failed the validation test. Since no calibration routine or remodeling options

were provided, Sensor B transitioned from validation mode to a failed state, where RSR

periodically validated its performance. Aircraft 2 continued navigation using only Sensor A

and Sensor C, as indicated by the increase in position covariance in Figure 3.2. After some

time, the two aircraft physically transitioned away from the anomaly area, and the solution

in Aircraft 1 quickly converged towards the truth. Meanwhile, Aircraft 2 continued to

navigate using only Sensor A and Sensor C until RSR led to a passing validation test. Once

Sensor B was validated, Aircraft 2 returned to navigation with all sensors in monitoring

mode. Table 3.3 compares the solution performance between the two aircraft for this

scenario. Note the large difference in Root Sum Squared (RSS) position error between

the two aircraft at the point the temporary anomaly ended, as shown in Table 3.3.

53

Figure 3.2: Trajectory comparison between Aircraft 1 and Aircraft 2, Example 1.

Figure 3.3: ARMAS mode history for Sensor B, Example 1.

54

Table 3.2: ARMAS example implementation summary.

Required by1

Parameter name Symbol M V C R Example specification

False alarm rate α • • 0.001

Integrity error bound αI • 0.05

Monitoring period • 20 [s]

Validation period • 60 [s]

RSR period • 30 [s]

Core navigation states x • • • EKF States: 1-6

Sensor-unique states ε[j] • • • EKF States: 7-8

Calibration parameters2 p[j] • h =
[
sxx(1) syx(2)

]T

Parameter values2 p[j]
0 • p0 = [1 1]T

Parameter uncertainty2 σ[j]
0 • σ0 = [10 10]T

Calibration sequence2 • Group 1: {p(1)}

Group 2: {p(2)}

Transition criteria2 • p(1): 300 [s]

p(2): 300 [s]

Candidate models3 h[j]
i • h1 = [x(1) + b1 x(2)]T

h2 = [x(1) + b1 x(2) + b2]T

Initial state estimates3 ε[j]
i0

• ε10 = 0

ε20 = [0 0]T

Initial state covariances3 Σ
[j]
i0

• Σ10 = 100

Σ20 =

 100 0

0 100


Termination criteria3 • 100 residual samples

1 M - Monitoring, V - Validation, C - Calibration, R - Remodeling

2 Example: 2D scale factor, p = [sx sy], each dimension estimated separately, time-based sequencing

between dimensions

3 Example: Model 1 adds 1D bias, Model 2 adds 2D bias, both models use sample size for

termination

55

Table 3.3: Key events and RSS position error comparison, Example 1.

RSS Position Error [m]

Sensor Event Time [m] Aircraft 1 Aircraft 2 % Change

All Start 0 0 0 0

B Anomaly: On 5 2.2 2.2 0

B Anomaly: Off 15 369.6 10.9 -97.1

All End 20 4.8 4.8 0

56

3.3.2.2 Example 2: Multiple sequential faults.

In this scenario, ARMAS was used to validate and remodel an untrusted sensor model

for Sensor B, as well as detect the need to calibrate Sensor A. Again, Aircraft 1 was

equipped with a standard EKF while Aircraft 2 used ARMAS. ARMAS specifications

for this scenario were as follows:

• The significance level for monitoring and validation was set to 0.05.

• The monitoring period was defined by time elapsed and set to 20 [s].

• The validation period was defined by time elapsed and set to 60 [s].

• The RSR period was defined by time elapsed and set to 60 [s].

• The core navigation states were defined as all states shown in (3.6) (e.g., xp, xv, xa).

• Sensor B included a sensor-unique state, bk, as defined in (3.12).

• Sensor A was equipped with a calibration routine defined by

p[A] =

[
sx sy

]T
, (3.16)

h[A] =

[
sxxp(1) syxp(2)

]T
, (3.17)

p[A]
0 =

[
1 1

]T
, (3.18)

σ[A]
0 =

[
10 10

]T
, (3.19)

where the calibration sequence requires estimation of p(1) = sx for 150 [s] first, then

p(2) = sy for an additional 150 [s].

57

• Sensor B was equipped with S = 8 remodeling candidates defined by

h[B]
1 = h[B] +

[
c 0 0 0 0 0 0 0

]
, (3.20)

h[B]
2 = h[B] +

[
0 c 0 0 0 0 0 0

]
, (3.21)

... (3.22)

h[B]
8 = h[B] +

[
0 0 0 0 0 0 0 c

]
, (3.23)

where h[B] is the baseline measurement model defined in (3.12), and the constant

bias, c, has initial statistics given by

c0 ∼ N
(
0 [m], 10002 [m2]

)
. (3.24)

At the start of the scenario, only Sensor A and Sensor C were online in both vehicles.

Additionally, both online sensors in Aircraft 2 were in monitoring mode. As shown in

Figure 3.4, Sensor B was initialized after five minutes. However, the sensor developers

were not confident in the sensor model from (3.12), and provided ARMAS an additional

eight model versions, each modeling the addition of a constant bias to a particular satellite.

Meanwhile, Aircraft 1 was limited to using (3.12) as given. The actual measurements from

Sensor B included a 1500 [m] constant bias added to the fourth entry in z[B]
k from (3.12). As

shown in Figure 3.5, the sensor model provided for Sensor B was incomplete, causing the

solution in Aircraft 1 to shift away from the truth. Meanwhile, Aircraft 2 used the validation

mode in ARMAS to recognize the model mismatch without compromising its navigation

solution. Since there were no calibration routines provided for Sensor B, it transitioned into

remodeling mode, where all model options were evaluated in parallel, while continuing to

navigate using the other two sensors. The model selection from the remodeling mode was

then successfully validated, placing Sensor B into monitoring mode. Five minutes later,

an aircraft maneuver changed the variable scale factor on Sensor A from s = [1 1]T to

s = [1.2 1.3]T. As shown in Figure 3.4, the change did not affect Aircraft 1 since the effect

58

Table 3.4: Key events and RSS position error comparison, Example 2.

RSS Position Error [m]

Sensor Event Time [m] Aircraft 1 Aircraft 2 % Change

All Start 0 0 0 0

B Online 5 15.9 15.9 0

A Scale factor 10 370.3 5.8 -98.4

B Offline 20 438.9 2.5 -99.4

All End 25 2.78 × 104 22.8 -99.9

on the navigation solution from Sensor A was attenuated by the measurement updates from

the other two sensors. Conversely, ARMAS in Aircraft 2 detected the growing residuals

and identified Sensor A as the source. As shown in Figure 3.6, Sensor A transitioned

from monitoring to calibration mode, where the provided scale factor calibration sequence

was augmented into the navigation state. The newly calibrated Sensor A then passed the

validation test and was placed back into monitoring mode. Finally, ten minutes later,

Sensor B was taken offline. At that point, with only Sensor A and Sensor C available

to provide additional information, the solution in Aircraft 1 began to exhibit the effects of

the un-calibrated Sensor A. Meanwhile, Aircraft 2 continued to operate nominally since it

had previously detected the need for and successfully executed the calibration of Sensor A.

Table 3.4 compares the solution performance between the two aircraft for this scenario.

Note the diverging performance in terms of RSS position error between the two aircraft,

especially after the un-calibrated Sensor A becomes the only source of position information

in Aircraft 1.

59

Figure 3.4: Trajectory comparison between Aircraft 1 and Aircraft 2, Example 2.

Figure 3.5: ARMAS mode history for Sensor B, Example 2.

60

Figure 3.6: ARMAS mode history for Sensor A, Example 2.

61

3.4 Chapter Summary

This chapter has introduced a novel sensor management framework that provides

sensor-agnostic autonomous and resilient sensor management for alternative multi-sensor

navigation problems. The proposed framework, named Autonomous and Resilient

Management of All-source Sensors (ARMAS), provides a breadth of sensor management

functions across four modes of operation: monitoring, calibration, remodeling, and

validation. Using a coherent interconnection between these modes, ARMAS was shown

to provide resilient and autonomous sensor management across two example multi-sensor

navigation scenarios that required a combination of fault detection and identification, online

parameter calibration, multiple-model selection, and sensor model validation. In the two

examples provided, a vehicle equipped with the ARMAS framework exhibited up to 99.9%

less position RSS error during temporary sensor anomalies and multiple sequential sensor

failures, when compared to a non-ARMAS equipped vehicle. Future work in this area

includes continued development of the novel methods for multi-sensor fault detection and

sensor model validation used in the monitoring and validation modes as well as multi-

trial Monte Carlo performance analysis using actual and simulated multi-sensor navigation

data.

62

IV. Sensor-Agnostic All-source Residual Monitoring

This chapter focuses on the monitoring objective from the overall ARMAS framework.

As previously stated, all-source navigation has become increasingly relevant over the past

decade with the rise in alternative sensor technologies. However, as the number and type

of sensors informing a system increases, so does the probability of corrupting the system

with sensor modeling errors, signal interference, and undetected faults. Though the latter of

these has been extensively researched, the majority of existing approaches have constrained

faults to single-sensor biases, and designed algorithms centered around the assumption

of simultaneously redundant, synchronous sensors, none of which are guaranteed for all-

source systems. This chapter develops a novel sensor-agnostic fault detection, exclusion,

and integrity monitoring method that minimizes the assumptions on the fault type, all-

source sensor composition, and the number of faulty sensors. The proposed method is

validated against traditional fault detection techniques, and shown to adequately detect and

isolate a variety of faults across several all-source configurations, without the need for

scenario-based customization. At the time of this writing, the research developed in this

chapter is in review for publication in [58].

4.1 Introduction

All-source navigation and Assured Position Navigation and Timing (APNT) have

become increasingly important research areas over the past two decades, especially as

alternative navigation sensor technologies (e.g., vision [97], radio [27], magnetic [22],

etc.) have been matured and integrated into navigation systems [38]. However, each

additional sensor allowed into a navigation system introduces another opportunity for

corrupting the navigation solution with errors in sensor modeling, unexpected signal

interference, or undetected sensor faults. Of these challenges, the latter has been

63

extensively researched [11][12][13][15][16][20][21][36][66][70][86][93][108][109] as a

multi-sensor fault detection problem where each satellite in the GPS constellation is

regarded as a different (albeit identical in nature and synchronous) sensor in the multi-

sensor system, and the “fault” is defined as an unmodeled bias that is assumed to only

affect one of the sensors (satellites) at any given time. As shown in Chapter 3 and [54], our

overall research motivation is to create a resilient sensor management system that provides

APNT through the online detection and self-correction (i.e., auto-tuning) of sensor models

that do not match observed measurements. In support of this overall effort, the specific

developments presented in this chapter seek to determine when any of the above sources

of corruption are present by detecting any general mismatches between a sensor’s stated

model (i.e., measurement function, function parameters, and error covariance matrix) and

its observed measurements, where an unmodeled bias is simply one specific case of a

mismatch. Additionally, our research shifts away from identical and synchronous sensors

such as GPS satellites, and focuses on all-source multi-domain (e.g., position, velocity,

etc.) and asynchronous sensors. In the following section, we discuss several classes of

techniques generally used in GPS fault detection, and highlight the novel developments

and adaptations we have made in order to achieve our research objectives.

4.2 Background

4.2.1 Basic Threshold Methods.

One of the most practical methods for detecting unmodeled biases is to place an alarm

threshold on an observable quantity that has a predictable range of acceptable values. In

[76], the value of the likelihood function for a set of Kalman filter [59] measurement

residuals is tracked using a moving window. A fault is then declared if the value of the

likelihood function falls below a set threshold, which can happen when either a bias is

present or an incorrect measurement error covariance matrix is provided by the sensor

model. Similarly, in [70], pseudorange and/or position estimates from each satellite are

64

compared to their predicted values derived from the other satellites in view. In this case, a

fault is declared if any of the differences exceeds a threshold defined by satellite geometry,

which can happen if one of the satellites is biased. Though simple to implement, both of

these types of methods are generally limited in that they are only able to detect a fault (in

some cases just a bias), and unable to identify the culprit sensor in a multi-sensor system.

4.2.2 Least Squares Methods.

Another set of bias detection methods such as the parity vector [36][93] and least

squares residuals [86] approaches rely on multiple GPS satellites being in view at any given

time. In these methods, redundant pseudorange measurements from various satellites are

used to form a linear least-squares projection matrix that, combined with assumptions on

the distribution of the bias, defines the hypotheses of the fault-free and fault-present cases.

Similar to previous methods, these methods also define the fault as a bias in one of the

satellites. These so-called snapshot methods are not only effective at detecting faults and

identifying the culprit sensor, but also lend themselves to statistically rigorous definitions

for system integrity, or the guarantee of system performance under a specific set of

assumptions. However, by definition, these methods rely on redundant measurements being

available at every time step and often assume linear measurement models, which are good

assumptions for GPS, but not the case for all-source multi-domain sensor applications.

Additionally, much like the threshold methods, the fault is once again defined as the

presence of a bias in a single satellite, which is only part of the sensor model, and excludes

the possibility of a wrongly stated measurement error covariance matrix. Finally, although

technically possible, none of these methods have been presently adapted to detect faults

outside the position domain, as would be needed for velocity-based (or any other domain)

all-source sensors.

65

4.2.3 Filtered Methods.

A third class of bias detection methods relies on testing the statistical distribution

of quantities estimated by Kalman filters [18][59][76][77], which is practical given

many navigation systems already employ such filters for producing the navigation

solution. In [20] and [66], the fault detection test is developed statistically and

geometrically, respectively, by analyzing the difference between the a-priori and a-

posteriori horizontal position estimates, as well as their corresponding covariances.

Meanwhile, in [15][16][21][108][109], a similar statistical test is formed by computing

the difference in horizontal position estimates (and associated covariances) between a main

filter that is informed by all sensors, and a series of parallel sub-filters, each excluding one

sensor. These multi-filter methods are advantageous in that they are not only able to identify

the culprit sensor but also produce a navigation solution that is theoretically free from

faulty measurements under a single-fault assumption. However, similar to the previously

mentioned methods, they have only been presently implemented to detect single-sensor

biases in the position domain, which is not sufficient for our desired all-source applications.

Additionally, these methods also require the computation of the cross-covariance terms

for accurately estimating the expected covariance of the difference in position estimates

between the main filter and each of the sub-filters. Finally, in [11][12][13][110], the

test statistic is derived not from “solution separation” vectors, but rather from averaging

a time sequence of residuals terms from the Kalman update equations. These filter-residual

methods are useful in detecting insidious biases with varying growth rates depending on the

averaging time used in the test statistic. However, much like the other methods described,

they have only presently been implemented to detect GPS pseudorange biases, which is

insufficient for all-source applications.

66

4.2.4 Contributions.

As shown in the previous section, a substantial amount of research has been developed

in the area of GPS fault detection, identification, and exclusion, but even the state-of-the-

art methods were found inadequate or incomplete to accomplish our research objectives

without significant development and adaptation. As such, the method developed in

this chapter, refered to henceforth as Sensor-Agnostic All-source Residual Monitoring

(SAARM), provides a significant contribution to the state-of-the-art in that it:

• Does not constrain faults to only biases,

• Can easily be scaled for multiple simultaneous sensor faults,

• Detects faults (sensor model mismatches) in and across multiple domains,

• Does not require simultaneously redundant sensors to provide fault detection and

identification,

• Provides fault exclusion without the need to compute cross-filter covariances, and

• Provides a robust measure of system integrity without constraining the fault type.

The remainder of this chapter is divided into three additional sections. Section 4.3 develops

the necessary multi-filter multi-sensor notation, the residual test statistic, the fault detection

and exclusion process, and the system integrity assumptions and guarantees. In Section

4.4, the detection performance of the proposed method is compared against existing

snapshot methods in a simulated GPS navigation problem and several simulated all-source

navigation problems. Finally, Section 4.5 summarizes the research contributions from this

chapter and provides ideas for future work.

67

4.3 Methodology

4.3.1 Multi-Sensor Multi-Filter Notation.

This section expands the conventional Kalman filter [59] notation from [76][77] to

include estimates from multiple filters as well as measurements from multiple non-identical

sensors. The notation and underlying considerations will be crucial in the later development

of the residual-space test statistic and the resulting fault identification process. Consider a

(possibly) non-linear dynamic system of the form

ẋ(t) = f [x(t),u(t), t] + G(t)w(t), (4.1)

where x is the N × 1 navigation state vector containing the system states, u is the control

input vector, G is an N ×W linear operator, and w is a W × 1 white Gaussian noise process

with a W × W continuous process noise strength matrix Q. Suppose the discretized [96]

system states are estimated by J separate filters. Then at time t = tk, the system state

estimate vector and corresponding state estimation error covariance matrix from filters

j = 1, . . . , J are given by x̂[j](tk) and P[j]
x̂x̂ (tk), respectively. Next, each of the J filters

can be informed by any, all, or a subset of I sensors. At time tk, the i = 1, . . . , I sensor

provides (possibly) multidimensional Zi × 1 measurements of the form

z[i](tk) = h[i] [x(tk),u(tk), tk] + v[i](tk), (4.2)

where h[i] is a (possibly) nonlinear measurement function, and v[i](tk) is a Zi × 1 discrete

white Gaussian noise process with covariance matrix R[i](tk). Immediately prior to a

measurement update, the estimated measurement for sensor i from filter j, ẑ[i, j], is

generated using

ẑ[i, j](t−k) = h[i]
[
x̂[j](t−k),u(tk), tk

]
, (4.3)

while its estimated covariance matrix, P[i, j]
ẑẑ (t−k), is generated based on the type of filtering

algorithm. For example, in a linearized filter (such as an Extended Kalman Filter) it can be

68

computed using

P[i, j]
ẑẑ = H[i]P[j]

x̂x̂ H[i]T
, (4.4)

where the time index (t−k) is omitted for simplicity, and H[i] represents the Jacobian of

h[i] about the point x̂[j](t−k). For information on generating Pẑẑ in an Unscented Kalman

Filter (UKF), the reader is referred to [101]. Finally, the (so-called) pre-update residual

vector computed between sensor i and filter j, r[i, j], and associated covariance matrix,

P[i, j]
rr , is given by

r[i, j](tk) = z[i](tk) − ẑ[i, j](t−k) (4.5)

P[i, j]
rr (tk) = R[i](tk) + P[i, j]

ẑẑ (t−k). (4.6)

4.3.2 Fault Detection Test Statistic.

Having derived the residual vector, r[i, j](tk), and its associated covariance matrix,

P[i, j]
rr (tk), in (4.5) and (4.6), we now define a residual-space test statistic to determine if a

set of observed residuals between a specific sensor-filter pair are adhering to their expected

distribution. Since our goal is to limit the assumptions on the type of fault (i.e., the fault

could be a bias, an incorrectly stated noise covariance matrix, or incorrect calibration of

measurement function parameters), we did not model two competing distributions as would

be needed to employ a LRT [63]. Instead, we focused on the single likelihood function of

the residuals, based on measuring their Mahalanobis distances [28] due to their simplicity

and “standardizing” properties, which were found useful in time-changing processes such

as navigation.

Given a Zi-dimensional Gaussian distribution with mean µ, and covariance matrix Σ,

the squared Mahalanobis distance, d2, between an observation y, and the centroid of the

distribution is then given by

d2 = (y − µ)T Σ−1 (y − µ) . (4.7)

69

Additionally, d2 is known [23][28] to follow a Chi-Square distribution with Zi degrees of

freedom. Moreover, the sum of M independent d2 distances is also known to follow a

Chi-Square distribution with M × Zi degrees of freedom. Since Kalman filter pre-update

residuals are assumed to be a zero-mean white sequence [76], we let y = r[i, j](tk) from

(4.5), Σ = P[i, j]
rr (tk) from (4.6), and µ = 0. Subsequently, we can develop a fault detection

test, given set of M, Zi-dimensional residual vectors collected between t = tk and t = tk+M

using

H0 : χ∗[i, j] > χ
2(α/2,M × Zi) and (4.8)

χ∗[i, j] < χ
2(1 − α/2,M × Zi)

H1 : χ∗[i, j] < χ
2(α/2,M × Zi) or (4.9)

χ∗[i, j] > χ
2(1 − α/2,M × Zi),

where M defines the number of averaging samples in the test, α is the significance level of

the test (i.e., probability of false alarm, PFA), H0 is defined as a a fault not present in filter

j, H1 is defined as a fault present in filter j, and

χ∗[i, j] =

k+M∑
s=k

d2
[i, j](ts), (4.10)

d2
[i, j](tk) = r[i, j]T

(tk)
[
P[i, j]

rr (tk)
]−1

r[i, j](tk). (4.11)

It is important to note a few key points about the above test statistic. First, it is designed

to detect mismatches (in any domain such as position, velocity, etc.) between sensor

measurements and their stated models, in both the upper and lower ends of the resulting

Chi-Square distribution. This was purposely done so that our method could not only detect

unlikely large or variable residuals resulting from biases, problems in the measurement

function, its parameters, or under-stating the measurement error covariance matrix, but

additionally, unlikely small residuals resulting from over-stating the measurement error

covariance matrix. Next, similarly to [94], we experimentally found the thresholds in (4.8)

70

and (4.9) needed to be adjusted (by approximately ±5% during our simulations) to account

for differences between their theoretical and empirical values (such as linearization errors)

in order to mitigate unnecessary false alarms. Finally, the test can only determine if any of

the I sensors providing measurement updates to filter j has a fault. In order to determine

which sensor(s) within filter j are faulty, additional assumptions and computations must be

made, as shown in the next section.

4.3.3 Fault Identification Process.

Up to this point, we’ve defined how a time-sequence of residual vectors from a specific

sensor-filter combination may be tested for likelihood, without making assumptions on the

domain of the sensor measurement, or the type of fault. Here it is important to emphasize

that a H1 result derived from a set of residual vectors from a particular sensor-filter pair

(i, j) does not imply that sensor i is faulty. It is only an indication that one of the sensors

informing filter j is faulty. In other words, low-likelihood residuals can then either be

caused by faulty measurements, z[i], or faulty estimated measurements, ẑ[i, j], the latter of

which is influenced by all sensors informing filter j whose state-space overlaps with sensor

i. To solve this challenge, we developed a “fault consensus” process that associates the

presence of a sensor with the presence of a fault in order to determine the most probable

sensor associated with H1 (faulty) results. Though the proposed method is not limited to

just single sensor faults, it is best to begin our discussion with this case before scaling to

the generalized multiple simultaneous fault cases. The next two sections develop the single

and multiple fault cases, respectively.

4.3.3.1 Single Serial Faults.

As described in Section 4.2, a commonly assumed fault scenario is a single sensor

fault per testing epoch (i.e., during a single M-sample test window in our case). Multiple

faults are still considered, but restricted to occur serially. In this case, we set up our

fault identification process by creating J = I filters, each informed by a unique set of

71

I − 1 sensors. In other words, each filter excludes one of the I sensors. Here, it is

important to note two points. First, since we expect all-source sensors to be non-identical,

some states may become unobservable within a particular filter if the only sensor that has

observability over them is excluded from that filter. To prevent potential numerical issues

with the covariance of unobservable states, we can perform a stochastic observability test

[7] on each filter and/or design the set of sensors such that all states are observable in all

filters. Second, as with other parallel-filter methods, a “main filter” that is informed by

all sensors is also created, but in this method we do not use its information for “solution

separation” comparisons, thereby eliminating the need for computing the cross-covariance

terms between it and all other filters. Having designed the set of filters using this method

guarantees, under the assumption that, at most, one sensor can fail simultaneously, at least

one of the filters will be completely unaffected by faulty measurements. As shown below,

we can then use this axiom in conjunction with the full set of (i, j) residual test results to

determine the culprit sensor.

We begin the fault identification process by populating the I × J (which becomes I × I

in this single-fault case) test results matrix, T, using

T(i, j) =


0, Sensor i does not inform filter j,

0, χ∗[i, j] yields H0 (no fault detected),

1, χ∗[i, j] yields H1 (fault detected).

(4.12)

Figure 4.1 illustrates the information from each sensor-filter pair needed to populate T in

the case where the jth filter excludes the jth sensor. In the figure, each of the i = 1, . . . , I

rows corresponds to the measurement, z[i], and its associated error covariance matrix, R[i],

obtained from the ith sensor. These two parameters define the modeled distribution of the

sensor measurement, and make up the first half of (4.5) and (4.6), respectively. Next,

each of the j = 1, . . . , J (J = I in this single fault case) columns corresponds to the

estimated measurement, ẑ[i, j], and its associated error covariance matrix, P[i, j]
ẑẑ . These two

72

parameters make up the remainder of (4.5) and (4.6) and define the modeled distribution of

the estimated sensor measurement. As shown in the figure, these last two parameters are

influenced by all sensors informing the filter in the jth column, which corresponds to all

sensors except the jth sensor.

Once populated, a fault is declared when T contains any non-zero entries. This means

a fault is declared when any of the I2 − I residual test results from (4.8) and (4.9) that are

contained in T result in H1, which theoretically increases the probability of false alarm

up to a maximum of PFA ≤ α(I2 − I) for the single sensor fault assumption. If a fault

is declared, the culprit sensor may be identified if a consensus is reached. That is, since

each sensor is excluded from one filter, we can identify a faulty sensor if only a single filter

(presumably the filter that excluded it) remains fault free. Mathematically, we first compute

the fault scores vector, s, whose dimension is equal to the number of filters, J, using

s(j) =

I∑
i=1

T(i, j), (4.13)

which produces a sum across the rows (sensors) for each column (filter) in T. Once

computed, we have four possible scenarios:

1. If s contains all zeros, then no fault has been detected,

2. If s contains at least one non-zero entry, but more than one zero entry, then a fault is

declared and the culprit is not identified,

3. If s(j) is the only zero entry in s, then a fault is declared and the culprit sensor is

the sensor that was excluded from the jth column in T, or the jth filter, if constructed

according to Figure 4.1.

4. Finally, if s contains no zero entries, then more than one sensor is faulty, and the

assumptions of the test have been violated.

73

Each of these “states” can be used in conjunction with the system integrity computations

presented in Section 4.3.4 in order to continuously inform users of their APNT protection

status. Depending on the type and dynamics of the fault, as well as the set and type of

sensors in the system, the results in T may continue to change during every epoch and

eventually lead to a culprit. If and when a culprit is determined, the corresponding fault-

free filter is used as the new main filter, and a new set of I − 1 filters is initialized using

its states. The process can then be repeated sequentially for multiple serial faults with

the assumption that a second fault does not occur during the first M samples after having

re-spawned the filter set, which will be addressed in the next section.

4.3.3.2 Simultaneous Faults.

The serial-fault methodology described above can be easily scaled to enable detection

of a secondary fault occurring during the first M samples after an initial fault, as well as

multiple simultaneous faults. To do so, we first re-define the number of filters required, J,

the structure of the associated test results matrix, T, and the dimension of the faults score

vector, s, as a functions of the assumed maximum number of simultaneous faults, which we

define as a “layer.” In general, the number of additional filters required, J, for each layer,

N, is given by

JN =

(
I

I − N

)
=

I!
N!(I − N)!

. (4.14)

As shown in Section 4.3.3.1, in layer one, we assumed N = 1 simultaneous fault was

possible, and created

J1 =

(
I

I − 1

)
=

I!
1!(I − 1)!

= I (4.15)

filters each excluding one sensor, which were then used to populate T1 ∈ RI×J1 , detect the

fault, and identify the single culprit using s1. If we now assume N = 2 simultaneous faults

74

1 2 3 I 2 3 I 1 3 I 1 2 I 1 2 3

1

2

3

I

Figure 4.1: Illustration of the multi-sensor multi-filter test statistic matrix, T.

75

are possible, we require an additional

J2 =

(
I

I − 2

)
=

I!
2!(I − 2)!

=
I2 − I

2
(4.16)

filters each excluding two sensors, which are then used to populate T2 ∈ RI×J2 . Using

this two-layer configuration, the culprit sensor in a single fault scenario can continue to be

identified as previously described, using T1 and s1. In the case of a simultaneous fault, s1

indicates the single fault assumption has been violated (no non-zero entries remain), which

prompts the system to use T2 and s2 to identify the two culprits. In the case of a secondary

fault during the first M samples after an initial fault, the the subset of filters in the J2 layer

that excluded the first culprit corresponds exactly to the new J1 layer of filters needed after

re-spawning, which enables uninterrupted fault detection.

For example, consider a system with I = 5 sensors where up to two simultaneous

sensor faults are assumed. The first layer consists of J1 = 5 filters, and each filter excludes

one of the sensors, as shown in Table 4.1. Using (4.16), the second layer consists of J2 = 10

filters, and each filter excludes two of the sensors, as shown in Table 4.2. Suppose Sensor

3 experiences a fault. In this case, Filter 3 (shaded gray in Table 4.1) is uncorrupted by

any faulty measurements, and its corresponding column in T1 ∈ R5×5 uniquely contains all

zeros. After determining Sensor 3 is the culprit via (4.13), Sensor 3 is taken offline and

a new set of J1 = I − 1 = 4 filters, each excluding one of the remaining four sensors, is

spawned. Without a J2 layer, this would mean the system could not detect a subsequent

fault while it repopulates the new T1 ∈ R4×4. However, having the J2 layer already running,

we can see the new J1 layer of filters is actually equivalent to the subset of J2 filters that

had also excluded Sensor 3 (shaded gray in Table 4.2), which guarantees uninterrupted

fault detection after detecting an initial fault. Finally, suppose both Sensor 3 and Sensor

5 experience a simultaneous fault. In this case, every single filter in the J1 layer (i.e.,

every column in Table 4.1) would be corrupted and no column in T1 would contain all

zeros. However, the J2 filter that excluded both Sensor 3 and Sensor 5 (shaded dark

76

Table 4.1: Sensor-filter configuration for layer J1, I = 5 sensors

Included in filter

Sensor 1 2 3a 4 5

1 • • • •

2 • • • •

3 • • • •

4 • • • •

5 • • • •

aThis filter is uncorrupted by faulty Sensor 3 measurements

gray in Table 4.2) would be guaranteed to be uncorrupted by faulty measurements, and

its corresponding column in T2 ∈ R5×10 would uniquely contain all zeros. In principle,

this process can be scaled up to any number of layers, corresponding to any number of

simultaneous faults. It is important, however, to consider the trade-off in computational

power required to support the growing number of required filters for each additional layer.

4.3.4 Integrity Assumptions and Guarantees.

Having defined an all-source fault detection, identification, and exclusion process,

we now turn our attention to the resulting system integrity computation. In general, we

define system integrity as a guarantee of system performance under a particular set of

assumptions. This definition fits the established methods in the previously mentioned

GPS integrity methods. Namely, the guarantees of performance for GPS-based methods

are commonly given as a Horizontal Protection Level (HPL) or Horizontal Integrity

Limit (HIL), which are essentially constant-probability ellipses in the horizontal plane

that are guaranteed to contain the true position while meeting the assumptions of the fault

77

Table 4.2: Sensor-filter configuration for layer J2, I = 5 sensors

Included in filter

Sensor 1 2a 3 4 5a 6 7 8a 9b 10

1 • • • • • •

2 • • • • • •

3 • • • • • •

4 • • • • • •

5 • • • • • •

aThese filters are uncorrupted by faulty Sensor 3 measurements

bThis filter is uncorrupted by faulty Sensor 3 and Sensor 5 measurements

detection test (e.g., bias distribution, single-sensor fault, probability of missed detection,

etc.). Similarly in SAARM, we aim to provide an HPL guaranteed to contain the true

position under the assumptions of our method. Our lack of assumptions in terms of the

type, number, and domain of the fault(s), or the type and number of sensors, arguably

complicated our fault detection process. At the same time however, it allows us to simplify

our fault identification assumption into a single axiom: assuming at least one of the filters

is informed entirely by properly modeled, uncorrupted sensors, then at least one filter

contains consistent state estimation error statistics. In other words, since it is assumed

that one of the filters is fault-free (based on properly designing the set of filters), then

the estimated error statistics from one of the filters truly describe actual errors committed

by the filter. Defining αI as the acceptable error bound, we can then derive an accurate

100(1−αI)% error ellipse on the horizontal position using the uncorrupted filter’s horizontal

position estimate and its associated error covariance matrix. Given the uncorrupted filter is

not identifiable prior to determining a culprit, we simply union the 100(1−αI)% horizontal

78

position error ellipses from all of the filters, thereby guaranteeing the true horizontal

position is contained within the union with at least a 100(1 − αI)% probability, since the

union can only grow the resulting ellipse. This guarantee is valid regardless of the status of

the underlying fault detection and identification process.

To illustrate our HPL, consider a 2D navigation problem using I = 5 sensors. The

sensor suite is composed of three 2D position sensors: POS1, POS2, POS3, and two

2D velocity sensors: VEL1, VEL2. The system dynamics are propagated using a 2D

kinematics model driven by 2D FOGM acceleration. In order to best visualize the effects

of faults on HPL, the fault has been defined as a growing bias starting from 0 [m] at

tk = 60 [s], growing at a rate of 2 [m/s], and applied to the x-dimension measurements

from the POS2 sensor. Figures 4.2 through 4.5 illustrate a time sequence of events along a

sample instantiation of the simulation. As shown in the figures, an error bound of αI = 0.05

was used to produce 95% error ellipses. The HPL derived from the union of the 95%

horizontal position error ellipses from all filters is guaranteed to contain the true location

at least 95% of the time, regardless of the presence of a fault, ability to detect, or ability

to determine a culprit. In all examples, the main filter is informed by all sensors but its

states and their error covariances are not used in the detection of faults or the computation

of HPL. Finally, though these sample illustrations were limited to a single fault and two

dimensions, the underlying axiom and assumptions are still valid for multiple faults and

the error ellipses can be scaled to 3D error ellipsoids, if desired.

79

Figure 4.2: Example SAARM HPL: No fault present. In this example, there is no fault

induced into any of the five sensors, and no fault has been detected (all entries in s are

zero), which is shown to the user as a green HPL. All filters are uncorrupted. The HPL is

comprised of the union of the 95% position error ellipses from all filters, and contains the

true position at least 95% of the time.

80

Figure 4.3: Example SAARM HPL: Undetected fault. In this example, a 30 [m] bias is

affecting the POS2 sensor, but no fault has been detected yet (all entries in s are still zero),

which is shown to the user as a green HPL. All filters except Filter 2 are corrupted. The

HPL is comprised of the union of the 95% position error ellipses from all filters, and it is

guaranteed to contain the true position at least 95% of the time since one of the filters is

guaranteed to be uncorrupted.

81

Figure 4.4: Example SAARM HPL: Unidentified culprit. In this example, a 44 [m] bias

is affecting the POS2 sensor, and a fault has been detected (at least one entry in s is non-

zero), but no culprit has been identified (there is more than one zero entry in s), which is

shown to the user as an orange HPL. All filters except Filter 2 are corrupted. The HPL is

comprised of the union of the 95% position error ellipses from all filters, and it is guaranteed

to contain the true position at least 95% of the time since one of the filters is guaranteed to

be uncorrupted.

82

Figure 4.5: Example SAARM HPL: Culprit identified. In this example, a 56 [m] bias is

affecting the POS2 sensor, a fault has been detected and the culprit has been identified

(there is a single zero-entry in s), which is shown to the user as a red HPL. All filters

except Filter 2 are corrupted. The HPL is comprised of the union of the 95% position error

ellipses from all filters, and it is guaranteed to contain the true position at least 95% of the

time since one of the filters is guaranteed to be uncorrupted. Immediately after this time

step, the POS2 sensor is taken offline, and a new set of filters is re-spawned from Filter 2.

83

4.4 Simulation Results

The proposed method was evaluated using Monte Carlo simulations across a variety

of navigation problems. For all simulations, the true system dynamics were driven by a 2D

kinematic model given by

ẋ(t) =


ẋp(t)

ẋv(t)

ẋa(t)

 =


xv(t)

xa(t)

− 1
τa

xa(t)

 +


0

0

w(t)

 , (4.17)

where xp is the vehicle’s 2D position in [m], xv is the 2D velocity in [m/s], xa is the 2D

acceleration in [m/s2] and driven by a FOGM process with time constant τa = 90 [s], and

w(t) is a 2D white Gaussian noise process with E
[
w(t)w(t + τ)T

]
= Qδ(τ) and

Q = (1.5 × 10−3)2 I
2×2

[m2/s5]. (4.18)

For each level or fault type in each simulation, 3000 trials were conducted. For each trial

in each simulation, the initial true position and initial position state estimates were set to

zero. The initial true velocity was randomly drawn from a N
(
0, 102

)
[m2/s2] distribution

for both the x and y axes, while the initial velocity state estimates were set to zero. The

initial true acceleration and acceleration state estimates were set to zero. The initial state

estimation error covariance was set to 102 [m2] in position, 102 [m2/s2] in velocity, and

(1.5 × 10−3)2 [m2/s4] in acceleration. Each trial was propagated using ∆tk = 0.5 [s], starting

at tk = 0 [s] with a prescribed fault occurring at tk = 22 [s], and ending at tk = 60 [s]. Across

all simulations, the SAARM test significance level was set to α = 1/15000 = 6.67 × 10−5,

while the test epoch was set to M = 40 samples, which was equivalent to 20 [s].

4.4.1 RAIM Comparisons.

In the first set of simulations, SAARM was applied to the common pseudorange fault

detection and identification problem from GPS, and compared to the results from the least-

squares Receiver Autonomous Integrity Monitoring (RAIM) method developed in [86],

84

using rD = 9.5 [m] for detection, and rI = 11 [m] for isolation. The RAIM detection and

isolation thresholds values were chosen such that the algorithm would generally match the

performance shown in [86, Table 4] for a 25 [m] bias. For these simulations, I = 8 2D

pseudorange sensors were used, each with a nonlinear measurement model given by

z[i]
k =

∥∥∥ti − xpk

∥∥∥ + bk + v[i]
k , (4.19)

v[i]
k ∼ N

(
0, 42

)
[m2], (4.20)

where ti is the 2D position of the ith satellite, xpk is the 2D position of the vehicle at time tk,

and bk is a FOGM process simulating a receiver clock error with time constant τb = 3600

[s] and σ2 = 80002 [m2]. For each trial, the true initial clock error was drawn from

a N
(
0, 80002

)
[m2] distribution, while its corresponding initial state estimate was set to

zero.

The first four rows in Table 4.3 summarize the results across varying bias levels

from 10 [m] up to 100 [m]. In the last row, the fault was defined by a sudden change

in observed pseudorange measurement noise (i.e., 10x scaling of R). The columns of Table

4.3 summarize the probability (between 0 and 100%) of false alarm, missed detection, fault

detection and isolation, and fault detection without isolation, respectively. As intended,

RAIM performance matched its expected performance for a 25 [m] bias since its thresholds

were tuned as such. As shown, SAARM generally outperformed RAIM for biases under

50 [m], and performed just as well for larger biases. Here, it is important to note the

objective of the simulations in Table 4.3 was not to show how SAARM would perform

against RAIM in a real GPS environment, but rather demonstrate that it performs no worse

than an established RAIM method, given a simple bias fault, and using a reasonable set

of significance and threshold levels. It is important, however, to point out that SAARM

clearly outperformed RAIM in detecting a fault other than a simple bias. And although

different rD and rI thresholds could be derived for RAIM for such cases, the generality

85

Table 4.3: Fault detection and identification comparison, simulated pseudoranges

Probability (%)

False alarm Missed Isolated Detect only

Fault SAARM RAIM SAARM RAIM SAARM RAIM SAARM RAIM

10 [m] bias 0.00 0.00 5.25 100.0 57.15 0.00 37.60 0.00

25 [m] bias 0.00 0.00 0.00 18.48 100.0 7.31 0.00 74.20

50 [m] bias 0.00 0.00 0.00 0.00 100.0 100.0 0.00 0.00

100 [m] bias 0.00 0.00 0.00 0.00 100.0 100.0 0.00 0.00

10x R scale 0.00 0.00 7.23 91.27 78.05 0.65 14.72 8.08

- SAARM: M = 40 samples, α = 6.67 × 10−5, RAIM: rD = 9.5 [m], rI = 11 [m]

- Pseudorange measurement noise modeled as N (0,R), R = 42 [m2]

of the SAARM method allows such performance with no additional modification to the

underlying algorithm, which will be further showcased in the all-source simulations below.

4.4.2 All-source Performance.

Having established a benchmark for performance in a simulated but well understood

GPS pseudorange problem, the next set of simulations were focused on establishing

SAARM performance across a wide variety of fault types and domains, without the need

to modify any portion of the fault detection and isolation algorithm. To do so, five all-

source navigation simulations were conducted, each using three out of four sensors, which

are described in Table 4.4. The fault detection results from each of the five scenarios is

summarized in Table 4.5. In the first two scenarios, a simple position bias was injected

into the x-axis of the POS1 position sensor, with the other two sensors chosen as velocity

sensors. In these scenarios, SAARM detected and isolated the majority of 30 [m] and

86

Table 4.4: Sensor configuration for all-source scenarios

Scenario Fault Affected sensor Other sensors

1 30 [m] bias POS1 VEL1, VEL2

2 40 [m] bias POS1 VEL1, VEL2

3 2 [m/s] bias VEL1 POS1, POS2

4 5 [m/s] bias VEL1 POS1, POS2

5 0.1x R scale POS2 POS1, VEL1

POS1: 2D position sensor, R = diag
(
[102, 102]

)
[m2]

POS2: 2D position sensor, R = diag
(
[202, 202]

)
[m2]

VEL1: 2D velocity sensor, R = diag
(
[12, 12]

)
[m2/s2]

VEL2: 2D velocity sensor, R = diag
(
[12, 12]

)
[m2/s2]

all of the 40 [m] position biases using velocity sensors for redundancy, which could not

be done using least-squares methods or position “solution separation” methods without

specific customization. Similarly, in the second set of simulations (scenarios 3 and 4), a

simple velocity bias was injected into the x-axis of the VEL1 velocity sensor, with the

other two sensors chosen as position sensors. In this case, SAARM detected and isolated

the majority of 2 [m/s] and all of the 5 [m/s] velocity biases using position sensors for

redundancy. Finally, in the last scenario, SAARM detected virtually all faults defined by a

sudden change of the measurement noise variance in the POS2 sensor using a position and

a velocity sensor for redundancy. It is important to note here, the change in noise variance

in this scenario caused the observed measurements to become less noisy than prior to the

fault. This type of detection is not critical for safety of flight or protection, but would be

necessary in a system that self-corrects or auto-tunes sensor models, as stated in our overall

research objective.

87

Table 4.5: Fault detection and identification performance, all-source simulations

Probability (%)

Scenario False alarm Missed Isolated Detected only

1 0.00 13.19 86.75 0.07

2 0.00 0.00 100.0 0.00

3 0.20 6.55 64.15 29.30

4 0.07 0.00 100.0 0.00

5 0.00 0.00 99.93 0.07

SAARM: M = 40 samples, α = 6.67 × 10−5

4.5 Chapter Summary

This chapter has proposed a novel method for fault detection and isolation in all-

source navigation systems. The proposed method, referred to as SAARM, did not constrain

faults to only biases, as has been done in the majority of existing research, and additionally

provided a mechanism for detection of multiple simultaneous faults. Driven by a sensor-

and fault-agnostic residual monitoring algorithm, the proposed method was not only shown

to perform comparably to existing RAIM techniques in the case of a single-satellite bias,

but more importantly, shown to detect and isolate various types sensor model mismatches

in and across multiple sensing domains such as position and velocity, without the need for

synchronous or simultaneous sensor redundancy. Finally, the proposed method was shown

to provide a robust measure of system integrity under minimal assumptions, guaranteed

to contain the true vehicle horizontal position (within a specified error bound) throughout

all phases of the fault detection and identification process. The research in this chapter

directly enables self-correcting plug-and-play open architecture navigation systems as

well as APNT by providing a generalized and robust method for system integrity in the

challenging application of all-source multi-domain navigation.

88

V. Real-time Validation for Plug-and-play Sensors

As part of the overall all-source resilient navigation objective in our ARMAS

framework, this chapter contributes a key component - validation of sensors which

have questionable sensor models, in a fault- and sensor-agnostic manner, and without

compromising the ongoing navigation solution in the process. The proposed algorithm

combines a residual test statistic with the partial update formulation of the Kalman-Schmidt

filter to provide a reliable method for sensor model validation that protects the integrity of

the navigation solution during the validation process, all using a single existing filter. The

proposed method is validated via Monte Carlo simulations against conventional residual

monitoring and shown to outperform the standard approach in both fault detection and

errors incurred during the validation process. At the time of this writing, the research

developed in this chapter is in review for publication in [57].

5.1 Introduction

All-source navigation and APNT have become increasingly relevant over the past two

decades, as the research community continues to mature sensor technologies (e.g., vision

[97], radio [27], magnetic [22], etc.) and integrate them into navigation systems [38].

However, each additional sensor allowed into a navigation system creates an opportunity

for corrupting the navigation solution with errors in sensor modeling, unexpected signal

interference, or undetected sensor faults. Though the latter of these challenge areas has

been extensively researched [11][12][13][15][16][20][21][36][66][70][86][93][108][109],

the primary objective has traditionally been to provide navigation solution integrity (via

fault detection and exclusion) in an ongoing multi-sensor navigation process, with the

assumption that each sensor in the system is equally likely to experience a fault, and

that sensors are properly modeled at the start of the navigation process. Additionally, the

89

research in this challenge area has focused almost exclusively on simultaneously redundant

and synchronous multi-sensor systems such as the satellites in the GPS.

Our overall research motivation was to address the APNT challenge for all-source

navigation by creating a general sensor-agnostic resiliency framework, which is described

in Chapter 3 and [54]. The ARMAS framework provides APNT through the online or real-

time detection and self-correction (i.e., auto-tuning) of sensor models that do not match

observed measurements, where a biased sensor is simply one possible model mismatch. In

support of this overall objective, two specific all-source research areas were investigated

for the aforementioned framework: (1) the ability to monitor online sensors (i.e., sensors

currently informing the navigation solution) for fault detection and exclusion, and integrity

computations, and (2) the ability to initialize offline sensors by validating their stated

measurement models while protecting the navigation solution. Of these two processes,

the former is partly addressed in the previously mentioned research for systems like GPS

(though faults are limited to single-sensor biases), and in Chapter 4 and [58] for all-source

sensors, multiple-sensor faults, and faults beyond biases. The latter, which we are referring

to as the sensor validation problem, is virtually unaddressed (at the time of writing) in

current research and constitutes the focus of this chapter.

5.2 Background

In the context of our research, sensor validation refers to the process of initializing

an offline plug-and-play sensor into an ongoing navigation system that is already being

informed by a set of (previously initialized) online sensors, and determining whether or not

its measurements are statistically adhering to their stated measurement model. The set of

online sensors are presumably being monitored for fault detection and exclusion using one

of the many integrity monitoring methods previously discussed, such as [58]. In this sense,

the offline sensor is initialized separately due to the presumption of possible errors in sensor

modeling or the presence of sensor faults. This concept also encompasses the possibility

90

of re-initializing a sensor that was previously found “faulty” and placed offline by a multi-

sensor integrity monitoring process (e.g., due to temporary interference or model changes

due to environmental variables). Therefore, the challenge in sensor validation is not focused

around continuous integrity monitoring for the duration of the navigation sequence, but

rather during a fixed “initialization” period, after which the sensor is either determined

valid and placed into the integrity monitoring pool with all other online sensors, or deemed

invalid and either placed back into offline status or placed into sensor model remedial

procedures as described in [54]. The primary challenge in validating an offline sensor

is ensuring its (presumed) faulty measurements do not corrupt the ongoing navigation

solution, while simultaneously ensuring the chosen statistical test is capable of detecting

nuanced differences between the observed measurements and their stated measurement

model [52]. Technically, this could be accomplished via two existing methods, neither

requiring additional development. The first method would be to simply collect a series

of pre-update residuals between the offline (untrusted) sensor and the (trusted) navigation

solution, without actually applying the measurement update, and testing the observed

statistical distribution [20][28][76]. However, this method would preclude any sensors that

require additional filter state estimates (i.e., not currently being estimated by the filter)

as part of the measurement model such as a GPS receiver clock error state, a sensor

run-to-run variable scale factor, or variable camera intrinsic and extrinsic parameters, to

name a few, since they are only observable by the untrusted sensor. The second method

would be to add the untrusted sensor to the pool of trusted online sensors already being

monitored by a fault detection or integrity monitoring method. However, this would

not only require an additional sub-filter in the multi-filter fault exclusion architecture,

but more importantly, it would unnecessarily degrade the system integrity computations

by allowing an untrusted sensor to affect the various sub-filter solutions involved in the

fault exclusion process. As later shown, our proposed method leverages the concept of a

91

“partial update” [17], derived from the Kalman-Schmidt [81] filter formulation in order to

provide sensitive fault detection for sensor model validation while protecting the ongoing

navigation solution, using a single-filter architecture. As such, the method developed in this

chapter, refered to henceforth as Real-time Validation for Plug-and-play Sensors (RVPS),

provides a significant contribution to the state-of-the-art in that it:

• Provides a general method for all-source plug-and-play sensor model validation,

• Estimates additional sensor states without compromising the navigation solution, and

• Protects system integrity computations during validation using a single existing filter.

The remainder of this chapter is divided into three additional sections. Section

5.3 develops the necessary notation, the partial update formulation, and the residual test

statistic used for validation. In Section 5.4, the performance of the proposed method is

compared (in terms of probability of detection and navigation solution corruption) against

full-update residual methods in a simulated all-source navigation problem. Finally, Section

5.5 summarizes the research contributions and provides ideas for future work.

5.3 Methodology

Adapting the Kalman filter [59] notation from [76][77], consider an ongoing

(possibly) non-linear dynamic system of the form

ẋ(t) = f [x(t),u(t), t] + G(t)w(t), (5.1)

where x is the N × 1 navigation state vector containing the system states, u is the control

input vector, G is an N ×W linear operator, and w is a W × 1 white Gaussian noise process

with a W ×W continuous process noise strength matrix Q. At time t = tk, the state estimate

vector and corresponding state estimation error covariance matrix are given by x̂(tk) and

Px̂x̂(tk), respectively, and produced by the system’s “main filer,” which is informed by a

set of online (trusted) sensors that are presumably being monitored for fault detection and

92

exclusion. Next, starting at a given initialization time, we wish to begin validating an

offline and untrusted plug-and-play sensor that provides (possibly) multidimensional Z × 1

measurements of the form

z(tk) = h [x(tk), ε(tk),u(tk), tk] + vk, (5.2)

where h is a (possibly) nonlinear measurement function, ε is a U × 1 vector of sensor-

unique states needed for measurement processing but not currently estimated by the filter,

and vk is a Z × 1 discrete white Gaussian noise process with covariance matrix R(tk). In

order to initialize the sensor and process measurements, the sensor-unique states, ε, must

be augmented into x using their initial estimate ε̂(t−i) and corresponding initial estimation

error covariance matrix, Pε̂ε̂(t−i), where ti is the initialization time. After augmenting the

state-space, we wish to begin collecting “pre-update” residuals in order to evaluate their

likelihood given the stated measurement model in (5.2). In order to prevent the initial

uncertainty in ε, Pε̂ε̂(t−i), from dominating the uncertainty around the residuals (and thus

masking any potential sensor model faults), we must estimate ε by accepting measurement

updates. However, since the sensor is untrusted, we wish to protect the ongoing navigation

solution, x, while doing so. Employing the partial update [17] formulation of the Kalman-

Schmidt filter [81] allows us to accept measurement updates while designating a subset

of the state-space variables as “consider” states whose statistical distribution is considered

during the measurement update, but whose distribution (e.g., the state estimate and error

covariance matrix) is unaffected by the measurement update. Though traditionally the

states designated as “consider” states have been primarily unobservable biases, in our

research, we designate the “core” navigation solution states (e.g., position, velocity,

acceleration, etc.) as “consider” in order to protect their estimates from corruption during

the estimation of any sensor-unique states. To formulate the partial update, we initialize

93

the augmented state-space as

ŷ(t−i) =

[
x̂(t−i) ε̂(t−i)

]T
, (5.3)

Pŷŷ(t−i) =

 Px̂x̂(t−i) 0

0 Pε̂ε̂(t−i)

 , (5.4)

where ŷ is the (N + U) × 1 augmented state estimate, Pŷŷ is the corresponding (N + U) ×

(N + U) augmented state estimation error covariance matrix, and keeping in mind the state

dynamics associated with the propagation of ε must also be augmented into G, w, and Q.

Next, we define a partial update vector, β, using

β
(N+U)×1

=

[
0

1×N
1

1×U

]T

, (5.5)

where the entries in β corresponding to x are set to zero, and the entries corresponding to ε

are set to one. Once β is defined, we execute a standard (full) measurement update to obtain

the post-update augmented state estimate, ŷ(t+
i), and its corresponding error covariance

matrix, Pŷŷ(t+
i). Then, as shown in [17], we essentially “roll back” the distribution of the

protected states using

ŷ(t++
i) = β � ŷ(t+

i) + γ � ŷ(t−i), (5.6)

Pŷŷ(t++
i) = B � Pŷŷ(t+

i) + Γ � Pŷŷ(t−i), (5.7)

where � is the Hadamard or point-wise product, and

γ = 1 − β, (5.8)

Γ = γγT, (5.9)

B = 1 − Γ. (5.10)

In essence, the partial updates prevent the untrusted sensor measurements from corrupting

the navigation solution to account for a bad model or a fault, and increase fault observability

in the residuals (i.e., prevent residuals from becoming zero-mean), as later shown.

94

Therefore, the application of partial updates becomes critical when initializing an untrusted

sensor that has a low measurement noise error covariance matrix compared to the online

sensors since it would otherwise greatly influence the ongoing navigation solution. The

partial update process described above can be then repeated after ti until steady-state is

reached, or for a fixed number of samples, as set by the user. Once this first initialization

phase is complete, we can then continue applying partial updates and begin collecting

residuals to be tested for likelihood. Immediately prior to a partial measurement update,

the estimated measurement, ẑ, is generated using

ẑ(t−k) = h
[
ŷ(t−k),u(tk), tk

]
, (5.11)

where x̂(t−k) and ε̂(t−k) are contained in the augmented state vector ŷ(t−k). Meanwhile, the

error covariance matrix for the estimated measurement, Pẑẑ(t−k), is generated based on the

type of filtering algorithm. For example, in a linearized filter (such as an Extended Kalman

Filter) it can be computed using

Pẑẑ = HPŷŷHT, (5.12)

where the time index (t−k) is omitted for simplicity, and H represents the Jacobian of h about

the point ŷ(t−k). For information on generating Pẑẑ in an UKF, the reader is referred to [101].

Finally, the pre-update residual vector, r, and its associated covariance matrix, Prr, is given

by

r(tk) = z(tk) − ẑ(t−k) (5.13)

Prr(tk) = R(tk) + Pẑẑ(t−k). (5.14)

Having derived the residual vector, r(tk), and its associated covariance matrix, Prr(tk),

in (5.13) and (5.14), we now define a residual-space test statistic to determine if a set of

observed residuals are adhering to their expected distribution. Since our overall research

objective is to limit the assumptions on the type of fault (i.e., the fault could be a bias, an

95

incorrectly stated noise covariance matrix, or incorrect calibration of measurement function

parameters), we did not model two competing distributions as would be needed to employ

a LRT [63]. Instead, we focused on the single likelihood function of the residuals, based

on measuring their Mahalanobis distances [28] due to their simplicity and “standardizing”

properties, which were found useful in time-changing processes such as navigation.

Given a Z-dimensional Gaussian distribution with mean µ, and covariance matrix Σ,

the squared Mahalanobis distance, d2, between an observation g, and the centroid of the

distribution is then given by

d2 = (g − µ)T Σ−1 (g − µ) . (5.15)

Additionally, d2 is known [23][28] to follow a Chi-Square distribution with Z degrees of

freedom. Moreover, the sum of M independent d2 distances is also known to follow a

Chi-Square distribution with M × Z degrees of freedom. Since Kalman filter pre-update

residuals are assumed to be a zero-mean white sequence [76], we let g = r(tk) from (5.13),

Σ = Prr(tk) from (5.14), and µ = 0. Subsequently, we can develop a fault detection test,

given set of M, Z-dimensional residual vectors collected between t = tk and t = tk+M using

H0 : χ∗ > χ2(α/2,M × Z) and (5.16)

χ∗ < χ2(1 − α/2,M × Z)

H1 : χ∗ < χ2(α/2,M × Z) or (5.17)

χ∗ > χ2(1 − α/2,M × Z),

where M defines the number of averaging samples in the test (and consequently the sensor

validation period), α is the significance level of the test (i.e., probability of false alarm, P f),

H0 is defined as the sensor model is valid (fault not present), H1 is defined as the sensor

96

model is invalid (fault present), and

χ∗ =

k+M∑
s=k

d2(ts), (5.18)

d2(tk) = rT(tk) [Prr(tk)]−1 r(tk). (5.19)

It is important to note a few key points about the above test statistic. First, it is designed

to detect mismatches (in any domain such as position, velocity, etc.) between sensor

measurements and their stated models, in both the upper and lower ends of the resulting

Chi-Square distribution. This was purposely done so that our method could not only detect

unlikely large or variable residuals resulting from biases, problems in the measurement

function, its parameters, or under-stating the measurement error covariance matrix, but

additionally, unlikely small residuals resulting from over-stating the measurement error

covariance matrix.

In summary, this section has developed the formulation needed to:

• Estimate a set of sensor-unique states for an untrusted offline sensor while protecting

the ongoing and trusted navigation solution,

• Prevent the untrusted sensor from “masking” an invalid sensor model or fault by

corrupting the navigation solution, and

• Test a collection of residuals for likelihood with minimal assumptions on the fault

type.

5.4 Simulation Results

The proposed method was evaluated via a series of Monte Carlo simulations using

two vehicles informed by an online trusted 2D position sensor (Sensor A) and an offline

untrusted 2D velocity sensor (Sensor B). In the first vehicle (Aircraft 1), RVPS was used to

initialize and validate Sensor B based on the method described in this chapter, namely

using partial updates during the collection of the residual test statistic. In the second

97

vehicle (Aircraft 2), the residuals from Sensor B were monitored using the same residual

statistic but without using partial updates, thereby allowing its measurements to influence

the trusted solution. For all simulations, the true system dynamics were driven by a 2D

kinematic model given by

ẋ(t) =


ẋp(t)

ẋv(t)

ẋa(t)

 =


xv(t)

xa(t)

− 1
τa

xa(t)

 +


0

0

w(t)

 , (5.20)

where xp is the vehicle’s 2D position in [m], xv is the 2D velocity in [m/s], xa is the 2D

acceleration in [m/s2] and propagated by a FOGM process with time constant τa = 90 [s],

and w(t) is a 2D white Gaussian noise process with E
[
w(t)w(t + τ)T

]
= Qδ(τ) and

Q = (1.5 × 10−3)2 I
2×2

[m2/s5]. (5.21)

Sensor A measurements were modeled using

z[A](tk) = xp(tk) + v[A]
k , (5.22)

E
[
v[A]

k v[A]T

k

]
= R[A](tk) =

 202 0

0 202

 [m2], (5.23)

and its simulated measurements were drawn from the modeled distribution. Meanwhile,

Sensor B measurements were modeled as

z[B](tk) = ε � xv(tk) + v[B]
k , (5.24)

E
[
v[B]

k v[B]T

k

]
= R[B](tk) =

 12 0

0 12

 [m2/s2], (5.25)

where ε is a constant but unknown 2D scale factor. Additionally, Sensor B measurements

were corrupted by adding a constant x-velocity bias. The simulations consisted of seven

different velocity biases, and one scaling of R[B]. For each simulation, 3000 trials were

conducted. For each trial in each simulation, the initial true position and initial position

98

state estimates were set to zero. The initial true velocity was randomly drawn from a

N
(
0, 102

)
[m2/s2] distribution for both the x and y axes, while the initial velocity state

estimates were set to zero. The initial true acceleration and acceleration state estimates

were set to zero. The initial state estimation error covariance was set to 102 [m2] in position,

102 [m2/s2] in velocity, and (1.5 × 10−3)2 [m2/s4] in acceleration. Each trial was propagated

using ∆tk = 0.5 [s], starting at tk = 0 [s] with an offline sensor initialization at ti = 60 [s],

and terminating at tk = 180 [s]. At ti, the constant Sensor B scale factor was drawn from

a N
(
1, 0.12

)
distribution for both the x and y axes, their initial estimate was set to 1 for

both axes, and their initial uncertainty was set to 0.12. Across all simulations, the RVPS

false alarm rate was set to α = 1/15000 = 6.67 × 10−5, while the sensor validation period

was set to 120 samples, which was equivalent to 60 [s]. The first half of the validation

period (60 samples) was used to allow the estimation of the Sensor B scale factor to reach

steady-state, and the second half was used in formulating the residual test statistic shown

in (5.16) and (5.17), making the testing epoch M = 60 samples.

From a partial update perspective and using (5.8) through (5.10), at the time of Sensor

B initialization in Aircraft 1, the 6 × 1 trusted navigation solution, x, was augmented with

the 2 × 1 scale-factor states, ε, to form the 8 × 1 augmented state vector, y, resulting in

β =

[
0 0 0 0 0 0 1 1

]
, (5.26)

γ =

[
1 1 1 1 1 1 0 0

]
, (5.27)

Γ
8×8

=

 1
6×6

...

. . . 0

 , (5.28)

B
8×8

=

 0
6×6

...

. . . 1

 . (5.29)

Figure 5.1 illustrates a sample trajectory comparison from one of the biased Monte

Carlo trials, while Figure 5.2 illustrates the corresponding d2 observations used in the

99

computation of the test statistic from (5.18). As shown, the Aircraft 1 (using RVPS)

navigation solution was unaffected while the system estimated the scale factor, ε, resulting

in higher than expected Mahalanobis distances due to the unmodeled bias, and ultimately

leading to a correct H1 decision (sensor model invalid). In contrast, the navigation solution

from Aircraft 2 (using only the residual monitoring test from (5.16) and (5.17) without

partial updates) was corrupted due to the filter’s ability to absorb the Sensor B unmodeled

bias into observable states, causing the corresponding d2 observations to rapidly fall to

statistically expected values, and ultimately leading to an incorrect H0 (sensor model valid)

decision.

Table 5.1 summarizes the Monte Carlo detection performance for each of the seven

bias levels and the simulation where R[B] was scaled by 10x from its stated model value.

As shown, using the same residual test statistic and P f , the RVPS method (using partial

updates) clearly outperformed conventional residual monitoring in its ability to detect an

unmodeled sensor bias while simultaneously estimating the unknown scale factor, ε. In

the case of an incorrectly stated measurement noise covariance matrix, RVPS performed as

well as conventional residual monitoring in terms of detection, but still provided significant

benefits in terms of solution integrity during detection as shown below.

Figure 5.3 illustrates the distribution of the mean (across 3000 trials) position RSS

errors (between each aircraft’s navigation solution and the true trajectory) committed

during the 120 [s] validation period. As shown, using RVPS prevented an improperly

modeled sensor from corrupting the ongoing navigation solution during the validation

period, resulting in significantly lower position RSS errors across all fault types.

Finally, Figure 5.4 illustrates the fault detection performance for a fixed 30 [m/s] bias

based on 30 detection threshold levels, each with 3000 trials. Once again, this demonstrates

using RVPS clearly improves the system’s ability to detect an invalid sensor model using

the proposed residual test statistic.

100

Table 5.1: Sensor validation fault detection comparison, 2D velocity sensor

Probability (%)

False alarm Missed Detected

Fault type RVPS RM RVPS RM RVPS RM

1 [m/s] bias 0.00 0.00 99.15 100.0 0.85 0.00

5 [m/s] bias 0.00 0.00 74.30 99.35 25.70 0.65

10 [m/s] bias 0.00 0.00 56.57 100.0 43.43 0.00

20 [m/s] bias 0.00 0.00 32.61 91.85 67.39 8.15

30 [m/s] bias 0.00 0.00 17.49 85.50 82.51 14.50

50 [m/s] bias 0.00 0.00 4.76 73.11 95.24 26.89

100 [m/s] bias 0.00 0.00 0.48 61.16 99.52 38.84

10x R scale 0.00 0.00 0.00 0.00 100.0 100.0

*χ2 test for both RVPS and residual monitoring (RM) was set up using:

M = 60 samples, α = 6.67 × 10−5

Figure 5.1: Example 2D trajectory comparison, 2D velocity sensor, bias = 20 [m/s]

101

Figure 5.2: Example residual d2 comparision, 2D velocity sensor, bias = 20 [m/s]

102

Figure 5.3: Comparison of mean position RSS errors, RVPS vs. residual monitoring.

103

5.5 Chapter Summary

This chapter has proposed a novel method for real-time model validation for plug-and-

play sensors, specifically aimed at all-source navigation systems. The proposed method,

referred to as RVPS, enabled the estimation of sensor-unique states without compromising

the navigation solution, thereby protecting the system integrity computations during the

validation period, all using a single existing filter. A series of Monte Carlo simulations

demonstrated the method’s ability to not only detect invalid sensor models more reliably,

but additionally prevent the detection process from corrupting the navigation solution. This

method complements previous developments in all-source APNT integrity monitoring,

such as the ones described in Chapter 4 and [58], and directly enables self-correcting plug-

and-play open architecture navigation systems such as the one described in Chapter 3 and

[54].

104

Figure 5.4: Fault detection ROC curve comparison, bias = 30 [m/s]

105

VI. A Complete Online Algorithm for Air Data System Calibration

This chapter provides one of two sensor calibration methods that complement the

overall resilient navigation research thrust. Specifically, this chapter details a novel Pitot-

static online calibration algorithm suitable for inclusion in the calibration mode of the

ARMAS framework. Air Data Systems require costly calibration of their static pressure

sensors to characterize errors caused by the act of flying. Altitude-based methods for

measuring these so-called static position errors, such as the Tower Fly-by, produce accurate

results but require an elaborate fly-by site, multiple experiments to capture the relationship

between error and airspeed, and are limited to subsonic airspeeds due to inherent hazards

to land-based and aircraft structures from low-altitude supersonic flight. Airspeed-based

methods using GPS are generally easier to execute, but tend to yield less precise results, and

still require multiple experiments. Additionally, they require temperature probe calibration

from external sources. This chapter proposes a self-contained, online method for complete

air data calibration. The proposed method uses a Kalman Smoother to fuse GPS altitude

and airspeed measurements, aircraft attitude, and air data, to produce the full static position

error curve as a function of Mach number in a single experiment, with no need for external

temperature calibration, and with no supersonic limitations. The proposed method is

validated using T-38C flight data, and is shown to reduce cost by 88% while modeling

a 42% larger domain when compared to current methods. The research developed in this

chapter has been published in [56].

6.1 Introduction

Production aircraft are typically equipped with a Pitot-static sensor system, sometimes

referred to as an Air Data System (ADS). The ADS is composed of a Pitot-tube, which

measures total air pressure, a static port, which measures static air pressure, and an Air

106

Data Computer (ADC), which combines the sensor readings into various airspeed and

altitude instrument readings. The ADC uses Pitot-static relationships to convert differences

between total and static pressure into airspeed readings, and static pressure measurements

into altitude readings. Since airspeed and altitude are directly derived from pressure,

they are intrinsically linked to lift and drag, which in turn, are linked to key performance

parameters such as climb rate, climb angle, specific range, and endurance. Unfortunately,

the act of flying through an air mass inherently corrupts the static port’s ability to measure

ambient pressure, or the true static pressure in the undisturbed atmosphere, and creates an

error called Static Position Error (SPE) [42].

SPE, or ∆Pp, is defined as the difference between static pressure, Ps, and ambient

pressure, Pa, and is often normalized by Ps when comparing readings from various flight

conditions, using

∆Pp

Ps
=

Ps − Pa

Ps
. (6.1)

Since it affects static pressure readings, SPE is responsible for errors in both airspeed

and altitude. Such errors are not only unique for each type of aircraft, but also tend

to change as a function of Mach number and AoA. Many offline algorithms have been

used to estimate SPE via altitude or airspeed measurements [33][42][51][72][73][80][83].

However, even the most advanced techniques tend to either: require a large logistical

footprint, result in biased estimates, or use assumptions that only apply to a small subset of

airframes. This chapter proposes a novel algorithm for determining SPE that is significantly

more accurate than state-of-the-art methods, and can be executed in an online fashion for

any aircraft without the need for multiple controlled experiments.

6.2 Background

A considerable amount of research has been devoted to solving the problem of SPE.

Most notably, the flight test community has developed numerous experiments designed to

107

characterize SPE for each type of aircraft across its entire Mach number domain. In general,

three types of techniques have been found in literature: altitude methods, airspeed methods,

and pressure methods. Since SPE affects both altitude and airspeed, such techniques are

aimed at determining airspeed and altitude error, respectively, as a function of airspeed,

using external truth sources. Meanwhile, pressure techniques directly measure static

pressure errors using ambient pressure readings from weather balloons.

6.2.1 Altitude Methods.

The most widely used altitude method for SPE calibration is called the Tower Fly-

by (TFB) [33][42]. A general TFB diagram is shown in Figure 6.1. The TFB technique

is easy to execute from a flying perspective and also produces data that is easy to process.

The TFB aims to determine an altitude error correction, ∆Hpc, by comparing the indicated

altitude in the aircraft’s altimeter, Hic, to an externally measured reference altitude, Hc,

which is derived from a theodolite measurement at a ground-based observation tower. The

aircraft flies at a constant altitude and airspeed as it passes by the observation tower, where

the “truth” altitude, Hc, is recorded. At the same time, the aircraft records its altitude, Hic.

The error correction relationship is then given by

∆Hpc = Hc − Hic. (6.2)

The error correction given by (6.2) is then used to sample SPE across the entire Mach

number domain for a given aircraft by repeating the TFB at various Mach number

conditions. The resulting altitude error can be converted to a corresponding pressure error

using (6.1) with

Ps = PS L

(
1 − 6.875 59 × 10−6Hic

)5.2559
, (6.3)

Pa = PS L

(
1 − 6.875 59 × 10−6Hc

)5.2559
, (6.4)

where PS L is the atmospheric pressure at sea level on a standard day [6]. The computed

pressure error can then be used to infer airspeed errors at similar conditions. Even though

108

it is simple and accurate, the TFB method is limited in that it requires multiple (time-

consuming) fly-bys to sample the underlying ∆Hpc(M) curve, a team of individuals at the

tower site to perform manual theodolite readings, and most importantly, an established

TFB site with known geometric conditions. Additionally, obtaining TFB data for transonic

and supersonic conditions proves to be problematic due to sonic boom concerns for nearby

structures and personnel, as well as structural concerns for the test aircraft due to the high

dynamic pressure experienced at supersonic speeds and low altitude.

6.2.2 Airspeed Methods.

Airspeed methods for characterizing SPE have seen the most innovation in recent

literature due to the emergence and proliferation of Differential Global Positioning System

(DGPS) in military and commercial aircraft. Several state-of-the art airspeed techniques

[51][72][73][80][83] rely on a simplified two-dimensional transformation from the body-

frame (b-frame) to the navigation frame (n-frame), usually referred to as the “wind

triangle”, and shown in Figure 6.2.

In [51], the true airspeed error, ∆VT , which is caused by SPE, is estimated using DGPS

by assuming a constant and unknown wind vector. The aircraft flies a 360-degree turn at

a constant indicated altitude and indicated airspeed, which allows the unknown parameters

(vW and vTi) to become observable to a linear model. The model is developed using two-

dimensional vector geometry from the wind triangle via

109

Fly-by line

Theolodite

Fly-by tower

Figure 6.1: Illustration of the Tower Fly-by.

Figure 6.2: Illustration of the wind triangle.

110

vT + vW = vG (6.5)

=⇒
(
vTi + ∆VT

)
+ vW = vG (6.6)

=⇒ ∆VT + vW = vG − vTi (6.7)

=⇒ ∆VT cos(ψ) + vWN = vG cos(φ) − vTi cos(ψ), (6.8)

∆VT sin(ψ) + vWE = vG sin(φ) − vTi sin(ψ) (6.9)

=⇒



vG1 cos(φ1) − vTi1
cos(ψ1)

...

vGM cos(φM) − vTiM
cos(ψM)

vG1 sin(φ1) − vTi1
sin(ψ1)

...

vGM sin(φM) − vTiM
sin(ψM)


2S×1

=



cos(ψ1) 1 0
...

...
...

cos(ψM) 1 0

sin(ψ1) 0 1
...

...
...

sin(ψM) 0 1


2S×3


∆VT

vWN

vWE

 , (6.10)

where S is the number of data samples collected during the turn, vTi is the aircraft’s

measured (or SPE corrupted) True Airspeed (TAS), ψ is true heading, vG and φ are ground

speed and ground track respectively, as measured by DGPS, ∆VT is the unknown TAS error,

and vWN and vWE are the unknown constant wind vector components. In contrast to similar

methods such as the Cloverleaf [72] (where the aircraft is flown at three distinct headings

instead of around a full circle), this method produces a statistical model for its estimated

variables that takes advantage of modern-day in-flight data recording systems. However, it

is limited in the fact that, much like the TFB, it relies on multiple experiments to collect

the necessary point samples of the underlying ∆Vpc(M) function, and some aircraft may

not be able to sustain a constant-speed turn at supersonic conditions. Additionally, vTi

is difficult to measure since it must be derived from Indicated Airspeed (IAS), Vic, and

111

ambient temperature, Ta, which is given by

Ta =
Tic

1 + 0.2KtM2
pc
, (6.11)

where Tic is the measured temperature (known as Total Temperature), Mpc is SPE-corrected

Mach number, and Kt is a temperature calibration parameter that must be derived from other

experiments such as the TFB, or external sources such as weather balloons. As shown,

(6.11) requires knowledge of SPE to correct Tic, however, determining SPE requires Kt.

Therefore, the problem is usually solved by determining Kt prior to SPE and approximating

Mpc with indicated Mach number, Mic, when deriving vTi , and iterating until convergence is

achieved. Having obtained ∆VT , the subsonic airspeed error can be converted to a pressure

error using

∆Pp

Ps
=

 1
qcic
Ps

+ 1
−

1
qc
Pa

+ 1

 PT

Ps
, (6.12)

where

qc

Pa
=

1 + 0.2
(
VTi + ∆VT

a

)27/2

− 1, (6.13)

qcic

Ps
=

1 + 0.2
(
VTi

a

)27/2

− 1, (6.14)

a = aS L

√
Ta

TS L
, (6.15)

aS L is the speed of sound at sea level on a standard day [6], and TS L is the standard

temperature at sea level. It is important to note (6.13) and (6.14) take different forms for

supersonic vT and vTi , which can be found in [33].

Another class of calibration methods [26][41][50][80], use recursive estimation

techniques such as the KF [59] in order to converge onto calibration parameters of interest.

In [26], a so-called scale factor, γv, which is assumed to be constant for the entire airspeed

(or Mach number) domain such that

VT = γvVTi , (6.16)

112

is estimated using DGPS measurements, and often estimating AoA and AoS simultane-

ously. These recursive methods along with the angle of sideslip estimation simulations in

[69] provided the baseline foundation for the proposed solution due to their use of the KF

and non-linear regression [8][75]. However, they were limited in the fact that the constant

scale factor assumption is only valid for small aircraft (namely unmanned vehicles) with

a limited Mach number domain, as shown in Section 6.4. Additionally, their use of a KF

was limited to static airspeed conditions similar to the methods in [51][72][80], requiring

once again the need to repeat the experiment at multiple Mach number conditions in order

to sample the underlying function.

6.2.3 External Reference Methods.

One of the most accurate methods for estimating SPE is the pressure survey method

[42]. In this technique, a weather balloon capable of measuring Ta, Hc, and Pa is launched

into the local airmass. The balloon measurements of Pa can then directly be used to

compute SPE using (6.1). Obviously, this method provides the most accurate results since it

directly measures the desired error. However, it is rarely used unless experimental budgets

are amenable due to its cost and associated logistical footprint. Besides the financial

and logistical complications, the survey method is also limited by the assumed constant

atmospheric properties between the balloon launch site and the area where the experimental

aircraft collects its data. This assumption also limits the ability to perform this technique

in an online fashion since the truth data needed for calibration is only available and/or

valid for a limited time and geographical region. Similarly, in the Pacer method [33], an

aircraft that has been previously calibrated can also be used as an external reference when

flown alongside the uncalibrated aircraft. The benefits of such a method include the ability

to compare both altitude and airspeed simultaneously, model a large portion of the Mach

number domain in a single experiment (if a level acceleration is performed), and model

supersonic airspeeds at safe altitudes. However, much like the pressure survey method, the

113

Pacer method suffers similar logistical footprint issues since it may be difficult to schedule

a calibrated aircraft with a similar performance envelope as the aircraft to be calibrated.

Additionally, any errors incurred during the calibration of the pacer aircraft will be directly

transferred into the calibration of the aircraft in question.

6.2.4 Contributions.

Having explored the underlying characteristics of the SPE problem and the state-

of-the-art solutions, we now turn to the proposed algorithm, henceforth referred to as

Jurado-McGehee Online Self-Survey (JMOSS), and its specific contributions. The JMOSS

algorithm provides a drastic improvement over all other methods in that it:

(a) Utilizes a hybrid pressure-airspeed-altitude algorithm inside a Backwards Smoothing

Extended Kalman Filter (BSEKF) framework to estimate ∆Pp and Kt in an online

fashion, without the need for multiple experiments or external truth sources.

(b) Develops an autonomous information-theory-based spline smoothing process, re-

ferred to as the Akaike Spline Model (ASM), which balances model complexity with

error reduction, and captures transonic and supersonic effects with no prior knowl-

edge of the ∆Pp(Mic) functional form.

(c) Enables full Mach number domain characterization including transonic and super-

sonic effects using a single experiment, without the need to sustain supersonic speeds.

6.2.5 Outline.

The remainder of this chapter is organized into three additional sections. Section 6.3

develops the flying and data processing algorithms that enable the research advancements

proposed herein. Section 6.4 presents results from a T-38C flight test program comparing

the proposed algorithm against state-of-the-art airspeed, altitude, and pressure methods,

using weather balloon pressure survey data as the reference truth. Finally, Section 6.5

summarizes the research effort, and presents conclusions and future work.

114

6.3 Methodology

This section describes the flight and data processing algorithms developed during this

research, which enable the specific contributions previously outlined. Figure 6.3 illustrates

the information flow from required input data to BSEKF output and subsequent ASM

estimation. The specific methods used are described in the following sections.

6.3.1 Flight Technique.

The flight technique needed to meet observability requirements is based on [51].

However, it was found that SPE estimates tend to become noisy during non-level flight,

most likely due to dynamic changes in AoA and AoS during turns. As such, the flight

technique for the proposed algorithm was modified to meet the observability requirements

for wind estimation and Mach number dependency by separating them into three distinct

phases:

(i) A constant-altitude deceleration from Mmax to Mturn,

(ii) A constant altitude, constant airspeed, 360-degree turn at Mturn,

(iii) A constant-altitude deceleration from Mturn to Mmin,

where Mmax is the aircraft’s maximum Mach number, Mmin is the minimum Mach number,

and Mturn is an arbitrary constant turning speed within that domain. The three-phase design

of the flight technique provided three main efficiencies in the context of data collection.

First, it enabled collection of flight test data across the entire Mach number domain in

a single experiment, without the need for sustained supersonic conditions. Next, the

constant-Mach turn phase allowed for wind observability. Finally, the decoupling of turning

and deceleration allowed for collection of non-corrupted SPE data while still meeting

wind observability requirements. Several experiments were conducted in order to establish

repeatability and algorithm stability. Table 6.1 summarizes the actual values for the above

conditions that were used for experimental data collection. Additionally, the experiments

115

Table 6.1: Summary of flight conditions for JMOSS experiments.

Conditions

Experiment Hic [ft. PA] Mmax Mturn Mmin Duration [min]

1 18.27K 1.06 0.54 0.52 7.40

2 19.95K 1.05 0.64 0.54 6.81

3 18.82K 1.06 0.73 0.53 8.95

4 21.23K 1.05 0.92 0.54 8.32

Table 6.2: Summary of flight conditions for comparison methods.

Method Points Domain [M] Duration

Level Turn 10 0.53-0.92 53.57

Cloverleaf 9 0.52-0.94 56.69

Tower Fly-by 10 0.54-0.90 42.00

summarized in Table 6.2 were performed in order to collect data for later comparison

against the proposed method.

6.3.2 Required Data.

One of the key enabling technologies provided in this chapter is the development of a

hybrid pressure-airspeed-altitude method using a BSEKF. As such, pressure readings (PT

and Ps) from the ADS are used directly, instead of indirectly via Hic or Vic. As previously

discussed, Tic is required in order to estimate Ta, which is done inside the algorithm,

eliminating the need for an external temperature calibration. Next, AoA and AoS from the

ADS, along with aircraft body angles from the IMU are required to compute the necessary

116

Table 6.3: Required data parameters for JMOSS algorithm.

Name Symbol Source

Static pressure Ps

ADS

Total pressure PT

Total temperature Tic

Indicated AoA αi

Indicated AoS βi

Roll angle Φ

IMUPitch angle Θ

Yaw angle Ψ

North ground speed vN

GPS
East ground speed vE

Down ground speed vD

Geometric altitude hg

DCMs to transform vectors from the wind frame (w-frame) to the n-frame. Finally, GPS

velocity and altitude measurements are required to compute flight path angle (a parameter

needed in AoA and AoS correction), and provide measurement updates to the BSEKF.

6.3.3 AoA and AoS Corrections.

Begin by correcting indicated AoA, αi, for upwash errors, which are a function of

Mach number [107], using

αc = αi + ∆α(Mic), (6.17)

∆α(Mic) = β̂0 + β̂1Mic + β̂2M2
ic, (6.18)

117

where Mic is derived from Ps and PT using standard Pitot-static equations [33], αc is

corrected AoA, αi is indicated AoA, and the function ∆α(Mic) is given by the second-order

polynomial model 
Θ1 − γ1 − αi1

...

ΘS − γS − αiS

 =


1 Mic1 M2

ic1

...
...

...

1 MicS M2
icS




β0

β1

β2

 , (6.19)

where Θ is pitch angle, S is the number of measurements, γ is the flight path angle given

by

γ = arcsin
(
−vD

vT

)
, (6.20)

which can be approximated using the ground velocity vector, vg, by

γ ≈ arcsin

−vD∥∥∥vg

∥∥∥
 , (6.21)

assuming VT is much larger than the wind speed. Finally, AoS is corrected by projecting βi

onto the corrected w-frame using

βc = arctan (cos(αc) tan(βi)) . (6.22)

6.3.4 Ambient Temperature Optimization.

Prior to processing the data using the BSEKF, an estimate of ambient temperature is

obtained by minimizing the least-squares [75] cost function given by

min
b1,b2,b3

C(b1, b2, b3) =

S∑
s=1

[
Tics − T̂ics

]2
, (6.23)

where

T̂ics = T̂as

(
1 + 0.2K̂ts M

2
ics

)
, (6.24)

T̂as = TS L fθH (hgs) + b1, (6.25)

K̂ts = b2 + b3M2
ics
, (6.26)

118

and the function fθH is given in [33]. Essentially, minimizing (6.23) leads to optimal

coefficients b1, b2, b3 that best approximate the actual Tic measurements while constraining

T̂a to follow the standard temperature profile given by hg, plus a constant bias, and Kt to

depend on M2
ic. Once converged, the resulting optimal estimates of T̂a are used as control

inputs in the BSEKF, where a better estimate of Kt, based on Mpc is produced alongside

the other variables of interest.

6.3.5 BSEKF Implementation.

Using the notations described in [76], the main estimation engine of the algorithm is

driven by a six-state BSEKF [59][76][77][87] with system dynamics defined by

ẋ(t) = G(t)w(t), (6.27)

x =

[
∆Pp vWN vWE vWD Kt P0

]T
, (6.28)

G =

 1 0 0 0 0 0

0 0 0 0 1 0


T

, (6.29)

where ∆Pp is SPE, vWN , vWE , and vWD are the wind components, Kt is the temperature

recovery factor, P0 is an ambient pressure about which the relationship between geometric

altitude and pressure altitude is linearized, and w(t) is a bivariate Gaussian white-noise

process with

E [w(t)] =

[
0 0

]T
, (6.30)

E
[
w(t)w(t + τ)T

]
= 0.1

 δ(τ) 0

0 δ(τ)

 . (6.31)

The BSEKF discrete measurement model at time k is defined by

zk = h[xk,uk] + vk, (6.32)

u =

[
Ps PT αc βc Φ Θ Ψ h̄g T̂a

]T
, (6.33)

119

where h̄g is the mean geometric altitude, and the vector vk is composed of five independent

Gaussian white-noise processes with

E [vk] = 0
5×1
, (6.34)

E
[
vkvT

l

]
= I

5×5
δkl. (6.35)

The nonlinear measurement function, h, in (6.32) estimates incoming GPS groundspeed

and altitude measurements, as well as total temperature measurements, to form the vector

ẑk =

[
v̂n

T + v̂W ĥg T̂ic

]T
(6.36)

=

[
v̂N v̂E v̂D ĥg T̂ic

]T
, (6.37)

and is constructed from standard Pitot-static equations [33] using

P̂a = Ps − ∆̂Pp, (6.38)

M̂pc = f (P̂a, PT), (6.39)

T̂ic = T̂a

(
1 + 0.2K̂tM̂2

pc

)
, (6.40)

â = aS L

√
T̂a

TS L
, (6.41)

v̂T = M̂pcâ, (6.42)

v̂w
T =

[
v̂T 0 0

]T
, (6.43)

v̂n
T = Cn

bCb
wv̂w

T , (6.44)

120

where the function in 6.39 is given in [33], the DCMs Cn
b, and Cb

w are created using the

frame transformations in [35] given by

Cb
w =


cos(αc) cos(βc) − cos(αc) sin(βc) − sin(αc)

sin(βc) cos(βc) 0

sin(αc) cos(βc) − sin(αc) sin(βc) cos(αc)

 , (6.45)

Cn
b =


cos(Θ) cos(Ψ) cos(Ψ) sin(Θ) sin(Φ) − cos(Φ) sin(Ψ) sin(Φ) sin(Ψ) + cos(Φ) cos(Ψ) sin(Θ)

cos(Θ) sin(Ψ) cos(Φ) cos(Ψ) + sin(Θ) sin(Φ) sin(Ψ) cos(Φ) sin(Θ) sin(Ψ) − cos(Ψ) sin(Φ)

− sin(Θ) cos(Θ) sin(Φ) cos(Θ) cos(Φ)

 ,
(6.46)

the estimated wind vector, v̂W , is given by

v̂W =

[
v̂WN v̂WE v̂WD

]T
, (6.47)

the estimated geometric altitude measurement, ĥg, is given by

δ̂ =
P̂a

PS L
, δ̂0 =

P̂0

PS L
, (6.48)

Ĥc = fHδ
(δ̂), Ĥc0 = fHδ

(δ̂0), (6.49)

θ̂ = fθH (Ĥc), (6.50)

Tstd = TS Lθ̂, (6.51)

ĥg = h̄g +
T̂a

Tstd

(
Ĥc − Ĥc0

)
, (6.52)

PS L is sea-level standard pressure, and the functions fHδ
and fθH are given in [33].

In order to enable online estimation, the BSEKF is initialized with no prior knowledge

of the system states. As such, all initial estimates are set to zero, with the exception of K̂t,

which is set to 1. Additionally, the initial state estimation covariance matrix is set to a 6×6

identity matrix. Since the turn data (Mic = Mturn) is not necessarily collected at tk = 0, the

BSEKF is processed “forward” from tk = 0 to tk = (M − 1)∆t, where ∆t is the sampling

period, in order to converge onto accurate estimates of the wind states and corresponding

121

∆̂Pp, Kt, and P0. Next, the resulting final state estimates from the forward run are used as

initial estimates for the BSEKF smoothing run from tk = (M − 1)∆t to tk = 0 in order to

smooth any biased ∆̂Pp, Kt, and δP0 estimates that occurred on the forward run prior to

Mic = Mturn.

6.3.6 Akaike Spline Model.

Having obtained the estimates from the BSEKF, one may choose to fit a model to the

SPE observations with respect to Mach number in a number of ways. In this research, the

resulting BSEKF estimates of SPE, are modeled as a function of Mic using a novel linear

smoothing spline model referred to as ASM. The ASM algorithm is crucial in smoothing

BSEKF output with no prior knowledge of the functional relationship between ∆Pp/Ps

and Mic for the ADS being calibrated. Additionally, it allows for the accurate modeling of

unknown changes to the functional form in the transonic and supersonic regions as shown

in Section 6.4.

Algorithm 6.1 illustrates a pseudocode implementation of the ASM process. ASM

smoothing begins with a simple second-order model of the form
∆̂Pp1
Ps1
...

∆̂PpS
PsS


y

=


1 Mic1 M2

ic1

...
...

...

1 MicS M2
icS


X


β0

β1

β2


β

, (6.53)

where S is the number of measurements in the experiment. Next, a simple optimization

routine is executed to sequentially add smoothing spline knots using
∆̂Pp1
Ps1
...

∆̂PpS
PsS


y

=


1 Mic1 M2

ic1

(
Mic1 − s1

)2
+ . . .

(
Mic1 − sP

)2
+

...
...

...
... . . .

...

1 MicS M2
icS

(
MicS − s1

)2
+ . . .

(
MicS − sP

)2
+


X



β0

β1

β2
...

βP+3


β

, (6.54)

where each sp, p = 1, . . . , P, referred to as a knot, is a preselected inflection point along

the Mach number domain, and the operator ()+ denotes negative values of its argument

122

are set to zero, which is equivalent to multiplying by the Heaviside function centered at the

knot location. The optimization is based on minimizing the resulting AICc value [2], which

balances error reduction with model complexity. At each increment, a single spline knot is

added to the linear model (6.53), at a location within the Mic domain based on statistical

quantiles [89]. Then, the resulting AICc model criterion is compared to its previous value

to verify that at least a one-percent decrease in AICc was achieved by the additional knot. If

at any point this criterion is not met, the optimization is considered complete and the spline

model is finalized. Finally, if the particular experiment contained supersonic data (i.e.,

Mic > 1), an additional seven knots are automatically added evenly between Mic = 0.93

and Mic = 1.00 in order to capture any potential drastic changes to the functional relation

in the transonic and supersonic regions. Once completed, the resulting model inferences

such as Prediction Interval (PI) were computed using [68].

6.4 Results

Figures 6.4 and 6.5 illustrate the state estimation histories of the forward and backward

BSEKF passes for a single JMOSS experiment, respectively. As shown in Fig. 6.4, the

BSEKF states are unobservable (and inaccurate) during forward pass from Mic = Mmax

until the turn is executed, and begin to converge after Mic <= Mturn as the measurements

are processed from Mmax to Mmin. Using the final estimates of the forward pass (i.e., when

Mic = Mmin) as initial estimates for the backward smoothing pass produced stable and

accurate estimates of all six states as shown in Fig. 6.5.

Figures 6.6 and 6.7 illustrate the results from a single JMOSS experiment, and all

JMOSS experiments combined, respectively. As shown in Fig. 6.6, a single JMOSS

experiment yielded accurate results across the entire Mach number domain, with no need

for external sources or prior knowledge, while simultaneously calibrating the temperature

recovery factor, Kt. As shown in Fig. 6.7, combining the BSEKF results from all four

123

Flight
Path

Angle
Computer

Upwash
Correction

Frame
Rotation

TAS,
Altitude,
& Total
Temp.

Computer

BSEKF

ASM

GPS IMU ADS

Figure 6.3: Data processing flow for JMOSS algorithm.

124

Algorithm 6.1 ASM = fitASM(mic, ∆̂Pp/Ps)

Input: ∆̂Pp/Ps,mic I Inputs are BSEKF output for SPE, and computed Mic

1: y← ∆̂PP/Ps I Create observation vector
2: if max(mic) > 1 then I If supersonic data present, add supersonic knots

Mic ∈ (0.93, 1)
3: superSonic←true
4: end if
5: P← 0, go←true I Initialize loop with P = 0 knots
6: while go do
7: X← createSplineRegressor(P,mic,superSonic) I Use Eq. (6.54) to create X

based on P
8: β̂, AICc(P + 3)←

(
XTX

)−1
XTy I Compute P + 3 total coefficients and AICc

9: if P = 0 then
10: Xprev, β̂prev, AICcprev ← X, β̂, AICc I First time in the loop, add a knot
11: P← P + 1
12: else
13: if AICc < 1.01×AICcprev then I If AICc is decreased by 1%, add a knot
14: Xprev, β̂prev, AICcprev ← X, β̂, AICc

15: P← P + 1
16: else
17: X, β̂← Xprev, β̂prev I Otherwise, stop the loop
18: go←false
19: end if
20: end if
21: end while

Output: ASM
ASM.Model← β̂
ASM.deltaPp Ps← Xβ̂
ASM.machIC← mic

125

experiments slightly increased the associated model PI, due to the variation in BSEKF

estimates across experiments, but increased accuracy when compared to the survey truth

data.

Figures 6.8 through 6.10 illustrate the calibration results from Level Turn, Cloverleaf,

and TFB techniques. As previously mentioned, these methods required varying levels

of logistical footprints, were limited in their Mach number domain, and/or required prior

knowledge of Kt. As shown, all methods yielded results that closely followed survey truth

data, with varying levels of bias and PI widths. It is important to note the data reduction

for the Level Turn and Cloverleaf methods included the enhancements that were developed

as part of the JMOSS algorithm (i.e., AoA and AoS corrections, direct computations of

airspeeds using pressures, and three-dimensional reference frame rotations), which may

have contributed to their accuracy.

Finally, Table 6.4 compares effort metrics across all methods tested during this

research. To highlight the true potential in efficiency from the JMOSS algorithm, only

the results from a single experiment were considered. The time figures were computed

by summing all flight time dedicated to collecting data for each experiment. The cost

figures are directly proportional to T-38C flight time at a representative flight test rate of

$11.3K/hr. Meanwhile, ∆ Mach captures the difference between minimum and maximum

Mach number modeled by each experiment. Finally, the mean bias was taken as the

average difference between each method’s results and survey truth data, contained within

the bounds of each method’s Mach number domain, and normalized by that width (i.e.,

divided by ∆ Mach). As shown, the JMOSS algorithm was able to produce accurate results

with as much as 90% fewer test points, 88% less time/cost, 83% less bias, and 78% less

uncertainty, all while modeling 42% more Mach number domain.

126

Table 6.4: Metric comparison for ADS calibration algorithms.

JMOSS Level Turn Cloverleaf TFB

Points 1 10 9 10

Time [min] 6.81 53.57 56.69 42.00

Cost [USD] 1.3K 10.1K 10.7K 7.9K

Min Mach 0.54 0.53 0.52 0.54

Max Mach 1.05 0.92 0.94 0.90

∆Mach 0.51 0.39 0.42 0.36

Mean Bias −7.75 × 10−4 1.89 × 10−3 4.61 × 10−3 −8.85 × 10−4

95% PI ±1.59 × 10−3 ±7.23 × 10−3 ±1.33 × 10−3 ±3.82 × 10−4

6.5 Chapter Summary and Future Work

This chapter has introduced a fully self-contained, pressure-airspeed-altitude hybrid

BSEKF-based ADS calibration algorithm with an accompanying autonomous smoothing

spline process rooted in information theory. As shown in the previous sections, the

proposed algorithm models a larger portion of the Mach number domain while drastically

reducing the cost, flight time, mean error, and maximum width of the 95% prediction

intervals around the resulting model. Additionally, when experimental data from multiple

dates and across varying atmosphere conditions were used, the model proved to have stable,

repeatable results. The JMOSS algorithm introduced herein provides a fully automated

and self-contained means of establishing an accurate SPE correction curve for any aircraft

with no prior knowledge and minimal maneuver requirements for observability. The

proposed method sets the course for an emerging class of online calibration and dynamic

performance modeling algorithms that not only take advantage of modern data collection

capabilities, but also make full use of sensor fusion technology in order to relax the required

127

experimental conditions for such modeling. Future work in this area includes developing

more robust post-BSEKF smoothing techniques beyond ASM (e.g., neural networks),

identifying potential additional sources of information for sensor fusion, and expanding

the concept of sensor-fusion-based online calibration to aircraft performance and flying

qualities.

128

Figure 6.4: Illustration of JMOSS BSEKF output on forward pass.

129

Figure 6.5: Illustration of JMOSS BSEKF output on backward pass.

130

Figure 6.6: JMOSS results for a single test point.

131

Figure 6.7: JMOSS results when combining all test points.

132

Figure 6.8: Results from Level Turn test points.

133

Figure 6.9: Results from Cloverleaf test points.

134

Figure 6.10: Results from Tower Fly-by test points.

135

Figure 6.11: Results comparison across all methods.

136

VII. A Regression-Based Methodology to Improve Estimation of Inertial Sensor

Errors Using Allan Variance Data

This chapter proposes a novel, autonomous, regression-based methodology for Allan

variance analysis of Inertial Measurement Unit (IMU) sensors, which much like the

research provided in Chapter 6, also complements the overall resilient navigation research

thrust by contributing a novel autonomous sensor calibration technique suitable for the

calibration objective in the ARMAS framework. Current methods for Allan variance

analysis have been rooted in the human-based interpretation of linear trends, referred to

as the slope method. The slope method is so prolific, it is referenced among electrical

and electronics engineering standards for IMU error analysis [46]. However, the graphical

nature and visual-inspection based use of the method limits its ability to be programmed

as a generalized algorithm, and lacks the autonomy desired in modern-day navigation

computations. Using nonlinear regression with a ridge-regression initial guess, the

proposed method is shown to produce comparable results as the gold standard slope method

when using standard-length data collections, and outperforms the slope method when the

amount of available data is limited. This development directly enables accurate navigation

solutions for all vehicles in land, air, sea, and space operations. The research developed in

this chapter has been published in [53] and [55]. Additionally, at the time of this writing, a

collaborative effort based on this research and similar wavelet-based methods is currently

in review for publication in [39].

7.1 Introduction

Inertial navigation systems are used to track the location and velocity of an object and

are relied upon commonly by many vehicles as a means of establishing orientation in open

spaces such as ships in the ocean and airplanes in the sky. However, the availability of an

137

accurate inertial navigation solution depends on the proper calibration of the deterministic

and stochastic errors associated with accelerometers and gyroscopes, which compose

the IMU. Without proper quantification of their deterministic and stochastic errors, the

solutions rendered by the IMU based upon accelerometer and gyroscope measurements are

subject to drift and are, at best, erroneous and at worst, provide fatal navigation information.

As such, a considerable amount of time and energy has been invested in the understanding

and modeling of the various sources of noise that affect the components of the IMU.

Adequate modeling of inertial sensor errors begins with an understanding of the physical

processes from which deterministic and stochastic errors arise. In general, any given sensor

output signal can be written in the form

yk = Mxk + εk, (7.1)

where yk is the measured output signal, xk is the true signal, M is a linear operator on xk

and εk is an additive, possibly non-linear signal composed of a combination of stochastic

and deterministic errors, which vary with sensor type. For inertial sensors, the majority

of existing research adapts a version of (7.1) to both accelerometers and gyroscopes by

providing specific forms of M and further refining the deterministic components and

stochastic processes governing εk.

In [95], Titterton provides general error models for gyroscopes and accelerometers in

order to describe a wide array of deterministic and stochastic errors. For gyroscopes, the

relationship between true (ωx) and measured (ω̃x) angular rate for a single axis x is given

by

ω̃x = (1 + S x)ωx + Myωy + Mzωz + B f x + Bgxax + Bgzaz + Baxzaxaz + ηx, (7.2)

where S x is the x-axis scale factor, My and Mz are cross coupling coefficients, B f x is

a constant x-axis bias (non g-sensitive), Bgx and Bgz are g-sensitive bias coefficients

along the input and spin axes, Baxz is the anisoelastic bias coefficient, and ηx is zero-

mean additive white Gaussian noise. It is important to note the previosuly discussed

138

terms may be deterministic or stochastic in nature. Most often, such terms are modeled

as correlated stochastic processes, which eventually motivates the need for a reliable

stochastic characterization method such as Allan variance [4]. The expanded form in (7.2)

can be applied to the remaining two axes and expressed in terms of (7.1) by letting

y =


ω̃x

ω̃y

ω̃z

 , x =


ωx

ωy

ωz

 , (7.3)

M =


1 + S x My Mz

Mx 1 + S y Mz

Mx My 1 + S z

 , (7.4)

ε =


B f x + Bgxax + Bgzaz + Bgxzaxz + ηx

B f y + Bgyay + Bgxax + Bgyxayx + ηy

B f z + Bgzaz + Bgyay + Bgzyazy + ηz

 . (7.5)

Similarly, [95] also describes a general error model for accelerometers in terms of the

relation between true (ax) and measured (ãx) acceleration for a single axis x as

ãx = (1 + S x)ax + Myay + Mzaz + B f + Bvaxay + ηx, (7.6)

where S x is the x-axis scale factor, My and Mz are cross coupling coefficients, B f is a

constant measurement bias, Bv is the vibro-pendulus error coefficient, and ηx is zero-mean

additive white Gaussian noise. Again, (7.6) can be expressed using the form in (7.1) by

139

letting

y =


ãx

ãy

ãz

 , x =


ax

ay

az

 , (7.7)

M =


1 + S x My Mz

Mx 1 + S y Mz

Mx My 1 + S z

 , (7.8)

ε =


B f + Bvaxay + ηx

B f + Bvayaz + ηy

B f + Bvazay + ηz

 . (7.9)

Subtle differences in M and ε are found throughout literature based on the technology

used in sensor development (i.e. mechanical, ring laser, etc...). Although such differences

affect the specific set of parameters found in M, in general, all models for gyroscopes

and accelerometers can be expressed as an adaptation of (7.1), with ε composed of a

common mixture of deterministic and stochastic terms. Focusing on such terms, [67] uses

a form similar to (7.1) and describes three types of stochastic gyroscopic errors in ε as:

“constant bias, uncorrelated white noise, and 1/ f (flicker) noise.” Similar terms appear

along with additional sources of error in [45], where a common set of five error sources are

modeled using the “Allan variance slope method” [4][32][34]. Although many stochastic

modeling and calibration methods have been developed, the “Allan variance slope method”

is commonly used in the navigation community, and listed as the method of choice in IMU

error analysis standards [46]. As such, this research focuses on improving the mathematical

methods for autonomously analyzing Allan variance data in the context of IMU calibration.

140

7.2 Allan Variance

Having established the importance of properly modeling the sources of noise in ε,

we now turn to the most commonly used method for doing so found in literature, Allan

variance [4]. It is important to note that although very common, Allan variance is not the

only existing method for IMU characterization. Other methods based on Power Spectral

Density (PSD) and Autocorrelation Function (ACF) [32][45], as well as modern and

robust wavelet-variance methods [40][88][92] are often used when analysis of complex

signals is inadequate with Allan variance (e.g., when the signal is composed of more than

one latent correlated noise process). Though wavelet-variance methods such as the ones

referenced have been shown to produce more optimal IMU characterization results than

Allan variance, Allan variance remains the standard method of choice [46], and therefore

motivates this research. Nevertheless, Allan variance was originally developed for the

analysis of error sources in atomic clocks. Later, it was found useful for identifying

error sources in accelerometers and gyroscopes using a “slope method” for analyzing Allan

variance measurements. Such use of Allan variance in IMU modeling is so prolific across

literature that it was compiled into an Institute of Electrical and Electronics Engineers

(IEEE) standard [46]. In general, the Allan variance, σ2
a(τ), of a continuous time signal,

Ω(t), is a function of a quantity called averaging time, τ, and is given by

σ2
a(τ) =

1
2(N − 2n)

N−2n∑
k=1

[
Ω̄k+1(τ) − Ω̄k(τ)

]2
, (7.10)

n =
τ

∆t
, (7.11)

where N is the total number of samples in the discretized signal, ∆t is the sampling period,

and

Ω̄k(τ) =
1
τ

∫ tk+τ

tk
Ω(t)dt, ∆t ≤ τ ≤ N∆t/2. (7.12)

Essentially, (7.10) divides the sampled signal into clusters, Ω̄k(τ), which are averaged over

a duration, τ, and computes the variance among groups as a function of varying τ. It is

141

important to note the form of (7.10) is referred to as “non-overlapping,” since the clusters

Ω̄k(τ) do not overlap across time. Additionally, since each Allan variance point is computed

from a finite set of samples per cluster, a percent error was derived in [85] and is given by

δa =
1√

2
(

N
n − 1

) . (7.13)

Allan variance can then be equated to the PSD of the input signal using

σ2(τ) = 4
∫ ∞

0
S Ω(f)

sin4(π f τ)
(π f τ)2 d f , (7.14)

where f is frequency and S Ω(f) is the PSD of Ω(t). The relationship illustrated in

(7.14) is then used in [45] and [32] to exploit the properties of five key error sources:

quantization, velocity/angle random walk, bias instability, acceleration/angular rate random

walk, and rate ramp. Each of the five sources of error are systematically identified from

an Allan variance plot of sensor (accelerometer or gyroscope) data using the slopes of the

relationship between the PSD of each error source and its corresponding Allan variance

formula. This relationship is explored in the following sections in order to develop an

understanding of the slope method.

7.2.1 Slope Method.

This section describes the prolific slope method of identifying the five aforementioned

sources of accelerometer and gyroscope error using Allan variance analysis. As shown

below, this method exploits the relationship between an error source’s PSD and its

corresponding Allan variance formula in a graphical context, whereby the slope of the

Allan variance vs. τ graph is visually analyzed in order to extract the necessary information

to estimate error. Although this method is simple and generally accurate, it suffers

from two main limitations. First, it is difficult to automate since it is rooted in human

visual inspection of an Allan variance vs. τ graph. As such, it requires complex logical

programming or human intervention in the presence of nonstandard conditions (e.g.,

missing sources of noise). Additionally, when the length of sensor data is incomplete (i.e.,

142

not long enough to capture the underlying noise processes), the resulting Allan variance

curve tends to become much more variable across data collections as τ increases. Such

variability results in Allan variance slope behavior that is difficult to predict, making

automated slope detection unreliable. Table 7.1 summarizes the key components of the

slope method while Figures 7.1 and 7.2 illustrate the process.

7.2.1.1 Quantization Error.

Quantization is defined as the act of sampling an analog signal into discrete levels of

size ∆ during the analog-to-digital conversion process. The errors (differences between the

analog signal and the digitize signal) caused by such quantization can be characterized

as additive noise [9][46], which is uniformly distributed between −∆/2 and ∆/2 [46].

Analyzing the relationship between the PSD function and the Allan deviation, σa(τ), of

a signal composed only of quantization noise [45] gives

σa(τ) =
σq
√

3
τ

= σq

√
3τ−1. (7.15)

Next, taking the common logarithm of both sides in (7.15) yields

log10(σa(τ)) = log10(σq

√
3τ−1) (7.16)

= − log10(τ) + log10(σq) + log10(
√

3), (7.17)

which implies σq can be identified in an Allan deviation curve by finding a −1 slope when

plotting log10(σa(τ)) against log10(τ). Additionally, letting τ =
√

3 in (7.17) solves the

equation for σq, which means if the −1 slope line is projected to τ =
√

3, the value of

σa(τ) at that point will equal σq. This process is illustrated in Figure 7.1 and summarized

in Table 7.1.

7.2.1.2 Angle/Velocity Random Walk.

As indicated by its name, angle or velocity random walk is a random walk process

observed in the angle or velocity signal output of an inertial sensor. In terms of (7.2) or

(7.6), angle/velocity random walk arises from integrating ηx in ω̃x or ãx. The relationship

143

between the Allan deviation and the PSD for a signal of this type is given by

σa(τ) =
σrw
√
τ

= σrwτ
−1/2. (7.18)

Repeating the process followed for quantization noise yields

log10(σa(τ)) = log10(σrwτ
−1/2) (7.19)

= −
1
2

log10(τ) + log10(σrw), (7.20)

which implies σrw can be identified in an Allan deviation curve by finding a −1/2 slope

when plotting log10(σa(τ)) against log10(τ). Letting τ = 1 in (7.20) solves the equation for

σrw, which means if the −1/2 slope line is projected to τ = 1, the value of σa(τ) at that

point will equal σrw.

7.2.1.3 Bias Instability.

Bias instability, sometimes referred to ironically as bias stability, refers to the tendency

of an inertial sensor’s constant bias (B f in (7.2) or (7.6)) to change or drift during use.

The most accurate description of the stochastic process behind this drift is flicker (or 1/ f)

noise as shown by [67]. However, due to complications in the modeling of flicker noise

in common navigation estimation algorithms, such as a Kalman filter [59], this process is

often approximated by a first order Gauss-Markov process [46, Fig. C.6][76] . Following

the slope method process yields

σa(τ) = σb

√
2 log(2)

π
= σb

√
2 log(2)

π
τ0, (7.21)

log10(σa(τ)) = 0 log10(τ) + log10(σb) + log10


√

2 log(2)
π

 , (7.22)

which indicates there is no relation to τ in (7.21). That is, the flicker noise coefficient can

be identified in an Allan deviation curve by finding a 0 slope when plotting log10(σa(τ))

against log10(τ). Additionally, (7.22) implies the value of σa(τ) at that point should be

scaled by
√

2 log(2)/π to solve for σb.

144

7.2.1.4 Acceleration/Angular Rate Random Walk.

In contrast to angle/velocity random walk, rate random walk refers to a random walk

process observed in the inertial sensor’s rate signal (acceleration or angular rate). In terms

of (7.2) or (7.6), rate random walk arises from integrating white noise found in ˙̃ωx or ˙̃ax.

Again, the relationship between the Allan deviation and the PSD for a signal of this type

yields

σa(τ) = σrrw

√
τ

3
= σrrw

1
√

3
τ1/2, (7.23)

log10(σa(τ)) =
1
2

log10(τ) + log10(σrrw) −
1
2

log10(3), (7.24)

which implies σrrw can be identified in an Allan deviation curve by finding a +1/2 slope

when plotting log10(σa(τ)) against log10(τ). Letting τ = 3 in (7.24) solves the equation for

σrrw, which means if the +1/2 slope line is projected to τ = 3, the value of σa(τ) at that

point will equal σrrw.

7.2.1.5 Rate Ramp.

Finally, rate ramp refers to the deterministic, linear and usually long-term increase

of the inertial sensor’s rate signal output. In terms of (7.2) or (7.6), rate random walk

arises when B f x or B f linearly changes over time at a deterministic (e.g., non stochastic but

unknown) rate. The slope method then yields

σa(τ) = σrr
τ1

√
2
, (7.25)

log10(σ(τ)) = log10(τ) + log10(σrr) − log10(
√

2), (7.26)

which implies σrr can be identified in an Allan deviation curve by finding a +1 slope when

plotting log10(σa(τ)) against log10(τ). Letting τ =
√

2 in (7.26) solves the equation for σrr,

which means if the +1 slope line is projected to τ =
√

2, the value of σa(τ) at that point

will equal σrr.

Although the five sources of error are well defined mathematically along the Allan

deviation curve via the use of the slope method, methods for solution are based upon visual

145

inspection of the graph. That is, for a specific sensor and application, lines with the specific

slope(s) of interest are created and estimates for each parameter are back solved by hand or

through human-visual inspection. With current autonomous systems, this tedious process

hampers efficient calibration of IMUs, especially when the available sensor data is not

long enough to ensure a stable Allan variance curve. Although the length of available data

required varies with each source of error and its true underlying value, general rules of

thumb [46][45] suggest several hours of data are usually required for the slope method to

provide accurate estimates of all sources, especially for those prevalent in the latter regions

of the τ domain (e.g., σrrw and σrr) since their effects are only visible after several hours of

continuous IMU operation.

146

Figure 7.1: Illustration of Allan variance slope method for quantization noise.

147

Figure 7.2: Illustration of Allan variance slope method for common stochastic noise

processes.

148

Table 7.1: Summary of Allan deviation slopes for common IMU noise processes.

Graphical ID

Noise source Symbol Relation to PSD Slope τ at desired σ Coefficient units∗

Quantization σq σa(τ) = σq
√

3τ−1 −1
√

3 [deg] or [m/s]

Random walk σrw σa(τ) = σrwτ
−1/2 −1/2 1 [deg/

√
hr] or [m/s/

√
hr]

Bias instability σb σa(τ) = σb

√
2 log(2)

π
τ0 0 – [deg/hr] or [m/s/hr]

Rate random walk σrrw σa(τ) = σrrw
1
√

3
τ1/2 1/2 3 [deg/hr/

√
hr] or [m/s/hr/

√
hr]

Rate ramp σrr σa(τ) = σrr
1
√

2
τ1 1

√
2 [deg/hr/hr] or [m/s/hr/hr]

*Units result from σ(τ) measured in [deg/hr] or [m/s/hr] and τ measured in [hrs]

149

7.3 An autonomous method for estimating noise strength

The proposed method, referred to as Autonomous Regression Method for Allan

Variance (ARMAV) from hereon, differs from the slope method in that it combines

linear ridge regression [44] and nonlinear model estimation [8] in order to yield accurate

and stable estimates for the five common noise sources in IMUs instead of using

visual inspection of graphical methods, which are hard to automate. As designed,

ARMAV not only performs comparably in terms of estimation accuracy, but is also

completely autonomous, stable under limited data conditions, and suitable for online IMU

characterization.

The key components of the slope method, which are summarized in Table 7.1,

provide the fundamental relationships between observed data (Allan variance) and its

predictor variable, τ. However, the slope method identifies each noise strength coefficient

individually by restricting the graphical search to the areas of the τ domain where each

noise source is dominant. Using [46], and the assumption of independence among the

sources of noise, the combined relationship between total Allan variance, σa, and the

contributions from each of the sources is given by

log10

(
σ2

a

)
= log10

(
σ2

aq
+ σ2

arw
+ σ2

ab
+ σ2

arrw
+ σ2

arr

)
. (7.27)

Next, substituting the relationships from Table 7.1 yields

log10

(
σ2

a

)
= log10

[(
σq

√
3τ−1

)2
+

(
σrwτ

−1/2
1

)2

+

σb

√
2 log(2)

π

2

+

(
σrrw

1
√

3
τ1/2

)2

+ +

(
σrr

1
√

2
τ

)2]
, (7.28)

from which a nonlinear regression problem with N observations of the form

log10(y2) = log10

[
(Xβ)2

]
+ ε, (7.29)

150

where

y =


σa1

...

σaN

 , (7.30)

X =


√

3τ−1
1 τ−1/2

1 1 1
√

3
τ1/2

1
1
√

2
τ1

...
...

...
...

...
√

3τ−1
N τ−1/2

N 1 1
√

3
τ1/2

N
1
√

2
τN

 , (7.31)

β =



σq

σrw

σ∗b

σrrw

σrr


, (7.32)

and

ε ∼ N (0,Σ) , (7.33)

Σ =



(σa1δa1)
2 0 . . . 0

0 (σa2δa2)
2 . . . 0

...
...

...
...

0 0 0 (σaNδaN)2


, (7.34)

can be constructed and solved using any weighted least-squares nonlinear regression

algorithm such as Gauss-Newton [8] or Levenberg-Marquardt [75]. However, since

nonlinear regression problems often require an accurate initial guess, β0, to converge onto

the global minimum, we first use a linear approximation of (7.29) to solve the linear model

σa1

...

...

σaN


y∈RN×1

=



√
3τ−1

1 τ−1/2
1 1 1

√
3
τ1/2

1
1
√

2
τ1

...
...

...
...

...

...
...

...
...

...
√

3τ−1
N τ−1/2

N 1 1
√

3
τ1/2

N
1
√

2
τN


X∈RN×5



σq0

σrw0

σ∗b0

σrrw0

σrr0


β0∈R5×1

+ ε. (7.35)

151

The model described in (7.35), however, presents a significant multicollinearity problem

since almost every column in X is dependent on τ. Although multicollinearity is usually not

a problem when evaluating the model’s ability to predict the observed data, it is extremely

problematic here since the desired inference (i.e. the initial guess) is based on the individual

coefficient values in β. Therefore, ridge regression [44] is used to solve (7.35) using

β̂0 =
(
XTX + λI

)−1
XTy, (7.36)

where λ is a tunable, small biasing constant. Using the initial guess β̂0, the nonlinear model

(7.29) is then solved to produce β̂. Finally, it is important to realize the desired estimate

of σb is not directly given by σ̂∗b since it is simply an estimate of the model’s intercept. To

obtain the desired σ̂b, the fitted model in (7.29) is used along with (7.22) to yield

σ̂b =

√
π

2 log(2)
min

(
Xβ̂

)
. (7.37)

This process is summarized in Algorithm 7.1. The ARMAV method was validated

using a series of Monte-Carlo simulations along with real-world sensor data from a STIM-

300 (tactical grade) IMU; the results of which are discussed in the following sections.

7.4 Simulation

A 3000-trial Monte-Carlo simulation was executed across 30 unique levels where the

length of available sensor data was incrementally decreased from 6 hours (5.4 million

samples) to 6 minutes (90 thousand samples). Using simulated IMU data, both the slope

method and ARMAV (Algorithm 7.1) were used to estimate the five known simulated noise

strength coefficients. The true coefficients were fixed for the entire simulation and are

summarized in Table 7.2. Simulated IMU data were generated using the numerical methods

described by [53], and are summarized in the following paragraph for completeness.

In general, simulated IMU data were generated as rate signals, with units of [deg/s] or

[m/s/s], by applying the appropriate arithmetic operation to the underlying random process

for each source of noise, and with the corresponding standard deviation from Table 7.2.

152

Algorithm 7.1 Autonomous Regression Method for Allan Variance
Input: σa, τ I Allan deviation data in [hrs]

1: X1 ←
[√

3
τ

1
√
τ

1
√
τ
√

3
τ
√

2

]
I Construct linear regressor matrix

2: β0 ←
(
XT

1 X1 + λI
)−1

XT
1σa I Ridge regression for initial guess

3: X2 ←
[

3
τ2

1
τ

1 τ
3

τ2

2

]
I Construct nonlinear regressor matrix

4: f (X,β)← log10(Xβ2) I Build nonlinear regression function
5: wi ←

1
(σaiδai)

2 i = 1, ,N I Create weight vector from percent error formula
6: β1 ←fitnlm(X2, log10(a2), f ,β0, ’weights’,w) I Use nonlinear solver to estimate

Output: σq, σrw, σb, σrrw, σrr

σq ← β1(1) I Extract quantization noise coefficient
σrw ← β1(2) I Extract random walk noise coefficient
σb ←

√
π

2 log(2) min (X1β1) I Extract bias instability noise coefficient

σrrw ← β1(4) I Extract rate random walk noise coefficient
σrr ← β1(5) I Extract rate ramp noise coefficient

For example, Angle/Velocity Random Walk (σrw) data were generated directly as zero-

mean White Gaussian Noise (WGN) since a random walk process in the integrated signal,

with units [deg] or [m/s], arises from the integration of WGN in the rate signal, which

has units [deg/s] or [m/s/s]. Meanwhile, Rate Random Walk (σrrw) data were generated by

numerically integrating a WGN sequence, with units [deg/s/s] or [m/s/s/s], since the desired

random walk was to be found in the rate signal and not its integral.

Next, the ARMAV method was programmed as shown in Algorithm 7.1, with a

λ = 5 × 10−3 value. The particular λ value was found experimentally by monitoring

Variation Inflation Factor (VIF) values [68]. It is important to note, the specific value

of λ did not have a significant effect on the final coefficient estimates since it only affected

the initial guess used in nonlinear regression.

Finally, the slope method was programmed for comparison to ARMAV also using

the methods described by [53]. As a brief summary, the slope method was programmed to

calculate the slope of the observed Allan deviation data and find the closest point (Euclidean

153

distance) on the slope curve to each of the five slopes of interest. Then, the Allan deviation

value at the particular τ of interest was found by using a point-slope formula for the desired

line.

For each of the 30 distinct levels of available sensor data, 3000 trials were conducted,

and the resulting mean relative bias and associated 95% basic percentile confidence

intervals were estimated by bootstrapping. Figure 7.3 illustrates the percent relative mean

bias and associated 95% basic percentile confidence interval for each level of the simulation

and for each of the five noise sources, all relative to their respective true values from Table

7.2. Additionally, Table 7.3 summarizes percent relative bias results from the simulation at

the 1-hour, 3-hour, and 6-hour levels.

Overall, both the figure and the table illustrate more stable and generally more accurate

estimates when using ARMAV, especially when the length of available data is greater than

1 hour. As shown in both Figure 7.3 and Table 7.3, ARMAV produced substantially more

stable results (in terms of variance) as indicated by the width of the confidence interval,

especially as the length of available data decreased below 2 hours. With the exception

of σrrw, percent relative bias was smaller with less variability when ARMAV was used to

estimate the errors than when the slope method was used. In the case of σrrw, ARMAV

resulted in a lower percent relative bias until the length of available data fell below 0.5

hours. It is also important to note, the slope method resulted in several instances of large

variance for particular lengths of available data, generally less than two hours, across every

noise source.

Comparisons of resulting estimation of ARMAV to the slope method were also

conducted for applications and settings in which the Allan deviation curve is essentially

incomplete, that is, in scenarios where the simulated stochastic processes did not include

one of the five common noise components. Namely, where either quantization or rate ramp

components were not included in the simulated IMU data. In these comparisons, another set

154

of 3000-trial Monte-Carlo simulations were conducted separately for each source of error

and in the same manner as previously presented, with the exception that the true σq and σrr

were set to zero in each simulation, respectively. For comparison, results from the slope

method were also computed using two techniques: in autonomous mode, the slope method

was allowed to run as previously described [53], with no additional human intervention,

while in manual mode, the slope method was re-programmed to skip the estimation of

the particular noise coefficient that was known to be zero. Tables 7.4 and 7.5 provide,

respectively, the results of these simulations for the cases when quantization and rate ramp

components were missing. Results are presented in terms of bias rather than percent relative

bias for better comparisons.

As shown in both tables, the non-normalized biases from ARMAV were up to four

orders of magnitude closer to the truth (zero) when compared to the autonomous slope

method. This is due to the fact the slope method, when programmed, looks for all

parameters (i.e., finds the closest answer matching the graphical method for each noise

coefficient). In contrast, the manual slope method was re-programmed to assume the

missing noise coefficient was zero. As expected, its results for all other coefficients

were an exact match to the autonomous-mode slope method. Here, it is important to

emphasize these scenarios had to be specially programmed from an initial visual inspection

of the Allan variance data for the slope method to produce good results. In contrast,

for data applications in which these sources of noise are not estimable from the data,

ARMAV autonomously and reliably provided reasonable estimates with no changes to the

programmed algorithm.

7.5 Application to STIM-300 IMU Analysis

The ARMAV method was applied to real-world sensor data from a STIM-300 (tactical

grade) IMU. The manufacturer of this sensor provides specifications for the values of σrw

and σb [91], which are reproduced along with the analysis results in Table 7.6. A a single

155

6-hour data collection was performed at static conditions and room temperature for the

x-axis accelerometer and gyroscope at a sampling rate of 250 Hz. It is important to note

that the purpose of this data collect was to simply demonstrate the ability of ARMAV to

match manufacturer specifications, which were only specified for the random walk and

bias instability components. Therefore the internal temperature of the IMU was not tightly

controlled. The MATLAB code and inertial dataset used in this research are provided as

supplementary materials via [1]. Plots of the fitted Allan deviance curve resulting from the

application of the regression method for both the accelerometer and gyroscope are provided

in Figures 7.4 and 7.5. As shown, ARMAV is able to accurately model the observed data

from both devices with no need for human intervention and directly enables the accurate

estimation of the necessary noise strength coefficients. The resulting 95% prediction bands

generated in each figure cover the possible range of future observations simultaneously and

provides a measure of the model’s quality. Finally, Table 7.6 provides the results from

ARMAV on the STIM-300 IMU data and compares these estimates to the slope method.

As shown, the particular sensor tested did not exhibit quantization noise (i.e σq = 0),

yet ARMAV was able to accurately estimate all noise coefficients, and in the case of σq,

its estimates were up to five orders of magnitude closer to zero when compared to the

autonomous slope method. Additionally, in the case of σrw and σb, where the manufacturer

provided specifications [91], ARMAV was closer to specifications in the majority of cases,

and always at least as accurate as the slope method.

156

Figure 7.3: Monte-Carlo comparison between slope and ARMAV methods. The ARMAV

method produced significantly more accurate, and stable results (in terms of variance) as

indicated by the confidence intervals, especially as the length of available data decreased

below 2 hours.

157

Table 7.2: Summary of true noise coefficients for Monte-Carlo simulation

Noise source Value Units

σq 2 × 10−4 [deg] or [m/s]

σrw 8 × 10−3 [deg/
√

hr] or [m/s/
√

hr]

σb 1 × 10−1 [deg/hr] or [m/s/hr]

σrrw 2.00 [deg/hr/
√

hr] or [m/s/hr/
√

hr]

σrr 5.00 [deg/hr/hr] or [m/s/hr/hr]

158

Table 7.3: Mean percent relative bias comparison, slope vs. ARMAV.

Slope method ARMAV

Time β̂ Mean Std. dev. 95% LCL1 95% UCL2 Mean Std. dev. 95% LCL1 95% UCL2

1 hr

σ̂q 1.03 × 10−2 1.48 × 10−2 −3.02 × 10−4 5.31 × 10−2 3.65 × 10−3 8.26 × 10−3 −8.47 × 10−3 2.37 × 10−2

σ̂rw 6.15 × 10−1 2.87 2.93 × 10−1 4.16 × 10−1 −2.98 × 10−2 1.11 × 10−1 −2.67 × 10−1 1.26 × 10−1

σ̂b 2.80 × 10−2 5.71 × 10−1 −1.65 × 10−1 1.93 −4.79 × 10−2 6.18 × 10−2 −1.48 × 10−1 1.05 × 10−1

σ̂rrw 1.42 × 10−1 2.04 × 10−1 −2.28 × 10−1 6.00 × 10−1 −5.42 × 10−2 2.12 × 10−1 −4.92 × 10−1 3.50 × 10−1

σ̂rr 3.16 × 10−1 4.34 × 10−1 −4.54 × 10−1 1.27 −1.26 × 10−1 5.25 × 10−1 −1.00 8.57 × 10−1

3 hrs

σ̂q 6.38 × 10−3 8.56 × 10−3 2.27 × 10−6 3.04 × 10−2 9.81 × 10−4 5.77 × 10−3 −1.24 × 10−2 1.17 × 10−2

σ̂rw 4.55 × 10−1 3.26 3.17 × 10−1 3.87 × 10−1 1.78 × 10−3 7.10 × 10−2 −1.30 × 10−1 1.61 × 10−1

σ̂b −4.31 × 10−2 5.81 × 10−1 −1.29 × 10−1 −2.88 × 10−2 −4.64 × 10−2 5.37 × 10−2 −1.15 × 10−1 1.08 × 10−1

σ̂rrw 1.66 × 10−1 1.86 × 10−1 −2.02 × 10−2 6.76 × 10−1 −6.57 × 10−3 1.51 × 10−1 −2.91 × 10−1 3.26 × 10−1

σ̂rr 1.32 × 10−2 2.71 × 10−1 −5.15 × 10−1 5.41 × 10−1 −5.72 × 10−2 2.93 × 10−1 −6.80 × 10−1 4.91 × 10−1

6 hrs

σ̂q 4.75 × 10−3 6.09 × 10−3 1.03 × 10−4 2.17 × 10−2 8.32 × 10−4 4.23 × 10−3 −9.06 × 10−3 8.82 × 10−3

σ̂rw 3.53 × 10−1 1.30 × 10−2 3.27 × 10−1 3.78 × 10−1 4.26 × 10−3 5.32 × 10−2 −9.73 × 10−2 1.37 × 10−1

σ̂b −6.32 × 10−2 5.05 × 10−1 −1.14 × 10−1 −4.25 × 10−2 −5.50 × 10−2 3.92 × 10−2 −1.05 × 10−1 5.96 × 10−2

σ̂rrw 1.50 × 10−1 1.14 × 10−1 4.06 × 10−2 2.47 × 10−1 −5.18 × 10−3 1.09 × 10−1 −2.11 × 10−1 2.30 × 10−1

σ̂rr 2.45 × 10−3 2.02 × 10−1 −4.16 × 10−1 3.92 × 10−1 −2.29 × 10−2 1.95 × 10−1 −4.35 × 10−1 3.50 × 10−1

1 LCL - Lower confidence level from basic percentile

2 UCL - Upper confidence level from basic percentile

159

Table 7.4: Actual estimation bias comparison, slope vs. ARMAV, no quantization.

Slope method: Auto Slope method: Manual ARMAV

Time β̂ Mean Std. dev. Mean Std. dev Mean Std. dev.

1 hr

σ̂q 4.25 × 10−3 1.69 × 10−2 – – 6.81 × 10−7 7.73 × 10−7

σ̂rw 5.60 × 10−5 1.26 × 10−3 5.60 × 10−5 1.26 × 10−3 1.83 × 10−5 1.14 × 10−4

σ̂b 1.39 × 10−1 1.44 × 10−1 1.39 × 10−1 1.44 × 10−1 1.14 × 10−1 1.17 × 10−2

σ̂rrw 2.56 × 10−1 4.38 × 10−1 2.56 × 10−1 4.38 × 10−1 −1.20 × 10−1 3.77 × 10−1

σ̂rr 1.57 2.33 1.57 2.33 −7.38 × 10−1 2.80

3 hrs

σ̂q 1.40 × 10−3 3.13 × 10−2 – – 3.37 × 10−7 5.07 × 10−7

σ̂rw 2.45 × 10−5 4.64 × 10−5 2.45 × 10−5 4.64 × 10−5 4.56 × 10−5 6.08 × 10−5

σ̂b 1.19 × 10−1 1.49 × 10−1 1.19 × 10−1 1.49 × 10−1 1.13 × 10−1 6.60 × 10−3

σ̂rrw 3.14 × 10−1 3.30 × 10−1 3.14 × 10−1 3.30 × 10−1 −2.41 × 10−2 2.17 × 10−1

σ̂rr 2.66 × 10−1 1.27 2.66 × 10−1 1.27 −1.96 × 10−1 1.34

6 hrs

σ̂q 7.71 × 10−5 4.07 × 10−5 – – 2.40 × 10−7 4.08 × 10−7

σ̂rw 2.27 × 10−5 4.25 × 10−5 2.27 × 10−5 4.25 × 10−5 4.53 × 10−5 4.89 × 10−5

σ̂b 1.09 × 10−1 4.08 × 10−3 1.09 × 10−1 4.08 × 10−3 1.12 × 10−1 5.04 × 10−3

σ̂rrw 2.91 × 10−1 2.10 × 10−1 2.91 × 10−1 2.10 × 10−1 −2.09 × 10−2 1.68 × 10−1

σ̂rr 3.94 × 10−2 1.02 3.94 × 10−2 1.02 −6.97 × 10−2 9.73 × 10−1

160

Table 7.5: Actual estimation bias comparisons, slope vs. ARMAV, no rate ramp.

Slope method: Auto Slope method: Manual ARMAV

Time β̂ Mean Std. dev. Mean Std. dev Mean Std. dev.

1 hr

σ̂q 5.04 × 10−5 1.56 × 10−3 5.04 × 10−5 1.56 × 10−3 2.94 × 10−6 3.46 × 10−6

σ̂rw 1.28 × 10−2 4.32 × 10−2 1.28 × 10−2 4.32 × 10−2 −1.43 × 10−3 2.06 × 10−3

σ̂b 1.83 × 10−1 1.69 × 10−1 1.83 × 10−1 1.69 × 10−1 1.28 × 10−1 1.78 × 10−2

σ̂rrw −9.21 × 10−2 4.76 × 10−1 −9.21 × 10−2 4.76 × 10−1 −3.77 × 10−1 4.90 × 10−1

σ̂rr 5.28 2.85 – – 1.17 1.66

3 hrs

σ̂q 5.42 × 10−4 1.73 × 10−2 5.42 × 10−4 1.73 × 10−2 2.22 × 10−6 2.86 × 10−6

σ̂rw 3.70 × 10−2 1.57 × 10−1 3.70 × 10−2 1.57 × 10−1 −9.57 × 10−4 1.47 × 10−3

σ̂b 2.60 × 10−1 3.62 × 10−1 2.60 × 10−1 3.62 × 10−1 1.28 × 10−1 1.30 × 10−2

σ̂rrw −8.31 × 10−2 3.69 × 10−1 −8.31 × 10−2 3.69 × 10−1 −1.90 × 10−1 3.06 × 10−1

σ̂rr 3.04 2.08 – – 5.43 × 10−1 8.31 × 10−1

6 hrs

σ̂q 9.36 × 10−4 2.87 × 10−2 9.36 × 10−4 2.87 × 10−2 2.01 × 10−6 2.60 × 10−6

σ̂rw 6.83 × 10−2 3.06 × 10−1 6.83 × 10−2 3.06 × 10−1 −7.79 × 10−4 1.23 × 10−3

σ̂b 3.25 × 10−1 5.28 × 10−1 3.25 × 10−1 5.28 × 10−1 1.29 × 10−1 1.23 × 10−2

σ̂rrw −6.79 × 10−2 3.53 × 10−1 −6.79 × 10−2 3.53 × 10−1 −1.53 × 10−1 2.69 × 10−1

σ̂rr 2.17 1.78 – – 4.02 × 10−1 6.32 × 10−1

161

Figure 7.4: Illustration of ARMAV model on accelerometer Allan deviation measurements.

As shown, ARMAV is able to accurately model the observed data with no need for

human intervention, which directly enables the accurate estimation of the necessary noise

strength coefficients. The resulting 95% prediction intervals cover a possible range of Allan

deviation observations for each τ.

162

Figure 7.5: Illustration of ARMAV model on gyroscope Allan deviation measurements.

As shown, ARMAV is able to accurately model the observed data with no need for

human intervention, which directly enables the accurate estimation of the necessary noise

strength coefficients. The resulting 95% prediction intervals cover a possible range of Allan

deviation observations for each τ.

163

Table 7.6: Allan variance analysis results for STIM-300 IMU.

Accelerometer Gyroscope

β̂ Slope: Auto Slope: Manual ARMAV Spec Slope: Auto Slope: Manual ARMAV Spec

σ̂q 7.44 × 10−5 – 7.28 × 10−10 – 1.61 × 10−2 – 3.28 × 10−5 –

σ̂rw 5.08 × 10−2 5.08 × 10−2 5.41 × 10−2 6.00 × 10−2 1.51 × 10−1 1.51 × 10−1 1.51 × 10−1 1.50 × 10−1

σ̂b 2.99 2.99 2.99 2.66 6.66 × 10−1 6.66 × 10−1 6.75 × 10−1 5.00 × 10−1

σ̂rrw 3.79 × 101 3.79 × 101 3.84 × 101 – 1.33 1.33 9.00 × 10−1 –

σ̂rr 4.28 × 101 4.28 × 101 4.73 × 101 – 9.85 × 10−1 9.85 × 10−1 8.45 × 10−1 –

164

7.6 Chapter Summary and Future Work

This chapter has proposed a novel autonomous, regression-based method for Allan

variance analysis, in the context of IMU sensor calibration. The ARMAV method was

shown to be generally more accurate and stable than the state-of-the-art slope method,

especially when the length of available sensor data was greater than 1 hour. Additionally,

ARMAV was shown to be completely autonomous and simple to program, requiring no

further human input even when particular sources of noise were not present in the observed

data. These findings provide significant advances in the calibration of inertial sensors as the

state-of-the art method (the slope method) requires human input either via visual inspection

of Allan deviance curves, or specific coding that is not transferable to other observed or

updated data sets. As such, this method directly enables online or autonomous IMU sensor

calibration using Allan variance, with no prior knowledge on the specific sources of noise

affecting an inertial sensor of interest. Future work in this area involves the integration of

the ARMAV method into an online navigation framework, where a navigation computer

is able to constantly update its internal IMU model based on Allan variance analysis of

observed IMU output. The implications of this integration is a continually updated, safe,

accurate awareness of vehicle position, velocity, and orientation at all times.

165

VIII. Summary and Conclusions

As evidenced by the variety and maturity of emerging alternative navigation sensors,

all-source navigation is not only becoming an imminent reality, but more importantly, it

is uniquely poised to provide precision navigation systems with much-needed redundancy

in GPS-challenged environments. The goal of this dissertation was to develop a means to

provide navigation assurance and resiliency in the emerging all-source environment. To

do so, this research detailed the development of an online autonomous and resilient sensor

management framework aimed at solving a multi-faceted problem set including: all-source

fault detection and exclusion, integrity monitoring, sensor initialization and validation,

online sensor calibration, and online model identification.

In Chapter 3, the proposed framework, named Autonomous and Resilient Manage-

ment of All-source Sensors (ARMAS), was shown to provide a breadth of sensor man-

agement functions across four modes of operation: monitoring, validation, calibration, and

remodeling. Using a coherent interconnection between these modes, ARMAS was success-

fully shown to provide resilient and autonomous sensor management across two example

multi-sensor navigation scenarios that required a combination of fault detection, sensor

model validation, online calibration, and model identification, for continued operations in

challenging environments.

In Chapter 4, a novel method for fault detection and isolation in all-source navigation

systems was developed as the key enabler of the framework’s monitoring mode. This

monitoring method, referred to as Sensor-Agnostic All-source Residual Monitoring

(SAARM), did not constrain faults to only biases, and provided a mechanism for detection

of multiple simultaneous faults. Driven by a sensor-agnostic and fault-agnostic residual

monitoring algorithm, SAARM was not only shown to perform comparably to existing

RAIM techniques in the case of a single-satellite bias, but more importantly, shown to

166

detect and isolate various types sensor model mismatches in and across multiple sensing

domains such as position and velocity, without the need for synchronous or simultaneous

sensor redundancy. Finally, SAARM was shown to provide a robust measure of system

integrity under minimal assumptions, guaranteed to contain the true vehicle horizontal

position (within a specified error bound) throughout all phases of the fault detection and

identification process.

In Chapter 5, a novel method for real-time model validation for plug-and-play

sensors, specifically aimed at all-source navigation applications, was developed as the

key enabler of the framework’s validation mode. The proposed method, referred to

as Real-time Validation for Plug-and-play Sensors (RVPS), enabled the estimation of

sensor-unique states without compromising the navigation solution, thereby protecting the

system integrity computations during the validation period, all using a single existing filter.

Equipped with the partial update implementation of the Kalman Schmidt filter, RVPS was

shown not only to detect invalid sensor models more reliably than conventional residual

monitoring, but additionally, prevent the detection process from corrupting the navigation

solution.

In Chapter 6, a fully self-contained, pressure-airspeed-altitude ADS calibration

algorithm was developed along with an accompanying autonomous smoothing spline

process rooted in information theory. Driven by a BSEKF, the Jurado-McGehee Online

Self-Survey (JMOSS) algorithm was shown, using real-world supersonic flight data, to

model a larger portion of the Mach number domain while drastically reducing the cost,

flight time, mean error, and uncertainty around the resulting model.

Finally, in Chapter 7, a novel autonomous, regression-based method for Allan

variance analysis was developed. The Autonomous Regression Method for Allan Variance

(ARMAV) method was shown to be generally more accurate and stable than the standard

slope method, especially as the length of available data was reduced. Additionally,

167

ARMAV was shown to be completely autonomous and simple to program, requiring no

further human input even when particular sources of noise were not present in the observed

data.

168

Bibliography

[1] “Autonomous Regression Method for Allan Vari-
ance”. https://www.mathworks.com/matlabcentral/fileexchange/

66462-autonomous-regression-method-for-allan-variance, July 2018.

[2] Akaike, H. “A new look at the statistical model identification”. IEEE Transactions
on Automatic Control, 19(6):716–723, dec 1974. URL https://doi.org/10.1109%
2Ftac.1974.1100705.

[3] Akhlaghi, Shahrokh, Ning Zhou, and Zhenyu Huang. “Adaptive adjustment of noise
covariance in Kalman filter for dynamic state estimation”. Power & Energy Society
General Meeting, 2017 IEEE, 1–5. IEEE, 2017.

[4] Allan, D. W. “Statistics of atomic frequency standards”. Proceedings of the IEEE,
54(2):221–230, Feb 1966. ISSN 0018-9219.

[5] Arora, Jasbir. Introduction to optimum design. Academic Press, 2004.

[6] Atmosphere, US Standard. US standard atmosphere. National Oceanic and
Atmospheric Administration, 1976.

[7] Bageshwar, Vibhor L, Demoz Gebre-Egziabher, William L Garrard, and Tryphon T
Georgiou. “Stochastic observability test for discrete-time Kalman filters”. Journal
of Guidance, Control, and Dynamics, 32(4):1356–1370, 2009.

[8] Bates, Douglas M. and Donald G. Watts. Nonlinear regression analysis and
its applications. Wiley series in probability and mathematical statistics. Applied
probability and statistics. J. Wiley, New York, Chichester, 1988. ISBN 0-471-81643-
4. Includes indexes.

[9] Bennett, William Ralph. “Spectra of quantized signals”. Bell System Technical
Journal, 27(3):446–472, 1948.

[10] Beravs, Tadej, Samo Beguš, Janez Podobnik, and Marko Munih. “Magnetometer
calibration using Kalman filter covariance matrix for online estimation of magnetic
field orientation”. IEEE Transactions on Instrumentation and Measurement,
63(8):2013–2020, 2014.

[11] Bhatti, Umar I, Washington Y Ochieng, and Shaojun Feng. “Integrity of an
integrated GPS/INS system in the presence of slowly growing errors. Part I: A
critical review”. Gps Solutions, 11(3):173–181, 2007.

[12] Bhatti, Umar I, Washington Y Ochieng, and Shaojun Feng. “Integrity of an
integrated GPS/INS system in the presence of slowly growing errors. Part II:
analysis”. GPS Solutions, 11(3):183–192, 2007.

169

https://www.mathworks.com/matlabcentral/fileexchange/66462-autonomous-regression-method-for-allan-variance
https://www.mathworks.com/matlabcentral/fileexchange/66462-autonomous-regression-method-for-allan-variance
https://doi.org/10.1109%2Ftac.1974.1100705
https://doi.org/10.1109%2Ftac.1974.1100705

[13] Bhatti, Umar Iqbal. “An improved sensor level integrity algorithm for GPS/INS
integrated system”. Procceding of ION GNSS 19th International Technical Meeting,
3012–3023. 2006.

[14] Bishop, Craig H, Brian J Etherton, and Sharanya J Majumdar. “Adaptive sampling
with the ensemble transform Kalman filter. Part I: Theoretical aspects”. Monthly
weather review, 129(3):420–436, 2001.

[15] Brenner, Mats. “Implementation of a RAIM Monitor in a GPS Receiver and an
Integrated GPS/IRS”. ION GPS-90, 397–406, 1990.

[16] Brenner, Mats. “Integrated GPS/inertial fault detection availability”. Navigation,
43(2):111–130, 1996.

[17] Brink, Kevin M. “Partial-Update Schmidt–Kalman Filter”. Journal of Guidance,
Control, and Dynamics, 1–15, 2017.

[18] Britting, Kenneth R. Inertial navigation systems analysis. Artech House, 1971.

[19] Brown, R Grover and Paul McBurney. “Self-Contained GPS Integrity Check Using
Maximum Solution Separation”. Navigation, 35(1):41–53, 1988.

[20] Brumback, B and M Srinath. “A chi-square test for fault-detection in Kalman filters”.
IEEE Transactions on Automatic Control, 32(6):552–554, 1987.

[21] Call, Curt, Mike Ibis, Jim McDonald, and Kevin Vanderwerf. “Performance of
Honeywell’s inertial/GPS hybrid (high) for RNP operations”. 2006 IEEE/ION
Position, Location, And Navigation Symposium, 244. IEEE, 2006.

[22] Canciani, Aaron and John Raquet. “Absolute positioning using the Earth’s magnetic
anomaly field”. Navigation, 63(2):111–126, 2016.

[23] Casella, George and Roger L Berger. Statistical Inference, volume 2. Duxbury
Pacific Grove, CA, 2002.

[24] Chang, Chaw-Bing and Michael Athans. Hypothesis testing and state estimation
for discrete systems with finite-valued switching parameters. Technical report,
MASSACHUSETTS INST OF TECH CAMBRIDGE ELECTRONIC SYSTEMS
LAB, 1977.

[25] Chiu, Han-Pang, Xun S. Zhou, Luca Carlone, Frank Dellaert, Supun Samarasekera,
and Rakesh Kumar. “Constrained optimal selection for multi-sensor robot navigation
using plug-and-play factor graphs”. 2014 IEEE International Conference on
Robotics and Automation (ICRA), 663–670, 2014. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=6906925.

170

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6906925
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6906925

[26] Cho, Am, Young-shin Kang, Bum-jin Park, Chang-sun Yoo, and Sam-ok Koo. “Air
data System Calibration Using GPS Velocity information”. 2012 International
Conference on Control, Automation and Systems International Conference on
Control, Automation and Systems, 433–436, 2012. ISSN 15987833.

[27] Curro, Joseph and John Raquet. “Navigation using VLF environmental features”.
Position, Location and Navigation Symposium (PLANS), 2016 IEEE/ION, 373–379.
IEEE, 2016.

[28] De Maesschalck, Roy, Delphine Jouan-Rimbaud, and Désiré L Massart. “The
mahalanobis distance”. Chemometrics and intelligent laboratory systems, 50(1):1–
18, 2000.

[29] Diverdi, Stephen and Jonathan T. Barron. “Geometric calibration for mobile, stereo,
autofocus cameras”. 2016 IEEE Winter Conference on Applications of Computer
Vision, WACV 2016, 2016.

[30] Eide, Peter and P Maybeck. “An MMAE failure detection system for the F-16”.
IEEE Transactions on Aerospace and Electronic systems, 32(3):1125–1136, 1996.

[31] Eilers, Paul HC and Brian D Marx. “Flexible smoothing with B-splines and
penalties”. Statistical science, 89–102, 1996.

[32] El-Sheimy, Naser, Haiying Hou, and Xiaoji Niu. “Analysis and modeling of
inertial sensors using Allan variance”. IEEE Transactions on instrumentation and
measurement, 57(1):140–149, 2008.

[33] Erb, Russell E. Pitot-statics Textbook. Technical report, USAF Test Pilot School,
2015.

[34] Freescale Semiconductor, Inc. “Allan Variance: Noise Analysis for Gyroscopes”.
http://cache.freescale.com/files/sensors/doc/app note/AN5087.pdf, 2015.

[35] Gainer, Thomas G and Sherwood Hoffman. Summary of transformation equations
and equations of motion used in free flight and wind tunnel data reduction and
analysis. Technical Report NASA-SP-3070, NASA, 1972.

[36] van Graas, Frank and James L Farrell. “Baseline fault detection and exclusion
algorithm”. Proceedings of the 49th annual meeting of the institute of navigation,
413–420. 1993.

[37] Gratton, Livio, Mathieu Joerger, and Boris Pervan. “Carrier phase relative RAIM
algorithms and protection level derivation”. The Journal of Navigation, 63(2):215–
231, 2010.

[38] Grejner-Brzezinska, Dorota A, Charles K Toth, Terry Moore, John F Raquet,
Mikel M Miller, and Allison Kealy. “Multisensor navigation systems: A remedy
for GNSS vulnerabilities?” Proceedings of the IEEE, 104(6):1339–1353, 2016.

171

http://cache.freescale.com/files/sensors/doc/app_note/AN5087.pdf

[39] Guerrier, Stephane, Juan Jurado, Mehran Khaghani, Gaetan Bakalli, Mucyo
Karemera, Roberto Molinari, Samuel Orso, John Raquet, Christine M. Schubert
Kabban, Jan Skaloud, and Yuming Zhang. “Optimal Moment Matching Techniques
for Inertial Sensor Calibration (draft)”. IEEE Sensors Journal, 2019.

[40] Guerrier, Stéphane, Jan Skaloud, Yannick Stebler, and Maria-Pia Victoria-Feser.
“Wavelet-variance-based estimation for composite stochastic processes”. Journal
of the American Statistical Association, 108(503):1021–1030, 2013.

[41] Haering Jr, Edward A. “Airdata calibration techniques for measuring atmospheric
wind profiles”. Journal of Aircraft, 29(4):632–639, jul 1992. URL https://doi.org/

10.2514%2F3.46212.

[42] Haering Jr, Edward A. Airdata measurement and calibration. Technical
Memorandum 104316, NASA, 1995.

[43] Hanlon, Peter D and Peter S Maybeck. “Multiple-model adaptive estimation using
a residual correlation Kalman filter bank”. IEEE Trans. Aerosp. Electron. Syst.,
36(2):393–406, 2000. ISSN 0018-9251.

[44] Hoerl, Arthur E and Robert W Kennard. “Ridge regression: Biased estimation for
nonorthogonal problems”. Technometrics, 12(1):55–67, 1970.

[45] Hou, Haiying. Modeling Inertial Sensor Errors Using Allan Variance. Master’s
thesis, University of Calgary, September 2004.

[46] IEEE. “IEEE Standard Specification Format Guide and Test Procedure for Single-
Axis Interferometric Fiber Optic Gyros”. IEEE Std 952-1997, 1998.

[47] Jia, Chao and Brian L. Evans. “Online calibration and synchronization of cellphone
camera and gyroscope”. 2013 IEEE Global Conference on Signal and Information
Processing, GlobalSIP 2013 - Proceedings, 731–734, 2013.

[48] Joerger, Mathieu, Jason Neale, and Boris Pervan. “Iridium/GPS carrier phase
positioning and fault detection over wide areas”. Proceedings of the 22nd
International Technical Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS 2009), 1371–1385. 2009.

[49] Joerger, Mathieu and Boris Pervan. “Kalman filter-based integrity monitoring
against sensor faults”. Journal of Guidance, Control, and Dynamics, 36(2):349–
361, 2013.

[50] Johansen, Tor A., Andrea Cristofaro, Kim Sorensen, Jakob M. Hansen, and Thor I.
Fossen. “On estimation of wind velocity, angle-of-attack and sideslip angle of
small UAVs using standard sensors”. 2015 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE, jun 2015. URL https://doi.org/10.1109%2Ficuas.
2015.7152330.

172

https://doi.org/10.2514%2F3.46212
https://doi.org/10.2514%2F3.46212
https://doi.org/10.1109%2Ficuas.2015.7152330
https://doi.org/10.1109%2Ficuas.2015.7152330

[51] Jorris, Timothy R, Mildred M Ramos, Russell E Erb, and Reagan K Woolf.
“Statistical Pitot-static Calibration Technique using Turns and Self-Survey Method”.
42nd International SFTE Symposium. Seattle, Washington, August 2011.

[52] Jurado, J. D. and J. F. Raquet. “Towards an online sensor model validation
and estimation framework”. 2018 IEEE/ION Position, Location and Navigation
Symposium (PLANS), 1319–1325. April 2018. ISSN 2153-3598.

[53] Jurado, Juan and John Raquet. “Keynote: A Common Framework for Inertial Sensor
Error Modeling”. Proceedings of the ION 2017 Pacific PNT Meeting, 725–740.
Honolulu, Hawaii, May 2017.

[54] Jurado, Juan, John Raquet, and Christine M. Schubert Kabban. “Autonomous and
Resilient Management of All-Source Sensors for Navigation”. Proceedings of the
ION 2019 Pacific PNT Meeting. Honolulu, Hawaii, April 2019.

[55] Jurado, Juan, Christine M. Schubert Kabban, and John Raquet. “A regression-based
methodology to improve estimation of inertial sensor errors using Allan variance
data”. Navigation, 66(1):251–263, January 2019. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/navi.278.

[56] Jurado, Juan D. and Clark C. McGehee. “Complete Online Algorithm for Air
Data System Calibration”. Journal of Aircraft, 1–12, 2018/10/31 2018. URL
https://doi.org/10.2514/1.C034964.

[57] Jurado, Juan D., John F. Raquet, and Christine M. Schubert Kabban. “Real-time
Validation for Plug-and-play Sensors (Draft)”. IEEE Transactions on Aerospace
and Electronic Systems, 2019.

[58] Jurado, Juan D., John F. Raquet, Christine M. Schubert Kabban, and Jonathon.
Gipson. “Sensor-Agnostic All-source Residual Monitoring (Draft)”. Navigation,
2019.

[59] Kalman, R. E. “A New Approach to Linear Filtering and Prediction Problems”.
Journal of Basic Engineering, 82(1):35, 1960. URL https://doi.org/10.1115%2F1.
3662552.

[60] Kauffman, Kyle J. Radar based navigation in unknown terrain. Ph.D. thesis, Air
Force Institute of Technology, 2012.

[61] Kauffman, Kyle J. “SCORPION”. https://www.afit.edu/docs/Scorpion.pdf,
November 2018.

[62] Kay, Steven M. Fundamentals of Statistical Signal Processing, Volume I: Estimation
Theory. Prentice Hall, 1993.

[63] Kay, Steven M. Fundamentals of Statistical Signal Processing, Vol. II: Detection
Theory. Prentice Hall, 1998.

173

https://onlinelibrary.wiley.com/doi/abs/10.1002/navi.278
https://onlinelibrary.wiley.com/doi/abs/10.1002/navi.278
https://doi.org/10.2514/1.C034964
https://doi.org/10.1115%2F1.3662552
https://doi.org/10.1115%2F1.3662552
https://www.afit.edu/docs/Scorpion.pdf

[64] Keivan, N and G Sibley. “Constant-time monocular self-calibration”. International
Conference on Robotics and Biomimetics, 1590–1595, 2014.

[65] Keivan, Nima and Gabe Sibley. “Online SLAM with Any-time Self-calibration
and Automatic Change Detection”. 2015 International Conference on Robotics and
Automation (ICRA), 1–8, 2015.

[66] Kerr, T. “Statistical analysis of a two-ellipsoid overlap test for real-time failure
detection”. IEEE Transactions on Automatic Control, 25(4):762–773, 1980.

[67] Kirkko-Jaakkola, M., J. Collin, and J. Takala. “Bias Prediction for MEMS
Gyroscopes”. IEEE Sensors Journal, 12(6):2157–2163, June 2012. ISSN 1530-
437X.

[68] Kutner, Michael H, Chris Nachtsheim, and John Neter. Applied Linear Regression
Models, volume 4. McGraw-Hill/Irwin, 2004.

[69] Lando, Marco, Manuela Battipede, and Piero A. Gili. “Neuro-Fuzzy Techniques for
the Air-Data Sensor Calibration”. Journal of Aircraft, 44(3):945–953, may 2007.
URL https://doi.org/10.2514%2F1.26030.

[70] Lee, Young C et al. “Analysis of range and position comparison methods as a means
to provide GPS integrity in the user receiver”. Proceedings of the 42nd Annual
Meeting of the Institute of Navigation, 1–4. 1986.

[71] Levinson, Jesse and Sebastian Thrun. “Automatic Online Calibration of Cameras
and Lasers.” Robotics: Science and Systems, volume 2. 2013.

[72] Lewis, Gregory V. “A Flight Test Technique Using GPS for Position Error
Correction Testing”. COCKPIT, Society of Experimental Test Pilots Quaterly
Publication. March 1997.

[73] Lewis, Gregory V. Using GPS to Determine Pitot-Static Errors. Technical report,
National Test Pilot School, 2003.

[74] Ling, Yonggen and Shaojie Shen. “High-precision online markerless stereo extrinsic
calibration”. 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 1771–1778. IEEE, oct 2016. ISBN 978-1-5090-3762-9. URL
http://ieeexplore.ieee.org/document/7759283/.

[75] Marquardt, Donald W. “An algorithm for least-squares estimation of nonlinear
parameters”. Journal of the society for Industrial and Applied Mathematics,
11(2):431–441, 1963.

[76] Maybeck, Peter S. Stochastic Models, Estimation, and Control Volume 1. Navtech,
Virginia, 1982.

174

https://doi.org/10.2514%2F1.26030
http://ieeexplore.ieee.org/document/7759283/

[77] Maybeck, Peter S. Stochastic Models, Estimation, and Control Volume 2. Navtech,
Virginia, 1984.

[78] Michalson, William R. “Ensuring GPS navigation integrity using receiver
autonomous integrity monitoring”. IEEE Aerospace and Electronic Systems
Magazine, 10(10):31–34, 1995.

[79] Miura, Hiroaki, Takami Yoshida, Keisuke Nakamura, and Kazuhiro Nakadai.
“SLAM-based online calibration of asynchronous microphone array for robot
audition”. Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, 524–529. IEEE, 2011.

[80] Niewoehner, Robert Jay. “Refining Satellite Methods for Pitot-Static Calibration”.
Journal of Aircraft, 43(3):846–849, may 2006. URL https://doi.org/10.2514%2F1.
18976.

[81] Novoselov, Roman Y., Shawn M. Herman, Sabino M. Gadaleta, and Aubrey B.
Poore. “Mitigating the effects of residual biases with Schmidt-Kalman filtering”.
2005 7th International Conference on Information Fusion, FUSION. 2005. ISBN
0780392868.

[82] Oleshchuk, Vladimir A. “Ad-hoc sensor networks: modeling, specification and
verification”. Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications, 2003. Proceedings of the Second IEEE International
Workshop on, 76–79. IEEE, 2003.

[83] Olson, Wayne M. “Pitot-Static Calibrations Using a GPS Multi-Track Method”.
28th SFTE Symposium. September 1998.

[84] Owen, Art B. Empirical likelihood. Wiley Online Library, 2001.

[85] Papoulis, A and SU Pillai. Probability, Random Variables, and Stochastic Processes.
McGaw-Hill, 1991.

[86] Parkinson, Bradford W and Penina Axelrad. “Autonomous GPS integrity monitoring
using the pseudorange residual”. Navigation, 35(2):255–274, 1988.

[87] Psiaki, Mark L. “Backward-Smoothing Extended Kalman Filter”. Journal of
Guidance, Control, and Dynamics, 28(5):885–894, sep 2005. URL https://doi.org/

10.2514%2F1.12108.

[88] Radi, A., G. Bakalli, N. El-Sheimy, S. Guerrier, and R. Molinari. “An automatic
calibration approach for the stochastic parameters of inertial sensors”. Proceedings
of the 30th International Technical Meeting of The Satellite Division of the Institute
of Navigation (ION GNSS+ 2017), 3053–3060. 2017.

[89] Ruppert, David. “Selecting the number of knots for penalized splines”. Journal of
computational and graphical statistics, 11(4):735–757, 2002.

175

https://doi.org/10.2514%2F1.18976
https://doi.org/10.2514%2F1.18976
https://doi.org/10.2514%2F1.12108
https://doi.org/10.2514%2F1.12108

[90] Ruppert, David and Raymond J Carroll. “Theory & Methods: Spatially-adaptive
Penalties for Spline Fitting”. Australian & New Zealand Journal of Statistics,
42(2):205–223, 2000.

[91] Sensonor AS. “STIM 300 Inertial Measurement Unit Datasheet”. http://www.
sensonor.com/media/91313/ts1524.r8%20datasheet%20stim300.pdf, April 2013.

[92] Stebler, Yannick, Stephane Guerrier, Jan Skaloud, and Maria-Pia Victoria-Feser.
“Generalized method of wavelet moments for inertial navigation filter design”. IEEE
Transactions on Aerospace and Electronic Systems, 50(3):2269–2283, 2014.

[93] Sturza, Mark A. “Navigation system integrity monitoring using redundant
measurements”. Navigation, 35(4):483–501, 1988.

[94] Taylor, Clark N and Shane Lubold. “Verifying the predicted uncertainty of Bayesian
estimators”. Geospatial Informatics, Motion Imagery, and Network Analytics VIII,
volume 10645, 106450E. International Society for Optics and Photonics, 2018.

[95] Titterton, D. and J. Weston. Strapdown Inertial Navigation Technology, Second
Edition, volume 207. AIAA, 2005. ISBN 1563476932.

[96] Van Loan, Charles F. “Computing Integrals Involving the Matrix Exponential”.
IEEE Transactions on Automatic Control, volume 23:3, 395–404. June 1978.

[97] Venable, Donald T. Improving Real World Performance of Vision Aided Navigation
in a Flight Environment. Technical report, Air Force Institute of Technology
WPAFB, 2016.

[98] Veth, Michael J. Fusion of Imaging and Inertial Sensors for Navigation. Ph.D.
thesis, Air Force Institute of Technology, 2006.

[99] Waller, Joanne A, Sarah L Dance, Amos S Lawless, and Nancy K Nichols.
“Estimating correlated observation error statistics using an ensemble transform
Kalman filter”. Tellus A: Dynamic Meteorology and Oceanography, 66(1):23294,
2014.

[100] Walter, Todd and Per Enge. “Weighted RAIM for precision approach”. PROCEED-
INGS OF ION GPS, volume 8, 1995–2004. Institute of Navigation, 1995.

[101] Wan, Eric A and Rudolph Van Der Merwe. “The unscented Kalman filter for
nonlinear estimation”. Adaptive Systems for Signal Processing, Communications,
and Control Symposium 2000. AS-SPCC. The IEEE 2000, 153–158. Ieee, 2000.

[102] Wand, Matt P. “Smoothing and mixed models”. Computational statistics,
18(2):223–249, 2003.

176

http://www.sensonor.com/media/91313/ts1524.r8%20datasheet%20stim300.pdf
http://www.sensonor.com/media/91313/ts1524.r8%20datasheet%20stim300.pdf

[103] Wang, Ershen, Ming Cai, and Tao Pang. “A simple and effective GPS receiver
autonomous integrity monitoring and fault isolation approach”. Control Engineering
and Communication Technology (ICCECT), 2012 International Conference on,
657–660. IEEE, 2012.

[104] Wilson, Heather, David Goldfein, and Kaleth Wright. “Air Force Priorities”.
http://www.af.mil/Portals/1/documents/SECAF/2017 Air Force Priorities.pdf, July
2017.

[105] Wu, ZC, ZF Wang, and Y Ge. “Gravity based online calibration for monolithic
triaxial accelerometers’ gain and offset drift”. Intelligent Control and Automation,
2002. Proceedings of the 4th World Congress on, volume 3, 2171–2175. IEEE, 2002.

[106] Yang, Zhenfei and Shaojie Shen. “Monocular visual-inertial fusion with online
initialization and camera-IMU calibration”. SSRR 2015 - 2015 IEEE International
Symposium on Safety, Security, and Rescue Robotics, 2016. ISSN 15455955.

[107] Yechout, Thomas R and Keith B Braman. Development and Evaluation of
a Performance Modeling Flight Test Approach Based on Quasi Steady-state
Maneuvers. Contractor Report 170414, NASA, 1984.

[108] Young, Ryan SY and Gary A Mcgraw. “Fault detection and exclusion using
normalized solution separation and residual monitoring methods”. Navigation,
50(3):151–169, 2003.

[109] Young, Ryan SY, Gary A McGraw, and Brian T Driscoll. “Investigation and
comparison of horizontal protection level and horizontal uncertainty level in FDE
algorithms”. ION GPS-96, 1607–1614. 1996.

[110] Young, Shih-Yih R and Gary A McGraw. “Method and system for fault detection and
exclusion for multi-sensor navigation systems”, May 15 2007. US Patent 7,219,013.

177

http://www.af.mil/Portals/1/documents/SECAF/2017_Air_Force_Priorities.pdf

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

12–09–2019 Doctoral Dissertation Aug 2016–Sep 2019

Autonomous and Resilient Management of All-Source Sensors for
Navigation Assurance

Jurado, Juan D., Major, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-DS-19-S-006

Intentionally left blank.

12. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
14. ABSTRACT
All-source navigation has become increasingly relevant over the past decade with the development of viable alternative
sensor technologies. However, as the number and type of sensors informing a system increases, so does the probability
of corrupting the system with sensor modeling errors, signal interference, and undetected faults. Though the latter of
these has been extensively researched, the majority of existing approaches have constrained faults to biases, and designed
algorithms centered around the assumption of simultaneously redundant, synchronous sensors with valid measurement
models, none of which are guaranteed for all-source systems. This research aims to provide all-source multi-sensor
resiliency, assurance, and integrity through an autonomous sensor management framework. The proposed framework
dynamically places each sensor in an all-source system into one of four modes: monitoring, validation, calibration, and
remodeling. Each mode contains specific and novel realtime processes that affect how a navigation system responds
to sensor measurements. The monitoring mode is driven by a novel sensor-agnostic fault detection, exclusion, and
integrity monitoring method that minimizes the assumptions on the fault type, all-source sensor composition, and the
number of faulty sensors. The validation mode provides a novel method for the online validation of sensors which have
questionable sensor models, in a fault-agnostic and sensor-agnostic manner, and without compromising the ongoing
navigation solution in the process. The remaining two modes, calibration and remodeling, generalize and integrate
online calibration and model identification processes to provide autonomous and dynamic estimation of candidate model
functions and their parameters, which when paired with the monitoring and validation processes, directly enable resilient,
self-correcting, plug-and-play open architecture navigation systems.
15. SUBJECT TERMS
navigation, assurance, integrity, all-source, Pitot-static, Allan variance, residual monitoring, fault detection, fault
exclusion, sensor model, validation

U U U UU 193

Dr. Robert C. Leishman (ENG)

(937) 255-3636 x4755 Robert.Leishman@afit.edu

	Autonomous and Resilient Management of All-Source Sensors for Navigation Assurance
	Recommended Citation

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Summary of Related Research
	Research Contributions
	Outline

	Background
	Notational Conventions
	Estimation and Detection Fundamentals
	Residuals and Their Properties
	The Navigation Problem
	Recursive Model Estimation

	Autonomous and Resilient Management of All-source Sensors for Navigation
	Introduction
	Related Work
	An Autonomous and Resilient Sensor Manager
	Chapter Summary

	Sensor-Agnostic All-source Residual Monitoring
	Introduction
	Background
	Methodology
	Simulation Results
	Chapter Summary

	Real-time Validation for Plug-and-play Sensors
	Introduction
	Background
	Methodology
	Simulation Results
	Chapter Summary

	A Complete Online Algorithm for Air Data System Calibration
	Introduction
	Background
	Methodology
	Results
	Chapter Summary and Future Work

	A Regression-Based Methodology to Improve Estimation of Inertial Sensor Errors Using Allan Variance Data
	Introduction
	Allan Variance
	An autonomous method for estimating noise strength
	Simulation
	Application to STIM-300 IMU Analysis
	Chapter Summary and Future Work

	Summary and Conclusions
	Bibliography

