
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Pattern-of-Life Modeling using Data Leakage in Smart Homes Pattern-of-Life Modeling using Data Leakage in Smart Homes

Steven M. Beyer

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Information Security Commons, and the OS and Networks Commons

Recommended Citation Recommended Citation
Beyer, Steven M., "Pattern-of-Life Modeling using Data Leakage in Smart Homes" (2018). Theses and
Dissertations. 1793.
https://scholar.afit.edu/etd/1793

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F1793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholar.afit.edu%2Fetd%2F1793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1793?utm_source=scholar.afit.edu%2Fetd%2F1793&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

PATTERN-OF-LIFE MODELING USING
DATA LEAKAGE IN SMART HOMES

THESIS

Steven M. Beyer, Capt, USAF

AFIT-ENG-MS-18-M-009

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-18-M-009

PATTERN-OF-LIFE MODELING USING

DATA LEAKAGE IN SMART HOMES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Steven M. Beyer, B.S.E.E.

Capt, USAF

March 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-18-M-009

PATTERN-OF-LIFE MODELING USING

DATA LEAKAGE IN SMART HOMES

Steven M. Beyer, B.S.E.E.
Capt, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
Chair

Scott R. Graham, Ph.D.
Member

Maj Jason M. Bindewald, Ph.D.
Member

AFIT-ENG-MS-18-M-009

Abstract

In recent years, smart home devices have become one of the most popular cate-

gories in the Internet of things (IoT). Smart devices are relatively inexpensive, readily

available, and easily integrated into homes and offices. As smart technologies become

more prevalent, consumers must make informed purchasing decisions as retailers pro-

vide IoT devices from manufacturers with little scrutiny in regards to device security

or known vulnerabilities. In response to the growth and commonplace of IoT, the

United States Government Accountability Office released a report in July 2017 to

congressional committees stressing that further assessments and guidance are needed

to address security risks of IoT in the Department of Defense (DoD) [1]. Specifi-

cally, there must be investigation into the security ramifications IoT devices have on

operations security, intelligence collection, and leadership safety.

Wi-Fi and Bluetooth Low Energy (BLE) are two protocols increasingly used in a

range of IoT devices such as security cameras, locks, and motion sensors. There are

two characteristics that cause these devices to inadvertently leak privacy information:

(i) they continuously broadcast unencrypted information, such as Wi-Fi Media Access

Control (MAC) addresses or BLE device names, which anyone with a properly-tuned

receiver can observe, and (ii) IoT devices send unique and predictable wireless traffic

in the clear during communications. This research shows how data leakage from these

protocols, combined with device vulnerabilities, enable an eavesdropper to collect

wireless traffic from IoT devices in a smart home or office to identify devices, track

user movements, identify events, and ultimately gain physical access to the home.

To demonstrate these capabilities, a Smart Home Automation Architecture (SHAA)

was designed by integrating a variety of commercial off-the-shelf (COTS) Wi-Fi and

iv

BLE devices with Apple’s home automation application, HomeKit. SHAA provides

real smart home traffic that is used to investigate IoT data leakage in the wild. Fur-

thermore, a device classifier and pattern-of-life analysis tool, CITIoT (Classify, Iden-

tify, and Track Internet of Things), was developed to exhibit how an eavesdropper

can utilize data leakage to classify devices, identify events, and track users. CITIoT

operated against SHAA during a five day trial in which a user activated devices within

the smart home. During this experiment, CITIoT was able to capture traffic from

the smart home network and classify 17 of 18 devices, identify 95% of the 343 events

that occurred, and track when users were home or away with near 100% accuracy.

CITIoT only identified an average of 3 false positives per day.

Additionally, a data leakage mitigation technique was created that introduces

spoofed wireless traffic sent on behalf of IoT devices to inhibit CITIoT’s ability to

classify devices, identify events, and track users. The MIoTL (Mitigation of IoT Leak-

age) tool was tested during an additional five day experiment; during these trials,

CITIoT was unable to identify motion sensor and camera devices and was inundated

with an average of 221 false positives per day that made CITIoT ineffective at iden-

tifying real events. Also, CITIoT was only able to recognize 8 minutes of 24 hours

that the user was away from the smart home. MIoTL made CITIoT ineffective at

classifying devices, identifying events, and tracking when the user was away from the

home.

This research closes by stressing how data leakage, combined with device vulnera-

bilities, can be used to recognize if a user is away and crack a Bluetooth lock to gain

access to the home or office. The security implications of IoT devices on military

operations are discussed and the need for ongoing evaluation of IoT in the DoD is

emphasized. Lastly, operational security recommendations are provided to defend

against presented vulnerabilities and create a safer smart home and office.

v

Acknowledgements

Faithless is he that says farewell when the road darkens.

-J.R.R. Tolkein, The Fellowship of the Ring

I am grateful to AFIT and the USAF for letting me participate in this unique and

rare opportunity.

I have learned much in this program thanks to the dedication and commitment

demonstrated by AFIT faculty members like Dr. Barry Mullins, Dr. Scott Graham,

and Maj Jason Bindewald. This would have gone poorly without their support,

encouragement, and guidance. I am also indebted to a number of colleagues and

students whose friendship and professional collaboration were invaluable throughout

this process.

Lastly, I am grateful for my beloved wife. The support you provide day in and

day out is unparalleled and beyond what I could ask for. Without you, none of this

would be possible.

Steven M. Beyer

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . xi

List of Tables . xiv

List of Acronyms . xv

I. Introduction . 1

1.1 Background . 1
1.2 Problem Statement . 1
1.3 Research Goals . 2
1.4 Hypothesis . 2
1.5 Approach . 3
1.6 Assumptions/Limitations . 3
1.7 Contributions . 4
1.8 Thesis Overview. 5

II. Background and Related Research . 6

2.1 Overview . 6
2.2 Wireless Protocols . 6

2.2.1 Wi-Fi . 6
2.2.2 BLE . 8
2.2.3 Other Wireless Protocols . 14

2.3 Smart Home Technologies . 14
2.4 Tools . 15
2.5 Related Research . 16
2.6 Background Summary . 20

III. SHAA, CITIoT, and MIoTL Design . 21

3.1 Overview . 21
3.2 System Summary . 21
3.3 Smart Home Automation Architecture (SHAA) . 21

3.3.1 Raspberry Pi . 23
3.3.2 Apple Devices . 23
3.3.3 Wi-Fi Devices . 23
3.3.4 Bluetooth Low Energy Devices . 25

vii

Page

3.4 Classification, Identification, and Tracking of Internet
of things (CITIoT) . 26
3.4.1 Hardware . 26
3.4.2 Reconnaissance and Scanning . 27
3.4.3 Passive Sniffing . 31
3.4.4 Preprocessor . 33
3.4.5 MAC Tracker . 33
3.4.6 Classifier . 35
3.4.7 Network Mapper . 48
3.4.8 Security . 49

3.5 Mitigation of IoT Leakage (MIoTL) . 50
3.5.1 Device Shadow . 50
3.5.2 MAC Shadow . 51

3.6 Design Summary . 52

IV. Methodology . 53

4.1 Problem/Objective . 53
4.2 System Under Test . 53

4.2.1 Assumptions . 54
4.3 Response Variables . 55
4.4 Control Variables . 57
4.5 Uncontrolled Variables . 57
4.6 Experiment Parameters . 57
4.7 Experimental Design . 58

4.7.1 SHAA . 58
4.7.2 CITIoT . 59
4.7.3 Treatments . 60
4.7.4 Logging . 62
4.7.5 Testing Process . 62

4.8 Statistical Analysis . 63
4.8.1 Device Classification Success Rate (DCSR) 63
4.8.2 Event Identification True Positives Rate (EITPR). 64
4.8.3 Event Identification False Positives Rate (EIFPR) 64
4.8.4 Event Identification False Negatives

Rate (EIFNR) . 64
4.8.5 User Tracking Success Rate (UTSR) . 65
4.8.6 Positive Predictive Value (PPV) . 65
4.8.7 Normalized Processing Time (NPT) . 65
4.8.8 Normalized Hard Drive Space (NHDS) . 66
4.8.9 Other Statistical Analysis Measures . 66

4.9 Methodology Summary . 67

viii

Page

V. Results and Analysis . 68

5.1 Overview . 68
5.2 CITIoT Accuracy . 68

5.2.1 Device Classification Success Rate (DCSR) 69
5.2.2 Event Identification True Positives Rate (EITPR). 71
5.2.3 Event Identification False Positives Rate (EIFPR) 73
5.2.4 Event Identification False Negatives

Rate (EIFNR) . 76
5.2.5 Positive Predictive Value (PPV) . 78
5.2.6 User Tracking Success Rate (UTSR) . 78

5.3 CITIoT Performance . 79
5.3.1 Normalized Processing Time (NPT) . 79
5.3.2 Normalized Hard Drive Space (NHDS) . 81

5.4 Results Summary . 81

VI. Conclusion . 83

6.1 Overview . 83
6.2 Research Conclusions . 83
6.3 Research Significance and Synthesis . 84
6.4 Future Work . 87

Appendix A. BLE Sniffer Script . 89

Appendix B. Wi-Fi Script . 90

Appendix C. BLE Script . 110

Appendix D. Helper Script . 116

Appendix E. Training Event Log . 125

Appendix F. Training Plots from Raspberry Pi to Device 126

Appendix G. Training Plots from Device to Router . 128

Appendix H. Network Mapping Script . 130

Appendix I. Device Shadow Script . 131

Appendix J. MAC Shadow Script . 135

Appendix K. Results Script . 138

Appendix L. Log Script . 146

ix

Page

Appendix M. R Script . 150

Appendix N. Device Classification Results . 154

Appendix O. Event Identification Results . 155

Appendix P. MAC Track Results . 163

Bibliography . 164

x

List of Figures

Figure Page

1 MPDU format when using WPA2 . 7

2 MAC header frame format . 7

3 The BLE architecture . 9

4 The BLE connection process . 11

5 Active scanning process . 12

6 BLE channel mapping; darker channels represent
advertisement channels . 13

7 Overall system diagram. 22

8 Diagram of SHAA components . 22

9 Moria AP settings . 24

10 Diagram of CITIoT components and interactions 27

11 Commands used to set Wi-Fi interface to monitor mode 28

12 Command and results to accomplish a scan of Wi-Fi
devices and associated APs . 29

13 Command and results to scan for devices connected to
the target AP . 29

14 Command and results to scan for BLE devices within
the smart home . 31

15 Encrypted packet used in MAC tracker showing
corrupted timestamp . 34

16 Encrypted packets used in MAC tracker showing
sequential frame numbers, but wrong times . 35

17 Example plot showing packets sent from Raspberry Pi
to Switch1 used to train the classifier . 37

18 Example plot showing packets sent from Motion to
Router used to train the classifier . 37

xi

Figure Page

19 Packets sent from Pi to NetCam used to classify camera
devices . 38

20 Packets sent from Pi to Motion used to classify motion
devices . 39

21 Packets sent from Pi to Switch1 used to classify outlet
devices . 39

22 Criteria used to classify devices . 40

23 Packets sent from Pi to Mini during an outlet event 41

24 Packets sent from NetCam to router during a camera
event . 42

25 Packets sent from NetCam to router with one minute
cumulative FSize during a camera event . 42

26 Packets sent from Motion to router during a motion event 43

27 Packets sent from Motion to router with one minute
cumulative FSize during a motion event . 43

28 Criteria used to identify events . 44

29 Decrypted SUBSCRIBE packets from Raspberry Pi to the
Motion and NetCam devices depicting difference in FSize 45

30 Decrypted POST packets from Raspberry Pi to the
Switch4, Switch2, and Mini depicting differences in FSize 46

31 Network mapping of smart home architecture . 49

32 Diagram of MIoTL tool components . 50

33 System Under Test and Component Under Test diagram 54

34 Approximate layout of devices within SHAA for
experimentation (not to scale) . 59

35 Layout of sniffer antennae for experimentation . 60

36 EITPR quartile ranges for each configuration . 72

37 EIFPR quartile ranges for each configuration . 75

xii

Figure Page

38 EIFNR quartile ranges for each configuration . 77

xiii

List of Tables

Table Page

1 Wi-Fi and BLE tools used in this research . 16

2 Wi-Fi devices . 25

3 BLE devices . 26

4 Wi-Fi MAC OUI search and results . 30

5 Experiment events . 61

6 Experiment treatments . 62

7 Performance metrics . 67

8 BLE results . 69

9 Wi-Fi with no mitigation results . 69

10 Combined BLE and Wi-Fi without mitigation results 70

11 Wi-Fi with mitigation results . 70

12 CITIoT mean accuracy results in each configuration
across all trials . 70

13 CITIoT mean DCSR results for each configuration 71

14 CITIoT mean EITPR results for each configuration 72

15 CITIoT mean EIFPR results for each configuration 74

16 CITIoT mean EIFNR results for each configuration 76

17 CITIoT mean UTSR results . 79

18 CITIoT mean NPT results, in seconds, for each
configuration . 81

19 CITIoT mean NHDS results, in MB, for each
configuration . 81

xiv

List of Acronyms

Abbreviation Page

AP access point . 6

API application programming interface . 15

ARP Address Resolution Protocol . 51

ATT Attribute Protocol . 9

BLE Bluetooth Low Energy . 1

BR/EDR basic rate/enhanced data rate . 8

BSSID basic service set identifier . 7

CE connection event . 10

CITIoT Classification, Identification, and Tracking of Internet of things 4

COTS commercial off-the-shelf . 3

CRC cyclic redundancy check .13

CRM customer relationship management . 18

CSV comma-separated values. .33

CUT component under test . 53

DoD Department of Defense . 4

DA destination address .7

DCS Device Classification Success . 55

DCSR Device Classification Success Rate. .63

EIFN Event Identification False Negatives . 56

xv

Abbreviation Page

EIFNR Event Identification False Negatives Rate . 63

EIFP Event Identification False Positives . 56

EIFPR Event Identification False Positives Rate . 63

EITP Event Identification True Positives . 56

EITPR Event Identification True Positives Rate .63

FSize frame size . 7

GATT Generic Attribute Profile . 9

HCI The Host/Controller Interface . 10

HDS Hard Drive Space . 57

HTTP Hypertext Transfer Protocol . 44

IoT Internet of things . 1

IP Internet Protocol . 44

ISP Internet service provider . 23

L2CAP Logical Link Control and Adaptation Protocol . 9

MAC Media Access Control . 7

MIoTL Mitigation of IoT Leakage . 4

MPDU MAC Protocol Data Unit . 6

NHDS Normalized Hard Drive Space . 63

NPT Normalized Processing Time . 63

OUI organizationally unique identifier . 28

PPV Positive Predictive Value . 63

xvi

Abbreviation Page

PT Processing Time . 57

RSSI received signal strength indicator .17

SA source address . 7

SCA sleep clock accuracy. .12

SHAA Smart Home Automation Architecture . 4

SIG Special Interest Group . 8

SM Security Manager . 10

SSID service set identifier . 6

SUT system under test . 53

TCP Transmission Control Protocol . 44

UTS User Tracking Success. .56

UTSR User Tracking Success Rate . 63

USB Universal Serial Bus . 27

WNIC Wireless Network Interface Controller . 7

WPA2 Wi-Fi Protected Access 2 . 23

xvii

PATTERN-OF-LIFE MODELING USING

DATA LEAKAGE IN SMART HOMES

I. Introduction

1.1 Background

In recent years, smart home devices have become one of the most popular cat-

egories in the Internet of things (IoT), accounting for $4.5 billion of a $351 billion

industry; over 40.8 million smart home devices are expected to ship in 2018, a 41

percent increase over 2017 [2]. Informed purchasing is of primary concern as retail-

ers provide smart home devices from manufacturers with little scrutiny in regards

to device security or known vulnerabilities. These devices are relatively inexpensive

and can be purchased, shipped, and integrated into a smart home in days; there

is a low threshold of entry. As smart home technologies become more popular and

easier to obtain, the increased prevalence of IoT devices in the home necessitates

the need for investigation into what kind of privacy information these devices inad-

vertently broadcast, what vulnerabilities exist, and how privacy leakage can be used

against consumers. More importantly, with the rise of vulnerable smart home devices

available to consumers, defenses need to be researched and implemented.

1.2 Problem Statement

Wi-Fi and Bluetooth Low Energy (BLE) are two protocols increasingly used in

a range of IoT devices such as security cameras, locks, medical devices, sensors, and

a myriad of other devices. These protocols broadcast some information in the clear

1

that anyone with a properly-tuned receiver can observe. Smart home devices using

these technologies are at risk of leaking privacy data that an outside observer may use

to infer facts about the smart home such as what devices are in the home and when is

the user away. Foremost, smart home owners must be informed of potential physical

security implications IoT devices can introduce to their home. For example, installing

a vulnerable BLE lock can allow attackers unfettered access to the home. Consumers

must also have a way to defend against privacy leakage in their homes and mitigation

methods need to be developed. The problem statements this thesis answers are what

kind of privacy data do smart home devices leak, how can an attacker exploit this

leakage to gain physical access to a home, and are there ways to defend against these

vulnerabilities?

1.3 Research Goals

This work attempts to investigate the problem of data leakage in smart home

devices and to what extent privacy information is sent in the clear. It observes what

reconnaissance methods an eavesdropper can use to collect wireless traffic from devices

without being connected to the smart home environment and what kind of knowl-

edge can be inferred about the smart home and its users. After data analysis, this

research attempts to discover what physical security ramifications this leakage intro-

duces. It also attempts to defend against data leakage by mitigating the weaknesses

in vulnerable devices.

1.4 Hypothesis

This research hypothesizes that IoT device leakage and vulnerabilities can be used

to create a tool that classifies smart home devices, tracks a user’s presence within the

home, identifies events, and enables an eavesdropper to gain physical access to the

2

home. It also theorizes that the capabilities of this tool can be mitigated by deploying

existing methods and techniques in a novel way to conceal devices and events within

the smart home and make it appear that users are always home.

1.5 Approach

A smart home environment is created to provide realistic wireless traffic for

investigation—a voice activated digital assistant and IoT architecture is developed

by integrating a variety of commercial off-the-shelf (COTS) Wi-Fi and BLE devices

with Apple’s home automation application, HomeKit. Furthermore, a device classifier

and pattern-of-life analysis tool is created to analyze data leakage within the smart

home architecture attempting to classify devices, identify events, and track whether

a user is in the home or away. A defense tool is designed to mitigate vulnerabilities

by minimizing and shielding data leakage. Lastly, findings are synthesized to observe

physical security implications.

1.6 Assumptions/Limitations

The following assumptions/limitations are understood when designing and exe-

cuting the device classifier and pattern-of-life analysis tool:

• The devices selected and smart home architecture are representative of a real-

istic environment.

• Wi-Fi device categories are limited to the following: outlet, sensor, and camera.

• All Wi-Fi devices must be compatible with the Homebridge server.

3

1.7 Contributions

This thesis contributes to the field of IoT security, specifically privacy within a

smart home through five principal contributions:

1. Smart home architecture. To analyze IoT data leakage in the wild, a realistic

Smart Home Automation Architecture (SHAA) is provided that integrates Wi-

Fi and BLE COTS devices with Apple’s home automation application, Home-

Kit.

2. Vulnerability Analysis. This work explains how an eavesdropper can use

device vulnerabilities, characteristic data exchanges, and packet sizes to cre-

ate a classifier able to identify components and events within the smart home

environment.

3. Classification, Identification, and Tracking of Internet of things (CITIoT).

It presents a tool that demonstrates four capabilities enabled by data leakage:

network mapping, device classification, event identification, and user tracking.

4. Mitigation of IoT Leakage (MIoTL). It provides a defensive tool that uses

existing techniques in a unique way to mitigate the smart home device leakage

capabilities developed in CITIoT.

5. Synthesis. It stresses the importance of smart home and office operational

security by demonstrating how CITIoT can be used to gain physical access to a

home or office when a user is away. It also emphasizes the security implications

these vulnerabilities present to Department of Defense (DoD) operations.

4

1.8 Thesis Overview

This thesis document is arranged in six chapters. Chapter 2 provides a brief

summary of relevant wireless protocols, an outline of open-source security analysis

tools used, and other relevant research. Chapter 3 presents the system design details,

smart home architecture, and mitigation techniques developed to analyze, exploit,and

prevent smart home privacy leakage. The experiment methodology and the analysis

of results are presented in Chapters 4 and 5 respectively, while Chapter 6 summarizes

the research and discusses opportunities for future work in this domain.

5

II. Background and Related Research

2.1 Overview

This chapter provides a technical summary of the Wi-Fi and BLE protocols to ex-

hibit characteristics of these technologies that enable data leakage and vulnerabilities

in smart home devices. It also provides a brief overview of other comparable wireless

protocols. It follows with an outline of the current state of IoT and smart home

security, a survey of open-source tools used in this work, and discussion of related

research.

2.2 Wireless Protocols

2.2.1 Wi-Fi.

The 802.11 wireless specification defines the physical and link layers for commu-

nication in the 2.4 GHz radio band [3]. The 802.11 architecture contains four major

physical components: (i) access points (APs), (ii) wireless medium, (iii) stations

(devices), and (iv) distribution systems (i.e., router) [4]. In a typical home Wi-Fi

network, the AP and router are combined into one unit which is used to connect

the network to the Internet. During setup of a secure network, such as the one ana-

lyzed in this work, the AP is assigned a service set identifier (SSID), channel number,

and password. Each wireless station must prove knowledge of the password to as-

sociate with the AP and communicate within the network. Association to a secure

network results in the encryption of wireless traffic sent within the network if en-

cryption is enabled. Figure 1 depicts the frame format for the MAC Protocol Data

Unit (MPDU), the unit of data exchanged between entities using the physical layer

(wireless medium). It also shows which portions of the packet are encrypted when

6

connected to a secure wireless AP. Figure 2 provides the fields within the Media Ac-

cess Control (MAC) Header, which include addressing information for Wi-Fi packets

at the link layer. Only the first three addresses pertain to this work and indicate the

destination address (DA) (Address 1), source address (SA) (Address 2), and basic

service set identifier (BSSID) (Address 3) MAC addresses [3]. The MAC Header is

not encrypted and is key to enabling the data leakage capabilities presented in this

work.

Figure 1. MPDU format when using WPA2 [3]

Figure 2. MAC header frame format [3]

A client station uses a Wireless Network Interface Controller (WNIC) to collect

wireless traffic. In normal operation, a WNIC only passes traffic destined to the client

station, dropping all other packets [4]. There are two other modes in which particular

WNICs can operate: promiscuous mode and monitor mode. Promiscuous mode sets

the WNIC to pass traffic with a BSSID of the associated AP to the client station.

Monitor mode, used throughout this work, sets the WNIC to pass any traffic to the

client station regardless of the DA or BSSID [5].

Two other wireless characteristics used by the data leakage tool presented in this

work include the time of packets and the frame size (FSize), or packet size. The

packet timestamp is calculated by the host kernel, while the receiving application

determines the packet size [6].

7

2.2.2 BLE.

The Bluetooth Special Interest Group (SIG) introduced BLE (Bluetooth Smart)

in Bluetooth Core Specification v4.0 to complement Bluetooth basic rate/enhanced

data rate (BR/EDR) (Bluetooth Classic) [7]. Although these two implementations

share some key attributes (e.g., both operate in the 2.4 GHz band and use adaptive

frequency hopping), they are different protocols with unique design goals [8]. While

Bluetooth Classic is used in high-bandwidth applications, such as transferring files

or streaming audio, BLE is designed to minimize power, cost, and data rate. These

goals are accomplished by limiting overhead at every level of the architecture and

using simple communication protocols. To this same end, BLE devices predominantly

transmit state data in short, infrequent bursts. These characteristics make BLE ideal

for IoT applications where battery life is a top priority.

Bluetooth Core Specification v5.0 was adopted in December 2016 [9], however,

during initial device investigation, it was observed that the majority of commercially-

available devices still used v4.2 at the time of this research (the Apple iPhone 8 was

the first iPhone to implement v5.0 and was not released until September 2017 [10]);

the devices investigated throughout this thesis use v4.2 or older. The rest of this

section discusses elements of the BLE architecture (shown in Figure 3) and protocol

which are relevant to the data leakage investigation of this research.

8

Defines services, attributes,

& how to interact with them

Enables secure pairing,

authentication, & encryption

Interfaces user with

lower level protocols

Controller

Host

Application

GAP

GATT

ATT
SM

L2CAP

HCI

Link Layer

Physical

Controls tx/rcv of data, packet

structure, & connection procedure

Figure 3. The BLE architecture

2.2.2.1 Attribute Protocol.

Data is communicated between BLE devices in the form of “attributes” using

a client-server architecture ruled by the Attribute Protocol (ATT). Each attribute

contains state information addressed by a unique handle and type. These attributes

are then grouped into characteristics based on discovery method and accessibility. The

master device (e.g., smartphone or computer) typically acts as the client, periodically

reading/writing information in the form of attributes from/to the server (e.g., locks,

sensors) as required by a user. For example, a user (client) may request the status

of a door lock using an ATT Read Request with the type “Lock Status” and handle

0x0019; the device (server) then responds with an attribute containing the value

“Unlocked.” When the user decides to lock the door, an ATT Write Request is sent

with the value set as the user’s password; if a valid value is provided, the lock changes

state to “Locked.” The attack presented in Section 6.3 uses the ATT commands and

Generic Attribute Profile (GATT) characteristics BLE devices use to communicate.

Commands are passed from the application to the physical layer using the Logical Link

9

Control and Adaptation Protocol (L2CAP) and The Host/Controller Interface (HCI).

2.2.2.2 Security Manager.

The Security Manager (SM) defines a process called pairing and bonding to se-

cure BLE connections [8]. When a device wants to create a new connection in which

security parameters have not been previously exchanged or have been forgotten, the

devices must first establish a trust relationship through the pairing process. While

there are application-specific ways to implement the SM, generally, pairing is accom-

plished by the devices exchanging pairing information, authenticating each other,

encrypting the link, and then sharing keys. After pairing is accomplished, bonding

is simply saving the keys for faster connection establishment in the future. If either

device loses the encryption keys, the entire pairing and bonding sequence must be

re-accomplished. The security of a connection is dependent on how the SM is imple-

mented. Many of the devices examined in this work are vulnerable due to poor SM

implementations that did not enforce encryption or authentication.

2.2.2.3 Physical and Link Layers.

The physical and link layers control device discovery, establishing connections,

packet structure, and transmitting/receiving data. For a connection to occur, one

device advertises its presence while another scans. When the scanning device sees

the correct advertising device, a connection is created. These advertisements and the

overall connection process are key to observing pattern-of-life information via BLE

sniffers. Connections occur between one master and one slave and are broken up into

a series of connection events (CEs) with the master transmitting packets during a CE

and each CE occurring on a different channel. The connection parameters are set by

the master in the connection request packet and include the frequencies to be used

10

and CE interval. Each step of this process is shown in Figure 4 and described.

ScannerAdvertiser

Advertises Presence (Broadcast)

Advertises Presence (Broadcast)

Data Packet (More Data = 1)

Master

Connection Request

Data Packet (More Data = 1)

Hop

Connection Event Ends

Data Packet (More Data = 0)

Data Packet (More Data = 0)

1

2

3

4

5

6

7

Connection Ends8

Advertises Presence (Broadcast)

Advertises Presence (Broadcast)

Scanner

Slave

Advertiser

Figure 4. The BLE connection process

1- Device Advertises Presence. A connection begins with a slave announcing

its presence by broadcasting Advertising Indication (ADV IND) packets on three adver-

tisement channels (see Figure 6). Each ADV IND packet includes device information

such as connectability, scannability, services provided, and the name of the device.

ADV IND packets also include a “TxAdd” bit that indicates if the advertiser is using

a public or random address. A master actively or passively scans the advertisement

channels detecting connectible devices. Depicted in Figure 5, active scanning is a

key concept for the data leakage discussion in this thesis and occurs prior to the

connection request shown in Figure 4. When actively scanning, a master observes an

advertising packet and, if the device is scannable, sends a Scan Request (SCAN REQ)

packet to the device. The advertiser sends a Scan Response (SCAN RESP) packet back

with more information, typically expanding on the device name and possibly includ-

11

ing broadcast data such as battery level. A master can only connect to a device that

advertises its presence and is connectable.

ScannerAdvertiser

Advertises Presence (Broadcast)

Advertises Presence (Broadcast)

Scan Request

Scan Response

Figure 5. Active scanning process

2- Initiator Sends Connection Request. Once a scanner observes a con-

nectible device, a Connect Request (CONNECT REQ) packet is sent to the advertiser.

This packet establishes all of the necessary parameters to start the connection to

include the access address, connection interval, transmit window size and offset, hop

interval, channel map, and sleep clock accuracy (SCA). The access address is a ran-

dom value used to identify packets that are part of the connection. The master may

update a subset of these parameters at any time in a connection parameter update

message. In this message, the master provides a future time at which the new parame-

ters will take effect. To follow a connection, the sniffer used in this work must observe

and implement all of the connection parameters and potential changes throughout the

connection.

3- Hop. As shown in Figure 6, the BLE frequency band is divided into forty

channels separated by 2 MHz. These frequencies are distributed into three advertising

channels and thirty-seven data channels. When in a connection, a master and slave

communicate on one channel per CE. After each CE, both the master and slave hop

to a new frequency per the Channel Map, Hop Increment, and hopping algorithm;

these parameters are established by the master at the beginning of a connection or

in a parameter update and are non-negotiable.

12

3
7

2
4

0
2

3
9

2
4

8
0

0
2

4
0

4

1
2

4
0

6

2
2

4
0

8

3
2

4
1

0

4
2

4
1

2

5
2

4
1

4

6
2

4
1

6

7
2

4
1

8

8
2

4
2

0

9
2

4
2

2

1
0

2
4

2
4

3
8

2
4

2
6

1
1

2
4

2
8

1
2

2
4

3
0

1
3

2
4

3
2

1
4

2
4

3
4

1
5

2
4

3
6

1
6

2
4

3
8

1
7

2
4

4
0

1
8

2
4

4
2

1
9

2
4

4
4

2
0

2
4

4
6

2
1

2
4

4
8

2
2

2
4

5
0

2
3

2
4

5
2

2
4

2
4

5
4

2
5

2
4

5
6

2
6

2
4

5
8

2
7

2
4

6
0

2
8

2
4

6
2

2
9

2
4

6
4

3
0

2
4

6
6

3
1

2
4

6
8

3
2

2
4

7
0

3
3

2
4

7
2

3
4

2
4

7
4

3
5

2
4

7
6

3
6

2
4

7
8

Frequency (MHz)

C
h

an
n

el

Figure 6. BLE channel mapping; darker channels represent advertisement channels

4- Master Sends Data Packet. The first data packet sent in a CE is called an

anchor packet which establishes the timing for all future CEs.

5- Slave Responds. The slave must always respond to a received data packet

from the master unless two consecutive packets are received with an invalid cyclic

redundancy check (CRC). However, to conserve energy, the slave does not have to

listen to a predetermined number of CEs.

6/7- Packets are Sent until Connection Event Ends. The length of a CE

is, at most, the predetermined connection interval, but may be shorter depending

on how much data needs to be transmitted. If the slave is listening to the CE and

responds to the anchor packet, the master and slave exchange packets until a CE

end condition is met. A master can send empty packets to maintain the connection.

There are four ways to close a CE—if neither device has more data to send (indicated

by the more data bit in the packet); if the more data bit is set and either slave or

master do not receive a subsequent packet within 150 µs; if two consecutive packets

are received with an invalid CRC; or if the connection interval is reached. CEs can be

likened to bursts of data and each CE ends at the end of the burst while the overall

connection is still maintained.

8- Connection Ends. A connection continues until either device sends a termi-

nate indication packet, no packets are received within the supervision timeout, or the

message integrity check fails. After a connection ends, the slave resumes advertising

13

its presence.

2.2.3 Other Wireless Protocols.

Other protocols used in IoT applications include those based on IEEE 802.15.4

(e.g., ZigBee) and on the ITU-T G.9959 recommendation (e.g., Z-Wave) [11]. These

wireless protocols have many of the same privacy leakage issues found in BLE and

Wi-Fi. Similar to BLE, these protocols have proper encryption, but do not encrypt

the physical layer [11]. This creates unique security challenges for wireless broadcast

networks in which anyone with a properly-tuned receiver can see these data packets.

Also, the physical and link layers for each of these protocols inherently advertise

legitimate information before and after a connection is established that can be used

by an attacker.

Like BLE, Zigbee advertises MAC addresses, which has been used to infer whether

a person is in a room or not [12]. Z-Wave provides source, destination, and home

identification information in the clear that can be used in reconnaissance and device

tracking [13].

Efforts are being made to provide techniques to limit the amount of data leakage

by these protocols. Some examples include periodically changing MAC addresses,

encrypting lower-layer data packets, and not setting devices in active service discovery

mode [14]. This work seeks to observe and prevent privacy leakage in BLE and Wi-Fi

through the understanding of IoT leakage and design of mitigation tools.

2.3 Smart Home Technologies

A list of smart home technologies relevant to the data leakage and mitigation work

is provided:

• Devices: BLE or Wi-Fi devices such as switches, smart outlets, cameras, and

14

sensors. Devices can be connected to and controlled by controllers.

• Controllers: A master device such as an iPhone or Android phone that con-

nects to a device within the smart home to get status updates or change states.

• Hub: A system that sits on the home network, connects to different devices via

the manufacturer application programming interface (API), and exposes control

of the devices via a centralized application on the controller. Hubs often provide

access to the devices while a user is away from the smart home. Examples of

hubs include Apple’s HomeKit and the open-source server Homebridge.

– Apple’s HomeKit: A hub that provides a controller with voice control

and automation capabilities for devices.

– Homebridge: An open-source server that provides integration of some

IoT devices with HomeKit. Added as a hub in the HomeKit, it allows a

user to use Siri to control devices that are not typically supported within

HomeKit.

• Applications: Many smart home devices require proprietary applications to

interact with the device’s full range of capabilities. A controller must use these

applications to control the device.

2.4 Tools

Table 1 provides a list of open-source tools used to analyze device data leakage

and vulnerabilities.

15

Table 1. Wi-Fi and BLE tools used in this research

Tool Name Version Description

Ubertooth One Firmware: 2017-03R2 Bluetooth sniffer with open-source firmware

and hardware [15]

BlueZ 5.43 Linux Bluetooth stack with utilities to scan

for BLE devices and transmit packets [16]

Plugable USB

Bluetooth

Adapter

2.0 Commercial Broadcom BCM20702-based

Bluetooth adapter to communicate with

Bluetooth devices with 33 ft range [17]

Alfa Card AWUS036ACH 802.11ac Wireless Adapter

Airodump-ng Aircrack-ng 1.2 Wi-Fi network security tool to capture raw

802.11 frames

Python 2.7.10 Programming language used in scripting

Pyshark 0.3.7.8 Python wrapper allowing Python packet

parsing with Wireshark dissectors [18]

Scapy 2.3.3 Interactive packet manipulation tool used to

send or receive 802.11 packets [19]

2.5 Related Research

Although Wi-Fi and BLE smart home devices are becoming commonplace, the

privacy leakage and security vulnerabilities of these devices is largely unexplored.

In 2016, Ed Skoudis presented a voice-controlled and automated IoT smart office

architecture, J.A.R.V.I.S. [20]. J.A.R.V.I.S. represents a way forward for smart homes

by integrating Wi-Fi devices, Apple’s Homekit, and automation, but Skoudis admits

that security was an afterthought in developing the architecture. At the end of his

presentation, Skoudis challenged developers to explore the security implications of the

16

growing IoT field. The SHAA developed in this work is influenced by Skoudis’ work,

but extends on it by expanding on the number of devices, including BLE devices, and

integrating a privacy leakage mitigation method. This work also explores the privacy

consequences of a smart home architecture such as J.A.R.V.I.S. by analyzing privacy

leakage in BLE and Wi-Fi devices.

While the BLE specification defines security procedures to encrypt the payload,

generate private addresses, and provide authentication [21], implementation of the SM

is left up to the developer; each additional security measure contributes to increased

energy consumption [8]. Limiting power, developing devices quickly, and other design

constraints drive developers toward poor implementation of the SM, leaving devices

with essentially no Link Layer authentication or encryption.

Recently, oversight in Link Layer security has enabled researchers to crack twelve

BLE locks from up to a quarter mile away [22]. Two man-in-the-middle frameworks

were developed due to the lack of Link Layer security that allow home automation

denial of service, data manipulation, and command injection [23][24]. The lack of

lower-layer security employment also creates vulnerabilities in firmware update pro-

cedures; a team of researchers were able to upload customized firmware onto a BLE

industrial monitor that then provided false sensor readings or locked out legitimate

users [25]. Similarly, a lack of encryption enables unintended privacy leakage. In a

few recent studies focused on BLE wearable fitness trackers, one group of researchers

observed device address and connection information sent in the clear that enabled

them to identify users based off of activity level and gait [26], while another group

used device addresses and received signal strength indicator (RSSI) information to

track a user wearing a Fitbit Surge up to 1,000 meters away with greater than eighty

percent accuracy [27]. Privacy data has also been used to create pattern mining mod-

els to track tourist attraction visits in Belgium to help determine the best locations

17

to put hotels [28].

Privacy leakage in Wi-Fi has likewise been exploited in recent research. Re-

searchers have used Wi-Fi MAC addresses sent in the clear and RSSI values to create

location tracking systems on campuses, crowd tracking tools at mass events, and in

customer relationship management (CRM) allowing commercial businesses to track

customer interactions and data [29][30][31]. A group from the United Kingdom was

able to use raw Wi-Fi signals to create fingerprinting techniques able to identify ap-

plications used on a mobile phone [31]. One researcher was able to use raw Wi-Fi

signals to activate alerts when a security camera observes motion [32]. This research,

however, did not look at other types of smart home devices, observe how an attacker

may use this traffic, or provide methods of mitigation.

In response to protocol vulnerabilities, a few different efforts have been made to

increase Wi-Fi and BLE security and privacy. For Wi-Fi, this includes periodically

changing MAC addresses, randomizing FSize, and encrypting lower-layer data pack-

ets. M. Gruteser and D. Grunwald provide a framework to change MAC addresses

frequently while still maintaining wireless connectivity [33]. The technique of chaffing

and winnowing, as introduced by R. Rivest, can be adapted in smart home technolo-

gies to send legitimate packets intertwined with fake packets of random size to make

events impossible to identify [34]. In BLE, devices need to make their advertisements

private. Fawaz et al. designed an authentication system, BLE-Guardian, that re-

stricts who can discover, scan, and connect to BLE devices [35]. BLE-Guardian uses

jamming techniques to hide advertisements from unauthorized users. It is limited,

however, to protecting devices prior to a connection and does not hide packets that

are transmitted after a connection is created. As privacy data is still leaked during

a connection, much of the reconnaissance information mentioned above can still be

collected by an attacker. With BLE-Multi, Gutierrez et al. developed an enhance-

18

ment to the Ubertooth One BLE scanner that enables sniffing of multiple connections

simultaneously [36]. However, the scanner is limited to tracking three connections si-

multaneously and only saw an eighty-five percent probability of successful packet

capture.

The Air Force and DoD are not immune to data leakage or device vulnerabilities

and their impact on operational security is a topic of recent discussion. A group of

researchers from the Naval Postgraduate School observed how the growth of mobile

devices used in deployed operations has introduced several potential security threats

such as rogue Wi-Fi APs and location tracking [37]. Additionally, in January 2018 it

was revealed that the fitness-tracking application, Strava, provided heat maps of user

activity around the world [38]. These maps, correlated with user selected route names

and operating locations of military personnel in the Middle East, revealed sensitive

information such as troop exercise paths, patrol routes, and forward operating base

perimeters. In response to the growth of IoT and corresponding threats to operational

security, the United States Government Accountability Office released a report in

2017 to congressional committees stressing that further assessments and guidance are

needed to address security risks of IoT in the DoD [1]. They note that there are

generally two types of risks for IoT devices: (i) risks with how the devices are used,

such as operational risks like unauthorized communication of information to third

parties, and (ii) risks with the devices themselves, such as lack of encryption. From

these findings, the report identifies a research gap: the DoD has not accomplished

assessments related to the impact of IoT devices on operations security, intelligence

collection, and leadership safety. This thesis analyzes both types of risks and fills the

research gap by demonstrating how IoT device leakage and vulnerabilities enable an

eavesdropper to track users, crack a smart lock, map Wi-Fi networks, and identify

motion within smart environments—ultimately, it stresses security implications of

19

IoT on military operations.

2.6 Background Summary

This chapter presents a brief technical summary of the Wi-Fi and BLE protocols

and how their security features relate to those of other comparable wireless protocols.

It provides background on key smart home technologies and open-source tools as they

pertain to this work. It observes related research into the development of automated

smart home architecture, how BLE and Wi-Fi properties leave them open to privacy

leakage, and current efforts in securing IoT. While research has been done in the realm

of Wi-Fi and BLE privacy leakage, little work has provided a broad review of privacy

leakage from smart home devices in the wild or methods to secure smart homes from

data leakage. This thesis contributes to the field of IoT security, specifically privacy

within a smart home, by illustrating how devices leak data and demonstrating how

users can prevent leakage through mitigation techniques.

20

III. SHAA, CITIoT, and MIoTL Design

3.1 Overview

This research introduces three novel contributions in analyzing and mitigating

IoT data leakage in smart home environments: a Smart Home Automation Ar-

chitecture (SHAA), the Classification, Identification, and Tracking of Internet of

things (CITIoT) tool, and the Mitigation of IoT Leakage (MIoTL) tool. SHAA is

a testbed that provides realistic smart home traffic by integrating Wi-Fi and BLE

COTS devices with Apple’s home automation application, HomeKit. To analyze pri-

vacy leakage within SHAA, the CITIoT tool is used to classify IoT devices, identify

IoT events, and track smart home users. The MIoTL tool supplies mitigation tech-

niques that neutralize aspects of CITIoT. This chapter provides a detailed description

of SHAA, each component of the CITIoT and MIoTL tools, and their respective roles

within the experiment.

3.2 System Summary

Figure 7 displays a simplified system diagram for all components and their inter-

actions. The boundaries of the system are limited to these components.

3.3 Smart Home Automation Architecture (SHAA)

SHAA is developed to provide real IoT traffic to be analyzed by the system under

test. As depicted in Figure 8, SHAA includes three controller components and various

connected devices. The controller components include (i) a Raspberry Pi running

the Homebridge server that emulates the iOS HomeKit API and exposes supported

devices to Apple’s HomeKit, (ii) an iPhone 6+ running Apple’s HomeKit and device

specific applications, and (iii) an Apple TV Generation 2 acting as a smart home

21

Figure 7. Overall system diagram

hub to allow access to HomeKit supported devices while the user is away from the

smart home. The communication between controllers and devices can be observed in

Figure 8 and is described in the rest of this section.

Figure 8. Diagram of SHAA components

22

3.3.1 Raspberry Pi.

The Raspberry Pi 3 Model B with Raspbian Jessie Lite version 4.9 operating sys-

tem is connected to the smart home network via the on-board 802.11 b/g/n 2.4 GHz

wireless chip [39]. The Raspberry Pi runs Homebridge version 0.4.14 as a systemd

service and each interaction between a controller and device is logged in the systemd

journal [40]. A Homebridge plug-in is utilized to enable communication between the

Belkin devices in Table 2 and Apple’s HomeKit on the iPhone 6+ and Apple TV [41].

3.3.2 Apple Devices.

The iPhone 6+ and Apple TV act as controllers in the smart home architecture

and connect to devices via Wi-Fi and BLE. When the user is home, the iPhone con-

nects to Wi-Fi devices via the Homebridge server on the Raspberry Pi and connects

directly to BLE devices. Some of the BLE devices are not supported by Apple’s Home-

Kit and can only be accessed through the manufacturer provided iOS application on

the iPhone. When the user is away from the smart home, the iPhone can communi-

cate with HomeKit supported devices using an Internet service provider (ISP). For

example, if the user is away from home and wants to access the temperature in a

room, the iPhone interfaces with the Apple TV via the iCloud and the Apple TV will

communicate with the device in the home via the Homebridge server for Wi-Fi or

directly for BLE. This only works with HomeKit supported devices, therefore, BLE

devices b7-b12 (see Table 3) cannot be accessed while the user is away from the home.

3.3.3 Wi-Fi Devices.

To facilitate Wi-Fi communication in the smart home architecture, a 2.4 GHz

Wi-Fi AP, with the SSID set as “Moria”, was setup with Wi-Fi Protected Access

2 (WPA2) security on channel 1. Figure 9 provides a complete list of settings. De-

23

vices w2-w9 are connected to the AP and are listed in Table 2. The smart home

devices include a camera, six outlets (four smart outlets, one mini outlet, and one

energy outlet), and a motion sensor. These devices use the Homebridge server to

communicate with Apple’s HomeKit on the iPhone.

Figure 9. Moria AP settings

24

Table 2. Wi-Fi devices

ID Manuf Device Type Device Name MAC IP Address

w1 Calix Wireless Router Moria EC:4F:82:73:D1:1A -

w2 Belkin Camera NetCam EC:1A:59:E4:FD:41 192.168.1.44

w3 Belkin Outlet Switch1 B4:75:0E:0D:33:D5 192.168.1.40

w4 Belkin Outlet Switch2 B4:75:0E:0D:94:65 192.168.1.41

w5 Belkin Outlet Switch3 94:10:3E:2B:7A:55 192.168.1.42

w6 Belkin Outlet Switch4 14:91:82:C8:6A:09 192.168.1.7

w7 Belkin Motion Sensor Motion EC:1A:59:F1:FB:21 192.168.1.43

w8 Belkin Energy Outlet Insight 14:91:82:24:DD:35 192.168.1.47

w9 Belkin Mini Outlet Mini 60:38:E0:EE:7C:E5 192.168.1.51

w10 Raspberry Pi 3B Computer Pi B8:27:EB:09:1A:81 192.168.1.50

w11 Apple iPhone 6+ iPhone A0:18:28:33:34:F8 192.168.1.4

w12 Apple TV 2 Apple-TV 08:66:98:ED:1E:19 192.168.1.54

3.3.4 Bluetooth Low Energy Devices.

A Bluetooth master must be present for Bluetooth communication to occur in the

smart home architecture. In SHAA, the iPhone and Apple TV act as masters while

each of the BLE devices are slaves. A list of BLE devices can be found in Table 3.

Devices b1-b5 are HomeKit supported and can be accessed with voice commands via

the iPhone 6+ or Apple TV. Devices b6-b10 are not HomeKit supported and can only

be accessed through their manufacturer specific applications on the iPhone 6+.

25

Table 3. BLE devices

ID Manuf Device Type Device Name

b1 Elgato Indoor Temperature Eve Room
b2 Elgato Outdoor Temperature Eve Weather
b3 Elgato Motion Sensor Eve Motion
b4 Elgato Outlet Eve Energy
b5 Elgato Door Sensor Eve Door
b6 Instant Pot Smart Cooker Instant Pot
b7 MPow Lightbulb Playbulb
b8 ZKTeco Lock BioLock
b9 BitLock Lock Bike lock
b10 SafeTech Gunsafe Gunsafe
b11 Apple iPhone 6+ iPhone
b12 Apple TV 2 Apple TV

3.4 Classification, Identification, and Tracking of Internet of things (CITIoT)

CITIoT contributes four capabilities enabled by data leakage from smart home

Wi-Fi and BLE devices: device classification, event identification, user tracking, and

network mapping. Figure 10 depicts the CITIoT system diagram which can be sum-

marized by six components: (i) reconnaissance and scanning, (ii) passive sniffing,

(iii) data preprocessing, (iv) tracking, (v) classification, and (vi) network mapping.

Components i and ii require user interaction, while components iii-vi are executed via

Python scripts. The next sections provide a description of all components and their

interactions.

3.4.1 Hardware.

The Host Machine is used to operate the software and sniffers. The host is a

Hewlett-Packard 8570w with a 64-bit Intel Core i7 3270QM processor running at

2.60 GHz, 16 GB DDR3 (4 x 4 GB) RAM, 120 GB SATA Hard Drive, and using Kali

version 2017.1 as the operating system. These specifications are considered when

observing processing time in Section 5.3.1. Three BLE sniffers (Ubertooth One with

26

Figure 10. Diagram of CITIoT components and interactions

firmware 2017-03R2), the Plugable Bluetooth adapter, and a wide range 802.11ac

dual band wireless adapter (Alfa Card AWUS036ACH) are connected to the host via

Universal Serial Bus (USB). Each Ubertooth One device uses a 2.4 GHz 2.2 dBi

antenna and connects to the host using USB 2.0, while the Alfa Card uses a 2.4 GHz

and 5 GHz Dual-Band 5 dBi dipole antenna and connects to the host using USB 3.0.

3.4.2 Reconnaissance and Scanning.

Reconnaissance is necessary to ascertain five characteristics of the smart home

network which CITIoT requires for operation: AP MAC address, AP channel, Wi-Fi

device MAC addresses, BLE device names, and controller MAC addresses. Prior to

beginning reconnaissance, the wireless interface that corresponds to the Alfa Card

must be set to monitor mode to capture all Wi-Fi traffic regardless of the packet’s

BSSID or DA. Figure 11 shows the five commands used to set the interface to monitor

mode: (i) kill any processes that may interfere with the Aircrack-ng tool, (ii) bring

down the interface, (iii) set the interface to monitor mode, (iv) bring the interface

27

back up, and (iv) ensure the interface is in monitor mode.

Figure 11. Commands used to set Wi-Fi interface to monitor mode

Figure 12 shows the command used to operate the Alfa Card and the Airodump-

ng tool to scan for Wi-Fi devices and APs. This scan identifies the target and smart

home information needed for passive sniffing: (1) the target device’s MAC address

(e.g., iPhone 6+), (2) associated AP MAC address, (3) SSID of the smart home, and

(4) AP channel.

Next, Figure 13 shows the command used to scan for devices connected to the

smart home network using the Alfa Card and Airodump-ng tool while filtering on

the target AP MAC address found in the previous step. The list of device MAC

addresses associated with the target AP is collected and device manufacturers are

discovered using an organizationally unique identifier (OUI) lookup tool [42]. Table 4

shows results from the OUI lookup using the Wi-Fi devices found during the scan.

28

Figure 12. Command and results to accomplish a scan of Wi-Fi devices and associated
APs

This information is used to infer which devices are IoT devices (e.g., Belkin devices)

and which are controllers (e.g., Raspberry Pi or Apple devices).

Figure 13. Command and results to scan for devices connected to the target AP

29

Table 4. Wi-Fi MAC OUI search and results

OUI Search Results

EC:1A:59:E4:FD:41 EC:1A:59 Belkin International Inc.

EC:1A:59:F1:FB:21 EC:1A:59 Belkin International Inc.

94:10:3E:2B:7A:55 94:10:3E Belkin International Inc.

B4:75:0E:0D:33:D5 B4:75:0E Belkin International Inc.

60:38:E0:EE:7C:E5 60:38:E0 Belkin International Inc.

B8:27:EB:09:1A:81 B8:27:EB Raspberry Pi Foundation

14:91:82:C8:6A:09 14:91:82 Belkin International Inc.

A0:18:28:33:34:F8 A0:18:28 Apple, Inc.

14:91:82:24:DD:35 14:91:82 Belkin International Inc.

08:66:98:ED:1E:19 08:66:98 Apple, Inc.

B4:75:0E:0D:94:65 B4:75:0E Belkin International Inc.

Similarly, Figure 14 shows the command used to operate the Bluetooth wireless

adapter (Plugable USB 2.0) and sniffing tool (BlueZ) to scan for BLE devices. The

Bluetooth service is started, the interface is activated, and scanning is initiated. The

results show device names and MAC addresses found from ADV IND and SCAN RESP

packets collected using the low range Plugable Bluetooth adapter from within the

smart home.

30

Figure 14. Command and results to scan for BLE devices within the smart home

3.4.3 Passive Sniffing.

Passive sniffing is used to capture Wi-Fi and BLE traffic from the smart home.

Sniffing occurs simultaneously for Wi-Fi and BLE traffic using the Alfa Card and

three Ubertooth One sniffers respectively. Prior to capturing Wi-Fi traffic, the Alfa

Card’s wireless interface must be in monitor mode to capture Wi-Fi packets des-

tined to any device (see Figure 11). The Airodump-ng tool is then used to cap-

ture Wi-Fi traffic from the smart home. When operating the capture tool, the

Alfa Card’s interface (“wlan1”), capture output file format (“.pcap”), target AP

MAC address (“ec4f8273d11a”), and target AP Wi-Fi channel (“1”) options are set.

Sniffing is initiated using # airodump-ng -c 1 wlan1 -o pcap -w wifi --bssid

ec4f8273d11a.

To capture BLE traffic, three Ubertooth One sniffers are set to operate with each

device (“U0”-“U2”) tuned to one of three advertisement channels (“37”-“39”), to fol-

31

low traffic (“f”), and output packets to a capture file (“.pcap”). Appendix A provides

a script which uses the Bash Unix shell command language to simplify activating all

three of the Ubertooth One sniffers simultaneously. A single Ubertooth One sniffer

can be operated using # ubertooth-btle -f -U0 -A37 -qble.pcap. When sniffing

is complete, each tool is terminated and the resulting capture files are stored on the

host machine.

3.4.3.1 Ubertooth One Issues.

Two issues with the Ubertooth One firmware were discovered during testing and

experimentation. First, an investigation of a 3-hour capture identified that the Uber-

tooth’s clock would drift over time making it impossible to identify the real time of

a packet. This issue was resolved by updating the Ubertooth One firmware to utilize

the clock of the host computer rather than the internal Ubertooth One clock for the

packet timestamp. This fix was published to the Ubertooth firmware GitHub issues

page as issue #251 [43]. Second, the Ubertooth One sometimes froze when a master

sent a CONNECT REQ packet. This second issue was discovered during the first day of

trials and occurs because newer BLE devices, such as the iPhone 6+, can elect to

use a subset of available BLE channels and the Ubertooth One did not support this

feature at the time of experimentation. The Ubertooth One sniffers were observed

during the rest of experimentation and if the sniffers froze, they were restarted. A

bug report was submitted as issue #270 and has since been resolved by the Ubertooth

One developers [44]. The second issue was the cause for the lack of BLE data during

trial 1 of experimentation.

32

3.4.4 Preprocessor.

After passive sniffing is complete, the Wi-Fi packet captures are parsed and orga-

nized in preparation for the classifier. This is accomplished with a script written in

Python using Pyshark, a Python wrapper for parsing packets with Wireshark dissec-

tors (see Appendix B). The command used to operate the preprocessor is $ python

wifi.py -p <input file> where the input file is a Wi-Fi capture file (.pcap). The

time, size, source, and destination for each 802.11 data packet are extracted from the

captures and the resulting 4-tuples are stored in comma-separated values (CSV) files.

All other 802.11 packet types and packets with a source or destination not in the list

of Wi-Fi devices found during reconnaissance do not include information used by the

classifier and are not saved. The 4-tuples are stored in two files per device per day:

one file in which each 4-tuple has a source address of the device and one file in which

each 4-tuple has a destination address of the device. For example, the Belkin Motion

Sensor (w7) will have two files per day, one in which every 4-tuple represents a packet

from the sensor to another device in the Wi-Fi device list and one file in which every

4-tuple represents a packet from a device in the list to the Belkin Motion Sensor.

These CSV files are used by the Wi-Fi classifier and network mapper components of

CITIoT.

3.4.5 MAC Tracker.

The MAC tracker unit tracks when devices are in the smart home based off Wi-Fi

packets sent from that device. It is implemented within the preprocessing script (see

Appendix B), operates at the same time as data preprocessing, and utilizes every

802.11 packet that has a source MAC address of a device in the Wi-Fi device list. As

the packet capture is parsed, the tracker keeps a list of the first and last time a packet

was sent from a device within the smart home. If the tracker observes no packets sent

33

from a device for five minutes it marks the device as no longer in the smart home

and records the arrival and departure times in a CSV file. In testing it was observed

that inactive Apple devices stop sending packets to save battery power, but still send

at least one packet per five minutes even when idle. Therefore, a five minute interval

was chosen as the appropriate amount of time to account for idle devices; this ensures

that a lack of packets sent from a device occurs because the device is away from the

home and not just idle. This time period is easily changed within the script and can

be increased to provide more confidence that the device is away from the home or

decreased to improve precision.

During testing it was observed that some packets caused the MAC tracker to

report erroneous times. Two anomalies in packet times were found: (i) intermittent

packets would have a negative epoch timestamp and (ii) periodically, sequentially

numbered packets would have a timestamp that should appear much later in the

capture. Figures 15 and 16 show example Wireshark traces depicting both of these

bugs. The cause of these inconsistencies was not discovered.

Figure 15. Encrypted packet used in MAC tracker showing corrupted timestamp

34

Figure 16. Encrypted packets used in MAC tracker showing sequential frame numbers,
but wrong times

These issues were overcome by checking for two conditions and, if either was met,

ignoring the packet: first, if a packet’s timestamp was less than zero, and second,

if the difference between two consecutive packet timestamps was greater than five

seconds. These fixes, however, presented a third issue in tracking devices: if there

was a jump in time (i.e., from a paused capture), all new packets would meet the

second condition and the packets would be ignored. This new issue was resolved

by checking if more than five consecutive packets were received with a timestamp

difference of greater than 5 seconds; if so, the baseline time would be shifted to the

time of the new packets. For example, the tool processes a packet with a timestamp

of 13:00:00. The next packet observed has a timestamp of 14:00:00 which is ignored

because it meets the second condition: the difference between consecutive packets is

greater than five seconds. The next four packets, though, each have a timestamp of

14:00:01. Since five subsequent packets have been received with a timestamp greater

than five seconds from the first packet, the baseline time is reset from 13:00:00 to

14:00:01 and future packets will no longer be ignored. The tracker provides the user

with the number and time of invalid packets to facilitate further investigation.

3.4.6 Classifier.

This section describes the training and operation of the component of CITIoT

used to classify devices and identify events within the smart home. There are three

parts to the classifier: (i) the Wi-Fi classifier trainer, (ii) the Wi-Fi classifier, and (iii)

the BLE classifier. These components are implemented separately within two scripts

35

provided in Appendices B and C (one for each protocol). Appendix D includes helper

functions used by both of the protocol scripts.

3.4.6.1 Wi-Fi Classifier Trainer.

The Wi-Fi classifier must be trained to the devices within SHAA to be able to

classify devices and identify events. This was accomplished using traffic captured

during a training trial in which each Wi-Fi and BLE device was activated according

to the Classifier Training Event Log (see Appendix E). Events were chosen that

represent a real user activating devices throughout a normal day in a smart home.

The traffic from the smart home was captured and preprocessed as described in

Section 3.4.4. For Wi-Fi traffic, the classifier is trained to classify devices into one

of three types (outlet, sensor, or camera) and identify device events (outlet, motion,

or camera event). The CSV files created during the preprocessing stage are used by

the classifier training script (see Appendix B) to provide the user with two scatter

plots per device (one depicting packets sent from a device and one depicting packets

sent to a device). The command used to operate the classifier trainer is $ python

wifi.py -t and it must be called after the preprocessor and from the same directory.

Appendix F shows the plots for packets sent from the Raspberry Pi to each Wi-Fi

device, while Appendix G provides the plots for packets sent from each device to the

router. An example of each is provided in Figures 17 and 18, respectively. The x-axis

of these plots represents time in hours, while the y-axis represents packet size in bytes.

These plots are used as a graphical representation of the traffic within SHAA to help

determine trends and patterns in packet sizes for devices and events.

36

Figure 17. Example plot showing packets sent from Raspberry Pi to Switch1 used to
train the classifier

Figure 18. Example plot showing packets sent from Motion to Router used to train
the classifier

37

After observing the plots created in training, it was discovered that the Raspberry

Pi communicates with each type of device in a unique way and, therefore, traffic from

the Raspberry Pi to the devices can be used to classify devices. Figures 19, 20, and 21

show three plots from Appendix F (packets from the Raspberry Pi to the NetCam,

Motion, and Switch1) zoomed in on the unique packet traffic that helped generate

the classification criteria. Figure 22 lists the criteria established to classify devices

using the plots. This criteria is described as follows: if the device receives a packet

from the Raspberry Pi between 619 and 632 bytes, then it is an outlet; if the device is

not an outlet and receives 269-byte packet from the Raspberry Pi, then it is a sensor

device; and if the device is not an outlet and receives 281-byte packet from the Pi,

then it is a camera device.

Figure 19. Packets sent from Pi to NetCam used to classify camera devices

38

Figure 20. Packets sent from Pi to Motion used to classify motion devices

Figure 21. Packets sent from Pi to Switch1 used to classify outlet devices

39

Figure 22. Criteria used to classify devices

Similarly, comparing event logs to the plots in Appendix F from training revealed

that the Raspberry Pi sends a packet with a frame size of 619, 620, or 632 bytes to

an outlet every time an event occurs. Figure 23 shows a plot depicting packets sent

from the Raspberry Pi to the Mini outlet during training zoomed in on two events

that helped generate the event identification criteria for outlets. At times, multiple

packets meeting the event criteria are sent within a minute due to retransmission.

Therefore, CITIoT only identifies one outlet event per device per minute. This event

interval provides enough precision for the data leakage analysis. Additionally, by cor-

relating event logs with the plots in Appendix G, it was observed that the sensors and

cameras send a burst of packets to the router every time an event occurs. Figures 24

and 26 show two plots from training depicting packets sent from the NetCam and

Motion to the router zoomed around the unique packet traffic that helped generate

the event identification criteria for these devices. These bursts can be recognized

among network traffic by adding the FSize of all packets sent by a device within a

minute. During an event, cameras send a burst of packets that amount to a FSize

greater than 100,000 bytes, while a sensor event burst is greater than 10,000 bytes.

Figures 25 and 27 provide plots depicting the result after adding the FSize of all

packets sent in a minute by the NetCam and Motion during training. The plots are

zoomed in around events to show the unique traffic used to identify camera and sensor

40

events. The bursts sent by the sensor or camera may span a two-minute period to

avoid CITIoT flagging two events (one per minute), the tool only identifies one sensor

or camera event per device per two minutes. Figure 28 lists the criteria established

to identify events. This criteria is described as follows: if the device is a camera

and the total FSize of packets sent to the router in a minute is greater than 100,000

bytes, then a camera event occurred; if the device is a sensor and the total FSize of

packets sent to the router in a minute is greater than 10,000 bytes, then a sensor

event occurred; and if the FSize of a packet sent from the Raspberry Pi to an outlet

device is between 619 and 632 bytes, then an outlet event occurred.

Figure 23. Packets sent from Pi to Mini during an outlet event

41

Figure 24. Packets sent from NetCam to router during a camera event

Figure 25. Packets sent from NetCam to router with one minute cumulative FSize
during a camera event

42

Figure 26. Packets sent from Motion to router during a motion event

Figure 27. Packets sent from Motion to router with one minute cumulative FSize
during a motion event

43

Figure 28. Criteria used to identify events

Further investigation of each characteristic Wi-Fi packet exchange was accom-

plished to determine why patterns exist in these packets. The Wi-Fi captures were

decrypted by adding the AP password into Wireshark and selecting the decrypt 802.11

packets option. It was discovered that the Raspberry Pi sends a 269 or 281 byte

Hypertext Transfer Protocol (HTTP) SUBSCRIBE packet to subscribe to events from

a given device. The NetCam device is the only one to receive a 281 byte SUBSCRIBE

packet, and Figure 29 shows that a timestamp Transmission Control Protocol (TCP)

option accounts for the packet length difference. The Raspberry Pi sends a 619, 620,

or 632 byte HTTP POST request to activate an outlet. Figure 30 shows an exam-

ple packet for each of the different sized POST packets. These packets revealed that

Switch4 received a 619 byte POST packet because the Internet Protocol (IP) address

had one character less in the final octet resulting in one less byte in the HTTP host

address. The POST packet sent to the Mini outlet was 632 bytes with the additional

12 bytes coming from TCP options that were not included in other devices. Every

time the camera observes motion after one minute of idleness it sends the user a

camera snapshot via email. Every time a sensor observes motion after one minute

of idleness it sends a notification to the user. To do this, the device creates a secure

connection to Belkin’s cloud service hosted by Amazon EC2 Cloud and then sends

the notification to the Belkin application on the iPhone 6+. Decrypting this traffic

44

is beyond the scope of this thesis.

(a) Motion device

(b) NetCam device

Figure 29. Decrypted SUBSCRIBE packets from Raspberry Pi to the Motion and NetCam
devices depicting difference in FSize

45

(a) Switch4 device

(b) Switch2 device

(c) Mini device

Figure 30. Decrypted POST packets from Raspberry Pi to the Switch4, Switch2, and
Mini depicting differences in FSize

46

3.4.6.2 Wi-Fi Classifier.

For Wi-Fi traffic, the classifier is operated via a Python script (see Appendix B)

which utilizes each of the CSV files created during data preprocessing and the criteria

found during training to classify devices and identify events. The command to operate

the classifier is $ python wifi.py -c and it must be called after the preprocessor

and from the same directory. First, for each device, the classifier analyzes traffic sent

from the Raspberry Pi to that device to classify what kind of device it is (outlet,

sensor, or camera). If the traffic meets one of the criteria found during training, then

the device type is set accordingly, otherwise the type is unknown. Second, based on

the device type determined in the first step, traffic is tested against the event criteria

found during training to identify when an event occurs. For an outlet device, the

traffic sent from the Raspberry Pi to the device is used to identify outlet events,

while traffic sent from the device to the router is used to identify sensor and camera

events. The type found for each device is stored in a CSV file listing the MAC address

and type of device. The time, source, and destination for each event identified are

also stored in a separate CSV file.

3.4.6.3 BLE Classifier.

For BLE traffic, a script (see Appendix C) is used to parse the packet captures

created during passive sniffing for ADV IND, SCAN RESP, and CONNECT REQ packets. The

ADV IND and SCAN RESP packets provide advertisement information, such as device

name, used by the classifier to classify devices. Instead of classifying devices into

categories as in Wi-Fi, the classifier relies on the name provided within these packets.

The discovered device name is stored along with the device BLE MAC address in a

CSV file. Devices only exchange information after a CONNECT REQ packet, therefore,

these packets are selected as the indicator for device events. The classifier searches for

47

CONNECT REQ packets, uses the device name found during the first step, and stores the

time, source, and destination for each event into a CSV file. Only device events that

match BLE devices found in reconnaissance are stored. Similar to Wi-Fi sensors and

cameras, a single BLE event may cause devices to send multiple CONNECT REQ packets

that span a two-minute time period. This would cause CITIoT to mark one event as

multiple events. Therefore, CITIoT identifies one event per device per two-minutes

(i.e., the CONNECT REQ packets sent within two-minutes of the first connection packet

are ignored). This may cause the device to miss two events that occur less than a

minute apart, but this event interval per device provides enough precision for the

data leakage investigation.

3.4.7 Network Mapper.

The next component of CITIoT, the network mapper, creates a graphical rep-

resentation of how Wi-Fi devices are connected within the smart home using the

FSize of 802.11 data packets sent between devices. The network mapper unit is im-

plemented within the Wi-Fi classifier script (see Appendix B) and operates as the

classifier parses each CSV file created by the data preprocessing tool. The FSize of

all packets sent between two devices are combined and stored in a new CSV file along

with the device names. In the network map, the devices are the nodes, while the

data sent between devices are the edges. For example, if the Raspberry Pi sends a

total of three 500 byte packets to Switch1 then a three-tuple is written to a CSV

that includes the Raspberry Pi and Switch1 as nodes and the cumulative number of

bytes sent, 1500 bytes, as the edge between these two nodes. The R script provided in

Appendix H uses the “igraph” R package to turn the edge file created by CITIoT into

an undirected network map [45]. Figure 31 provides a sample network map created

by the script—nodes represent devices and edges depict the cumulative frame size

48

sent between connected devices (i.e., thicker lines represent more data sent between

devices).

Figure 31. Network mapping of smart home architecture

3.4.8 Security.

Security of CITIoT is not key to this work, but still worth discussion. The tool’s

interaction with the smart home and any other Wi-Fi or BLE devices is completely

passive. The sniffers do not associate with the smart home’s access point nor do they

transmit any data that is detectable. Smart home operation is completely unaffected

by the tools presented. Therefore, the eavesdropper is virtually undetectable and the

tools provided within CITIoT have little to no attack surface.

49

3.5 Mitigation of IoT Leakage (MIoTL)

The MIoTL tool provides methods for mitigating data leakage from IoT devices

in smart homes. As shown in Figure 32, MIoTL has two components which operate

within SHAA to negate capabilities provided by CITIoT using the concept of chaff

presented in Section 2.5 to send fake IoT traffic among the real traffic. The first

component, device shadow, spoofs IoT device traffic to make it more difficult to

classify devices and identify device events. The second component, MAC shadow,

spoofs traffic coming from a user’s device (e.g., iPhone) to make it difficult to track

when the user is home or away. The tool operates on a Raspberry Pi 3B with the

Kali 4.1.19 operating system. The Raspberry Pi was used because the tool is always

running and the Pi provides low power consumption and constant connectivity on

the network.

Figure 32. Diagram of MIoTL tool components

3.5.1 Device Shadow.

The device shadow script is provided in Appendix I and was written with Python

using the Scapy network tool to randomly spoof packets sent between devices in the

50

smart home. Three different packet groups are randomly sent: (i) a packet of 620

bytes sent from the Raspberry Pi to every other device in a random order; (ii) a

series of packets totaling 10,000 bytes sent from each device in a random order to the

router; and (iii) a series of packets totaling 100,000 bytes sent from each device in a

random order to the router. MIoTL randomly sends one of these packet groups at a

random interval between ten and fifteen minutes. The random order and interval are

used to make it difficult to differentiate real traffic from spoofed traffic sent from the

tool. Packets are sent to and from each device to make it hard to identify devices. For

example, per the device classification criteria used by CITIoT, a packet of size 620

bytes sent from the Raspberry Pi to a device indicates that the device is an outlet.

This component spoofs 620-byte packets sent from the Raspberry Pi to each device,

regardless of type, so the classifier tool would incorrectly classify a sensor as an outlet.

The same concept is used to spoof events.

3.5.2 MAC Shadow.

The MAC shadow script is provided in Appendix J and was written with Python

using Scapy to spoof packets sent from a device to a controller. To accomplish this,

the script first checks to see if the device is on the smart home network every four

minutes. If the device is not on the smart home network, then, at a random interval

between 0 and 1 seconds, the script sends ten spoofed packets on behalf of the device

(e.g., iPhone 6+) to a controller device (e.g., Apple TV). The tool checks to see if

the device is not on the network to ensure the device’s entry in the router’s Address

Resolution Protocol (ARP) table is not changed while the device is on the network

and the user does not experience network degradation. The four minute interval was

chosen as it sends packets often enough for it to appear that the device is on the

network without sending too many packets to impact the performance of the wireless

51

network.

The process of checking if the device is in the smart home proved to be difficult

as the Apple iPhone’s network card goes into a low power mode when the phone is

not in use and does not respond to TCP ping messages. To check if the device is on

the network the script sends a series of 10 ARP requests and if the device responds to

one of the requests then it is present. Documentation on how the iPhone’s network

card operates was not readily available so trial and error found that the ARP method

was the most consistent to detect Apple devices.

3.6 Design Summary

This chapter describes each component of the SHAA, CITIoT, and MIoTL tools.

The design presented is a unique approach to creating a smart home testbed that can

be used to analyze IoT data leakage and test mitigation methods.

52

IV. Methodology

4.1 Problem/Objective

This research aims to demonstrate how data leakage in smart home environments

enables an eavesdropper to classify IoT devices, track user movements, map networks,

and identify events within the smart home. It also seeks to show how a smart home

user can defend against these attacks. These goals are enabled through the imple-

mentation of the CITIoT and MIoTL tools respectively. The experiment presented

in this section functions as an evaluation of these tools in a realistic smart home

environment, testing how accurately CITIoT operates against the SHAA, and how

well MIoTL mitigates these attacks. Specifically, the experimentation attempts to

accomplish four objectives:

1. Determine the ability of an observer to accurately classify smart home devices.

2. Examine the percentage of events successfully identified.

3. Measure the capability to track when users are in the smart home.

4. Evaluate processing time and storage requirements.

The evaluation results provide consumers with an understanding of data leakage in

smart home environments and a method to defend against these vulnerabilities.

4.2 System Under Test

Figure 33 displays the system under test (SUT) and component under test (CUT)

diagram. Response variables, or metrics, described in Section 4.3, consist of classified

devices, identified events, user tracking, processing time, and storage requirements.

The actual Wi-Fi and BLE traffic collected by CITIoT is considered uncontrolled and

53

is examined in Section 4.5. Section 4.6 discusses the parameters that do not change

throughout the experiment such as computing parameters and the number of devices.

Section 4.7.3 describes the experiment treatments which include a user performing

actions from a script to interact with the smart home environment and the operation

of the MIoTL tool. The components tested include the preprocessor, MAC tracker,

classifier, and network mapper.

Figure 33. System Under Test and Component Under Test diagram

4.2.1 Assumptions.

The following assumptions are made when designing and executing experiments

for CITIoT:

1. The actions performed within SHAA are representative of a real smart home

environment.

2. The eavesdropper has already accomplished reconnaissance and scanning and

has the required parameters to run CITIoT: AP MAC address, AP channel, Wi-

Fi device MAC addresses, BLE device names, and controller MAC addresses.

54

3. During experimentation, CITIoT is positioned within SHAA, whereas in real-

world operation it would be outside of the smart home. It is assumed that

a directional antenna aimed at the smart home would have similar results to

the antennae used within the smart home during this experimentation. This

assumption is substantiated through Rose, et al.’s work cracking a gun safe from

a quarter mile away [22].

4. The degree of precision for an identified event is one minute. This level of

precision provides enough accuracy for the data leakage investigation presented

in this thesis and allows for signal propagation and sniffer delays to be ignored.

4.3 Response Variables

The objectives of this experiment influence the response variables chosen to mea-

sure the accuracy and performance of CITIoT. While not directly measured, the ef-

fectiveness of MIoTL is quantified via the observed decrease in CITIoT’s effectiveness

when the mitigation tool is operating. Therefore, response variables (or performance

metrics) tied to the four objectives help consider the overall operation of CITIoT. Re-

sponse variables are observed in four configurations per trial: (i) BLE, (ii) Wi-Fi with

no mitigation, (iii) combined BLE and Wi-Fi with no mitigation, and (iv) Wi-Fi with

mitigation. Configuration three is used when analyzing CITIoT’s overall accuracy

and performance without mitigation; the mean of each metric is calculated across

all trials. Configuration four is used to measure CITIoT’s accuracy while MIoTL is

operating; again, the average of each metric across all trials is used.

• Objective 1: Determine the ability of an observer to accurately classify smart

home devices.

Device Classification Success (DCS): The DCS response variable quan-

55

tifies the number of devices successfully identified by CITIoT. A device is con-

sidered successfully identified if the name of the BLE device matches the actual

name or if the category of the Wi-Fi device matches the actual category.

• Objective 2: Examine the percentage of events successfully identified.

Event Identification True Positives (EITP): The EITP response vari-

able quantifies the number of true positives, or events identified that actually

occurred. An event is considered successfully identified if the time and device

of the event recognized by CITIoT matches an event in the log. The degree of

precision for an identified event is one minute.

Event Identification False Positives (EIFP): The EIFP response vari-

able quantifies the number of false positives, or identified events that did not

occur. An event is considered a false positive if it is identified by CITIoT and

no corresponding event exists in the log.

Event Identification False Negatives (EIFN): The EIFN response

variable quantifies the number of false negatives, or events that CITIoT failed

to identify. An event is considered a false negative if an event exists in the log

and was not identified by CITIoT.

• Objective 3: Measure the capability to track when users are in the smart

home.

User Tracking Success (UTS): The UTS response variable quantifies

the amount of time in which CITIoT successfully tracks when a user is home or

away via Wi-Fi traffic. MIoTL attempts to make the user appear home at all

times, so while mitigation is active, UTS quantifies the amount of time CITIoT

is able to identify that a user is away from the home despite mitigation.

• Objective 4: Evaluate processing time and storage requirements.

56

Processing Time (PT): The PT response variable, measured in seconds,

quantifies how long it takes CITIoT to operate for each trial.

Hard Drive Space (HDS): The HDS response variable, measured in

bytes, quantifies the amount of hard drive space used by CITIoT after operation.

4.4 Control Variables

A primary goal of this experiment is to observe how CITIoT operates in a realistic

smart home environment. Using COTS components restricts the number of factors

that can be altered during experimentation. Event type and timing are the primary

factors and are the main treatments in the experiment. A number of scripted events

are performed in a random order and time interval throughout a trial. Addition-

ally, the operating status of MIoTL is used to evaluate CITIoT’s operation during

mitigation.

4.5 Uncontrolled Variables

Another consequence of testing CITIoT against a realistic smart home environ-

ment is the introduction of uncontrollable factors. The use of COTS components

and an open environment introduces wireless noise and the occurrence of unscripted

events. This is beneficial to the evaluation of CITIoT as it should operate regardless

of interference.

4.6 Experiment Parameters

Throughout the course of experimentation, several factors are held constant to

limit the scope of the experiment:

• Type of Devices: The types of devices in the smart home do not change

57

throughout the experiment.

• Number of Devices: The number of devices in the smart home does not

change throughout the experiment.

• Number of Users: The number of smart home occupants does not change

throughout the experiment.

• Location of Sniffers: The location of the sniffers relative to the smart home

devices does not change throughout the experiment.

• Location of Devices: The location of the devices relative to the sniffers does

not change throughout the experiment.

• Computing Parameters: The operating systems, resources (memory, CPU,

and disk space), script languages, and hardware are held constant.

4.7 Experimental Design

The purpose of this experiment is to meet the four objectives listed above. The

experiment scenario is defined by a user performing actions from a script to interact

with the smart home environment. These events occur while the user is both in and

away from the smart home environment. Data logging provides truth data used to

evaluate CITIoT’s operation.

4.7.1 SHAA.

Figure 34 depicts how the devices, CITIoT tool, and MIoTL tool are laid out

within SHAA. To provide consistency between trials, all devices, excluding the

iPhone, are not moved throughout experimentation. Proximity between the devices

and CITIoT tool provides greater chances of packet capture during experimentation.

58

Figure 34. Approximate layout of devices within SHAA for experimentation (not to
scale)

4.7.2 CITIoT.

Figure 34 shows where CITIoT is placed within SHAA. Each sniffer operates

in the 2.4 GHz band and must be horizontally isolated to avoid interference. The

distance between antennae, d, to provide horizontal isolation can be expressed by the

equation

d ≥ 2
D2

λ
(1)

where D is the length of the antenna in meters and λ is the wavelength of the device

frequency band in Hz [46].

The Ubertooth One antennae are 3.5 inches long and operate with an average

wavelength of 2441 MHz, while the Alfa Card antenna is 6.5 inches long and operates

59

with an average wavelength of 2412 MHz. Plugging these values into (1) provides

a separation value of about 5 inches for the Ubertooth One antennae and 17 inches

for the Alfa Card antenna to achieve isolation. Figure 35 shows how the individual

sniffers are setup to avoid horizontal interference. The Ubertooth One sniffers are

separated by 11 inches, while the Alfa Card is 20 to 23 inches from each of the

Ubertooth One sniffers.

Figure 35. Layout of sniffer antennae for experimentation

4.7.3 Treatments.

Table 5 lists the thirty-one events used during experimentation. These events

occur randomly with the restriction that a device must be turned on before it can be

60

turned off. Events happen multiple times during a trial at random intervals. Each

event allows CITIoT to be evaluated against different devices and actions.

Table 5. Experiment events

Device Name Action Protocol

1 Bike Lock Unlock BLE
2 BioLock Unlock BLE
3 Instant Pot Turn on BLE
4 Instant Pot Turn off BLE
5 Gunsafe Open BLE
6 Gunsafe Close BLE
7 Eve Room Get temperature in living room BLE
8 Eve Weather Get temperature on patio BLE
9 Eve Door Open BLE
10 Eve Door Close BLE
11 Eve Energy Turn on BLE
12 Eve Energy Turn off BLE
13 Eve Motion Activate motion sensor BLE
14 Playbulb Turn on BLE
15 Playbulb Turn off BLE
16 Switch1 Turn on Wi-Fi
17 Switch1 Turn off Wi-Fi
18 Switch2 Turn on Wi-Fi
19 Switch2 Turn off Wi-Fi
20 Switch3 Turn on Wi-Fi
21 Switch3 Turn off Wi-Fi
22 Switch4 Turn on Wi-Fi
23 Switch4 Turn off Wi-Fi
24 Mini Turn on Wi-Fi
25 Mini Turn off Wi-Fi
26 Insight Turn on Wi-Fi
27 Insight Turn off Wi-Fi
28 NetCam Activate motion Wi-Fi
29 Motion Activate motion sensor Wi-Fi
30 iPhone Leave house Wi-Fi and BLE
31 iPhone Arrive house Wi-Fi and BLE

The events are administered with SHAA operating in two states: with and without

the MIoTL tool activated. Table 6 describes how the treatments are administered

61

among trials.

Table 6. Experiment treatments

Trial # Events Administered MIoTL Status

1-5 1-31 Off
6-10 16-31 On

4.7.4 Logging.

A user log is used to record the time, device name, and action of each BLE and

Wi-Fi event carried out in SHAA during experimentation. Events recorded include

turning on and off loggers, starting and stopping sniffers, arriving or leaving the smart

home, system errors, and activating devices. Additionally, the Raspberry Pi records

each Wi-Fi event processed by the Homebridge server. These two logs are considered

truth data and used to calculate the DCS, EITP, EIFP, and EIFN response variables.

4.7.5 Testing Process.

Trials are carried out over ten days. The Homebridge logger and CITIoT sniffers

are activated at the beginning of each trial. At least one minute is allowed between

activating sniffers and the first event to permit the logger and sniffers time to nor-

malize. For the first five trials, each event from Table 5 is carried out in a random

order in the morning and again in the evening. Also, devices are randomly activated

throughout the day while the user is away. The time of each treatment is recorded in

the user log. At the end of the trial, CITIoT sniffers and the Homebridge logger are

deactivated and the preprocessor and MAC track units of CITIoT are started. After

these components are finished operating, the classifier and network mapper units are

activated. The timing measurement is built into CITIoT using Python’s time module

to provide the wall-clock time used by the response variable, PT. Results are stored

for statistical analysis and evaluation.

62

The testing process is repeated during trials 6-10 with the MIoTL tool operating.

As MIoTL only creates Wi-Fi traffic to impede with CITIoT’s operation, a subset

of treatments, which only include Wi-Fi events, is used (events 16-31). The MIoTL

tool is activated at least five minutes prior to the Homebridge logger and the CITIoT

Wi-Fi sniffer to allow for normalization. Wi-Fi devices are activated and the user log

is maintained as in the first trials. At the end of the trial, the CITIoT Wi-Fi sniffer,

the Homebridge logger, and MIoTL are deactivated. CITIoT operates similarly to

previous trials after that.

4.8 Statistical Analysis

Data is collected through three main components: (i) results from CITIoT, (ii) the

logger on the Raspberry Pi recording events processed by the Homebridge server, and

(iii) the user logs. The accuracy of CITIoT is measured using 5 metrics: Device Clas-

sification Success Rate (DCSR), Event Identification True Positives Rate (EITPR),

Event Identification False Positives Rate (EIFPR), Event Identification False Nega-

tives Rate (EIFNR), User Tracking Success Rate (UTSR), and the Positive Predictive

Value (PPV). The performance of CITIoT is measured using the Normalized Pro-

cessing Time (NPT) and Normalized Hard Drive Space (NHDS).

4.8.1 Device Classification Success Rate (DCSR).

The DCSR metric measures CITIoT’s ability to classify devices. The DCSR metric

can be expressed by the simple ratio measurement

DCSR =
DCS

TD
× 100 (2)

where DCS represents the number of successfully classified devices and TD represents

the total number of devices within SHAA.

63

4.8.2 Event Identification True Positives Rate (EITPR).

The EITPR metric measures CITIoT’s ability to accurately identify events. The

EITPR metric can be expressed by the simple ratio measurement

EITPR =
EITP

TE
× 100 (3)

where EITP represents the number of true positives, or successfully identified events,

and TE represents the total number of events per trial.

4.8.3 Event Identification False Positives Rate (EIFPR).

The EIFPR metric measures the rate at which CITIoT falsely identifies events

that did not actually occur. The EIFPR metric can be expressed by the simple ratio

measurement

EIFPR =
EIFP

EI
× 100 (4)

where EIFP represents the number of false positives, or identified events that did

not occur, and EI represents the total number of events identified by CITIoT.

4.8.4 Event Identification False Negatives Rate (EIFNR).

The EIFNR rate measures the rate at which CITIoT fails to identify events that

did actually occur. The EIFNR metric can be expressed by the simple ratio measure-

ment

EIFNR =
EIFN

TE
× 100 (5)

where EIFN represents the total number of false negatives, or events the tool failed

to identify, and TE represents the total number events per test trial. The EIFNR

64

metric can be simplified to

EIFNR = 1− EITPR (6)

4.8.5 User Tracking Success Rate (UTSR).

The UTSR metric measures the rate at which a user’s location is accurately tracked

as home or away via Wi-Fi traffic. The UTSR metric can be expressed by the simple

ratio measurement

UTSR =
UTS

TT
× 100 (7)

where UTS represents the total time (minutes) which the location of the user is

successfully tracked and TT is the total time (minutes) of the trial.

4.8.6 Positive Predictive Value (PPV).

The PPV metric measures the probability that CITIoT identifies an event that

actually occurred. The PPV can be calculated by the simple ratio measurement

PPV =
EITP

EITP + EIFP
× 100 (8)

where EITP represents the number of true positives and EIFP represents the num-

ber of false positives. A higher PPV indicates confidence in CITIoT’s ability to

identify events, whereas, a lower PPV suggests a lack of confidence.

4.8.7 Normalized Processing Time (NPT).

The NPT metric measures the normalized PT for CITIoT. Each configuration

and experimental trial analyzes a different number of packets, therefore, the NPT,

measured in seconds, is found by taking the PT per 25,000 packets. The NPT metric

65

can be expressed by the equation

NPT = 25000× Tn
TPn

× 100 (9)

where Tn is the total time of a trial, n and TPn is the total number of packets in trial,

n.

4.8.8 Normalized Hard Drive Space (NHDS).

The NHDS metric measures the normalized HDS for CITIoT. Each trial and

configuration processes a different number of packets, therefore, the NHDS is found

by taking the HDS per 25,000 packets.

4.8.9 Other Statistical Analysis Measures.

These results are imported into the statistical analysis tool R, a GNU project

language for statistical computing, and are compared to the two truth data sources.

The DCS, EITP, EIFP, UTS, NPT, and NHDS results are tested for mean validity

by computing the standard deviation, mean, and 95% confidence interval. CITIoT’s

accuracy (EITP and EIFP) with and without MIoTL operating is compared using a

two sample t-test with a null hypothesis which asserts that the difference in means

is equal to zero. The null hypothesis can be rejected if the p-value is below an alpha

level of 0.05 threshold—this would indicate strong evidence that mitigation has an

impact on CITIoT’s accuracy. A one tailed t-test is used to determine if the mean

with mitigation is significantly greater for false positives and less for true positives

than the means without mitigation.

Table 7 defines each performance metric’s units of measurement, accepted range

value, and expected range value. Expected values are derived from hypothesized

performance levels.

66

Table 7. Performance metrics

Metric Units Accepted Range Expected Value

no Mitigation

Expected Value

with Mitigation

DCSR % 0 to 100 > 75% < 75%

EITPR % 0 to 100 > 75% < 75%

EIFPR % 0 to 100 > 75% < 75%

EIFNR % 0 to 100 > 75% < 75%

UTSR % 0 to 100 > 75% < 75%

PPV % 0 to 100 > 85% < 15%

NPT seconds 0 to ∞ < 30 seconds < 30 seconds

NHDU bytes 0 to ∞ < 10 MB < 10 MB

4.9 Methodology Summary

This chapter describes the experimentation methodology used to measure the per-

formance (NPT and NHDS) and accuracy (DCSR, EITPR, EIFPR, UTSR, and PPV)

of CITIoT. The treatments allow for various devices and actions to determine the

operational capabilities of the tool. The effectiveness of the MIoTL tool in mitigating

some of CITIoT’s features is measured through the accuracy of CITIoT while the

MIoTL tool is operating.

67

V. Results and Analysis

5.1 Overview

This chapter describes the results obtained using CITIoT during the experimen-

tation described in Chapter 4. Results are discussed in four configurations: (i) BLE,

(ii) Wi-Fi with no mitigation, (iii) combined BLE and Wi-Fi with no mitigation, and

(iv) Wi-Fi with mitigation. Configurations three and four are used when analyzing

CITIoT’s overall accuracy and performance. Section 5.2 discusses the accuracy of

CITIoT by examining the applicable metrics. The performance of CITIoT, as de-

fined by the NPT and NHDS response variables, is reported in Section 5.3. Alibis

are provided for each failure, and results are discussed to provide insight into smart

home leakage and its security ramifications. Trial 1 does not contain any BLE data

due to the BLE sniffer malfunction described in Section 3.4.3.1 and, therefore, is not

included in accuracy or performance results.

5.2 CITIoT Accuracy

This section analyzes CITIoT’s accuracy against SHAA using the DCSR, EITPR,

EIFPR, EIFNR, UTSR, and PPV metrics discussed in Section 4.8. Results are

presented for all four configurations and are calculated using the script presented in

Appendix K. The script compares a trial’s event identification output from CITIoT

with the truth data logs to provide a list of true positives, false positives, and false

negatives. The script also calculates the values for each of the event response variables

per trial and configuration. The script provided in Appendix L formats the truth data

logs to assist in comparison with CITIoT’s outputs. For Wi-Fi, the script parses the

Homebridge logs to determine when events occur. For BLE, the script parses the

manually created truth data logs and formats the date string and device names to

68

match the format used by CITIoT.

Tables 8, 9, 10, and 11 provide results from experiment trials for each config-

uration. The R script in Appendix M calculates the standard deviation and 95%

confidence interval for each response variable. Table 12 summarizes the results of

CITIoT’s mean accuracy across all trials in each configuration. User tracking is only

accomplished via Wi-Fi devices, therefore, the UTSR of BLE trials is not considered.

Lastly, the confidence of CITIoT’s ability to accurately identify events is determined

using the PPV. The rest of this section discusses and analyzes the significance of

each metric pertinent to the tool’s accuracy.

Table 8. BLE results

Date DC TD DCSR% TP FP FN TE EI EITPR% EIFPR% EIFNR%

8/16/17 Data not collected due to Ubertooth malfunction discussed in Section 3.4.3.1
8/22/17 9 12 75.0 33 2 5 38 36 86.8 5.6 13.2
8/23/17 9 12 75.0 42 1 1 43 43 97.7 2.3 2.3
8/25/17 9 12 75.0 50 5 0 50 58 100.0 8.6 0.0
8/26/17 9 12 75.0 37 0 2 39 39 94.9 0.0 5.1
DC: devices classified; TD: total devices; DCSR: Device Classification Success Rate; TP: true positives, FP:
false positives; FN: false negatives; TE: total events; EI: events identified; EITPR: Event Identification True
Positive Rate; EIFPR: Event Identification False Positive Rate; EIFNR: Event Identification False Negative
Rate

Table 9. Wi-Fi with no mitigation results

Date DC TD DCSR% TP FP FN TE EI EITPR% EIFPR% EIFNR%

8/16/17 8 8 100.0 31 0 0 31 31 100.0 0.0 0.0
8/22/17 8 8 100.0 34 1 1 35 35 97.1 2.9 2.9
8/23/17 8 8 100.0 34 2 3 37 36 91.9 5.6 8.1
8/25/17 8 8 100.0 35 1 2 37 35 94.6 2.9 5.4
8/26/17 8 8 100.0 28 1 5 33 29 84.9 3.5 15.2

5.2.1 Device Classification Success Rate (DCSR).

The DCSR metric measures CITIoT’s ability to accurately classify devices within

SHAA. Table 13 provides the overall mean success rate for each configuration while

69

Table 10. Combined BLE and Wi-Fi without mitigation results

Date DC TD DCSR% TP FP FN TE EI EITPR% EIFPR% EIFNR%

8/16/17 17 18 94.4 31 0 0 31 31 100.0 0.0 0.0
8/22/17 17 18 94.4 67 3 6 73 71 91.8 4.2 8.2
8/23/17 17 18 94.4 76 3 4 80 79 95.0 3.8 5.0
8/25/17 17 18 94.4 85 6 2 87 93 97.7 6.5 2.3
8/26/17 17 18 94.4 65 1 7 72 68 90.3 1.5 9.7

Table 11. Wi-Fi with mitigation results

Date DC TD DCSR% TP FP FN TE EI EITPR% EIFPR% EIFNR%

12/19/17 6 8 75.0 28 255 5 33 285 84.9 89.5 15.2
12/22/17 6 8 75.0 27 257 5 32 285 84.4 90.2 15.6
12/23/17 6 8 75.0 25 225 7 32 250 78.1 90.0 21.9
12/26/17 6 8 75.0 25 170 8 33 196 75.8 86.7 24.2
12/27/17 6 8 75.0 28 199 9 37 227 75.7 87.7 24.3

Table 12. CITIoT mean accuracy results in each configuration across all trials

Configuration DCSR% EITPR% EIFPR% EIFNR% UTSR%

BLE (Trials 1-5) 76.9 94.8 13.0 5.2 N/A
Wi-Fi no mitigation (Trials 1-5) 100.0 93.7 2.9 6.3 99.7
Combined no mitigation (Trials 1-5) 94.4 95.0 3.2 5.1 99.7
Wi-Fi with mitigation (Trials 6-10) 75.0 79.8 88.8 20.2 1.9
DCSR: Device Classification Success Rate; EITPR: Event Identification True Positive Rate; EIFPR: Event
Identification False Positive Rate; EIFNR: Event Identification False Negative Rate; UTSR: User Tracking
Success Rate

Appendix N supplies the tool’s device classification output for Wi-Fi devices. CITIoT

classified BLE devices with a success rate of 75.0% per trial. The Bike Lock, Apple

iPhone 6+, and Apple TV were not identifiable via BLE traffic from the smart home.

The Bike Lock used a pseudonym as a device name “00000b67”, while both Apple

devices did not provide a device name and the BLE MAC addresses were random-

ized. Without mitigation active, the tool successfully classified all 8 Wi-Fi devices

providing a 100% success rate. Of the total 18 IoT devices employed within SHAA,

the tool was able to identify 17 using one of the wireless protocols for an overall

success rate of 94.4%. With mitigation employed, however, the tool was only able

70

to classify 6 out of 8 Wi-Fi devices for a success rate of 75%. The traffic spoofed by

MIoTL caused CITIoT to categorize each device as an outlet. This feature of MIoTL

hides the existence of motion sensors and cameras within the smart home from an

eavesdropper using CITIoT. The success rates were consistent across all trials for

each configuration, therefore the standard deviation of this response variable is not

significant.

Table 13. CITIoT mean DCSR results for each configuration

Configuration DC TD DCSR%

BLE 9 12 75.0
Wi-Fi no mitigation 8 8 100.0
Combined no mitigation 17 18 94.4
Wi-Fi with mitigation 6 8 75.0
DC: devices classified; TD: total devices; DCSR: Device
Classification Success Rate

5.2.2 Event Identification True Positives Rate (EITPR).

The EITPR metric measures CITIoT’s true positive rate, or the ability of the tool

to successfully identify events that occur in SHAA. An event is correctly identified if

the time and device of the event recognized matches an event in the log. For sensor,

camera, and BLE events, an event is considered successful if the identified time is ±1

minute from the truth data log time. This success interval provides enough precision

for the problem presented in this thesis. Table 14 provides the overall mean EITPR

results, while Figure 36 shows the spread of EITPR data for each configuration across

all trials. Appendix O supplies the event identification output listing each event

successfully identified.

Over all trials, CITIoT identified 162 of 170 BLE events for a mean EITPR of

94.9%. For trials without mitigation, CITIoT identified 162 of 173 Wi-Fi events for

a mean EITPR of 93.7%. For BLE and Wi-Fi trials combined without mitigation,

71

Table 14. CITIoT mean EITPR results for each configuration

Configuration Trials TP TE EITPR% σ C.I. %

BLE 4 162 170 94.9 5.7 ± 9.1
Wi-Fi no mitigation 5 162 173 93.7 5.8 ± 7.2
Combined no mitigation 5 324 343 95.0 4.0 ± 5.0
Wi-Fi with mitigation 5 133 167 79.8 4.5 ± 5.6
TP: true positives; TE: total events; EITPR: Event Identification True Positive Rate;
C.I.: confidence interval

Figure 36. EITPR quartile ranges for each configuration

the tool identified a total 324 out of 343 events for a mean EITPR of 95.0%. For

Wi-Fi trials with mitigation, the tool identified a total of 133 out of 167 events for a

mean EITPR of 79.8%. The standard deviations and 95% confidence intervals, listed

in Table 14, show that the EITPR for each trial was consistent to the mean of all

trials per configuration. This provides a high confidence that the tool can consistently

identify events at a combined rate greater than 90% when MIoTL is not operating.

72

CITIoT was not effective in identifying events during mitigation and operated at an

average success rate of 79.8%. This lower level of event identification is expected as

the NetCam and Motion devices are mis-categorized as outlets, therefore, no camera

or sensor events would be identified. The standard deviation of the five mitigation

trials is 4.1% indicating the average success rate is representative of all trials.

Next, the significance of MIoTL’s impact on EITP is investigated. Using an alpha

level of 0.05, the one tailed, two sample t-test indicates there is a statistically signifi-

cant difference in EITPR when MIoTL is operating and when it is not (p = 0.001426

< α). Therefore, this research clearly rejects the null hypothesis of equal means for

EITP with and without MIoTL operating and accepts the alternative hypothesis that

the difference in means is greater than 0. This indicates that mitigation has a sta-

tistically significant impact on CITIoT’s EITPR—MIoTL decreases CITIoT’s ability

to successfully identify events.

5.2.3 Event Identification False Positives Rate (EIFPR).

The EIFPR metric measures CITIoT’s false positive rate, or the rate at which

the tool identifies events that did not occur in SHAA. An event is a false positive

if there is no corresponding entry in the truth data logs; the false positive rate is

represented as a ratio of falsely identified events to the total number events identified.

Table 15 provides the overall mean EIFPR results, while Figure 37 provides the

spread of EIFPR data for each configuration across all trials—the dots for the Wi-

Fi configuration indicate two outliers in which the false positive rates were greater

than the standard deviation from the mean. Appendix O supplies the tool’s event

identification false positives for each trial.

Of the 176 BLE events identified by CITIoT, 8 did not occur providing a mean

EIFPR of 4.1%. BLE false positives occur because CITIoT identifies events based

73

Table 15. CITIoT mean EIFPR results for each configuration

Configuration Trials FP EI EIFPR% σ C.I. %

BLE 4 8 176 4.1 3.8 ± 6.0
Wi-Fi no mitigation 5 5 166 2.9 .9 ± 2.5
Combined no mitigation 5 13 342 3.2 2.5 ± 3.1
Wi-Fi with mitigation 5 1106 1243 88.8 1.5 ± 1.9
FP: false positives; EI: events identified; EIFPR: Event Identification False Positive Rate;
C.I.: confidence interval

on CONNECT REQ packets sent from a master to a slave which may occur outside of

smart home events. For example, a phone and a temperature sensor might create a

connection to pass battery information that CITIoT would mistakenly identify as a

smart home event. Of the false positives, all 8 were from one of the Eve devices and

the wireless traffic is encrypted so the cause of these connections is not clear.

For trials without mitigation, five Wi-Fi events did not occur out of the 166

identified for a mean EIFPR of 2.9%. All five false positives were either motion or

camera events. The CITIoT tool identifies these type of events by summing the total

FSize of packets sent within a minute. If the total FSize of these packets reaches

a threshold, then an event is identified. After traffic analysis, it was observed that

these false positives occur when the two devices send enough packets in a minute to

trigger CITIoT to falsely identify an event. The wireless traffic is encrypted so it is

unclear if these false positives were caused by actual events that failed to report to

the Homebridge log or other status traffic. The mean EIFPR of 2.9%, however, is

well within the desired result of an EIFPR less than 10%.

Combined, 13 of the 342 BLE and Wi-Fi events identified did not occur, result-

ing in a total mean EIFPR of 3.2%. The standard deviations and 95% confidence

intervals, provided in Table 15, show that the EIFPR for each trial was consistent

to the mean of all trials per configuration. Therefore, without mitigation, CITIoT

consistently produced false positives with a combined rate less than 5.3%. Mitigation

74

Figure 37. EIFPR quartile ranges for each configuration

increased the EIFPR for Wi-Fi devices to 88.8% and demonstrated that CITIoT is

ineffective at differentiating real events from spoofed events when mitigation is ac-

tive. With a standard deviation of only 1.4%, MIoTL is consistently successful in

neutralizing CITIoT’s event identification capability across all trials.

Next, the significance of MIoTL’s impact on EIFP is investigated. Using an alpha

level of 0.05, the one tailed, two sample t-test indicates that there is a statistically

significant difference in EIFPR when MIoTL is operating and when it is not (p =

4.675×10−13 < α). Therefore, this research clearly rejects the null hypothesis of equal

means for EIFP with and without MIoTL and accepts the alternative hypothesis that

the difference in means is less than 0. This indicates that mitigation has a statistically

significant impact on CITIoT’s EIFPR—MIoTL increases the rate at which CITIoT

identifies false positives.

75

5.2.4 Event Identification False Negatives Rate (EIFNR).

The EIFNR response variable, as provided in Section 4.3, measures CITIoT’s

false negative rate, or the rate at which the tool fails to identify events that occur

in SHAA. Table 16 provides the EIFNR results, and Figure 38 depicts the spread of

EIFNR data for each configuration across all trials. Appendix O supplies the tool’s

event identification output listing each false negative.

Table 16. CITIoT mean EIFNR results for each configuration

Configuration Trials FN TE EIFNR% σ C.I. %

BLE 4 8 170 5.2 5.0 ± 9.1
Wi-Fi no mitigation 5 11 173 6.3 5.2 ± 7.2
Combined no mitigation 5 19 342 5.1 3.6 ± 5.0
Wi-Fi with mitigation 5 34 167 20.2 4.1 ± 5.6
FN: false negatives; TE: total events; EIFNR: Event Identification False Negative Rate;
C.I.: confidence interval

CITIoT failed to identify 8 BLE events from the 170 total events resulting in a

5.2% mean EIFNR. There are three primary reasons the tool can fail to identify a

BLE event: first, the CONNECT REQ packet sent by the master may not be collected

by the sniffers due to wireless interference; second, the CONNECT REQ packet may have

been collected by the sniffers, but corrupted; and third, the sniffer set to listen on the

advertisement channel that a CONNECT REQ packet was sent may already be following a

different connection and, therefore, would not collect the CONNECT REQ packet. While

not conclusive, the cause of a false negative can be speculated via traffic analysis. The

lack of connection events around the time of an event can indicate the first cause. A

malformed CONNECT REQ packet at the time of an event can point towards the second

cause. A sniffer following a connection at the time of an unidentified event suggests

the third reason. Traffic analysis of the 8 false negatives indicates that four of the

events were likely caused by interference, while the other four could have been a result

of the Ubertooth One sniffers following other connections.

76

Figure 38. EIFNR quartile ranges for each configuration

Without mitigation, a total of 11 out of 173 Wi-Fi events were not identified for

a mean EIFNR of 6.3%. The main reason the tool may fail to identify a Wi-Fi event

is the Alfa Card sniffer fails to capture the packet sent from the Raspberry Pi to a

device due to congestion. There is no way to guarantee the cause, but high levels of

traffic around missed events suggests this was the cause for all 11 false negatives.

Combined, the tool failed to identify 19 of 342 BLE and Wi-Fi events with no

mitigation for a mean EIFNR of 5.0% across all trials. The standard deviations

and 95% confidence interval, provided in Table 16, suggest that the EIFNR for each

trial was consistent to the mean of all trials per configuration. Therefore, without

mitigation, CITIoT consistently fails to identify events at a rate less than 10%.

With mitigation however, CITIoT failed to identify 34 of 167 events for a mean

EIFNR of 20.2%. Of the 34 events the tool failed to identify, 29 were either NetCam

77

or Motion events. MIoTL caused CITIoT to identify these camera and sensor devices

as outlets. Consequently, CITIoT was not able to identify the sensor or camera

events. The 5 outlet events that were not identified were due to dropped packets. Of

the 5 outlet false negatives, 3 occurred at the same time that MIoTL sent a burst of

spoofed packets which could have resulted in CITIoT experiencing a greater dropped

packet rate during those times. The standard deviation of 4.1% indicates that MIoTL

consistently increased the EIFNR by about 15% across all trials.

5.2.5 Positive Predictive Value (PPV).

The PPV measures the probability that an identified event actually occurred in

the smart home and is a ratio of true and false positives. CITIoT had a PPV of

96.1% without mitigation suggesting that results can be trusted. With mitigation,

however, the PPV was 10.7% indicating CITIoT experienced so many false positives

that there is little confidence in CITIoT’s operation.

5.2.6 User Tracking Success Rate (UTSR).

The UTSR response variable measures the rate at which CITIoT accurately de-

termines if a user is in the smart home or not. Tracking is accomplished via Wi-Fi

wireless traffic, so there are no results from the BLE configuration. Table 17 summa-

rizes the tracking results, while Appendix P lists the tracking information provided

by CITIoT for each trial. Without mitigation, the tool successfully tracked the user’s

location for all but 9 minutes out of 51 hours and 49 minutes. This resulted in a

mean UTSR of 99.7% across trials. Inaccuracies in timing can be explained by the

Apple iPhone 6+ connecting to the AP as the user is walking up to or away from the

smart home and prior to or after the times reflected in the logs.

User tracking while MIoTL is active was much less effective. The goal of MIoTL

78

is to spoof messages sent from the user’s device so it appears the device is always in

the smart home making it impossible for CITIoT to track if a user is home or away.

Therefore, UTSR during mitigation measures CITIoT’s ability to identify if a user

is away despite mitigation. With MIoTL active, CITIoT only identified 7.5 minutes

that the user was away from the home for a mean UTSR of 1.9%. CITIoT was able

to identify the device’s absence during these 7.5 minutes because the spoofed packets

sent by MIoTL during this period were dropped by the sniffer. Otherwise, MIoTL

was successful in inhibiting CITIoT’s capability to track when the user was home or

away.

Table 17. CITIoT mean UTSR results

Configuration Trials STmin TTmin UTSR% σ

Wi-Fi no mitigation 5 3100 3109 99.7 0.2
Wi-Fi with mitigation 5 7.5 1473 1.9 3.9
ST: successfully tracked time; TT: total trial time; UTSR: User Tracking Success
Rate

5.3 CITIoT Performance

This section analyzes CITIoT’s performance while operating against SHAA using

the NPT and NHDS metrics discussed in Section 4.8. The performance parameters

are presented for each configuration.

5.3.1 Normalized Processing Time (NPT).

The NPT response variable measures the average normalized processing time for

each configuration. The NPT values for BLE and Wi-Fi separately were calculated

while those components were operating alone. In normal operation, the BLE and

Wi-Fi components operate simultaneously in two different processes. Therefore, the

combined NPT with no mitigation was calculated when both components were op-

79

erating concurrently. Table 18 provides the NPT for each trial and the mean NPT

for each configuration. The first trial does not have a BLE component, so that trial’s

timing is not considered in the combined average.

The mean NPT for the BLE component of CITIoT operating alone is 24.1 seconds

per 25,000 packets. On average, one hour of captured BLE traffic resulted in about

441,750 packets and took the BLE component of the tool approximately 7 minutes

to process. The standard deviation of 0.2 seconds indicates that each trial’s NPT did

not vary considerably.

The average NPT for the Wi-Fi component of CITIoT is 22.0 seconds per 25,000

packets. On average, one hour of captured Wi-Fi traffic resulted in about 417,703

packets and took the Wi-Fi component of the tool approximately 6 minutes to process.

The standard deviation of 0.7 seconds indicates that the each trial’s NPT did not vary

considerably.

The average NPT presented for the combined Wi-Fi and BLE without mitigation

takes into account the fact that the components are operating concurrently. The mean

NPT was 14.6 seconds per 25,000 packets. On average, one hour of captured BLE

and Wi-Fi traffic resulted in about 859,480 packets and took CITIoT approximately

8 minutes to process.

The average NPT of Wi-Fi with mitigation is very similar to Wi-Fi without miti-

gation as all that changes between configurations is the number of packets processed

by the tool and the number of packets are normalized for this metric. The average

NPT across all trials for Wi-Fi with mitigation is 22.1 seconds per 25,000 packets.

On average, one hour of captured Wi-Fi packets with mitigation resulted in about

535,680 packets and took the Wi-Fi component of the tool approximately 8 minutes

to process.

80

Table 18. CITIoT mean NPT results, in seconds, for each configuration

Component Trial1 Trial2 Trial3 Trial4 Trial5 NPTs σ

BLE N/A 24.0 24.4 24.0 24.0 24.117 0.2
Wi-Fi no mitigation 21.8 21.4 21.1 23.2 22.4 22.0 0.7

Combined no mitigation N/A 17.4 12.4 13.9 14.6 14.6 1.8
Wi-Fi with mitigation 20.9 22.8 24.2 22.3 20.1 22.1 1.4

NPT: Normalized Processing Time

5.3.2 Normalized Hard Drive Space (NHDS).

The NHDS metric measures the average normalized hard drive space usage for

each configuration. Table 19 provides the NHDS per trial and the average NHDS per

configuration. The first trial does not have a BLE component, so that trial’s space

usage is not considered in the combined average.

The average NHDS used for Wi-Fi and BLE without mitigation is 7.0 MB per

25,000 packets. On average, 8 million packets were captured per trial which resulted

in a corresponding mean NHDS of about 1216 MB per trial.

Table 19. CITIoT mean NHDS results, in MB, for each configuration

Configuration Trial1 Trial2 Trial3 Trial4 Trial5 NHDSMB σ

BLE N/A 1.9 1.9 1.9 1.8 1.9 0.0
Wi-Fi no mitigation 5.8 3.4 3.3 7.0 6.7 5.3 1.6

Combined no mitigation N/A 5.3 5.1 8.8 8.6 7.0 1.8
Wi-Fi with mitigation 1.8 3.7 12.6 3.7 2.4 4.8 4.0

NHDU: Normalized Hard Drive Space

5.4 Results Summary

This section summarizes the results of all evaluation tests and provides CITIoT’s

overall accuracy and performance with and without mitigation. When considering

CITIoT’s overall accuracy and performance, the combined BLE and Wi-Fi with no

mitigation configuration is used. Without mitigation, CITIoT was able to categorize

81

17 out of 18 devices. On average, it was able to identify 95.0% of the events within

SHAA, while only identifying false positives at an average rate of 3.2%. This resulted

in a PPV of 96.1% when MIoTL was inactive, indicating a high confidence in CITIoT’s

ability to identify events. CITIoT was able to track if a user was in the home or

away with an average success rate of 99.7%. With mitigation, however, CITIoT was

unable to identify motion sensor and security camera devices, identified an average of

79.8% of events, and falsely identified events at a mean rate of 88.8%. These values

resulted in a PPV of 10.7% when MIoTL was active, suggesting a low confidence in

CITIoT’s ability to identify events. Also, CITIoT could only recognize 7.5 minutes

of 24 hours that the user was away from the smart home. These results show that

without mitigation, CITIoT can effectively classify devices, identify events, and track

users within the home. With mitigation, however, the tool is overwhelmed by false

positives, failed to identify key devices, and cannot tell when a user is away from the

home.

82

VI. Conclusion

6.1 Overview

This chapter summarizes the research and results found during experimental eval-

uation. Section 6.2 reiterates notable conclusions derived from experimentation and

statistical analysis. Section 6.3 synthesizes findings to underline security and privacy

risks IoT devices present to the home and provides practical recommendations for

future IoT security. Lastly, Section 6.4 provides possibilities for future work with the

CITIoT tool.

6.2 Research Conclusions

This research was successful in analyzing data leakage through four contributions:

first, designing SHAA to test and analyze IoT data leakage; second, demonstrating

how vulnerabilities and characteristic data exchanges can be used to fingerprint de-

vices; third, presenting CITIoT to show how data leakage can enable an observer to

map a smart home network, classify devices within the home, identify events, and

track whether a user is home or away; and fourth, providing MIoTL to help mitigate

smart home device leakage.

As hypothesized, an eavesdropper was able to collect traffic from outside a smart

home network to successfully identify devices, track user’s presence, and deduce events

such as when a door is opened or when a camera senses motion inside the home.

Device classification was 94.4% successful with all 8 Wi-Fi devices and 9 out of 12

BLE devices categorized each day. On average, CITIoT was able to identify 95.0%

of the events that occurred within the smart home and only identified 3 events per

day that did not actually occur. This low false positive rate provided confidence in

CITIoT’s ability to accurately identify events. The tool was also 99.7% successful in

83

determining if the user was in the home or not.

When the MIoTL tool was operating, however, CITIoT was much less accurate.

All of the Wi-Fi devices were categorized as outlets which concealed the motion

sensor and security camera. An average of 79.8% events were successfully identified,

but MIoTL caused CITIoT to falsely identify about 221 events per day that did not

occur. This high false positive rate resulted in a lack of confidence that CITIoT

could accurately identify events during mitigation. Additionally, the tool could only

recognize 7.5 minutes of 24 hours that the user was away from the home when MIoTL

was operating.

These results provide statistical evidence supporting the original hypothesis: with-

out mitigation, CITIoT was able to classify devices, identify events, and track users,

but with mitigation, the number of events identified was decreased and the number of

false positives was increased making CITIoT ineffective at distinguishing real events

from spoofed events.

A total of 11.2 GB, 63.2 million packets, and 94.8 hours of traffic was captured

throughout the 10 trials accomplished during experimentation. At an average rate of

860,000 packets captured per hour, CITIoT was able to process one hour’s worth of

captured traffic in about 8 minutes. CITIoT used a mean 7 MB of storage per 25,000

packets captured and, therefore, a one hour traffic capture took up about 240 MB of

hard drive space.

6.3 Research Significance and Synthesis

As the modern home gets smarter it also becomes more vulnerable to attacks

that were previously reserved to computers and networks. IoT devices constantly

communicate data that enable an eavesdropper to infer information about people

and devices within a smart home. Users must be aware of what their devices are

84

advertising and how this information can be used against them.

For example, using CITIoT’s output from experimentation a few observations can

be made about the user and smart home that have significant security implications:

(i) the user was away from the home between 0800-1100 four days out of the week,

(ii) the user used a BLE lock to secure their home, and (iii) the user employs a

Wi-Fi based security camera and motion sensor in the home. It was also observed

that the communication between the iPhone and BLE lock was not encrypted and

passwords were sent in the clear. Using the sniffed passwords, the times when the

user was away from the home, and a replay attack, the door was unlocked by the

eavesdropper at will. The eavesdropper can also change the passwords locking the

user out of the home. The adversary knows to be aware of a Wi-Fi camera and

motion sensor. Furthermore, an eavesdropper could deploy multiple Raspberry Pi

devices with CITIoT running on each to collect data simultaneously from numerous

smart homes, something not possible with conventional reconnaissance methods. If

MIoTL was operating in the smart home, however, the adversary would not have

been able to track when the user was away nor be aware of the existence of the Wi-Fi

security camera and motion sensor.

This example is directly relevant to the military or DoD and has implications

outreaching that of the Strava incident due to the threat on physical security presented

in this thesis. The smart environment may be implemented in a DoD leader’s office or

home approved to store classified or sensitive information. Every government official

carries at least one mobile phone that, using the presented methods, can enable an

eavesdropper to track movement or determine when officials have left the office or

home. Lastly, device vulnerabilities found in BLE locks allow unauthorized access to

homes, offices, or storage containers that could contain sensitive information. These

findings stress the importance of ongoing evaluation and assessment of the security

85

risk of IoT in the DoD.

Many of the vulnerabilities used in this work take advantage of information that is

not encrypted at the lower levels of the Wi-Fi and BLE protocols, therefore, to create

more secure smart devices, developers must consider security from the physical layer

on up. For Wi-Fi, this includes periodically changing MAC addresses, randomizing

FSize of event packets, and encrypting lower-layer data packets. In BLE, devices need

to make their advertisements private. Also, common operational security methods

can help prevent against smart home device attacks. For example, users should be

aware that routine schedules leave them vulnerable to pattern-of-life modeling—a

threat which is increased by smart devices. Maintaining unpredictable schedules will

help prevent these types of attacks. Similarly, turning on or off lights while away

from home can trick an observer into thinking someone is home. It is also important

to have situational awareness of potential eavesdroppers or suspicious devices around

when accessing smart locks or other devices.

While these recommendations can improve the security of smart home environ-

ments, none of these ideas are new. Why, then, have these fixes not been implemented

to secure against privacy leakage? In response to rapid growth of the IoT market, ef-

forts to limit power, develop devices quickly, and other design constraints are driving

developers toward poor security implementation, leaving devices vulnerable. Also,

while the areas of network and computer security have seen more adversarial pres-

sure, the smart home is relatively new. Until recently, outlets, locks, and light-bulbs

were not connected to networks. This is the same evolution vehicles have seen over

the past five years as they have become connected to the Internet and, therefore,

open to attack. The privacy implications demonstrated in this work, however, re-

quire that developers of IoT technologies consider security in design and engage with

the computer security community to create more secure smart homes.

86

6.4 Future Work

There are a number of avenues to take in extending the CITIoT system as the

field of IoT devices and security is constantly growing. The following suggests seven

future work options based off this research:

1. The number, type, and manufacturer of devices used within SHAA can be

expanded to test if the fingerprinting methods presented in the classifier extend

to other IoT devices. Only a limited selection of Wi-Fi devices were used in

training the classifier.

2. The MAC tracker unit only observes when a user is home or away and could be

expanded to track device locations within the home for better reconnaissance

and tracking. A more significant tracking capability would greatly increase

CITIoT’s ability to stress the security implications of smart home devices.

3. The classifier currently uses a hands-on method for training. Machine learning

may be able to assist in training the classifier more efficiently and accurately.

4. Program execution can be improved. Processing time and hard drive usage are

limiting factors for a small battery powered device such as a Raspberry Pi and

could limit the capabilities of remotely operating CITIoT.

5. The Python wrapper, Pyshark has the capability to process packets captured

in real-time. Adding a real-time mode to CITIoT can increase the effectiveness

of demonstrating smart home vulnerabilities.

6. Mitigation is only effective against CITIoT’s Wi-Fi capabilities. Introducing

BLE mitigation techniques similar to those presented in this work can expand

MIoTL’s ability to defend against data leakage in smart homes.

87

7. The impact of MIoTL’s operation on SHAA was not evaluated in this thesis.

The amount of traffic sent by mitigation may have a negative effect on Wi-Fi

network performance and should be enumerated. Additionally, the power used

to operate mitigation may be cost prohibiting and should also be evaluated.

88

Appendix A. BLE Sniffer Script

1 #!/bin/bash

2 # Ubertooth scan with three Ubertooth One sniffers

3 # Each sniffer will listen for connection events on one of three

4 # advertisement channels (37, 38, 39)

5 # will save the combined pcap into a file

6
7 function pause(){ read -p "$*" }

8
9 echo "Type desired output name for PCAP (no spaces), followed by [

ENTER]:"

10
11 read name

12
13 # If the files exist, delete them

14 if [-e cap0.pcap]; then rm cap0.pcap

15 fi

16 if [-e cap1.pcap]; then rm cap1.pcap

17 fi

18 if [-e cap2.pcap]; then rm cap2.pcap

19 fi

20 # if the output capture filename already exists, ask to overwrite

21 if [-e $name.pcap]; then

22 read -p "File already exists, overwrite (y/n)? : " -n 1 -r

23 echo

24 if [[$REPLY =~ ^[Yy]$]]

25 then rm $name.pcap; echo ’removed’

26 else

27 [["$0" = "$BASH_SOURCE"]] && exit 1 || return 1

28 fi

29 fi

30 # start BLE capture on 3 Ubertooth One sniffers with each set to

follow connections, on a different advertising channel

31 # and ouptut files to a capture

32 ubertooth-btle -f -U0 -A37 -qcap0.pcap & ubertooth-btle -f -U1 -A38 -

qcap1.pcap & ubertooth-btle -f -U2 -A39 -qcap2.pcap

33
34 pause ’Press [Enter] key to continue...’

35
36 # merge the captures to one file with the name provided by the user

37 mergecap cap0.pcap cap1.pcap cap2.pcap -w $name.pcap

38 rm cap0.pcap; rm cap1.pcap; rm cap2.pcap

89

Appendix B. Wi-Fi Script

1 #!/usr/bin/python

2 # wifi.py

3 # Script that includes the Wi-Fi preprocessor, mac tracker, trainer,

4 # classifier, network mapper components of CITIoT. Includes timing

5 # information for each component and the tool as a whole.

6 # Required: helpers.py

7 import helpers

8 # https://github.com/KimiNewt/pyshark or via pip install pyshark

9 import pyshark

10 import matplotlib.dates as m_dates

11 import sys, getopt, csv, os, datetime, time, logging

12
13 ##

14 # GLOBAL VARIABLES

15 # defined MAC addresses

16 ROUTER = ’ec:4f:82:73:d1:1c’

17 RASPI = ’b8:27:eb:09:1a:81’

18
19 # list of Wi-Fi devices (IoT devices, router, and Raspberry Pi)

20 WIFI_DEVICES = {’b8:27:eb:09:1a:81’, ’14:91:82:24:dd:35’,

21 ’60:38:e0:ee:7c:e5’, ’a0:18:28:33:34:f8’,

22 ’08:66:98:ed:1e:19’, ’b4:75:0e:0d:33:d5’,

23 ’b4:75:0e:0d:94:65’, ’94:10:3e:2b:7a:55’,

24 ’14:91:82:c8:6a:09’, ’ec:1a:59:f1:fb:21’,

25 ’ec:1a:59:e4:fd:41’, ’ec:4f:82:73:d1:1c’}

26
27 # list of IoT devices ascertained via the OUI results

28 IOT_DEVICES = {’14:91:82:24:dd:35’, ’60:38:e0:ee:7c:e5’,

29 ’b4:75:0e:0d:33:d5’, ’b4:75:0e:0d:94:65’,

30 ’94:10:3e:2b:7a:55’, ’14:91:82:c8:6a:09’,

31 ’ec:1a:59:f1:fb:21’, ’ec:1a:59:e4:fd:41’}

32
33 # list of devices and associated IDs used for the network mapper

34 DEVICE_ID = {’ec:4f:82:73:d1:1c’: ’s01’, ’ec:1a:59:e4:fd:41’: ’s02’,

35 ’b4:75:0e:0d:33:d5’: ’s03’, ’b4:75:0e:0d:94:65’: ’s04’,

36 ’94:10:3e:2b:7a:55’: ’s05’, ’14:91:82:c8:6a:09’: ’s06’,

37 ’ec:1a:59:f1:fb:21’: ’s07’, ’14:91:82:24:dd:35’: ’s08’,

38 ’60:38:e0:ee:7c:e5’: ’s09’, ’b8:27:eb:09:1a:81’: ’s10’,

39 ’a0:18:28:33:34:f8’: ’s11’, ’08:66:98:ed:1e:19’: ’s12’}

40
41 DEVICE_NAME = {’ec:4f:82:73:d1:1c’: ’Router’,

42 ’ec:1a:59:e4:fd:41’: ’NetCam’,

90

43 ’b4:75:0e:0d:33:d5’: ’Switch1’,

44 ’b4:75:0e:0d:94:65’: ’Switch2’,

45 ’94:10:3e:2b:7a:55’: ’Switch3’,

46 ’14:91:82:c8:6a:09’: ’Switch4’,

47 ’ec:1a:59:f1:fb:21’: ’Motion’,

48 ’14:91:82:24:dd:35’: ’Insight’,

49 ’60:38:e0:ee:7c:e5’: ’Mini’,

50 ’b8:27:eb:09:1a:81’: ’Pi’,

51 ’a0:18:28:33:34:f8’: ’iPhone’,

52 ’08:66:98:ed:1e:19’: ’AppleTV’}

53
54 # directory to store and read csv files for devices

55 SRC_DIR = ’./Source/’

56 DST_DIR = ’./Destination/’

57
58 # seconds elapsed until a device is considered not in the home

59 MAC_TRACK_TIME = 300

60 # global variables used for timing

61 path_name = os.getcwd()

62 DATE = path_name[path_name.rindex(’/’)+1:]

63 PROC_TIME = "wifi_processing_time_" + DATE + ".csv"

64 # number of packets to normalize timing

65 TIMING_PKT_NUMBER = 25000

66 ##

67
68 def main(argv):

69 """

70 Main function that calls appropriate functions depending

71 on operation mode selected by user input

72
73 The main function is called in four modes:

74 wifi.py -h/--help: Provides usage.

75 wifi.py -p <pcap file>: Begins preprocessing on the file capture

76 provided and tracks devices.

77 wifi.py -t: Provides graphs to help training classifier.

78 Preprocessing mode must be ran first.

79 wifi.py -c: Classifies devices, identifies events, and maps

80 the network.

81 """

82 try:

83 opts, args = getopt.getopt(argv, "hp:tc", ["help"])

84 except getopt.GetoptError:

85 print ’usage error’

91

86 print ’for preprocessing/tracking: wifi.py -p <pcap file>’

87 print ’for training: wifi.py -t’

88 print ’for classification/network mapping: wifi.py -c’

89 print ’exiting’

90 sys.exit(2)

91 for opt, arg, in opts:

92 if opt in ("-h", "--help"):

93 print ’for preprocessing /tracking: wifi.py -p <pcap file>’

94 print ’for training: wifi.py -t’

95 print ’for classification/network mapping: wifi.py -c’

96 sys.exit()

97
98 # preprocessing unit

99 elif opt == ’-p’:

100 start_time = time.time()

101 preprocessor(arg)

102 print "Finish preprocessor:", time.time() - start_time

103
104 # training unit for classifier

105 elif opt == ’-t’:

106 start_time = time.time()

107 trainer()

108 print "Finish trainer:", time.time() - start_time

109
110 # classifier unit

111 elif opt == ’-c’:

112 start_time = time.time()

113 classifier()

114 print "Finish classifier:", time.time() - start_time

115
116 ##

117 # PREPROCESSOR UNIT

118 ##

119
120 def preprocessor(file_name):

121 """

122 Unit that parses each packet in file capture and stores

123 packets into CSV files. Also provides device tracking information.

124
125 Parses capture file and stores 4-tuples in the form [time, frame

126 size, source, destination] for each packet into two files for

127 each device. Device source files include 4-tuples in which every

128 tuple has the device as the source MAC address. Device destination

92

129 files include 4-tuples in which every tuplehas the device as the

130 destination MAC address. Also provides a CSV file with device

131 addresses, arrival time, and departure time.

132
133 Parameters

134 ----------

135 file_name: (string) File name of capture provided by user.

136
137 Returns

138 ----------

139
140 """

141 # preprare timing

142 helpers.delete_file(PROC_TIME)

143 pt_file = open(PROC_TIME, ’w’)

144 csv.writer(pt_file).writerow(["Unit", "Total Packets Processed", "

Total Process Time", "Average Process Time"])

145 pt_file.close()

146 pkt_cntr = 0

147 total_time_preproc = 0

148 total_time_mac = 0

149
150 total_time_start = time.time()

151 # initialize dictionaries to store file object for each device

152 tgt_files_by_src = {}

153 tgt_files_by_dst = {}

154
155 # initialize dictionary for tracking of each device

156 macs = {}

157
158 # initialize file names

159 cap = pyshark.FileCapture(file_name)

160 mac_track_file = "mac_track_" + DATE + ".csv"

161 helpers.delete_file(mac_track_file)

162 helpers.init_dirs()

163
164 # obtain time for first packet

165 prev_pkt_time = cap[0].frame_info.time_epoch

166
167 # open target files to write output to

168 for device in WIFI_DEVICES:

169 tgt_files_by_src[device] = open(SRC_DIR + device.replace(’:’, ’

.’) + ".csv", ’a’)

93

170 tgt_files_by_dst[device] = open(DST_DIR + device.replace(’:’, ’

.’) + ".csv", ’a’)

171 tgt_mac_track_file = open(mac_track_file, ’a’)

172
173 # counter used by MAC Track unit to keep track of pkts

174 # observed with non-sequential timing

175 timing_cntr = 0

176
177 # iterate through each packet in the capture, store tuples

178 # to files, and track when devices are on the network

179 for pkt in cap:

180 pkt_cntr += 1

181
182 # mac track

183 time_start = time.time()

184 prev_pkt_time, macs, timing_cntr = mac_track(pkt,

tgt_mac_track_file, prev_pkt_time, macs, timing_cntr)

185 total_time_mac += (time.time() - time_start)

186
187 time_start = time.time()

188 if pkt.highest_layer == ’DATA’:

189 parse_pkt(pkt, tgt_files_by_src, tgt_files_by_dst)

190 total_time_preproc += time.time() - time_start

191
192 time_start = time.time()

193
194 # using the last packet in the capture,

195 # check which devices are still on the network

196 mac_track_final(tgt_mac_track_file, prev_pkt_time, macs)

197
198 total_time_mac += time.time() - time_start

199
200 total_time = time.time() - total_time_start

201
202 # close files

203 for k, v in tgt_files_by_src.iteritems():

204 v.close()

205 for k, v in tgt_files_by_dst.iteritems():

206 v.close()

207 tgt_mac_track_file.close()

208
209 # run the classifier and add time to total Wi-Fi timing

210 classifier()

94

211 final_time = time.time()

212
213 # calculate times

214 normalized_total_time = (TIMING_PKT_NUMBER * total_time) /

pkt_cntr

215 normalized_mac_time = (TIMING_PKT_NUMBER * (total_time -

total_time_preproc)) / pkt_cntr

216 normalized_preproc_time = (TIMING_PKT_NUMBER * (total_time -

total_time_mac)) / pkt_cntr

217
218 # write timing information to file

219 with open(PROC_TIME, ’a’) as pt_file:

220 csv.writer(pt_file).writerow(["MAC Track+Preproc", pkt_cntr,

total_time, normalized_total_time])

221 csv.writer(pt_file).writerow(["MAC Track", pkt_cntr,

total_time_mac, normalized_mac_time])

222 csv.writer(pt_file).writerow(["Preprocesser", pkt_cntr,

total_time_preproc, normalized_preproc_time])

223 csv.writer(pt_file).writerow(["Start and finish time",

total_time_start, final_time, final_time-total_time_start])

224
225
226 def parse_pkt(pkt, tgt_files_by_src, tgt_files_by_dst):

227 """

228 Parses each 802.11 Data packet within the provided capture file.

229
230 Extracts the time, frame size, source, and destination of each

231 802.11 Data packet. Stores the resulting 4-tuple into two files:

232 one for the source and one for the destination of the packet.

233
234 Parameters

235 ----------

236 pkt: (pyshark packet) Pyshark packet object containing packet

237 information from capture.

238 tgt_files_by_src: (file object) Uses the device address as keys

239 and file objects as values. Every packet with a source

240 address corresponding to the key will be appended to the file

241 object.

242 tgt_files_by_dst: (dictionary) Uses the device address as keys

243 and file objects as values. Every packet with a destination

244 address corresponding to the key will be appended to the file

245 object.

246

95

247 Returns

248 ----------

249 void

250 """

251 try:

252 pkt_dst = pkt.wlan.da

253 pkt_src = pkt.wlan.sa

254 if (pkt_src in WIFI_DEVICES) and (pkt_dst in WIFI_DEVICES):

255 pkt_len = pkt.length

256 pkt_time = helpers.pretty_time(pkt.frame_info.time_epoch)

257 file_input = [pkt_time, pkt_len, pkt_src, pkt_dst]

258 csv.writer(tgt_files_by_src[pkt_src]).writerow(file_input)

259 csv.writer(tgt_files_by_dst[pkt_dst]).writerow(file_input)

260
261 except AttributeError:

262 # packet does not contain an 802.11 attribute

263 # or is corrupt so ignore it

264 print "ignored: ", pkt.number

265 pass

266
267
268 def mac_track(pkt, tgt_mac_track_file, prev_pkt_time, macs,

timing_cntr):

269 """

270 Records devices with no network traffic for more than

271 five minutes.

272
273 Compares the time of each packet with the last time a device

274 sent a message and, if greater tha five minutes, marks the

275 device as no longer present and stores the device MAC address,

276 first time the device sent a packet (arrival time), and last

277 time the device sent a packet (departure time) in a csv file.

278
279 Parameters

280 ----------

281 pkt: (pyshark packet) Pyshark packet object containing packet

282 information from capture.

283 tgt_mac_track_file: (file object) CSV file to append tracking

284 data.

285 prev_pkt_time: (frame_info.time_epoch) Time value obtained

286 from the previous packet.

287 macs: (dictionary) Uses the device address as keys and a 2-tuple

288 containing the arrival time and departure time for each device.

96

289 timing_cntr: (int) Counter used to keep track of number of packets

290 with non-sequential timestamps

291
292 Returns

293 ----------

294 pkt_time: (frame_info.time_epoch) Current packet time.

295 macs: (dictionary) Updated list of device addresses with 2-tuple

296 arrival and departure time.

297 """

298 # get packet time of every packet to compare time

299 pkt_time = pkt.frame_info.time_epoch

300 diff = float(pkt_time) - float(prev_pkt_time)

301
302 # check if two consecutive packets are less than 5 seconds apart

303 # and the new packet is not negative to ensure corrupt or out of

304 # sequence packets do not provide invalid time

305 if float(pkt_time) < 0 or diff > 5:

306 timing_cntr += 1

307 # provide error information to assist in troubleshooting

308 print "packet number for time error: ", pkt.number

309 print "prev pkt time: ", prev_pkt_time

310 print "current pkt time: ", pkt_time

311 return prev_pkt_time, macs

312 # sometimese timing jumps occur due to pauses in sniffer,

313 # if it appears that a new time needs to be set as the

314 # previous pkt time (more than 5 pkts with a new time)

315 # then update prev_pkt_time to current pkt_time

316 if timing_cntr > 5:

317 timing_cntr = 0

318 return pkt_time, macs, timing_cntr

319 else:

320 return prev_pkt_time, macs, timing_cntr

321 else:

322 timing_cntr = 0

323
324 try:

325 pkt_src = pkt.wlan.sa

326 if pkt_src in WIFI_DEVICES:

327
328 # if first time seeing the packet the packet source then

329 # add it with the time set as the arrive and depart

330 # if the packet is still in the collection, then update

331 # the depart time

97

332 if pkt_src not in macs:

333 macs[pkt_src] = [pkt_time, pkt_time]

334 else:

335 macs[pkt_src][1] = pkt_time

336
337 # check each device in the collection of macs to see

338 # if it has been more than five minutes since the last

339 # time seeing it

340 for k, v in macs.items():

341 if (float(pkt_time) - float(v[1])) > MAC_TRACK_TIME:

342 file_input = [k, helpers.pretty_time(v[0]), helpers.

pretty_time(v[1])]

343 csv.writer(tgt_mac_track_file).writerow(file_input)

344 del macs[k]

345
346 except AttributeError:

347 # ignore packets that aren’t 802.11

348 pass

349
350 return pkt_time, macs

351
352
353 def mac_track_final(tgt_mac_track_file, pkt_time, macs):

354 """

355 Records status of devices after last packet in capture.

356
357 After the last packet is parsed, store each device MAC along with

358 arrival time and time of last packet. This provides timing

359 information for devices still on the network at the end of the

360 packet capture.

361
362 Parameters

363 ----------

364 tgt_mac_track_file: (file object) CSV file to append tracking

365 data.

366 pkt_time: (frame_info.time_epoch) Time value obtained from

367 the last packet.

368 macs: (dictionary) Uses the device address as keys and a 2-tuple

369 containing the arrival time and departure time for each device.

370
371 Returns

372 ----------

373 Void

98

374 """

375 for k, v in macs.items():

376 file_input = [k, helpers.pretty_time(v[0]), helpers.pretty_time

(pkt_time)]

377 csv.writer(tgt_mac_track_file).writerow(file_input)

378 del macs[k]

379
380 ##

381 # TRAINING UNIT

382 ##

383
384
385 def trainer():

386 """

387 Unit that provides graphs to help train classifier.

388
389 Provides user with two graphs for each device showing each packet

390 sent to a device and each packet sent from device. Stores these

391 graphs into files.

392
393 Parameters

394 ----------

395
396 Returns

397 ----------

398
399 """

400 total_time_start = time.time()

401
402 helpers.init_training_dirs()

403
404 pkt_cntr = training_by_dst()

405
406 pkt_cntr += training_by_src()

407
408 total_time = time.time() - total_time_start

409 print "Total number of packets: ", pkt_cntr

410 print "Total time: ", total_time

411 print "Average time: ", (TIMING_PKT_NUMBER*total_time)/pkt_cntr

412
413 with open(PROC_TIME, ’a’) as pt_file:

414 csv.writer(pt_file).writerow(["MAC Track", pkt_cntr, total_time

, (TIMING_PKT_NUMBER * total_time) / pkt_cntr])

99

415
416
417 def training_by_dst():

418 """

419 Provide graphs to help train classifier.

420
421 Provides user with a graphical representation of each packet

422 sent to a device and saves each graph to a file.

423
424 Parameters

425 ----------

426
427 Returns

428 ----------

429 packets: (int) number of packets processed

430
431 """

432 grph_plots = []

433 grph_names = []

434
435 packets = 0

436
437 # gather all packets sent to a device by using the destination

438 # csv files from preprocessing that contain packets sent to a

439 # particular device

440 for filename in os.listdir(DST_DIR):

441 device_by_dst = []

442 device = filename.replace(’.csv’, ’’).replace(’.’, ’:’)

443
444 if device in IOT_DEVICES:

445 # load all packets into a list

446 with open(DST_DIR + filename, ’rb’) as curr_file:

447 reader = csv.reader(curr_file)

448 contents = list(reader)

449
450 # create list of packets from Raspi to device

451 for line in con

452 packets += 1

453 pkt_time = line[0]

454 pkt_size = int(line[1])

455 pkt_src = line[2]

456 pkt_dst = line[3]

457 if pkt_src == RASPI:

100

458 device_by_dst.append([pkt_time, pkt_size, pkt_src,

pkt_dst])

459
460 # setup formatting and graph values

461 if len(device_by_dst) != 0:

462 dates = [datetime.datetime.strptime(d[0], ’%Y-%m-%d %H

:%M:%S’) for d in device_by_dst]

463 dates = m_dates.date2num(dates)

464 values = [d[1] for d in device_by_dst]

465 grph_plots.append([dates, values])

466 grph_names.append("Packets sent from Raspberry Pi to "

+ DEVICE_NAME[device])

467
468 # create the graphs, show them, and save them

469 my_graph_2 = helpers.Graph(grph_plots, grph_names, ’%m-%d %H:%M:%S

’, "Pkts from Raspberry Pi to device")

470 my_graph_2.graph()

471 my_graph_2.save_files()

472 my_graph_2.delete()

473 return packets

474
475
476 def training_by_src():

477 """

478 Provide graphs to help train classifier.

479
480 Provides user with a graphical representation of each packet sent

481 from a device and saves each graph to a file.

482
483 Parameters

484 ----------

485
486 Returns

487 ----------

488 packets: (int) number of packets processed

489
490 """

491 grph_plots = []

492 grph_names = []

493 packets = 0

494
495 # gather all packets sent from a device by using the source csv

496 # files from preprocessing that contain packets sent from a

101

497 # particular device

498 for filename in os.listdir(SRC_DIR):

499 device_by_src = []

500 device = filename.replace(’.csv’, ’’).replace(’.’, ’:’)

501
502 if device in IOT_DEVICES:

503 # load all packets into a list

504 with open(SRC_DIR+filename, ’rb’) as curr_file:

505 reader = csv.reader(curr_file)

506 contents = list(reader)

507
508 # create list of packets from device to router

509 for line in contents:

510 packets += 1

511 pkt_time = line[0]

512 pkt_size = int(line[1])

513 pkt_src = line[2]

514 pkt_dst = line[3]

515
516 if pkt_dst == ROUTER:

517 device_by_src.append([pkt_time, pkt_size,

pkt_src, pkt_dst])

518
519 # setup formatting and graph values

520 if len(device_by_src) != 0:

521 dates = [datetime.datetime.strptime(d[0], ’%Y-%m-%d

%H:%M:%S’) for d in device_by_src]

522 dates = m_dates.date2num(dates)

523 values = [d[1] for d in device_by_src]

524 grph_plots.append([dates, values])

525 grph_names.append("Packets sent from " + DEVICE_NAME

[device] + " to Router")

526
527 # create the graphs, show them, and save them

528 my_graph = helpers.Graph(grph_plots, grph_names, ’%m-%d %H:%M’, "

Pkts from device to Router")

529 my_graph.graph()

530 my_graph.save_files()

531 my_graph.delete()

532 return packets

533
534
535 ##

102

536 # CLASSIFIER UNIT

537 ##

538
539
540 def classifier():

541 """

542 Unit that classifies devices, identifies events, and information

543 to create a network map.

544
545 Provides user with three CSV files:

546 (i) A CSV file which contains each device and corresponding

547 classification type.

548 (ii) A CSV file which contains the time, source, and

549 destination for each event.

550 (iii) A CSV file which contains the total size of all

551 packets sent between two devices.

552
553 Parameters

554 ----------

555
556 Returns

557 ----------

558
559 """

560 # setup timing information

561 total_time_class = 0

562 total_time_map = 0

563
564
565 total_time_start = time.time()

566
567 # initialize file names

568 dev_cat_file = "wifi_devices_" + DATE + ".csv"

569 helpers.delete_file(dev_cat_file)

570 event_id_file = "wifi_events_" + DATE + ".csv"

571 helpers.delete_file(event_id_file)

572 network_edge_file = "network_edge_" + DATE + ".csv"

573 helpers.delete_file(network_edge_file)

574
575 start_time = time.time()

576 # open network edge csv file to write nodes and edges into

577 with open(network_edge_file, ’a’) as network_file:

578 # initialize first line of network edge

103

579 csv.writer(network_file).writerow([’from’, ’to’, ’weight’])

580 total_time_map += time.time() - start_time

581
582 start_time = time.time()

583 # classify devices and identify events by destination

584 device_categorization, event_identification, pkt_cntr =

events_by_dst()

585 total_time_class += time.time() - start_time

586
587 # identify events by destination

588 event_identification, pkts, t_class, t_map = events_by_src(

network_edge_file, device_categorization, event_identification,

total_time_class, total_time_map)

589
590 # count the number of packets processed by classifier

591 pkt_cntr += pkts

592 total_time_class += t_class

593 total_time_map += t_map

594
595 start_time = time.time()

596 # write device categories to file

597 with open(dev_cat_file, ’a’) as curr_file:

598 for k, v in device_categorization.iteritems():

599 csv.writer(curr_file).writerow([DEVICE_NAME[k], v])

600
601 # write events to file

602 with open(event_id_file, ’a’) as curr_file:

603 for event in sorted(event_identification):

604 csv.writer(curr_file).writerow(event)

605 total_time_class += time.time() - start_time

606
607 # calculating timing information

608 total_time = time.time() - total_time_start

609 normalized_total_time = (TIMING_PKT_NUMBER * total_time)/pkt_cntr

610 normalized_class_time = (TIMING_PKT_NUMBER * (total_time -

total_time_map))/pkt_cntr

611 normalized_map_time = (TIMING_PKT_NUMBER * (total_time -

total_time_class))/pkt_cntr

612
613 with open(PROC_TIME, ’a’) as pt_file:

614 csv.writer(pt_file).writerow(["Class+NtwkMapper", pkt_cntr,

total_time, normalized_total_time])

104

615 csv.writer(pt_file).writerow(["Classifier", pkt_cntr,

total_time_class, normalized_class_time])

616 csv.writer(pt_file).writerow(["Network Mapper", pkt_cntr,

total_time_map, normalized_map_time])

617
618
619 def events_by_dst():

620 """

621 Identify devices and identify events by destination.

622
623 Uses the files created in preprocessing which contain packets with

624 the device as the destination to classify devices and identify

625 events according to classifier parameters.

626
627 Parameters

628 ----------

629
630 Returns

631 ----------

632 device_categorization: (dictionary) Uses device addresses as keys

633 and assigned category as values.

634 event_identification: (list) 2-D list containing the time, source,

635 and destination of each identified event

636 pkt_cntr: (int) the number of packets processed by classifier

637 """

638 device_categorization = {}

639 event_identification = []

640 pkt_cntr = 0

641 # analyze all of the packets sent to a device using the

642 # dest csv files from preprocessing that contain packets

643 # destined for a particular device

644 for filename in os.listdir(DST_DIR):

645 device_by_dst = []

646 device = filename.replace(’.csv’, ’’).replace(’.’, ’:’)

647 events = []

648
649 # if the file contains packets destined to an IoT device,

650 # then read the file into a list

651 if device in IOT_DEVICES:

652 device_category = ’UNKNOWN’

653 with open(DST_DIR + filename, ’rb’) as curr_file:

654 reader = csv.reader(curr_file)

655 contents = list(reader)

105

656
657 # for each packet in the file, obtain the time,

658 # frame size, source, and destination and store

659 for line in contents:

660 pkt_cntr += 1

661 pkt_time = line[0]

662 pkt_size = int(line[1])

663 pkt_src = line[2]

664 pkt_dst = line[3]

665 if pkt_src == RASPI:

666 device_by_dst.append([pkt_time, pkt_size, pkt_src,

pkt_dst])

667 device_category = helpers.categorize_device_by_dst(

pkt_size, device_category)

668
669 # if the device is an outlet,

670 # then use outlet event criteria

671 if device_category == ’OUTLET’:

672 event_identification, events = helpers.

id_events_by_dst(pkt_time, pkt_size, pkt_src,

pkt_dst, event_identification, events)

673 device_categorization[device] = device_category

674
675 return device_categorization, event_identification, pkt_cntr

676
677
678 def events_by_src(network_edge_file, device_categorization,

event_identification, total_time_class, total_time_map):

679 """

680 Identify events by source.

681
682 Uses the files created in preprocessing which contain packets with

683 the device as the source to identify events according to

684 classifier parameters. Simultaneously records the amount of data

685 sent between two devices.

686
687 Parameters

688 ----------

689 network_edge_file: (file object) File used to record amount of

690 data sent between two devices.

691 device_categorization: (dictionary) Uses device addresses as keys

692 and assigned category as values.

693 event_identification: (list) 2-D list containing the time, source,

106

694 and destination of each identified event

695 total_time_class: (time) total classifier time

696 total_time_map: (time) total mapper time

697
698 Returns

699 ----------

700 event_identification: (list) 2-D list containing the time, source,

701 and destination of each identified event

702 pkt_cntr: (int) number of packets processed by events by source

703 total_time_class: (time) total classifier time

704 total_time_map: (time) total mapper time

705 """

706
707 pkt_cntr = 0

708 # analyze packets sent from a device using src csv files

709 # from preprocessing that contain packets from a particular device

710 for filename in os.listdir(SRC_DIR):

711 device_by_src = {}

712 device = filename.replace(’.csv’, ’’).replace(’.’, ’:’)

713 pkt_src = ’’

714
715 # initialize dictionary for mapping devices; key is the dst

716 # device and the value is the total size of packets sent to

717 # that device

718 map_dst_device = {}

719
720 with open(SRC_DIR+filename, ’rb’) as curr_file:

721 reader = csv.reader(curr_file)

722 contents = list(reader)

723
724 # obtain the time, frame size, src, dst for each packet

725 # discard seconds

726 for line in contents:

727 pkt_cntr += 1

728 pkt_time = line[0]

729 pkt_time = pkt_time[:pkt_time.rindex(’:’)]

730 pkt_size = int(line[1])

731 pkt_src = line[2]

732 pkt_dst = line[3]

733
734 start_time = time.time()

735 # classification

736 if pkt_dst == ROUTER:

107

737 # sum packet size of pkts sent in same min

738 if pkt_time in device_by_src:

739 device_by_src[pkt_time] = device_by_src[pkt_time

] + pkt_size

740 else:

741 device_by_src[pkt_time] = pkt_size

742 total_time_class += time.time() - start_time

743
744 start_time = time.time()

745 # mapping

746 # find the total frame size of all pkts

747 # sent to a device

748 if pkt_dst in map_dst_device:

749 map_dst_device[pkt_dst] = map_dst_device[pkt_dst] +

pkt_size

750 else:

751 map_dst_device[pkt_dst] = pkt_size

752 total_time_map += time.time() - start_time

753
754 start_time = time.time()

755 # attempt to identify events based off of packets

756 # sent from a device

757 if (device in IOT_DEVICES) and (len(device_by_src) != 0):

758 event_identification = helpers.id_events_by_src(

device_by_src, pkt_src, ROUTER,

device_categorization, event_identification)

759 total_time_class += time.time() - start_time

760
761 start_time = time.time()

762 # write the src, dst, and total frame size to the

763 # network edge csv file

764 # The R-Script requires IDs instead of names, so store with ID

765 with open(network_edge_file, ’a’) as network_file:

766 for k, v in map_dst_device.iteritems():

767 csv.writer(network_file).writerow([DEVICE_ID[device.

replace(’.’, ’:’)], DEVICE_ID[k], v])

768 total_time_map += time.time() - start_time

769
770 return event_identification, pkt_cntr, total_time_class,

total_time_map

771
772 # call main

773 if __name__ == "__main__":

108

774 main(sys.argv[1:])

109

Appendix C. BLE Script

1 #!/usr/bin/python

2 # ble.py

3 # Script that includes the BLE classifier component of CITIoT.

4 # Includes timing information.

5 # Required: helpers.py

6 import helpers

7 import pyshark

8 import sys, getopt, csv, time, os

9
10 ##

11 # GLOBAL VARIABLES

12 ADV_IND = ’0’

13 SCAN_RESP = ’4’

14 CONNECT_REQ = ’5’

15 TIMING_PKT_NUMBER = 25000

16 path_name = os.getcwd()

17 DATE = path_name[path_name.rindex(’/’)+1:]

18 BLE_DEVICES = {’Eve Door 91B3’, ’Eve Room 4A04’, ’Eve Weather 943D’

19 ’Eve Motion 31A7’, ’Eve Energy 556E’, ’Gunbox’,

20 ’BLELock’, ’00000b67’, ’Instant Pot Smart’,

21 ’PLAYBULB’,}

22 ##

23
24 def main(argv):

25 try:

26 opts, args = getopt.getopt(argv, "hc:", ["help"])

27 except getopt.GetoptError:

28 print ’parse_controller.py -c <pcap file>’

29 sys.exit(2)

30 for opt, arg, in opts:

31 if opt in ("-h", "--help"):

32 print ’parse_controller.py -c <pcap file>’

33 sys.exit()

34 elif opt == ’-c’:

35 classifier(arg)

36
37
38 def classifier(file_name):

39 """

40 Classifying unit for Bluetooth Low Energy.

41
42 Utilizes the provided packet capture to parse data looking for

110

43 connection events.

44 Provides two files: one with each device’s MAC address and

45 name and one with the time, access address, master, and slave

46 of each connection event.

47
48 Parameters

49 ----------

50 file_name: (string) File name of capture provided by user.

51
52 Returns

53 ----------

54
55 """

56 proc_time = "ble_processing_time_" + DATE + ".csv"

57 helpers.delete_file(proc_time)

58 pt_file = open(proc_time, ’w’)

59 csv.writer(pt_file).writerow(["Unit", "Total Packets Processed", "

Total Process Time", "Average Process Time"])

60 pkt_cntr = 0

61
62 total_time_start = time.time()

63 # initialize files

64 cap = pyshark.FileCapture(file_name)

65 btle_output_file = "ble_events_" + DATE + ".csv"

66 helpers.delete_file(btle_output_file)

67 btle_device_file = "ble_devices_" + DATE + ".csv"

68 helpers.delete_file(btle_device_file)

69
70 # initialize dictionary to store device information

71 devices = {}

72 # initialize list to store connection information

73 connections = []

74
75 # parse each packet in the capture looking for advertising

76 # indication, scan response and connect request packets

77 for pkt in cap:

78 pkt_cntr += 1

79 try:

80 if pkt.btle.advertising_header_pdu_type == ADV_IND:

81 devices = ble_adv_ind(pkt, devices)

82
83 elif pkt.btle.advertising_header_pdu_type == SCAN_RESP:

84 devices = ble_scan_response(pkt, devices)

111

85
86 elif pkt.btle.advertising_header_pdu_type == CONNECT_REQ:

87 connections = ble_connect_req(pkt, devices, connections

)

88
89 except AttributeError:

90 # ignore packets that are malformed

91 pass

92
93 # write results to files

94 with open(btle_output_file, ’a’) as curr_file:

95 for file_input in connections:

96 csv.writer(curr_file).writerow(file_input)

97
98 with open(btle_device_file, ’a’) as curr_file:

99 for k, v in devices.iteritems():

100 csv.writer(curr_file).writerow([k, v])

101
102 final_time = time.time()

103 total_time = final_time - total_time_start

104 normalized_total_time = (TIMING_PKT_NUMBER * total_time) /

pkt_cntr

105
106 print "total number of packets: ", pkt_cntr

107 print "Total time: ", total_time

108 print "Normalized total time per 25000 packets: ",

normalized_total_time

109
110 csv.writer(pt_file).writerow(["BLE", pkt_cntr, total_time,

normalized_total_time])

111 csv.writer(pt_file).writerow(["Start and finish time",

total_time_start, final_time, final_time - total_time_start])

112 pt_file.close()

113
114
115 def ble_adv_ind(pkt, devices):

116 """

117 Parse Advertising Indication packets.

118
119 Extract device name provided in Advertising Indication

120 packets.

121
122 Parameters

112

123 ----------

124 pkt: (pyshark packet) Pyshark packet object containing

125 packet information from capture.

126 devices: (dictionary) Uses the device address as the key

127 and the name of the device as the value.

128
129 Returns

130 ----------

131 devices: (dictionary) Updated dictionary of device addresses and

132 corresponding names

133 """

134 # if a device name has not been found, then extract the name from

135 # the Advertising Indication packet and store it

136
137 adv_addr = pkt.btle.advertising_address

138 if adv_addr not in devices:

139 device_name = pkt.btle.btcommon_eir_ad_entry_device_name

140 # from trial and error some weird device names can appear,

141 # so ignore some that have been encountered

142 if (len(device_name) > 2) and (device_name in BLE_DEVICES):

143 devices[adv_addr] = device_name

144
145
146 return devices

147
148
149 def ble_scan_response(pkt, devices):

150 """

151 Parse Scan Response packets.

152
153 Extract device name provided in Scan Response packets. These

154 packet types provide more information than an Advertising

155 Packet, so overwrite if a device name was found from an

156 Advertising Indication packets.

157
158 Parameters

159 ----------

160 pkt: (pyshark packet) Pyshark packet object containing packet

161 information from capture.

162 devices: (dictionary) Uses the device address as the key and

163 the name of the device as the value.

164
165 Returns

113

166 ----------

167 devices: (dictionary) Updated dictionary of device addresses

168 and corresponding names

169 """

170 # extract a device name from the Scan Response packet

171 # Scan Response packets provide better naming information so

172 # overwrite previously found names

173 try:

174 device_name = pkt.btle.btcommon_eir_ad_entry_device_name

175 if device_name in BLE_DEVICES:

176 devices[pkt.btle.advertising_address] = device_name

177 except AttributeError:

178 # ignore packets with no device name

179 pass

180
181 return devices

182
183
184 def ble_connect_req(pkt, devices, connections):

185 """

186 Parse Connection Request packets.

187
188 Find Connection Request packets and record the time, access

189 address, master device name, and slave device name.

190
191 Parameters

192 ----------

193 pkt: (pyshark packet) Pyshark packet object containing packet

194 information from capture.

195 devices: (dictionary) Uses the device address as the key and

196 the name of the device as the value.

197 connections: (list) 2-D list containing the following

198 information for each connection event: packet time,

199 access address, master device name, and slave device name.

200
201 Returns

202 ----------

203 connections: (list) Updated list of connection events

204 """

205 # extract required information from Connection Request

206 # packets (packet time, master/slave mac addresses, and

207 # access address)

208 pkt_time = pkt.frame_info.time_epoch

114

209 pkt_time = helpers.pretty_time(pkt_time)

210 pkt_time = pkt_time[:pkt_time.rindex(’:’)]

211 pkt_mstr_mac = pkt.btle.initiator_address

212 pkt_slv_mac = pkt.btle.advertising_address

213 pkt_lladdr = pkt.btle.link_layer_data_access_address

214 pkt_slv_id = "No ID"

215
216 # obtain device names using MAC addresses found in the

217 # Connection Request packet and device names found in

218 # Advertising Indication and Scan Response packets

219 if pkt_slv_mac in devices: pkt_slv_id = devices[pkt_slv_mac]

220
221 fields = [pkt_time, pkt_slv_id, ’1’]

222
223 # if the slave address cannot be resolved to a device name,

224 # ignore it as it does not provide valuable information

225 # also, sometimes multiple connections occur during one event

226 # so only acknowledge one event per device per minute.

227 # This sample interval provides enough precision for the

228 # problem at hand

229 if (pkt_slv_id in BLE_DEVICES) and (fields not in connections):

230 connections.append(fields)

231
232 return connections

233
234
235 # call main

236 if __name__ == "__main__":

237 main(sys.argv[1:])

115

Appendix D. Helper Script

1 #!/usr/bin/python

2 # helpers.py

3 # provides a collection of functions used by wifi.py and ble.py

4 # includes the device categorization and event identification

5 # criteria, graphing capabilities, and file control

6 import pyshark

7 import datetime, os, errno, shutil, sys

8 import matplotlib.pyplot as plt

9 import matplotlib.dates as mdates

10
11 ##

12 # GLOBAL VARIABLES

13 DEVICE_NAME = {’ec:4f:82:73:d1:1c’: ’Router’,

14 ’ec:1a:59:e4:fd:41’: ’NetCam’,

15 ’b4:75:0e:0d:33:d5’: ’Switch1’,

16 ’b4:75:0e:0d:94:65’: ’Switch2’,

17 ’94:10:3e:2b:7a:55’: ’Switch3’,

18 ’14:91:82:c8:6a:09’: ’Switch4’,

19 ’ec:1a:59:f1:fb:21’: ’Motion’,

20 ’14:91:82:24:dd:35’: ’Insight’,

21 ’60:38:e0:ee:7c:e5’: ’Mini’,

22 ’b8:27:eb:09:1a:81’: ’Pi’,

23 ’a0:18:28:33:34:f8’: ’iPhone’,

24 ’08:66:98:ed:1e:19’: ’AppleTV’}

25
26 SRC_DIR = ’./Source/’

27 DST_DIR = ’./Destination/’

28 GRPH_DIR = ’./Graphs/’

29 TIME_FORMAT = ’%Y-%m-%d %H:%M:%S’

30 UNKNOWN = 0

31 OUTLET = 1

32 SENSOR = 2

33 CAMERA = 3

34 ##

35
36
37 def init_dirs():

38 """

39 Initializes directory for storing files. If the directory exists

40 delete it then create an empty dir.

41 """

42 src_dir = os.path.dirname(SRC_DIR)

116

43 dst_dir = os.path.dirname(DST_DIR)

44
45 if os.path.exists(src_dir):

46 try:

47 shutil.rmtree(src_dir)

48 except OSError:

49 print "Issue removing files within ", src_dir, " check if

files are read only."

50 sys.exit()

51 os.makedirs(src_dir)

52 if os.path.exists(dst_dir):

53 try:

54 shutil.rmtree(dst_dir)

55 except OSError:

56 print "Issue removing files within ", dst_dir, " check if

files are read only."

57 sys.exit()

58 os.makedirs(dst_dir)

59
60
61 def init_training_dirs():

62 """

63 Initializes directory for graph files. If the directory exists

64 delete it then create an empty dir.

65 """

66 grph_dir = os.path.dirname(GRPH_DIR)

67 if os.path.exists(grph_dir):

68 try:

69 shutil.rmtree(grph_dir)

70 except OSError:

71 print "Issue removing files within ", grph_dir, " check if

files are read only."

72 sys.exit()

73 os.makedirs(grph_dir)

74
75
76 def delete_file(filename):

77 """

78 Deletes file.

79
80 Parameters

81 ----------

82 filename: (string) file to delete.

117

83 """

84 try:

85 os.remove(filename)

86 except OSError as e:

87 if e.errno != errno.ENOENT:

88 raise

89
90
91 def pretty_time(pkt_time):

92 """

93 Takes epoch time and transforms it into a better format.

94
95 Parameters

96 ----------

97 pkt_time: (pkt.frame_info.time_epoch) Time of packet in

98 epoch format.

99
100 Returns

101 ----------

102 time: (datetime) Time of packet in datetime format.

103 """

104 # have to account for timestamp issue on host computer during

first four days of trial

105 if float(pkt_time) < 1503370800:

106 return datetime.datetime.fromtimestamp(float(pkt_time) + 42).

strftime(TIME_FORMAT)

107 elif float(pkt_time) < 1503702000:

108 return datetime.datetime.fromtimestamp(float(pkt_time)+48).

strftime(TIME_FORMAT)

109 else:

110 return datetime.datetime.fromtimestamp(float(pkt_time)).

strftime(TIME_FORMAT)

111
112
113 class Graph(object):

114 """

115 Helper function to create graphs using the matplotlib

116 library

117 """

118 def __init__(self, plots= [], names= [], date_format = ’%m-%d %H:%

M:%S’,

119 title= "Figure"):

120 # get the datetime and value for each device and packet

118

121 self.plots = plots

122 # get the name for each device

123 self.names = names

124 self.title = title

125 # self.id = id

126 self.date_format = date_format

127 # create figure and axes

128 self.fig = plt.figure()

129 self.ax = plt.subplot(111)

130
131 # setup formatting for datetime axes

132 self.seconds = mdates.SecondLocator()

133 self.hours = mdates.HourLocator()

134 self.minutes = mdates.MinuteLocator()

135 self.hourFmt = mdates.DateFormatter(’%H’)

136
137 # create the initial graph

138 self.curr_pos = 0

139
140 # call self.update everytime a ’key_press_event’ happens

141 self.cid = self.fig.canvas.mpl_connect(’key_press_event’, self.

update)

142
143 def graph(self):

144 """

145 Presents graph of device packets

146 """

147 self.set_axes_parameters()

148
149 # set the plot data and x-axis range

150 self.ax.plot_date(self.dates, self.values)

151
152 plt.show()

153
154 def update(self, e):

155 """

156 Updates graphs when moving between the

157 different devices

158 e: (event) function called on arrow key event

159 """

160 if e.key == "right":

161 self.curr_pos += 1

162 elif e.key == "left":

119

163 self.curr_pos -= 1

164 else:

165 return

166
167 # allow it to loop

168 self.curr_pos = self.curr_pos %len(self.plots)

169
170 self.ax.cla()

171
172 self.set_axes_parameters()

173
174 self.ax.plot_date(self.dates, self.values)

175
176 # regraph

177 self.fig.canvas.draw()

178
179 def save_files(self):

180 """

181 Saves graphs into files

182 """

183 self.curr_pos = 0

184 for name in self.names:

185 self.fig = plt.figure()

186 self.ax = plt.subplot(111)

187
188 self.set_axes_parameters()

189
190 self.ax.plot_date(self.dates, self.values)

191
192 self.fig.savefig(GRPH_DIR + name + ’.png’)

193 self.ax.cla()

194 self.curr_pos += 1

195
196 def set_axes_parameters(self):

197 """

198 Setup the axes parameters

199 """

200 # update date, values, and name to the current device

201 self.dates = self.plots[self.curr_pos][0]

202 self.values = self.plots[self.curr_pos][1]

203
204 # set the title of the figure and axes

205 self.fig.canvas.set_window_title(self.title)

120

206 name = self.names[self.curr_pos]

207 self.ax.set_title(name)

208 self.ax.set_xlabel(’Time (hour)’)

209 self.ax.set_ylabel(’Frame Size (bytes)’)

210
211 # setup formatting for datetime axes

212 self.ax.xaxis.set_major_locator(self.hours)

213 self.ax.xaxis.set_major_formatter(self.hourFmt)

214 self.ax.format_xdata = mdates.DateFormatter(self.date_format)

215 self.ax.set_xlim(self.dates.min()-.001, self.dates.max()+.001)

216 self.ax.grid(True)

217 self.fig.autofmt_xdate()

218
219 def delete(self):

220 plt.close(’all’)

221 self.fig.canvas.mpl_disconnect(self.cid)

222
223
224 # write category of device to csv

225 def categorize_device_by_dst(pkt_size, device_category):

226 """

227 Categorize devices using traffic destined to device and criteria

228 found during training.

229
230 Parameters

231 ----------

232 pkt_size: (pkt.length) Contains the frame size of a packet sent

233 to the device.

234
235 Returns

236 ----------

237 category: (string) Return the category of the device based on

238 which criteria is met by the packet.

239 """

240 if device_category != ’OUTLET’:

241 # criteria for an outlet

242 if 619 <= pkt_size <= 632:

243 return ’OUTLET’

244 # criteria for a camera

245 elif pkt_size == 281:

246 return ’CAMERA’

247 # criteria for a sensor

248 elif pkt_size == 269:

121

249 return ’SENSOR’

250
251 return device_category

252
253
254 def id_events_by_dst(pkt_time, pkt_size, pkt_src, pkt_dst,

event_identification, events):

255 """

256 Identify events using traffic from the Raspberry Pi to device and

257 criteria found during training.

258
259 Parameters

260 ----------

261 pkt_time: (datetime) Timestamp of packet.

262 pkt_size: (pkt.length) Uses device address as keys and the

263 assigned category as values.

264 pkt_src: (pkt.wlan.sa) Source address of the packet.

265 pkt_dst: (pkt.wlan.da) Destination address of the packet.

266 event_identification: (list) 2-D list with each entry containing

267 the time, source, and destination of an event.

268 events: (list) Contains a time to the minute of events that

269 occurred.

270
271 Returns

272 ----------

273 event_identification: (list) Updated event identification list.

274 """

275 if 619 <= pkt_size <= 632:

276 pkt_time = pkt_time[:pkt_time.rindex(’:’)]

277 # sometimes multiple packets are sent due to retransmission

278 # attempts so only acknowledge one event per device per

279 # minute. This sample interval provides enough precision

280 # for the problem at hand

281 if pkt_time not in events:

282 events.append(pkt_time)

283 event_identification.append([pkt_time, DEVICE_NAME[pkt_dst

], ’1’])

284
285 return event_identification, events

286
287
288 def id_events_by_src(device_by_src, pkt_src, pkt_dst,

device_categorization, event_identification):

122

289 """

290 Identify events using traffic from a device to the router and

291 criteria found during training.

292
293 Parameters

294 ----------

295 device_by_src: (dictionary) Keys are the time of the packet time

296 to the minute and values are the sum of all packets sent in

297 one minute.

298 pkt_src: (pkt.wlan.sa) Source address of the packet.

299 pkt_dst: (pkt.wlan.da) Destination address of the packet.

300 device_categorization: (dictionary) Uses device addresses as keys

301 and assigned category as values.

302 event_identification: (list) 2-D list containing the time, source,

303 and destination of each identified event.

304
305 Returns

306 ----------

307 event_identification: (list) Updated 2-D list containing the time,

308 source, and destination of each identified event.

309 """

310 if device_categorization[pkt_src] == ’CAMERA’:

311 for k, v in sorted(device_by_src.iteritems()):

312 if v > 100000:

313 if check_motion_event(k, pkt_src, event_identification)

:

314 event_identification.append([k, DEVICE_NAME[pkt_src

], ’1’])

315 elif device_categorization[pkt_src] == ’SENSOR’:

316 for k, v in sorted(device_by_src.iteritems()):

317 if v > 10000:

318 if check_motion_event(k, pkt_src, event_identification)

:

319 event_identification.append([k, DEVICE_NAME[pkt_src

], ’1’])

320
321 return event_identification

322
323
324 def check_motion_event(pkt_time, pkt_src, event_identification):

325 """

326 Because motion events take time to send, if one was sent the

327 minute before then ignore a potential new event could cause

123

328 it to miss two events in a row, but most motion devices

329 have at least a 60 second no motion sensor before restarting,

330 so this should not be an issue.

331
332 Parameters

333 ----------

334 pkt_time: (datetime) Timestamp of packet.

335 pkt_src: (pkt.wlan.sa) Source address of the packet.

336 event_identification: (list) 2-D list with each entry containing

337 the time, source, and destination of an event.

338 """

339 date = datetime.datetime.strptime(pkt_time, ’%Y-%m-%d %H:%M’)

340 check_date = date - datetime.timedelta(minutes=1)

341 new_date = check_date.strftime(’%Y-%m-%d %H:%M’)

342 if [new_date, DEVICE_NAME[pkt_src], ’1’] in event_identification:

343 return False

344 return True

124

Appendix E. Training Event Log

Time MAC Device Action

8/14/17 6:55 Homebridge Start
8/14/17 6:57 Alfa Card Start
8/14/17 6:57 B4:75:0E:0D:33:D5 Switch 1 ON
8/14/17 6:58 B4:75:0E:0D:94:65 Switch 2 ON
8/14/17 6:59 94:10:3E:2B:7A:55 Switch 3 ON
8/14/17 7:00 14:91:82:C8:6A:09 Switch 4 ON
8/14/17 7:01 60:38:E0:EE:7C:E5 Mini ON
8/14/17 7:09 14:91:82:24:DD:35 Insight ON
8/14/17 7:11 EC:1A:59:E4:FD:41 NetCam MOTION
8/14/17 7:16 EC:1A:59:F1:FB:21 Motion MOTION
8/14/17 7:16 B4:75:0E:0D:33:D5 Switch 1 OFF
8/14/17 7:17 B4:75:0E:0D:94:65 Switch 2 OFF
8/14/17 7:17 94:10:3E:2B:7A:55 Switch 3 OFF
8/14/17 7:17 14:91:82:C8:6A:09 Switch 4 OFF
8/14/17 7:17 60:38:E0:EE:7C:E5 Mini OFF
8/14/17 7:17 14:91:82:24:DD:35 Insight OFF
8/14/17 13:43 B4:75:0E:0D:33:D5 Switch 1 ON
8/14/17 13:45 B4:75:0E:0D:33:D5 Switch 1 OFF
8/14/17 16:33 B4:75:0E:0D:33:D5 Switch 1 ON
8/14/17 16:34 B4:75:0E:0D:94:65 Switch 2 ON
8/14/17 16:35 94:10:3E:2B:7A:55 Switch 3 ON
8/14/17 16:36 14:91:82:C8:6A:09 Switch 4 ON
8/14/17 16:37 60:38:E0:EE:7C:E5 Mini ON
8/14/17 16:43 14:91:82:24:DD:35 Insight ON
8/14/17 16:45 EC:1A:59:E4:FD:41 NetCam MOTION
8/14/17 16:48 EC:1A:59:F1:FB:21 Motion MOTION
8/14/17 16:49 B4:75:0E:0D:33:D5 Switch 1 OFF
8/14/17 16:49 B4:75:0E:0D:94:65 Switch 2 OFF
8/14/17 16:49 94:10:3E:2B:7A:55 Switch 3 OFF
8/14/17 16:49 14:91:82:C8:6A:09 Switch 4 OFF
8/14/17 16:49 60:38:E0:EE:7C:E5 Mini OFF
8/14/17 16:49 14:91:82:24:DD:35 Insight OFF
8/14/17 16:59 Alfa Card Stop
8/14/17 17:00 Homebridge Stop

125

Appendix F. Training Plots from Raspberry Pi to Device

126

127

Appendix G. Training Plots from Device to Router

128

129

Appendix H. Network Mapping Script

1 library(’igraph’)

2
3 # -- CREATE GRAPHS ---

4 nodes <- read.csv("network_node_file.csv", header=T, as.is=T)

5 links <- read.csv("network_edge_file.csv", header=T, as.is=T)

6 net <-graph_from_data_frame(d=links, vertices=nodes, directed=T)

7 colrs <- c("steelblue2", "tomato", "gold", "green")

8 V(net)$color <- colrs[V(net)$device.type]

9 V(net)

10 E(net)$width <- E(net)$weight/4000000

11 l <- layout_in_circle(net)

12 plot(net, layout=l, vertex.label=V(net)$device.label,

13 edge.arrow.size=0, vertex.frame.color="#ffffff",

14 vertex.label.color="black")

130

Appendix I. Device Shadow Script

1 #!/usr/bin/python

2 # deviceShadow.py

3 # Uses Scapy to spoof packets sent from the Raspberry Pi to the

4 # outlets and from the camera/sensor to the router

5 # include randomization to emulate real traffic

6 import sys, time, datetime, multiprocessing

7 from scapy.all import *

8
9 ##

10 # GLOBAL VARIABLES

11 DEVICES = {’B4:75:0E:0D:33:D5’: ’192.168.1.40’,

12 ’B4:75:0E:0D:94:65’: ’192.168.1.41’,

13 ’94:10:3E:2B:7A:55’: ’192.168.1.42’,

14 ’14:91:82:C8:6A:09’: ’192.168.1.7’,

15 ’14:91:82:24:DD:35’: ’192.168.1.47’,

16 ’60:38:E0:EE:7C:E5’: ’192.168.1.51’,

17 ’EC:1A:59:F1:FB:21’: ’192.168.1.43’,

18 ’EC:1A:59:E4:FD:41’: ’192.168.1.44’}

19 RASPI_MAC = ’B8:27:EB:09:1A:81’

20 RASPI_IP = ’192.168.1.50’

21 ROUTER_MAC = ’ec:4f:82:73:d1:1c’

22 ROUTER_IP = ’192.168.1.1’

23 # tcp destination port

24 tcp = TCP(dport=4242)

25 OUTLET_DATA = ’\xccWhat is the answer to the Ultimate Question of’ \

26 ’ Life, The Universe, and Everything? The answer is’ \

27 ’ 42!’ + (’a’ * 431)

28 SENSOR_DATA = ’\xccWhat is the answer to the Ultimate Question of’ \

29 ’ Life, The Universe, and Everything? The answer is’ \

30 ’ 42!’ + (’a’ * 1351)

31 CAMERA_DATA = ’\xccWhat is the answer to the Ultimate Question of’ \

32 ’ Life, The Universe, and Everything? The answer is’ \

33 ’ 42!’ + (’a’ * 1351)

34 TIME_FORMAT = ’%Y-%m-%d %H:%M:%S’

35 ##

36
37
38 def main():

39 """

40 Randomly spoof outlet, sensor, and camera traffic at a random

41 interval between one and two minutes. Each cycle of all three

42 types of traffic are sent randomly every 10 to 15 minutes

131

43 """

44 functions = [outlet_devices, sensor_devices, camera_devices]

45 while 1:

46 random.shuffle(functions)

47 for function in functions:

48 function()

49 sleep_time = random.randint(60,120)

50 print ’sleeping for ’, sleep_time, ’ seconds.’

51 time.sleep(sleep_time)

52 sleep_time = random.randint(600,900)

53 print ’sleeping for ’, sleep_time, ’ seconds.’

54 time.sleep(sleep_time)

55
56
57 def outlet_devices():

58 """

59 Spoof the traffic signature of packets sent from the Raspberry

60 Pi to an outlet. For each device in a random order send a 620

61 byte TCP packet from the raspberry pi to each device

62 """

63 print ’outlet device’

64 outlets = list(DEVICES.keys())

65 random.shuffle(outlets)

66 for outlet in outlets:

67 for _ in range(3):

68 print "sending packet on behalf of ", RASPI_MAC, ’ to ’,

outlet, ’ at ’, pretty_time(time.time())

69 ether = Ether(src=RASPI_MAC, dst=outlet)

70 ip = IP(src=RASPI_IP, dst=DEVICES[outlet])

71 sendp(ether / ip / tcp / OUTLET_DATA, iface=’eth0’, verbose

=0)

72 time.sleep(1)

73
74
75 def sensor_devices():

76 """

77 Spoof the traffic signature of packets sent from a sensor to

78 the router. For each device in a random order send a series of

79 TCP packets totaling a size of at least 10000 bytes from the

80 device to the router in one minute

81 """

82 print ’sensor device’

83 sensors = list(DEVICES.keys())

132

84 random.shuffle(sensors)

85 for sensor in sensors:

86 for _ in range(10):

87 print "sending packet on behalf of ", sensor, ’ to ’,

ROUTER_MAC, ’ at ’, pretty_time(time.time())

88 ether = Ether(src=sensor, dst=ROUTER_MAC)

89 ip = IP(src=DEVICES[sensor], dst=ROUTER_IP)

90 sendp(ether / ip / tcp / SENSOR_DATA, iface=’wlan0’,

verbose=0)

91 time.sleep(1)

92
93
94 def camera_devices():

95 """

96 Spoof the traffic signature of packets sent from a camera to

97 the router. For each device in a random order send a series of

98 TCP packets totaling a size of at least 100000 bytes from

99 the device to the router in one minute

100 """

101 print ’camera device’

102 cameras = list(DEVICES.keys())

103 random.shuffle(cameras)

104 # spawn 5 subprocesses with eac sending 5 pkts

105 jobs = []

106 for camera in cameras:

107 for _ in range(5):

108 p = multiprocessing.Process(target=camera_msg, args =(

camera,))

109 jobs.append(p)

110 p.start()

111 # block until all processes are done

112 for job in jobs:

113 job.join()

114
115
116 def camera_msg(camera):

117 """

118 Process to send five packets on behalf of the camera

119 """

120 for _ in range(5):

121 print "sending packet on behalf of ", camera, ’ to ’,

ROUTER_MAC, ’ at ’, pretty_time(time.time())

122 ether = Ether(src=camera, dst=ROUTER_MAC)

133

123 ip = IP(src=DEVICES[camera], dst=ROUTER_IP)

124 sendp(ether / ip / tcp / CAMERA_DATA, iface=’wlan0’, verbose=0)

125
126
127 def pretty_time(pkt_time):

128 """

129 Helper function to get better time format

130 """

131 return datetime.fromtimestamp(float(pkt_time)).strftime(

TIME_FORMAT)

132
133 if __name__ == "__main__":

134 main()

134

Appendix J. MAC Shadow Script

1 #!/usr/bin/python

2 # macShadow.py

3 # Uses Scapy to spoof packets sent from user devices to make it

4 # appear that the device is within the home. Does not spoof the

5 # device if it is actually home to ensure that ARP tables are not

6 # changed

7 import sys, time, datetime

8 from scapy.all import *

9
10 ##

11 # GLOBAL VARIABLES

12 # Device IPs to shadow

13 DEVICES= ["192.168.1.4"]

14 # Device MACs to shadow

15 MACS= ["a0:18:28:33:34:f8"]

16 # Device that is always on network so spoofed packets appear real

17 DST_IP = "192.168.1.54"

18 # Device MAC to send packets to

19 DST_MAC = "08:66:98:ed:1e:19"

20 # Network Interface to use to send packets

21 INTERFACE = ’wlan0’

22 # Time format

23 TIME_FORMAT = ’%Y-%m-%d %H:%M:%S’

24 ##

25
26
27 def main():

28 """

29 Determine which devices are in the home. For those not in the

30 home send spoofed packets from the absent devices IP/MAC at a

31 random interval between 3 and 4 minutes. If all devices are

32 present, then sleep for 4 minutes then check again.

33 """

34 # holds all of the src/dst ethernet tuples for scapy

35 ethers = []

36 # holds all of the src/dst IP tuples for scapy

37 ips = []

38 # tcp destination port

39 tcp = TCP(dport=4242)

40 # message to send for fun

41 data = ’\xccWhat is the answer to the Ultimate Question of Life,

The Universe, and Everything?’

135

42
43 # for each ip and mac address provided above,

44 # create the tuples for scapy

45 for ip, mac in zip(DEVICES, MACS):

46 ethers.append(Ether(src=mac, dst=DST_MAC))

47 ips.append(IP(src=ip, dst=DST_IP))

48
49 # infinite loop

50 while 1:

51 # initialize variables

52 all_present = True

53 absent_devices = []

54 # for each device, check if it is present. If it is not

55 # present add device IP and ethernet tuples to the list

56 #of absent devices

57 for ip, ether, dev in zip(ips, ethers, DEVICES):

58 device_present = check_device(dev)

59 if device_present != True:

60 all_present = False

61 absent_devices.append([ether,ip, dev])

62
63 # if all devices are present, sleep for 5 min, then check again

64 if all_present == True:

65 print ’all devices present; sleeping for 4 min’

66 time.sleep(240)

67
68 # if they are not all present, send 10 packets at random

69 # intervals from the device then sleep between one and 3

70 # minutes before checking for devices again

71 else:

72 print ’All devices not present’

73 for dev in absent_devices:

74 print ’Sending ten messages on behalf of:’, dev[2], ’at

’, pretty_time(time.time())

75 for _ in range(10):

76 sendp(dev[0]/dev[1]/tcp/data, iface=INTERFACE,

verbose=0)

77 sleep_time = random.randint(1,100)

78 time.sleep(sleep_time/100)

79 sleep_time = random.randint(180,240)

80 print ’Done sending, going to sleep for’, sleep_time, ’

seconds then restart.’

81 time.sleep(sleep_time)

136

82
83 del absent_devices[:]

84
85
86 def check_device(dev):

87 """

88 Checks if a device is presnt using ARP pings

89 """

90 print ’Checking to see if device at ’, dev, ’ is on the network at

’, pretty_time(time.time())

91 # Send 10 ARP pings to see if the device is present

92 ans,unans=srp(Ether(dst="ff:ff:ff:ff:ff:ff:ff")/ARP(pdst=dev),

timeout=2, verbose=0, retry=10)

93 for s, r in ans:

94 if r[ARP].psrc == dev:

95 print ’Device responded to ARP’

96 print ’Device is present’

97 return True

98 print ’Device did not respond to ARP’

99 print ’Device is not present’

100 return False

101
102
103 def pretty_time(pkt_time):

104 """

105 Helper function to get better time format

106 """

107 return datetime.fromtimestamp(float(pkt_time)).strftime(

TIME_FORMAT)

108
109 if __name__ == "__main__":

110 main()

137

Appendix K. Results Script

1 #!/usr/bin/python

2 # results.py

3 # Compares BLE/Wi-Fi logs with events identified by CITIoT. Provides

4 # True Positive, False Negative, and False Positive rates. Also,

5 # provides a .csv file with events categorized as TP, FN, or FP.

6 # If a motion/camera/BLE event is identified +-1 minute from a

7 # logged event, then classify as a TP. This is because CITIoT is

8 # identifying a real event, but the timing may be too close that it

9 # identifies the time off by a minute.

10 import sys, getopt, csv, datetime

11 ##

12 # GLOBAL VARIABLES

13 BLE_DEVICES = {’Eve Door 91B3’, ’Eve Room 4A04’, ’Eve Weather 943D’

14 ’Eve Motion 31A7’, ’Eve Energy 556E’, ’Gunbox’,

15 ’BLELock’, ’00000b67’, ’Instant Pot Smart’,

16 ’PLAYBULB’,}

17 ##

18
19 def main(argv):

20 """

21 Compares logs to CITIoT event identification. Can compare

22 BLE and Wi-Fi logs and events or just one of the components

23 """

24 ble_log_file_name = ""

25 wifi_log_file_name = ""

26 ble_events_file_name = ""

27 wifi_events_file_name = ""

28
29 try:

30 opts, args = getopt.getopt(argv, "ha:b:c:d:", ["help"])

31 except getopt.GetoptError:

32 print ’results.py -a <ble_log.csv> -b <wifi_log> -c <ble_vents.

csv> -d <wifi_events’

33 sys.exit(2)

34 for opt, arg, in opts:

35 if opt in ("-h", "--help"):

36 print "Help:"

37 print ’results.py -a <ble_log.csv> -b <wifi_log> -c <

ble_vents.csv> -d <wifi_events’

38 sys.exit()

39 elif opt == ’-a’:

40 ble_log_file_name = arg

138

41 elif opt == ’-b’:

42 wifi_log_file_name = arg

43 elif opt == ’-c’:

44 ble_events_file_name = arg

45 elif opt == ’-d’:

46 wifi_events_file_name = arg

47
48 # variables to store results

49 total_true_pos = 0

50 total_false_pos = 0

51 total_false_neg = 0

52 total_num_events = 0

53 total_num_events_id = 0

54
55 #r results file information

56 date = ""

57 results_file_name = ""

58
59 # list to store logs and events

60 ble_logs = []

61 ble_events = []

62 wifi_logs = []

63 wifi_events = []

64
65 # lists to store output vlaues

66 ble_csv_entries = []

67 wifi_csv_entries = []

68 total_csv_entries = []

69 total_true_pos_list = []

70 total_false_pos_list = []

71 total_false_neg_list = []

72
73 # if the user provided BLE log and event filenames analyze

74 # BLE results

75 if (ble_log_file_name != "") and (ble_events_file_name != ""):

76 with open(ble_log_file_name, ’rb’) as curr_file:

77 reader = csv.reader(curr_file)

78 ble_logs = list(reader)

79
80 with open(ble_events_file_name, ’rb’) as curr_file:

81 reader = csv.reader(curr_file)

82 ble_events = list(reader)

83

139

84 # get information used for the output file

85 pkt_time = ble_logs[0][0]

86 date = datetime.datetime.strptime(pkt_time, ’%Y-%m-%d %H:%M’).

strftime(’%d%b%y’)

87 results_file_name = "results_" + date + ".csv"

88
89 # start the output for the BLE results

90 ble_csv_entries.append(["BLE Results:",""])

91
92 # compare id’d events to the logs

93 true_pos, false_pos, false_neg, num_events, num_events_id,

csv_entries, true_pos_list, false_pos_list, false_neg_list

= calculate_results(ble_logs, ble_events)

94
95 # add BLE results to running totals

96 total_true_pos += true_pos

97 total_false_pos += false_pos

98 total_false_neg += false_neg

99 total_num_events += num_events

100 total_num_events_id += num_events_id

101 ble_csv_entries += csv_entries

102 total_true_pos_list += true_pos_list

103 total_false_pos_list += false_pos_list

104 total_false_neg_list += false_neg_list

105
106 # if the user provided Wi-Fi log and event filenames analyze

107 # Wi-Fi results

108 if (wifi_log_file_name != "") and (wifi_events_file_name != ""):

109 with open(wifi_log_file_name, ’rb’) as curr_file:

110 reader = csv.reader(curr_file)

111 wifi_logs = list(reader)

112
113 with open(wifi_events_file_name, ’rb’) as curr_file:

114 reader = csv.reader(curr_file)

115 wifi_events = list(reader)

116
117 # get information used for the output file

118 pkt_time = wifi_logs[0][0]

119 date = datetime.datetime.strptime(pkt_time, ’%Y-%m-%d %H:%M’).

strftime(’%d%b%y’)

120 results_file_name = "results_" + date + ".csv"

121
122 # start the output for the BLE results

140

123 wifi_csv_entries.append(["Wi-Fi Results:",""])

124
125 # compare id’d events to the logs

126 true_pos, false_pos, false_neg, num_events, num_events_id,

csv_entries, true_pos_list, false_pos_list, false_neg_list

= calculate_results(wifi_logs, wifi_events)

127
128 # add BLE results to running totals

129 total_true_pos += true_pos

130 total_false_pos += false_pos

131 total_false_neg += false_neg

132 total_num_events += num_events

133 total_num_events_id += num_events_id

134 wifi_csv_entries += csv_entries

135 total_true_pos_list += true_pos_list

136 total_false_pos_list += false_pos_list

137 total_false_neg_list += false_neg_list

138
139 # prepare complete list of results

140 total_csv_entries.append(["Total Results:", ""])

141 total_csv_entries.append(["True Positives", total_true_pos])

142 total_csv_entries.append(["False Positives", total_false_pos])

143 total_csv_entries.append(["False Negatives", total_false_neg])

144 total_csv_entries.append(["Number of events logged",

total_num_events])

145 total_csv_entries.append(["Number of events identified",

total_num_events_id])

146 total_csv_entries.append(["Event identification success rate",

147 float(total_true_pos) / float(total_num_events)

* 100])

148 total_csv_entries.append(["Event identification false positive

rate",

149 float(total_false_pos) / float(

total_num_events_id) * 100])

150 total_csv_entries.append(["Event identification false negative

rate",

151 float(total_false_neg) / float(total_num_events)

* 100])

152
153 # include the results for the files provided by the user

154 if(ble_log_file_name != "") and (wifi_log_file_name != ""):

155 # combine columns for BLE and Wi-Fi results

141

156 combined_csv_entries = [x+y+z for x, y, z in zip (

ble_csv_entries, wifi_csv_entries, total_csv_entries)]

157 elif ble_log_file_name == "":

158 combined_csv_entries = wifi_csv_entries

159 elif wifi_log_file_name == "":

160 combined_csv_entries = ble_csv_entries

161
162 # write results to a file

163 with open(results_file_name, ’w’) as curr_file:

164 for line in combined_csv_entries:

165 csv.writer(curr_file).writerow(line)

166
167 csv.writer(curr_file).writerow(["True Positives:"])

168 for line in total_true_pos_list:

169 csv.writer(curr_file).writerow(line)

170
171 csv.writer(curr_file).writerow(["False Positives:"])

172 for line in total_false_pos_list:

173 csv.writer(curr_file).writerow(line)

174
175 csv.writer(curr_file).writerow(["False Negatives:"])

176 for line in total_false_neg_list:

177 csv.writer(curr_file).writerow(line)

178
179 # combine log files and events file to use in R script

180 combined_logs_file = "logs_" + date + ".csv"

181 combined_logs = ble_logs + wifi_logs

182 combined_events_file = "events_" + date + ".csv"

183 combined_events = ble_events + wifi_events

184
185 # write combined log/events to files

186 with open(combined_logs_file, ’w’) as curr_file:

187 for line in combined_logs:

188 csv.writer(curr_file).writerow(line)

189
190 with open(combined_events_file, ’w’) as curr_file:

191 for line in combined_events:

192 csv.writer(curr_file).writerow(line)

193
194
195 def calculate_results(logs, events):

196 """

197 Compares log to id’d events. For NetCam/Motion and BLE events

142

198 acknowledges a success if the id’d event was found +- 1 min of

199 the log.

200 """

201 true_pos = 0

202 false_pos = 0

203 false_neg = 0

204 true_pos_list =[]

205 false_pos_list = []

206 false_neg_list = []

207
208 # if an event is in the logs and in the event list then TP

209 # if an event is in the logs but not in the event list then FN

210 for line in logs:

211 if line in events:

212 true_pos += 1

213 true_pos_list.append(line)

214 if line not in events:

215 if line[1] == "NetCam" or line[1] == "Motion" or line[1] in

BLE_DEVICES:

216 if check_event(line, events) != False:

217 true_pos += 1

218 true_pos_list.append(line)

219 else:

220 false_neg += 1

221 false_neg_list.append(line)

222 else:

223 false_neg += 1

224 false_neg_list.append(line)

225
226 # if an event is in the events list but not in log then FP

227 for line in events:

228 if line not in logs:

229 if line[1] == "NetCam" or line[1] == "Motion" or line[1] in

BLE_DEVICES:

230 time = check_event(line, logs)

231 if time == False:

232 false_pos += 1

233 false_pos_list.append(line)

234 else:

235 # line up times so look better in plots

236 line[0] = time

237 else:

238 false_pos += 1

143

239 false_pos_list.append(line)

240
241 num_events = len(logs)

242 num_events_id = len(events)

243 csv_entries = []

244
245 # results per protocol

246 csv_entries.append(["True Positives", true_pos])

247 csv_entries.append(["False Positives", false_pos])

248 csv_entries.append(["False Negatives", false_neg])

249 csv_entries.append(["Number of events logged", num_events])

250 csv_entries.append(["Number of events identified", num_events_id])

251 csv_entries.append(["Event identification success rate",

252 float(true_pos)/float(num_events)

*100])

253 csv_entries.append(["Event identification false positive rate",

254 float(false_pos) / float(

num_events_id)*100])

255 csv_entries.append(["Event identification false negative rate",

256 float(false_neg) / float(num_events)

*100])

257
258 return true_pos, false_pos, false_neg, num_events, num_events_id,

csv_entries, true_pos_list, false_pos_list, false_neg_list

259
260
261 def check_event(line, check_list):

262 """

263 Because motion/camera BLE events take time to send, if one was

264 sent the minute before then ignore a potential new event could

265 cause us to miss two events in a row, but most motion devices

266 have at least a 60 second no motion sensor before restarting, so

267 this should not be an issue.

268 """

269 pkt_time = line[0]

270 device = line[1]

271 date = datetime.datetime.strptime(pkt_time, ’%Y-%m-%d %H:%M’)

272 date_minus_1 = date - datetime.timedelta(minutes=1)

273 date_minus_1 = date_minus_1.strftime(’%Y-%m-%d %H:%M’)

274 date_plus_1 = date + datetime.timedelta(minutes=1)

275 date_plus_1 = date_plus_1.strftime(’%Y-%m-%d %H:%M’)

276 if [date_minus_1, device, ’1’] in check_list:

277 print "got minus 1"

144

278 return date_minus_1

279 elif [date_plus_1, device, ’1’] in check_list:

280 print "got plus 1"

281 return date_plus_1

282 else:

283 return False

284
285
286 # call main

287 if __name__ == "__main__":

288 main(sys.argv[1:])

145

Appendix L. Log Script

1 #!/usr/bin/python

2 # logParser.py

3 # Helper file to parse BLE and Wi-Fi logs. Very specific to the

4 # logs produced by Homebridge and the user. Provides two new

5 # logs containing the time, device, and ’1’ for each event.

6 # The ’1’ is used by the R script that plots the log values.

7 import sys, getopt, csv, datetime

8
9 ##

10 # GLOBAL VARIABLES

11 DEVICES = {’Switch 1’: ’b4:75:0e:0d:33:d5’,

12 ’Switch 2’: ’b4:75:0e:0d:94:65’,

13 ’Switch 3’: ’94:10:3e:2b:7a:55’,

14 ’Switch 4’: ’14:91:82:c8:6a:09’,

15 ’Mini’: ’60:38:e0:ee:7c:e5’,

16 ’Insight’: ’14:91:82:24:dd:35’,

17 ’WeMo Motion’: ’ec:1a:59:f1:fb:21’,

18 ’NetCam’: ’ec:1a:59:e4:fd:41’,

19 ’NetCam Motion,smbeyer8’: ’ec:1a:59:e4:fd:41’,

20 ’Motion’: ’ec:1a:59:f1:fb:21’}

21 ACTIONS = {’Set state: On’,

22 ’Set state: Off’,

23 ’Motion Sensor: Detected’}

24 DEVICE_NAME = {’ec:1a:59:e4:fd:41’: ’NetCam’,

25 ’b4:75:0e:0d:33:d5’: ’Switch1’,

26 ’b4:75:0e:0d:94:65’: ’Switch2’,

27 ’94:10:3e:2b:7a:55’: ’Switch3’,

28 ’14:91:82:c8:6a:09’: ’Switch4’,

29 ’ec:1a:59:f1:fb:21’: ’Motion’,

30 ’14:91:82:24:dd:35’: ’Insight’,

31 ’60:38:e0:ee:7c:e5’: ’Mini’}

32 TIME_FORMAT = ’%Y-%m-%d %H:%M’

33 ##

34
35
36 def main(argv):

37 """

38 Create properly formatted logs for BLE and/or Wi-Fi

39 """

40 try:

41 opts, args = getopt.getopt(argv, "hw:b:", ["help"])

42 except getopt.GetoptError:

146

43 print ’parse_log.py -w <wifi log file> -b <ble log file>’

44 sys.exit(2)

45 for opt, arg, in opts:

46 if opt in ("-h", "--help"):

47 print ’parse_log.py -w <wifi log file> -b <ble log file>’

48 sys.exit()

49 elif opt == ’-w’:

50 print "arg:", arg

51 file_name = arg

52 parse_wifi_log(file_name)

53 elif opt == ’-b’:

54 file_name = arg

55 parse_ble_log(file_name)

56
57
58 def parse_wifi_log(file_name):

59 """

60 Parses the homebridge event log looking for devices and

61 events. Creates a .csv file with the time and device of

62 each event. A ’1’ is added as the third value to be used

63 in R script for plotting.

64 """

65
66 with open(file_name, ’r’) as f:

67 content = f.readlines()

68 lines = []

69 # pull information from log

70 for line in content:

71 a = stringbtwn(line, ’[’, 2, ’]’, 2).replace(’,’, ’’)

72 b = stringbtwn(line, ’]’, 3, ’-’, 1).strip()

73 c = stringbtwn(line, ’-’, 1, ’\n’, 1).strip()

74 lines.append([a,b,c])

75
76 events = []

77 # for each

78 for line in lines:

79 device = line[1]

80 action = line[2]

81 if (device in list(DEVICES.keys())) and (action in ACTIONS):

82 date = line[0]

83 # reformat the time string

84 date = datetime.datetime.strptime(date, "%m/%d/%Y %I:%M:%S

%p").strftime(TIME_FORMAT)

147

85 event = [date, DEVICE_NAME[DEVICES[device]], ’1’]

86 if event not in events:

87 events.append(event)

88
89 # save the results into a new file

90 file_date = datetime.datetime.strptime(date, TIME_FORMAT).strftime

("%d%b%y")

91 csv_file = "wifi_log_" + file_date + ".csv"

92 with open(csv_file, ’w’) as curr_file:

93 for event in events:

94 csv.writer(curr_file).writerow(event)

95
96
97 def findnth(string, char, n):

98 """

99 Helper function that finds the location of the nth instance of a

100 character in a string

101 """

102 parts=string.split(char, n)

103 if len(parts)<=n:

104 return -1

105 return len(string)-len(parts[-1])-len(char)

106
107 def stringbtwn(string, char1, n1, char2, n2):

108 """

109 Helper function that finds the value between the given nth

110 instance of a character. If an input string of "[test] [test2]"

and values [, 2,], 2 were passed to the function, the function

111 would return "test2"

112 """

113 a = findnth(string, char1, n1)

114 b = findnth(string, char2, n2)

115 if (a == -1) or (b == -1):

116 return ""

117 return string[a+1:b]

118
119
120 def parse_ble_log(file_name):

121 """

122 Parses the BLE user log. Reformats the datetime and saves back

123 to the file.

124 """

125 with open(file_name, ’rb’) as curr_file:

148

126 reader = csv.reader(curr_file)

127 contents = list(reader)

128
129 lines = []

130 for line in contents:

131 date = line[0]

132 date = datetime.datetime.strptime(date, "%m/%d/%Y %H:%M").

strftime(TIME_FORMAT)

133 device = line[1]

134 value = line[2]

135 lines.append([date,device,value])

136
137 with open(file_name, ’w’) as curr_file:

138 for line in sorted(lines):

139 csv.writer(curr_file).writerow(line)

140
141
142 # call main

143 if __name__ == "__main__":

144 main(sys.argv[1:])

149

Appendix M. R Script

1 library(tidyverse)

2 library(plotly)

3 library(scales)

4
5 # -- PLOTTING FUNCTIONS --

6 ## Combined with no mitigation

7 # Repeat for trials #1-5

8 log_file_1 = ’logs_16Aug17.csv’

9 event_file_1 = ’events_16Aug17.csv’

10
11 myCols <- c("Time", "Device", "Event", "Data_Source")

12
13 log_plot_1 <- read_csv(log_file_1,

14 col_names = c("Time", "Device", "Event"), na = ".")

15 log_plot_1$Data_Source <- rep("Log", nrow(log_plot_1))

16 log_plot_1_final <- log_plot_1[myCols]

17
18 event_plot_1 <- read_csv(event_file_1,

19 col_names = c("Time", "Device", "Event"), na = ".")

20 event_plot_1$Data_Source <- rep("CITIoT", nrow(event_plot_1))

21 event_plot_1_final <- event_plot_1[myCols]

22
23 data_1 <- rbind(log_plot_1_final, event_plot_1_final)

24 data_1$Time <- as.POSIXct(data_1$Time, format = "%m/%d/%y %H:%M",

25 tz = "America/New_York")

26 date_1 <- format(min(data_1$Time), ’%d %b %y’)

27
28 plot_1 <- ggplot(data_1) +

29 aes(Time, Event, color=Data_Source, shape=Data_Source,

30 size = Data_Source, label = Time,

31 text = paste("Device: ", Device)) +

32 geom_point() + scale_shape_manual(values=c(8, 1)) +

33 scale_size_manual(values=c(2, 4)) + ggtitle(date_1) +

34 labs(x= "Time (minutes)", y = "Event") +

35 theme(axis.text.y=element_blank())

36
37 ggplotly(plot_1 +

38 scale_x_datetime(breaks = date_breaks("5 min"),

39 labels = date_format ("%H%M")),

40 tooltip = c(’text’,’label’))

41 ggplotly(plot_1 +

42 scale_x_datetime(breaks = date_breaks("1 hour"),

150

43 labels = date_format ("%H%M")),

44 tooltip = c(’text’,’label’))

45
46 ## Combined with mitigation

47 # Repeat for trials #6-10

48 log_file_6 = ’logs_19Dec17.csv’

49 event_file_6 = ’events_19Dec17.csv’

50
51 myCols <- c("Time", "Device", "Event", "Data_Source")

52
53 log_plot_6 <- read_csv(log_file_6,

54 col_names = c("Time", "Device", "Event"), na = ".")

55 log_plot_6$Data_Source <- rep("Log", nrow(log_plot_6))

56 log_plot_6_final <- log_plot_6[myCols]

57
58 event_plot_6 <- read_csv(event_file_6,

59 col_names = c("Time", "Device", "Event"), na = ".")

60 event_plot_6$Data_Source <- rep("CITIoT", nrow(event_plot_6))

61 event_plot_6_final <- event_plot_6[myCols]

62
63 data_6 <- rbind(log_plot_6_final, event_plot_6_final)

64 data_6$Time <- as.POSIXct(data_6$Time, format = "%m/%d/%y %H:%M",

65 tz = "America/New_York")

66 min(data_6$Time)

67 date_6 <- format(min(data_6$Time), ’%d %b %y’)

68
69 plot_6 <- ggplot(data_6) +

70 aes(Time, Event, color=Data_Source, shape=Data_Source,

71 size = Data_Source, label = Time,

72 text = paste("Device: ", Device)) +

73 geom_point() + scale_shape_manual(values=c(8, 1)) +

74 scale_size_manual(values=c(2, 4)) + ggtitle(date_6) +

75 labs(x= "Time (minutes)", y = "Event") +

76 theme(axis.text.y=element_blank())

77
78 ggplotly(plot_6 +

79 scale_x_datetime(breaks = date_breaks("1 hour"),

80 labels = date_format ("%H%M")),

81 tooltip = c(’text’,’label’))

82
83
84 # -- RESPONSE VARIABLE FUNCTIONS -----------------------------------

85 # load and prepare data

151

86 ble_results <- read.csv("BLE_Results.csv")

87 ble_results$Config <- "BLE"

88 wifi_results <- read.csv("WIFI_Results.csv")

89 wifi_results$Config <- "WIFI"

90 combined_results <- read.csv("COMBINED_results.csv")

91 combined_results$Config <- "COMBINED"

92 miotl_results <- read.csv("MIOTL_results.csv")

93 miotl_results$Config <- "MIOTL"

94 total_results = rbind(wifi_results, ble_results,

95 combined_results, miotl_results)

96 total_results$Config <- as.character(total_results$Config)

97 total_results$Config <- factor(total_results$Config,

98 levels=unique(total_results$Config))

99
100 # Calculate EITP results

101 bleESIR.SE = summarySE(ble_results, measurevar = "EITP",

102 groupvars = c("Config"), na.rm=TRUE)

103 wifiEITP.SE = summarySE(wifi_results, measurevar = "EITP",

104 groupvars = c("Config"), na.rm=TRUE)

105 combinedEITP.SE = summarySE(combined_results, measurevar = "EITP",

106 groupvars = c("Config"), na.rm=TRUE)

107 miotlEITP.SE = summarySE(miotl_results, measurevar = "EITP",

108 groupvars = c("Config"), na.rm=TRUE)

109 totalEITP.SE = rbind(bleESIR.SE, wifiEITP.SE,

110 combinedEITP.SE, miotlEITP.SE)

111 totalEITP.SE

112 ggplot(total_results, aes(x=Config,y=EITP)) +

113 geom_boxplot() + geom_jitter(alpha=.1, shape=16, size=.5) +

114 labs(size=4, x ="Configuration", y="Success Rate") +

115 theme_bw() +

116 theme(axis.text=element_text(size=12),

117 axis.title=element_text(size=14,face="bold"))

118
119 # Calculate EIFP results

120 bleEIFP.SE = summarySE(ble_results, measurevar = "EIFP",

121 groupvars = c("Config"), na.rm=TRUE)

122 wifiEIFP.SE = summarySE(wifi_results, measurevar = "EIFP",

123 groupvars = c("Config"), na.rm=TRUE)

124 combinedEIFP.SE = summarySE(combined_results, measurevar = "EIFP",

125 groupvars = c("Config"), na.rm=TRUE)

126 miotlEIFP.SE = summarySE(miotl_results, measurevar = "EIFP",

127 groupvars = c("Config"), na.rm=TRUE)

152

128 totalEIFP.SE = rbind(bleEIFP.SE, wifiEIFP.SE, combinedEIFP.SE,

miotlEIFP.SE)

129 totalEIFP.SE

130 ggplot(total_results, aes(x=Config,y=EIFP)) +

131 geom_boxplot() + geom_jitter(alpha=.1, shape=16, size=.5) +

132 labs(size=4, x ="Configuration", y="False Positive Rate") +

133 theme_bw() +

134 theme(axis.text=element_text(size=12),

135 axis.title=element_text(size=14,face="bold"))

136
137 # Calculate EIFN results

138 bleEIFN.SE = summarySE(ble_results, measurevar = "EIFN",

139 groupvars = c("Config"), na.rm=TRUE)

140 wifiEIFN.SE = summarySE(wifi_results, measurevar = "EIFN",

141 groupvars = c("Config"), na.rm=TRUE)

142 combinedEIFN.SE = summarySE(combined_results, measurevar = "EIFN",

143 groupvars = c("Config"), na.rm=TRUE)

144 miotlEIFN.SE = summarySE(miotl_results, measurevar = "EIFN",

145 groupvars = c("Config"), na.rm=TRUE)

146 totalEIFN.SE = rbind(bleEIFN.SE, wifiEIFN.SE,

147 combinedEIFN.SE, miotlEIFN.SE)

148 totalEIFN.SE

149 ggplot(total_results, aes(x=Config,y=EIFN)) +

150 geom_boxplot() + geom_jitter(alpha=.1, shape=16, size=.5) +

151 labs(size=4, x ="Configuration", y="False Negative Rate") +

152 theme_bw() +

153 theme(axis.text=element_text(size=12),

154 axis.title=element_text(size=14,face="bold"))

155
156 # Two sample t-tests to compare Wi-Fi no mitigation and Wi-Fi with

mitigation

157 t.test(wifi_results$EITPR, miotl_results$EITPR, var.equal=T,

alternative = "greater")

158 t.test(wifi_results$EIFPR, miotl_results$EIFPR, var.equal = T,

alternative = "less")

153

Appendix N. Device Classification Results

Actual Classifications

Device Classification
Switch1 Outlet
Switch2 Outlet
Switch3 Outlet
Switch4 Outlet
Insight Outlet
Mini Outlet

Motion Sensor
NetCam Camera

CITIoT Results Without Mitigation

Device 16 Aug 17 22 Aug 17 23 Aug 17 25 Aug 17 26 Aug 17
Switch1 Outlet Outlet Outlet Outlet Outlet
Switch2 Outlet Outlet Outlet Outlet Outlet
Switch3 Outlet Outlet Outlet Outlet Outlet
Switch4 Outlet Outlet Outlet Outlet Outlet
Insight Outlet Outlet Outlet Outlet Outlet
Mini Outlet Outlet Outlet Outlet Outlet

Motion Sensor Sensor Sensor Sensor Sensor
NetCam Camera Camera Camera Camera Camera

CITIoT Results With Mitigation

Device 19 Dec 17 22 Dec 17 23 Dec 17 26 Dec 17 27 Dec 17
Switch1 Outlet Outlet Outlet Outlet Outlet
Switch2 Outlet Outlet Outlet Outlet Outlet
Switch3 Outlet Outlet Outlet Outlet Outlet
Switch4 Outlet Outlet Outlet Outlet Outlet
Insight Outlet Outlet Outlet Outlet Outlet
Mini Outlet Outlet Outlet Outlet Outlet

Motion Outlet Outlet Outlet Outlet Outlet
NetCam Outlet Outlet Outlet Outlet Outlet

154

Appendix O. Event Identification Results

16 Aug 17

BLE Results Wi-Fi Results Total Results

True Positives N/A 31 31
False Posisitives N/A 0 0
False Negatives N/A 0 0
Events logged N/A 31 31
Events ID’d N/A 31 31
EITP N/A 100.000 % 100.000 %
EIFP N/A 0.000 % 0.000 %
EIFN N/A 0.000 % 0.000 %

BLE Events Wi-Fi Events

True Positives:
8/16/17 7:05 Switch1
8/16/17 7:05 Switch2
8/16/17 7:07 Switch3
8/16/17 7:08 Switch4
8/16/17 7:09 Mini
8/16/17 7:14 Insight
8/16/17 7:15 NetCam
8/16/17 7:18 Motion
8/16/17 7:22 Switch1
8/16/17 7:23 Switch2
8/16/17 7:23 Switch3
8/16/17 7:23 Mini
8/16/17 7:23 Switch4
8/16/17 7:23 Insight
8/16/17 7:32 NetCam
8/16/17 15:33 NetCam
8/16/17 15:42 NetCam
8/16/17 16:24 Switch1
8/16/17 16:25 Switch2
8/16/17 16:26 Switch3
8/16/17 16:27 Switch4
8/16/17 16:28 Mini
8/16/17 16:32 Insight
8/16/17 16:33 NetCam
8/16/17 16:35 Motion
8/16/17 16:39 Switch1

155

8/16/17 16:39 Switch2
8/16/17 16:39 Switch3
8/16/17 16:39 Switch4
8/16/17 16:39 Mini
8/16/17 16:39 Insight

False Positives:
False Negatives:

22 Aug 17

BLE Results Wi-Fi Results Total Results

True Positives 33 34 67
False Posisitives 2 1 3
False Negatives 5 1 6
Events logged 38 35 73
Events ID’d 36 35 71
EITP 86.842 % 97.143 % 91.781 %
EIFP 5.556 % 2.857 % 4.225 %
EIFN 13.158 % 2.857 % 8.219 %

BLE Events Wi-Fi Events

True Positives:
8/22/17 5:58 Eve Motion 31A7 8/22/17 5:57 Motion
8/22/17 5:59 Instant Pot Smart 8/22/17 6:00 Insight
8/22/17 6:00 Eve Motion 31A7 8/22/17 6:01 Mini
8/22/17 6:04 PLAYBULB 8/22/17 6:02 Switch2
8/22/17 6:06 Eve Energy 556E 8/22/17 6:03 NetCam
8/22/17 6:10 Eve Weather 943D 8/22/17 6:05 Switch1
8/22/17 6:14 Instant Pot Smart 8/22/17 6:08 Switch3
8/22/17 6:14 PLAYBULB 8/22/17 6:13 Motion
8/22/17 6:15 Gunbox 8/22/17 6:16 Mini
8/22/17 6:18 Eve Motion 31A7 8/22/17 6:16 Switch1
8/22/17 6:19 Eve Room 4A04 8/22/17 6:16 Switch4
8/22/17 6:20 Eve Motion 31A7 8/22/17 6:17 NetCam
8/22/17 6:23 Eve Motion 31A7 8/22/17 6:18 Insight
8/22/17 6:23 Eve Room 4A04 8/22/17 6:18 Switch2
8/22/17 6:24 00000b67 8/22/17 6:18 Switch3
8/22/17 6:25 BLELock 8/22/17 8:18 Motion
8/22/17 6:26 Eve Door 91B3 8/22/17 14:16 Switch1
8/22/17 16:18 Eve Weather 943D 8/22/17 14:19 Switch1
8/22/17 16:23 Eve Room 4A04 8/22/17 16:19 Switch4
8/22/17 16:24 Gunbox 8/22/17 16:20 Insight

156

8/22/17 16:25 Instant Pot Smart 8/22/17 16:26 Switch1
8/22/17 16:27 Eve Motion 31A7 8/22/17 16:28 Motion
8/22/17 16:35 PLAYBULB 8/22/17 16:29 Switch2
8/22/17 16:36 Eve Energy 556E 8/22/17 16:30 NetCam
8/22/17 16:40 Eve Motion 31A7 8/22/17 16:31 Mini
8/22/17 16:40 Gunbox 8/22/17 16:37 Switch3
8/22/17 16:41 Eve Energy 556E 8/22/17 16:39 Switch3
8/22/17 16:41 Eve Room 4A04 8/22/17 16:39 Motion
8/22/17 16:42 Eve Energy 556E 8/22/17 16:39 Insight
8/22/17 16:42 PLAYBULB 8/22/17 16:40 Switch2
8/22/17 16:42 Eve Motion 31A7 8/22/17 16:41 Switch4
8/22/17 16:43 Eve Weather 943D 8/22/17 16:42 Switch1
8/22/17 16:43 Instant Pot Smart 8/22/17 16:42 NetCam

8/22/17 16:43 Mini
False Positives:
8/22/17 14:48 Eve Door 91B3 8/22/17 15:18 Motion
8/22/17 16:07 Eve Motion 31A7
False Negatives:
8/22/17 6:07 Eve Weather 943D 8/22/17 6:13 Switch4
8/22/17 6:09 Eve Room 4A04
8/22/17 6:15 Eve Energy 556E
8/22/17 14:17 Eve Room 4A04
8/22/17 14:18 Eve Weather 943D

23 Aug 17

BLE Results Wi-Fi Results Total Results

True Positives 42 34 76
False Posisitives 1 2 3
False Negatives 1 3 4
Events logged 43 37 80
Events ID’d 43 36 79
EITP 97.674 % 91.892 % 95.000 %
EIFP 2.326 % 5.556 % 3.797 %
EIFN 2.326 % 8.108 % 5.000 %

BLE Events Wi-Fi Events

True Positives:
8/23/17 7:05 Eve Weather 943D 8/23/17 7:04 NetCam
8/23/17 7:06 Eve Room 4A04 8/23/17 7:08 Switch2
8/23/17 7:09 PLAYBULB 8/23/17 7:10 Motion

157

8/23/17 7:12 Instant Pot Smart 8/23/17 7:11 Switch4
8/23/17 7:14 Eve Energy 556E 8/23/17 7:13 Switch3
8/23/17 7:17 Eve Motion 31A7 8/23/17 7:15 Mini
8/23/17 7:19 Eve Motion 31A7 8/23/17 7:16 Insight
8/23/17 7:20 Eve Energy 556E 8/23/17 7:19 Switch1
8/23/17 7:21 Gunbox 8/23/17 7:21 Switch2
8/23/17 7:21 Instant Pot Smart 8/23/17 7:22 Mini
8/23/17 7:22 Eve Motion 31A7 8/23/17 7:22 Switch3
8/23/17 7:22 Gunbox 8/23/17 7:24 Motion
8/23/17 7:23 Eve Room 4A04 8/23/17 7:24 Switch1
8/23/17 7:24 Eve Motion 31A7 8/23/17 7:25 NetCam
8/23/17 7:25 Eve Weather 943D 8/23/17 7:25 Insight
8/23/17 7:26 PLAYBULB 8/23/17 13:35 Motion
8/23/17 7:31 PLAYBULB 8/23/17 13:38 Motion
8/23/17 7:32 00000b67 8/23/17 13:52 NetCam
8/23/17 7:33 BLELock 8/23/17 16:26 NetCam
8/23/17 7:34 Eve Door 91B3 8/23/17 16:27 NetCam
8/23/17 14:33 Eve Door 91B3 8/23/17 16:28 NetCam
8/23/17 16:20 Eve Door 91B3 8/23/17 17:43 Motion
8/23/17 16:21 Eve Door 91B3 8/23/17 17:43 Insight
8/23/17 16:22 Eve Door 91B3 8/23/17 17:45 Switch2
8/23/17 16:31 Eve Door 91B3 8/23/17 17:49 Switch4
8/23/17 16:43 Eve Door 91B3 8/23/17 17:51 Mini
8/23/17 17:44 Eve Motion 31A7 8/23/17 17:55 NetCam
8/23/17 17:46 Eve Motion 31A7 8/23/17 18:01 Switch4
8/23/17 17:46 Eve Energy 556E 8/23/17 18:01 Switch2
8/23/17 17:50 Gunbox 8/23/17 18:01 NetCam
8/23/17 17:54 Eve Weather 943D 8/23/17 18:01 Switch1
8/23/17 17:56 PLAYBULB 8/23/17 18:01 Switch3
8/23/17 17:57 Instant Pot Smart 8/23/17 18:05 Insight
8/23/17 17:58 Eve Weather 943D 8/23/17 18:07 Mini
8/23/17 18:00 Eve Room 4A04
8/23/17 18:01 PLAYBULB
8/23/17 18:05 Instant Pot Smart
8/23/17 18:05 Eve Motion 31A7
8/23/17 18:06 Gunbox
8/23/17 18:06 Instant Pot Smart
8/23/17 18:06 Eve Motion 31A7
8/23/17 18:07 Eve Energy 556E
False Positives:
8/23/17 15:08 Eve Door 91B3 8/23/17 15:21 Motion

158

8/23/17 16:09 NetCam
False Negatives:
8/23/17 17:53 Eve Room 4A04 8/23/17 7:21 Switch4

8/23/17 17:47 Switch1
8/23/17 17:48 Switch3

25 Aug 17

BLE Results Wi-Fi Results Total Results

True Positives 50 35 85
False Posisitives 5 1 6
False Negatives 0 2 2
Events logged 50 37 87
Events ID’d 58 35 93
EITP 100.000 % 94.595 % 97.701 %
EIFP 8.621 % 2.857 % 6.452 %
EIFN 0.000 % 5.405 % 2.299 %

BLE Events Wi-Fi Events

True Positives:
8/25/17 8:16 Eve Energy 556E 8/25/17 8:11 Switch3
8/25/17 8:19 Eve Room 4A04 8/25/17 8:12 Motion
8/25/17 8:20 PLAYBULB 8/25/17 8:14 Switch2
8/25/17 8:22 Instant Pot Smart 8/25/17 8:15 Switch4
8/25/17 8:23 Eve Motion 31A7 8/25/17 8:17 Insight
8/25/17 8:25 Eve Weather 943D 8/25/17 8:18 NetCam
8/25/17 8:25 Eve Motion 31A7 8/25/17 8:21 Mini
8/25/17 8:26 Eve Energy 556E 8/25/17 8:24 Switch1
8/25/17 8:26 Gunbox 8/25/17 8:26 Switch4
8/25/17 8:26 Instant Pot Smart 8/25/17 8:26 Switch2
8/25/17 8:27 Eve Motion 31A7 8/25/17 8:27 Mini
8/25/17 8:27 Eve Room 4A04 8/25/17 8:27 Switch3
8/25/17 8:28 Eve Weather 943D 8/25/17 8:28 Motion
8/25/17 8:29 Eve Motion 31A7 8/25/17 8:28 Switch1
8/25/17 8:29 PLAYBULB 8/25/17 8:28 NetCam
8/25/17 8:45 BLELock 8/25/17 8:29 Insight
8/25/17 8:45 00000b67 8/25/17 9:45 NetCam
8/25/17 8:46 BLELock 8/25/17 9:55 NetCam
8/25/17 8:46 Eve Door 91B3 8/25/17 19:31 NetCam
8/25/17 10:00 Eve Door 91B3 8/25/17 19:36 Mini
8/25/17 10:00 Eve Energy 556E 8/25/17 19:39 Switch2
8/25/17 10:00 Eve Motion 31A7 8/25/17 19:42 NetCam

159

8/25/17 10:00 Eve Weather 943D 8/25/17 19:43 NetCam
8/25/17 13:23 Eve Door 91B3 8/25/17 19:44 Insight
8/25/17 13:24 Eve Door 91B3 8/25/17 19:45 Switch3
8/25/17 13:26 Eve Door 91B3 8/25/17 19:47 Switch1
8/25/17 13:28 Eve Door 91B3 8/25/17 19:48 Switch4
8/25/17 13:29 Eve Door 91B3 8/25/17 19:49 NetCam
8/25/17 13:30 Eve Door 91B3 8/25/17 19:51 Insight
8/25/17 13:35 Eve Door 91B3 8/25/17 19:51 NetCam
8/25/17 13:36 Eve Door 91B3 8/25/17 19:52 Switch2
8/25/17 15:32 Eve Door 91B3 8/25/17 19:52 NetCam
8/25/17 15:42 BLELock 8/25/17 19:55 Switch3
8/25/17 19:35 Eve Energy 556E 8/25/17 19:55 Switch4
8/25/17 19:37 Eve Motion 31A7 8/25/17 19:56 NetCam
8/25/17 19:38 PLAYBULB
8/25/17 19:39 Eve Motion 31A7
8/25/17 19:40 Gunbox
8/25/17 19:41 Eve Motion 31A7
8/25/17 19:41 Eve Weather 943D
8/25/17 19:43 Eve Motion 31A7
8/25/17 19:43 Instant Pot Smart
8/25/17 19:46 Eve Room 4A04
8/25/17 19:51 Gunbox
8/25/17 19:52 Eve Room 4A04
8/25/17 19:54 Eve Energy 556E
8/25/17 19:54 PLAYBULB
8/25/17 19:55 Instant Pot Smart
8/25/17 19:57 Eve Motion 31A7
8/25/17 19:57 Eve Weather 943D
False Positives:
8/25/17 8:44 Eve Motion 31A7 8/25/17 15:30 Motion
8/25/17 10:15 Eve Weather 943D
8/25/17 10:38 Eve Room 4A04
8/25/17 13:33 Eve Door 91B3
8/25/17 16:11 Eve Room 4A04
False Negatives:

8/25/17 19:52 Mini
8/25/17 19:55 Switch1

160

26 Aug 17

BLE Results Wi-Fi Results Total Results

True Positives 37 28 65
False Posisitives 0 1 1
False Negatives 2 5 7
Events logged 39 33 72
Events ID’d 39 29 68
EITP 94.872 % 84.848 % 90.278 %
EIFP 0.000 % 3.448 % 1.471 %
EIFN 5.128 % 15.152 % 9.722 %

BLE Events Wi-Fi Events

True Positives:
8/26/17 9:48 Eve Motion 31A7 8/26/17 9:49 Switch3
8/26/17 9:50 Eve Motion 31A7 8/26/17 9:50 Insight
8/26/17 9:52 PLAYBULB 8/26/17 9:53 Switch4
8/26/17 9:54 Eve Weather 943D 8/26/17 9:55 Switch1
8/26/17 9:57 Eve Room 4A04 8/26/17 9:56 NetCam
8/26/17 9:58 Instant Pot Smart 8/26/17 10:00 Motion
8/26/17 9:59 Eve Energy 556E 8/26/17 10:01 NetCam
8/26/17 10:02 Gunbox 8/26/17 10:05 Insight
8/26/17 10:03 Instant Pot Smart 8/26/17 10:05 Switch3
8/26/17 10:04 Eve Room 4A04 8/26/17 10:06 Motion
8/26/17 10:04 Eve Weather 943D 8/26/17 10:06 Switch4
8/26/17 10:05 Eve Energy 556E 8/26/17 10:06 Mini
8/26/17 10:05 Eve Motion 31A7 8/26/17 13:47 NetCam
8/26/17 10:05 PLAYBULB 8/26/17 17:40 Switch3
8/26/17 10:07 Eve Motion 31A7 8/26/17 17:43 Motion
8/26/17 10:24 Eve Door 91B3 8/26/17 17:45 Switch4
8/26/17 10:25 Eve Door 91B3 8/26/17 17:46 Mini
8/26/17 17:36 BLELock 8/26/17 17:50 NetCam
8/26/17 17:36 00000b67 8/26/17 17:51 Switch2
8/26/17 17:37 Eve Door 91B3 8/26/17 17:52 Switch1
8/26/17 17:38 Eve Door 91B3 8/26/17 17:54 NetCam
8/26/17 17:39 Gunbox 8/26/17 17:55 Switch2
8/26/17 17:41 Eve Motion 31A7 8/26/17 17:55 Mini
8/26/17 17:42 Eve Energy 556E 8/26/17 17:55 Insight
8/26/17 17:43 Eve Motion 31A7 8/26/17 17:55 Switch4
8/26/17 17:47 Eve Weather 943D 8/26/17 17:56 Switch1
8/26/17 17:48 Instant Pot Smart 8/26/17 17:56 Switch3
8/26/17 17:49 Eve Room 4A04 8/26/17 17:57 Motion

161

8/26/17 17:53 Eve Weather 943D
8/26/17 17:53 PLAYBULB
8/26/17 17:54 Eve Room 4A04
8/26/17 17:54 Gunbox
8/26/17 17:55 Eve Motion 31A7
8/26/17 17:56 Eve Energy 556E
8/26/17 17:56 Instant Pot Smart
8/26/17 17:57 Eve Motion 31A7
8/26/17 17:59 BLELock
False Positives:

8/26/17 15:31 Motion
False Negatives:
8/26/17 17:57 00000b67 8/26/17 9:46 Mini
8/26/17 17:59 Eve Door 91B3 8/26/17 9:51 Switch2

8/26/17 10:04 Switch2
8/26/17 10:06 Switch1
8/26/17 17:44 Insight

162

Appendix P. MAC Track Results

User Logs

Date Arrival Departure

Without mitigation

8/16/17
7:03 7:34
15:43 16:10
16:20 16:50

8/22/17
5:53 6:27
14:47 15:03
15:55 16:44

8/23/17
7:02 7:35
17:16 17:29
17:37 18:07

8/25/17

8:09 8:33
8:39 8:51
9:45 11:10
11:23 15:42
16:36 16:57
17:06 17:16
19:23 19:58

8/26/17 9:43 18:00
With mitigation

12/19/17
9:31 10:40
16:37 18:25
19:21 19:40

12/22/17
9:37 10:42
17:56 19:28

12/23/17
9:51 11:13
13:41 14:26
18:31 18:46

12/26/17
10:54 14:23
16:57 17:23

12/27/17
10:06 13:54
15:12 17:40

CITIoT Results

Date Arrival Departure

Without mitigation

8/16/17
7:03 7:34
15:44 16:12
16:20 16:50

8/22/17
5:53 6:27
14:47 15:03
15:54 16:44

8/23/17
7:02 7:36
17:16 17:29
17:36 18:07

8/25/17

8:09 8:33
8:39 8:51
9:46 11:10
11:23 15:43
16:37 16:57
17:06 17:16
19:23 19:58

8/26/17 9:43 18:00
With mitigation
12/19/17 9:31 19:40
12/22/17 9:37 19:28
12/23/17 9:51 18:46
12/26/17 10:54 17:23

12/27/17
10:06 14:07
14:14 17:40

163

Bibliography

1. United States Government Accountability Office, “Internet of Things:
Enhanced Assessments and Guidance Are Needed to Address Security Risks in
DOD,” 2017, accessed Feb 11, 2018. [Online]. Available:
www.gao.gov/assets/690/686203.pdf.

2. Consumer Technology Association, “2018 tech industry revenue to reach record
$351 billion, says CTA,” 2018, accessed Jan 7, 2018. [Online]. Available:
www.cta.tech/News/Press-Releases/2018/January/
2018-Tech-Industry-Revenue-to-Reach-Record-$351-Bi.aspx.

3. Wireless LAN Medium Access Control, MAC, and Physical Layer, PHY,
Specification, IEEE Standard 802.11, 2016, accessed Aug 27, 2017. [Online].
Available:
ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68.

4. J. Kurose and K. Ross, Computer Networking A Top-Down Approach Featuring
the Internet, 7th ed. Boston, MA: Pearson Education, Inc., 2017.

5. E. Skoudis and T. Liston, Counter Hack Reloaded: A Step-by-Step Guide to
Computer Attacks and Effective Defenses, 2nd ed. Upper Saddle River, NJ:
Prentice Hall Press, 2006.

6. V. Jacobson, C. Leres, and S. McCanne, “Tcpdump manual page,” 2017,
accessed Dec 8, 2017. [Online]. Available:
www.tcpdump.org/tcpdump man.html.

7. Specification of the Bluetooth System, Core Version 4.0, 2010, accessed Aug 27,
2017. [Online]. Available:
www.bluetooth.com/specifications/adopted-specifications/legacy-specifications.

8. R. Heydon, Bluetooth Low Energy: The Developer’s Handbook. Upper Saddle
River, NJ: Prentice Hall, 2013, vol. 1.

9. Specification of the Bluetooth System, Core Version 5.0, 2016, accessed Aug 30,
2017. [Online]. Available:
www.bluetooth.com/specifications/bluetooth-core-specification.

10. Apple, “iPhone 8 Tech Specs,” 2017, accessed Feb 11, 2018. [Online]. Available:
www.apple.com/iphone-8/specs/.

11. H. Sharma and S. Sharma, “A review of sensor networks: Technologies and
applications,” in 2014 Recent Advances in Engineering and Computational
Sciences (RAECS). IEEE, 2014, pp. 1–4.

164

www.gao.gov/assets/690/686203.pdf.
www.cta.tech/News/Press-Releases/2018/January/2018-Tech-Industry-Revenue-to-Reach-Record-$351-Bi.aspx.
www.cta.tech/News/Press-Releases/2018/January/2018-Tech-Industry-Revenue-to-Reach-Record-$351-Bi.aspx.
ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68.
www.tcpdump.org/tcpdump_man.html.
www.bluetooth.com/specifications/adopted-specifications/legacy-specifications.
www.bluetooth.com/specifications/bluetooth-core-specification.
www.apple.com/iphone-8/specs/.

12. D. Konings, A. Budel, F. Alam, and F. Noble, “Entity tracking within a Zigbee
based smart home,” in 2016 23rd International Conference on Mechatronics and
Machine Vision in Practice (M2VIP). IEEE, 2016, pp. 1–6.

13. C. Badenhop, J. Fuller, J. Hall, B. Ramsey, and M. Rice, “Evaluating ITU-T
G.9959 based wireless systems used in critical infrastructure assets,” in
International Conference on Critical Infrastructure Protection. Springer, 2015,
pp. 209–227.

14. B. Greenstein, R. Gummadi, J. Pang, M. Y. Chen, T. Kohno, S. Seshan, and
D. Wetherall, “Can Ferris Bueller still have his day off? Protecting privacy in
the wireless era.” in HotOS, 2007, pp. 1–6.

15. M. Ossman and D. Spill, “Project Ubertooth: An open source 2.4 GHz wireless
development platform suitable for Bluetooth experimentation,” 2014, accessed
Sep 5, 2017. [Online]. Available: www.ubertooth.sourceforge.net.

16. BlueZ Project, “BlueZ: Official Linux Bluetooth protocol stack,” 2016, accessed
Aug 27, 2017. [Online]. Available: www.bluez.org.

17. Plugable Technologies, “Plugable USB 2.0 Bluetooth Adapter,” 2016, accessed
Dec 8, 2017. [Online]. Available: www.plugable.com/products/usb-bt4le/.

18. KimiNewt, “Pyshark,” 2017, accessed Aug 30, 2017. [Online]. Available:
www.github.com/KimiNewt/pyshark.

19. G. Valadon and P. Lalet, “Scapy: The Python-based interactive packet
manipulation program and library,” 2016, accessed Dec 8, 2017. [Online].
Available: secdev.org/projects/scapy

20. E. Skoudis, “Internet of things, Voice Control, AI, and Office Automation,”
2016, presented at DerbyCon, accessed Dec 8, 2017. [Online]. Available:
www.irongeek.com/i.php?page=videos/derbycon6/.

21. Specification of the Bluetooth System, Core Version 4.2, 2014, accessed Aug 30,
2017. [Online]. Available:
www.bluetooth.com/specifications/bluetooth-core-specification.

22. A. Rose and B. Ramsey, “Picking Bluetooth Low Energy locks from a quarter
mile away,” 2016, presented at DEF CON 24, accessed Aug 30, 2017. [Online].
Available: www.media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%
20presentations/.

23. S. Jourdois, “BtleJuice: Bluetooth smart (LE) man-in-the-middle framework,”
2016, accessed Aug 30, 2017. [Online]. Available:
www.github.com/DigitalSecurity/btlejuice.

165

www.ubertooth.sourceforge.net.
www.bluez.org.
www.plugable.com/products/usb-bt4le/.
www.github.com/KimiNewt/pyshark.
secdev.org/projects/scapy
www.irongeek.com/i.php?page=videos/derbycon6/.
www.bluetooth.com/specifications/bluetooth-core-specification.
www.media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20 presentations/.
www.media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20 presentations/.
www.github.com/DigitalSecurity/btlejuice.

24. J. Slawomir, “A Node.js package for BLE using man-in-the-middle and other
attacks,” 2016, accessed Aug 30, 2017. [Online]. Available:
www.github.com/securing/gattacker.

25. J. G. del Arroyo, J. Bindewald, and B. Ramsey, “Securing Bluetooth Low
Energy enabled industrial monitors,” in Proceedings of the 12th International
Conference on Cyber Warfare and Security. Academic Conferences and
publishing limited, 2017, pp. 167–176.

26. A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering privacy
leakage in BLE network traffic of wearable fitness trackers,” in Proceedings of
the 17th International Workshop on Mobile Computing Systems and
Applications. ACM, 2016, pp. 99–104.

27. A. Rose, J. G. Del Arroyo, J. Bindewald, and B. Ramsey, “BlueFinder: A
range-finding tool for Bluetooth classic and low energy,” in Proceedings of the
12th International Conference on Cyber Warfare and Security. Academic
Conferences and publishing limited, 2017, pp. 303–312.

28. M. Versichele, L. De Groote, M. C. Bouuaert, T. Neutens, I. Moerman, and
N. Van de Weghe, “Pattern mining in tourist attraction visits through
association rule learning on Bluetooth tracking data: A case study of Ghent,
Belgium,” Tourism Management, vol. 44, pp. 67–81, 2014.

29. M. Zhou, Z. Tian, K. Xu, X. Yu, X. Hong, and H. Wu, “SCaNME: Location
tracking system in large-scale campus Wi-Fi environment using unlabeled
mobility map,” Expert Systems with Applications, vol. 41, no. 7, pp. 3429–3443,
2014.

30. B. Bonné, A. Barzan, P. Quax, and W. Lamotte, “WiFiPi: Involuntary tracking
of visitors at mass events,” in World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2013 IEEE 14th International Symposium and
Workshops. IEEE, 2013, pp. 1–6.

31. J. S. Atkinson, J. E. Mitchell, M. Rio, and G. Matich, “Your WiFi is leaking:
What do your mobile apps gossip about you?” Future Generation Computer
Systems, 2016.

32. C. Madrigal, “Tracking/Monitoring WiFi devices without being connected to
any network,” 2017, presented at Cyphercon 2.0. Accessed Dec 8, 2017.
[Online]. Available: www.irongeek.com/i.php?page=videos/cyphercon2/.

33. M. Gruteser and D. Grunwald, “Enhancing location privacy in wireless LAN
through disposable interface identifiers: A quantitative analysis,” Mobile
Networks and Applications, vol. 10, no. 3, pp. 315–325, 2005.

166

www.github.com/securing/gattacker.
www.irongeek.com/i.php?page=videos/cyphercon2/.

34. R. Rivest, “Chaffing and winnowing: Confidentiality without encryption,”
CryptoBytes (RSA laboratories), vol. 4, no. 1, pp. 12–17, 1998.

35. K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of BLE device
users,” in 25th USENIX Security Symposium, 2016, pp. 1205–1221.

36. J. G. del Arroyo, J. Bindewald, S. Graham, and M. Rice, “Enabling Bluetooth
Low Energy auditing through synchronized tracking of multiple connections,”
International Journal of Critical Infrastructure Protection, 2017.

37. J. L. Brooks and J. A. Goss, “Security issues and resulting security policies for
mobile devices,” 2013, accessed Feb 11, 2018. [Online]. Available:
www.dtic.mil/dtic/tr/fulltext/u2/a579735.pdf.

38. A. Liptak, “Strava’s fitness tracker heat map reveals the location of military
bases,” 2018, accessed Feb 11, 2018. [Online]. Available:
www.theverge.com/2018/1/28/16942626/
strava-fitness-tracker-heat-map-military-base-internet-of-things-geolocation.

39. Raspberry Pi Foundation, “Raspberry Pi 3 Model B Specifications,” 2016,
accessed Aug 30, 2017. [Online]. Available:
www.raspberrypi.org/products/raspberry-pi-3-model-b/.

40. nfarina, “Homebridge,” 2015, accessed Aug 30, 2017. [Online]. Available:
www.github.com/nfarina/homebridge/.

41. devbobo, “homebridge-platform-wemo,” 2017, accessed Aug 30, 2017. [Online].
Available: www.npmjs.com/package/homebridge-platform-wemo/.

42. Wireshark, “OUI Lookup Tool,” 2015, accessed Dec 28, 2017. [Online].
Available: www.wireshark.org/tools/oui-lookup.html.

43. GimliSonOfGloin, “Time inconsistency in Ubertooth host tools,” 2017, accessed
Dec 28, 2017. [Online]. Available:
www.github.com/greatscottgadgets/ubertooth/issues/251.

44. Nerade, “Ubertooth BTLE freezes on CONNECT REQ,” 2017, accessed Dec
28, 2017. [Online]. Available:
www.github.com/greatscottgadgets/ubertooth/issues/270.

45. K. Ognyanova, “Network visualization with R,” PolNet 2017 workshop, 2017,
accessed Dec 28, 2017. [Online]. Available:
www.kateto.net/wp-content/uploads/2017/06/Polnet%202017%20R%
20Network%20Visualization%20Workshop.pdf.

46. Radiocommunication Sector of ITU, “Isolation between antennas of IMT base
stations in the land mobile service,” 2011, accessed Dec 27, 2017. [Online].

167

www.dtic.mil/dtic/tr/fulltext/u2/a579735.pdf.
www.theverge.com/2018/1/28/16942626/strava-fitness-tracker-heat-map-military-base-internet-of-things-geolocation.
www.theverge.com/2018/1/28/16942626/strava-fitness-tracker-heat-map-military-base-internet-of-things-geolocation.
www.raspberrypi.org/products/raspberry-pi-3-model-b/.
www.github.com/nfarina/homebridge/.
www.npmjs.com/package/homebridge-platform-wemo/.
www.wireshark.org/tools/oui-lookup.html.
www.github.com/greatscottgadgets/ubertooth/issues/251.
www.github.com/greatscottgadgets/ubertooth/issues/270.
www.kateto.net/wp-content/uploads/2017/06/Polnet%202017%20R%20Network%20Visualization%20Workshop.pdf.
www.kateto.net/wp-content/uploads/2017/06/Polnet%202017%20R%20Network%20Visualization%20Workshop.pdf.

Available:
www.itu.int/dms pub/itu-r/opb/rep/R-REP-M.2244-2011-PDF-E.pdf.

168

www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2244-2011-PDF-E.pdf.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2018 Master’s Thesis Aug 2016 — Mar 2018

Pattern-of-Life Modeling Using Data Leakage in Smart Homes

Beyer, Steven M., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-M-009

intentionally left blank

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This work investigates data leakage in smart homes by providing a Smart Home Automation Architecture (SHAA) and a
device classifier and pattern-of-life analysis tool, CITIoT (Classify, Identify, and Track Internet of things). CITIoT was
able to capture traffic from SHAA and classify 17 of 18 devices, identify 95% of the events that occurred, and track when
users were home or away with near 100% accuracy. Additionally, a mitigation tool, MIoTL (Mitigation of IoT Leakage) is
provided to defend against smart home data leakage. With mitigation, CITIoT was unable to identify motion and camera
devices and was inundated with an average of 221 false positives per day that made it ineffective at identifying real
events. Also, CITIoT was only able to recognize 8 minutes of 24 hours that the user was away from the smart home.
This work closes by stressing the vulnerabilities presented through the demonstration of how an adversary can use
CITIoT to crack a BLE lock and gain access to the home. Lastly, security recommendations are provided to defend
against vulnerabilities presented in this work and create a safer smart home environment.

IoT, Smart Home, Cybersecurity, Pattern-of-Life Modeling, Wi-Fi, Bluetooth Low Energy

U U U UU 187

Dr. Barry E. Mullins (ENG)

(937) 255-3636, x7979; Barry.Mullins@afit.edu

	Pattern-of-Life Modeling using Data Leakage in Smart Homes
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Problem Statement
	Research Goals
	Hypothesis
	Approach
	Assumptions/Limitations
	Contributions
	Thesis Overview

	Background and Related Research
	Overview
	Wireless Protocols
	Wi-Fi
	BLE
	Other Wireless Protocols

	Smart Home Technologies
	Tools
	Related Research
	Background Summary

	SHAA, CITIoT, and MIoTL Design
	Overview
	System Summary
	Smart Home Automation Architecture (SHAA)
	Raspberry Pi
	Apple Devices
	Wi-Fi Devices
	Bluetooth Low Energy Devices

	Classification, Identification, and Tracking of Internet of things (CITIoT)
	Hardware
	Reconnaissance and Scanning
	Passive Sniffing
	Preprocessor
	MAC Tracker
	Classifier
	Network Mapper
	Security

	Mitigation of IoT Leakage (MIoTL)
	Device Shadow
	MAC Shadow

	Design Summary

	Methodology
	Problem/Objective
	System Under Test
	Assumptions

	Response Variables
	Control Variables
	Uncontrolled Variables
	Experiment Parameters
	Experimental Design
	SHAA
	CITIoT
	Treatments
	Logging
	Testing Process

	Statistical Analysis
	Device Classification Success Rate (DCSR)
	Event Identification True Positives Rate (EITPR)
	Event Identification False Positives Rate (EIFPR)
	Event Identification False Negatives Rate (EIFNR)
	User Tracking Success Rate (UTSR)
	Positive Predictive Value (PPV)
	Normalized Processing Time (NPT)
	Normalized Hard Drive Space (NHDS)
	Other Statistical Analysis Measures

	Methodology Summary

	Results and Analysis
	Overview
	CITIoT Accuracy
	Device Classification Success Rate (DCSR)
	Event Identification True Positives Rate (EITPR)
	Event Identification False Positives Rate (EIFPR)
	Event Identification False Negatives Rate (EIFNR)
	Positive Predictive Value (PPV)
	User Tracking Success Rate (UTSR)

	CITIoT Performance
	Normalized Processing Time (NPT)
	Normalized Hard Drive Space (NHDS)

	Results Summary

	Conclusion
	Overview
	Research Conclusions
	Research Significance and Synthesis
	Future Work

	BLE Sniffer Script
	Wi-Fi Script
	BLE Script
	Helper Script
	Training Event Log
	Training Plots from Raspberry Pi to Device
	Training Plots from Device to Router
	Network Mapping Script
	Device Shadow Script
	MAC Shadow Script
	Results Script
	Log Script
	R Script
	Device Classification Results
	Event Identification Results
	MAC Track Results
	Bibliography

